US2151070A - Amplification control circuit - Google Patents

Amplification control circuit Download PDF

Info

Publication number
US2151070A
US2151070A US119257A US11925737A US2151070A US 2151070 A US2151070 A US 2151070A US 119257 A US119257 A US 119257A US 11925737 A US11925737 A US 11925737A US 2151070 A US2151070 A US 2151070A
Authority
US
United States
Prior art keywords
grid
control
potential
current
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US119257A
Inventor
Bartels Hans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefunken AG
Original Assignee
Telefunken AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefunken AG filed Critical Telefunken AG
Application granted granted Critical
Publication of US2151070A publication Critical patent/US2151070A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/04Modifications of control circuit to reduce distortion caused by control

Definitions

  • My present invention relates to gain control circuits, and more particularly to amplification regulation networks.
  • the present invention relates to a special construction of the above circuit arrangement, with go the use of electron tubes having five, or a greater number of, electrodes, especially hexodes, whereby a variation of the steady plate current, and hence the appearance of D. C. impulses during control performance, is avoided in that the direct controlfpotentials are simultaneously applied to two grids of the tube to be controlled, whereby the value and direction of this applied control potential are to be so chosen that the steady plate current remains practically constant.
  • Figs. 1 and 2 show graphically the operation of the circuit
  • Fig. 3 is an amplifier circuit embodying the invention.
  • Fig. 3 shows an example of the circuit arrangement.
  • the impulses applied to the input termil0 nals I and 2 are amplified by the tube 3, and applied to the output terminals 4 and 5 across transformer 6.
  • the grid G2 next to the control grid G1 has applied to it a part of the potential of the plate current source 1, shown as a battery for the sake of simplicity.
  • the grid G3 has plate potential with the exception of the low voltage drop in the primary winding of the transformer 6.
  • the grid G4 also utilized for the control of the amplification, is connected to the cathode across the direct potential control source Egr.
  • the direct current potential control source Egr consists of a rectifier 9, a condenser 80 and a resistor H having taps. It detects a part of the output energy.
  • a part of the impulses of the direct control potential is also applied to the control grid G1 through an interposed bias battery Egl. Since, in general, the biasing potentials Egl and Eg4 should not be displaced by values with the same proportion in order to vary the amplification at constant direct plate current, it will be of advantage to connect in parallel to the tap point of the control voltage source a non-linear resistor (for instance dry rectifier l2) in series with a variable resistor l3, so as to obtain in this way the non-linear relationship.
  • the source 8 positively biases grid G4.
  • the non-linear relationship is achieved in that the displacement potential of the grid next to the anode is bridged by a non-linear resistor.
  • the non-linear resistance path between cathode and grid G4 is intended to insure an adaptation, or balance, of the necessary amount of variation of the grid biasing voltages of both grids. If, for instance, the grid biasing voltage of grid G4 is reduced from zero V. to -1 V., then the grid biasing potential of grid G1 would have to be decreased from -10 V. to around -8 V. in order that the same steady plate current may be obtained.
  • Fig. 2 shows the dependence of the voltage Eg4 upon Egl.
  • the constant plate currents in, ia2, iag serve as parameters.
  • Fig. 2 can be readily developed from Fig. 1.
  • the same values of E 1 are plotted along the abscissa.
  • Fig. 2 is developed from Fig. 1 by measuring the values of Eg4 corresponding to a number of points along the steady current line passing through A, B, C, D in Fig. 1. These values of Eg4 are, then, plotted with reference to the ordinate of Fig. 2; this produces the curve 2'31.
  • the other two curves of Fig. 2 are obtained, proceed ing from difierent current abscissae of Fig.
  • an electron discharge tube including at least a cathode an output electrode, a wave input electrode, an auxiliary electrode, and means maintaining said'auxiliary electrode ata positive potential with respect to said input electrode, an

Description

March 21, 1939. BARTELS AMPLIFICATION CONTROL CIRCUIT Filed Jan. 6, 1937 LESS POSITIVE 2 1 NEGATIVE ems ON 6 Hg '1 POST IVE BIAS GqDECREASES TO mam {I III 1 1 NEGATIVE BIAS 7 INVENTOR HANS BARTELS ATTORNEY' Patented Mar. 21, 1939 PATENT OFFICE AMPLIFIGATION CONTROL omoorr Hans Bartels, Berlin, Germany, assignor to Telefunken Gesellschaft fiir Drahtlose Telegraphic m. b. H., Berlin, Germany, a corporation of Germany Application January 6, 1937, Serial No. 119,257
In Germany November 21, 1935 1 Claim.
My present invention relates to gain control circuits, and more particularly to amplification regulation networks.
In the past there was described an arrange- 5 ment for controlling the degree of amplification in transmission systems utilizing the principle of potential displacement of the grid, or of anotherelectrode, and in which the variation of the plate current of the controlled tube, as regards lo the outputcircuit, is compensated during the control performance in that a single tube with corresponding auxiliary electrodes is used in which'due to the current distribution'within the tube, the resultant direct current flowing in the 16 output circuit remains practically constant in spite of variations of the, bias potentials of the auxiliary electrodes. 7
The present invention relates to a special construction of the above circuit arrangement, with go the use of electron tubes having five, or a greater number of, electrodes, especially hexodes, whereby a variation of the steady plate current, and hence the appearance of D. C. impulses during control performance, is avoided in that the direct controlfpotentials are simultaneously applied to two grids of the tube to be controlled, whereby the value and direction of this applied control potential are to be so chosen that the steady plate current remains practically constant.
30 In hexodes of the type used in receivers employing .automatic volume control it is already known to vary simultaneously the grid bias of the control grid as well as of a further grid, usually one situated near the anode, when fading is being 35 controlled. However, care was never taken that the steady plate current remain entirely or almost constant. In these last named hexodes there is bythe way no ground for such measure.
. In the drawing:
40 Figs. 1 and 2 show graphically the operation of the circuit,
Fig. 3 is an amplifier circuit embodying the invention.
. The functioning of the circuit arrangement will now be elucidated by reference to Figure 1. The curves e 4, e" 4 etc., characterize the dependence of the plate current upon the bias of the control grid at various biasing potentials of the grid situated next the anode. The points A, B, C, D designate points on the individual characteristics which correspond to the same plate current. These working points with different slopes, and also different amplifications, have different grid biasing potentions E'g1, E" 1, etc., of the control 55 grid corresponding thereto. Now, if in order to Jet vary the amplification without varying the steady plate current a transition is to take place in accordance with the invention, from point A of the one characteristic to point B of the other characteristic, it is necessary that besides the change of the grid potential from e' 4 to 6" 4, also the bias of the control grid be brought at the same time from the value E'gl to the value E 1.
Fig. 3 shows an example of the circuit arrangement. The impulses applied to the input termil0 nals I and 2 are amplified by the tube 3, and applied to the output terminals 4 and 5 across transformer 6. The grid G2 next to the control grid G1 has applied to it a part of the potential of the plate current source 1, shown as a battery for the sake of simplicity. The grid G3 has plate potential with the exception of the low voltage drop in the primary winding of the transformer 6. The grid G4, also utilized for the control of the amplification, is connected to the cathode across the direct potential control source Egr. The direct current potential control source Egr consists of a rectifier 9, a condenser 80 and a resistor H having taps. It detects a part of the output energy. A part of the impulses of the direct control potential is also applied to the control grid G1 through an interposed bias battery Egl. Since, in general, the biasing potentials Egl and Eg4 should not be displaced by values with the same proportion in order to vary the amplification at constant direct plate current, it will be of advantage to connect in parallel to the tap point of the control voltage source a non-linear resistor (for instance dry rectifier l2) in series with a variable resistor l3, so as to obtain in this way the non-linear relationship. The source 8 positively biases grid G4.
According to Fig. 3, the non-linear relationship is achieved in that the displacement potential of the grid next to the anode is bridged by a non-linear resistor. Obviously, it is also possible to bridge the control potential applied to the other grid, by means of a correspondingly dimensioned non-linear resistor. The non-linear resistance path between cathode and grid G4 is intended to insure an adaptation, or balance, of the necessary amount of variation of the grid biasing voltages of both grids. If, for instance, the grid biasing voltage of grid G4 is reduced from zero V. to -1 V., then the grid biasing potential of grid G1 would have to be decreased from -10 V. to around -8 V. in order that the same steady plate current may be obtained. When the grid G4 is changed from 0 to 2 V., then the change of the biasing voltage of grid G1 necessary for a constant plate feed current will be from 10 V. to 6.5 V. rather than the anticipated change of the biasing voltage from 10 to -6 V. in the presence of linear conditions. Now, inasmuch as it is not practicable to alter the grid voltage to suit different cases, the non-linear path has been provided between the cathode and thegrid G4.
Fig. 2 shows the dependence of the voltage Eg4 upon Egl. The constant plate currents in, ia2, iag serve as parameters. Fig. 2 can be readily developed from Fig. 1. In Figs. 1 and 2 the same values of E 1 are plotted along the abscissa. Fig. 2 is developed from Fig. 1 by measuring the values of Eg4 corresponding to a number of points along the steady current line passing through A, B, C, D in Fig. 1. These values of Eg4 are, then, plotted with reference to the ordinate of Fig. 2; this produces the curve 2'31. In a similar manner the other two curves of Fig. 2 are obtained, proceed ing from difierent current abscissae of Fig. 1. For a definite plate current the respective values of E 1 and E 1 are plotted. This circuit organization is to be used as an expandor and compressor (compandor) scheme; hence, it is of practical value in all transmission equipment in which a constriction or an expansion of the volume range is desired.
What is claimed is:
In combination with a source of electrical waves, an electron discharge tube including at least a cathode an output electrode, a wave input electrode, an auxiliary electrode, and means maintaining said'auxiliary electrode ata positive potential with respect to said input electrode, an
' output circuit connected to said output electrode,
means for varying the direct current potentials of the inp'ut'and auxiliary electrodes in polarity opposing sense, and a path having a non-linear resistance characteristic connected between said cathode and auxiliary electrode for maintaining the potential relations of the input and auxiliary electrodes such that the average current fiow in the output circuit is substantially steady.
HANS BARTELS.
US119257A 1935-11-21 1937-01-06 Amplification control circuit Expired - Lifetime US2151070A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2151070X 1935-11-21

Publications (1)

Publication Number Publication Date
US2151070A true US2151070A (en) 1939-03-21

Family

ID=7987414

Family Applications (1)

Application Number Title Priority Date Filing Date
US119257A Expired - Lifetime US2151070A (en) 1935-11-21 1937-01-06 Amplification control circuit

Country Status (1)

Country Link
US (1) US2151070A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2466092A (en) * 1946-06-21 1949-04-05 Phillips Petroleum Co Recovery of tertiary base olefins
US2503996A (en) * 1943-05-06 1950-04-11 Hartford Nat Bank & Trust Co Circuit arrangement for the expansion of electrical oscillations
US2757333A (en) * 1953-12-22 1956-07-31 Lenkurt Electric Co Inc Pilot regulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2503996A (en) * 1943-05-06 1950-04-11 Hartford Nat Bank & Trust Co Circuit arrangement for the expansion of electrical oscillations
US2466092A (en) * 1946-06-21 1949-04-05 Phillips Petroleum Co Recovery of tertiary base olefins
US2757333A (en) * 1953-12-22 1956-07-31 Lenkurt Electric Co Inc Pilot regulator

Similar Documents

Publication Publication Date Title
US2014102A (en) Direct reading vacuum tube meter
GB413383A (en) Variable attenuation networks capable of providing automatic volume control of alternating signal currents
US2313122A (en) Amplifier
US2151070A (en) Amplification control circuit
US2017192A (en) Electrical network
US2214608A (en) Automatic gain control circuits
US2920291A (en) Signal transmission systems
US2358325A (en) Gain control circuits
US2022972A (en) Variable gain amplifier
US2167462A (en) Variable electric filter
US2149361A (en) Discharge tube amplifier
US2844669A (en) Negative-impedance repeater having gain controls
US2256071A (en) Audio amplifier volume control circuit
US2772387A (en) Power supply with regulated positive and negative output voltages
US2407853A (en) Power supply regulating apparatus
US2668272A (en) Voltage regulator
US2131443A (en) Signaling
US1927846A (en) Electric amplifier
US2802070A (en) Stabilized feedback amplifier
US2077126A (en) Volume control arrangement
US2892042A (en) Amplification regulation in multistage amplifier apparatus
US2372243A (en) Volume limiter circuit
US1931648A (en) Push-pull amplifier
US1947771A (en) Electrical repeater
US2182100A (en) Automatic volume control device for wave transmission systems