US20230302094A1 - Glp-1 receptor agonists in dementia - Google Patents
Glp-1 receptor agonists in dementia Download PDFInfo
- Publication number
- US20230302094A1 US20230302094A1 US18/208,485 US202318208485A US2023302094A1 US 20230302094 A1 US20230302094 A1 US 20230302094A1 US 202318208485 A US202318208485 A US 202318208485A US 2023302094 A1 US2023302094 A1 US 2023302094A1
- Authority
- US
- United States
- Prior art keywords
- glp
- dementia
- receptor agonist
- semaglutide
- disease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010012289 Dementia Diseases 0.000 title claims abstract description 239
- 229940089838 Glucagon-like peptide 1 receptor agonist Drugs 0.000 title abstract description 198
- 229950011186 semaglutide Drugs 0.000 claims abstract description 81
- DLSWIYLPEUIQAV-UHFFFAOYSA-N Semaglutide Chemical compound CCC(C)C(NC(=O)C(Cc1ccccc1)NC(=O)C(CCC(O)=O)NC(=O)C(CCCCNC(=O)COCCOCCNC(=O)COCCOCCNC(=O)CCC(NC(=O)CCCCCCCCCCCCCCCCC(O)=O)C(O)=O)NC(=O)C(C)NC(=O)C(C)NC(=O)C(CCC(N)=O)NC(=O)CNC(=O)C(CCC(O)=O)NC(=O)C(CC(C)C)NC(=O)C(Cc1ccc(O)cc1)NC(=O)C(CO)NC(=O)C(CO)NC(=O)C(NC(=O)C(CC(O)=O)NC(=O)C(CO)NC(=O)C(NC(=O)C(Cc1ccccc1)NC(=O)C(NC(=O)CNC(=O)C(CCC(O)=O)NC(=O)C(C)(C)NC(=O)C(N)Cc1cnc[nH]1)C(C)O)C(C)O)C(C)C)C(=O)NC(C)C(=O)NC(Cc1c[nH]c2ccccc12)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CCCNC(N)=N)C(=O)NCC(O)=O DLSWIYLPEUIQAV-UHFFFAOYSA-N 0.000 claims abstract description 79
- 108010060325 semaglutide Proteins 0.000 claims abstract description 79
- 238000000034 method Methods 0.000 claims description 108
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims description 52
- 208000024827 Alzheimer disease Diseases 0.000 claims description 43
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 40
- 150000003839 salts Chemical class 0.000 claims description 28
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 claims description 26
- 229960002446 octanoic acid Drugs 0.000 claims description 26
- 208000010877 cognitive disease Diseases 0.000 claims description 17
- 208000027061 mild cognitive impairment Diseases 0.000 claims description 11
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 claims description 8
- 239000004480 active ingredient Substances 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 208000001145 Metabolic Syndrome Diseases 0.000 abstract description 13
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 abstract description 13
- 238000013160 medical therapy Methods 0.000 abstract description 2
- 239000003877 glucagon like peptide 1 receptor agonist Substances 0.000 description 151
- 238000011282 treatment Methods 0.000 description 88
- 206010012601 diabetes mellitus Diseases 0.000 description 57
- 125000001424 substituent group Chemical group 0.000 description 40
- 101800004266 Glucagon-like peptide 1(7-37) Proteins 0.000 description 30
- 102400000324 Glucagon-like peptide 1(7-37) Human genes 0.000 description 29
- 239000003981 vehicle Substances 0.000 description 29
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 27
- 239000002158 endotoxin Substances 0.000 description 27
- 229920006008 lipopolysaccharide Polymers 0.000 description 26
- 206010020772 Hypertension Diseases 0.000 description 23
- 239000008194 pharmaceutical composition Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 22
- 230000004048 modification Effects 0.000 description 21
- 238000012986 modification Methods 0.000 description 21
- 229940068196 placebo Drugs 0.000 description 21
- 239000000902 placebo Substances 0.000 description 21
- 239000008247 solid mixture Substances 0.000 description 21
- 241000699670 Mus sp. Species 0.000 description 20
- 201000011240 Frontotemporal dementia Diseases 0.000 description 19
- 238000012217 deletion Methods 0.000 description 19
- 230000037430 deletion Effects 0.000 description 19
- 238000006467 substitution reaction Methods 0.000 description 19
- YSDQQAXHVYUZIW-QCIJIYAXSA-N Liraglutide Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCNC(=O)CC[C@H](NC(=O)CCCCCCCCCCCCCCC)C(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 YSDQQAXHVYUZIW-QCIJIYAXSA-N 0.000 description 18
- 108010019598 Liraglutide Proteins 0.000 description 18
- 229960002701 liraglutide Drugs 0.000 description 18
- 230000036515 potency Effects 0.000 description 17
- 102000008100 Human Serum Albumin Human genes 0.000 description 16
- 108091006905 Human Serum Albumin Proteins 0.000 description 16
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 16
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 16
- 208000024172 Cardiovascular disease Diseases 0.000 description 15
- 239000000546 pharmaceutical excipient Substances 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 150000001413 amino acids Chemical group 0.000 description 14
- 238000003780 insertion Methods 0.000 description 14
- 230000037431 insertion Effects 0.000 description 14
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 14
- 208000008589 Obesity Diseases 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 208000010125 myocardial infarction Diseases 0.000 description 13
- 235000020824 obesity Nutrition 0.000 description 13
- 208000036110 Neuroinflammatory disease Diseases 0.000 description 12
- 208000006011 Stroke Diseases 0.000 description 12
- 230000035772 mutation Effects 0.000 description 12
- 230000003959 neuroinflammation Effects 0.000 description 12
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 10
- 208000001280 Prediabetic State Diseases 0.000 description 10
- 201000009104 prediabetes syndrome Diseases 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 230000034994 death Effects 0.000 description 9
- 238000003745 diagnosis Methods 0.000 description 9
- 239000000314 lubricant Substances 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 9
- 230000001684 chronic effect Effects 0.000 description 8
- 230000002055 immunohistochemical effect Effects 0.000 description 8
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 8
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 8
- 230000003442 weekly effect Effects 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 102000004877 Insulin Human genes 0.000 description 7
- 108090001061 Insulin Proteins 0.000 description 7
- 201000004810 Vascular dementia Diseases 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 229940125396 insulin Drugs 0.000 description 7
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 7
- 229960003105 metformin Drugs 0.000 description 7
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 208000020832 chronic kidney disease Diseases 0.000 description 6
- 230000006999 cognitive decline Effects 0.000 description 6
- KDQPSPMLNJTZAL-UHFFFAOYSA-L disodium hydrogenphosphate dihydrate Chemical compound O.O.[Na+].[Na+].OP([O-])([O-])=O KDQPSPMLNJTZAL-UHFFFAOYSA-L 0.000 description 6
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical compound O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 6
- ASUTZQLVASHGKV-JDFRZJQESA-N galanthamine Chemical compound O1C(=C23)C(OC)=CC=C2CN(C)CC[C@]23[C@@H]1C[C@@H](O)C=C2 ASUTZQLVASHGKV-JDFRZJQESA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 5
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 5
- 206010039966 Senile dementia Diseases 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 229940124447 delivery agent Drugs 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 210000001320 hippocampus Anatomy 0.000 description 5
- 230000002757 inflammatory effect Effects 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 5
- 239000008108 microcrystalline cellulose Substances 0.000 description 5
- 229940016286 microcrystalline cellulose Drugs 0.000 description 5
- 210000000274 microglia Anatomy 0.000 description 5
- 238000011302 passive avoidance test Methods 0.000 description 5
- 229940069328 povidone Drugs 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 159000000000 sodium salts Chemical class 0.000 description 5
- -1 C20 fatty acid Chemical class 0.000 description 4
- 229940126062 Compound A Drugs 0.000 description 4
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 4
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 201000002832 Lewy body dementia Diseases 0.000 description 4
- 206010036631 Presenile dementia Diseases 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 208000025688 early-onset autosomal dominant Alzheimer disease Diseases 0.000 description 4
- 208000015756 familial Alzheimer disease Diseases 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000007787 long-term memory Effects 0.000 description 4
- 235000019359 magnesium stearate Nutrition 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 244000309715 mini pig Species 0.000 description 4
- 230000006403 short-term memory Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 4
- 229920002261 Corn starch Polymers 0.000 description 3
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 3
- 238000001061 Dunnett's test Methods 0.000 description 3
- 108010086246 Glucagon-Like Peptide-1 Receptor Proteins 0.000 description 3
- 102000007446 Glucagon-Like Peptide-1 Receptor Human genes 0.000 description 3
- 101800000224 Glucagon-like peptide 1 Proteins 0.000 description 3
- 102400000322 Glucagon-like peptide 1 Human genes 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 3
- 208000028017 Psychotic disease Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 241000283984 Rodentia Species 0.000 description 3
- 102000007562 Serum Albumin Human genes 0.000 description 3
- 108010071390 Serum Albumin Proteins 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 230000003542 behavioural effect Effects 0.000 description 3
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000008120 corn starch Substances 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 235000019700 dicalcium phosphate Nutrition 0.000 description 3
- 229940090124 dipeptidyl peptidase 4 (dpp-4) inhibitors for blood glucose lowering Drugs 0.000 description 3
- 229960003530 donepezil Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 206010014599 encephalitis Diseases 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229960003980 galantamine Drugs 0.000 description 3
- ASUTZQLVASHGKV-UHFFFAOYSA-N galanthamine hydrochloride Natural products O1C(=C23)C(OC)=CC=C2CN(C)CCC23C1CC(O)C=C2 ASUTZQLVASHGKV-UHFFFAOYSA-N 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 208000019715 inherited Creutzfeldt-Jakob disease Diseases 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000002473 insulinotropic effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- LDDHMLJTFXJGPI-UHFFFAOYSA-N memantine hydrochloride Chemical compound Cl.C1C(C2)CC3(C)CC1(C)CC2(N)C3 LDDHMLJTFXJGPI-UHFFFAOYSA-N 0.000 description 3
- 208000030159 metabolic disease Diseases 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- XUFXOAAUWZOOIT-SXARVLRPSA-N (2R,3R,4R,5S,6R)-5-[[(2R,3R,4R,5S,6R)-5-[[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-1-cyclohex-2-enyl]amino]-2-oxanyl]oxy]-3,4-dihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound O([C@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O[C@H]1O[C@@H]([C@H]([C@H](O)[C@H]1O)N[C@@H]1[C@@H]([C@@H](O)[C@H](O)C(CO)=C1)O)C)[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O XUFXOAAUWZOOIT-SXARVLRPSA-N 0.000 description 2
- DMBUODUULYCPAK-UHFFFAOYSA-N 1,3-bis(docosanoyloxy)propan-2-yl docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCCCCCC DMBUODUULYCPAK-UHFFFAOYSA-N 0.000 description 2
- SWLAMJPTOQZTAE-UHFFFAOYSA-N 4-[2-[(5-chloro-2-methoxybenzoyl)amino]ethyl]benzoic acid Chemical class COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(C(O)=O)C=C1 SWLAMJPTOQZTAE-UHFFFAOYSA-N 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 229920003084 Avicel® PH-102 Polymers 0.000 description 2
- 208000011990 Corticobasal Degeneration Diseases 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101000788682 Homo sapiens GATA-type zinc finger protein 1 Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 208000002720 Malnutrition Diseases 0.000 description 2
- 208000027089 Parkinsonian disease Diseases 0.000 description 2
- 206010034010 Parkinsonism Diseases 0.000 description 2
- 208000024777 Prion disease Diseases 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 229940100389 Sulfonylurea Drugs 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 208000018756 Variant Creutzfeldt-Jakob disease Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229960002632 acarbose Drugs 0.000 description 2
- XUFXOAAUWZOOIT-UHFFFAOYSA-N acarviostatin I01 Natural products OC1C(O)C(NC2C(C(O)C(O)C(CO)=C2)O)C(C)OC1OC(C(C1O)O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O XUFXOAAUWZOOIT-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 229960004733 albiglutide Drugs 0.000 description 2
- OGWAVGNOAMXIIM-UHFFFAOYSA-N albiglutide Chemical compound O=C(O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C(NC(=O)CNC(=O)C(N)CC=1(N=CNC=1))CCC(=O)O)C(O)C)CC2(=CC=CC=C2))C(O)C)CO)CC(=O)O)C(C)C)CO)CO)CC3(=CC=C(O)C=C3))CC(C)C)CCC(=O)O)CCC(=O)N)C)C)CCCCN)CCC(=O)O)CC4(=CC=CC=C4))C(CC)C)C)CC=6(C5(=C(C=CC=C5)NC=6)))CC(C)C)C(C)C)CCCCN)CCCNC(=N)N OGWAVGNOAMXIIM-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical group 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 208000025698 brain inflammatory disease Diseases 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007278 cognition impairment Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000002706 dry binder Substances 0.000 description 2
- 108010005794 dulaglutide Proteins 0.000 description 2
- 229960005175 dulaglutide Drugs 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 2
- 230000000971 hippocampal effect Effects 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 2
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 210000003000 inclusion body Anatomy 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 230000013016 learning Effects 0.000 description 2
- 229950004994 meglitinide Drugs 0.000 description 2
- 229960004640 memantine Drugs 0.000 description 2
- 230000002025 microglial effect Effects 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000006186 oral dosage form Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229940090048 pen injector Drugs 0.000 description 2
- 238000011422 pharmacological therapy Methods 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- GCYXWQUSHADNBF-AAEALURTSA-N preproglucagon 78-108 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 GCYXWQUSHADNBF-AAEALURTSA-N 0.000 description 2
- 201000002212 progressive supranuclear palsy Diseases 0.000 description 2
- 108700027806 rGLP-1 Proteins 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000009758 senescence Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 229920003109 sodium starch glycolate Polymers 0.000 description 2
- 239000008109 sodium starch glycolate Substances 0.000 description 2
- 229940079832 sodium starch glycolate Drugs 0.000 description 2
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000005550 wet granulation Methods 0.000 description 2
- RUVRGYVESPRHSZ-UHFFFAOYSA-N 2-[2-(2-azaniumylethoxy)ethoxy]acetate Chemical compound NCCOCCOCC(O)=O RUVRGYVESPRHSZ-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- KZMAWJRXKGLWGS-UHFFFAOYSA-N 2-chloro-n-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-n-(3-methoxypropyl)acetamide Chemical compound S1C(N(C(=O)CCl)CCCOC)=NC(C=2C=CC(OC)=CC=2)=C1 KZMAWJRXKGLWGS-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102100034452 Alternative prion protein Human genes 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 description 1
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 1
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 206010002869 Anxiety symptoms Diseases 0.000 description 1
- 206010002942 Apathy Diseases 0.000 description 1
- 101100020725 Arabidopsis thaliana LEA41 gene Proteins 0.000 description 1
- 102000014461 Ataxins Human genes 0.000 description 1
- 108010078286 Ataxins Proteins 0.000 description 1
- 208000030767 Autoimmune encephalitis Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000027496 Behcet disease Diseases 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 208000002381 Brain Hypoxia Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 102000043334 C9orf72 Human genes 0.000 description 1
- 108700030955 C9orf72 Proteins 0.000 description 1
- 101150014718 C9orf72 gene Proteins 0.000 description 1
- 101150108055 CHMP2B gene Proteins 0.000 description 1
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 1
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 1
- 208000001408 Carbon monoxide poisoning Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 206010062746 Carditis Diseases 0.000 description 1
- 206010008025 Cerebellar ataxia Diseases 0.000 description 1
- 208000005145 Cerebral amyloid angiopathy Diseases 0.000 description 1
- 102100038279 Charged multivesicular body protein 2b Human genes 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 102000012437 Copper-Transporting ATPases Human genes 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 201000000077 Cysticercosis Diseases 0.000 description 1
- 206010067477 Cytogenetic abnormality Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 208000031124 Dementia Alzheimer type Diseases 0.000 description 1
- 208000030656 Dementia of the Alzheimer type, uncomplicated Diseases 0.000 description 1
- 208000030654 Dementia of the Alzheimer type, with delirium Diseases 0.000 description 1
- 208000030655 Dementia of the Alzheimer type, with delusions Diseases 0.000 description 1
- 208000030658 Dementia of the Alzheimer type, with depressed mood Diseases 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229940124213 Dipeptidyl peptidase 4 (DPP IV) inhibitor Drugs 0.000 description 1
- 206010013142 Disinhibition Diseases 0.000 description 1
- 201000010374 Down Syndrome Diseases 0.000 description 1
- 231100000491 EC50 Toxicity 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 206010016880 Folate deficiency Diseases 0.000 description 1
- 208000001914 Fragile X syndrome Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- 206010018341 Gliosis Diseases 0.000 description 1
- 208000016905 Hashimoto encephalopathy Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 206010019663 Hepatic failure Diseases 0.000 description 1
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 1
- 208000000903 Herpes simplex encephalitis Diseases 0.000 description 1
- 206010063629 Hippocampal sclerosis Diseases 0.000 description 1
- 101001015516 Homo sapiens Glucagon-like peptide 1 receptor Proteins 0.000 description 1
- 101500028773 Homo sapiens Glucagon-like peptide 1(7-37) Proteins 0.000 description 1
- 101000891579 Homo sapiens Microtubule-associated protein tau Proteins 0.000 description 1
- 101000891092 Homo sapiens TAR DNA-binding protein 43 Proteins 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- 206010070511 Hypoxic-ischaemic encephalopathy Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 206010022971 Iron Deficiencies Diseases 0.000 description 1
- 208000006264 Korsakoff syndrome Diseases 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000009829 Lewy Body Disease Diseases 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 208000005314 Multi-Infarct Dementia Diseases 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- 208000007316 Neurocysticercosis Diseases 0.000 description 1
- 102000008763 Neurofilament Proteins Human genes 0.000 description 1
- 108010088373 Neurofilament Proteins Proteins 0.000 description 1
- 206010029400 Nicotinic acid deficiency Diseases 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 208000010191 Osteitis Deformans Diseases 0.000 description 1
- 208000027067 Paget disease of bone Diseases 0.000 description 1
- 208000002141 Pellagra Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102000012412 Presenilin-1 Human genes 0.000 description 1
- 108010036933 Presenilin-1 Proteins 0.000 description 1
- 102000012419 Presenilin-2 Human genes 0.000 description 1
- 108010036908 Presenilin-2 Proteins 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 102100037632 Progranulin Human genes 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- XSVMFMHYUFZWBK-NSHDSACASA-N Rivastigmine Chemical compound CCN(C)C(=O)OC1=CC=CC([C@H](C)N(C)C)=C1 XSVMFMHYUFZWBK-NSHDSACASA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 1
- 208000002704 Sporadic Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 208000037198 Sporadic fatal insomnia Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 208000002667 Subdural Hematoma Diseases 0.000 description 1
- 231100000643 Substance intoxication Toxicity 0.000 description 1
- 102100040347 TAR DNA-binding protein 43 Human genes 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 208000034799 Tauopathies Diseases 0.000 description 1
- 208000001435 Thromboembolism Diseases 0.000 description 1
- 206010070863 Toxicity to various agents Diseases 0.000 description 1
- 102100026145 Transitional endoplasmic reticulum ATPase Human genes 0.000 description 1
- 102000009206 Translocator proteins Human genes 0.000 description 1
- 108050000091 Translocator proteins Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 206010063661 Vascular encephalopathy Diseases 0.000 description 1
- 206010047112 Vasculitides Diseases 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- 206010047249 Venous thrombosis Diseases 0.000 description 1
- 206010047631 Vitamin E deficiency Diseases 0.000 description 1
- 208000010045 Wernicke encephalopathy Diseases 0.000 description 1
- 201000008485 Wernicke-Korsakoff syndrome Diseases 0.000 description 1
- 208000027207 Whipple disease Diseases 0.000 description 1
- 208000018839 Wilson disease Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000012082 adaptor molecule Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000000949 anxiolytic effect Effects 0.000 description 1
- 229940005530 anxiolytics Drugs 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000035045 associative learning Effects 0.000 description 1
- 201000004562 autosomal dominant cerebellar ataxia Diseases 0.000 description 1
- 125000003910 behenoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 208000016738 bone Paget disease Diseases 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 208000025997 central nervous system neoplasm Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 208000028831 congenital heart disease Diseases 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229920001531 copovidone Polymers 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 229960005168 croscarmellose Drugs 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003210 demyelinating effect Effects 0.000 description 1
- 229940096516 dextrates Drugs 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 239000003603 dipeptidyl peptidase IV inhibitor Substances 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 210000005110 dorsal hippocampus Anatomy 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000371 effect on dementia Effects 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000021824 exploration behavior Effects 0.000 description 1
- 201000006061 fatal familial insomnia Diseases 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 208000000890 frontotemporal dementia with motor neuron disease Diseases 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000007387 gliosis Effects 0.000 description 1
- 108010063245 glucagon-like peptide 1 (7-36)amide Proteins 0.000 description 1
- 238000007446 glucose tolerance test Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940049654 glyceryl behenate Drugs 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 208000018578 heart valve disease Diseases 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 208000003906 hydrocephalus Diseases 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 201000009939 hypertensive encephalopathy Diseases 0.000 description 1
- 208000015210 hypertensive heart disease Diseases 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 208000027488 iatrogenic Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 208000021646 inflammation of heart layer Diseases 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 206010023497 kuru Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 208000036546 leukodystrophy Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 208000007903 liver failure Diseases 0.000 description 1
- 231100000835 liver failure Toxicity 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229940037627 magnesium lauryl sulfate Drugs 0.000 description 1
- HBNDBUATLJAUQM-UHFFFAOYSA-L magnesium;dodecyl sulfate Chemical compound [Mg+2].CCCCCCCCCCCCOS([O-])(=O)=O.CCCCCCCCCCCCOS([O-])(=O)=O HBNDBUATLJAUQM-UHFFFAOYSA-L 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000007334 memory performance Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000006371 metabolic abnormality Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 201000007601 neurodegeneration with brain iron accumulation Diseases 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 1
- 210000005044 neurofilament Anatomy 0.000 description 1
- 238000002610 neuroimaging Methods 0.000 description 1
- 230000001703 neuroimmune Effects 0.000 description 1
- 230000007171 neuropathology Effects 0.000 description 1
- 208000002040 neurosyphilis Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 201000003077 normal pressure hydrocephalus Diseases 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000018343 nutrient deficiency Nutrition 0.000 description 1
- 201000011107 obstructive hydrocephalus Diseases 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 231100000822 oral exposure Toxicity 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 208000030613 peripheral artery disease Diseases 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229960000540 polacrilin potassium Drugs 0.000 description 1
- 201000006292 polyarteritis nodosa Diseases 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000013105 post hoc analysis Methods 0.000 description 1
- 208000014670 posterior cortical atrophy Diseases 0.000 description 1
- WVWZXTJUCNEUAE-UHFFFAOYSA-M potassium;1,2-bis(ethenyl)benzene;2-methylprop-2-enoate Chemical compound [K+].CC(=C)C([O-])=O.C=CC1=CC=CC=C1C=C WVWZXTJUCNEUAE-UHFFFAOYSA-M 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 229960003611 pramlintide Drugs 0.000 description 1
- 108010029667 pramlintide Proteins 0.000 description 1
- NRKVKVQDUCJPIZ-MKAGXXMWSA-N pramlintide acetate Chemical compound C([C@@H](C(=O)NCC(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCCCN)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 NRKVKVQDUCJPIZ-MKAGXXMWSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 208000001282 primary progressive aphasia Diseases 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 206010036807 progressive multifocal leukoencephalopathy Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 208000004124 rheumatic heart disease Diseases 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 229960004136 rivastigmine Drugs 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- UOENJXXSKABLJL-UHFFFAOYSA-M sodium;8-[(2-hydroxybenzoyl)amino]octanoate Chemical compound [Na+].OC1=CC=CC=C1C(=O)NCCCCCCCC([O-])=O UOENJXXSKABLJL-UHFFFAOYSA-M 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000006886 spatial memory Effects 0.000 description 1
- 230000007596 spatial working memory Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 229960004274 stearic acid Drugs 0.000 description 1
- 208000023516 stroke disease Diseases 0.000 description 1
- 230000002739 subcortical effect Effects 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000002636 symptomatic treatment Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000012929 tonicity agent Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- 201000002311 trypanosomiasis Diseases 0.000 description 1
- 238000011870 unpaired t-test Methods 0.000 description 1
- 208000002670 vitamin B12 deficiency Diseases 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/26—Glucagons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
Definitions
- the present invention relates to GLP-1 receptor agonists for use in the treatment of all forms and stages of dementia.
- the present invention relates to improved medical therapies for dementia involving administration of GLP-1 receptor agonists.
- the invention relates to methods for the treatment of dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof, said subject has metabolic syndrome, and said GLP-1 receptor agonist comprises GLP-1(7-37) (SEQ ID No: 1) optionally comprising one or more substitutions, deletions, additions and/or modifications.
- the invention relates to methods for the treatment of dementia, wherein said method comprises administering semaglutide to a subject in need thereof.
- FIG. 1 shows time to dementia with GLP-1 receptor agonists versus placebo in pooled RCTs; in the pooled RCTs, 15 patients randomized to a GLP-1 receptor agonist (0.66 per 1000 patient-years) and 32 patients randomized to placebo (1.41 per 1000 patient-years) developed dementia.
- GLP-1 RA GLP-1 receptor agonists.
- FIG. 2 shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists and other second-line diabetes treatments in the nationwide cohort.
- Cox proportional hazards regression models conducted for exposure to each treatment. Estimates denote the hazard ratio for a 1 year increase in duration of exposure. The models were adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching.
- FIG. 3 shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists according to subgroup in the nationwide cohort.
- Cox proportional hazards regression models conducted for exposure to GLP-1 in various subgroups. Estimates denote the hazard ratio for a 1 year increase in duration of exposure. The models were adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching.
- FIG. 5 A shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists and other second-line diabetes.
- FIG. 5 B shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists and other second-line diabetes Treatments in the Nationalwide Cohort, where Diabetes Duration was Defined as “Time Since First Treatment with Metformin or Second-line Diabetes Treatment”.
- Cox proportional hazards regression models conducted for exposure to each treatment. Estimates denote the hazard ratio for a 1 year increase in duration of exposure. The models were adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching.
- FIG. 6 A shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists assessed 3, 5, and 10 years before diagnosis of dementia in the nationwide cohort.
- Cox proportional hazards regression models conducted for GLP-1 receptor agonist exposure and assessed during a 3, 5, and 10-year exposure window prior to dementia.
- Estimates denote the hazard ratio for a 1 year increase in duration of exposure.
- the models were adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching.
- FIG. 6 B shows hazard ratio for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonist exposure in the nationwide cohort adjusted for age, sex, and calendar date via matching.
- Cox proportional hazards regression model conducted for exposure to GLP-1 receptor agonists. The estimate denotes the hazard ratio for a 1 year increase in duration of exposure. The model was adjusted sex, age, and calendar date via matching.
- FIG. 6 C shows hazard ratio for competing risk of death with each 1 year increase in exposure duration to GLP-1 receptor agonist in the nationwide cohort.
- Cox proportional hazards regression model conducted for exposure to GLP-1 receptor agonists. The estimate denotes the hazard ratio for a 1 year increase in duration of exposure. The model was adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching.
- FIG. 7 shows effect on Y-maze alternation behaviour in SAMP8 mice administration of semaglutide compared to vehicle.
- FIGS. 8 and 9 show improvement of long-term memory in SAMP8 mice as measured in the step-through passive avoidance test following administration of semaglutide compared to vehicle and presenting step-through latency ( FIG. 8 ) and escape latency ( FIG. 9 ).
- FIG. 10 shows effect of semaglutide in a lipopolysaccharide (LPS)-induced neuroinflammation, a non-genetic model of Alzheimer's disease in rodents, on the microglial inflammatory marker lba1 in the hippocampus.
- LPS lipopolysaccharide
- the present inventors surprisingly found that administration of glucagon-like peptide 1 (GLP-1) receptor agonists reduced the risk of dementia in subjects with metabolic syndrome. Furthermore, the inventors surprisingly found that semaglutide improved dementia in animal models.
- GLP-1 glucagon-like peptide 1
- the invention relates to a method for the treatment of dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof and said subject has metabolic syndrome. In some embodiments the invention relates to a method for the treatment of dementia, wherein said method comprises administering a GLP-1 receptor agonist to a human subject in need thereof and said subject has one or more indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension. In some embodiments the invention relates to a method for the treatment of dementia, wherein said method comprises administering semaglutide to a subject in need thereof.
- the invention relates to a method for reducing the risk of developing dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof and said subject has metabolic syndrome. In some embodiments the invention relates to a method for reducing the risk of developing dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof and said subject has one or more indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension. In some embodiments the invention relates to a method for reducing the risk of developing dementia, wherein said method comprises administering semaglutide to a subject in need thereof.
- dementia is selected from the group of indications defined in ICD-11: Dementia due to Alzheimer disease; Dementia due to Alzheimer disease with early onset; Autosomal dominant Alzheimer disease dementia, mutation of presenilin 1; Autosomal dominant Alzheimer disease dementia, mutation of presenilin 2; Autosomal dominant Alzheimer disease dementia, mutation of amyloid precursor protein; Dementia due to Alzheimer disease with late onset; Alzheimer disease dementia, mixed type, with cerebrovascular disease; Alzheimer disease dementia, mixed type, with other nonvascular aetiologies; Non-amnestic Alzheimer disease dementia subtypes; Non-amnestic Alzheimer disease dementia, logopenic variant; Non-amnestic Alzheimer's disease, logopenic variant with primary progressive aphasia; Non-amnestic Alzheimer disease dementia, visuospatial variant; Non-amnestic Alzheimer's disease, vis
- Frontotemporal dementia semantic variant; Frontotemporal dementia, logopenic variant; Frontotemporal dementia with motor neuron disease; Frontotemporal dementia with familial inclusion body myopathy with Paget's disease of bone; Frontotemporal dementia due to genetic mutation; Frontotemporal dementia due to C9orf72 mutation; Frontotemporal dementia due to MAPT mutation; Frontotemporal dementia due to VCP mutation; Frontotemporal dementia due to GRN mutation; Frontotemporal dementia due to CHMP2B mutation; Frontotemporal dementia due to FUS mutation; Frontotemporal dementia due to TARDBP mutation; Frontotemporal dementia due to other or new mutations; Dementia due to psychoactive substances including medications; Dementia due to use of alcohol; Dementia due to use of sedatives, hypnotics or anxiolytics; Posthallucinogen perception disorder; Dementia due to use of volatile inhalants; Post radiation dementia; Dementia due to carbon monoxide poisoning; Dementia due to drug intoxication;
- dementia is selected from the group consisting of mild cognitive impairment, Alzheimer's disease, mixed dementia, vascular dementia, dementia with Lewy bodies, frontotemporal dementia, pre-senile dementia, and senile dementia.
- dementia is the Alzheimer's continuum with mild cognitive impairment or mild dementia.
- dementia is mild cognitive impairment, such as mild cognitive impairment of the Alzheimer's type.
- dementia is Alzheimer's disease, such as preclinical Alzheimer's disease, mild cognitive impairment of the Alzheimer's type, early onset familial Alzheimer's disease, or prodromal Alzheimer's disease.
- dementia is mild cognitive impairment of the Alzheimer's type.
- dementia is mixed dementia.
- dementia is vascular dementia.
- dementia dementia with Lewy bodies.
- dementia is frontotemporal dementia.
- dementia is pre-senile dementia.
- dementia is senile dementia.
- the term “treatment” as used herein encompasses preventing, delaying, reducing the risk of developing, ameliorating, or curatively treating the medical indication referred to. Treatment may be symptomatic treatment or disease modifying treatment. In some embodiments, the term treatment as used herein refers to preventing the medical indication referred to. In some embodiments, the term treatment as used herein refers to delaying (e.g. delaying the onset of) the medical indication referred to. In some embodiments, the term treatment as used herein refers to reducing the risk of developing the medical indication referred to. In some embodiments, the term treatment as used herein refers to ameliorating the medical indication referred to. In some embodiments, the term treatment as used herein refers to curatively treating the medical indication referred to.
- the subject to be administered GLP-1 receptor agonists according to the present invention may be human, such as an adult human (also referred to as adults).
- the subject has metabolic syndrome.
- the term “metabolic syndrome” refers to one or more indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension.
- “metabolic syndrome” refers to at least two indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension.
- metabolic syndrome refers to at least three indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension.
- the subject has pre-diabetes.
- the subject has diabetes. In some embodiments diabetes is type 2 diabetes. In some embodiments the subject has obesity. In some embodiments the subject has cardiovascular disease. In some embodiments the subject has obesity. In some embodiments obesity is a BMI of at least 25 kg/m 2 , such as at least 27 kg/m 2 or at least 30 kg/m 2 . In some embodiments the subject has hypertension.
- cardiovascular disease includes one or more of coronary artery disease (such as angina and myocardial infarction), stroke, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy, abnormal heart rhythms, congenital heart disease, valvular heart disease, carditis, aortic aneurysms, peripheral artery disease, thromboembolic disease, and venous thrombosis.
- coronary artery disease such as angina and myocardial infarction
- GLP-1 receptor agonist refers to a compound, which fully or partially activates the human GLP-1 receptor.
- the GLP-1 receptor agonist for use in the present invention is an acylated GLP-1 receptor agonist.
- acylated as used in relation to GLP-1 receptor agonists refers to the GLP-1 receptor agonist having covalently attached at least one substituent comprising a lipophilic moiety, such as a fatty acid or a fatty diacid.
- the substituent comprises a fatty acid or a fatty diacid.
- GLP-1 receptor agonist as well as the specific GLP-1 receptor agonists described herein also encompass salt forms thereof.
- GLP-1 activity refers to the ability of the compound, i.e. GLP-1 receptor agonist, to bind to the GLP-1 receptor and initiate a signal transduction pathway resulting in insulinotropic action or other physiological effects as is known in the art.
- GLP-1 receptor agonist binds to a GLP-1 receptor, e.g., with an affinity constant (KD) or activate the receptor with a potency (EC 50 ) of below 1 ⁇ M, e.g. below 100 nM as measured by methods known in the art (see e.g.
- the GLP-1 receptor agonist may be administered to an animal with increased blood glucose (e.g. obtained using an Intravenous Glucose Tolerance Test (IVGTT).
- IVGTT Intravenous Glucose Tolerance Test
- a person skilled in the art will be able to determine a suitable glucose dosage and a suitable blood sampling regime, e.g. depending on the species of the animal, for the IVGTT) and measure the plasma insulin concentration over time.
- Suitable assays have been described in such as WO2015/155151.
- EC 50 half maximal effective concentration
- the term half maximal effective concentration (EC 50 ) generally refers to the concentration which induces a response halfway between the baseline and maximum, by reference to the dose response curve. EC 50 is used as a measure of the potency of a compound and represents the concentration where 50% of its maximal effect is observed. Due to the albumin binding effects of GLP-1 receptor agonists comprising a substituent as described herein, it is important to pay attention to if the assay includes human serum albumin or not.
- the in vitro potency of the GLP-1 receptor agonist may be determined as described in WO2015/155151, Example 29 without Human Serum Albumin (HSA), and the EC 50 determined. The lower the EC 50 value, the better the potency.
- the potency (EC 50 ) as determined (without HSA) is 5-1000 ⁇ M, such as 10-750 ⁇ M, 10-500 ⁇ M or 10-200 ⁇ M.
- the EC 50 (without HSA) is at most 500 ⁇ M, such as at most 300 ⁇ M, such as at most 200 ⁇ M.
- the EC 50 (without HSA) is comparable to human GLP-1(7-37).
- the EC 50 (without HSA) is at most 50 ⁇ M.
- the EC 50 is at most 40 ⁇ M, such as at most 30 ⁇ M such as at most 20 ⁇ M, such as at most 10 ⁇ M.
- the EC 50 is about 10 ⁇ M.
- the binding of the GLP-1 receptor agonist to albumin may be measured using the in vitro potency assay of Example 29 in WO2015/155151 including HSA.
- An increase of the in vitro potency, EC 50 value, in the presence of serum albumin reflects the affinity to serum albumin.
- the potency (EC 50 ) as determined (with 1% HSA) is 5-1000 ⁇ M, such as 100-750 ⁇ M, 200-500 ⁇ M or 100-400 ⁇ M.
- the EC 50 (with 1% HSA) is at most 750 ⁇ M, such as at most 500 ⁇ M, such as at most 400 ⁇ M, such as at most 300 or such as at most 250 ⁇ M.
- the fold variation in relation to a known GLP-1 receptor agonist may be calculated as EC 50 (test compound)/EC 50 (known compound), and if this ration is such as 0.5-1.5, or 0.8-1.2 the potencies are considered to be equivalent.
- the potency, EC 50 (without HSA) is equivalent to the potency of liraglutide.
- the potency, EC 50 (without HSA) is equivalent to the potency of semaglutide.
- the potency, EC 50 (with 1% HSA) is equivalent to the potency of liraglutide.
- the potency, EC 50 (with 1% HSA) is equivalent to the potency of semaglutide.
- the GLP-1 receptor agonist comprises one or more substitutions, deletions, additions and/or modifications. In some embodiments a modification is a covalently attached substituent.
- the GLP-1 receptor agonist comprises a peptide which is the human GLP-1 (GLP-1(7-37)) or a variant thereof. Human GLP-1, also referred to herein as “GLP-1(7-37)”, has the sequence HAEGTFTSDV SSYLEGQAAKEFIAWLVKGRG (SEQ ID No: 1).
- the term “variant” refers to a compound which comprises one or more amino acid substitutions, deletions, additions and/or modifications.
- GLP-1 receptor agonist designates a GLP-1(7-37) receptor agonist wherein the naturally occurring Ala in position 8 has been substituted with Aib.
- the GLP-1 receptor agonist comprises a maximum of 12 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1).
- the GLP-1 receptor agonist comprises a maximum of 10 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 9 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 8 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1).
- the GLP-1 receptor agonist comprises a maximum of 7 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 6 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 5 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1).
- the GLP-1 receptor agonist comprises a maximum of 4 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 3 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 2 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). Unless otherwise stated the GLP-1 comprises only L-amino acids.
- the GLP-1 receptor agonist exhibits at least 60%, 65%, 70%, 80% or 90% sequence identity to GLP-1(7-37) over the entire length of GLP-1(7-37).
- sequence identity As an example of a method for determination of sequence identity between two compounds, the two peptides [Aib8]GLP-1(7-37) and GLP-1(7-37) are aligned.
- the sequence identity of [Aib8]GLP-1(7-37) relative to GLP-1(7-37) is given by the number of aligned identical residues minus the number of different residues divided by the total number of residues in GLP-1(7-37). Accordingly, in said example the sequence identity is (31-1)/31.
- the C-terminal of the GLP-1 receptor agonist is an amide. In some embodiments the GLP-1 receptor agonist is GLP-1(7-37) or GLP-1(7-36)amide.
- the GLP-1 receptor agonist In order to prolong the effect of the GLP-1 receptor agonist it is preferred that the GLP-1 receptor agonist have an extended half-life.
- the half-life can be determined by method known in the art an in an appropriate model, such as in Male Sprague Dawley rats or minipigs as described in WO2012/140117.
- Half-life in rats may be determined as in Example 39 and the half-life in minipigs may be determined as in Example 37 therein.
- the GLP-1 receptor agonist according to the invention has a half-life above 2 hours in rat. In some embodiments the GLP-1 receptor agonist according to the invention has a half-life above 4 hours, such as above 6 hours, such as above 8 hours, such as above 10 hours, such as above 12 hours or such as above 15 hours in rat.
- the GLP-1 receptor agonist according to the invention has a half-life above 24 hours in minipig. In some embodiments the GLP-1 receptor agonist according to the invention has a half-life above 30 hours, such as above 36 hours, such as above 42 hours, such as above 48 hours, such as above 54 hours or such as above 60 hours in minipig.
- the GLP-1 receptor agonist has a molecular weight of at most 12 000, such as at most 7 500 Da, such as at most 5 000 Da. In some embodiments the GLP-1 receptor agonist has a molar mass of at most 10 000 g/mol, such as at most 8 000 g/mol, such as at most 6 000 g/mol.
- the GLP-1 receptor agonist comprises one or two substituents which are covalently attached to the peptide and wherein said substituent comprises a lipophilic moiety.
- the substituent comprises a fatty acid or a fatty diacid.
- the substituent comprises a C16, C18 or C20 fatty acid.
- the substituent comprises a C16, C18 or C20 fatty diacid.
- the substituent comprises formula (X)
- n is at least 13, such as n is 13, 14, 15, 16, 17, 18 or 19.
- the substituent comprises formula (X), wherein n is in the range of 13 to 19, such as in the range of 13 to 17.
- the substituent comprises formula (X), wherein n is 13, 15 or 17.
- the substituent comprises formula (X), wherein n is 13.
- the substituent comprises formula (X), wherein n is 15.
- the substituent comprises formula (X), wherein n is 17.
- the substituent comprises formula (X1a)
- the substituent comprises formula (X1a) or formula (X1b), wherein m is in the range of 6 to 14, such as in the range of 8 to 11. In some embodiments the substituent comprises formula (X1a) or formula (X1b), wherein m is 8, 10 or 12. In some embodiments the substituent comprises formula (X1a) or formula (X1b), wherein m is 9. In some embodiments the substituent comprises formula (X1a) or formula (X1b), wherein m is 11.
- the substituent comprises a linker (also referred to as a spacer) located proximally in said substituent to the point of attachment between said substituent and the peptide in the GLP-1 receptor agonist. In some embodiments the substituent comprises a linker located proximally in said substituent to the point of attachment between said substituent and the peptide in said GLP-1 receptor agonist. In some embodiments the substituent comprises one or more 8-amino-3,6-dioxaoctanoic acid (OEG), such as two OEG. The one or more OEG may be a linker.
- OEG 8-amino-3,6-dioxaoctanoic acid
- the substituent is [2-(2- ⁇ 2-[2-(2- ⁇ 2-[(S)-4-Carboxy-4-(17-carboxyheptadecanoylamino)butyrylamino]ethoxy ⁇ ethoxy)acetylamino]ethoxy ⁇ ethoxy)acetyl].
- the substituent is [2-(2- ⁇ 2-[2-(2- ⁇ 2-[(S)-4-carboxy-4-(17-carboxyheptadecanoylamino) butyrylamino]ethoxy ⁇ ethoxy)acetylamino] ethoxy ⁇ ethoxy)acetyl]. In some embodiments the substituent is [2-(2- ⁇ 2-[2-(2- ⁇ 2-[(S)-4-carboxy-4-( ⁇ trans-4-[(19-carboxynonadecanoylamino)methyl]cyclohexanecarbonyl ⁇ amino)butyrylamino]ethoxy ⁇ ethoxy)acetylamino]ethoxy ⁇ ethoxy)acetyl].
- the substituent is ⁇ 2-[2-(2- ⁇ 2-[2-(2- ⁇ (S)-4-Carboxy-4-[10-(4-carboxyphenoxy) decanoylamino]butyrylamino ⁇ -ethoxy)ethoxy]acetylamino ⁇ ethoxy)ethoxy]acetyl ⁇ . In some embodiments the substituent is ⁇ 2-[2-(2- ⁇ 2-[2-(2- ⁇ (S)-4-carboxy-4-[10-(4-carboxyphenoxy) decanoylamino]butyrylamino ⁇ ethoxy)ethoxy]acetylamino ⁇ ethoxy)ethoxy]-acetyl ⁇ .
- the substituent is [2-[2-[[2-[2-[[(4S)-4-carboxy-4-[10-(4-carboxyphenoxy) decanoylamino]-butanoyl]amino]ethoxy]ethoxy]acetyl]amino]ethoxy]ethoxy]acetyl].
- the substituent comprises serum albumin, such as human serum albumin.
- the substituent comprises an immunoglobulin domain or fragment, such as a Fc domain or a modified IgG4 Fc domain.
- the GLP-1 receptor agonist is selected from the gorup consisting of liraglutide, semaglutide, Compound A, and Compound B.
- the GLP-1 receptor agonist is liraglutide.
- Liraglutide is the GLP-1 receptor agonist Arg34,Lys26-(N-epsilon-(gamma-L-glutamyl(N-alfa-hexadecanoyl)))-GLP-1(7-37).
- Liraglutide may be prepared as described in Example 37 of WO98/08871.
- the GLP-1 receptor agonist is semaglutide.
- Semaglutide is the GLP-1 receptor agonist N-epsilon26-[2-(2- ⁇ 2-[2-(2- ⁇ 2-[(S)-4-Carboxy-4-(17-carboxyheptadecanoylamino)butyrylamino]ethoxy ⁇ ethoxy)acetylamino]ethoxy ⁇ ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37). Semaglutide may be prepared as described in Example 4 of WO2006/097537.
- the GLP-1 receptor agonist is Compound A, which is diacylated [Aib8,Arg34,Lys37]GLP-1(7-37) as shown in Example 2 of WO2011/080103 and named N ⁇ 26 ⁇ 2-[2-(2- ⁇ 2-[2-(2- ⁇ (S)-4-Carboxy-4-[10-(4-carboxyphenoxy)decanoylamino]butyrylamino ⁇ -ethoxy)ethoxy]acetylamino ⁇ ethoxy) ethoxy]acetyl ⁇ , N ⁇ 37 - ⁇ 2-[2-(2- ⁇ 2-[2-(2- ⁇ (S)-4-carboxy-4-[10-(4-carboxyphenoxy)decanoylamino]butyrylamino ⁇ ethoxy)ethoxy]acetylamino ⁇ ethoxy)ethoxy]-acetyl ⁇ -[Aib8,Arg34,Lys37]GLP-1(7-37)—peptide.
- the GLP-1 receptor agonist is Compound B which is Diacylated [Aib8,Glu22,Arg26,Lys27,Glu30,Arg34,Lys36]-GLP-1-(7-37)-peptidyl-Glu-Gly as shown in Example 31 of WO2012/140117 and named N ⁇ 27 -[2-[2-[2-[[2-[2-[[(4S)-4-carboxy-4-[10-(4-carboxyphenoxy)decanoylamino]butanoyl]amino]ethoxy]ethoxy]acetyl]amino]ethoxy]ethoxy]-acetyl]amino]ethoxy]ethoxy]-acetyl], N ⁇ 36 -[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[[[[(4S)-4-carboxy-4-[10-(4-carboxyphenoxy) decanoylamino]-butan
- the GLP-1 receptor agonist is in the form of a pharmaceutically acceptable salt, amide, or ester thereof. In some embodiments the GLP-1 receptor agonist comprises one or more pharmaceutically acceptable counter ions.
- the GLP-1 receptor agonist may be administered in the form of a pharmaceutical composition.
- the pharmaceutical composition may be in a liquid or solid form.
- the pharmaceutical composition may comprise the GLP-1 receptor agonist in a concentration from 0.1 mg/ml to 100 mg/ml. In some embodiments the pharmaceutical composition comprises 0.01-50 mg/ml, or 0.01-20 mg/ml, or 0.01-10 mg/ml GLP-1 receptor agonist. In some embodiments the pharmaceutical composition comprises 0.1-20 mg/ml GLP-1 receptor agonist.
- compositions described herein may further comprise one or more pharmaceutically acceptable excipients, for example selected from the group consisting of buffer system, preservative, tonicity agent, chelating agent, stabilizer and surfactant.
- the pharmaceutical composition comprises one or more pharmaceutically acceptable excipients, such as one or more selected from the group consisting of a buffer, an isotonic agent, and a preservative.
- the formulation of pharmaceutically active ingredients with various excipients is known in the art, see e.g. Remington: The Science and Practice of Pharmacy (e.g. 19th edition (1995), and any later editions).
- excipient broadly refers to any component other than the active therapeutic ingredient(s), e.g. the GLP-1 receptor agonist.
- the excipient may be an inert substance, an inactive substance, and/or a not medicinally active substance.
- the pharmaceutical composition has a pH in the range of 7.0-10.0, such as 7.0 to 9.5 or 7.2 to 9.5. In some embodiments the pharmaceutical composition has a pH in the range of 7.0-8.5, such as 7.0 to 7.8 or 7.8 to 8.2. In some embodiments the pharmaceutical composition has a pH of 7.4. In some embodiments the pharmaceutical composition has a pH of 8.15. In some embodiments the pharmaceutical composition comprises a phosphate buffer, such as a sodium phosphate buffer, e.g. disodium phosphate. In some embodiments the pharmaceutical composition comprises an isotonic agent, such as propylene glycol. In some embodiments the pharmaceutical composition comprises a preservative, such as phenol.
- the pharmaceutical composition may be in the form of a solution or a suspension.
- the pharmaceutical composition is aqueous composition, such as an aqueous solution or an aqueous suspension.
- aqueous composition is defined as a composition comprising at least 50% w/w water.
- aqueous solution is defined as a solution comprising at least 50% w/w water
- aqueous suspension is defined as a suspension comprising at least 50% w/w water.
- An aqueous composition may comprise at least 50% w/w water, or at least 60%, 70%, 80%, or even at least 90% w/w of water.
- the GLP-1 receptor agonist is administered in the form of a pharmaceutical composition comprising about 0.1-20 mg/ml GLP-1 receptor agonist, about 2-15 mM phosphate buffer, about 2-25 mg/ml propylene glycol, and has a pH in the range of 7.0-9.0. In some embodiments the GLP-1 receptor agonist is administered in the form of a pharmaceutical composition comprising about 0.1-20 mg/ml GLP-1 receptor agonist, about 2-15 mM phosphate buffer, about 2-25 mg/ml propylene glycol, about 1-18 mg/ml phenol, and has a pH in the range of 7.0-9.0. In some embodiments the GLP-1 receptor agonist (e.g.
- semaglutide is administered in the form of a pharmaceutical composition comprising about 1.34 mg/ml GLP-1 receptor agonist (e.g. semaglutide), about 1.42 mg/ml disodium phosphate dihydrate, about 14.0 mg/ml propylene glycol, about 5.5 mg/ml phenol, and has pH of about 7.4.
- GLP-1 receptor agonist e.g. semaglutide
- the GLP-1 receptor agonist is administered in the form of a pharmaceutical composition comprising 1.34 mg/ml GLP-1 receptor agonist, 1.42 mg/ml disodium phosphate dihydrate, 14.0 mg/ml propylene glycol, 5.5 mg/ml phenol, and has pH of 7.4.
- the GLP-1 receptor agonist e.g.
- liraglutide is administered in the form of a pharmaceutical composition comprising GLP-1 receptor agonist (e.g. 3-8 mg/ml), disodium phosphate dihydrate, propylene glycol, phenol, and has pH of about 8.0-8.3.
- GLP-1 receptor agonist e.g. liraglutide
- the GLP-1 receptor agonist is administered in the form of a pharmaceutical composition comprising GLP-1 receptor agonist (e.g. about 6.0 mg/ml), disodium phosphate dihydrate, propylene glycol, phenol, and has pH of about 8.15.
- the solid composition may be a solid composition suited for administration by the oral route as described further herein.
- the solid composition comprises at least one pharmaceutically acceptable excipient.
- excipient as used herein broadly refers to any component other than the active therapeutic ingredient(s) or active pharmaceutical ingredient(s) (API(s)).
- the excipient may be a pharmaceutically inert substance, an inactive substance, and/or a therapeutically or medicinally none active substance.
- the excipient may serve various purposes, e.g.
- each excipient used may vary within ranges conventional in the art.
- the excipients may be selected from binders, such as polyvinyl pyrrolidone (povidone), etc.; fillers such as cellulose powder, microcrystalline cellulose, cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxy-propylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, etc.; lubricants and/or glidants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol tribehenate, etc.; flow control agents such as colloidal silica, talc, etc.; crystallization inhibitors such as Povidone, etc.; solubilizers such as Pluronic, Povidone, etc.; colouring agents, including dyes and pigments such as iron oxide red or yellow, titanium dioxide, talc, etc.; pH control agents such as citric acid, tartaric acid, fumaric acid, sodium citrate,
- the solid composition may comprise a binder, such as povidone; starches; celluloses and derivatives thereof, such as microcrystalline cellulose, e.g., Avicel PH from FMC (Philadelphia, PA), hydroxypropyl cellulose hydroxylethyl cellulose and hydroxylpropylmethyl cellulose METHOCEL from Dow Chemical Corp. (Midland, MI); sucrose; dextrose; corn syrup; polysaccharides; and gelatin.
- the binder may be selected from the group consisting of dry binders and/or wet granulation binders. Suitable dry binders are, e.g., cellulose powder and microcrystalline cellulose, such as Avicel PH 102 and Avicel PH 200.
- the solid composition comprises Avicel, such as Aavicel PH 102.
- Suitable binders for wet granulation or dry granulation are corn starch, polyvinyl pyrrolidone (povidon), vinylpyrrolidone-vinylacetate copolymer (copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxyl-propylmethylcellulose.
- the solid composition comprises povidone.
- the solid composition comprises a filler which may be selected from lactose, mannitol, erythritol, sucrose, sorbitol, calcium phosphate, such as calciumhydrogen phosphate, microcrystalline cellulose, powdered cellulose, confectioner's sugar, compressible sugar, dextrates, dextrin and dextrose.
- the solid composition comprises microcrystalline cellulose, such as Avicel PH 102 or Avicel PH 200.
- the solid composition comprises a lubricant and/or a glidant.
- the composition comprises a lubricant and/or a glidant, such as talc, magnesium stearate, calcium stearate, zinc stearate, glyceryl behenate, glyceryl debehenate, behenoyl polyoxyl-8 glycerides, polyethylene oxide polymers, sodium lauryl sulfate, magnesium lauryl sulfate, sodium oleate, sodium stearyl fumarate, stearic acid, hydrogenated vegetable oils, silicon dioxide and/or polyethylene glycol etc.
- the solid composition comprises magnesium stearate or glyceryl debehenate (such as the product Compritol® 888 ATO).
- the solid composition comprises a disintegrant, such as sodium starch glycolate, polacrilin potassium, sodium starch glycolate, crospovidon, croscarmellose, sodium carboxymethylcellulose or dried corn starch.
- the solid composition may comprise one or more surfactants, for example a surfactant, at least one surfactant, or two different surfactants.
- surfactant refers to any molecules or ions that are comprised of a water-soluble (hydrophilic) part, and a fat-soluble (lipophilic) part.
- the surfactant may e.g. be selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, and/or zwitterionic surfactants.
- the solid composition may further comprise a delivery agent or absorption enhancer is for the present invention an excipient capable of increasing the oral exposure of the GLP-1 receptor agonist.
- the delivery agent may be a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid (also referred to herein as a salt of NAC), which contains the anion N-(8-(2-hydroxybenzoyl)amino)caprylate.
- NAC N-(8-(2-hydroxybenzoyl)amino)caprylic acid
- the structural formula of N-(8-(2-hydroxybenzoyl)amino)caprylate is shown in formula (I).
- the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid comprises one monovalent cation, two monovalent cations or one divalent cation.
- the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is selected from the group consisting of the sodium salt, potassium salt and/or calcium salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
- the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is selected from the group consisting of the sodium salt, potassium salt and/or the ammonium salt.
- the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is the sodium salt or the potassium salt.
- Salts of N-(8-(2-hydroxybenzoyl)amino)caprylate may be prepared using the method described in e.g. WO96/030036, WO00/046182, WO01/092206 or WO2008/028859.
- the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid may be crystalline and/or amorphous.
- the delivery agent comprises the anhydrate, monohydrate, dihydrate, trihydrate, a solvate or one third of a hydrate of the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid as well as combinations thereof.
- the delivery agent is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid as described in WO2007/121318.
- the delivery agent is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate (referred to as “SNAC” herein), also known as sodium 8-(salicyloylamino)octanoate.
- composition for use in the invention is in the form of a solid composition, such as a tablet, for oral administration.
- the solid composition comprises the GLP-1 receptor agonist in an amount in the range of 0.1-50 mg, such as 0.5 to 40 mg or 1-30 mg. In some embodiments the solid composition comprises the GLP-1 receptor agonist in an amount in the range of 2-20 mg, such as 3-18 mg or 5-15 mg. In some embodiments the solid composition comprises the GLP-1 receptor agonist in an amount of about 3 mg, such as about 7 mg or about 14 mg.
- At least 30% (w/w) of the solid composition (e.g. tablet) is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid. In some embodiments least 50% (w/w) of the solid composition (e.g. tablet) is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid. In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid per dose unit of the composition is in the range of 0.20-.5 mmol, 0.25-1.0 mmol, 0.30-0.75 mmol, or such as 0.45-0.65 mmol.
- the amount of SNAC in the composition is in the range of 75-600 mg. In some embodiments the amount of SNAC in the composition is in the range of 75-400 mg, such as from 80-350 mg, such as from about 100 to about 300 mg per dose unit.
- the solid composition comprises a lubricant, such as magnesium stearate.
- a unit dose of the solid composition comprises: 0.1-50 mg GLP-1 receptor agonist, 25-600 mg salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid (NAC) (such as the sodium salt of NAC (SNAC)), and 0-25 mg lubricant.
- NAC N-(8-(2-hydroxybenzoyl)amino)caprylic acid
- SNAC sodium salt of NAC
- GLP-1 receptor agonist may be administered in a therapeutically effective amount, such as an amount therapeutically effective to treat type 2 diabetes.
- the therapeutically effective amount of GLP-1 receptor agonist can be assessed by a medical doctor.
- the dosage of GLP-1 receptor agonist may be in the range from 0.01 to 50 mg, such as 1-30 mg or 3-20 mg. In some embodiments the GLP-1 receptor agonist is administered at any time in the day.
- the GLP-1 receptor agonist such as semaglutide, may be administered once weekly or more frequent, such as once daily.
- the GLP-1 receptor agonist is administered in an amount in the range of 0.05-30 mg per week, such as 0.5 or 1.0 mg per week, optionally by once weekly administration. In some embodiments the GLP-1 receptor agonist is administered in an amount of at least 0.1 mg per week, such as at least 0.5 mg per week or at least 1 mg per week, optionally by once weekly administration. In some embodiments the GLP-1 receptor agonist is administered in an amount of no more than 25 mg per week, such as no more than 20 mg per week or no more than 15 mg per week, optionally by once weekly administration.
- the GLP-1 receptor agonist is administered in an amount of no more than 10 mg per week, such as no more than 6 mg per week or no more than 3 mg per week, optionally by once weekly administration. In some embodiments the GLP-1 receptor agonist is administered once weekly in an amount of 0.5 or 1.0 mg.
- the method of the invention reduces the risk of mortality.
- the administration of a GLP-1 receptor agonist is a chronic treatment in which semaglutide is administered for at least 12 months, such as for at least 16 months or at least 18 months.
- the GLP-1 receptor agonist may be administered via parenteral administration, for example subcutaneous injection.
- GLP-1 receptor agonist may be administered using a pen-injector, such as a 3 ml disposable pen-injector.
- the dosage of GLP-1 receptor agonist is in the range from 0.1 to 5.0 mg, such as in the range from 0.1 to 3.0 mg. In some embodiments the daily dosage of GLP-1 receptor agonist is selected from the group consisting of 0.5 and 1.0 mg.
- the GLP-1 receptor agonist may be administered orally, for example in the form of a tablet, a coated tablet, a sachet or a capsule such as hard or soft gelatine capsule and all such compositions are considered solid oral dosage forms. Oral administration may be once daily administration.
- the dosage of the GLP-1 receptor agonist is in the range from 1 to 30 mg, such as 2 to 20 mg or 3 to 15 mg. In some embodiments the dosage of GLP-1 receptor agonist is 3, 7 or 14 mg.
- the composition may be in the form of a dose unit, such as tablet.
- the weight of the unit dose is in the range of 50 mg to 1000 mg, such as in the range of 50-750 mg, or such as about 100-500 mg.
- the weight of the dose unit is in the range of 75 mg to 350 mg, such as in the range of 50-300 mg or 100-400 mg.
- the tablet for oral administration may comprise 30% (w/w) salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid, such as the sodium salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid (SNAC).
- the composition may be granulated prior to being compressed to tablets.
- the composition may comprise a granular part and/or an extra-granular part, wherein the granular part has been granulated and the extra-granular part has been added after granulation.
- the GLP-1 receptor agonist may be included in the granular part or the extra-granular part.
- the extra-granular part comprises the GLP-1 receptor agonist.
- the extra-granular part may further comprise a lubricant and/or a glidant.
- the granular part may comprise a lubricant and/or a glidant.
- the granular part and the extra-granular part comprise a lubricant and/or a glidant.
- the GLP-1 receptor agonist is the sole pharmaceutically active ingredient administered according to the present invention. In some embodiments, the GLP-1 receptor agonist is combined with one or more further pharmaceutically active ingredients in the present invention. In some embodiments, the GLP-1 receptor agonist is combined with one or more further pharmaceutically active ingredients selected from the group consisting of rivastigmin, menantine (such as menantine hydrochloride), donepezil and galantamine. In some embodiments, the GLP-1 receptor agonist is combined with rivastigmin. In some embodiments, the GLP-1 receptor agonist is combined with menantine, such as menantine hydrochloride. In some embodiments, the GLP-1 receptor agonist is combined with donepezil. In some embodiments, the GLP-1 receptor agonist is combined with galantamine.
- the term “chronic treatment” as used herein with reference to the GLP-1 receptor agonist means administration in an amount and frequency to provide a therapeutic effect.
- the term “chronic treatment” as used herein with reference to GLP-1 receptor agonist means once weekly administration of 0.1-3.0 mg, such as 0.5 or 1.0 mg, GLP-1 receptor agonist (e.g. semaglutide).
- the term “chronic treatment” as used herein with reference to a GLP-1 receptor agonist means once daily administration of 0.05-0.3 mg, such as 0.05, 0.1, 0.2, or 0.3 mg, GLP-1 receptor agonist (e.g. semaglutide).
- chronic treatment as used herein with reference to a GLP-1 receptor agonist means once daily administration of 0.1-6 mg, such as 0.5-4 mg, GLP-1 receptor agonist (e.g. liraglutide).
- the term “chronic treatment” as used herein may refer to administration of a drug according to a prescribed dosage regimen (for example once weekly administration) for a long period of time (for example at least 2 years or at least 5 years) wherein up to 10%, such as up to 5%, of dosages may be missed; provided that no more than 10 consecutive dosages are missed.
- ranges herein include their end points.
- the term “a” means “one or more”.
- terms presented in singular form also include the plural situation.
- the term “about” means ⁇ 10% of the value referred to, and includes the value.
- Example 1 Reduced Risk of Dementia in Subjects with Metabolic Syndrome
- Exposure to GLP-1 receptor agonist and subsequent diagnosis of dementia was assessed in data sources with long term treatment exposure including three pooled double-blind randomized controlled trials (RCTs) and a nationwide cohort of patients with diabetes. This was done with the aim of investigating whether use of GLP-1 receptor agonists reduces the onset of dementia in patients with diabetes.
- the formulation tested in LEADER was an aqueous composition comprising liraglutide, disodium phosphate dihydrate, propylene glycol, and phenol at pH 8.15.
- the formulation tested in SUSTAIN-6 was an aqueous composition comprising semaglutide, disodium phosphate dihydrate, propylene glycol, and phenol at pH 7.4.
- the formulation tested in PIONEER was a tablet comprising semaglutide and SNAC.
- the predefined treatment durations for the 3 RCTs are listed in Supplementary Table S4.
- All dispensed prescriptions for GLP-1 receptor agonists were identified (Table S2), and years of cumulative GLP-1 receptor agonist exposure were updated throughout the follow-up period. Patients were considered exposed if they had redeemed at least 1 prescription for any GLP-1 receptor agonists. The exposure duration was accumulated according to 6 months long intervals, in which at least 1 prescription was redeemed.
- the model was adjusted for age, sex, and calendar date via matching, and information on diabetes duration (years since first ever prescription of any second line diabetes treatment), stroke, myocardial infarction, hypertension, chronic renal disease, and educational attainment (Table 51 and S2) at the start of the exposure window.
- diabetes duration years since first ever prescription of any second line diabetes treatment
- stroke myocardial infarction
- hypertension chronic renal disease
- educational attainment Table 51 and S2
- a similar Cox regression model was employed for each of the other second line diabetes treatments.
- the hazard ratio for dementia with exposure to GLP-1 receptor agonists was investigated across subgroups, including sex, age, insulin exposure, and cardiovascular status, where cardiovascular disease was defined as prior stroke or myocardial infarction.
- Liraglutide comprised 95% of all prescriptions for GLP-1 receptor agonists.
- the median follow-up time in the nationwide cohort was 7.4 years.
- the analysis nested in the nationwide cohort was specifically designed to examine long term effects by ensuring at least 5 years of treatment with second line diabetes therapy.
- the result was a reduction of hazard of dementia with increasing duration of GLP-1 receptor agonist exposure ( FIG. 2 ).
- Exposure to other second line diabetes treatments was not found to be associated with a decrease in hazard ratio ( FIG. 2 ).
- the reduction in hazard ratio for dementia with exposure to GLP-1 receptor agonists was similar across subgroups stratified by sex, age, co-exposure to insulin, and cardiovascular status ( FIG. 3 ).
- ATC codes and ICD codes Diabetes treatments (ATC codes) Metformin A10BA02 GLP-1 receptor agonists A10BJ Insulin A10A Acarbose A10BF DPP4 inhibitors A10BH Sulfonylureas A10BB Meglitinides A10BX TZD* A10BG SGLT-2i* A10BK Dementia** (ATC codes) Donepezil N06DA02 Rivastigmine N06DA03 Galantamine N06DA04 Memantine N06DX01 (ICD codes) DF00, DG30, DF01, DF023, DF028, DF03 Comorbidities (ICD codes) Hypertension ICD-10: DI10-DI13, DI15 ATC: C02-C03, C07, C09 Myocardial infarction ICD-8: 410 ICD-10: DI21, DI
- Sensitivity Analyses 1) Reverse causation, where exposure two years before the case date was ignored 2) Diabetes duration defined as “time since first treatment with metformin or second line diabetes treatment 3) Shortening and lengthening the exposure windows (3- and 10-years, respectively) 4) Adjustment only via matching on age, sex, and calendar date 5) Competing risk of death
- the inbred senescence-accelerated mouse-prone 8 (SAMP8) model is a non-transgenic mouse line that displays phenotypes associated with sporadic (not driven by a defined genetic cause) Alzheimer's dementia, including measurable cognitive decline.
- SAMP8 mice display accelerated ageing and thus also model age-related metabolic complications, showing increased markers of oxidative stress and inflammation.
- this mouse model allows for the assessment of drug effects on preventing cognitive decline and models early stages of disease in humans.
- SAMP8 mice were utilized to characterize the impact of semaglutide treatment on memory deficits and cognitive decline.
- Two behavioural tests commonly used to assess cognitive deficits in rodents were employed to assay effects on short-term memory (Y-maze test) and long-term memory (step-through passive avoidance test).
- the Y-maze is test of short-term memory, assessing spatial working memory and exploratory behaviour by measuring spontaneous alternations, which is the frequency of entering a new arm of the maze rather than returning to one that was previously visited (described in methods).
- the step-through passive avoidance test measures associative long-term memory by assessing the learning of an association of an aversive stimulus to a particular context (described in methods).
- SAMP8 mice have measurable deficits in both tests as they age.
- the Y-maze was comprised of grey polyvinylchloride with three arms 40 cm long, 13 cm high, 3 cm wide at the bottom, 10 cm wide at the top converging at an equal angle. Each mouse was placed at the end of one arm and allowed to move freely through the maze during an eight minute session. The series of arm entries including possible returns into the same arm was monitored and alternation was defined as entries into all three arms on consecutive occasions. The number of maximum alternations was therefore the total number of arm entries minus two and the percentage of alternation was be calculated as (actual alternations/maximum alternations) ⁇ 100.
- the step through passive avoidance performance was performed at 18 weeks of age. Testing was performed in an apparatus comprising of a two-compartment box (15 ⁇ 20 ⁇ 15 cm high) where one compartment was illuminated with white polyvinylchloride walls and the other was darkened with black polyvinylchloride walls and a grid floor. A guillotine door separated the compartments. A 60 W lamp positioned 40 cm above the apparatus illuminated the white compartment during the experiment. Scrambled footshocks (0.3 mA for 3 s) could be delivered to the grid floor using a shock generator scrambler (Lafayette Instruments, Lafayette, USA). A training session was first performed where the guillotine door was initially closed and each mouse was placed into the white compartment.
- the door was raised.
- the door was closed and the footshock delivered for 3 s to associate the darkened chamber with a footshock.
- a retention test was carried out 24 h after training. Each mouse was again placed into the white compartment and after 5 s, the door was raised.
- the step-through latency was recorded up to 300 s, defined as the time it took the mouse to enter the darkened compartment during the retention test. Escape latency was as recorded, defined as the time in the retention test to escape the darkened chamber following the application of a footshock.
- FIG. 7 Data in FIG. 7 illustrates that vehicle-treated SAMP8 mice had, as expected, significantly decreased percentage alternation behaviour in the Y-maze at 16 weeks (mean ⁇ SEM: 42.8% ⁇ 2.1%) versus 8 weeks (mean ⁇ SEM: 69.1% ⁇ 1.3%) of age (p ⁇ 0.0001, 2-way ANOVA, Sidak's multiple comparison test). Semaglutide-treated SAMP8 mice at 16 weeks of age had significantly improved alternation behaviour (mean ⁇ SEM: 79.1% ⁇ 1.6%) compared to vehicle-treated SAMP8 (mean ⁇ SEM: 42.8% ⁇ 2.1%) controls (p ⁇ 0.0001, 2-way ANOVA, Sidak's multiple comparison test). These data show semaglutide has a positive effect on preserving short term memory function in SAMP8 mice as measured in the Y maze test.
- Semaglutide also improved long-term memory in SAMP8 mice as measured in the step-through passive avoidance test ( FIG. 8 - 9 ).
- Semaglutide-treated SAMP8 mice had significantly increased step-through latency into the darkened chamber during the retention phase, which was previously associated with a footshock ( FIG. 8 ; SAMP8 vehicle-treated mean ⁇ SEM: 109.8 seconds ⁇ 5.8 seconds; SAMP8 semaglutide-treated mean ⁇ SEM: 260.5 seconds ⁇ 14.5 seconds, p ⁇ 0.0001, Mann-Whitney test).
- Semaglutide treatment did not result in differences in body weight (16 weeks of age; SAMP8 vehicle-treated mean ⁇ SEM: 31.0 grams ⁇ 0.43 grams or 148.0% ⁇ 4.6% change in body weight from baseline; SAMP8 semaglutide-treated mean ⁇ SEM: 29.2 grams ⁇ 0.7 grams or 145.4% ⁇ 4.2% change in body weight from baseline) or blood glucose (SAMP8 vehicle-treated mean ⁇ SEM: 137.1 mg/dL ⁇ 5.6 mg/dL; SAMP8 semaglutide-treated mean ⁇ SEM: 133.1 mg/dL ⁇ 2.2 mg/dL) compared to vehicle treated animals.
- Semaglutide prevented cognitive decline in SAMP8 mice. Semaglutide prevented decline in alternation behaviour in the Y-maze, indicating improved short-term and spatial memory compared to vehicle-treated SAMP8 controls. Semaglutide also prolonged the step-through latency and shortened the escape latency in the step-through passive avoidance test, which are positive indicators of longer-term memory performance and associative learning. These positive effects on cognitive parameters furthermore appear to be a novel effect of semaglutide that is not driven by changes in glycaemia or body weight. Example 2 surprisingly shows better effects of semaglutide than those published for liraglutide in the same animal model.
- Example 3 Semaglutide Reduces Brain Inflammation (Neuroinflammation) in a Lipopolysaccharide (LPS) Inflammation Mouse Model
- Neuroinflammation is part of the pathology comprising dementia and Alzheimer's disease, with human brain imaging studies highlighting increased markers of inflammation in Alzheimer's disease (e.g. translocator protein 18 kDa levels) and genetic association studies in humans highlighting that genes associated with Alzheimer's disease are part of inflammatory pathways. Inflammation is also linked to metabolic disease in humans (obesity, type 2 diabetes, cardiovascular diseases) and thus could affect progression of cognitive decline and dementia in people with metabolic diseases.
- LPS-induced neuroinflammation is used as a non-genetic model of Alzheimer's disease in rodents.
- LPS is an endotoxin from gram-negative bacteria that provides a persistent inflammatory stimulus activating brain immune cells (neuroimmune cells).
- Microglia are a brain immune cell type activated by LPS, and the degree of neuroinflammation can be assessed by the area of microglia in brain tissue as measured by the microglia-specific marker ionized calcium binding adaptor molecule 1 (lba1).
- LPS-induced neuroinflammation in mice was used to assess the impact of semaglutide on attenuating brain inflammation in the hippocampus, a brain region involved in memory and learning which is deteriorated in Alzheimer's Disease.
- mice were treated with semaglutide (30 nmol/kg, subcutaneously once per day) or vehicle from Day 1 to Day 28 of the study.
- LPS was administered (1.0 mg/kg, intraperitoneally once per day) for three days at days 15-17 of the study, with control animals receiving vehicle.
- IHC immunohistochemical
- Quantitative assessment of lba1 signal was performed to measure the area of microglia in the hippocampus of the tissue section. Assessment was performed using a two-step protocol with VIS (Visiopharm, Denmark) software. First, crude detection of tissue at low magnification (1 ⁇ objective) and delineation of the Region of Interest (ROI) was obtained. Second, detection of IHC-positive staining was performed at higher magnification (10 ⁇ objective) inside the ROI. The quantitative estimates of IHC-positive staining were calculated as an area fraction (AF) of the total tissue area where:
- mice dosed with LPS+ vehicle (mean ⁇ SEM: 23.83 g ⁇ 0.33 g) versus those treated with LPS+ semaglutide (mean ⁇ SEM: 22.98 g ⁇ 0.70 g).
- semaglutide reduced neuroinflammation in both the hippocampus as measured by the area of microglia (lba1). Semaglutide treatment reduced neuroinflammation implicating that this may be a novel mechanism through with semaglutide may have effects on cognition.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Gastroenterology & Hepatology (AREA)
- Endocrinology (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention relates to improved medical therapies for all forms and stages of dementia involving administration of (i) GLP-1 receptor agonists to subjects with metabolic syndrome or (ii) semaglutide.
Description
- This application is a continuation of U.S. application Ser. No. 17/736,116, filed May 4, 2022, which is a continuation of International Application PCT/EP2020/081087 (WO 2021/089678), filed Nov. 5, 2020, which claims priority to European Patent Application 19207501.8, filed Nov. 6, 2019 and European Patent Application 20186623.3 filed Jul. 20, 2020; the contents of which are incorporated herein by reference.
- The present invention relates to GLP-1 receptor agonists for use in the treatment of all forms and stages of dementia.
- The instant application contains a Sequence Listing which has been submitted in XML format via the USPTO patent electronic filing system and is hereby incorporated by reference in its entirety. Said XML file, created on Jun. 7, 2023, is named 190095US03.xml and is 2 kilobytes in size.
- No treatment options are currently available to actively prevent or slow progression to dementia and no new pharmacological therapies have been approved for the treatment of dementia within the last 20 years. According to WHO, approximately 50 million people worldwide have dementia, this number is projected to triple by 2050, and Alzheimer's disease is the most common form of dementia and may contribute to 60-70% of cases. Intensive efforts have so far failed to identify any medical treatments that prevent, delay, or modify the disease course of dementia, including recent unsuccessful trials focusing on reducing production or enhancing clearance of amyloid-8. Thus, improved pharmacological therapies for patients with dementia are desired. It is an important unanswered question to determine whether GLP-1 receptor agonists have an effect on dementia in humans.
- The present invention relates to improved medical therapies for dementia involving administration of GLP-1 receptor agonists.
- In some embodiments the invention relates to methods for the treatment of dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof, said subject has metabolic syndrome, and said GLP-1 receptor agonist comprises GLP-1(7-37) (SEQ ID No: 1) optionally comprising one or more substitutions, deletions, additions and/or modifications.
- In some embodiments the invention relates to methods for the treatment of dementia, wherein said method comprises administering semaglutide to a subject in need thereof.
-
FIG. 1 shows time to dementia with GLP-1 receptor agonists versus placebo in pooled RCTs; in the pooled RCTs, 15 patients randomized to a GLP-1 receptor agonist (0.66 per 1000 patient-years) and 32 patients randomized to placebo (1.41 per 1000 patient-years) developed dementia. GLP-1 RA=GLP-1 receptor agonists. -
FIG. 2 shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists and other second-line diabetes treatments in the nationwide cohort. Cox proportional hazards regression models conducted for exposure to each treatment. Estimates denote the hazard ratio for a 1 year increase in duration of exposure. The models were adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching. -
FIG. 3 shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists according to subgroup in the nationwide cohort. Cox proportional hazards regression models conducted for exposure to GLP-1 in various subgroups. Estimates denote the hazard ratio for a 1 year increase in duration of exposure. The models were adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching. -
FIG. 4 shows study design used in the nationwide cohort. *First ever second-line diabetes treatment=first treatment with diabetes treatment not including metformin, eligible=eligible for cohort of diabetes patients, case date=date of dementia diagnosis with matching of each case to ten controls without dementia, exposure window 5-year window prior to case date, where duration of cumulative diabetes treatment is assessed. -
FIG. 5A shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists and other second-line diabetes. Treatments in the Nationwide Cohort Excluding the Last 2 Years Prior to Case Date. Cox proportional hazards regression models conducted for exposure to each treatment. Estimates denote the hazard ratio for a 1 year increase in duration of exposure. The models were adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching. -
FIG. 5B shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists and other second-line diabetes Treatments in the Nationwide Cohort, where Diabetes Duration was Defined as “Time Since First Treatment with Metformin or Second-line Diabetes Treatment”. Cox proportional hazards regression models conducted for exposure to each treatment. Estimates denote the hazard ratio for a 1 year increase in duration of exposure. The models were adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching. -
FIG. 6A shows hazard ratios for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonists assessed 3, 5, and 10 years before diagnosis of dementia in the nationwide cohort. *Primary analysis. Cox proportional hazards regression models conducted for GLP-1 receptor agonist exposure and assessed during a 3, 5, and 10-year exposure window prior to dementia. Estimates denote the hazard ratio for a 1 year increase in duration of exposure. The models were adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching. -
FIG. 6B shows hazard ratio for dementia with each 1 year increase in exposure duration to GLP-1 receptor agonist exposure in the nationwide cohort adjusted for age, sex, and calendar date via matching. Cox proportional hazards regression model conducted for exposure to GLP-1 receptor agonists. The estimate denotes the hazard ratio for a 1 year increase in duration of exposure. The model was adjusted sex, age, and calendar date via matching. -
FIG. 6C shows hazard ratio for competing risk of death with each 1 year increase in exposure duration to GLP-1 receptor agonist in the nationwide cohort. Cox proportional hazards regression model conducted for exposure to GLP-1 receptor agonists. The estimate denotes the hazard ratio for a 1 year increase in duration of exposure. The model was adjusted for history of stroke, myocardial infarction, hypertension, educational attainment, and diabetes duration. Sex, age, and calendar date were included via matching. -
FIG. 7 shows effect on Y-maze alternation behaviour in SAMP8 mice administration of semaglutide compared to vehicle. -
FIGS. 8 and 9 show improvement of long-term memory in SAMP8 mice as measured in the step-through passive avoidance test following administration of semaglutide compared to vehicle and presenting step-through latency (FIG. 8 ) and escape latency (FIG. 9 ). -
FIG. 10 shows effect of semaglutide in a lipopolysaccharide (LPS)-induced neuroinflammation, a non-genetic model of Alzheimer's disease in rodents, on the microglial inflammatory marker lba1 in the hippocampus. - The present inventors surprisingly found that administration of glucagon-like peptide 1 (GLP-1) receptor agonists reduced the risk of dementia in subjects with metabolic syndrome. Furthermore, the inventors surprisingly found that semaglutide improved dementia in animal models.
- In some embodiments the invention relates to a method for the treatment of dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof and said subject has metabolic syndrome. In some embodiments the invention relates to a method for the treatment of dementia, wherein said method comprises administering a GLP-1 receptor agonist to a human subject in need thereof and said subject has one or more indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension. In some embodiments the invention relates to a method for the treatment of dementia, wherein said method comprises administering semaglutide to a subject in need thereof.
- In some embodiments the invention relates to a method for reducing the risk of developing dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof and said subject has metabolic syndrome. In some embodiments the invention relates to a method for reducing the risk of developing dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof and said subject has one or more indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension. In some embodiments the invention relates to a method for reducing the risk of developing dementia, wherein said method comprises administering semaglutide to a subject in need thereof.
- Dementia exists in different degrees of severity. In some embodiments, the term “dementia” as used herein refers to all forms of and stages of the dementia disease continuum. In some embodiments dementia is selected from the group of indications defined in ICD-11: Dementia due to Alzheimer disease; Dementia due to Alzheimer disease with early onset; Autosomal dominant Alzheimer disease dementia, mutation of presenilin 1; Autosomal dominant Alzheimer disease dementia, mutation of presenilin 2; Autosomal dominant Alzheimer disease dementia, mutation of amyloid precursor protein; Dementia due to Alzheimer disease with late onset; Alzheimer disease dementia, mixed type, with cerebrovascular disease; Alzheimer disease dementia, mixed type, with other nonvascular aetiologies; Non-amnestic Alzheimer disease dementia subtypes; Non-amnestic Alzheimer disease dementia, logopenic variant; Non-amnestic Alzheimer's disease, logopenic variant with primary progressive aphasia; Non-amnestic Alzheimer disease dementia, visuospatial variant; Non-amnestic Alzheimer's disease, visuospatial variant with posterior cortical atrophy; Non-amnestic Alzheimer disease dementia, frontal variant; Alzheimer disease dementia with psychosis; Alzheimer disease dementia with depression; Dementia due to cerebrovascular disease; Vascular dementia haemorrhagic subtype; Vascular dementia ischaemic subtype; Multi-infarct dementia; Single strategic infarct dementia; Dementia due to subcortical vascular encephalopathy; Dementia due to hypoxic encephalopathy; Dementia due to genetic causes; Dementia due to central nervous system vasculitides; Dementia due to hypertensive encephalopathy; Dementia due to intracerebral hypertensive haemorrhage; Dementia due to cerebral amyloid angiopathy; Dementia due to Lewy body disease; Frontotemporal dementia; Frontotemporal dementia, behavioural variant; Frontotemporal dementia, language variant; Frontotemporal dementia, non-fluent or agrammatic variant;
- Frontotemporal dementia, semantic variant; Frontotemporal dementia, logopenic variant; Frontotemporal dementia with motor neuron disease; Frontotemporal dementia with familial inclusion body myopathy with Paget's disease of bone; Frontotemporal dementia due to genetic mutation; Frontotemporal dementia due to C9orf72 mutation; Frontotemporal dementia due to MAPT mutation; Frontotemporal dementia due to VCP mutation; Frontotemporal dementia due to GRN mutation; Frontotemporal dementia due to CHMP2B mutation; Frontotemporal dementia due to FUS mutation; Frontotemporal dementia due to TARDBP mutation; Frontotemporal dementia due to other or new mutations; Dementia due to psychoactive substances including medications; Dementia due to use of alcohol; Dementia due to use of sedatives, hypnotics or anxiolytics; Posthallucinogen perception disorder; Dementia due to use of volatile inhalants; Post radiation dementia; Dementia due to carbon monoxide poisoning; Dementia due to drug intoxication; Dementia or parkinsonism due to manganese toxicity; Dementia due to diseases classified elsewhere; Dementia due to certain specified central nervous system degenerative diseases; Dementia due to Parkinson disease; Dementia due to Huntington disease; Dementia due to corticobasal degeneration; Dementia due to progressive supranuclear palsy; Dementia due to neurofilament inclusion body disease; Dementia due to progressive subcortical gliosis; Dementia due to multiple system atrophy; Dementia due to spinocerebellar ataxia; Dementia due to neurodegeneration with brain iron accumulation; Dementia due to leukodystrophy; Dementia due to Parkinsonism-dementia complex of Guam; Dementia due to certain specified infectious diseases; Dementia due to human immunodeficiency virus; Dementia due to neurosyphilis; Dementia due to herpes encephalitis; Dementia due to trypanosomiasis; Dementia due to neurocysticercosis; Dementia due to Lyme disease; Dementia due to Whipple disease; Dementia due to progressive multifocal leukoencephalopathy; Certain specified primary degenerative dementias; Neurofibrillary tangle dementia; Familial multiple system tauopathy; Argyrophilic grain disease; Dementia due to certain specified disorders of the central nervous system; Dementia due to multiple sclerosis; Dementia due to prion disease; Dementia due to sporadic Creutzfeldt-Jakob disease; Dementia due to variant Creutzfeldt-Jakob disease; Dementia due to familial Creutzfeldt-Jakob disease; Dementia due to iatrogenic Creutzfeldt-Jakob disease; Dementia due to sporadic fatal insomnia; Dementia due to fatal familial insomnia; Dementia due to Gerstmann-Staussler-Sheinker syndrome; Dementia due to Kuru; Dementia due to acute demyelinating encephalomyelitis; Dementia due to subacute sclerosing panencephalitis; Dementia due to Hashimoto's encephalopathy; Dementia due to paraneoplastic encephalitis; Dementia due to autoimmune encephalitis; Dementia due to primary central nervous system neoplasm; Dementia due to metastatic brain tumour; Dementia due to epilepsy; Dementia due to normal pressure hydrocephalus; Dementia due to metabolic disorders involving the brain; Dementia due to injury to the head; Dementia due to chronic subdural haematoma; Dementia due to obstructive hydrocephalus; Dementia due to exposure to heavy metals and other toxins; Dementia due to nutritional deficiency; Dementia due to thiamine deficiency; Dementia due to vitamin B12 deficiency; Dementia due to folate deficiency; Dementia due to vitamin E deficiency; Dementia due to iron deficiency; Dementia due to other nutritional deficiency; Dementia due to pellagra; Dementia due to metabolic abnormalities; Dementia due to hypercalcaemia; Dementia due to acquired hypothyroidism; Dementia due to Wilson disease; Dementia due to dialysis; Dementia due to hepatic failure; Dementia due to renal failure; Dementia due to chromosomal anomalies; Dementia due to Down syndrome; Dementia due to Fragile X Syndrome; Dementia due to rheumatological diseases; Dementia due to polyarteritis nodosa; Dementia due to systemic lupus erythematosus; Dementia due to Behcet disease; Dementia due to certain specified cause; Behavioural or psychological disturbances in dementia; Psychotic symptoms in dementia; Mood symptoms in dementia; Anxiety symptoms in dementia; Apathy in dementia; Agitation or aggression in dementia; Disinhibition in dementia; Wandering in dementia; End stage dementia; Degenerative dementia; Presenile psychotic mental disorder; Paranoid dementia; Presenile dementia not otherwise specified; Senile dementia; and Old age dementia. In some embodiments dementia is selected from the group consisting of mild cognitive impairment, Alzheimer's disease, mixed dementia, vascular dementia, dementia with Lewy bodies, frontotemporal dementia, pre-senile dementia, and senile dementia. In some embodiments dementia is the Alzheimer's continuum with mild cognitive impairment or mild dementia. In some embodiments dementia is mild cognitive impairment, such as mild cognitive impairment of the Alzheimer's type. In some embodiments dementia is Alzheimer's disease, such as preclinical Alzheimer's disease, mild cognitive impairment of the Alzheimer's type, early onset familial Alzheimer's disease, or prodromal Alzheimer's disease. In some embodiments dementia is mild cognitive impairment of the Alzheimer's type. In some embodiments dementia is mixed dementia. In some embodiments dementia is vascular dementia. In some embodiments dementia is dementia with Lewy bodies. In some embodiments dementia is frontotemporal dementia. In some embodiments dementia is pre-senile dementia. In some embodiments dementia is senile dementia.
- In some embodiments, the term “treatment” as used herein encompasses preventing, delaying, reducing the risk of developing, ameliorating, or curatively treating the medical indication referred to. Treatment may be symptomatic treatment or disease modifying treatment. In some embodiments, the term treatment as used herein refers to preventing the medical indication referred to. In some embodiments, the term treatment as used herein refers to delaying (e.g. delaying the onset of) the medical indication referred to. In some embodiments, the term treatment as used herein refers to reducing the risk of developing the medical indication referred to. In some embodiments, the term treatment as used herein refers to ameliorating the medical indication referred to. In some embodiments, the term treatment as used herein refers to curatively treating the medical indication referred to.
- The subject to be administered GLP-1 receptor agonists according to the present invention may be human, such as an adult human (also referred to as adults). In some embodiments the subject has metabolic syndrome. As used herein, the term “metabolic syndrome” refers to one or more indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension. In some embodiments “metabolic syndrome” refers to at least two indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension. In some embodiments “metabolic syndrome” refers to at least three indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension. In some embodiments the subject has pre-diabetes. In some embodiments the subject has diabetes. In some embodiments diabetes is type 2 diabetes. In some embodiments the subject has obesity. In some embodiments the subject has cardiovascular disease. In some embodiments the subject has obesity. In some embodiments obesity is a BMI of at least 25 kg/m2, such as at least 27 kg/m2 or at least 30 kg/m2. In some embodiments the subject has hypertension. In some embodiments cardiovascular disease includes one or more of coronary artery disease (such as angina and myocardial infarction), stroke, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy, abnormal heart rhythms, congenital heart disease, valvular heart disease, carditis, aortic aneurysms, peripheral artery disease, thromboembolic disease, and venous thrombosis. In some embodiments the subject has previously been administered insulin.
- The term “GLP-1 receptor agonist” as used herein refers to a compound, which fully or partially activates the human GLP-1 receptor. In some embodiments, the GLP-1 receptor agonist for use in the present invention is an acylated GLP-1 receptor agonist. The term “acylated” as used in relation to GLP-1 receptor agonists refers to the GLP-1 receptor agonist having covalently attached at least one substituent comprising a lipophilic moiety, such as a fatty acid or a fatty diacid. In some embodiments the substituent comprises a fatty acid or a fatty diacid. In some embodiments, the term GLP-1 receptor agonist as well as the specific GLP-1 receptor agonists described herein also encompass salt forms thereof.
- It follows that the GLP-1 receptor agonist should display “GLP-1 activity” which refers to the ability of the compound, i.e. GLP-1 receptor agonist, to bind to the GLP-1 receptor and initiate a signal transduction pathway resulting in insulinotropic action or other physiological effects as is known in the art. In some embodiments the “GLP-1 receptor agonist” binds to a GLP-1 receptor, e.g., with an affinity constant (KD) or activate the receptor with a potency (EC50) of below 1 μM, e.g. below 100 nM as measured by methods known in the art (see e.g. WO 98/08871) and exhibits insulinotropic activity, where insulinotropic activity may be measured in vivo or in vitro assays known to those of ordinary skill in the art. For example, the GLP-1 receptor agonist may be administered to an animal with increased blood glucose (e.g. obtained using an Intravenous Glucose Tolerance Test (IVGTT). A person skilled in the art will be able to determine a suitable glucose dosage and a suitable blood sampling regime, e.g. depending on the species of the animal, for the IVGTT) and measure the plasma insulin concentration over time. Suitable assays have been described in such as WO2015/155151.
- The term half maximal effective concentration (EC50) generally refers to the concentration which induces a response halfway between the baseline and maximum, by reference to the dose response curve. EC50 is used as a measure of the potency of a compound and represents the concentration where 50% of its maximal effect is observed. Due to the albumin binding effects of GLP-1 receptor agonists comprising a substituent as described herein, it is important to pay attention to if the assay includes human serum albumin or not.
- The in vitro potency of the GLP-1 receptor agonist may be determined as described in WO2015/155151, Example 29 without Human Serum Albumin (HSA), and the EC50 determined. The lower the EC50 value, the better the potency. In some embodiments the potency (EC50) as determined (without HSA) is 5-1000 μM, such as 10-750 μM, 10-500 μM or 10-200 μM. In some embodiments the EC50 (without HSA) is at most 500 μM, such as at most 300 μM, such as at most 200 μM. In some embodiments the EC50 (without HSA) is comparable to human GLP-1(7-37). In some embodiments the EC50 (without HSA) is at most 50 μM. In a further such embodiment the EC50 is at most 40 μM, such as at most 30 μM such as at most 20 μM, such as at most 10 μM. In some embodiments the EC50 is about 10 μM.
- Also, or alternatively, the binding of the GLP-1 receptor agonist to albumin may be measured using the in vitro potency assay of Example 29 in WO2015/155151 including HSA. An increase of the in vitro potency, EC50 value, in the presence of serum albumin reflects the affinity to serum albumin. In some embodiments the potency (EC50) as determined (with 1% HSA) is 5-1000 μM, such as 100-750 μM, 200-500 μM or 100-400 μM. In some embodiments the EC50 (with 1% HSA) is at most 750 μM, such as at most 500 μM, such as at most 400 μM, such as at most 300 or such as at most 250 μM.
- If desired, the fold variation in relation to a known GLP-1 receptor agonist may be calculated as EC50(test compound)/EC50(known compound), and if this ration is such as 0.5-1.5, or 0.8-1.2 the potencies are considered to be equivalent. In some embodiments the potency, EC50 (without HSA), is equivalent to the potency of liraglutide. In some embodiments the potency, EC50 (without HSA), is equivalent to the potency of semaglutide. In some embodiments the potency, EC50 (with 1% HSA), is equivalent to the potency of liraglutide. In some embodiments the potency, EC50 (with 1% HSA), is equivalent to the potency of semaglutide.
- In some embodiments the GLP-1 receptor agonist comprises one or more substitutions, deletions, additions and/or modifications. In some embodiments a modification is a covalently attached substituent. In some embodiments the GLP-1 receptor agonist comprises a peptide which is the human GLP-1 (GLP-1(7-37)) or a variant thereof. Human GLP-1, also referred to herein as “GLP-1(7-37)”, has the sequence HAEGTFTSDV SSYLEGQAAKEFIAWLVKGRG (SEQ ID No: 1). In some embodiments the term “variant” refers to a compound which comprises one or more amino acid substitutions, deletions, additions and/or modifications. Such addition or deletion of amino acid residues may take place at the N-terminal of the peptide and/or at the C-terminal of the peptide. In some embodiments a simple nomenclature is used to describe the GLP-1 receptor agonist, e.g., [Aib8] GLP-1(7-37) designates a GLP-1(7-37) receptor agonist wherein the naturally occurring Ala in
position 8 has been substituted with Aib. In some embodiments the GLP-1 receptor agonist comprises a maximum of 12 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 10 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 9 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 8 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 7 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 6 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 5 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 4 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 3 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). In some embodiments the GLP-1 receptor agonist comprises a maximum of 2 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1). Unless otherwise stated the GLP-1 comprises only L-amino acids. - In some embodiments the GLP-1 receptor agonist exhibits at least 60%, 65%, 70%, 80% or 90% sequence identity to GLP-1(7-37) over the entire length of GLP-1(7-37). As an example of a method for determination of sequence identity between two compounds, the two peptides [Aib8]GLP-1(7-37) and GLP-1(7-37) are aligned. The sequence identity of [Aib8]GLP-1(7-37) relative to GLP-1(7-37) is given by the number of aligned identical residues minus the number of different residues divided by the total number of residues in GLP-1(7-37). Accordingly, in said example the sequence identity is (31-1)/31.
- In some embodiments the C-terminal of the GLP-1 receptor agonist is an amide. In some embodiments the GLP-1 receptor agonist is GLP-1(7-37) or GLP-1(7-36)amide.
- In order to prolong the effect of the GLP-1 receptor agonist it is preferred that the GLP-1 receptor agonist have an extended half-life. The half-life can be determined by method known in the art an in an appropriate model, such as in Male Sprague Dawley rats or minipigs as described in WO2012/140117. Half-life in rats may be determined as in Example 39 and the half-life in minipigs may be determined as in Example 37 therein.
- In some embodiments the GLP-1 receptor agonist according to the invention has a half-life above 2 hours in rat. In some embodiments the GLP-1 receptor agonist according to the invention has a half-life above 4 hours, such as above 6 hours, such as above 8 hours, such as above 10 hours, such as above 12 hours or such as above 15 hours in rat.
- In some embodiments the GLP-1 receptor agonist according to the invention has a half-life above 24 hours in minipig. In some embodiments the GLP-1 receptor agonist according to the invention has a half-life above 30 hours, such as above 36 hours, such as above 42 hours, such as above 48 hours, such as above 54 hours or such as above 60 hours in minipig.
- In some embodiments the GLP-1 receptor agonist has a molecular weight of at most 12 000, such as at most 7 500 Da, such as at most 5 000 Da. In some embodiments the GLP-1 receptor agonist has a molar mass of at most 10 000 g/mol, such as at most 8 000 g/mol, such as at most 6 000 g/mol.
- In some embodiments the GLP-1 receptor agonist comprises one or two substituents which are covalently attached to the peptide and wherein said substituent comprises a lipophilic moiety. In some embodiments the substituent comprises a fatty acid or a fatty diacid. In some embodiments the substituent comprises a C16, C18 or C20 fatty acid. In some embodiments the substituent comprises a C16, C18 or C20 fatty diacid.
- In some embodiments the substituent comprises formula (X)
- wherein n is at least 13, such as n is 13, 14, 15, 16, 17, 18 or 19. In some embodiments the substituent comprises formula (X), wherein n is in the range of 13 to 19, such as in the range of 13 to 17. In some embodiments the substituent comprises formula (X), wherein n is 13, 15 or 17. In some embodiments the substituent comprises formula (X), wherein n is 13. In some embodiments the substituent comprises formula (X), wherein n is 15. In some embodiments the substituent comprises formula (X), wherein n is 17. In some embodiments the substituent comprises formula (X1a)
- HOOC—(C6H4)—O—(CH2)m—CO—*(X1a), wherein m is an integer in the range of 6-14. In some embodiments the substituent comprises formula (X1b)
- wherein the carboxy group is in
position - In some embodiments the substituent comprises a linker (also referred to as a spacer) located proximally in said substituent to the point of attachment between said substituent and the peptide in the GLP-1 receptor agonist. In some embodiments the substituent comprises a linker located proximally in said substituent to the point of attachment between said substituent and the peptide in said GLP-1 receptor agonist. In some embodiments the substituent comprises one or more 8-amino-3,6-dioxaoctanoic acid (OEG), such as two OEG. The one or more OEG may be a linker.
- In some embodiments the substituent is [2-(2-{2-[2-(2-{2-[(S)-4-Carboxy-4-(17-carboxyheptadecanoylamino)butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl].
- In some embodiments the substituent is [2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxyheptadecanoylamino) butyrylamino]ethoxy}ethoxy)acetylamino] ethoxy}ethoxy)acetyl]. In some embodiments the substituent is [2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-({trans-4-[(19-carboxynonadecanoylamino)methyl]cyclohexanecarbonyl}amino)butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl]. In some embodiments the substituent is {2-[2-(2-{2-[2-(2-{(S)-4-Carboxy-4-[10-(4-carboxyphenoxy) decanoylamino]butyrylamino}-ethoxy)ethoxy]acetylamino}ethoxy)ethoxy]acetyl}. In some embodiments the substituent is {2-[2-(2-{2-[2-(2-{(S)-4-carboxy-4-[10-(4-carboxyphenoxy) decanoylamino]butyrylamino}ethoxy)ethoxy]acetylamino}ethoxy)ethoxy]-acetyl}. In some embodiments the substituent is [2-[2-[2-[[2-[2-[2-[[(4S)-4-carboxy-4-[10-(4-carboxyphenoxy) decanoylamino]-butanoyl]amino]ethoxy]ethoxy]acetyl]amino]ethoxy]ethoxy]acetyl].
- In some embodiments the substituent comprises serum albumin, such as human serum albumin. In some embodiments the substituent comprises an immunoglobulin domain or fragment, such as a Fc domain or a modified IgG4 Fc domain.
- In some embodiments the GLP-1 receptor agonist is selected from the gorup consisting of liraglutide, semaglutide, Compound A, and Compound B. In some embodiments the GLP-1 receptor agonist is liraglutide. Liraglutide is the GLP-1 receptor agonist Arg34,Lys26-(N-epsilon-(gamma-L-glutamyl(N-alfa-hexadecanoyl)))-GLP-1(7-37). Liraglutide may be prepared as described in Example 37 of WO98/08871. In some embodiments the GLP-1 receptor agonist is semaglutide. Semaglutide is the GLP-1 receptor agonist N-epsilon26-[2-(2-{2-[2-(2-{2-[(S)-4-Carboxy-4-(17-carboxyheptadecanoylamino)butyrylamino]ethoxy}ethoxy)acetylamino]ethoxy}ethoxy)acetyl][Aib8,Arg34]GLP-1-(7-37). Semaglutide may be prepared as described in Example 4 of WO2006/097537. In some embodiments the GLP-1 receptor agonist is Compound A, which is diacylated [Aib8,Arg34,Lys37]GLP-1(7-37) as shown in Example 2 of WO2011/080103 and named Nε26{2-[2-(2-{2-[2-(2-{(S)-4-Carboxy-4-[10-(4-carboxyphenoxy)decanoylamino]butyrylamino}-ethoxy)ethoxy]acetylamino}ethoxy) ethoxy]acetyl}, Nε37-{2-[2-(2-{2-[2-(2-{(S)-4-carboxy-4-[10-(4-carboxyphenoxy)decanoylamino]butyrylamino}ethoxy)ethoxy]acetylamino}ethoxy)ethoxy]-acetyl}-[Aib8,Arg34,Lys37]GLP-1(7-37)—peptide. In some embodiments the GLP-1 receptor agonist is Compound B which is Diacylated [Aib8,Glu22,Arg26,Lys27,Glu30,Arg34,Lys36]-GLP-1-(7-37)-peptidyl-Glu-Gly as shown in Example 31 of WO2012/140117 and named Nε27-[2-[2-[2-[[2-[2-[2-[[(4S)-4-carboxy-4-[10-(4-carboxyphenoxy)decanoylamino]butanoyl]amino]ethoxy]ethoxy]acetyl]amino]ethoxy]ethoxy]-acetyl], Nε36-[2-[2-[2-[[2-[2-[2-[[(4S)-4-carboxy-4-[10-(4-carboxyphenoxy) decanoylamino]-butanoyl]amino]ethoxy]ethoxy]acetyl]amino]ethoxy]ethoxy]acetyl]-[Aib8,Glu22,Arg26,Lys27, Glu30,Arg34,Lys36]-GLP-1-(7-37)-peptidyl-Glu-Gly. In some embodiments the GLP-1 receptor agonist is dulaglutide or albiglutide.
- In some embodiments, the GLP-1 receptor agonist is in the form of a pharmaceutically acceptable salt, amide, or ester thereof. In some embodiments the GLP-1 receptor agonist comprises one or more pharmaceutically acceptable counter ions.
- The GLP-1 receptor agonist may be administered in the form of a pharmaceutical composition. The pharmaceutical composition may be in a liquid or solid form.
- The pharmaceutical composition may comprise the GLP-1 receptor agonist in a concentration from 0.1 mg/ml to 100 mg/ml. In some embodiments the pharmaceutical composition comprises 0.01-50 mg/ml, or 0.01-20 mg/ml, or 0.01-10 mg/ml GLP-1 receptor agonist. In some embodiments the pharmaceutical composition comprises 0.1-20 mg/ml GLP-1 receptor agonist.
- The pharmaceutical compositions described herein may further comprise one or more pharmaceutically acceptable excipients, for example selected from the group consisting of buffer system, preservative, tonicity agent, chelating agent, stabilizer and surfactant. In some embodiments the pharmaceutical composition comprises one or more pharmaceutically acceptable excipients, such as one or more selected from the group consisting of a buffer, an isotonic agent, and a preservative. The formulation of pharmaceutically active ingredients with various excipients is known in the art, see e.g. Remington: The Science and Practice of Pharmacy (e.g. 19th edition (1995), and any later editions). The term “excipient” broadly refers to any component other than the active therapeutic ingredient(s), e.g. the GLP-1 receptor agonist. The excipient may be an inert substance, an inactive substance, and/or a not medicinally active substance.
- In some embodiments the pharmaceutical composition has a pH in the range of 7.0-10.0, such as 7.0 to 9.5 or 7.2 to 9.5. In some embodiments the pharmaceutical composition has a pH in the range of 7.0-8.5, such as 7.0 to 7.8 or 7.8 to 8.2. In some embodiments the pharmaceutical composition has a pH of 7.4. In some embodiments the pharmaceutical composition has a pH of 8.15. In some embodiments the pharmaceutical composition comprises a phosphate buffer, such as a sodium phosphate buffer, e.g. disodium phosphate. In some embodiments the pharmaceutical composition comprises an isotonic agent, such as propylene glycol. In some embodiments the pharmaceutical composition comprises a preservative, such as phenol.
- The pharmaceutical composition may be in the form of a solution or a suspension. In some embodiments the pharmaceutical composition is aqueous composition, such as an aqueous solution or an aqueous suspension. The term “aqueous composition” is defined as a composition comprising at least 50% w/w water. Likewise, the term “aqueous solution” is defined as a solution comprising at least 50% w/w water, and the term “aqueous suspension” is defined as a suspension comprising at least 50% w/w water. An aqueous composition may comprise at least 50% w/w water, or at least 60%, 70%, 80%, or even at least 90% w/w of water.
- In some embodiments the GLP-1 receptor agonist is administered in the form of a pharmaceutical composition comprising about 0.1-20 mg/ml GLP-1 receptor agonist, about 2-15 mM phosphate buffer, about 2-25 mg/ml propylene glycol, and has a pH in the range of 7.0-9.0. In some embodiments the GLP-1 receptor agonist is administered in the form of a pharmaceutical composition comprising about 0.1-20 mg/ml GLP-1 receptor agonist, about 2-15 mM phosphate buffer, about 2-25 mg/ml propylene glycol, about 1-18 mg/ml phenol, and has a pH in the range of 7.0-9.0. In some embodiments the GLP-1 receptor agonist (e.g. semaglutide) is administered in the form of a pharmaceutical composition comprising about 1.34 mg/ml GLP-1 receptor agonist (e.g. semaglutide), about 1.42 mg/ml disodium phosphate dihydrate, about 14.0 mg/ml propylene glycol, about 5.5 mg/ml phenol, and has pH of about 7.4. In some embodiments the GLP-1 receptor agonist (e.g. semaglutide) is administered in the form of a pharmaceutical composition comprising 1.34 mg/ml GLP-1 receptor agonist, 1.42 mg/ml disodium phosphate dihydrate, 14.0 mg/ml propylene glycol, 5.5 mg/ml phenol, and has pH of 7.4. In some embodiments the GLP-1 receptor agonist (e.g. liraglutide) is administered in the form of a pharmaceutical composition comprising GLP-1 receptor agonist (e.g. 3-8 mg/ml), disodium phosphate dihydrate, propylene glycol, phenol, and has pH of about 8.0-8.3. In some embodiments the GLP-1 receptor agonist (e.g. liraglutide) is administered in the form of a pharmaceutical composition comprising GLP-1 receptor agonist (e.g. about 6.0 mg/ml), disodium phosphate dihydrate, propylene glycol, phenol, and has pH of about 8.15.
- The solid composition may be a solid composition suited for administration by the oral route as described further herein. In some embodiments the solid composition comprises at least one pharmaceutically acceptable excipient. The term “excipient” as used herein broadly refers to any component other than the active therapeutic ingredient(s) or active pharmaceutical ingredient(s) (API(s)). The excipient may be a pharmaceutically inert substance, an inactive substance, and/or a therapeutically or medicinally none active substance. The excipient may serve various purposes, e.g. as a carrier, vehicle, filler, binder, lubricant, glidant, disintegrant, flow control agent, crystallization inhibitors solubilizer, stabilizer, colouring agent, flavouring agent, surfactant, emulsifier or combinations of thereof and/or to improve administration, and/or absorption of the therapeutically active substance(s) or active pharmaceutical ingredient(s). The amount of each excipient used may vary within ranges conventional in the art. Techniques and excipients which may be used to formulate oral dosage forms are described in Handbook of Pharmaceutical Excipients, 8th edition, Sheskey et al., Eds., American Pharmaceuticals Association and the Pharmaceutical Press, publications department of the Royal Pharmaceutical Society of Great Britain (2017); and Remington: the Science and Practice of Pharmacy, 22nd edition, Remington and Allen, Eds., Pharmaceutical Press (2013). In some embodiments the excipients may be selected from binders, such as polyvinyl pyrrolidone (povidone), etc.; fillers such as cellulose powder, microcrystalline cellulose, cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxy-propylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, etc.; lubricants and/or glidants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol tribehenate, etc.; flow control agents such as colloidal silica, talc, etc.; crystallization inhibitors such as Povidone, etc.; solubilizers such as Pluronic, Povidone, etc.; colouring agents, including dyes and pigments such as iron oxide red or yellow, titanium dioxide, talc, etc.; pH control agents such as citric acid, tartaric acid, fumaric acid, sodium citrate, dibasic calcium phosphate, dibasic sodium phosphate, etc.; surfactants and emulsifiers such as Pluronic, polyethylene glycols, sodium carboxymethyl cellulose, polyethoxylated and hydrogenated castor oil, etc.; and mixtures of two or more of these excipients and/or adjuvants.
- The solid composition may comprise a binder, such as povidone; starches; celluloses and derivatives thereof, such as microcrystalline cellulose, e.g., Avicel PH from FMC (Philadelphia, PA), hydroxypropyl cellulose hydroxylethyl cellulose and hydroxylpropylmethyl cellulose METHOCEL from Dow Chemical Corp. (Midland, MI); sucrose; dextrose; corn syrup; polysaccharides; and gelatin. The binder may be selected from the group consisting of dry binders and/or wet granulation binders. Suitable dry binders are, e.g., cellulose powder and microcrystalline cellulose, such as Avicel PH 102 and
Avicel PH 200. In some embodiments the solid composition comprises Avicel, such as Aavicel PH 102. Suitable binders for wet granulation or dry granulation are corn starch, polyvinyl pyrrolidone (povidon), vinylpyrrolidone-vinylacetate copolymer (copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxyl-propylmethylcellulose. In some embodiments the solid composition comprises povidone. - In some embodiments the solid composition comprises a filler which may be selected from lactose, mannitol, erythritol, sucrose, sorbitol, calcium phosphate, such as calciumhydrogen phosphate, microcrystalline cellulose, powdered cellulose, confectioner's sugar, compressible sugar, dextrates, dextrin and dextrose. In some embodiments the solid composition comprises microcrystalline cellulose, such as Avicel PH 102 or
Avicel PH 200. - In some embodiments the solid composition comprises a lubricant and/or a glidant. In some embodiments the composition comprises a lubricant and/or a glidant, such as talc, magnesium stearate, calcium stearate, zinc stearate, glyceryl behenate, glyceryl debehenate, behenoyl polyoxyl-8 glycerides, polyethylene oxide polymers, sodium lauryl sulfate, magnesium lauryl sulfate, sodium oleate, sodium stearyl fumarate, stearic acid, hydrogenated vegetable oils, silicon dioxide and/or polyethylene glycol etc. In some embodiments the solid composition comprises magnesium stearate or glyceryl debehenate (such as the product Compritol® 888 ATO).
- In some embodiments the solid composition comprises a disintegrant, such as sodium starch glycolate, polacrilin potassium, sodium starch glycolate, crospovidon, croscarmellose, sodium carboxymethylcellulose or dried corn starch. The solid composition may comprise one or more surfactants, for example a surfactant, at least one surfactant, or two different surfactants. The term “surfactant” refers to any molecules or ions that are comprised of a water-soluble (hydrophilic) part, and a fat-soluble (lipophilic) part. The surfactant may e.g. be selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, and/or zwitterionic surfactants.
- The solid composition may further comprise a delivery agent or absorption enhancer is for the present invention an excipient capable of increasing the oral exposure of the GLP-1 receptor agonist. The delivery agent may be a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid (also referred to herein as a salt of NAC), which contains the anion N-(8-(2-hydroxybenzoyl)amino)caprylate. The structural formula of N-(8-(2-hydroxybenzoyl)amino)caprylate is shown in formula (I).
- In some embodiments the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid comprises one monovalent cation, two monovalent cations or one divalent cation. In some embodiments the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is selected from the group consisting of the sodium salt, potassium salt and/or calcium salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid. In some embodiments the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is selected from the group consisting of the sodium salt, potassium salt and/or the ammonium salt. In some embodiments the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is the sodium salt or the potassium salt. Salts of N-(8-(2-hydroxybenzoyl)amino)caprylate may be prepared using the method described in e.g. WO96/030036, WO00/046182, WO01/092206 or WO2008/028859. The salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid may be crystalline and/or amorphous. In some embodiments the delivery agent comprises the anhydrate, monohydrate, dihydrate, trihydrate, a solvate or one third of a hydrate of the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid as well as combinations thereof. In some embodiments the delivery agent is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid as described in WO2007/121318. In some embodiments the delivery agent is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate (referred to as “SNAC” herein), also known as sodium 8-(salicyloylamino)octanoate.
- In some embodiments the composition for use in the invention is in the form of a solid composition, such as a tablet, for oral administration.
- In some embodiments the solid composition comprises the GLP-1 receptor agonist in an amount in the range of 0.1-50 mg, such as 0.5 to 40 mg or 1-30 mg. In some embodiments the solid composition comprises the GLP-1 receptor agonist in an amount in the range of 2-20 mg, such as 3-18 mg or 5-15 mg. In some embodiments the solid composition comprises the GLP-1 receptor agonist in an amount of about 3 mg, such as about 7 mg or about 14 mg.
- In some embodiments least 30% (w/w) of the solid composition (e.g. tablet) is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid. In some embodiments least 50% (w/w) of the solid composition (e.g. tablet) is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid. In some embodiments the amount of the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid per dose unit of the composition is in the range of 0.20-.5 mmol, 0.25-1.0 mmol, 0.30-0.75 mmol, or such as 0.45-0.65 mmol. In some embodiments the amount of SNAC in the composition is in the range of 75-600 mg. In some embodiments the amount of SNAC in the composition is in the range of 75-400 mg, such as from 80-350 mg, such as from about 100 to about 300 mg per dose unit.
- In some embodiments the solid composition comprises a lubricant, such as magnesium stearate. In some embodiments a unit dose of the solid composition comprises: 0.1-50 mg GLP-1 receptor agonist, 25-600 mg salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid (NAC) (such as the sodium salt of NAC (SNAC)), and 0-25 mg lubricant.
- GLP-1 receptor agonist may be administered in a therapeutically effective amount, such as an amount therapeutically effective to treat type 2 diabetes. The therapeutically effective amount of GLP-1 receptor agonist can be assessed by a medical doctor. The dosage of GLP-1 receptor agonist may be in the range from 0.01 to 50 mg, such as 1-30 mg or 3-20 mg. In some embodiments the GLP-1 receptor agonist is administered at any time in the day.
- The GLP-1 receptor agonist, such as semaglutide, may be administered once weekly or more frequent, such as once daily.
- In some embodiments the GLP-1 receptor agonist is administered in an amount in the range of 0.05-30 mg per week, such as 0.5 or 1.0 mg per week, optionally by once weekly administration. In some embodiments the GLP-1 receptor agonist is administered in an amount of at least 0.1 mg per week, such as at least 0.5 mg per week or at least 1 mg per week, optionally by once weekly administration. In some embodiments the GLP-1 receptor agonist is administered in an amount of no more than 25 mg per week, such as no more than 20 mg per week or no more than 15 mg per week, optionally by once weekly administration. In some embodiments the GLP-1 receptor agonist is administered in an amount of no more than 10 mg per week, such as no more than 6 mg per week or no more than 3 mg per week, optionally by once weekly administration. In some embodiments the GLP-1 receptor agonist is administered once weekly in an amount of 0.5 or 1.0 mg.
- In some embodiments the method of the invention reduces the risk of mortality.
- In some embodiments the administration of a GLP-1 receptor agonist is a chronic treatment in which semaglutide is administered for at least 12 months, such as for at least 16 months or at least 18 months.
- The GLP-1 receptor agonist may be administered via parenteral administration, for example subcutaneous injection. GLP-1 receptor agonist may be administered using a pen-injector, such as a 3 ml disposable pen-injector.
- In some embodiments the dosage of GLP-1 receptor agonist is in the range from 0.1 to 5.0 mg, such as in the range from 0.1 to 3.0 mg. In some embodiments the daily dosage of GLP-1 receptor agonist is selected from the group consisting of 0.5 and 1.0 mg.
- The GLP-1 receptor agonist may be administered orally, for example in the form of a tablet, a coated tablet, a sachet or a capsule such as hard or soft gelatine capsule and all such compositions are considered solid oral dosage forms. Oral administration may be once daily administration. In some embodiments the dosage of the GLP-1 receptor agonist is in the range from 1 to 30 mg, such as 2 to 20 mg or 3 to 15 mg. In some embodiments the dosage of GLP-1 receptor agonist is 3, 7 or 14 mg. The composition may be in the form of a dose unit, such as tablet. In some embodiments the weight of the unit dose is in the range of 50 mg to 1000 mg, such as in the range of 50-750 mg, or such as about 100-500 mg. In some embodiments the weight of the dose unit is in the range of 75 mg to 350 mg, such as in the range of 50-300 mg or 100-400 mg. The tablet for oral administration may comprise 30% (w/w) salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid, such as the sodium salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid (SNAC). In some embodiments the composition may be granulated prior to being compressed to tablets. The composition may comprise a granular part and/or an extra-granular part, wherein the granular part has been granulated and the extra-granular part has been added after granulation. The GLP-1 receptor agonist may be included in the granular part or the extra-granular part. In some embodiments the extra-granular part comprises the GLP-1 receptor agonist. In an embodiment the extra-granular part may further comprise a lubricant and/or a glidant. In an embodiment the granular part may comprise a lubricant and/or a glidant. In an embodiment the granular part and the extra-granular part comprise a lubricant and/or a glidant.
- In some embodiments, the GLP-1 receptor agonist is the sole pharmaceutically active ingredient administered according to the present invention. In some embodiments, the GLP-1 receptor agonist is combined with one or more further pharmaceutically active ingredients in the present invention. In some embodiments, the GLP-1 receptor agonist is combined with one or more further pharmaceutically active ingredients selected from the group consisting of rivastigmin, menantine (such as menantine hydrochloride), donepezil and galantamine. In some embodiments, the GLP-1 receptor agonist is combined with rivastigmin. In some embodiments, the GLP-1 receptor agonist is combined with menantine, such as menantine hydrochloride. In some embodiments, the GLP-1 receptor agonist is combined with donepezil. In some embodiments, the GLP-1 receptor agonist is combined with galantamine.
- In some embodiments the term “chronic treatment” as used herein with reference to the GLP-1 receptor agonist means administration in an amount and frequency to provide a therapeutic effect. In some embodiments the term “chronic treatment” as used herein with reference to GLP-1 receptor agonist means once weekly administration of 0.1-3.0 mg, such as 0.5 or 1.0 mg, GLP-1 receptor agonist (e.g. semaglutide). In some embodiments the term “chronic treatment” as used herein with reference to a GLP-1 receptor agonist means once daily administration of 0.05-0.3 mg, such as 0.05, 0.1, 0.2, or 0.3 mg, GLP-1 receptor agonist (e.g. semaglutide). In some embodiments the term “chronic treatment” as used herein with reference to a GLP-1 receptor agonist means once daily administration of 0.1-6 mg, such as 0.5-4 mg, GLP-1 receptor agonist (e.g. liraglutide). The term “chronic treatment” as used herein may refer to administration of a drug according to a prescribed dosage regimen (for example once weekly administration) for a long period of time (for example at least 2 years or at least 5 years) wherein up to 10%, such as up to 5%, of dosages may be missed; provided that no more than 10 consecutive dosages are missed.
- Unless otherwise stated, ranges herein include their end points. In some embodiments the term “a” means “one or more”. In some embodiments, and unless otherwise indicated in the specification, terms presented in singular form also include the plural situation. Herein the term “about” means±10% of the value referred to, and includes the value.
- Non-limiting embodiments of the invention include:
-
- 1. A method for the treatment of dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof and said subject has metabolic syndrome.
- 2. A method for the treatment of dementia, wherein said method comprises administering semaglutide to a subject in need thereof.
- 3. A method for reducing the risk of developing dementia, wherein said method comprises administering a GLP-1 receptor agonist to a human subject in need thereof and said subject has one or more indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension.
- 4. A method for reducing the risk of developing dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof and said subject has metabolic syndrome.
- 5. A method for reducing the risk of developing dementia, wherein said method comprises administering a GLP-1 receptor agonist to a subject in need thereof and said subject has one or more indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension.
- 6. A method for reducing the risk of developing dementia, wherein said method comprises administering semaglutide to a subject in need thereof.
- 7. The method according to any one of the preceding embodiments, wherein treatment is reducing the risk of developing dementia.
- 8. The method according to any one of the preceding embodiments, wherein said metabolic syndrome is one or more indications selected from the group consisting of pre-diabetes, diabetes, cardiovascular disease, obesity, and hypertension.
- 9. The method according to any one of the preceding embodiments, wherein said subject has pre-diabetes.
- 10. The method according to any one of the preceding embodiments, wherein said subject has diabetes.
- 11. The method according to any one of the preceding embodiments, wherein said subject has cardiovascular disease.
- 12. The method according to any one of the preceding embodiments, wherein said subject has obesity.
- 13. The method according to any one of the preceding embodiments, wherein said subject has hypertension.
- 14. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist comprises GLP-1(7-37) (SEQ ID No: 1) optionally comprising one or more substitutions, deletions, additions and/or modifications.
- 15. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist comprises a maximum of 12 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1).
- 16. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist comprises a maximum of 10 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1).
- 17. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist comprises a maximum of 8 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1).
- 18. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist comprises a maximum of 6 amino acids which have been altered, e.g., by substitution, deletion, insertion and/or modification, compared to GLP-1(7-37) (SEQ ID No: 1).
- 19. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist comprises one or more substituents.
- 20. The method according to any one of the preceding embodiments, wherein said substituent comprises a linker, such as one or more OEG.
- 21. The method according to any one of the preceding embodiments, wherein said linker is located proximally in said substituent to the point of attachment between said substituent and the peptide in said GLP-1 receptor agonist.
- 22. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist has an EC50 (without HSA) of at most 500 μM.
- 23. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is no more than 12 kDa.
- 24. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is selected from the group consisting of liraglutide, semaglutide, Compound A and Compound B.
- 25. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is liraglutide.
- 26. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is semaglutide.
- 27. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is Compound A.
- 28. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is Compound B.
- 29. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is dulaglutide.
- 30. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is albiglutide.
- 31. The method according to any one of the preceding embodiments, wherein said subject is human.
- 32. The method according to any one of the preceding embodiments, wherein said dementia is all forms and all stages in the dementia disease continuum.
- 33. The method according to any one of the preceding embodiments, wherein said dementia is mild cognitive impairment.
- 34. The method according to any one of the preceding embodiments, wherein said dementia is Alzheimer's disease.
- 35. The method according to any one of the preceding embodiments, wherein said dementia is selected from the group consisting of preclinical Alzheimer's disease, mild cognitive impairment of the Alzheimer's type, early onset familial Alzheimer's disease, and prodromal Alzheimer's disease.
- 36. The method according to any one of the preceding embodiments, wherein said dementia is preclinical Alzheimer's disease.
- 37. The method according to any one of the preceding embodiments, wherein said dementia is mild cognitive impairment of the Alzheimer's type.
- 38. The method according to any one of the preceding embodiments, wherein said dementia is early onset familial Alzheimer's disease.
- 39. The method according to any one of the preceding embodiments, wherein said dementia is prodromal Alzheimer's disease.
- 40. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is the sole pharmaceutically active ingredient administered to said subject.
- 41. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is administered subcutaneously.
- 42. The method according to the preceding embodiment, wherein said GLP-1 receptor agonist is administered in a composition which is in the form of a solution or suspension.
- 43. The method according to the preceding embodiment, wherein said composition comprises at least 90% water.
- 44. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is semaglutide, is administered subcutaneously, and is in the form of a solution comprising at least 90% water and with pH in the range of 7.0-9.0.
- 45. The method according to any one of the preceding embodiments, wherein said GLP-1 receptor agonist is administered orally.
- 46. The method according to the preceding embodiment, wherein said GLP-1 receptor agonist is administered in the form of a tablet.
- 47. The method according to the preceding embodiment, wherein at least 30% (w/w) of said tablet is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
- 48. The method according to the preceding embodiment, wherein at least 50% (w/w) of said tablet is a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
- 49. The method according to the preceding embodiment, wherein said salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is SNAC.
- 50. The method according to any one of the preceding embodiments, wherein said subject has previously been administered insulin.
- 51. The method according to any one of the preceding embodiments, wherein said method reduces the risk of mortality for said subject.
- 52. The method according to any one of the preceding embodiments, wherein said administration of a GLP-1 receptor agonist is a chronic treatment in which semaglutide is administered for at least 12 months, such as for at least 16 months or at least 18 months.
- Exposure to GLP-1 receptor agonist and subsequent diagnosis of dementia was assessed in data sources with long term treatment exposure including three pooled double-blind randomized controlled trials (RCTs) and a nationwide cohort of patients with diabetes. This was done with the aim of investigating whether use of GLP-1 receptor agonists reduces the onset of dementia in patients with diabetes.
- A triangulation approach integrating study designs and data sources with different key sources of potential bias was employed to obtain a more reliable answer. First, data was pooled from three large RCTs with GLP-1 receptor agonists; liraglutide (LEADER; 9,340 patients), subcutaneous semaglutide (SUSTAIN-6; 3,297 patients), and oral semaglutide (PIONEER 6; 3,183 patients). All three trials were multicenter, double-blind, placebo-controlled cardiovascular outcomes trials. Patients with type 2 diabetes at high risk for or with established cardiovascular disease were randomly assigned in a 1:1 ratio, to receive placebo or liraglutide (LEADER), or semaglutide (SUSTAIN-6; PIONEER 6) in addition to standard of care. In these trials, the treatment for diabetes (excluding GLP-1 receptor agonists, dipeptidyl peptidase-4 inhibitors (DPP4 inhibitors), and pramlintide) was adjusted or added in both arms, at the investigator's discretion, as previously described. The formulation tested in LEADER was an aqueous composition comprising liraglutide, disodium phosphate dihydrate, propylene glycol, and phenol at pH 8.15. The formulation tested in SUSTAIN-6 was an aqueous composition comprising semaglutide, disodium phosphate dihydrate, propylene glycol, and phenol at pH 7.4. The formulation tested in PIONEER was a tablet comprising semaglutide and SNAC.
- Next, we used the Danish National Prescription Register, which holds information on all redeemed prescriptions in Denmark since Jan. 1, 1995 (Table S1), to identify a nationwide cohort of patients treated for diabetes. We identified everyone with a first prescription of a second line diabetes treatment (Table S2) between Jan. 1, 1995 and Dec. 31, 2017.
- Follow-up for onset of dementia started on Jan. 1, 2009 (
FIG. 4 ), as this was when GLP-1 receptor agonists could be considered a well-known and available treatment for diabetes in Denmark. To correctly identify patients with a first ever prescription for a second line diabetes treatment, we excluded those who had a prescription between Jan. 1, 1995 through Jun. 30, 1995. Furthermore, patients with established dementia before start of follow-up or who developed dementia beforeage 50 were excluded. - For the main analysis we included everyone with at least 5 years of exposure to second line diabetes treatment.
- The predefined treatment durations for the 3 RCTs are listed in Supplementary Table S4. In the nationwide cohort, all dispensed prescriptions for GLP-1 receptor agonists were identified (Table S2), and years of cumulative GLP-1 receptor agonist exposure were updated throughout the follow-up period. Patients were considered exposed if they had redeemed at least 1 prescription for any GLP-1 receptor agonists. The exposure duration was accumulated according to 6 months long intervals, in which at least 1 prescription was redeemed.
- In the nationwide cohort, “other second line diabetes treatments” were assessed to test whether or not a potential influence of GLP-1 receptor agonists on dementia prevention was specific for treatment with GLP-1 receptor agonists. We identified other second line diabetes treatment that were available as alternative treatment options to GLP-1 receptor agonists during the follow-up period, i.e. insulin, sulfonylureas, DPP4 inhibitors, acarbose, and meglitinides (Table S2). Exposure time was accumulated according to six months long intervals, in which at least 1 prescription was redeemed. Monotherapy with metformin was not assessed, since this is considered first-line treatment for diabetes and thus not a comparable treatment option to GLP-1 receptor agonists.
- In the RCTs, the Standardized Medical Dictionary for Regulatory Activities (MedDRA, version 21.1) was used to identify dementia-related adverse events using the narrow scope search terms for dementia (Table S3). In the nationwide cohort, dementia was defined as a diagnosis of dementia in the National Patient Register or first ever prescription for approved dementia specific treatment in the National Prescription Register (cholinesterase inhibitors and memantine) (Table 51 and S2 lists the ICD10 and ATC codes).
- For the pooled RCTs, an intention-to-treat analysis was performed using Cox regression with treatment assignment as the only explanatory variable to determine the hazard ratio for developing dementia with GLP-1 receptor agonists versus placebo. We reported the hazard ratio for dementia for patients randomized to a GLP-1 receptor agonist versus placebo. The incidence of dementia with death as competing risk was calculated using the Aalen-Johansen estimator.
- In the nationwide cohort we employed a nested case-control study design where each patient at case date (date of dementia diagnosis) was matched on age, sex and calendar date to 10 controls without dementia. The effects of differences in cumulative exposure to GLP-1 receptor agonists for developing dementia were modelled with Cox regression in a 5 year exposure window prior to case date (
FIG. 4 ) and reported as hazard ratios for each 1 year increase in GLP-1 receptor agonist exposure for cases versus controls. Reported were hazard ratios for each 1 year increase in duration of. The model was adjusted for age, sex, and calendar date via matching, and information on diabetes duration (years since first ever prescription of any second line diabetes treatment), stroke, myocardial infarction, hypertension, chronic renal disease, and educational attainment (Table 51 and S2) at the start of the exposure window. A similar Cox regression model was employed for each of the other second line diabetes treatments. Furthermore, the hazard ratio for dementia with exposure to GLP-1 receptor agonists was investigated across subgroups, including sex, age, insulin exposure, and cardiovascular status, where cardiovascular disease was defined as prior stroke or myocardial infarction. In the nationwide cohort, prespecified sensitivity analyses were performed to determine the effect of 1) reverse causation, where exposure two years before the case date was ignored; 2) diabetes duration defined as “time since first treatment with metformin or second line diabetes treatment; 3) shortening and lengthening the exposure windows (3- and 10-years, respectively); 4) adjustment only via matching on age, sex, and calendar date and 5) competing risk of death. The level of statistical significance was set at 5%. - In total, 15,820 patients at high risk for or with established cardiovascular disease were randomized to a GLP-1 receptor agonist or placebo in the pooled RCTs. Baseline characteristics are presented in Table 1.
- In the nationwide cohort of 120,054 patients with at least 5 years since initiation of a second line diabetes treatments, 4,849 patients developed dementia during the follow-up period from 2009 through 2017. Characteristics of case and control patients are presented in Table 2. Liraglutide comprised 95% of all prescriptions for GLP-1 receptor agonists.
- In the pooled RCTs, 15 patients randomized to a GLP-1 receptor agonist and 32 patients randomized to placebo developed dementia during a median follow-up of 3.61 years (Table S4).
- Patients randomized to GLP-1 receptor agonists had a lower risk of developing dementia compared to those randomized to placebo (hazard ratio 0.47; 95% confidence interval (CI), 0.25 to 0.86) (
FIG. 1 and Table S5). The beneficial effects of GLP-1 receptor agonists became apparent after 12 months of treatment (FIG. 1 ). - The median follow-up time in the nationwide cohort was 7.4 years. The analysis nested in the nationwide cohort was specifically designed to examine long term effects by ensuring at least 5 years of treatment with second line diabetes therapy. The result was a reduction of hazard of dementia with increasing duration of GLP-1 receptor agonist exposure (
FIG. 2 ). Exposure to other second line diabetes treatments was not found to be associated with a decrease in hazard ratio (FIG. 2 ). The reduction in hazard ratio for dementia with exposure to GLP-1 receptor agonists was similar across subgroups stratified by sex, age, co-exposure to insulin, and cardiovascular status (FIG. 3 ). - The results were not changed by excluding exposure in the two years leading up to the diagnosis of dementia (
FIG. 5A ), and when diabetes duration was assessed as “time since first treatment with metformin or second line diabetes treatment”, although an association with DDP4 inhibitors was found to be protective against dementia (FIG. 5B ). Furthermore, the results for dementia remained unchanged when exposure to GLP-1 receptor agonists was assessed within 3 and 10 years before diagnosis of dementia (FIG. 6A ). Adjusting for only age, sex, and calendar date via matching also yielded the same results (FIG. 6B ). Lastly, the analysis of death as competing risk, which assessed the hazard ratio for death without a previous dementia diagnosis, showed a lower hazard ratio for death with exposure to GLP-1 receptor agonists (FIG. 6C ). - In conclusion, it was found that treatment with GLP-1 receptor agonists was associated with a reduced risk of dementia in patients with diabetes.
-
TABLE 1 Baseline Characteristics in the Pooled RCTs GLP-1 Receptor Agonist Placebo Characteristics (N = 7,907) (N = 7,913) Male sex - no. (%) 5108 (64.6) 5073 (64.1) Age - no. (%) 64.6 (7.2) 64.8 (7.3) <70 5942 (75.2) 5850 (73.9) 70-80 1764 (22.3) 1864 (23.6) 80-90 198 (2.5) 198 (2.5) >90 3 (0.4) 1 (0.01) Diabetes duration - mean (±SD) 13.5 (8.2) 13.5 (8.2) Stroke - no. (%) 1229 (15.5) 1299 (16.4) Myocardial infarction - no. (%) 2554 (32.3) 2531 (32.0) Hypertension - no. (%)* 5804 (91.9) 5766 (91.2) Chronic renal disease - no. (%)† 189 (2.4) 173 (2.2) *Not including the PIONEER 6 trial. †Chronic renal disease is defined as eGFR < 30. -
TABLE 2 Characteristics of the Case and Control Patients in the Nationwide Cohort Cases Controls Characteristics (N = 4,849) (N = 48,506) Male sex - no. (%) 2299 (47.4) 22998 (47.4) Age - no (%) <70 1278 (26.4) 12784 (26.4) 70-80 2268 (46.8) 22688 (46.8) 80-90 1260 (26.0) 12612 (26.0) >90 43 (0.9) 422 (0.9) Diabetes duration - mean (±SD)*† 6.6 (4.1) 6.4 (4.1) GLP-1 receptor agonists - no. (%) 0 years 4575 (94.3) 44594 (91.9) 1-2 years 59 (1.2) 623 (1.3) 2-3 years 35 (0.7) 586 (1.2) 3-4 years 35 (0.7) 483 (1.0) 4-5 years 74 (1.5) 1076 (2.2) Stroke - no. (%) 760 (15.7) 5628 (11.6) Myocardial infarction - no. (%) 527 (10.9) 5241 (10.8) Hypertension - no. (%)* 3252 (67.1) 31961 (65.9) Chronic renal disease - no. (%)† 233 (4.8) 2287 (4.7) Educational attainment - no. (%)‡ Basic 2490 (51.4) 23920 (49.3) Medium 1508 (31.1) 14971 (30.9) Advanced 427 (8.8) 4681 (9.7) *Time since initiation of second-line diabetes treatment. †At beginning of 5-year exposure window, ‡In patients who received GLP-1 receptor agonists. ∫ Educational status unknown in 424 (8.7%) cases and in 4934 (10.2%) controls. -
TABLE S1 Data Sources. Registers/databases/ Data Source Clinical Trial information Variables Pooled RCTs LEADER ClinicalTrials.gov number, Liraglutide versus placebo NCT01179048. Multicenter, double-blind, placebo-controlled trial conducted at 410 sites in 32 countries SUSTAIN-6 ClinicalTrials.gov number, Subcutaneous semaglutide NCT01720446. versus placebo Multicenter, double-blind, placebo-controlled trial conducted at 230 sites in 20 countries PIONEER 6 ClinicalTrials.gov number, Oral semaglutide versus placebo NCT02692716 Multicenter, double-blind, placebo-controlled trial conducted at 214 sites in 21 countries Nationwide The Danish Diagnosis of: cohort National Patient Register Dementia, hypertension, myocardial infarction, stroke, and chronic renal disease The Danish register of Medicinal Treatment for: Product Statistics Dementia, diabetes, and hypertension Danish Register of Causes of Vital status, causes of death Death Population Education Register Educational attainment -
TABLE S2 Overview of Definitions of Diabetes Treatments, Dementia, and Comorbidities for the Nationwide Cohort. Condition/treatment ATC codes and ICD codes Diabetes treatments (ATC codes) Metformin A10BA02 GLP-1 receptor agonists A10BJ Insulin A10A Acarbose A10BF DPP4 inhibitors A10BH Sulfonylureas A10BB Meglitinides A10BX TZD* A10BG SGLT-2i* A10BK Dementia** (ATC codes) Donepezil N06DA02 Rivastigmine N06DA03 Galantamine N06DA04 Memantine N06DX01 (ICD codes) DF00, DG30, DF01, DF023, DF028, DF03 Comorbidities (ICD codes) Hypertension ICD-10: DI10-DI13, DI15 ATC: C02-C03, C07, C09 Myocardial infarction ICD-8: 410 ICD-10: DI21, DI22 Stroke ICD-8: 433-438 ICD-10: DI63, DI64, DG458, DG459 Chronic renal disease ICD-8: 25002, 40039, 59009, 59320, 75310-75311, 75319 ICD-10: DN158-DN159, DQ612-DQ613, DQ615, DG619, DE102, DE112 DE132, DE142, DI120, DN160, DN162- DN164, DN168, DM300, DM313, DM319, DM321B *These products were not available at the same calendar period as GLP-1 receptor agonists and thus were not considered alternative treatment options to GLP-1 receptor agonists. *The last 6 months of 2017, dementia was only defined by dementia treatments due to register availability. -
TABLE S3 Dementia (Narrow Scope) Standardized MedDRA Queries (SMQs) Search Terms* Applied in the Post Hoc Analysis of the Pooled RCTs. Name Scope Clinical dementia rating scale score abnormal Narrow Corticobasal degeneration Narrow Creutzfeldt-Jakob disease Narrow Dementia Narrow Dementia Alzheimer's type Narrow Dementia of the Alzheimer's type, uncomplicated Narrow Dementia of the Alzheimer's type, with delirium Narrow Dementia of the Alzheimer's type, with delusions Narrow Dementia of the Alzheimer's type, with depressed mood Narrow Dementia with Lewy bodies Narrow Early onset familial Alzheimer's disease Narrow Frontotemporal dementia Narrow Hippocampal sclerosis Narrow Korsakoff's syndrome Narrow Mini mental status examination abnormal Narrow Mixed dementia Narrow Presenile dementia Narrow Prion disease Narrow Progressive supranuclear palsy Narrow Scatolia Narrow Senile dementia Narrow Variant Creutzfeldt-Jakob disease Narrow Vascular dementia Narrow *version 21.1 -
TABLE S4 Prespecified Sensitivity Analyses in the Nationwide Cohort. Sensitivity Analyses 1) Reverse causation, where exposure two years before the case date was ignored 2) Diabetes duration defined as “time since first treatment with metformin or second line diabetes treatment 3) Shortening and lengthening the exposure windows (3- and 10-years, respectively) 4) Adjustment only via matching on age, sex, and calendar date 5) Competing risk of death -
TABLE S5 Median Follow-up and Rates of Dementia in each of the Included RCTs. Dementia SMQ GLP-1 Receptor Dementia SMQ Median Agonists Placebo Treatment Follow-up no. of no. of RCT Groups Duration events rate events rate LEADER* Liraglutide 3.8 years 12 0.69 25 1.45 EX2211-3748 vs. placebo SUSTAIN-6† Semaglutide (s.c) 2.1 years 3 0.88 5 1.47 NN9535-3744 vs. placebo PIONEER 6‡ Semaglutide (oral) 1.3 years 0 2 0.96 NN9924-4221 vs. placebo *In LEADER, the minimum planned follow-up was 42 months, with a maximum of 60 months of receiving the assigned regimen and subsequently 30 days of follow-up. †In SUSTAIN-6 the planned observation period was 109 weeks, consisting of 104 weeks of the assigned regimen and subsequently 5 weeks of follow-up. ‡In PIONEER 6, no predefined minimum treatment duration was required, but follow-up was required to continue until 122 events of the primary outcome had occurred. -
TABLE S6 Hazard Ratio for Dementia in the Pooled RCTs according to Dementia Subtypes. GLP-1 Receptor Agonist Placebo Hazard Ratio for Diagnoses no. of patients no. of patients Dementia (95% CI) Dementia 6 15 Dementia Alzheimer's 5 7 type Dementia with Lewy 0 2 bodies Mixed dementia 2 2 Senile dementia 1 3 Vascular dementia 1 3 Total 15 (0.19%) 32 (0.40%) 0.47 (0.25-0.86) - The inbred senescence-accelerated mouse-prone 8 (SAMP8) model is a non-transgenic mouse line that displays phenotypes associated with sporadic (not driven by a defined genetic cause) Alzheimer's dementia, including measurable cognitive decline. SAMP8 mice display accelerated ageing and thus also model age-related metabolic complications, showing increased markers of oxidative stress and inflammation. As cognitive deficits can be measured in this model prior to the presence of overt neuropathology such as the accumulation of amyloid plaques in the brain, this mouse model allows for the assessment of drug effects on preventing cognitive decline and models early stages of disease in humans.
- Here, SAMP8 mice were utilized to characterize the impact of semaglutide treatment on memory deficits and cognitive decline. Two behavioural tests commonly used to assess cognitive deficits in rodents were employed to assay effects on short-term memory (Y-maze test) and long-term memory (step-through passive avoidance test). The Y-maze is test of short-term memory, assessing spatial working memory and exploratory behaviour by measuring spontaneous alternations, which is the frequency of entering a new arm of the maze rather than returning to one that was previously visited (described in methods). The step-through passive avoidance test measures associative long-term memory by assessing the learning of an association of an aversive stimulus to a particular context (described in methods). SAMP8 mice have measurable deficits in both tests as they age.
- The experiment was carried out using SAMP8 mice with the following treatment groups: SAMP8 vehicle treated (n=24) and SAMP8 semaglutide (30 nmol/kg) treated (n=11). Treatment was commenced at six weeks of age. Treatment was delivered subcutaneously once a day, with an initial titration period of for semaglutide of 3 nmol/kg on the first day of dosing, 10 nmol/kg on the second day of dosing and proceeding with 30 nmol/kg thereafter.
- Testing in the Y-maze was performed at 8 weeks of age and 16 weeks of age, at approximately 15 and 71 days following treatment initiation respectively. The Y-maze was comprised of grey polyvinylchloride with three
arms 40 cm long, 13 cm high, 3 cm wide at the bottom, 10 cm wide at the top converging at an equal angle. Each mouse was placed at the end of one arm and allowed to move freely through the maze during an eight minute session. The series of arm entries including possible returns into the same arm was monitored and alternation was defined as entries into all three arms on consecutive occasions. The number of maximum alternations was therefore the total number of arm entries minus two and the percentage of alternation was be calculated as (actual alternations/maximum alternations)×100. - The step through passive avoidance performance was performed at 18 weeks of age. Testing was performed in an apparatus comprising of a two-compartment box (15×20×15 cm high) where one compartment was illuminated with white polyvinylchloride walls and the other was darkened with black polyvinylchloride walls and a grid floor. A guillotine door separated the compartments. A 60 W lamp positioned 40 cm above the apparatus illuminated the white compartment during the experiment. Scrambled footshocks (0.3 mA for 3 s) could be delivered to the grid floor using a shock generator scrambler (Lafayette Instruments, Lafayette, USA). A training session was first performed where the guillotine door was initially closed and each mouse was placed into the white compartment. After 5 s, the door was raised. When the mouse entered the darkened compartment and placed all four paws on the grid floor, the door was closed and the footshock delivered for 3 s to associate the darkened chamber with a footshock. A retention test was carried out 24 h after training. Each mouse was again placed into the white compartment and after 5 s, the door was raised. The step-through latency was recorded up to 300 s, defined as the time it took the mouse to enter the darkened compartment during the retention test. Escape latency was as recorded, defined as the time in the retention test to escape the darkened chamber following the application of a footshock.
- Data in
FIG. 7 illustrates that vehicle-treated SAMP8 mice had, as expected, significantly decreased percentage alternation behaviour in the Y-maze at 16 weeks (mean±SEM: 42.8%±2.1%) versus 8 weeks (mean±SEM: 69.1%±1.3%) of age (p<0.0001, 2-way ANOVA, Sidak's multiple comparison test). Semaglutide-treated SAMP8 mice at 16 weeks of age had significantly improved alternation behaviour (mean±SEM: 79.1%±1.6%) compared to vehicle-treated SAMP8 (mean±SEM: 42.8%±2.1%) controls (p<0.0001, 2-way ANOVA, Sidak's multiple comparison test). These data show semaglutide has a positive effect on preserving short term memory function in SAMP8 mice as measured in the Y maze test. - Semaglutide also improved long-term memory in SAMP8 mice as measured in the step-through passive avoidance test (
FIG. 8-9 ). Semaglutide-treated SAMP8 mice had significantly increased step-through latency into the darkened chamber during the retention phase, which was previously associated with a footshock (FIG. 8 ; SAMP8 vehicle-treated mean±SEM: 109.8 seconds±5.8 seconds; SAMP8 semaglutide-treated mean±SEM: 260.5 seconds±14.5 seconds, p<0.0001, Mann-Whitney test). Semaglutide-treated SAMP8 mice also had significantly lower escape latency from the darkened chamber (FIG. 9 ; SAMP8 vehicle treated mean±SEM: 88.8 seconds±4.6 seconds; SAMP8 semaglutide-treated mean±SEM: 19.0 seconds±3.0 seconds, p=0.01, unpaired t test). - Semaglutide treatment did not result in differences in body weight (16 weeks of age; SAMP8 vehicle-treated mean±SEM: 31.0 grams ±0.43 grams or 148.0%±4.6% change in body weight from baseline; SAMP8 semaglutide-treated mean±SEM: 29.2 grams ±0.7 grams or 145.4%±4.2% change in body weight from baseline) or blood glucose (SAMP8 vehicle-treated mean±SEM: 137.1 mg/dL ±5.6 mg/dL; SAMP8 semaglutide-treated mean±SEM: 133.1 mg/dL ±2.2 mg/dL) compared to vehicle treated animals.
- Chronic semaglutide treatment prevented cognitive decline in SAMP8 mice. Semaglutide prevented decline in alternation behaviour in the Y-maze, indicating improved short-term and spatial memory compared to vehicle-treated SAMP8 controls. Semaglutide also prolonged the step-through latency and shortened the escape latency in the step-through passive avoidance test, which are positive indicators of longer-term memory performance and associative learning. These positive effects on cognitive parameters furthermore appear to be a novel effect of semaglutide that is not driven by changes in glycaemia or body weight. Example 2 surprisingly shows better effects of semaglutide than those published for liraglutide in the same animal model.
- Neuroinflammation is part of the pathology comprising dementia and Alzheimer's disease, with human brain imaging studies highlighting increased markers of inflammation in Alzheimer's disease (e.g. translocator protein 18 kDa levels) and genetic association studies in humans highlighting that genes associated with Alzheimer's disease are part of inflammatory pathways. Inflammation is also linked to metabolic disease in humans (obesity, type 2 diabetes, cardiovascular diseases) and thus could affect progression of cognitive decline and dementia in people with metabolic diseases.
- LPS-induced neuroinflammation is used as a non-genetic model of Alzheimer's disease in rodents. LPS is an endotoxin from gram-negative bacteria that provides a persistent inflammatory stimulus activating brain immune cells (neuroimmune cells). Microglia are a brain immune cell type activated by LPS, and the degree of neuroinflammation can be assessed by the area of microglia in brain tissue as measured by the microglia-specific marker ionized calcium binding adaptor molecule 1 (lba1).
- Here, LPS-induced neuroinflammation in mice was used to assess the impact of semaglutide on attenuating brain inflammation in the hippocampus, a brain region involved in memory and learning which is deteriorated in Alzheimer's Disease.
- The experiment was carried out using C57BL/6 mice at 8-10 weeks of age. Mice were treated with semaglutide (30 nmol/kg, subcutaneously once per day) or vehicle from
Day 1 toDay 28 of the study. To induce inflammation, LPS was administered (1.0 mg/kg, intraperitoneally once per day) for three days at days 15-17 of the study, with control animals receiving vehicle. Induction of inflammatory cytokines was verified by measuring plasma tumor necrosis factor alpha levels onDay 15, one hour after LPS dosing. Animals were terminated at either Day 19 (Day 2 after LPS treatment) or Day 28 (Day 11 after LPS treatment) for to measure markers of neuroinflammation. All treatment groups had n=8-12. - Immediately after termination, whole brains were collected for immunohistochemical (IHC) analyses of neuroinflammation markers. Brains were immersion fixated in 10% neutral buffered formalin for approximately 48 h and then transferred to 70% ethanol and stored at 4° C. until paraffin embedding in blocks. Serial sections representing the rostro-caudal axis of the dorsal hippocampus were cut at 4 μm and collected on Superfrost plus slides. Paraffin embedded sections were de-paraffinated in xylene and rehydrated in series of graded ethanol. IHC for lba1 was performed using lba1 primary antibody (Abcam, Cat. Ab178845). Following antigen retrieval and blocking of endogenous peroxidase activity, slides were incubated with primary antibody. The primary antibody was detected using a linker secondary antibody followed by amplification using a polymeric HRP-linker antibody conjugate. Next, the primary antibody was visualized with DAB as chromogen and counterstained in hematoxylin.
- Quantitative assessment of lba1 signal was performed to measure the area of microglia in the hippocampus of the tissue section. Assessment was performed using a two-step protocol with VIS (Visiopharm, Denmark) software. First, crude detection of tissue at low magnification (1 × objective) and delineation of the Region of Interest (ROI) was obtained. Second, detection of IHC-positive staining was performed at higher magnification (10 × objective) inside the ROI. The quantitative estimates of IHC-positive staining were calculated as an area fraction (AF) of the total tissue area where:
-
- Semaglutide lowered the microglial inflammatory marker lba1 in the hippocampus following LPS administration. Results in
FIG. 10 show that LPS significantly increased hippocampal lba1 area onDay 19 in mice dosed with LPS+ vehicle compared to vehicle/vehicle dosed controls (p<0.001, Dunnett's test one-factor linear model;Day 19 vehicle/vehicle mean±SEM: 8.98%±0.34%,Day 19 LPS+ vehicle mean±SEM: 14.25%±0.54%) illustrating that neuroinflammation was induced by LPS. OnDay 28, while LPS+ vehicle treated mice continued to have a significantly higher area of hippocampal lba1 (p<0.05 vs vehicle/vehicle controls, Dunnett's test one-factor linear model;Day 28 vehicle/vehicle mean±SEM: 9.77%±0.54%,Day 28 LPS+ vehicle mean±SEM: 12.17%±0.88%), semaglutide treatment significantly reduced lba1 area in LPS+ semaglutide-treated mice (p<0.01 vs LPS+ vehicle treated mice, Dunnett's test one-factor linear model;Day 28 LPS+ vehicle mean±SEM: 12.17%±0.88%,Day 28 LPS+ semaglutide mean±SEM: 8.53%±0.49%). - There was no meaningful difference in body weight at
Day 28 between mice dosed with LPS+ vehicle (mean±SEM: 23.83 g ±0.33 g) versus those treated with LPS+ semaglutide (mean±SEM: 22.98 g ±0.70 g). - In an LPS-induced neuroinflammation model, semaglutide reduced neuroinflammation in both the hippocampus as measured by the area of microglia (lba1). Semaglutide treatment reduced neuroinflammation implicating that this may be a novel mechanism through with semaglutide may have effects on cognition.
- While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Claims (22)
1. A method for treating Alzheimer's disease, comprising administering semaglutide to a subject in need thereof.
2. The method according to claim 1 , wherein the subject has mild cognitive impairment or mild dementia.
3. The method according to claim 1 , wherein the semaglutide is the sole pharmaceutically active ingredient administered to the subject.
4. The method according to claim 1 , wherein the semaglutide is administered subcutaneously.
5. The method according to claim 1 , wherein the semaglutide is administered orally.
6. The method according to claim 1 , wherein the semaglutide is administered in a tablet comprising a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
7. The method according to claim 1 , further comprising administering the semaglutide for at least 12 months.
8. The method according to claim 6 , wherein the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate.
9. The method according to claim 2 , wherein the subject has mild cognitive impairment.
10. The method according to claim 9 , wherein the semaglutide is administered subcutaneously.
11. The method according to claim 9 , wherein the semaglutide is administered orally.
12. The method according to claim 9 , wherein the semaglutide is administered in a tablet comprising a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
13. The method according to claim 12 , wherein the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate.
14. The method according to claim 2 , wherein the subject has mild dementia.
15. The method according to claim 14 , wherein the semaglutide is administered subcutaneously.
16. The method according to claim 14 , wherein the semaglutide is administered orally.
17. The method according to claim 14 , wherein the semaglutide is administered in a tablet comprising a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
18. The method according to claim 17 , wherein the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate.
19. The method according to claim 3 , wherein the semaglutide is administered subcutaneously.
20. The method according to claim 3 , wherein the semaglutide is administered orally.
21. The method according to claim 3 , wherein the semaglutide is administered in a tablet comprising a salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid.
22. The method according to claim 21 , wherein the salt of N-(8-(2-hydroxybenzoyl)amino)caprylic acid is sodium N-(8-(2-hydroxybenzoyl)amino)caprylate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/208,485 US20230302094A1 (en) | 2019-11-06 | 2023-06-12 | Glp-1 receptor agonists in dementia |
US18/426,412 US20240207364A1 (en) | 2019-11-06 | 2024-01-30 | Glp-1 receptor agonists in dementia |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19207501 | 2019-11-06 | ||
EP19207501.8 | 2019-11-06 | ||
EP20186623 | 2020-07-20 | ||
EP20186623.3 | 2020-07-20 | ||
PCT/EP2020/081087 WO2021089678A1 (en) | 2019-11-06 | 2020-11-05 | Glp-1 receptor agonists in dementia |
US17/736,116 US20220280612A1 (en) | 2019-11-06 | 2022-05-04 | Glp-1 receptor agonists in dementia |
US18/208,485 US20230302094A1 (en) | 2019-11-06 | 2023-06-12 | Glp-1 receptor agonists in dementia |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/736,116 Continuation US20220280612A1 (en) | 2019-11-06 | 2022-05-04 | Glp-1 receptor agonists in dementia |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/426,412 Continuation US20240207364A1 (en) | 2019-11-06 | 2024-01-30 | Glp-1 receptor agonists in dementia |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230302094A1 true US20230302094A1 (en) | 2023-09-28 |
Family
ID=73172681
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/736,116 Abandoned US20220280612A1 (en) | 2019-11-06 | 2022-05-04 | Glp-1 receptor agonists in dementia |
US18/208,485 Abandoned US20230302094A1 (en) | 2019-11-06 | 2023-06-12 | Glp-1 receptor agonists in dementia |
US18/426,412 Pending US20240207364A1 (en) | 2019-11-06 | 2024-01-30 | Glp-1 receptor agonists in dementia |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/736,116 Abandoned US20220280612A1 (en) | 2019-11-06 | 2022-05-04 | Glp-1 receptor agonists in dementia |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/426,412 Pending US20240207364A1 (en) | 2019-11-06 | 2024-01-30 | Glp-1 receptor agonists in dementia |
Country Status (13)
Country | Link |
---|---|
US (3) | US20220280612A1 (en) |
EP (2) | EP4054620B1 (en) |
JP (1) | JP2023500032A (en) |
KR (1) | KR20220110731A (en) |
CN (1) | CN114728042A (en) |
AU (1) | AU2020377469A1 (en) |
BR (1) | BR112022007721A2 (en) |
CA (1) | CA3154744A1 (en) |
IL (1) | IL291876A (en) |
MX (1) | MX2022004779A (en) |
RS (1) | RS65780B1 (en) |
TW (1) | TW202118509A (en) |
WO (1) | WO2021089678A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL295182A (en) * | 2020-01-30 | 2022-09-01 | Lilly Co Eli | Therapeutic uses of dulaglutide |
EP4262873A1 (en) * | 2020-12-16 | 2023-10-25 | The Chinese University of Hong Kong | A method for reversing aging brain functional decline |
AU2022400245A1 (en) | 2021-12-02 | 2024-05-30 | Københavns Universitet | Peptide-drug conjugates for treatment of neurodegenerative diseases |
WO2024179606A1 (en) * | 2023-03-02 | 2024-09-06 | 甘李药业股份有限公司 | Medical use of glp-1 compound |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5650386A (en) | 1995-03-31 | 1997-07-22 | Emisphere Technologies, Inc. | Compositions for oral delivery of active agents |
JP3149958B2 (en) | 1996-08-30 | 2001-03-26 | ノボ ノルディスク アクティーゼルスカブ | GLP-1 derivative |
WO2000046182A1 (en) | 1999-02-05 | 2000-08-10 | Emisphere Technologies, Inc. | Method of preparing alkylated salicylamides |
US7262325B2 (en) | 2000-06-02 | 2007-08-28 | Emisphere Technologies, Inc. | Method of preparing salicylamides |
TWI362392B (en) | 2005-03-18 | 2012-04-21 | Novo Nordisk As | Acylated glp-1 compounds |
US8927015B2 (en) | 2006-04-12 | 2015-01-06 | Emisphere Technologies, Inc. | Formulations for delivering insulin |
CN101506147B (en) | 2006-09-07 | 2012-03-21 | 霍夫曼-拉罗奇有限公司 | A process for the manufacture of snac (n-(8-[2-hydroxybenzoyl]-amino) salcaprozate sodium) |
PL2513140T3 (en) | 2009-12-16 | 2016-04-29 | Novo Nordisk As | Double-acylated glp-1 derivatives |
RS56998B1 (en) * | 2010-12-16 | 2018-05-31 | Novo Nordisk As | Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid |
MX355361B (en) | 2011-04-12 | 2018-04-17 | Novo Nordisk As | Double-acylated glp-1 derivatives. |
BR112014032938A2 (en) * | 2012-07-01 | 2017-08-01 | Novo Nordisk As | use of long-acting glp-1 peptides |
ES2741507T3 (en) | 2014-04-07 | 2020-02-11 | Novo Nordisk As | Double-acylated glp-1 compounds |
US20170112897A1 (en) * | 2015-10-23 | 2017-04-27 | Cedars-Sinai Medical Center | Methods for treating brain insulin resistance |
ES2968038T3 (en) * | 2015-12-23 | 2024-05-06 | Univ Johns Hopkins | Long-acting GLP-1R agonist as therapy for neurological and neurodegenerative conditions |
US20190142905A1 (en) * | 2016-04-19 | 2019-05-16 | Ureka Sarl | Peptide-oligourea foldamer compounds and methods of their use |
-
2020
- 2020-11-05 EP EP20803489.2A patent/EP4054620B1/en active Active
- 2020-11-05 IL IL291876A patent/IL291876A/en unknown
- 2020-11-05 CN CN202080076976.0A patent/CN114728042A/en active Pending
- 2020-11-05 RS RS20240863A patent/RS65780B1/en unknown
- 2020-11-05 MX MX2022004779A patent/MX2022004779A/en unknown
- 2020-11-05 CA CA3154744A patent/CA3154744A1/en active Pending
- 2020-11-05 KR KR1020227015440A patent/KR20220110731A/en active Search and Examination
- 2020-11-05 AU AU2020377469A patent/AU2020377469A1/en active Pending
- 2020-11-05 WO PCT/EP2020/081087 patent/WO2021089678A1/en active Application Filing
- 2020-11-05 BR BR112022007721A patent/BR112022007721A2/en unknown
- 2020-11-05 JP JP2022521146A patent/JP2023500032A/en active Pending
- 2020-11-05 EP EP24175772.3A patent/EP4414031A2/en active Pending
- 2020-11-06 TW TW109138851A patent/TW202118509A/en unknown
-
2022
- 2022-05-04 US US17/736,116 patent/US20220280612A1/en not_active Abandoned
-
2023
- 2023-06-12 US US18/208,485 patent/US20230302094A1/en not_active Abandoned
-
2024
- 2024-01-30 US US18/426,412 patent/US20240207364A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
BR112022007721A2 (en) | 2022-07-12 |
IL291876A (en) | 2022-06-01 |
CA3154744A1 (en) | 2021-05-14 |
US20220280612A1 (en) | 2022-09-08 |
WO2021089678A1 (en) | 2021-05-14 |
MX2022004779A (en) | 2022-06-14 |
EP4054620B1 (en) | 2024-05-29 |
RS65780B1 (en) | 2024-08-30 |
KR20220110731A (en) | 2022-08-09 |
TW202118509A (en) | 2021-05-16 |
EP4054620A1 (en) | 2022-09-14 |
US20240207364A1 (en) | 2024-06-27 |
AU2020377469A1 (en) | 2022-04-28 |
CN114728042A (en) | 2022-07-08 |
EP4054620C0 (en) | 2024-05-29 |
JP2023500032A (en) | 2023-01-04 |
EP4414031A2 (en) | 2024-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230302094A1 (en) | Glp-1 receptor agonists in dementia | |
Cohen et al. | Effects of levetiracetam on tardive dyskinesia: a randomized, double-blind, placebo-controlled study | |
AU2013259526B2 (en) | New methods | |
US20200338040A1 (en) | Methods for treating alzheimer's disease and related disorders | |
AU2005219439B2 (en) | 1-aminocyclohexane derivatives for the treatment of agitation and other behavioural disorders, especially those associated with alzheimer's disease | |
US20030073729A1 (en) | Medicaments for diabetic complication and neuropathy, and uses thereof | |
JP2018514555A (en) | Method for treating or ameliorating erectile dysfunction and pharmaceutical composition comprising SGLT2 inhibitor | |
EP3684348A1 (en) | Treatment of disease with esters of selective rxr agonists | |
JP2013527132A (en) | Diazoxide for use in the treatment of central nervous system (CNS) autoimmune demyelinating diseases | |
US20210330748A1 (en) | Semaglutide for use in medicine | |
JP2011515377A (en) | Synergistic 5'-methylthioadenosine combination | |
US20060293312A1 (en) | Method of improved diuresis in individuals with impaired renal function | |
Hámor et al. | The role of glutamate mGlu5 and adenosine A2a receptor interactions in regulating working memory performance and persistent cocaine seeking in rats | |
EP2073846A1 (en) | Combined therapies of antipsychotic drugs and tetracyclines in the treatment of psychiatric disorders | |
Ballantyne et al. | Efficacy and safety of an extended-release formulation of fluvastatin for once-daily treatment of primary hypercholesterolemia | |
EA046973B1 (en) | GLP-1 RECEPTOR AGONISTS IN THE TREATMENT OF DEMENTIA | |
US20230098944A1 (en) | Method of decreasing amyloid beta monomer levels in patients with cognitive decline | |
EP3703670A1 (en) | Compositions and methods for treating septic cardiomyopathy | |
KR20130026429A (en) | Oral b12 therapy | |
JP2002220345A (en) | Remedial agent for fatty liver | |
US20240058308A1 (en) | Treatment and prevention of dry macular degeneration | |
US20230142111A1 (en) | Compositions and methods for the treatment of pervasive development disorders | |
US20240254218A1 (en) | Compositions and methods for treating neurodegenerative diseases by inhibiting fsh | |
US20200129479A1 (en) | Idalopirdine-based combinatorial therapies of alzheimer's disease | |
US20060094709A1 (en) | Methods for the treatment of bipolar disorder using carbamazepine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |