US20230028609A1 - Using Video Parameter Set In Video Coding - Google Patents
Using Video Parameter Set In Video Coding Download PDFInfo
- Publication number
- US20230028609A1 US20230028609A1 US17/946,624 US202217946624A US2023028609A1 US 20230028609 A1 US20230028609 A1 US 20230028609A1 US 202217946624 A US202217946624 A US 202217946624A US 2023028609 A1 US2023028609 A1 US 2023028609A1
- Authority
- US
- United States
- Prior art keywords
- picture
- video
- value
- layer
- pictures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 230
- 238000006243 chemical reaction Methods 0.000 claims abstract description 55
- 238000012545 processing Methods 0.000 claims abstract description 44
- 239000000872 buffer Substances 0.000 claims description 92
- 230000015654 memory Effects 0.000 claims description 17
- 239000012536 storage buffer Substances 0.000 claims description 15
- 238000003672 processing method Methods 0.000 abstract description 25
- 239000010410 layer Substances 0.000 description 237
- 230000008569 process Effects 0.000 description 50
- 238000012360 testing method Methods 0.000 description 29
- 241001482237 Pica Species 0.000 description 22
- 239000013598 vector Substances 0.000 description 17
- 238000011084 recovery Methods 0.000 description 12
- 241000023320 Luma <angiosperm> Species 0.000 description 11
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical group COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 11
- 238000004590 computer program Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000013139 quantization Methods 0.000 description 10
- 238000010276 construction Methods 0.000 description 7
- 230000011664 signaling Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 230000002123 temporal effect Effects 0.000 description 6
- 238000003491 array Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000000153 supplemental effect Effects 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 208000034188 Stiff person spectrum disease Diseases 0.000 description 2
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 208000012112 ischiocoxopodopatellar syndrome Diseases 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- FMYKJLXRRQTBOR-UBFHEZILSA-N (2s)-2-acetamido-4-methyl-n-[4-methyl-1-oxo-1-[[(2s)-1-oxohexan-2-yl]amino]pentan-2-yl]pentanamide Chemical group CCCC[C@@H](C=O)NC(=O)C(CC(C)C)NC(=O)[C@H](CC(C)C)NC(C)=O FMYKJLXRRQTBOR-UBFHEZILSA-N 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/30—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
- H04N19/423—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/11—Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/172—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/174—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
Definitions
- This patent document relates to image and video coding and decoding.
- Digital video accounts for the largest bandwidth use on the internet and other digital communication networks. As the number of connected user devices capable of receiving and displaying video increases, it is expected that the bandwidth demand for digital video usage will continue to grow.
- the present document discloses techniques that can be used by video encoders and decoders for processing coded representation of video using control information useful for decoding of the coded representation.
- a video processing method includes performing a conversion between a video having one or more video layers comprising one or more video pictures and a coded representation of the video; wherein the coded representation includes a video parameter set that indicates a maximum value of a chroma format indicator and/or a maximum value of bit depth used to represent pixels of the video.
- another video processing method includes performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that a maximum picture width and/or a maximum picture height for video pictures of all video layers controls a value of a variable that indicates whether pictures in a decoder buffer are output prior to removing from the decoder buffer.
- another video processing method includes performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that maximum value of a chroma format indicator and/or a maximum value of bit depth used to represent pixels of the video control a value of a variable that indicates whether pictures in a decoder buffer are output prior to removing from the decoder buffer.
- another video processing method includes performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that a value of a variable that indicates whether pictures in a decoder buffer are output prior to removing from the decoder buffer is independent of whether separate color planes are used for encoding the video.
- another video processing method includes performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that a value of a variable that indicates whether pictures in a decoder buffer are output prior to removing from the decoder buffer is included in the coded representation at an access unit (AU) level.
- AU access unit
- another video processing method includes performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that a picture output flag for a video picture in an access unit is determined based on a pic_output_flag variable of another video picture in the access unit.
- another video processing method includes performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that, for a video picture that does not belong to an output layer, a value of a picture output flag.
- another video processing method includes performing a conversion between a video and a bitstream of the video according to a format rule, wherein the bitstream includes one or more output layer sets (OLSs), each OLS comprising one or more coded layer video sequences, and wherein the format rule specifies that a video parameter set indicates, for each of the one or more OLSs, a greatest allowed value of a chroma format indicator and/or a greatest allowed value of a bit depth used to represent pixels of the video.
- OLSs output layer sets
- another video processing method includes performing a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a maximum picture width and/or a maximum picture height for video pictures of all video layers controls a value of a variable that indicates whether pictures in a decoded picture buffer prior to a current picture in decoding order in the bitstream are output before the pictures are removed from the decoded picture buffer.
- another video processing method includes performing a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a greatest allowed value of a chroma format indicator and/or a greatest allowed value of a bit depth used to represent pixels of the video control a value of a variable that indicates whether pictures in a decoded picture buffer prior to a current picture in decoding order in the bitstream are output before the pictures are removed from the decoded picture buffer.
- another video processing method includes performing a conversion between a video having one or more video layers and a bitstream of the video according to a rule, and wherein the rule specifies that a value of a variable that indicates whether pictures in a decoded picture buffer prior to a current picture in decoding order in the bitstream are output before the pictures are removed from the decoded picture buffer is independent of whether separate color planes are used for encoding the video.
- another video processing method includes performing a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a flag that indicates whether to remove pictures previously decoded and stored in a decoded picture buffer from the decoded picture buffer when decoding an access unit of a certain type is included in the bitstream.
- another video processing method includes performing a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a first flag that indicates whether to remove pictures previously decoded and stored in a decoded picture buffer from the decoded picture buffer when decoding an access unit of a particular type is not indicated in a picture header.
- another video processing method includes performing a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a flag associated with an access unit that indicates whether to remove pictures previously decoded and stored in a decoded picture buffer from the decoded picture buffer depends on a value of the flag of each picture of the access unit.
- another video processing method includes performing a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a variable indicating whether to output a picture in an access unit is determined based on a flag indicating whether to output another picture in the access unit.
- another video processing method includes performing a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a variable indicating whether to output a picture in an access unit is set equal to a certain value in case that the picture does not belong to an output layer.
- another video processing method includes performing a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that in case that the video comprises only one output layer, an access unit that does not include an output layer is coded by setting a variable indicating whether to output a picture in the access unit to a first value for the picture having a highest layer ID (identification) value and to a second value for all other pictures.
- a video encoder apparatus comprising a processor configured to implement above-described methods.
- a video decoder apparatus comprising a processor configured to implement above-described methods.
- a computer readable medium having code stored thereon is disclosed.
- the code embodies one of the methods described herein in the form of processor-executable code.
- FIG. 1 is a block diagram of an example video processing system.
- FIG. 2 is a block diagram of a video processing apparatus.
- FIG. 3 is a flowchart for an example method of video processing.
- FIG. 4 is a block diagram that illustrates a video coding system in accordance with some embodiments of the present disclosure.
- FIG. 5 is a block diagram that illustrates an encoder in accordance with some embodiments of the present disclosure.
- FIG. 6 is a block diagram that illustrates a decoder in accordance with some embodiments of the present disclosure.
- FIGS. 7 A to 7 D show flowcharts for example methods of video processing based on some implementations of the disclosed technology.
- FIGS. 8 A to 8 C show flowcharts for example methods of video processing based on some implementations of the disclosed technology.
- FIGS. 9 A to 9 C show flowcharts for example methods of video processing based on some implementations of the disclosed technology.
- Section headings are used in the present document for ease of understanding and do not limit the applicability of techniques and embodiments disclosed in each section only to that section.
- H.266 terminology is used in some description only for ease of understanding and not for limiting scope of the disclosed techniques. As such, the techniques described herein are applicable to other video codec protocols and designs also.
- This patent document is related to video coding technologies. Specifically, it is about signalling of decoded picture buffer (DPB) parameters for DPB memory allocation as well as specifying the output of decoded pictures in scalable video coding, wherein a video bitstream can contain more than one layer.
- DPB decoded picture buffer
- the ideas may be applied individually or in various combination, to any video coding standard or non-standard video codec that supports multi-layer video coding, e.g., the being-developed Versatile Video Coding (VVC).
- VVC Versatile Video Coding
- Video coding standards have evolved primarily through the development of the well-known International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) and International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC) standards.
- ITU-T International Telecommunication Union-Telecommunication Standardization Sector
- ISO International Organization for Standardization
- ISO International Electrotechnical Commission
- the ITU-T produced H.261 and H.263, ISO/IEC produced Moving Picture Experts Group (MPEG)-1 and MPEG-4 Visual, and the two organizations jointly produced the H.262/MPEG-2 Video and H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/High Efficiency Video Coding (HEVC) standards.
- AVC H.264/MPEG-4 Advanced Video Coding
- HEVC High Efficiency Video Coding
- the video coding standards are based on the hybrid video coding structure wherein temporal prediction plus transform coding are utilized.
- JVET Joint Video Exploration Team
- VVC Versatile Video Coding
- VTM VVC test model
- Scalable video coding refers to video coding in which a base layer (BL), sometimes referred to as a reference layer (RL), and one or more scalable enhancement layers (ELs) are used.
- the base layer can carry video data with a base level of quality.
- the one or more enhancement layers can carry additional video data to support, for example, higher spatial, temporal, and/or signal-to-noise (SNR) levels.
- Enhancement layers may be defined relative to a previously encoded layer. For example, a bottom layer may serve as a BL, while a top layer may serve as an EL. Middle layers may serve as either ELs or RLs, or both.
- a middle layer (e.g., a layer that is neither the lowest layer nor the highest layer) may be an EL for the layers below the middle layer, such as the base layer or any intervening enhancement layers, and at the same time serve as a RL for one or more enhancement layers above the middle layer.
- a middle layer e.g., a layer that is neither the lowest layer nor the highest layer
- the middle layer may be an EL for the layers below the middle layer, such as the base layer or any intervening enhancement layers, and at the same time serve as a RL for one or more enhancement layers above the middle layer.
- 3D three dimensional
- the parameters used by the encoder or the decoder are grouped into parameter sets based on the coding level (e.g., video-level, sequence-level, picture-level, slice level, etc.) in which they may be utilized.
- the coding level e.g., video-level, sequence-level, picture-level, slice level, etc.
- parameters that may be utilized by one or more coded video sequences of different layers in the bitstream may be included in a video parameter set (VPS), and parameters that are utilized by one or more pictures in a coded video sequence may be included in a sequence parameter set (SPS).
- SPS sequence parameter set
- parameters that are utilized by one or more slices in a picture may be included in a picture parameter set (PPS), and other parameters that are specific to a single slice may be included in a slice header.
- the indication of which parameter set(s) a particular layer is using at a given time may be provided at various coding levels.
- the decoding capability for multi-layer bitstreams are specified in a manner as if there were only a single layer in the bitstream.
- the decoding capability such as DPB size
- DPB size is specified in a manner that is independent of the number of layers in the bitstream to be decoded.
- a decoder designed for single-layer bitstreams does not need much change to be able to decode multi-layer bitstreams.
- the HLS aspects have been significantly simplified at the sacrifice of some flexibilities. For example, an IRAP AU is required to contain a picture for each of the layers present in the coded video sequence (CVS).
- Random access refers to starting access and decoding of a bitstream from a picture that is not the first picture of the bitstream in decoding order.
- the bitstream needs to include frequent random access points, which are typically intra coded pictures but may also be inter-coded pictures (e.g., in the case of gradual decoding refresh).
- HEVC includes signaling of intra random access points (IRAP) pictures in the network abstraction layer (NAL) unit header, through NAL unit types.
- IRAP pictures Three types of IRAP pictures are supported, namely instantaneous decoder refresh (IDR), clean random access (CRA), and broken link access (BLA) pictures.
- IDR pictures are constraining the inter-picture prediction structure to not reference any picture before the current group-of-pictures (GOP), conventionally referred to as closed-GOP random access points.
- CRA pictures are less restrictive by allowing certain pictures to reference pictures before the current GOP, all of which are discarded in case of a random access.
- CRA pictures are conventionally referred to as open-GOP random access points.
- BLA pictures usually originate from splicing of two bitstreams or part thereof at a CRA picture, e.g., during stream switching.
- CRA picture e.g., during stream switching.
- NAL units are defined to signal the properties of the IRAP pictures, which can be used to better match the stream access point types as defined in the ISO base media file format (ISOBMFF), which are utilized for random access support in dynamic adaptive streaming over HTTP (DASH).
- ISO base media file format ISO base media file format
- VVC supports three types of IRAP pictures, two types of IDR pictures (one type with or the other type without associated random access decodable leading (RADL) pictures) and one type of CRA picture. These are basically the same as in HEVC.
- the BLA picture types in HEVC are not included in VVC, mainly due to two reasons: i) The basic functionality of BLA pictures can be realized by CRA pictures plus the end of sequence NAL unit, the presence of which indicates that the subsequent picture starts a new CVS in a single-layer bitstream. ii) There was a desire in specifying less NAL unit types than HEVC during the development of VVC, as indicated by the use of five instead of six bits for the NAL unit type field in the NAL unit header.
- GDR gradual decoding refresh
- SEI recovery point supplemental enhancement information
- GDR enables encoders to smooth the bit rate of a bitstream by distributing intra-coded slices or blocks in multiple pictures as opposed to intra coding entire pictures, thus allowing significant end-to-end delay reduction, which is considered more important nowadays than before as ultralow delay applications like wireless display, online gaming, drone-based applications become more popular.
- Another GDR related feature in VVC is the virtual boundary signaling.
- the boundary between the refreshed region (i.e., the correctly decoded region) and the unrefreshed region at a picture between a GDR picture and its recovery point can be signaled as a virtual boundary, and when signaled, in-loop filtering across the boundary would not be applied, thus a decoding mismatch for some samples at or near the boundary would not occur. This can be useful when the application determines to display the correctly decoded regions during the GDR process.
- IRAP pictures and GDR pictures can be collectively referred to as random access point (RAP) pictures.
- RAP random access point
- AVC, HEVC, and VVC specify parameter sets.
- the types of parameter set include SPS, PPS, adaptation parameter set (APS), and VPS.
- SPS and PPS are supported in all of AVC, HEVC, and VVC.
- VPS was introduced since HEVC and is included in both HEVC and VVC.
- APS was not included in AVC or HEVC but is included in the latest VVC draft text.
- SPS was designed to carry sequence-level header information
- PPS was designed to carry infrequently changing picture-level header information.
- SPS and PPS infrequently changing information need not to be repeated for each sequence or picture, hence redundant signalling of this information can be avoided.
- SPS and PPS enables out-of-band transmission of the important header information, thus not only avoiding the need for redundant transmissions but also improving error resilience.
- VPS was introduced for carrying sequence-level header information that is common for all layers in multi-layer bitstreams.
- APS was introduced for carrying such picture-level or slice-level information that needs quite some bits to code, can be shared by multiple pictures, and in a sequence, there can be quite many different variations.
- VVC supports scalability, also known as scalable video coding, wherein multiple layers can be encoded in one coded video bitstream.
- a VPS raw byte sequence payload shall be available to the decoding process prior to it being referenced, included in at least one AU with TemporalId equal to 0 or provided through external means.
- All VPS NAL units with a particular value of vps_video_parameter_set_id in a CVS shall have the same content.
- vps_ideo_parameter_set_id provides an identifier for the VPS for reference by other syntax elements.
- the value of vps_video_parameter_set_id shall be greater than 0.
- vps_max_layers_minus1 plus 1 specifies the maximum allowed number of layers in each CVS referring to the VPS.
- vps_max_sublayers_minus1 plus 1 specifies the maximum number of temporal sublayers that may be present in a layer in each CVS referring to the VPS.
- the value of vps_max_sublayers_minus1 shall be in the range of 0 to 6, inclusive.
- vps_all_layers_same_num_sublayers_flag 1 specifies that the number of temporal sublayers is the same for all the layers in each CVS referring to the VPS.
- vps_all_layers_same_num_sublayers_flag 0 specifies that the layers in each CVS referring to the VPS may or may not have the same number of temporal sublayers.
- vps_all_layers_same_num_sublayers_flag 1 specifies that all layers in the CVS are independently coded without using inter-layer prediction.
- vps_all_independent_layers_flag 0 specifies that one or more of the layers in the CVS may use inter-layer prediction.
- the value of vps_all_independent_layers_flag is inferred to be equal to 1.
- vps_layer_id[i] specifies the nuh_layer_id value of the i-th layer.
- vps_layer_id[m i] when m is less than n, the value of vps_layer_id[m i] shall be less than vps_layer_id[n].
- vps_independent_layer_flag[i] 1 specifies that the layer with index i does not use inter-layer prediction.
- vps_independent_layer_flag[i] 0 specifies that the layer with index i may use inter-layer prediction and the syntax elements vps_direct_ref_layer_flag[i][j] for j in the range of 0 to i ⁇ 1, inclusive, are present in VPS.
- vps_independent_layer_flag[i] When not present, the value of vps_independent_layer_flag[i] is inferred to be equal to 1.
- vps_direct_ref_layer_flag[i][j] 0 specifies that the layer with index j is not a direct reference layer for the layer with index i.
- vps_direct_ref_layer_flag[i][j] 1 specifies that the layer with index j is a direct reference layer for the layer with index i.
- vps_independent_layer_flag[i] When vps_independent_layer_flag[i] is equal to 0, there shall be at least one value of j in the range of 0 to i ⁇ 1, inclusive, such that the value of vps_direct_ref_layer_flag[i][j] is equal to 1.
- the variables NumDirectRefLayers[i], DirectRefLayerIdx[i][d], NumRefLayers[i], RefLayerIdx[i][r], and LayerUsedAsRefLayerFlag[j] are derived as follows:
- ols_output_layer_flag[i][j] 0 specifies that the layer with nuh_layer_id equal to vps_layer_id[j] is not an output layer of the i-th OLS when ols_mode_idc is equal to 2.
- the variable NumOutputLayersInOls[i], specifying the number of output layers in the i-th OLS, the variable NumSubLayersInLayerInOLS[i][j], specifying the number of sublayers in the j-th layer in the i-th OLS, the variable OutputLayerIdLnOls[i][j], specifying the nuh_layer_id value of the j-th output layer in the i-th OLS, and the variable LayerUsedAsOutputLayerFlag[k], specifying whether the k-th layer is used as an output layer in at least one OLS, are derived as follows:
- the value of NumOutputLayersInOls[i] shall be greater than or equal to 1.
- the variable NumLayersInOls[i] specifying the number of layers in the i-th OLS, and the variable LayerIdInOls[i][j], specifying the nuh_layer_id value of the j-th layer in the i-th OLS, are derived as follows:
- Each layer shall be included in at least one OLS specified by the VPS.
- nuh_layer_id nuhLayerId equal to one of vps_layer_id[k] for k in the range of 0 to vps_max_layers_minus1, inclusive
- there shall be at least one pair of values of i and j where i is in the range of 0 to TotalNumOlss ⁇ 1, inclusive, and j is in the range of NumLayersInOls[i] ⁇ 1, inclusive, such that the value of LayerIdInOls[i][j] is equal to nuhLayerId.
- vps_num_ptls_minus1 plus 1 specifies the number of profile_tier_level( ) syntax structures in the VPS. The value of vps_num_ptls_minus1 shall be less than TotalNumOlss.
- pt_pesent_flag[i] 1 specifies that profile, tier, and general constraints information are present in the i-th profile_tier_level( ) syntax structure in the VPS.
- pt_present_flag[i] 0 specifies that profile, tier, and general constraints information are not present in the i-th profile_tier_level( ) syntax structure in the VPS. The value of pt_present_flag[0] is inferred to be equal to 1.
- pt_present_flag[i] When pt_present_flag[i] is equal to 0, the profile, tier, and general constraints information for the i-th profile_tier_level( ) syntax structure in the VPS are inferred to be the same as that for the (i ⁇ 1)-th profile_tier_level( ) syntax structure in the VPS.
- ptl_max_temporal_id[i] specifies the TemporalId of the highest sublayer representation for which the level information is present in the i-th profile_tier_level( ) syntax structure in the VPS.
- the value of ptl_max_temporal_id[i] shall be in the range of 0 to vps_max_sublayers_minus1, inclusive.
- vps_max_sublayers_minus1 When vps_max_sublayers_minus1 is equal to 0, the value of ptl_max_temporal_id[i] is inferred to be equal to 0.
- vps_max_sublayers_minus1 When vps_max_sublayers_minus1 is greater than 0 and vps_all_layers_same_num_sublayers_flag is equal to 1, the value of ptl_max_temporal_id[i] is inferred to be equal to vps_max_sublayers_minus1.
- vps_ptl_alignment_zero_bit shall be equal to 0.
- ols_ptl_idx[i] specifies the index, to the list of profile_tier_level( ) syntax structures in the VPS, of the profile_tier_level( ) syntax structure that applies to the i-th OLS.
- the value of ols_ptl_idx[i] shall be in the range of 0 to vps_num_ptls_minus1, inclusive.
- vps_num_ptls_minus1 is equal to 0, the value of ols_pl_idx[i] is inferred to be equal to 0.
- vps_num_dpb_params specifies the number of dpb_parameters( ) syntax structures in the VPS. The value of vps_num_dpb_params shall be in the range of 0 to 16, inclusive.
- vps_num_dpb_params When not present, the value of vps_num_dpb_params is inferred to be equal to 0.
- vps_sublayer_dpb_params_prsent_flag is used to control the presence of max_dec_pic_buffering_minus1[ ], max_num_reorder_pics[ ], and max_latency_increase_plus1[ ] syntax elements in the dpb_parameters( ) syntax structures in the VPS.
- vps_sub_dpb_params_info_present_flag is inferred to be equal to 0.
- dpb_max_temporal_id[i] specifies the TemporalId of the highest sublayer representation for which the DPB parameters may be present in the i-th dpb_parameters( ) syntax structure in the VPS.
- the value of dpb_max_temporal_id[i] shall be in the range of 0 to vps_max_sublayers_minus1, inclusive. When vps_max_sublayers_minus1 is equal to 0, the value of dpb_max_temporal_id[i] is inferred to be equal to 0.
- vps_max_sublayers_minus1 When vps_max_sublayers_minus1 is greater than 0 and vps_all_layers_same_num_sublayers_flag is equal to 1, the value of dpb_max_temporal_id[i] is inferred to be equal to vps_max_sublayers_minus1.
- ols_dpb_pic_width[i] specifies the width, in units of luma samples, of each picture storage buffer for the i-th OLS.
- ols_dpb_pic_height[i] specifies the height, in units of luma samples, of each picture storage buffer for the i-th OLS.
- os_dpb_params_idx[i] specifies the index, to the list of dpb_parameters( ) syntax structures in the VPS, of the dpb_parameters( ) syntax structure that applies to the i-th OLS when NumLayersInOls[i] is greater than 1.
- the value of ols_dpb_params_idx[i] shall be in the range of 0 to vps_num_dpb_params ⁇ 1, inclusive.
- ols_dpb_params_idx[i] When ols_dpb_params_idx[i] is not present, the value of ols_dpb_params_idx[i] is inferred to be equal to 0.
- NumLayersInOls[i] When NumLayersInOls[i] is equal to 1, the dpb_parameters( ) syntax structure that applies to the i-th OLS is present in the SPS referred to by the layer in the i-th OLS.
- vps_general_hrd_params_present_flag 1 specifies that the VPS contains a general_hrd_parameters( ) syntax structure and other hypothetical reference decoder (HRD) parameters.
- vps_general_hrd_params_present_flag 0 specifies that the VPS does not contain a general_hrd_parameters( ) syntax structure or other HRD parameters. When not present, the value of vps_general_hrd_params_present_flag is inferred to be equal to 0. When NumLayersInOls[i] is equal to 1, the general_hrd_parameters( ) syntax structure and the ols_hrd_parameters( ) syntax structure that apply to the i-th OLS are present in the SPS referred to by the layer in the i-th OLS.
- vps_sublayer_cpb_params_prsent_flag 1 specifies that the i-th ols_hrd_parameters( ) syntax structure in the VPS contains HRD parameters for the sublayer representations with TemporalId in the range of 0 to hrd_max_tid[i], inclusive.
- vps_sublayer_cpb_params_present_flag 0 specifies that the i-th ols_hrd_parameters( ) syntax structure in the VPS contains HRD parameters for the sublayer representation with TemporalId equal to hrd_max_tid[i] only.
- vps_max_sublayers_minus1 When vps_max_sublayers_minus1 is equal to 0, the value of vps_sublayer_cpb_params_present_flag is inferred to be equal to 0.
- vps_sublayer_cpb_params_present_flag When vps_sublayer_cpb_params_present_flag is equal to 0, the HRD parameters for the sublayer representations with TemporalId in the range of 0 to hrd_max_tid[i] ⁇ 1, inclusive, are inferred to be the same as that for the sublayer representation with TemporalId equal to hrd_max_tid[i].
- HRD parameters starting from the fixed_pic_rate_general_flag[i] syntax element till the sublayer_hrd_parameters(i) syntax structure immediately under the condition “if (general_vcl_hd_params_present_flag)” in the ols_hrd_parameters syntax structure.
- num_ols_hrd_params_minus1 plus 1 specifies the number of ols_hrd_parameters( ) syntax structures present in the VPS when vps_general_hrd_params_present_flag is equal to 1.
- hrd_max_tid[i] specifies the TemporalId of the highest sublayer representation for which the HRD parameters are contained in the i-th ols_hrd_parameters( ) syntax structure.
- the value of hrd_max_tid[i] shall be in the range of 0 to vps_max_sublayers_minus1, inclusive. When vps_max_sublayers_minus1 is equal to 0, the value of hrd_max_tid[i] is inferred to be equal to 0.
- vps_max_sublayers_minus1 When vps_max_sublayers_minus1 is greater than 0 and vps_all_layers_same_num_sublayers_flag is equal to 1, the value of hrd_max_tid[i] is inferred to be equal to vps_max_sublayers_minus1.
- ols_hrd_idx[i] specifies the index, to the list of ols_hrd_parameters( ) syntax structures in the VPS, of the ols_hrd_parameters( ) syntax structure that applies to the i-th OLS when NumLayersInOls[i] is greater than 1.
- ols_hrd_idx[[i] shall be in the range of 0 to num_ols_hrd_params_minus1, inclusive.
- NumLayersInOls[i] is equal to 1
- the ols_hrd_parameters( ) syntax structure that applies to the i-th OLS is present in the SPS referred to by the layer in the i-th OLS. If the value of num_ols_hrd_param_minus1+1 is equal to TotalNumOlss, the value of ols_hrd_idx[i] is inferred to be equal to i.
- vps_extension_flag 0 specifies that no vps_extension_data_flag syntax elements are present in the VPS RBSP syntax structure.
- vps_extension_flag 1 specifies that there are vps_extension_data_flag syntax elements present in the VPS RBSP syntax structure.
- vps_extension_data_flag may have any value. Its presence and value do not affect decoder conformance to profiles specified in this version of this Specification. Decoders conforming to this version of this Specification shall ignore all vps_extension_data_flag syntax elements.
- gdr_enabled_flag 1 specifies that GDR pictures may be present in CLVSs referring to the SPS.
- gdr_enabled_flag 0 specifies that GDR pictures are not present in CLVSs referring to the SPS.
- chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in clause 6.2.
- bit_depth_minus8 specifies the bit depth of the samples of the luma and chroma arrays, BitDepth, and the value of the luma and chroma quantization parameter range offset, QpBdOffset, as follows:
- BitDepth 8+bit_depth_minus8 (45)
- bit_depth_minus8 shall be in the range of 0 to 8, inclusive.
- the picture header (PH) syntax structure contains information that is common for all slices of the coded picture associated with the PH syntax structure.
- gdr_or_irap_pic_flag 1 specifies that the current picture is a GDR or IRAP picture.
- gdr_or_irap_pic_flag 0 specifies that the current picture may or may not be a GDR or IRAP picture.
- gdr_pic_flag 1 specifies the picture associated with the PH is a GDR picture.
- gdr_pic_flag 0 specifies that the picture associated with the PH is not a GDR picture.
- the value of gdr_pic_flag is inferred to be equal to 0.
- gdr_enabled_flag is equal to 0, the value of gdr_pic_flag shall be equal to 0.
- the coded picture buffer (CPB) size (number of bits) is CpbSize[Htid][ScIdx] as specified in clause 7.4.6.3, where ScIdx and the HRD parameters are specified above in this clause, and the DPB parameters max_dec_pic_buffering_minus1[Htid], max_num_reorder_pics[Htid], and MaxLatencyPictures[Htid] are found in or derived from the dpb_parameters( ) syntax structure that applies to the target OLS as follows:
- This embodiment is for items 1, 2, 3, 4, 5, and 5a.
- Video_parameter_set_rbsp( ) ⁇ ... for( i 0; i ⁇ TotalNumOlss; i++ ) ⁇ if( NumLayersInOls[ i ] > 1 ) ⁇ ols — dpb — pic — width [ i ] ue(v) ols — dpb — pic — height [ i ] ue(v) if( vps_num_dpb_params > 1 ) ols — dpb — params — idx [ i ] ue(v) ⁇ ⁇ ... ⁇
- ohs_dpb_pic_width[i] specifies the width, in units of luma samples, of each picture storage buffer for the i-th OLS.
- ohs_dpb_pic_height[i] specifies the height, in units of luma samples, of each picture storage buffer for the i-th OLS.
- ols_dpb_chroma_format[i] specifics the greatest allowed value of chroma_format_idc for all SPSs that are referred to by CLVSs in the CVS for the i-th OLS.
- ols_dpb_bitdepth_minus8[i] specifies the greatest allowed value of bit_depth_minus8 for all SPSs that are referred to by CLVSs in the CVS for the i-th OLS.
- gdr_enabled_flag 1 specifies that GDR pictures may be present in CLVSs referring to the SPS.
- gdr_enabled_flag 0 specifies that GDR pictures are not present in CLVSs referring to the SPS.
- chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in clause 6.2.
- bit_depth_minus8 specifies the bit depth of the samples of the luma and chroma arrays, BitDepth, and the value of the luma and chroma quantization parameter range offset, QpBdOffset, as follows:
- BitDepth 8+bit_depth_minus8 (45)
- bit_depth_minus8 shall be in the range of 0 to 8, inclusive. When sps_video_parameter_set_id is greater than 0, it is a requirement of bitstream conformance that, for any OLS with OLS index i that contains one or more layers that refers to the SPS, the value of bit_depth_minus8 shall be less than or equal to the value of ols_dpb_bitdepth_minus8[i].
- no_output_of_prior_pics_flag affects the output of previously-decoded pictures in the DPB after the decoding of a picture in a CVSS AU that is not the first AU in the bitstream as specified in Annex C. It is a requirement of bitstream conformance that, when present the value of no_output_of_prior_pics_flag shall be the same for all pictures of an AU.
- no_output_of_prior_pics_flag is present in the PHs of the pictures of an AU
- the value of no_output_of_prior_pics_flag of the AU is the value of no_output_of_prior_pics_flag of the pictures of the AU.
- the CPB size (number of bits) is CpbSize[Htid][ScIdx] as specified in clause 7.4.6.3, where ScIdx and the HRD parameters are specified above in this clause, and the DPB parameters max_dec_pic_buffering_minus1[Htid], max_num_reorder_pics[Htid], and MaxLatencyPictures[Htid] are found in or derived from the dpb_parameters( ) syntax structure that applies to the target OLS as follows:
- This embodiment is for items 1, 2, 3, 4, 5, and 5c, with text changes relative to text of the first embodiment.
- no_output_of_prior_pics_flag affects the output of previously-decoded pictures in the DPB after the decoding of a picture in a CVSS AU that is not the first AU in the bitstream as specified in Annex C. [[It is a requirement of bitstream conformance that, when present, the value of no_output_of_prior_pics_flag shall be the same for all pictures of an AU.
- recovery_poc_cnt specifies the recovery point of decoded pictures in output order.
- the variable recoveryPointPocVal is derived as follows:
- recoveryPointPocVal PicOrderCntVal+recovery_poc_cnt (81)
- the current picture is a GDR picture-[[that is associated with the PH]]
- the picture picA is referred to as the recovery point picture.
- the first picture in output order that has PicOrderCntVal greater than recoveryPointPocVal [[the PicOrderCntVal of the current picture plus the value of recovery_poc_cnt]] in the CLVS is referred to as the recovery point picture.
- the recovery point picture shall not precede the current GDR picture in decoding order.
- the pictures that are associated with the current GDR picture and have PicOrderCntVal less than recoveryPointPocVal are referred to as the recovering pictures of the GDR picture.
- the value of recovery_poc_cnt shall be in the range of 0 to MaxPicOrderCntLsb ⁇ 1, inclusive.
- RpPicOrderCntVal PicOrderCntVal+recovery_poc_cnt (81)]
- This embodiment is for item 6 and 7a.
- This embodiment is for item 6 only.
- FIG. 1 is a block diagram showing an example video processing system 1900 in which various techniques disclosed herein may be implemented.
- the system 1900 may include input 1902 for receiving video content.
- the video content may be received in a raw or uncompressed format, e.g., 8 or 10 bit multi-component pixel values, or may be in a compressed or encoded format.
- the input 1902 may represent a network interface, a peripheral bus interface, or a storage interface. Examples of network interface include wired interfaces such as Ethernet, passive optical network (PON), etc. and wireless interfaces such as wireless fidelity (Wi-Fi) or cellular interfaces.
- Wi-Fi wireless fidelity
- the system 1900 may include a coding component 1904 that may implement the various coding or encoding methods described in the present document.
- the coding component 1904 may reduce the average bitrate of video from the input 1902 to the output of the coding component 1904 to produce a coded representation of the video.
- the coding techniques are therefore sometimes called video compression or video transcoding techniques.
- the output of the coding component 1904 may be either stored, or transmitted via a communication connected, as represented by the component 1906 .
- the stored or communicated bitstream (or coded) representation of the video received at the input 1902 may be used by the component 1908 for generating pixel values or displayable video that is sent to a display interface 1910 .
- the process of generating user-viewable video from the bitstream representation is sometimes called video decompression.
- certain video processing operations are referred to as “coding” operations or tools, it will be appreciated that the coding tools or operations are used at an encoder and corresponding decoding tools or operations that reverse the results of the coding will be performed
- peripheral bus interface or a display interface may include universal serial bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on.
- storage interfaces include serial advanced technology attachment (SATA), peripheral component interconnect (PCI), integrated drive electronics (IDE) interface, and the like.
- SATA serial advanced technology attachment
- PCI peripheral component interconnect
- IDE integrated drive electronics
- FIG. 2 is a block diagram of a video processing apparatus 3600 .
- the apparatus 3600 may be used to implement one or more of the methods described herein.
- the apparatus 3600 may be embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on.
- the apparatus 3600 may include one or more processors 3602 , one or more memories 3604 and video processing hardware 3606 .
- the processor(s) 3602 may be configured to implement one or more methods described in the present document.
- the memory (memories) 3604 may be used for storing data and code used for implementing the methods and techniques described herein.
- the video processing hardware 3606 may be used to implement, in hardware circuitry, some techniques described in the present document.
- FIG. 4 is a block diagram that illustrates an example video coding system 100 that may utilize the techniques of this disclosure.
- video coding system 100 may include a source device 110 and a destination device 120 .
- Source device 110 generates encoded video data which may be referred to as a video encoding device.
- Destination device 120 may decode the encoded video data generated by source device 110 which may be referred to as a video decoding device.
- Source device 110 may include a video source 112 , a video encoder 114 , and an input/output (I/O) interface 116 .
- Video source 112 may include a source such as a video capture device, an interface to receive video data from a video content provider, and/or a computer graphics system for generating video data, or a combination of such sources.
- the video data may comprise one or more pictures.
- Video encoder 114 encodes the video data from video source 112 to generate a bitstream.
- the bitstream may include a sequence of bits that form a coded representation of the video data.
- the bitstream may include coded pictures and associated data.
- the coded picture is a coded representation of a picture.
- the associated data may include sequence parameter sets, picture parameter sets, and other syntax structures.
- I/O interface 116 may include a modulator/demodulator (modem) and/or a transmitter.
- the encoded video data may be transmitted directly to destination device 120 via I/O interface 116 through network 130 a .
- the encoded video data may also be stored onto a storage medium/server 130 b for access by destination device 120 .
- Destination device 120 may include an I/O interface 126 , a video decoder 124 , and a display device 122 .
- I/O interface 126 may include a receiver and/or a modem. I/O interface 126 may acquire encoded video data from the source device 110 or the storage medium/server 130 b . Video decoder 124 may decode the encoded video data. Display device 122 may display the decoded video data to a user. Display device 122 may be integrated with the destination device 120 , or may be external to destination device 120 which be configured to interface with an external display device.
- Video encoder 114 and video decoder 124 may operate according to a video compression standard, such as the High Efficiency Video Coding (HEVC) standard, Versatile Video Coding (VVC) standard and other current and/or further standards.
- HEVC High Efficiency Video Coding
- VVC Versatile Video Coding
- FIG. 5 is a block diagram illustrating an example of video encoder 200 , which may be video encoder 114 in the system 100 illustrated in FIG. 4 .
- Video encoder 200 may be configured to perform any or all of the techniques of this disclosure.
- video encoder 200 includes a plurality of functional components. The techniques described in this disclosure may be shared among the various components of video encoder 200 .
- a processor may be configured to perform any or all of the techniques described in this disclosure.
- the functional components of video encoder 200 may include a partition unit 201 , a prediction unit 202 which may include a mode select unit 203 , a motion estimation unit 204 , a motion compensation unit 205 and an intra prediction unit 206 , a residual generation unit 207 , a transform unit 208 , a quantization unit 209 , an inverse quantization unit 210 , an inverse transform unit 211 , a reconstruction unit 212 , a buffer 213 , and an entropy encoding unit 214 .
- a partition unit 201 may include a mode select unit 203 , a motion estimation unit 204 , a motion compensation unit 205 and an intra prediction unit 206 , a residual generation unit 207 , a transform unit 208 , a quantization unit 209 , an inverse quantization unit 210 , an inverse transform unit 211 , a reconstruction unit 212 , a buffer 213 , and an entropy encoding unit 214 .
- video encoder 200 may include more, fewer, or different functional components.
- prediction unit 202 may include an intra block copy (IBC) unit.
- the IBC unit may perform prediction in an IBC mode in which at least one reference picture is a picture where the current video block is located.
- IBC intra block copy
- motion estimation unit 204 and motion compensation unit 205 may be highly integrated, but are represented in the example of FIG. 5 separately for purposes of explanation.
- Partition unit 201 may partition a picture into one or more video blocks.
- Video encoder 200 and video decoder 300 may support various video block sizes.
- Mode select unit 203 may select one of the coding modes, intra or inter, e.g., based on error results, and provide the resulting intra- or inter-coded block to a residual generation unit 207 to generate residual block data and to a reconstruction unit 212 to reconstruct the encoded block for use as a reference picture.
- mode select unit 203 may select a combination of intra and inter prediction (CIIP) mode in which the prediction is based on an inter prediction signal and an intra prediction signal.
- CIIP intra and inter prediction
- Mode select unit 203 may also select a resolution for a motion vector (e.g., a sub-pixel or integer pixel precision) for the block in the case of inter-prediction.
- motion estimation unit 204 may generate motion information for the current video block by comparing one or more reference frames from buffer 213 to the current video block.
- Motion compensation unit 205 may determine a predicted video block for the current video block based on the motion information and decoded samples of pictures from buffer 213 other than the picture associated with the current video block.
- Motion estimation unit 204 and motion compensation unit 205 may perform different operations for a current video block, for example, depending on whether the current video block is in an I slice, a P slice, or a B slice.
- motion estimation unit 204 may perform uni-directional prediction for the current video block, and motion estimation unit 204 may search reference pictures of list 0 or list 1 for a reference video block for the current video block. Motion estimation unit 204 may then generate a reference index that indicates the reference picture in list 0 or list 1 that contains the reference video block and a motion vector that indicates a spatial displacement between the current video block and the reference video block. Motion estimation unit 204 may output the reference index, a prediction direction indicator, and the motion vector as the motion information of the current video block. Motion compensation unit 205 may generate the predicted video block of the current block based on the reference video block indicated by the motion information of the current video block.
- motion estimation unit 204 may perform bi-directional prediction for the current video block, motion estimation unit 204 may search the reference pictures in list 0 for a reference video block for the current video block and may also search the reference pictures in list 1 for another reference video block for the current video block. Motion estimation unit 204 may then generate reference indexes that indicate the reference pictures in list 0 and list 1 containing the reference video blocks and motion vectors that indicate spatial displacements between the reference video blocks and the current video block. Motion estimation unit 204 may output the reference indexes and the motion vectors of the current video block as the motion information of the current video block. Motion compensation unit 205 may generate the predicted video block of the current video block based on the reference video blocks indicated by the motion information of the current video block.
- motion estimation unit 204 may output a full set of motion information for decoding processing of a decoder.
- motion estimation unit 204 may not output a full set of motion information for the current video. Rather, motion estimation unit 204 may signal the motion information of the current video block with reference to the motion information of another video block. For example, motion estimation unit 204 may determine that the motion information of the current video block is sufficiently similar to the motion information of a neighboring video block.
- motion estimation unit 204 may indicate, in a syntax structure associated with the current video block, a value that indicates to the video decoder 300 that the current video block has the same motion information as another video block.
- motion estimation unit 204 may identify, in a syntax structure associated with the current video block, another video block and a motion vector difference (MVD).
- the motion vector difference indicates a difference between the motion vector of the current video block and the motion vector of the indicated video block.
- the video decoder 300 may use the motion vector of the indicated video block and the motion vector difference to determine the motion vector of the current video block.
- video encoder 200 may predictively signal the motion vector.
- Two examples of predictive signaling techniques that may be implemented by video encoder 200 include advanced motion vector prediction (AMVP) and merge mode signaling.
- AMVP advanced motion vector prediction
- merge mode signaling merge mode signaling
- Intra prediction unit 206 may perform intra prediction on the current video block. When intra prediction unit 206 performs intra prediction on the current video block, intra prediction unit 206 may generate prediction data for the current video block based on decoded samples of other video blocks in the same picture.
- the prediction data for the current video block may include a predicted video block and various syntax elements.
- Residual generation unit 207 may generate residual data for the current video block by subtracting (e.g., indicated by the minus sign) the predicted video block(s) of the current video block from the current video block.
- the residual data of the current video block may include residual video blocks that correspond to different sample components of the samples in the current video block.
- residual generation unit 207 may not perform the subtracting operation.
- Transform processing unit 208 may generate one or more transform coefficient video blocks for the current video block by applying one or more transforms to a residual video block associated with the current video block.
- quantization unit 209 may quantize the transform coefficient video block associated with the current video block based on one or more quantization parameter (QP) values associated with the current video block.
- QP quantization parameter
- Inverse quantization unit 210 and inverse transform unit 211 may apply inverse quantization and inverse transforms to the transform coefficient video block, respectively, to reconstruct a residual video block from the transform coefficient video block.
- Reconstruction unit 212 may add the reconstructed residual video block to corresponding samples from one or more predicted video blocks generated by the prediction unit 202 to produce a reconstructed video block associated with the current block for storage in the buffer 213 .
- loop filtering operation may be performed to reduce video blocking artifacts in the video block.
- Entropy encoding unit 214 may receive data from other functional components of the video encoder 200 . When entropy encoding unit 214 receives the data, entropy encoding unit 214 may perform one or more entropy encoding operations to generate entropy encoded data and output a bitstream that includes the entropy encoded data.
- FIG. 6 is a block diagram illustrating an example of video decoder 300 which may be video decoder 124 in the system 100 illustrated in FIG. 4 .
- the video decoder 300 may be configured to perform any or all of the techniques of this disclosure.
- the video decoder 300 includes a plurality of functional components.
- the techniques described in this disclosure may be shared among the various components of the video decoder 300 .
- a processor may be configured to perform any or all of the techniques described in this disclosure.
- video decoder 300 includes an entropy decoding unit 301 , a motion compensation unit 302 , an intra prediction unit 303 , an inverse quantization unit 304 , an inverse transformation unit 305 , and a reconstruction unit 306 and a buffer 307 .
- Video decoder 300 may, in some examples, perform a decoding pass generally reciprocal to the encoding pass described with respect to video encoder 200 ( FIG. 5 ).
- Entropy decoding unit 301 may retrieve an encoded bitstream.
- the encoded bitstream may include entropy coded video data (e.g., encoded blocks of video data).
- Entropy decoding unit 301 may decode the entropy coded video data, and from the entropy decoded video data, motion compensation unit 302 may determine motion information including motion vectors, motion vector precision, reference picture list indexes, and other motion information. Motion compensation unit 302 may, for example, determine such information by performing the AMVP and merge mode.
- Motion compensation unit 302 may produce motion compensated blocks, possibly performing interpolation based on interpolation filters. Identifiers for interpolation filters to be used with sub-pixel precision may be included in the syntax elements.
- Motion compensation unit 302 may use interpolation filters as used by video encoder 200 during encoding of the video block to calculate interpolated values for sub-integer pixels of a reference block. Motion compensation unit 302 may determine the interpolation filters used by video encoder 200 according to received syntax information and use the interpolation filters to produce predictive blocks.
- Motion compensation unit 302 may use some of the syntax information to determine sizes of blocks used to encode frame(s) and/or slice(s) of the encoded video sequence, partition information that describes how each macroblock of a picture of the encoded video sequence is partitioned, modes indicating how each partition is encoded, one or more reference frames (and reference frame lists) for each inter-encoded block, and other information to decode the encoded video sequence.
- Intra prediction unit 303 may use intra prediction modes for example received in the bitstream to form a prediction block from spatially adjacent blocks.
- Inverse quantization unit 304 inverse quantizes, i.e., de-quantizes, the quantized video block coefficients provided in the bitstream and decoded by entropy decoding unit 301 .
- Inverse transform unit 305 applies an inverse transform.
- Reconstruction unit 306 may sum the residual blocks with the corresponding prediction blocks generated by motion compensation unit 302 or intra-prediction unit 303 to form decoded blocks. If desired, a deblocking filter may also be applied to filter the decoded blocks in order to remove blocking artifacts.
- the decoded video blocks are then stored in buffer 307 , which provides reference blocks for subsequent motion compensation/intra prediction and also produces decoded video for presentation on a display device.
- the first set of clauses show example embodiments of techniques discussed in the previous section.
- the following clauses show example embodiments of techniques discussed in the previous section (e.g., item 1).
- a video processing method (e.g., method 3000 shown in FIG. 3 ), comprising: performing ( 3002 ) a conversion between a video having one or more video layers comprising one or more video pictures and a coded representation of the video; wherein the coded representation includes a video parameter set that indicates a maximum value of a chroma format indicator and/or a maximum value of bit depth used to represent pixels of the video.
- a video processing method comprising: performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that a maximum picture width and/or a maximum picture height for video pictures of all video layers controls a value of a variable that indicates whether pictures in a decoder buffer are output prior to removing from the decoder buffer.
- a video processing method comprising: performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that maximum value of a chroma format indicator and/or a maximum value of bit depth used to represent pixels of the video control a value of a variable that indicates whether pictures in a decoder buffer are output prior to removing from the decoder buffer.
- a video processing method comprising: performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that a value of a variable that indicates whether pictures in a decoder buffer are output prior to removing from the decoder buffer is independent of whether separate color planes are used for encoding the video.
- a video processing method comprising: performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that a value of a variable that indicates whether pictures in a decoder buffer are output prior to removing from the decoder buffer is included in the coded representation at an access unit (AU) level.
- AU access unit
- a video processing method comprising: performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that a picture output flag for a video picture in an access unit is determined based on a pic_output_flag variable of another video picture in the access unit.
- a video processing method comprising: performing a conversion between a video having one or more video layers and a coded representation of the video, wherein the coded representation conforms to a format rule that specifies that, for a video picture that does not belong to an output layer, a value of a picture output flag.
- a video decoding apparatus comprising a processor configured to implement a method recited in one or more of clauses 1 to 19.
- a video encoding apparatus comprising a processor configured to implement a method recited in one or more of clauses 1 to 19.
- a computer program product having computer code stored thereon, the code, when executed by a processor, causes the processor to implement a method recited in any of clauses 1 to 19.
- a method of video processing comprising: performing 712 a conversion between a video and a bitstream of the video according to a format rule, wherein the bitstream includes one or more output layer sets (OLSs), each OLS comprising one or more coded layer video sequences, and wherein the format rule specifies that a video parameter set indicates, for each of the one or more OLSs, a greatest allowed value of a chroma format indicator and/or a greatest allowed value of a bit depth used to represent pixels of the video.
- OLSs output layer sets
- the rule specifies to allocate memory for a decoded picture buffer according to values of at least one of syntax elements that include ols_dpb_pic_width[i] indicating a width of each picture storage buffer for an i-th OLS, ols_dpb_pic_height[i] indicating a height of each picture storage buffer for the i-th OLS, a syntax element indicating the greatest allowed value of the chroma format indicator for the i-th OLS, and a syntax element indicating the greatest allowed value of a bit depth for the i-th OLS.
- syntax elements that include ols_dpb_pic_width[i] indicating a width of each picture storage buffer for an i-th OLS, ols_dpb_pic_height[i] indicating a height of each picture storage buffer for the i-th OLS, a syntax element indicating the greatest allowed value of the chroma format indicator for the i-th OLS, and
- a method of video processing comprising: performing 722 a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a maximum picture width and/or a maximum picture height for video pictures of all video layers controls a value of a variable that indicates whether pictures in a decoded picture buffer prior to a current picture in decoding order in the bitstream are output before the pictures are removed from the decoded picture buffer.
- variable is derived based at least on one or more syntax elements included in a video parameter set.
- the value of the variable is set to 1 in case that a value of a maximum width of each picture, a maximum height of each picture, a greatest allowed value of a chroma format indicator, or a greatest allowed value of a bit depth that is derived for a current access unit is different from a value of a maximum width of each picture, a maximum height of each picture, a greatest allowed value of a chroma format indicator or a greatest allowed value of a bit depth that is derived for a preceding access unit in decoding order.
- a method of video processing comprising: performing 732 a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a greatest allowed value of a chroma format indicator and/or a greatest allowed value of a bit depth used to represent pixels of the video control a value of a variable that indicates whether pictures in a decoded picture buffer prior to a current picture in decoding order in the bitstream are output before the pictures are removed from the decoded picture buffer.
- variable is derived based at least on one or more syntax elements signaled in a video parameter set.
- a method of video processing (e.g., method 740 as shown in FIG. 7 D ), comprising: performing 742 a conversion between a video having one or more video layers and a bitstream of the video according to a rule, and wherein the rule specifies that a value of a variable that indicates whether pictures in a decoded picture buffer prior to a current picture in decoding order in the bitstream are output before the pictures are removed from the decoded picture buffer is independent of whether separate color planes are used for encoding the video.
- a video processing apparatus comprising a processor configured to implement a method recited in any one or more of clauses 1 to 25.
- a method of storing a bitstream of a video comprising, a method recited in any one of clauses 1 to 25, and further including storing the bitstream to a non-transitory computer-readable recording medium.
- a computer readable medium storing program code that, when executed, causes a processor to implement a method recited in any one or more of clauses 1 to 25.
- a computer readable medium that stores a bitstream generated according to any of the above described methods.
- a video processing apparatus for storing a bitstream representation, wherein the video processing apparatus is configured to implement a method recited in any one or more of clauses 1 to 25.
- a method of video processing (e.g., method 810 as shown in FIG. 8 A ), comprising: performing 812 a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a flag that indicates whether to remove pictures previously decoded and stored in a decoded picture buffer from the decoded picture buffer when decoding an access unit of a certain type is included in the bitstream.
- a method of video processing (e.g., method 820 as shown in FIG. 8 B ), comprising: performing 822 a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a first flag that indicates whether to remove pictures previously decoded and stored in a decoded picture buffer from the decoded picture buffer when decoding an access unit of a particular type is not indicated in a picture header.
- a method of video processing (e.g., method 830 as shown in FIG. 8 C ), comprising: performing 832 a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a flag associated with an access unit that indicates whether to remove pictures previously decoded and stored in a decoded picture buffer from the decoded picture buffer depends on a value of the flag of each picture of the access unit.
- a video processing apparatus comprising a processor configured to implement a method recited in any one or more of clauses 1 to 14.
- a method of storing a bitstream of a video comprising, a method recited in any one of clauses 1 to 14, and further including storing the bitstream to a non-transitory computer-readable recording medium.
- a computer readable medium storing program code that, when executed, causes a processor to implement a method recited in any one or more of clauses 1 to 14.
- a computer readable medium that stores a bitstream generated according to any of the above described methods.
- a video processing apparatus for storing a bitstream representation, wherein the video processing apparatus is configured to implement a method recited in any one or more of clauses 1 to 14.
- a method of video processing (e.g., method 910 as shown in FIG. 9 A ), comprising: 912 performing a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a variable indicating whether to output a picture in an access unit is determined based on a flag indicating whether to output another picture in the access unit.
- the value of the variable is further based on at least one of i) a flag specifying a value of an identifier for the video parameter set (VPS), ii) whether a current video layer is an output layer, ii) whether a current picture is a random access skipped leading picture, a gradual decoding refresh picture, a recovering picture of a gradual decoding refresh picture, or iii) whether pictures in the decoded picture buffer prior to the current picture in decoding order are output before the pictures are recovered.
- VPS video parameter set
- the current picture is a random access skipped leading picture and associated intra random access point picture in the decoded picture buffer prior to the current picture in decoding order is not output before the intra random access point picture is recovered;
- the current picture is a gradual decoding refresh picture with pictures in the decoded picture buffer prior to the current picture in decoding order are not output before the pictures are recovered or a recovering picture of the gradual decoding refresh picture with pictures in the decoded picture buffer prior to the current picture in decoding order are not output before the pictures are recovered.
- a method of video processing (e.g., method 920 as shown in FIG. 9 B ), comprising: performing 922 a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that a value of a variable indicating whether to output a picture in an access unit is set equal to a certain value in case that the picture does not belong to an output layer.
- a method of video processing comprising: performing 932 a conversion between a video having one or more video layers and a bitstream of the video according to a format rule, and wherein the format rule specifies that in case that the video comprises only one output layer, an access unit that does not include an output layer is coded by setting a variable indicating whether to output a picture in the access unit to a first value for the picture having a highest layer ID (identification) value and to a second value for all other pictures.
- the format rule specifies that in case that the video comprises only one output layer, an access unit that does not include an output layer is coded by setting a variable indicating whether to output a picture in the access unit to a first value for the picture having a highest layer ID (identification) value and to a second value for all other pictures.
- a video processing apparatus comprising a processor configured to implement a method recited in any one or more of clauses 1 to 19.
- a method of storing a bitstream of a video comprising, a method recited in any one of clauses 1 to 19, and further including storing the bitstream to a non-transitory computer-readable recording medium.
- a computer readable medium storing program code that, when executed, causes a processor to implement a method recited in any one or more of clauses 1 to 19.
- a computer readable medium that stores a bitstream generated according to any of the above described methods.
- a video processing apparatus for storing a bitstream representation, wherein the video processing apparatus is configured to implement a method recited in any one or more of clauses 1 to 19.
- video processing may refer to video encoding, video decoding, video compression or video decompression.
- video compression algorithms may be applied during conversion from pixel representation of a video to a corresponding bitstream representation or vice versa.
- the bitstream representation of a current video block may, for example, correspond to bits that are either co-located or spread in different places within the bitstream, as is defined by the syntax.
- a macroblock may be encoded in terms of transformed and coded error residual values and also using bits in headers and other fields in the bitstream.
- a decoder may parse a bitstream with the knowledge that some fields may be present, or absent, based on the determination, as is described in the above solutions.
- an encoder may determine that certain syntax fields are or are not to be included and generate the coded representation accordingly by including or excluding the syntax fields from the coded representation.
- the disclosed and other solutions, examples, embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them.
- the disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus.
- the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them.
- data processing apparatus encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
- the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
- a propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
- a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
- a computer program does not necessarily correspond to a file in a file system.
- a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code).
- a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
- the processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
- the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an field programmable gate array (FPGA) or an application specific integrated circuit (ASIC).
- FPGA field programmable gate array
- ASIC application specific integrated circuit
- processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
- a processor will receive instructions and data from a read only memory or a random-access memory or both.
- the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
- a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
- mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
- a computer need not have such devices.
- Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and compact disc, read-only memory (CD ROM) and digital versatile disc read-only memory (DVD-ROM) disks.
- semiconductor memory devices e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices
- magnetic disks e.g., internal hard disks or removable disks
- magneto optical disks magneto optical disks
- CD ROM compact disc, read-only memory
- DVD-ROM digital versatile disc read-only memory
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
- Television Signal Processing For Recording (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/946,624 US20230028609A1 (en) | 2020-03-17 | 2022-09-16 | Using Video Parameter Set In Video Coding |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062990749P | 2020-03-17 | 2020-03-17 | |
PCT/US2021/022547 WO2021188527A1 (en) | 2020-03-17 | 2021-03-16 | Using video parameter set in video coding |
US17/946,624 US20230028609A1 (en) | 2020-03-17 | 2022-09-16 | Using Video Parameter Set In Video Coding |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/022547 Continuation WO2021188527A1 (en) | 2020-03-17 | 2021-03-16 | Using video parameter set in video coding |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230028609A1 true US20230028609A1 (en) | 2023-01-26 |
Family
ID=77768274
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/946,637 Active US11910022B2 (en) | 2020-03-17 | 2022-09-16 | Decoded picture buffer memory allocation and picture output in scalable video coding |
US17/946,647 Active US11838555B2 (en) | 2020-03-17 | 2022-09-16 | Picture output flag indication in video coding |
US17/946,624 Pending US20230028609A1 (en) | 2020-03-17 | 2022-09-16 | Using Video Parameter Set In Video Coding |
US18/531,014 Pending US20240129544A1 (en) | 2020-03-17 | 2023-12-06 | Decoded picture buffer memory allocation and picture output in scalable video coding |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/946,637 Active US11910022B2 (en) | 2020-03-17 | 2022-09-16 | Decoded picture buffer memory allocation and picture output in scalable video coding |
US17/946,647 Active US11838555B2 (en) | 2020-03-17 | 2022-09-16 | Picture output flag indication in video coding |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/531,014 Pending US20240129544A1 (en) | 2020-03-17 | 2023-12-06 | Decoded picture buffer memory allocation and picture output in scalable video coding |
Country Status (8)
Country | Link |
---|---|
US (4) | US11910022B2 (de) |
EP (2) | EP4104434A4 (de) |
JP (2) | JP7415035B2 (de) |
KR (2) | KR20220155292A (de) |
CN (3) | CN115315942A (de) |
BR (1) | BR112022018108A2 (de) |
MX (1) | MX2022011208A (de) |
WO (3) | WO2021188532A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220086498A1 (en) * | 2020-09-17 | 2022-03-17 | Lemon Inc. | Picture dimension indication in decoder configuration record |
US20230156227A1 (en) * | 2020-04-01 | 2023-05-18 | Lg Electronics Inc. | Signaling-based image or video coding of information related to recovery point for gdr |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2022334740A1 (en) * | 2021-08-26 | 2024-03-14 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Operation range extension for versatile video coding |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140092961A1 (en) * | 2012-09-28 | 2014-04-03 | Sharp Laboratories Of America, Inc. | Signaling decoder picture buffer information |
US20150195545A1 (en) * | 2014-01-03 | 2015-07-09 | Qualcomm Incorporated | Inference of nooutputofpriorpicsflag in video coding |
US20150304665A1 (en) * | 2014-01-07 | 2015-10-22 | Nokia Corporation | Method and apparatus for video coding and decoding |
US20160044324A1 (en) * | 2013-04-07 | 2016-02-11 | Sharp Kabushiki Kaisha | Signaling change in output layer sets |
US20160373771A1 (en) * | 2015-06-18 | 2016-12-22 | Qualcomm Incorporated | Design of tracks and operation point signaling in layered hevc file format |
US20180352229A1 (en) * | 2016-03-07 | 2018-12-06 | Sony Corporation | Encoding apparatus and encoding method |
US20210203956A1 (en) * | 2019-12-30 | 2021-07-01 | Tencent America LLC | Method for alignment across layers in coded video stream |
US20220141495A1 (en) * | 2019-07-19 | 2022-05-05 | Wilus Institute Of Standards And Technology Inc. | Video signal processing method and device |
US20220217388A1 (en) * | 2019-09-24 | 2022-07-07 | Huawei Technologies Co., Ltd. | Decoded Picture Buffer Operation For Resolution Changes |
US20220312023A1 (en) * | 2020-02-10 | 2022-09-29 | Panasonic Intellectual Property Corporation Of America | Encoder, decoder, encoding method, and decoding method |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7391807B2 (en) | 2002-04-24 | 2008-06-24 | Mitsubishi Electric Research Laboratories, Inc. | Video transcoding of scalable multi-layer videos to single layer video |
US8009731B2 (en) * | 2002-11-25 | 2011-08-30 | Panasonic Corporation | Motion compensation method, picture coding method and picture decoding method |
US7535383B2 (en) * | 2006-07-10 | 2009-05-19 | Sharp Laboratories Of America Inc. | Methods and systems for signaling multi-layer bitstream data |
SG184528A1 (en) | 2010-04-09 | 2012-11-29 | Mitsubishi Electric Corp | Moving image encoding device and moving image decoding device |
US9237356B2 (en) * | 2011-09-23 | 2016-01-12 | Qualcomm Incorporated | Reference picture list construction for video coding |
US9491456B2 (en) | 2012-09-24 | 2016-11-08 | Qualcomm Incorporated | Coded picture buffer removal times signaled in picture and sub-picture timing supplemental enhancement information messages |
US10230956B2 (en) * | 2012-09-26 | 2019-03-12 | Integrated Device Technology, Inc. | Apparatuses and methods for optimizing rate-distortion of syntax elements |
CN109982076B (zh) * | 2012-12-14 | 2022-12-13 | Lg 电子株式会社 | 编码视频的方法、解码视频的方法以及使用其的装置 |
US10116931B2 (en) * | 2013-01-03 | 2018-10-30 | Texas Instruments Incorporated | Hierarchical inter-layer prediction in multi-loop scalable video coding |
CN109729364A (zh) * | 2013-04-07 | 2019-05-07 | 杜比国际公司 | 用信号通知输出层集的改变 |
US20140307803A1 (en) * | 2013-04-08 | 2014-10-16 | Qualcomm Incorporated | Non-entropy encoded layer dependency information |
EP3022921A4 (de) * | 2013-07-14 | 2017-03-15 | Sharp Kabushiki Kaisha | Signalisierung von indikationen und einschränkungen |
US9794579B2 (en) * | 2013-07-15 | 2017-10-17 | Qualcomm Incorporated | Decoded picture buffer operations for video coding |
US10284858B2 (en) | 2013-10-15 | 2019-05-07 | Qualcomm Incorporated | Support of multi-mode extraction for multi-layer video codecs |
EP3058747B1 (de) * | 2013-10-15 | 2019-11-20 | Nokia Technologies Oy | Skalierbare videocodierung und -decodierung mithilfe eines syntaxelements |
US10560710B2 (en) * | 2014-01-03 | 2020-02-11 | Qualcomm Incorporated | Method for coding recovery point supplemental enhancement information (SEI) messages and region refresh information SEI messages in multi-layer coding |
US11388441B2 (en) * | 2014-03-18 | 2022-07-12 | Qualcomm Incorporated | Derivation of SPS temporal ID nesting information for multi-layer bitstreams |
US10477232B2 (en) * | 2014-03-21 | 2019-11-12 | Qualcomm Incorporated | Search region determination for intra block copy in video coding |
GB2587365B (en) * | 2019-09-24 | 2023-02-22 | Canon Kk | Method, device, and computer program for coding and decoding a picture |
-
2021
- 2021-03-16 EP EP21771386.6A patent/EP4104434A4/de active Pending
- 2021-03-16 WO PCT/US2021/022559 patent/WO2021188532A1/en active Application Filing
- 2021-03-16 CN CN202180022454.7A patent/CN115315942A/zh active Pending
- 2021-03-16 CN CN202180022467.4A patent/CN115336277A/zh active Pending
- 2021-03-16 WO PCT/US2021/022570 patent/WO2021188542A1/en unknown
- 2021-03-16 JP JP2022556153A patent/JP7415035B2/ja active Active
- 2021-03-16 WO PCT/US2021/022547 patent/WO2021188527A1/en unknown
- 2021-03-16 EP EP21771243.9A patent/EP4104447A4/de active Pending
- 2021-03-16 KR KR1020227031200A patent/KR20220155292A/ko unknown
- 2021-03-16 CN CN202180024092.5A patent/CN115315941A/zh active Pending
- 2021-03-16 BR BR112022018108A patent/BR112022018108A2/pt unknown
- 2021-03-16 MX MX2022011208A patent/MX2022011208A/es unknown
- 2021-03-16 KR KR1020227031211A patent/KR20220155293A/ko active IP Right Grant
-
2022
- 2022-09-16 US US17/946,637 patent/US11910022B2/en active Active
- 2022-09-16 US US17/946,647 patent/US11838555B2/en active Active
- 2022-09-16 US US17/946,624 patent/US20230028609A1/en active Pending
-
2023
- 2023-12-06 US US18/531,014 patent/US20240129544A1/en active Pending
-
2024
- 2024-06-19 JP JP2024098978A patent/JP2024138288A/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140092961A1 (en) * | 2012-09-28 | 2014-04-03 | Sharp Laboratories Of America, Inc. | Signaling decoder picture buffer information |
US20160044324A1 (en) * | 2013-04-07 | 2016-02-11 | Sharp Kabushiki Kaisha | Signaling change in output layer sets |
US20150195545A1 (en) * | 2014-01-03 | 2015-07-09 | Qualcomm Incorporated | Inference of nooutputofpriorpicsflag in video coding |
US20150304665A1 (en) * | 2014-01-07 | 2015-10-22 | Nokia Corporation | Method and apparatus for video coding and decoding |
US20160373771A1 (en) * | 2015-06-18 | 2016-12-22 | Qualcomm Incorporated | Design of tracks and operation point signaling in layered hevc file format |
US20180352229A1 (en) * | 2016-03-07 | 2018-12-06 | Sony Corporation | Encoding apparatus and encoding method |
US20220141495A1 (en) * | 2019-07-19 | 2022-05-05 | Wilus Institute Of Standards And Technology Inc. | Video signal processing method and device |
US20220217388A1 (en) * | 2019-09-24 | 2022-07-07 | Huawei Technologies Co., Ltd. | Decoded Picture Buffer Operation For Resolution Changes |
US20210203956A1 (en) * | 2019-12-30 | 2021-07-01 | Tencent America LLC | Method for alignment across layers in coded video stream |
US20220312023A1 (en) * | 2020-02-10 | 2022-09-29 | Panasonic Intellectual Property Corporation Of America | Encoder, decoder, encoding method, and decoding method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230156227A1 (en) * | 2020-04-01 | 2023-05-18 | Lg Electronics Inc. | Signaling-based image or video coding of information related to recovery point for gdr |
US12088846B2 (en) * | 2020-04-01 | 2024-09-10 | Lg Electronics Inc. | Signaling-based image or video coding of information related to recovery point for GDR |
US20220086498A1 (en) * | 2020-09-17 | 2022-03-17 | Lemon Inc. | Picture dimension indication in decoder configuration record |
US11831921B2 (en) | 2020-09-17 | 2023-11-28 | Lemon Inc. | Video operating points record syntax and semantics |
US11877011B2 (en) * | 2020-09-17 | 2024-01-16 | Lemon Inc. | Picture dimension indication in decoder configuration record |
Also Published As
Publication number | Publication date |
---|---|
CN115336277A (zh) | 2022-11-11 |
KR20220155293A (ko) | 2022-11-22 |
WO2021188527A1 (en) | 2021-09-23 |
EP4104434A1 (de) | 2022-12-21 |
EP4104447A1 (de) | 2022-12-21 |
MX2022011208A (es) | 2022-09-19 |
EP4104434A4 (de) | 2023-08-23 |
US20230023356A1 (en) | 2023-01-26 |
JP2024138288A (ja) | 2024-10-08 |
JP2023519561A (ja) | 2023-05-11 |
US20230025260A1 (en) | 2023-01-26 |
EP4104447A4 (de) | 2023-08-16 |
WO2021188542A1 (en) | 2021-09-23 |
KR20220155292A (ko) | 2022-11-22 |
BR112022018108A2 (pt) | 2022-10-25 |
US11838555B2 (en) | 2023-12-05 |
US20240129544A1 (en) | 2024-04-18 |
JP2023518752A (ja) | 2023-05-08 |
CN115315941A (zh) | 2022-11-08 |
CN115315942A (zh) | 2022-11-08 |
US11910022B2 (en) | 2024-02-20 |
WO2021188532A1 (en) | 2021-09-23 |
JP7415035B2 (ja) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11863795B2 (en) | Gradual decoding refresh access unit in scalable video coding | |
US11849149B2 (en) | Order relationship between subpictures according to value for layer and value of subpicture index | |
US11910022B2 (en) | Decoded picture buffer memory allocation and picture output in scalable video coding | |
US11818338B2 (en) | Sublayers information in video coding | |
US11818337B2 (en) | Constraints on reference picture lists entries | |
US11778200B2 (en) | Constraints on reference picture information | |
US11956454B2 (en) | Decoded picture buffer management and subpictures in video coding | |
US20240137493A1 (en) | Constraints On Reference Picture Lists | |
US20240080492A1 (en) | Identification Of Inter-Layer Reference Pictures In Coded Video | |
CN115699732A (zh) | 视频编解码中的参考图片重采样 | |
EP4136847A1 (de) | Ordnung von nal-einheiten in einem kodierten video | |
CN115699772A (zh) | 视频编解码中的补充增强信息的约束 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: SPECIAL NEW |
|
AS | Assignment |
Owner name: BYTEDANCE INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WANG, YE-KUI;REEL/FRAME:062644/0434 Effective date: 20210310 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |