US20220304976A1 - Method of simultaneously treating viral disease caused coronavirus, its variants and mutants using a pharmaceutical micronutrient composition - Google Patents
Method of simultaneously treating viral disease caused coronavirus, its variants and mutants using a pharmaceutical micronutrient composition Download PDFInfo
- Publication number
- US20220304976A1 US20220304976A1 US17/728,769 US202217728769A US2022304976A1 US 20220304976 A1 US20220304976 A1 US 20220304976A1 US 202217728769 A US202217728769 A US 202217728769A US 2022304976 A1 US2022304976 A1 US 2022304976A1
- Authority
- US
- United States
- Prior art keywords
- range
- pharmaceutical
- micronutrient composition
- viral
- cov
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 159
- 239000011785 micronutrient Substances 0.000 title claims abstract description 64
- 235000013369 micronutrients Nutrition 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 29
- 201000010099 disease Diseases 0.000 title claims abstract description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 8
- 230000003612 virological effect Effects 0.000 title claims description 30
- 241000711573 Coronaviridae Species 0.000 title claims description 28
- 210000004027 cell Anatomy 0.000 claims abstract description 65
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 claims abstract description 54
- 108090000975 Angiotensin-converting enzyme 2 Proteins 0.000 claims abstract description 46
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims abstract description 42
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229940109262 curcumin Drugs 0.000 claims abstract description 27
- 235000012754 curcumin Nutrition 0.000 claims abstract description 27
- 239000004148 curcumin Substances 0.000 claims abstract description 27
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 claims abstract description 27
- 210000002919 epithelial cell Anatomy 0.000 claims abstract description 20
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000419 plant extract Substances 0.000 claims abstract description 18
- FTVWIRXFELQLPI-ZDUSSCGKSA-N (S)-naringenin Chemical compound C1=CC(O)=CC=C1[C@H]1OC2=CC(O)=CC(O)=C2C(=O)C1 FTVWIRXFELQLPI-ZDUSSCGKSA-N 0.000 claims abstract description 16
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 claims abstract description 16
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 claims abstract description 16
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 claims abstract description 16
- WGEYAGZBLYNDFV-UHFFFAOYSA-N naringenin Natural products C1(=O)C2=C(O)C=C(O)C=C2OC(C1)C1=CC=C(CC1)O WGEYAGZBLYNDFV-UHFFFAOYSA-N 0.000 claims abstract description 16
- 235000007625 naringenin Nutrition 0.000 claims abstract description 16
- 229940117954 naringenin Drugs 0.000 claims abstract description 16
- 235000005875 quercetin Nutrition 0.000 claims abstract description 16
- 229960001285 quercetin Drugs 0.000 claims abstract description 16
- QNVSXXGDAPORNA-UHFFFAOYSA-N Resveratrol Natural products OC1=CC=CC(C=CC=2C=C(O)C(O)=CC=2)=C1 QNVSXXGDAPORNA-UHFFFAOYSA-N 0.000 claims abstract description 15
- 235000021283 resveratrol Nutrition 0.000 claims abstract description 15
- 229940016667 resveratrol Drugs 0.000 claims abstract description 15
- 235000014620 theaflavin Nutrition 0.000 claims abstract description 15
- 235000010323 ascorbic acid Nutrition 0.000 claims abstract description 14
- 241000700605 Viruses Species 0.000 claims abstract description 13
- 239000011668 ascorbic acid Substances 0.000 claims abstract description 13
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 claims abstract description 12
- 241000124008 Mammalia Species 0.000 claims abstract description 12
- IPQKDIRUZHOIOM-UHFFFAOYSA-N Oroxin A Natural products OC1C(O)C(O)C(CO)OC1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC=CC=1)O2 IPQKDIRUZHOIOM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229960004308 acetylcysteine Drugs 0.000 claims abstract description 12
- 229960003321 baicalin Drugs 0.000 claims abstract description 12
- IKIIZLYTISPENI-ZFORQUDYSA-N baicalin Chemical compound O1[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC=CC=1)O2 IKIIZLYTISPENI-ZFORQUDYSA-N 0.000 claims abstract description 12
- AQHDANHUMGXSJZ-UHFFFAOYSA-N baicalin Natural products OC1C(O)C(C(O)CO)OC1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC=CC=1)O2 AQHDANHUMGXSJZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 230000007502 viral entry Effects 0.000 claims abstract description 12
- 229940072107 ascorbate Drugs 0.000 claims abstract description 11
- 210000002889 endothelial cell Anatomy 0.000 claims abstract description 11
- 208000015181 infectious disease Diseases 0.000 claims abstract description 11
- 241000127282 Middle East respiratory syndrome-related coronavirus Species 0.000 claims abstract description 10
- 208000036142 Viral infection Diseases 0.000 claims abstract description 8
- 230000009385 viral infection Effects 0.000 claims abstract description 8
- 102100035765 Angiotensin-converting enzyme 2 Human genes 0.000 claims abstract 10
- 235000013824 polyphenols Nutrition 0.000 claims description 36
- 150000008442 polyphenolic compounds Chemical class 0.000 claims description 35
- 241000282414 Homo sapiens Species 0.000 claims description 24
- 230000001413 cellular effect Effects 0.000 claims description 20
- UWHUTZOCTZJUKC-CVEARBPZSA-N brazilin Natural products C12=CC(O)=C(O)C=C2C[C@@]2(O)[C@@H]1C1=CC=C(O)C=C1OC2 UWHUTZOCTZJUKC-CVEARBPZSA-N 0.000 claims description 13
- UWHUTZOCTZJUKC-JKSUJKDBSA-N brazilin Chemical compound C12=CC(O)=C(O)C=C2C[C@]2(O)[C@H]1C1=CC=C(O)C=C1OC2 UWHUTZOCTZJUKC-JKSUJKDBSA-N 0.000 claims description 13
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 claims description 12
- 239000000284 extract Substances 0.000 claims description 12
- 238000011282 treatment Methods 0.000 claims description 11
- 241000196324 Embryophyta Species 0.000 claims description 9
- IPMYMEWFZKHGAX-UHFFFAOYSA-N Isotheaflavin Natural products OC1CC2=C(O)C=C(O)C=C2OC1C(C1=C2)=CC(O)=C(O)C1=C(O)C(=O)C=C2C1C(O)CC2=C(O)C=C(O)C=C2O1 IPMYMEWFZKHGAX-UHFFFAOYSA-N 0.000 claims description 8
- UXRMWRBWCAGDQB-UHFFFAOYSA-N Theaflavin Natural products C1=CC(C2C(CC3=C(O)C=C(O)C=C3O2)O)=C(O)C(=O)C2=C1C(C1OC3=CC(O)=CC(O)=C3CC1O)=CC(O)=C2O UXRMWRBWCAGDQB-UHFFFAOYSA-N 0.000 claims description 8
- IPMYMEWFZKHGAX-ZKSIBHASSA-N theaflavin Chemical compound C1=C2C([C@H]3OC4=CC(O)=CC(O)=C4C[C@H]3O)=CC(O)=C(O)C2=C(O)C(=O)C=C1[C@@H]1[C@H](O)CC2=C(O)C=C(O)C=C2O1 IPMYMEWFZKHGAX-ZKSIBHASSA-N 0.000 claims description 8
- 229940026509 theaflavin Drugs 0.000 claims description 8
- 230000003111 delayed effect Effects 0.000 claims description 7
- 238000013268 sustained release Methods 0.000 claims description 7
- 239000012730 sustained-release form Substances 0.000 claims description 7
- 230000000699 topical effect Effects 0.000 claims description 6
- FXNFHKRTJBSTCS-UHFFFAOYSA-N Baicalein Natural products C=1C(=O)C=2C(O)=C(O)C(O)=CC=2OC=1C1=CC=CC=C1 FXNFHKRTJBSTCS-UHFFFAOYSA-N 0.000 claims description 5
- UDFLTIRFTXWNJO-UHFFFAOYSA-N baicalein Chemical compound O1C2=CC(=O)C(O)=C(O)C2=C(O)C=C1C1=CC=CC=C1 UDFLTIRFTXWNJO-UHFFFAOYSA-N 0.000 claims description 5
- 229940015301 baicalein Drugs 0.000 claims description 5
- 241000894007 species Species 0.000 claims description 5
- 244000269722 Thea sinensis Species 0.000 claims description 4
- 229960005070 ascorbic acid Drugs 0.000 claims description 4
- 241000315672 SARS coronavirus Species 0.000 claims description 3
- DBSABEYSGXPBTA-RXSVEWSESA-N (2r)-2-[(1s)-1,2-dihydroxyethyl]-3,4-dihydroxy-2h-furan-5-one;phosphoric acid Chemical compound OP(O)(O)=O.OC[C@H](O)[C@H]1OC(=O)C(O)=C1O DBSABEYSGXPBTA-RXSVEWSESA-N 0.000 claims description 2
- 239000002211 L-ascorbic acid Substances 0.000 claims description 2
- 235000000069 L-ascorbic acid Nutrition 0.000 claims description 2
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 claims description 2
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 claims description 2
- 235000010385 ascorbyl palmitate Nutrition 0.000 claims description 2
- 229940071097 ascorbyl phosphate Drugs 0.000 claims description 2
- 235000010376 calcium ascorbate Nutrition 0.000 claims description 2
- 229940047036 calcium ascorbate Drugs 0.000 claims description 2
- 239000011692 calcium ascorbate Substances 0.000 claims description 2
- BLORRZQTHNGFTI-ZZMNMWMASA-L calcium-L-ascorbate Chemical compound [Ca+2].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] BLORRZQTHNGFTI-ZZMNMWMASA-L 0.000 claims description 2
- 229940074358 magnesium ascorbate Drugs 0.000 claims description 2
- AIOKQVJVNPDJKA-ZZMNMWMASA-L magnesium;(2r)-2-[(1s)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2h-furan-3-olate Chemical compound [Mg+2].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] AIOKQVJVNPDJKA-ZZMNMWMASA-L 0.000 claims description 2
- YRWWOAFMPXPHEJ-OFBPEYICSA-K sodium L-ascorbic acid 2-phosphate Chemical compound [Na+].[Na+].[Na+].OC[C@H](O)[C@H]1OC(=O)C(OP([O-])([O-])=O)=C1[O-] YRWWOAFMPXPHEJ-OFBPEYICSA-K 0.000 claims description 2
- 229940048058 sodium ascorbyl phosphate Drugs 0.000 claims description 2
- 235000009569 green tea Nutrition 0.000 claims 3
- 208000035473 Communicable disease Diseases 0.000 claims 1
- 235000020188 drinking water Nutrition 0.000 claims 1
- 239000003651 drinking water Substances 0.000 claims 1
- 235000013305 food Nutrition 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 abstract description 24
- 241000008910 Severe acute respiratory syndrome-related coronavirus Species 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 108020003175 receptors Proteins 0.000 description 44
- 102000005962 receptors Human genes 0.000 description 44
- 238000009739 binding Methods 0.000 description 43
- 102000053723 Angiotensin-converting enzyme 2 Human genes 0.000 description 36
- 241001678559 COVID-19 virus Species 0.000 description 35
- 101000929928 Homo sapiens Angiotensin-converting enzyme 2 Proteins 0.000 description 32
- 230000000694 effects Effects 0.000 description 32
- 102000048657 human ACE2 Human genes 0.000 description 32
- 230000005764 inhibitory process Effects 0.000 description 27
- 238000009472 formulation Methods 0.000 description 20
- 238000012360 testing method Methods 0.000 description 19
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 16
- 229930003316 Vitamin D Natural products 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 15
- 239000011710 vitamin D Substances 0.000 description 15
- 235000019166 vitamin D Nutrition 0.000 description 15
- 150000003710 vitamin D derivatives Chemical class 0.000 description 15
- 229940046008 vitamin d Drugs 0.000 description 15
- 102000004172 Cathepsin L Human genes 0.000 description 12
- 108090000624 Cathepsin L Proteins 0.000 description 12
- 101000629318 Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein Proteins 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 230000035772 mutation Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 210000002845 virion Anatomy 0.000 description 11
- 102000004961 Furin Human genes 0.000 description 10
- 108090001126 Furin Proteins 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 102000004889 Interleukin-6 Human genes 0.000 description 9
- 108090001005 Interleukin-6 Proteins 0.000 description 9
- 108060004795 Methyltransferase Proteins 0.000 description 9
- 229940096437 Protein S Drugs 0.000 description 9
- ZEASWHWETFMWCV-ISBUVJFSSA-N Theaflavin 3,3'-digallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C2=CC(=CC(=O)C(O)=C2C(O)=C(O)C=1)[C@@H]1[C@@H](CC2=C(O)C=C(O)C=C2O1)OC(=O)C=1C=C(O)C(O)=C(O)C=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 ZEASWHWETFMWCV-ISBUVJFSSA-N 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 229940100601 interleukin-6 Drugs 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 101710198474 Spike protein Proteins 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 239000013641 positive control Substances 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 239000013642 negative control Substances 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 6
- ZEASWHWETFMWCV-UHFFFAOYSA-N 7-O-(2-O-Acetyl-6-O-Methyl-beta-D-glucuronoside)-4',5,7-Trihydroxyflavone Natural products C=1C(O)=C(O)C2=C(O)C(=O)C=C(C3C(CC4=C(O)C=C(O)C=C4O3)OC(=O)C=3C=C(O)C(O)=C(O)C=3)C=C2C=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 ZEASWHWETFMWCV-UHFFFAOYSA-N 0.000 description 6
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229930003268 Vitamin C Natural products 0.000 description 6
- 239000000443 aerosol Substances 0.000 description 6
- 210000002821 alveolar epithelial cell Anatomy 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- 231100000673 dose–response relationship Toxicity 0.000 description 6
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000000770 proinflammatory effect Effects 0.000 description 6
- DZGQZNRJDFZFLV-UHFFFAOYSA-N theaflavin 3,3'-digallate Natural products OC1=CC(=Cc2cc(C3Oc4cc(O)cc(O)c4CC3OC(=O)c5cc(O)c(O)c(O)c5)c(O)c(O)c2C1=O)C6Oc7cc(O)cc(O)c7CC6OC(=O)c8cc(O)c(O)c(O)c8 DZGQZNRJDFZFLV-UHFFFAOYSA-N 0.000 description 6
- 235000008230 theaflavin-3,3'-digallate Nutrition 0.000 description 6
- 230000026683 transduction Effects 0.000 description 6
- 238000010361 transduction Methods 0.000 description 6
- 235000019154 vitamin C Nutrition 0.000 description 6
- 239000011718 vitamin C Substances 0.000 description 6
- 208000025721 COVID-19 Diseases 0.000 description 5
- 239000005089 Luciferase Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- 239000002671 adjuvant Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XFZJEEAOWLFHDH-UHFFFAOYSA-N (2R,2'R,3R,3'R,4R)-3,3',4',5,7-Pentahydroxyflavan(48)-3,3',4',5,7-pentahydroxyflavan Natural products C=12OC(C=3C=C(O)C(O)=CC=3)C(O)CC2=C(O)C=C(O)C=1C(C1=C(O)C=C(O)C=C1O1)C(O)C1C1=CC=C(O)C(O)=C1 XFZJEEAOWLFHDH-UHFFFAOYSA-N 0.000 description 4
- 239000001100 (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one Substances 0.000 description 4
- DOUMFZQKYFQNTF-WUTVXBCWSA-N (R)-rosmarinic acid Chemical compound C([C@H](C(=O)O)OC(=O)\C=C\C=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 DOUMFZQKYFQNTF-WUTVXBCWSA-N 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 4
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 208000001528 Coronaviridae Infections Diseases 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- RIUPLDUFZCXCHM-UHFFFAOYSA-N Urolithin A Chemical compound OC1=CC=C2C3=CC=C(O)C=C3OC(=O)C2=C1 RIUPLDUFZCXCHM-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- QRYRORQUOLYVBU-VBKZILBWSA-N carnosic acid Chemical compound CC([C@@H]1CC2)(C)CCC[C@]1(C(O)=O)C1=C2C=C(C(C)C)C(O)=C1O QRYRORQUOLYVBU-VBKZILBWSA-N 0.000 description 4
- 230000007910 cell fusion Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229940126534 drug product Drugs 0.000 description 4
- XHEFDIBZLJXQHF-UHFFFAOYSA-N fisetin Chemical compound C=1C(O)=CC=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 XHEFDIBZLJXQHF-UHFFFAOYSA-N 0.000 description 4
- 235000003599 food sweetener Nutrition 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- IYRMWMYZSQPJKC-UHFFFAOYSA-N kaempferol Chemical compound C1=CC(O)=CC=C1C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 IYRMWMYZSQPJKC-UHFFFAOYSA-N 0.000 description 4
- -1 licorice extract Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- UXOUKMQIEVGVLY-UHFFFAOYSA-N morin Natural products OC1=CC(O)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UXOUKMQIEVGVLY-UHFFFAOYSA-N 0.000 description 4
- XQYZDYMELSJDRZ-UHFFFAOYSA-N papaverine Chemical compound C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 XQYZDYMELSJDRZ-UHFFFAOYSA-N 0.000 description 4
- 239000000825 pharmaceutical preparation Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- XFZJEEAOWLFHDH-NFJBMHMQSA-N procyanidin B2 Chemical compound C1([C@@H]2[C@H](O)[C@H](C3=C(O)C=C(O)C=C3O2)C=2C(O)=CC(O)=C3C[C@H]([C@H](OC3=2)C=2C=C(O)C(O)=CC=2)O)=CC=C(O)C(O)=C1 XFZJEEAOWLFHDH-NFJBMHMQSA-N 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- SUVMJBTUFCVSAD-UHFFFAOYSA-N sulforaphane Chemical compound CS(=O)CCCCN=C=S SUVMJBTUFCVSAD-UHFFFAOYSA-N 0.000 description 4
- 239000003765 sweetening agent Substances 0.000 description 4
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 3
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 3
- CUCUKLJLRRAKFN-UHFFFAOYSA-N 7-Hydroxy-(S)-usnate Chemical compound CC12C(=O)C(C(=O)C)C(=O)C=C1OC1=C2C(O)=C(C)C(O)=C1C(C)=O CUCUKLJLRRAKFN-UHFFFAOYSA-N 0.000 description 3
- 241000416162 Astragalus gummifer Species 0.000 description 3
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 102000000844 Cell Surface Receptors Human genes 0.000 description 3
- 108010001857 Cell Surface Receptors Proteins 0.000 description 3
- 206010050685 Cytokine storm Diseases 0.000 description 3
- 238000012286 ELISA Assay Methods 0.000 description 3
- 239000001263 FEMA 3042 Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- WMBWREPUVVBILR-UHFFFAOYSA-N GCG Natural products C=1C(O)=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-UHFFFAOYSA-N 0.000 description 3
- 240000007472 Leucaena leucocephala Species 0.000 description 3
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 3
- 241001112090 Pseudovirus Species 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 229920001615 Tragacanth Polymers 0.000 description 3
- 101710081844 Transmembrane protease serine 2 Proteins 0.000 description 3
- 102100031989 Transmembrane protease serine 2 Human genes 0.000 description 3
- 108020000999 Viral RNA Proteins 0.000 description 3
- 229930013930 alkaloid Natural products 0.000 description 3
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 238000003149 assay kit Methods 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 206010052015 cytokine release syndrome Diseases 0.000 description 3
- 229920006237 degradable polymer Polymers 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 235000004515 gallic acid Nutrition 0.000 description 3
- 229940074391 gallic acid Drugs 0.000 description 3
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229920001477 hydrophilic polymer Polymers 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000001630 malic acid Substances 0.000 description 3
- 229940099690 malic acid Drugs 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 229930014626 natural product Natural products 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000011369 resultant mixture Substances 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 235000015523 tannic acid Nutrition 0.000 description 3
- 229940033123 tannic acid Drugs 0.000 description 3
- 229920002258 tannic acid Polymers 0.000 description 3
- 235000013616 tea Nutrition 0.000 description 3
- 235000010487 tragacanth Nutrition 0.000 description 3
- 239000000196 tragacanth Substances 0.000 description 3
- 229940116362 tragacanth Drugs 0.000 description 3
- 229940004858 usnic acid Drugs 0.000 description 3
- ICTZCAHDGHPRQR-UHFFFAOYSA-N usnic acid Natural products OC1=C(C)C(O)=C(C(C)=O)C2=C1C1(C)C(O)=C(C(=O)C)C(=O)C=C1O2 ICTZCAHDGHPRQR-UHFFFAOYSA-N 0.000 description 3
- WEYVVCKOOFYHRW-UHFFFAOYSA-N usninic acid Natural products CC12C(=O)C(C(=O)C)=C(O)C=C1OC1=C2C(O)=C(C)C(O)=C1C(C)=O WEYVVCKOOFYHRW-UHFFFAOYSA-N 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- XMOCLSLCDHWDHP-DOMZBBRYSA-N (-)-gallocatechin Chemical compound C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-DOMZBBRYSA-N 0.000 description 2
- SUVMJBTUFCVSAD-SNVBAGLBSA-N (R)-sulforaphane Chemical compound C[S@@](=O)CCCCN=C=S SUVMJBTUFCVSAD-SNVBAGLBSA-N 0.000 description 2
- PMNLUUOXGOOLSP-UHFFFAOYSA-N 2-mercaptopropanoic acid Chemical compound CC(S)C(O)=O PMNLUUOXGOOLSP-UHFFFAOYSA-N 0.000 description 2
- CWVRJTMFETXNAD-FWCWNIRPSA-N 3-O-Caffeoylquinic acid Natural products O[C@H]1[C@@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-FWCWNIRPSA-N 0.000 description 2
- SUVMJBTUFCVSAD-JTQLQIEISA-N 4-Methylsulfinylbutyl isothiocyanate Natural products C[S@](=O)CCCCN=C=S SUVMJBTUFCVSAD-JTQLQIEISA-N 0.000 description 2
- 229930008281 A03AD01 - Papaverine Natural products 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 244000118350 Andrographis paniculata Species 0.000 description 2
- BOJKULTULYSRAS-OTESTREVSA-N Andrographolide Chemical compound C([C@H]1[C@]2(C)CC[C@@H](O)[C@]([C@H]2CCC1=C)(CO)C)\C=C1/[C@H](O)COC1=O BOJKULTULYSRAS-OTESTREVSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000008904 Betacoronavirus Species 0.000 description 2
- JMGZEFIQIZZSBH-UHFFFAOYSA-N Bioquercetin Natural products CC1OC(OCC(O)C2OC(OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5)C(O)C2O)C(O)C(O)C1O JMGZEFIQIZZSBH-UHFFFAOYSA-N 0.000 description 2
- PZIRUHCJZBGLDY-UHFFFAOYSA-N Caffeoylquinic acid Natural products CC(CCC(=O)C(C)C1C(=O)CC2C3CC(O)C4CC(O)CCC4(C)C3CCC12C)C(=O)O PZIRUHCJZBGLDY-UHFFFAOYSA-N 0.000 description 2
- JDVVGAQPNNXQDW-WCMLQCRESA-N Castanospermine Natural products O[C@H]1[C@@H](O)[C@H]2[C@@H](O)CCN2C[C@H]1O JDVVGAQPNNXQDW-WCMLQCRESA-N 0.000 description 2
- JDVVGAQPNNXQDW-TVNFTVLESA-N Castinospermine Chemical compound C1[C@H](O)[C@@H](O)[C@H](O)[C@H]2[C@@H](O)CCN21 JDVVGAQPNNXQDW-TVNFTVLESA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- UBSCDKPKWHYZNX-UHFFFAOYSA-N Demethoxycapillarisin Natural products C1=CC(O)=CC=C1OC1=CC(=O)C2=C(O)C=C(O)C=C2O1 UBSCDKPKWHYZNX-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 101710114810 Glycoprotein Proteins 0.000 description 2
- QUQPHWDTPGMPEX-UHFFFAOYSA-N Hesperidine Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(OC3C(C(O)C(O)C(COC4C(C(O)C(O)C(C)O4)O)O3)O)=CC(O)=C2C(=O)C1 QUQPHWDTPGMPEX-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- VTAJIXDZFCRWBR-UHFFFAOYSA-N Licoricesaponin B2 Natural products C1C(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2)C(O)=O)C)(C)CC2)(C)C2C(C)(C)CC1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O VTAJIXDZFCRWBR-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 208000025370 Middle East respiratory syndrome Diseases 0.000 description 2
- YXOLAZRVSSWPPT-UHFFFAOYSA-N Morin Chemical compound OC1=CC(O)=CC=C1C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 YXOLAZRVSSWPPT-UHFFFAOYSA-N 0.000 description 2
- IKMDFBPHZNJCSN-UHFFFAOYSA-N Myricetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC(O)=C(O)C(O)=C1 IKMDFBPHZNJCSN-UHFFFAOYSA-N 0.000 description 2
- SEBFKMXJBCUCAI-UHFFFAOYSA-N NSC 227190 Natural products C1=C(O)C(OC)=CC(C2C(OC3=CC=C(C=C3O2)C2C(C(=O)C3=C(O)C=C(O)C=C3O2)O)CO)=C1 SEBFKMXJBCUCAI-UHFFFAOYSA-N 0.000 description 2
- CWVRJTMFETXNAD-KLZCAUPSSA-N Neochlorogenin-saeure Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O CWVRJTMFETXNAD-KLZCAUPSSA-N 0.000 description 2
- PTPHDVKWAYIFRX-UHFFFAOYSA-N Palmatine Natural products C1C2=C(OC)C(OC)=CC=C2C=C2N1CCC1=C2C=C(OC)C(OC)=C1 PTPHDVKWAYIFRX-UHFFFAOYSA-N 0.000 description 2
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 2
- 229920002350 Procyanidin B2 Polymers 0.000 description 2
- XFZJEEAOWLFHDH-HNTGQZGLSA-N Procyanidin B3 Natural products C1([C@@H]2[C@@H](O)[C@@H](C3=C(O)C=C(O)C=C3O2)C=2C(O)=CC(O)=C3C[C@@H]([C@@H](OC3=2)C=2C=C(O)C(O)=CC=2)O)=CC=C(O)C(O)=C1 XFZJEEAOWLFHDH-HNTGQZGLSA-N 0.000 description 2
- 229920000236 Procyanidin B3 Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920000241 Punicalagin Polymers 0.000 description 2
- ZZAFFYPNLYCDEP-HNNXBMFYSA-N Rosmarinsaeure Natural products OC(=O)[C@H](Cc1cccc(O)c1O)OC(=O)C=Cc2ccc(O)c(O)c2 ZZAFFYPNLYCDEP-HNNXBMFYSA-N 0.000 description 2
- UWARRXZVZDFPQU-UHFFFAOYSA-N Sorbifolin Natural products C=1C(=O)C=2C(O)=C(O)C(OC)=CC=2OC=1C1=CC=C(O)C=C1 UWARRXZVZDFPQU-UHFFFAOYSA-N 0.000 description 2
- 101710167605 Spike glycoprotein Proteins 0.000 description 2
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 description 2
- DJSISFGPUUYILV-UHFFFAOYSA-N UNPD161792 Natural products O1C(C(O)=O)C(O)C(O)C(O)C1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC(O)=CC=1)O2 DJSISFGPUUYILV-UHFFFAOYSA-N 0.000 description 2
- 230000010530 Virus Neutralization Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- ASLUCFFROXVMFL-UHFFFAOYSA-N andrographolide Natural products CC1(CO)C(O)CCC2(C)C(CC=C3/C(O)OCC3=O)C(=C)CCC12 ASLUCFFROXVMFL-UHFFFAOYSA-N 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- XADJWCRESPGUTB-UHFFFAOYSA-N apigenin Natural products C1=CC(O)=CC=C1C1=CC(=O)C2=CC(O)=C(O)C=C2O1 XADJWCRESPGUTB-UHFFFAOYSA-N 0.000 description 2
- KZNIFHPLKGYRTM-UHFFFAOYSA-N apigenin Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C=C2O1 KZNIFHPLKGYRTM-UHFFFAOYSA-N 0.000 description 2
- 229940117893 apigenin Drugs 0.000 description 2
- 235000008714 apigenin Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QUQPHWDTPGMPEX-UTWYECKDSA-N aurantiamarin Natural products COc1ccc(cc1O)[C@H]1CC(=O)c2c(O)cc(O[C@@H]3O[C@H](CO[C@@H]4O[C@@H](C)[C@H](O)[C@@H](O)[C@H]4O)[C@@H](O)[C@H](O)[C@H]3O)cc2O1 QUQPHWDTPGMPEX-UTWYECKDSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- YBHILYKTIRIUTE-UHFFFAOYSA-N berberine Chemical compound C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 YBHILYKTIRIUTE-UHFFFAOYSA-N 0.000 description 2
- 229940093265 berberine Drugs 0.000 description 2
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 description 2
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 description 2
- 229950011318 cannabidiol Drugs 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- NPLTVGMLNDMOQE-UHFFFAOYSA-N carthamidin Natural products C1=CC(O)=CC=C1C1OC2=CC(O)=C(O)C(O)=C2C(=O)C1 NPLTVGMLNDMOQE-UHFFFAOYSA-N 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 230000019522 cellular metabolic process Effects 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- CWVRJTMFETXNAD-JUHZACGLSA-N chlorogenic acid Chemical compound O[C@@H]1[C@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-JUHZACGLSA-N 0.000 description 2
- 229940074393 chlorogenic acid Drugs 0.000 description 2
- 235000001368 chlorogenic acid Nutrition 0.000 description 2
- FFQSDFBBSXGVKF-KHSQJDLVSA-N chlorogenic acid Natural products O[C@@H]1C[C@](O)(C[C@@H](CC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O FFQSDFBBSXGVKF-KHSQJDLVSA-N 0.000 description 2
- BMRSEYFENKXDIS-KLZCAUPSSA-N cis-3-O-p-coumaroylquinic acid Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)cc2)[C@@H]1O)C(=O)O BMRSEYFENKXDIS-KLZCAUPSSA-N 0.000 description 2
- APSNPMVGBGZYAJ-GLOOOPAXSA-N clematine Natural products COc1cc(ccc1O)[C@@H]2CC(=O)c3c(O)cc(O[C@@H]4O[C@H](CO[C@H]5O[C@@H](C)[C@H](O)[C@@H](O)[C@H]5O)[C@@H](O)[C@H](O)[C@H]4O)cc3O2 APSNPMVGBGZYAJ-GLOOOPAXSA-N 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- IVTMALDHFAHOGL-UHFFFAOYSA-N eriodictyol 7-O-rutinoside Natural products OC1C(O)C(O)C(C)OC1OCC1C(O)C(O)C(O)C(OC=2C=C3C(C(C(O)=C(O3)C=3C=C(O)C(O)=CC=3)=O)=C(O)C=2)O1 IVTMALDHFAHOGL-UHFFFAOYSA-N 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 238000013265 extended release Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 235000011990 fisetin Nutrition 0.000 description 2
- 229930003935 flavonoid Natural products 0.000 description 2
- 150000002215 flavonoids Chemical class 0.000 description 2
- 235000017173 flavonoids Nutrition 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229940045109 genistein Drugs 0.000 description 2
- TZBJGXHYKVUXJN-UHFFFAOYSA-N genistein Natural products C1=CC(O)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O TZBJGXHYKVUXJN-UHFFFAOYSA-N 0.000 description 2
- 235000006539 genistein Nutrition 0.000 description 2
- ZCOLJUOHXJRHDI-CMWLGVBASA-N genistein 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C(C=3C=CC(O)=CC=3)=COC2=C1 ZCOLJUOHXJRHDI-CMWLGVBASA-N 0.000 description 2
- LPLVUJXQOOQHMX-UHFFFAOYSA-N glycyrrhetinic acid glycoside Natural products C1CC(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2=O)C(O)=O)C)(C)CC2)(C)C2C(C)(C)C1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O LPLVUJXQOOQHMX-UHFFFAOYSA-N 0.000 description 2
- 239000001685 glycyrrhizic acid Substances 0.000 description 2
- 229960004949 glycyrrhizic acid Drugs 0.000 description 2
- UYRUBYNTXSDKQT-UHFFFAOYSA-N glycyrrhizic acid Natural products CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC34C)C(=O)O)OC6OC(C(O)C(O)C6OC7OC(O)C(O)C(O)C7C(=O)O)C(=O)O UYRUBYNTXSDKQT-UHFFFAOYSA-N 0.000 description 2
- 235000019410 glycyrrhizin Nutrition 0.000 description 2
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- AIONOLUJZLIMTK-AWEZNQCLSA-N hesperetin Chemical compound C1=C(O)C(OC)=CC=C1[C@H]1OC2=CC(O)=CC(O)=C2C(=O)C1 AIONOLUJZLIMTK-AWEZNQCLSA-N 0.000 description 2
- 229960001587 hesperetin Drugs 0.000 description 2
- AIONOLUJZLIMTK-UHFFFAOYSA-N hesperetin Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(O)=CC(O)=C2C(=O)C1 AIONOLUJZLIMTK-UHFFFAOYSA-N 0.000 description 2
- 235000010209 hesperetin Nutrition 0.000 description 2
- 229940025878 hesperidin Drugs 0.000 description 2
- QUQPHWDTPGMPEX-QJBIFVCTSA-N hesperidin Chemical compound C1=C(O)C(OC)=CC=C1[C@H]1OC2=CC(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]4[C@@H]([C@H](O)[C@@H](O)[C@H](C)O4)O)O3)O)=CC(O)=C2C(=O)C1 QUQPHWDTPGMPEX-QJBIFVCTSA-N 0.000 description 2
- VUYDGVRIQRPHFX-UHFFFAOYSA-N hesperidin Natural products COc1cc(ccc1O)C2CC(=O)c3c(O)cc(OC4OC(COC5OC(O)C(O)C(O)C5O)C(O)C(O)C4O)cc3O2 VUYDGVRIQRPHFX-UHFFFAOYSA-N 0.000 description 2
- IHFBPDAQLQOCBX-UHFFFAOYSA-N hispidulin Chemical compound C=1C(=O)C2=C(O)C(OC)=C(O)C=C2OC=1C1=CC=C(O)C=C1 IHFBPDAQLQOCBX-UHFFFAOYSA-N 0.000 description 2
- OETSANFHEJPBHW-UHFFFAOYSA-N hispidulin Natural products COc1cc2c(cc1O)oc(cc2=O)-c1ccc(O)cc1 OETSANFHEJPBHW-UHFFFAOYSA-N 0.000 description 2
- FTODBIPDTXRIGS-UHFFFAOYSA-N homoeriodictyol Natural products C1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 FTODBIPDTXRIGS-UHFFFAOYSA-N 0.000 description 2
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 235000008777 kaempferol Nutrition 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229940069445 licorice extract Drugs 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 239000003589 local anesthetic agent Substances 0.000 description 2
- 210000003750 lower gastrointestinal tract Anatomy 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- IQPNAANSBPBGFQ-UHFFFAOYSA-N luteolin Chemical compound C=1C(O)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(O)C(O)=C1 IQPNAANSBPBGFQ-UHFFFAOYSA-N 0.000 description 2
- LRDGATPGVJTWLJ-UHFFFAOYSA-N luteolin Natural products OC1=CC(O)=CC(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)=C1 LRDGATPGVJTWLJ-UHFFFAOYSA-N 0.000 description 2
- 235000009498 luteolin Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 230000034217 membrane fusion Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- 235000007708 morin Nutrition 0.000 description 2
- PCOBUQBNVYZTBU-UHFFFAOYSA-N myricetin Natural products OC1=C(O)C(O)=CC(C=2OC3=CC(O)=C(O)C(O)=C3C(=O)C=2)=C1 PCOBUQBNVYZTBU-UHFFFAOYSA-N 0.000 description 2
- 235000007743 myricetin Nutrition 0.000 description 2
- 229940116852 myricetin Drugs 0.000 description 2
- 230000022632 negative regulation of interleukin-6 secretion Effects 0.000 description 2
- ARGKVCXINMKCAZ-UHFFFAOYSA-N neohesperidine Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(OC3C(C(O)C(O)C(CO)O3)OC3C(C(O)C(O)C(C)O3)O)=CC(O)=C2C(=O)C1 ARGKVCXINMKCAZ-UHFFFAOYSA-N 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 231100000028 nontoxic concentration Toxicity 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000008816 organ damage Effects 0.000 description 2
- QUCQEUCGKKTEBI-UHFFFAOYSA-N palmatine Chemical compound COC1=CC=C2C=C(C3=C(C=C(C(=C3)OC)OC)CC3)[N+]3=CC2=C1OC QUCQEUCGKKTEBI-UHFFFAOYSA-N 0.000 description 2
- 229960001789 papaverine Drugs 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 150000007965 phenolic acids Chemical class 0.000 description 2
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 2
- 229960001553 phloroglucinol Drugs 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XFZJEEAOWLFHDH-AVFWISQGSA-N procyanidin B3 Chemical compound C1([C@@H]2[C@@H](O)[C@@H](C3=C(O)C=C(O)C=C3O2)C=2C(O)=CC(O)=C3C[C@@H]([C@H](OC3=2)C=2C=C(O)C(O)=CC=2)O)=CC=C(O)C(O)=C1 XFZJEEAOWLFHDH-AVFWISQGSA-N 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- VLEUZFDZJKSGMX-ONEGZZNKSA-N pterostilbene Chemical compound COC1=CC(OC)=CC(\C=C\C=2C=CC(O)=CC=2)=C1 VLEUZFDZJKSGMX-ONEGZZNKSA-N 0.000 description 2
- VLEUZFDZJKSGMX-UHFFFAOYSA-N pterostilbene Natural products COC1=CC(OC)=CC(C=CC=2C=CC(O)=CC=2)=C1 VLEUZFDZJKSGMX-UHFFFAOYSA-N 0.000 description 2
- ZJVUMAFASBFUBG-OGJBWQGYSA-N punicalagin Chemical compound C([C@H]1O[C@@H]([C@@H]2OC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)O[C@H]2[C@@H]1OC(=O)C1=CC(O)=C(O)C(O)=C11)O)OC(=O)C2=CC(O)=C(O)C(O)=C2C2=C(O)C(O)=C(OC3=O)C4=C2C(=O)OC2=C4C3=C1C(O)=C2O ZJVUMAFASBFUBG-OGJBWQGYSA-N 0.000 description 2
- LMIBIMUSUFYFJN-RSVYENFWSA-N punicalagin Natural products O[C@@H]1O[C@@H]2COC(=O)c3cc(O)c(O)c(O)c3c4c(O)cc5OC(=O)c6c(c(O)c(O)c7OC(=O)c4c5c67)c8c(O)c(O)c(O)cc8C(=O)O[C@H]2[C@@H]9OC(=O)c%10cc(O)c(O)c(O)c%10c%11c(O)c(O)c(O)cc%11C(=O)O[C@@H]19 LMIBIMUSUFYFJN-RSVYENFWSA-N 0.000 description 2
- ZRKSVMFLACVUIU-UHFFFAOYSA-N punicalagin isomer Natural products OC1=C(O)C(=C2C3=4)OC(=O)C=4C4=C(O)C(O)=C3OC(=O)C2=C1C1=C(O)C(O)=C(O)C=C1C(=O)OC1C2OC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(O)OC1COC(=O)C1=CC4=C(O)C(O)=C1O ZRKSVMFLACVUIU-UHFFFAOYSA-N 0.000 description 2
- FDRQPMVGJOQVTL-UHFFFAOYSA-N quercetin rutinoside Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 FDRQPMVGJOQVTL-UHFFFAOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- DOUMFZQKYFQNTF-MRXNPFEDSA-N rosemarinic acid Natural products C([C@H](C(=O)O)OC(=O)C=CC=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 DOUMFZQKYFQNTF-MRXNPFEDSA-N 0.000 description 2
- TVHVQJFBWRLYOD-UHFFFAOYSA-N rosmarinic acid Natural products OC(=O)C(Cc1ccc(O)c(O)c1)OC(=Cc2ccc(O)c(O)c2)C=O TVHVQJFBWRLYOD-UHFFFAOYSA-N 0.000 description 2
- 235000005493 rutin Nutrition 0.000 description 2
- ALABRVAAKCSLSC-UHFFFAOYSA-N rutin Natural products CC1OC(OCC2OC(O)C(O)C(O)C2O)C(O)C(O)C1OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5 ALABRVAAKCSLSC-UHFFFAOYSA-N 0.000 description 2
- IKGXIBQEEMLURG-BKUODXTLSA-N rutin Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@@H]1OC[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 IKGXIBQEEMLURG-BKUODXTLSA-N 0.000 description 2
- 229960004555 rutoside Drugs 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- YEFOAORQXAOVJQ-RZFZLAGVSA-N schisandrol a Chemical compound C1[C@H](C)[C@@](C)(O)CC2=CC(OC)=C(OC)C(OC)=C2C2=C1C=C(OC)C(OC)=C2OC YEFOAORQXAOVJQ-RZFZLAGVSA-N 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- DJSISFGPUUYILV-ZFORQUDYSA-N scutellarin Chemical compound O1[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1OC(C(=C1O)O)=CC2=C1C(=O)C=C(C=1C=CC(O)=CC=1)O2 DJSISFGPUUYILV-ZFORQUDYSA-N 0.000 description 2
- 229930190376 scutellarin Natural products 0.000 description 2
- SEBFKMXJBCUCAI-HKTJVKLFSA-N silibinin Chemical compound C1=C(O)C(OC)=CC([C@@H]2[C@H](OC3=CC=C(C=C3O2)[C@@H]2[C@H](C(=O)C3=C(O)C=C(O)C=C3O2)O)CO)=C1 SEBFKMXJBCUCAI-HKTJVKLFSA-N 0.000 description 2
- 229960004245 silymarin Drugs 0.000 description 2
- 235000017700 silymarin Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 150000001629 stilbenes Chemical class 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 229960005559 sulforaphane Drugs 0.000 description 2
- 235000015487 sulforaphane Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 230000007501 viral attachment Effects 0.000 description 2
- 230000029812 viral genome replication Effects 0.000 description 2
- YEFOAORQXAOVJQ-UHFFFAOYSA-N wuweizischun A Natural products C1C(C)C(C)(O)CC2=CC(OC)=C(OC)C(OC)=C2C2=C1C=C(OC)C(OC)=C2OC YEFOAORQXAOVJQ-UHFFFAOYSA-N 0.000 description 2
- XMOCLSLCDHWDHP-SWLSCSKDSA-N (+)-Epigallocatechin Natural products C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-SWLSCSKDSA-N 0.000 description 1
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 1
- 229930013884 (+)-gallocatechin Natural products 0.000 description 1
- 235000007243 (+)-gallocatechin Nutrition 0.000 description 1
- LSHVYAFMTMFKBA-CTNGQTDRSA-N (-)-catechin-3-O-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@H]1C=1C=C(O)C(O)=CC=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 LSHVYAFMTMFKBA-CTNGQTDRSA-N 0.000 description 1
- WMBWREPUVVBILR-NQIIRXRSSA-N (-)-gallocatechin gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@H]1C=1C=C(O)C(O)=C(O)C=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-NQIIRXRSSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- 239000001606 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one Substances 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 102100030988 Angiotensin-converting enzyme Human genes 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229940094918 Cathepsin L inhibitor Drugs 0.000 description 1
- 102000005600 Cathepsins Human genes 0.000 description 1
- 108010084457 Cathepsins Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 208000028399 Critical Illness Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- LSHVYAFMTMFKBA-UHFFFAOYSA-N ECG Natural products C=1C=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 LSHVYAFMTMFKBA-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 229920000855 Fucoidan Polymers 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 description 1
- 101000638154 Homo sapiens Transmembrane protease serine 2 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 150000000994 L-ascorbates Chemical class 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 101001028244 Onchocerca volvulus Fatty-acid and retinol-binding protein 1 Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- HCBIBCJNVBAKAB-UHFFFAOYSA-N Procaine hydrochloride Chemical compound Cl.CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 HCBIBCJNVBAKAB-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 102000044437 S1 domains Human genes 0.000 description 1
- 108700036684 S1 domains Proteins 0.000 description 1
- 108091007520 SARS-CoV-2 RNA polymerases Proteins 0.000 description 1
- 108091005634 SARS-CoV-2 receptor-binding domains Proteins 0.000 description 1
- 208000037847 SARS-CoV-2-infection Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 102000018265 Virus Receptors Human genes 0.000 description 1
- 108010066342 Virus Receptors Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000003797 alkaloid derivatives Chemical class 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000002429 anti-coagulating effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229960000772 camostat Drugs 0.000 description 1
- FSEKIHNIDBATFG-UHFFFAOYSA-N camostat mesylate Chemical compound CS([O-])(=O)=O.C1=CC(CC(=O)OCC(=O)N(C)C)=CC=C1OC(=O)C1=CC=C([NH+]=C(N)N)C=C1 FSEKIHNIDBATFG-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 1
- 235000005487 catechin Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000013043 cell viability test Methods 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229950001002 cianidanol Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000007950 delayed release tablet Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000013024 dilution buffer Substances 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 230000026502 entry into host cell Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- XMOCLSLCDHWDHP-IUODEOHRSA-N epi-Gallocatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-IUODEOHRSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 210000005095 gastrointestinal system Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000005182 global health Effects 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229940094952 green tea extract Drugs 0.000 description 1
- 235000020688 green tea extract Nutrition 0.000 description 1
- 230000005099 host tropism Effects 0.000 description 1
- 102000052611 human IL6 Human genes 0.000 description 1
- 102000049800 human TMPRSS2 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000001341 hydroxy propyl starch Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000002664 inhalation therapy Methods 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229960004393 lidocaine hydrochloride Drugs 0.000 description 1
- YECIFGHRMFEPJK-UHFFFAOYSA-N lidocaine hydrochloride monohydrate Chemical compound O.[Cl-].CC[NH+](CC)CC(=O)NC1=C(C)C=CC=C1C YECIFGHRMFEPJK-UHFFFAOYSA-N 0.000 description 1
- FCCDDURTIIUXBY-UHFFFAOYSA-N lipoamide Chemical compound NC(=O)CCCCC1CCSS1 FCCDDURTIIUXBY-UHFFFAOYSA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- DFPMSGMNTNDNHN-ZPHOTFPESA-N naringin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](OC=2C=C3O[C@@H](CC(=O)C3=C(O)C=2)C=2C=CC(O)=CC=2)O[C@H](CO)[C@@H](O)[C@@H]1O DFPMSGMNTNDNHN-ZPHOTFPESA-N 0.000 description 1
- 229930019673 naringin Natural products 0.000 description 1
- 229940052490 naringin Drugs 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100001083 no cytotoxicity Toxicity 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000003182 parenteral nutrition solution Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000003950 pathogenic mechanism Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 238000011458 pharmacological treatment Methods 0.000 description 1
- 235000009048 phenolic acids Nutrition 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 235000017807 phytochemicals Nutrition 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229930000223 plant secondary metabolite Natural products 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 229960001309 procaine hydrochloride Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000005892 protein maturation Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 239000006215 rectal suppository Substances 0.000 description 1
- 229940100618 rectal suppository Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012898 sample dilution Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000020374 simple syrup Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-M sodium percarbonate Chemical compound [Na+].OOC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- YFGAFXCSLUUJRG-WCCKRBBISA-M sodium;(2s)-2-amino-5-(diaminomethylideneamino)pentanoate Chemical compound [Na+].[O-]C(=O)[C@@H](N)CCCN=C(N)N YFGAFXCSLUUJRG-WCCKRBBISA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 235000018991 trans-resveratrol Nutrition 0.000 description 1
- 238000013271 transdermal drug delivery Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000005282 vitamin D3 Nutrition 0.000 description 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 1
- 239000011647 vitamin D3 Substances 0.000 description 1
- 229940021056 vitamin d3 Drugs 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/05—Phenols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/01—Hydrocarbons
- A61K31/015—Hydrocarbons carbocyclic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/075—Ethers or acetals
- A61K31/085—Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
- A61K31/09—Ethers or acetals having an ether linkage to aromatic ring nuclear carbon having two or more such linkages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/12—Ketones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/375—Ascorbic acid, i.e. vitamin C; Salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7048—Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/31—Brassicaceae or Cruciferae (Mustard family), e.g. broccoli, cabbage or kohlrabi
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/82—Theaceae (Tea family), e.g. camellia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/88—Liliopsida (monocotyledons)
- A61K36/906—Zingiberaceae (Ginger family)
- A61K36/9066—Curcuma, e.g. common turmeric, East Indian arrowroot or mango ginger
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
Definitions
- This application discloses method of treating viral infection caused by coronavirus and its variants and mitigates coronavirus infection in mammals by administering pharmaceutical micronutrient composition.
- coronavirus is a rapidly mutating virus and, within one year of the pandemic, several mutations of this virus have emerged in United Kingdom, South Africa, Brazil and other countries, with each of these mutations potentially giving rise to further coronavirus subtypes.
- Clinical reports show that the British mutation of the coronavirus can infect patients who have received the vaccine developed against the original coronavirus SARS-CoV-2, thereby challenging any claim of a universal efficacy of the available vaccines against all coronavirus mutations.
- a promising scientific avenue towards this goal is to focus on the “docking structure” of the coronavirus on the surface of cells, the angiotensin-converting-enzyme 2 (ACE 2) receptor.
- ACE 2 angiotensin-converting-enzyme 2
- all known coronaviruses including SARS CoV-2 and its mutations, use this very same receptor as docking structure and entry port for infections. This fact makes a detailed understanding of the regulation of the production/expression of this receptor on the surface of human cells—as well as related cellular mechanisms—a prime target towards developing global health strategies to control the pandemic characterized by a multitude of current and future viral mutations.
- coronaviruses include SARS-CoV-2.
- SARS-CoV-2 The cell entry mechanisms of coronaviruses, including SARS-CoV-2, have been extensively studied.
- coronaviruses To enter host cells, coronaviruses first bind to a cell surface receptor for viral attachment, subsequently enter cell endosomes, and eventually fuse viral and lysosomal membranes (Li et al., 2016).
- Coronavirus entry is mediated by a spike protein anchored on the surface of the virus. On mature viruses, the spike protein is present as a trimer, with three receptor-binding S1 heads sitting on top of a trimeric membrane fusion S2 stalk.
- the spike S1 protein on SARS-CoV-2 contains a receptor-binding domain (RBD) that specifically recognizes its cellular receptor, angiotensin-converting enzyme 2 (ACE2).
- RBD receptor-binding domain
- ACE2 angiotensin-converting enzyme 2
- the receptor-binding domain on SARS-CoV-2 spike protein part S1 head binds to a target cell using the human ACE2 (hACE2) receptor on the cell surface and is proteolytically activated by human proteases.
- hACE2 human ACE2
- Coronavirus entry into host cells is an important determinant of viral infectivity and pathogenesis (Du et al, 2009, Du et al. 2017).
- the cellular receptor for the virus binding is angiotensin-converting enzyme 2 or ACE2, which is an integral membrane protein present on many cells throughout the human body, with strong expression in the heart, vascular system, gastrointestinal system and kidneys, as well as in type II alveolar cells in the lungs.
- ACE2 angiotensin-converting enzyme 2
- TMPRSS2 transmembrane protease
- furin furin
- cathepsins as well as RNA-dependent RNA polymerase (RdPp) catalyzing viral RNA multiplication.
- COVID-19 infections have been associated with a high inflammatory response in the host, termed a “cytokine storm”, thrombosis and other patho-mechanisms that can trigger a fateful cascade of clinical events associated with advanced coronavirus infections.
- cytokine storm a high inflammatory response in the host
- thrombosis a patho-mechanisms that can trigger a fateful cascade of clinical events associated with advanced coronavirus infections.
- the ability of such new approaches to ameliorate such infection-related complications should be an additional target.
- preventive and therapeutic strategies for inhibiting the infective mechanisms of all coronaviruses—irrespective of mutation and/or subtype—thereby offering new avenues towards the global control of the pandemic.
- the instant pharmaceutical micronutrient composition prevents, inhibits, treats and delays attachment, penetration, biosynthesis, maturation and release of a coronavirus SARS-Cov-2 virus in a mammal.
- the phytochemicals in combination with other vitamins prevents various steps of infection in a mammal.
- various combinations of individual micronutrients are called mixtures.
- mixture D a pharmaceutical micronutrient composition is made up of resveratrol, cruciferous plant extract, curcumin, quercetin, naringenin, baicalein, theaflavin, vitamin C and N-actylcysteine.
- a pharmaceutical micronutrient compound comprises an ascorbate in the range of 10 mg to 200,000 mg, N-acetylcysteine in the range of 2 mg to 30,000 mg, theaflavins in the range 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, cruciferous plant extracts in the range of 5 mg to 5000 mg (or equivalent amount of its active compound, sulforaphane), curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, naringenin in the range of 5 mg to 3,000 mg, and baicalein in the range of 5 mg to 3,000 mg.
- additional micronutrients are added to form a pharmaceutical micronutrient compound such as a phenolic acid, gallic acid, tannic acid, chlorogenic acid and rosmarinic acid; a flavonoid such as fisetin, morin, myricetin, kaempferol, rutin, luteolin, baicalin, scutellarin, naringenin, hesperidin, hesperetin, apigenin, genistein, phloroglucinol, schisandrin, urolithin A, punicalagin, brazilin, hispidulin, papaverine, silymarin, procyanidin B2, procyanidin B3, stilbenes and pterostilbene; an alkaloid such as palmatine, berberine, cannabidiol, castanospermine, usnic acid, malic acid, terpenes, D-limonene and carnosic acid.
- a pharmaceutical micronutrient compound such as
- a pharmaceutical micronutrient mixture consists of an ascorbate in the range of 10 mg to 200,000 mg, N-acetylcysteine in the range of 2 mg to 30,000 mg, theaflavins in the range 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, cruciferous plant extracts in the range of 5 mg to 5,000 mg (or equivalent amount of its active compound, sulforaphane), curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, naringenin in the range of 5 mg to 3,000 mg, and baicalein in the range of 5 mg to 3,000 mg.
- the ascorbates are at least one of or a combination of L-ascorbic acid, magnesium ascorbate, calcium ascorbate, ascorbyl palmitate, ascorbyl phosphate, sodium ascorbyl phosphate and/or or another pharmaceutically acceptable form of ascorbate.
- the pharmaceutical micronutrient composition further consists of at least one of the theaflavins in the range 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, cruciferous plant extracts in the range of 5 mg to 5,000 mg, curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, and a combination thereof.
- compositions for various forms of use, such as oral, injectable, absorbable, etc.
- the pharmaceutical micronutrient composition is in the form of oral, non-invasive peroral, topical (for example, transdermal), enteral, transmucosal, targeted delivery, sustained-release delivery, delayed release, pulsed release and parenteral methods.
- the viral infection and/or viral disease uses a cellular receptor for a viral entry on a surface of an epithelial cells, endothelial cells and/or other cell types.
- the viral infection and/or viral disease is that which uses an angiotensin converting enzyme 2 (ACE2) receptor on the surface of an epithelial cell, endothelial cell and other cell types, for the viral entry, is treated, prevented and mitigated using pharmaceutical micronutrient composition.
- ACE2 angiotensin converting enzyme 2
- the pharmaceutical micronutrient composition in one embodiment, is used to treat the human and other species with severe acute respiratory syndrome-related coronaviruses (SARS-CoV-1, SARS-CoV2 and their variants) that use angiotensin converting enzyme 2 (ACE2) receptors on the surface of epithelial cells, endothelial cells and other cell types, for viral entry.
- SARS-CoV-1 severe acute respiratory syndrome-related coronaviruses
- SARS-CoV2 severe acute respiratory syndrome-related coronaviruses
- ACE2 angiotensin converting enzyme 2
- the pharmaceutical micronutrient composition in one embodiment, is used to treat the human and other species with Middle East respiratory syndrome-related coronavirus (MERS-CoV), and its variants that use the angiotensin converting enzyme 2 (ACE2) receptors on the surface of epithelial cells, endothelial cells and other cell types, for viral entry.
- MERS-CoV Middle East respiratory syndrome-related coronavirus
- ACE2 angiotensin converting enzyme 2
- the pharmaceutical micronutrient composition in one embodiment, is mixture D, which is used in humans to treat, prevent, inhibit and stop inflammation caused by severe acute respiratory syndrome-related coronaviruses (SARS-CoV-1, SARS-CoV-2 and their variants), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) and its variants.
- FIGS. 1A and 1B show several cellular and systemic mechanisms of coronavirus infection.
- FIG. 2 shows the results of binding of the receptor binding domain (RBD) of SARS-CoV-2 to the human ACE2 receptor.
- FIG. 3 shows a dose-dependent binding of SARS-CoV-2 pseudo-virions to immobilized epithelial cells overexpressing hACE2.
- FIGS. 4A, 4B and 4C show viability of cells upon treatment with indicated polyphenols for 1 h, 3 h, and 48 h.
- FIGS. 5A and 5B show SARS-CoV-2 pseudo-virions binding to cells at different patterns of treatment.
- FIGS. 6A and 6B show SARS-CoV-2 pseudo-virions' entry to cells at different pattern of treatment.
- FIGS. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J, 7K show images of syncytia taken after treatment with indicated polyphenols.
- FIG. 8 shows quantification of syncytia after treatment with indicated polyphenols.
- FIG. 9 shows selection of the most effective formulation based on RBD to ACE2 binding inhibition of various micronutrient mixtures.
- FIG. 10 shows the test for safety for mixture D in human small alveolar epithelial cells.
- FIG. 11 shows inhibition of RBD binding and efficacy of the Mixture alone and its combination with Vitamin D.
- FIG. 12 shows inhibition of cellular internalization of the mutated forms of SARS-CoV-2: viral strains from the UK, Brazil, and South Africa.
- FIG. 13 shows inhibition of cellular entry of the mutated forms of SARS-CoV-2: viral strains from the UK, Brazil, and South Africa, upon application of different patterns of treatment.
- FIG. 14 shows inhibition of ACE2 expression under normal and pro-inflammatory conditions.
- FIG. 15 shows inhibition of viral RNA-dependent RNA polymerase (RdRp) activity by mixture D with and without vitamin D.
- FIG. 16 shows inhibition of furin activity by mixture D.
- FIG. 17 shows inhibition of cellular activity of native cathepsin L by mixture D applied individually and with vitamin D.
- FIG. 18 shows mixture D's inhibitory effect on activity of recombinant cathepsin L and the effects of additional vitamin D.
- FIG. 19 shows anti-inflammatory effect: inhibition of IL6 secretion under normal and pro-inflammatory conditions by mixture D alone and combined with vitamin D.
- the life cycle of the virus with the host consists of the following five steps: attachment, penetration, biosynthesis, maturation, and release. Once viruses bind to host receptors (attachment), they enter host cells through endocytosis or membrane fusion (penetration). Once viral contents are released inside the host cells, viral RNA enters the nucleus for replication. Viral messenger RNA (mRNA) is used to make viral proteins (biosynthesis). New viral particles are then made (maturation) and released. Coronaviruses consist of four structural proteins: spike (S), membrane (M), envelope (E) and nucleocapsid (N). Spike is composed of a transmembrane trimetric glycoprotein protruding from the viral surface, which determines the diversity of coronaviruses and host tropism.
- FIG. 1A shows the cellular mechanism of viral entry and several entry points for the SARS-CoV-2 virus and others through ACE2 receptors, which, having entered, require furin and cathepsin L for replication, protein synthesis, maturation and release into the bloodstream.
- FIG. 1B shows the systemic effect of the release of interleukin 6 (IL-6) in response to inflammation caused by viral infection.
- IL-6 may be a therapeutic target for inhibiting the cytokine storm and cytokine storm-associated organ damage. We would show that this is a good target to prevent organ damage.
- a “mammal” to be treated by the subject method may mean either a human or non-human animal, such as mice, primates and vertebrates.
- the specific diseases that would be targets for a treatment using a pharmaceutical micronutrient composition are infections caused by SARS-CoV-2, SARS-CoV-2 variants (such as the UK, Nigeria, South Africa and Brazil variants, and 19 other mutations), MERS-CoV (the beta coronavirus that causes Middle East respiratory syndrome, or MERS), SARS-CoV (the beta coronavirus that causes severe acute respiratory syndrome, or SARS), SARS-CoV-2, and all their subtypes, four main sub-groupings of coronaviruses, known as alpha, beta, gamma and delta.
- this micronutrient composition was effective in inhibiting RBD binding of spike protein of SARS-CoV-2 to the ACE2 receptor (by about 75% at 5 mcg/ml and 85% inhibition at 10 mcg/ml). At these concentrations, this micronutrient composition should be considered as a safe and affordable approach in controlling the current COVID-19 pandemic.
- Micronutrient composition the micronutrient combination used in our experiments was developed at the Dr. Rath Research Institute (San Jose, Ca). The composition of all five mixtures tested is presented in Table 1.
- Cell-Cell fusion assay was performed according to Ou et al. Briefly, A549 cells transduced with eGFP-luciferase-SARS-CoV-2 spike S1 lentivirus vector (GenScript, Piscataway, N.J.) were detached with 1 mM EDTA, treated with indicated concentrations of selected polyphenols for 1b. at 37° C. and overlaid on 80-95% confluent human A549 lung epithelial cells overexpressing hACE2. After 4 h.
- HSAEpC cells were supplemented with indicated doses of the formulation in 100 ⁇ L/well cell growth medium for 3-7 days. Applied nutrient concentrations were expressed as micrograms per ml (ug/ml).
- ACE-2 expression assay Human Small Airways Epithelial Cells (HSAEpC) were supplied by ATCC (American Type Culture Collection, Manassas, Va.) and cultured in Small Airways Epithelial Cells culture medium (ATCC). HSAEpC cells were seeded in 96-well plates covered with collagen at 6 passage and grown to confluent layer. Cell culture medium was supplemented with indicated amounts of mixture D and 50 mcg/ml ascorbic acid in 100 mcl per well. After 72 h. cells were supplemented with fresh medium and the same addition for another 72 h.
- ATCC American Type Culture Collection, Manassas, Va.
- Receptor binding and entry assays cell lines and pseudoviruses: Human alveolar epithelial cell line A549 was obtained from ATCC. Human alveolar epithelial cell line A549, stably overexpressing hACE2 receptor (hACE2/A549), was obtained from GenScript (Piscataway, N.J.). Both cell lines were maintained in Dulbecco's MEM containing 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 ⁇ g/ml streptomycin.
- FBS fetal bovine serum
- Pseudovirus particles with spike glycoprotein as the envelope protein with eGFP and luciferase (eGFP-luciferase-SARS-CoV-2 spike glycoprotein pseudotyped particles) and pseudotyped ⁇ G-luciferase (G* ⁇ G-luciferase) rVSV, were purchased from Kerafast (Boston, Mass.).
- Bald pseudovirus particles with eGFP and luciferase (eGFP-luciferase-SARS-CoV-2 pseudo-typed particles) were purchased from BPS Bioscience (San Diego, Calif.).
- Lentiviral particles carrying human TMPRSS2 were from Addgene (Watertown, Mass.).
- Test compounds, antibodies, recombinant proteins and inhibitors Curcumin, tea extract standardized to 85% theaflavins, theaflavin-3,3′-digallate, gallic acid, tannic acid, Andrographis paniculata extract, andrographolide, licorice extract, glycyrrhizic acid, broccoli extract, L-sulforaphane, usnic acid, malic acid, D-limonene and ammonia chloride were purchased from Sigma (St. Louis, Mo.). All other polyphenols and camostat mesylate were obtained from Cayman Chemical Company (Ann Arbor, Mich.). All antibodies were from Santa Cruz Biotechnology (Santa Cruz, Calif.). TMPRSS2 recombinant protein was from Creative BioMart (Shirley, N.Y.).
- SARS-CoV-2 RBD binding to hACE2 Binding/neutralization reaction was performed using a SARS-CoV-2 surrogate virus neutralization test kit that can detect either antibody or inhibitors that block the interaction between the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and the hACE2 cell surface receptor (GenScript, Piscataway, N.J.).
- RBD receptor binding domain
- hACE2 cell surface receptor GenScript, Piscataway, N.J.
- polyphenols at 100 ⁇ g/ml were incubated with either HRP-conjugated receptor-binding domain (RBD fragment) of SARS-CoV-2 spike S1 domain, or with hACE2 immobilized on 96-well plate for 30 min. at 37° C.
- RBD binding This assay was performed using a GenScript SARS-CoV-2 surrogate virus neutralization test kit that can detect either antibody or inhibitors that block the interaction between the RBD of the viral spike protein with the ACE2 cell surface receptor. All test samples with indicated concentrations, and positive and negative controls (provided by the manufacturer) were diluted with the sample dilution buffer with a volume ratio of 1:9. In separate tubes, HRP-conjugated RBD was also diluted with the HRP dilution buffer with a volume ratio of 1:99. Binding/neutralization reaction was performed according to manufacturer's protocol.
- diluted positive and negative controls as well as the test samples with indicated concentrations were mixed with the diluted HRP-RBD solution with a volume ratio of 1:1 and incubated for 30 min. at 37° C.
- 100 ⁇ L each of the positive control mixture, negative control mixture, and the test sample mixtures were added to the corresponding wells with immobilized ACE2 receptor and incubated for 15 min. at 37° C.
- the plates were washed four times with 260 ⁇ l/well of the 1 ⁇ wash solution, and TMB solution was added to each well (100 ⁇ l/well). Plates were incubated in the dark at room temperature for up to 5 min.
- 50 ⁇ l/well of stop solution was added to quench the reaction, and the absorbance was measured immediately in plate reader at 450 nm. Experiment was performed three times in duplicates. Data are presented as % of control.
- binding of pseudo-typed virion mutants of SARS-CoV-2 to hACE2 receptor was conducted according to GenScript recommendations with small modifications. Briefly, eGFP-luciferase-SARS-CoV-2 spike protein encapsulated pseudo-virions were incubated at 37° C. with 5 and 10 ⁇ g/ml of mixture D and simultaneously added to hACE2/A549 cells. Cells were incubated for an additional 1 h. at 37° C. Subsequently, cells were washed three times with washing buffer, and primary antibody against SARS-CoV-2 spike protein at 1:1000 dilution, followed by HRP-conjugated secondary antibody at 1:2500 dilution, were employed in ELISA assay.
- Cathepsin L activity assay Experiment was performed in cell lysates using a Cathepsin L Activity Assay Kit (Abcam, Cambridge, Mass.) according to the manufacturer's protocol. Briefly, 5 ⁇ 10 6 A549 cells treated with mixture D at 5 and 10 ⁇ g/ml concentrations for 24 h. were washed with cold 1 ⁇ PBS, and lysed 100 ⁇ l with CL buffer for 8 min. After 3 minutes of centrifugion at 4° C., supernatants were collected and enzymatic reaction was set up by mixing 50 ⁇ l of treated sample, 50 ⁇ l of control sample, 50 ⁇ l of background control sample, 50 ⁇ l of positive and negative controls.
- In vitro RdRp activity was examined using a SARS-CoV-2 RNA Polymerase Assay Kit (ProFoldin, Hudson, Mass.) according to the manufacturer's protocol. Briefly, 0.5 ⁇ l of 50 ⁇ recombinant RdRp was incubated with 2.5 ⁇ l of 50 ⁇ buffer and 21 ⁇ l of Mixture D at 5 and 10 ⁇ g/ml concentrations for 15 min at RT, followed by the addition of master mix containing 0.5 ⁇ l of 50 ⁇ NTPs and 0.5 ⁇ l of 50 ⁇ template (as a single-stranded polyribonucleotide). The reaction (25 ⁇ l) was incubated for 2 h at 34° C.
- Interleukin 6 (IL-6) assay Human Small Airways Epithelial Cells (HSAEpC) were supplied by ATCC and cultured in Small Airways Epithelial Cells culture medium (ATCC). SAEC cells were seeded in six-well plates covered with collagen at 6 passage and grown to confluent layer. Cell culture medium was supplemented with indicated amounts of Mixture D mixture, 50 mcg/ml ascorbic acid and Vitamin D3 in 3 ml per well. After 72 hours incubation conditioned media were collected and IL-6 content was measured using R&D Systems Human IL6 ELISA assay in accordance with the manufacture's protocol. Results were calculated with Microsoft Excel software and presented as a percentage of unsupplemented controls (an average of three repetitions+/ ⁇ standard deviation).
- brazilin, theaflavin-3,3′-digallate and curcumin exhibited the highest affinity in binding to the RBD-spike protein of SARS-CoV-2. While curcumin, at considerably low concentrations, showed moderate binding to hACE2 receptor, neither brazilin, nor theaflavin-3,3′-digallate displayed binding affinity to this receptor.
- brazilin, theaflavin-3.3′-digallate and curcumin applied at non-toxic concentrations (i.e., 5.0-25 ⁇ g/ml), have a similar dose-dependent inhibitory effect on binding of SARS-CoV-2 spike protein pseudo-typed virions A549 to hACE2/A549. Inhibition of virions transduction ranged from 20% to 80% without spinfection, and from 20% to 40% when spinfection was applied ( FIG. 6A ). Without spinfection, statistically significant inhibition by test polyphenols was observed starting from 5.0 ⁇ g/ml concentration, both when SARS-CoV-2 spike pseudo-virions were incubated with selected polyphenols 1 h.
- Test polyphenols showed different efficacy on cell transduction by the pseudo-virions.
- curcumin showed significant inhibitory effect at lower concentrations compared with brazilin and theaflavin-3′3-digallate.
- exposure of SARS-CoV-2 virions to curcumin for 1 h. before and simultaneously with adding to hACE2/A549 cells resulted in inhibition of transduction starting from its 5.0 ⁇ g/ml concentration.
- Higher (10 ⁇ g/ml) concentrations of brazilin and theaflavin-3,3′-digallate were required to achieve statistically significant inhibitory effects using the same patterns of exposure.
- FIG. 4 The effect of test polyphenols on fusion of A549 cells expressing SARS-CoV-2 spike protein pseudo-typed virions with lung epithelial cells expressing hACE2 is presented in FIG. 4 .
- Pre-incubation with brazilin at 25 ⁇ g/ml decreased cell attachment by 40%, with theaflavin-3′3-digallate by 40% to 70% at 10-25 ⁇ g/ml, and with curcumin by 70% to 95% at the same concentrations (10-25 ⁇ g/ml).
- FIGS. 7A, 7B, 7C, 7D . 7 E, 7 F, 7 G, 7 H, 7 I, 7 J, 7 K and FIG. 8 show the effect of test polyphenols on fusion to the human ACE2 receptor overexpressing A549 cells.
- A. Cell-cell fusion of A549 cells expressing eGFP spike protein with A549 cells stably expressing human ACE2 receptor.
- A549 cells expressing eGFP spike protein were pre-treated with indicated polyphenols at different concentrations for 1 h. at 37° C. and co-cultured for an additional 4 h. at 37° C. with A549 cells stably expressing human ACE2 receptor. The scale bar indicates 250 ⁇ m.
- FIG. 9 shows Mixture D (resveratrol, cruciferous plant extract, curcumin, quercetin, naringenin, baicalin, theaflavin, vitamin C and N-acetylcysteine) gives the best inhibition of binding.
- FIG. 10 shows the safety of the mixture D on human alveolar cells.
- the pharmaceutical micronutrient composition mixture D was applied at 5 and 10 mcg/ml doses individually and in combinations with vitamin D and was safe to be used on human small alveolar epithelial cells.
- FIG. 11 shows inhibition of RBD binding of the mixture D alone and its combination with vitamin D.
- Mixture D was effective in inhibiting RBD binding to ACE2 receptors by 75% at 5 mcg/ml and by 85% at 10 mcg/ml compared to control.
- the mixture D in combination with vitamin D did not further enhance this inhibitory effect.
- FIG. 12 shows results of inhibition of cellular internalization of the mutated forms of SARS-CoV-2: viral strains from the UK, Brazil and South Africa.
- Mixture D (10 mcg/ml) added simultaneously with mutated virions to cells overexpressing ACE2 was equally effective in inhibiting cellular entry of these mutated forms of SARS-CoV-2: by 48% for UK mutation, by 47% for Brazilian mutation, by 48% for South African mutation. These effects were concentration dependent. Exposure of viral particles to the mixture D for 1 h, before combining them with cells also inhibited cellular entry of these viral mutants by up to 40%. These results not only show efficacy for inhibiting cellular entry by viral strains but also show that the direct exposure of viral particles to this pharmaceutical micronutrient compound helps to prevent the viral entry.
- FIG. 13 shows inhibition of cellular entry by mutated forms of SARS-CoV-2, viral strains from the UK, Brazil and South Africa, owing to the inhibitory effect of the mixture D when applied simultaneously with the virions and cells.
- FIG. 14 shows inhibition of ACE2 expression under normal and pro-inflammatory conditions. Exposure of human small alveolar epithelial cells to the mixture D for 6 days resulted in inhibition of ACE2 expression by 73% at 12 mcg/ml. This inhibitory effect of the mixture D on ACE2 expression persisted and was even enhanced under pro-inflammatory conditions (inhibition between 83-86%).
- FIG. 15 shows inhibition of viral RdRp activity and effects of vitamin D. It shows mixture D alone can inhibit RdRp activity by 53% when used at 10 mcg/ml, and by 30% at 5 mcg/ml compared to control. Combinations of the mixture D with vitamin D did not further enhance RdRp inhibition.
- FIG. 16 shows inhibition of furin activity in the cells, owing to mixture D activity.
- Mixture D applied individually at 10 mcg/ml could decrease furin activity by 33%, and at 20 mcg/ml by 52%.
- FIG. 17 shows the test results of inhibition of cellular activity of cathepsin L by mixture D and the effects of vitamin D and Mixture D.
- Mixture D applied to the cells individually and in combination with vitamin D shows 20% inhibition of cathepsin L activity.
- Mixture D in combination with vitamin D does not further enhance this inhibitory effect.
- FIG. 18 shows anti-inflammatory effect: inhibition of IL-6 secretion under normal and pro-inflammatory conditions by the mixture D alone and combined with vitamin D.
- Mixture D (10 mcg/ml) applied to small alveolar endothelial cells for 3 days decreased IL-6 secretion by 50%.
- This inhibitory effect was increased to 83% by a combination of the mixture D (10 mcg/ml) with 10 mcg/ml of vitamin D.
- Drug formulations suitable for these administration routes can be produced by adding one or more pharmacologically acceptable carrier to the agent and then treating the micronutrient composition through a routine process known to those skilled in the art.
- the mode of administration includes, but is not limited to, non-invasive peroral, topical (for example, transdermal), enteral, transmucosal, targeted delivery, sustained-release delivery, delayed release, pulsed release and parenteral methods.
- Peroral administration may be administered both in liquid and dry state.
- pharmaceutical micronutrient composition would be more specifically mixture D.
- Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored bases, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin or sucrose and acacia), each containing a predetermined amount of a subject composition as an active ingredient.
- Subject compositions may also be administered as a bolus, electuary or paste.
- an oral solid drug product When an oral solid drug product is prepared, pharmaceutical micronutrient composition is mixed with an excipient (and, if necessary, one or more additives such as a binder, a disintegrant, a lubricant, a coloring agent, a sweetening agent, and a flavoring agent), and the resultant mixture is processed through a routine method, to thereby produce an oral solid drug product such as tablets, coated tablets, granules, powder or capsules.
- Additives may be those generally employed in the art.
- excipients include lactate, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose and silicic acid.
- Binders include water, ethanol, propanol, simple syrup, glucose solution, starch solution, liquefied gelatin, carboxymethylcellulose, hydroxypropyl cellulose, hydroxypropyl starch, methyl cellulose, ethyl cellulose, shellac, calcium phosphate and polyvinyl pyrrolidone.
- Disintegrants include dried starch, sodium arginate, powdered agar, sodium hydroxy carbonate, calcium carbonate, sodium lauryl sulfate, monoglyceryl stearate and lactose.
- Lubricants include purified talc, stearic acid salts, borax and polyethylene glycol. Sweetening agents include sucrose, orange peel, citric acid and tartaric acid.
- liquid drug product for oral administration When a liquid drug product for oral administration is prepared, pharmaceutical micronutrient composition is mixed with an additive such as a sweetening agent, a buffer, a stabilizer, or a flavoring agent, and the resultant mixture is processed through a routine method, to produce an orally administered liquid drug product such as an internal solution medicine, syrup or elixir.
- a sweetening agent include vanillin
- examples of the buffer include sodium citrate
- stabilizer include tragacanth, acacia, and gelatin.
- dilute sterile, aqueous or partially aqueous solutions may be prepared with pharmaceutical micronutrient composition.
- Formulations containing pharmaceutical micronutrient composition for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing a subject composition with one or more suitable non-irritating carriers, comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated compound(s) and composition(s).
- suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated compound(s) and composition(s).
- suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate
- a targeted-release portion for capsules containing pharmaceutical micronutrient composition can be added to the extended-release system by means of either applying an immediate-release layer on top of the extended release core; using coating or compression processes, or in a multiple-unit system such as a capsule containing extended- and immediate-release beads.
- sustained release When used with respect to a pharmaceutical micronutrient composition, the term “sustained release” is art recognized.
- a therapeutic composition that releases a substance over time may exhibit sustained-release characteristics, in contrast to a bolus type administration in which the entire amount of the substance is made biologically available at one time.
- one or more of the pharmaceutically acceptable excipients upon contact with body fluids, including blood, spinal fluid, mucus secretions, lymph or the like, one or more of the pharmaceutically acceptable excipients may undergo gradual or delayed degradation (e.g., through hydrolysis), with concomitant release of any material incorporated therein, e.g., a therapeutic and/or biologically active salt and/or composition, for a sustained or extended period (as compared with the release from a bolus). This release may result in prolonged delivery of therapeutically effective amounts of any of the therapeutic agents disclosed herein.
- sustained-release formulations in which the pharmaceutical micronutrient composition is released over a period of time in a controlled manner from a formulation.
- sustained release formulations include liposomes, drug-loaded biodegradable microspheres and pharmaceutical micronutrient composition polymer conjugates.
- Delayed-release dosage formulations are created by coating a solid dosage form with a film of a polymer, which is insoluble in the acid environment of the stomach, but soluble in the neutral environment of the small intestine.
- the delayed-release dosage units can be prepared, for example, by coating a pharmaceutical micronutrient composition with a selected coating material.
- the pharmaceutical micronutrient composition may be a tablet for incorporation into a capsule, a tablet for use as an inner core in a “coated core” dosage form, or a plurality of drug-containing beads, particles or granules, for incorporation into either a tablet or a capsule.
- Preferred coating materials include bioerodible, gradually hydrolysable, gradually water-soluble, and/or enzymatically degradable polymers, and may be conventional “enteric” polymers.
- Enteric polymers as will be appreciated by those skilled in the art, become soluble in the higher pH environment of the lower gastrointestinal tract, or slowly erode as the dosage form passes through the gastrointestinal tract, while enzymatically degradable polymers are degraded by bacterial enzymes present in the lower gastrointestinal tract, particularly in the colon.
- a delayed-release tablet may be formulated by dispersing a drug within a matrix of a suitable material such as a hydrophilic polymer or a fatty compound.
- Suitable hydrophilic polymers include, but are not limited to, polymers or copolymers of cellulose, cellulose ester, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate and vinyl or enzymatically degradable polymers or copolymers as described above. These hydrophilic polymers are particularly useful for providing a delayed-release matrix.
- Fatty compounds for use as a matrix material include, but are not limited to, waxes (e.g., carnauba wax) and glycerol tristearate.
- a pulsed-release dosage is one that mimics a multiple dosing profile without repeated dosing, and typically allows at least a twofold reduction in dosing frequency as compared with the drug presented as a conventional dosage form (e.g., as a solution or prompt drug-releasing, conventional solid dosage form).
- a pulsed-release profile is characterized by a time period of no release (lag time) or reduced release, followed by rapid drug release. These can be formulated for critically ill patients using the instant pharmaceutical micronutrient composition.
- parenteral administration and “administered parenterally” as used herein refer to modes of administration other than enteral and topical, such as injections, and include without limitation intravenous, intramuscular, intrapleural, intravascular, intrapericardial, intra-arterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal and intrastemal injection and infusion.
- compositions disclosed herein suitable for parenteral administration, comprise one or more subject compositions in combination with one or more pharmaceutically acceptable sterile, isotonic, aqueous, or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders, which may be reconstituted into sterile injectable solutions or dispersions just prior to use, and which may contain antioxidants, buffers, bacteriostats, solutes that render the formulation isotonic within the blood of the intended recipient, or suspending or thickening agents.
- pharmaceutical micronutrient composition is mixed with an additive such as a pH regulator, a buffer, a stabilizer, an isotonicity agent or a local anesthetic, and the resultant mixture is processed through a routine method, to thereby produce an injection for subcutaneous injection, intramuscular injection, or intravenous injection.
- an additive such as a pH regulator, a buffer, a stabilizer, an isotonicity agent or a local anesthetic
- examples of the pH regulator or buffer include sodium citrate, sodium acetate and sodium phosphate
- examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycolic acid, and thiolactic acid
- examples of the local anesthetic include procaine hydrochloride and lidocaine hydrochloride
- examples of the isotonicity agent include sodium chloride and glucose.
- Adjuvants are used to enhance the immune response. Various types of adjuvants are available. Haptens and Freund's adjuvant may also be used to produce water-in-oil emulsions of immunogens.
- compositions, polymers and other materials and/or dosage forms that are within the scope of sound medical judgment, suitable for use in contact with the tissues of mammals, both human beings and animals, without excessive toxicity, irritation, allergic response or other problem or complication, commensurate with a reasonable benefit-risk ratio.
- pharmaceutically acceptable carrier includes, for example, pharmaceutically acceptable materials, compositions or vehicles, such as a liquid or solid filler, diluent, solvent or encapsulating material involved in carrying or transporting any subject composition from one organ or portion of the body, to another organ or portion of the body.
- a pharmaceutically acceptable carrier is non-pyrogenic.
- materials that may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyr
- the pharmaceutical micronutrient compositions described herein are formulated in a manner such that said compositions will be delivered to a mammal in a therapeutically effective amount, as part of a prophylactic, preventive or therapeutic treatment to overcome the infection caused by corona viruses (irrespective of the type).
- the dosage of the pharmaceutical micronutrient compositions may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials.
- the blood samples may be tested for their immune response to their corresponding viral load or lack thereof.
- the therapeutic pharmaceutical micronutrient composition provided by this application may be administered to a subject in need of treatment by a variety of conventional routes of administration, including orally, topically, parenterally, e.g., intravenously, subcutaneously or intramedullary. Further, the therapeutic compositions may be administered intranasally, as a rectal suppository, or using a “flash” formulation, i.e., allowing the medication to dissolve in the mouth without the need to use water. Furthermore, the compositions may be administered to a subject in need of treatment by controlled-release dosage forms, site-specific drug delivery, transdermal drug delivery, patch-mediated drug delivery (active/passive), by stereotactic injection, or in nanoparticles.
- an active ingredient can be present in the therapeutic compositions of the present invention for localized use via the cutis, intranasally, pharyngolaryngeally, bronchially, intravaginally, rectally or ocularly.
- the active ingredients can be packaged in a pressurized aerosol container together with a gaseous or liquefied propellant, for example dichlorodifluoromethane, carbon dioxide, nitrogen, propane and the like, with the usual adjuvants such as cosolvents and wetting agents, as may be necessary or desirable.
- a gaseous or liquefied propellant for example dichlorodifluoromethane, carbon dioxide, nitrogen, propane and the like
- the usual adjuvants such as cosolvents and wetting agents, as may be necessary or desirable.
- the most common routes of administration also include the preferred transmucosal (nasal, buccal/sublingual, vaginal, ocular and rectal) and inhalation routes.
- the subject pharmaceutical micronutrient composition of the present application may be lyophilized or subjected to another appropriate drying technique such as spray drying.
- the subject compositions may be administered once, or may be divided into a number of smaller doses to be administered at varying intervals of time, depending in part on the release rate of the compositions and the desired dosage.
- Formulations useful in the methods provided herein include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration.
- the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
- the amount of a subject pharmaceutical micronutrient composition that may be combined with a carrier material to produce a single dose may vary depending upon the subject being treated and the particular mode of administration.
- the therapeutically acceptable amount described herein may be administered in inhalant or aerosol formulations.
- the inhalant or aerosol formulations may comprise one or more agents, such as adjuvants, diagnostic agents, imaging agents, or therapeutic agents useful in inhalation therapy.
- the final aerosol formulation may, for example, contain 0.005-90% w/w, for instance 0.005-50%, 0.005-5% w/w, or 0.01-1.0% w/w, of medicament relative to the total weight of the formulation.
- aqueous and non-aqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol and the like), and suitable mixtures thereof, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- polyols such as glycerol, propylene glycol, polyethylene glycol and the like
- vegetable oils such as olive oil
- injectable organic esters such as ethyl oleate.
- Proper fluidity may be maintained, for example by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Engineering & Computer Science (AREA)
- Alternative & Traditional Medicine (AREA)
- Biotechnology (AREA)
- Botany (AREA)
- Medical Informatics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
A method of preventing, inhibiting and treating a mammal suffering from viral infections using a pharmaceutical micronutrient composition including mixture D is disclosed. The middle east respiratory syndrome-related coronavirus and severe acute respiratory syndrome-related coronavirus as well as their variants and mutants affecting mammals and causing infection are successfully treated using mixture D. Mixture D contains key micronutrients such as an ascorbate, N-acetylcysteine, theaflavins, resveratrol, cruciferous plant extracts, curcumin, quercetin, naringenin, and baicalin and a combination thereof. Mixture D and seemed to have beneficial effects to prevent and treat diseases where viruses use the angiotensin converting enzyme 2 (ACE2) receptor on the surface of epithelial cells, endothelial cells and other cell types for viral entry.
Description
- The current application is a continuation of and claims priority to pending U.S. application Ser. No. 17/212,727 filed on 25 Mar. 2021. The said US application is hereby incorporated by reference in its entireties for all of its teachings.
- This application discloses method of treating viral infection caused by coronavirus and its variants and mitigates coronavirus infection in mammals by administering pharmaceutical micronutrient composition.
- The emergence and rapid spread of the coronavirus pandemic has resulted in millions of deaths and is compromising human health and economies on a global scale. Sequencing the whole genome of the virus from patient samples from Wuhan, China (Zhu et al., 2020) identified a new coronavirus that was named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) by the Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses (Gorbalenya et al., 2020). The disease caused by the virus was named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO).
- The coronavirus is a rapidly mutating virus and, within one year of the pandemic, several mutations of this virus have emerged in United Kingdom, South Africa, Brazil and other countries, with each of these mutations potentially giving rise to further coronavirus subtypes. Clinical reports show that the British mutation of the coronavirus can infect patients who have received the vaccine developed against the original coronavirus SARS-CoV-2, thereby challenging any claim of a universal efficacy of the available vaccines against all coronavirus mutations.
- Thus, it is foreseeable that the ultimate control of the ongoing pandemic caused by the rapidly mutating coronavirus will be compromised by the need to develop new vaccines potentially for every new coronavirus mutation, and by the related scientific, economic and social consequences of such a strategy.
- A promising scientific avenue towards this goal is to focus on the “docking structure” of the coronavirus on the surface of cells, the angiotensin-converting-enzyme 2 (ACE 2) receptor. Significantly, all known coronaviruses, including SARS CoV-2 and its mutations, use this very same receptor as docking structure and entry port for infections. This fact makes a detailed understanding of the regulation of the production/expression of this receptor on the surface of human cells—as well as related cellular mechanisms—a prime target towards developing global health strategies to control the pandemic characterized by a multitude of current and future viral mutations.
- The cell entry mechanisms of coronaviruses, including SARS-CoV-2, have been extensively studied. To enter host cells, coronaviruses first bind to a cell surface receptor for viral attachment, subsequently enter cell endosomes, and eventually fuse viral and lysosomal membranes (Li et al., 2016). Coronavirus entry is mediated by a spike protein anchored on the surface of the virus. On mature viruses, the spike protein is present as a trimer, with three receptor-binding S1 heads sitting on top of a trimeric membrane fusion S2 stalk.
- The spike S1 protein on SARS-CoV-2 contains a receptor-binding domain (RBD) that specifically recognizes its cellular receptor, angiotensin-converting enzyme 2 (ACE2). As such, the receptor-binding domain on SARS-CoV-2 spike protein part S1 head binds to a target cell using the human ACE2 (hACE2) receptor on the cell surface and is proteolytically activated by human proteases. Coronavirus entry into host cells is an important determinant of viral infectivity and pathogenesis (Du et al, 2009, Du et al. 2017).
- The cellular receptor for the virus binding is angiotensin-converting
enzyme 2 or ACE2, which is an integral membrane protein present on many cells throughout the human body, with strong expression in the heart, vascular system, gastrointestinal system and kidneys, as well as in type II alveolar cells in the lungs. (Zhu et al., 2019, Li et al., 2003, Hoffman et al., 2005). Cellular infections by the coronavirus, as well as intracellular viral replication, is facilitated by several host enzymatic proteins, including transmembrane protease, serine 2 (TMPRSS2), furin, cathepsins, as well as RNA-dependent RNA polymerase (RdPp) catalyzing viral RNA multiplication. - COVID-19 infections have been associated with a high inflammatory response in the host, termed a “cytokine storm”, thrombosis and other patho-mechanisms that can trigger a fateful cascade of clinical events associated with advanced coronavirus infections. In evaluating new approaches to inhibiting coronavirus infectivity, the ability of such new approaches to ameliorate such infection-related complications should be an additional target. Thus, there exists an urgent need for preventive and therapeutic strategies for inhibiting the infective mechanisms of all coronaviruses—irrespective of mutation and/or subtype—thereby offering new avenues towards the global control of the pandemic.
- The instant pharmaceutical micronutrient composition prevents, inhibits, treats and delays attachment, penetration, biosynthesis, maturation and release of a coronavirus SARS-Cov-2 virus in a mammal. In one embodiment, the phytochemicals in combination with other vitamins prevents various steps of infection in a mammal. In one embodiment, various combinations of individual micronutrients are called mixtures. In one embodiment, mixture D, a pharmaceutical micronutrient composition is made up of resveratrol, cruciferous plant extract, curcumin, quercetin, naringenin, baicalein, theaflavin, vitamin C and N-actylcysteine.
- In another embodiment, a pharmaceutical micronutrient compound comprises an ascorbate in the range of 10 mg to 200,000 mg, N-acetylcysteine in the range of 2 mg to 30,000 mg, theaflavins in the
range 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, cruciferous plant extracts in the range of 5 mg to 5000 mg (or equivalent amount of its active compound, sulforaphane), curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, naringenin in the range of 5 mg to 3,000 mg, and baicalein in the range of 5 mg to 3,000 mg. - In another embodiment, additional micronutrients are added to form a pharmaceutical micronutrient compound such as a phenolic acid, gallic acid, tannic acid, chlorogenic acid and rosmarinic acid; a flavonoid such as fisetin, morin, myricetin, kaempferol, rutin, luteolin, baicalin, scutellarin, naringenin, hesperidin, hesperetin, apigenin, genistein, phloroglucinol, schisandrin, urolithin A, punicalagin, brazilin, hispidulin, papaverine, silymarin, procyanidin B2, procyanidin B3, stilbenes and pterostilbene; an alkaloid such as palmatine, berberine, cannabidiol, castanospermine, usnic acid, malic acid, terpenes, D-limonene and carnosic acid.
- In another embodiment, a pharmaceutical micronutrient mixture consists of an ascorbate in the range of 10 mg to 200,000 mg, N-acetylcysteine in the range of 2 mg to 30,000 mg, theaflavins in the
range 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, cruciferous plant extracts in the range of 5 mg to 5,000 mg (or equivalent amount of its active compound, sulforaphane), curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, naringenin in the range of 5 mg to 3,000 mg, and baicalein in the range of 5 mg to 3,000 mg. In another embodiments, the ascorbates are at least one of or a combination of L-ascorbic acid, magnesium ascorbate, calcium ascorbate, ascorbyl palmitate, ascorbyl phosphate, sodium ascorbyl phosphate and/or or another pharmaceutically acceptable form of ascorbate. - In another embodiment, the pharmaceutical micronutrient composition further consists of at least one of the theaflavins in the
range 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, cruciferous plant extracts in the range of 5 mg to 5,000 mg, curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, and a combination thereof. - In another embodiment, several additional ingredients are added, to form a pharmaceutically acceptable formulation for various forms of use, such as oral, injectable, absorbable, etc. The pharmaceutical micronutrient composition is in the form of oral, non-invasive peroral, topical (for example, transdermal), enteral, transmucosal, targeted delivery, sustained-release delivery, delayed release, pulsed release and parenteral methods.
- In one embodiment, wherein the viral infection and/or viral disease uses a cellular receptor for a viral entry on a surface of an epithelial cells, endothelial cells and/or other cell types.
- In another embodiment, the viral infection and/or viral disease is that which uses an angiotensin converting enzyme 2 (ACE2) receptor on the surface of an epithelial cell, endothelial cell and other cell types, for the viral entry, is treated, prevented and mitigated using pharmaceutical micronutrient composition.
- The pharmaceutical micronutrient composition, in one embodiment, is used to treat the human and other species with severe acute respiratory syndrome-related coronaviruses (SARS-CoV-1, SARS-CoV2 and their variants) that use angiotensin converting enzyme 2 (ACE2) receptors on the surface of epithelial cells, endothelial cells and other cell types, for viral entry.
- The pharmaceutical micronutrient composition, in one embodiment, is used to treat the human and other species with Middle East respiratory syndrome-related coronavirus (MERS-CoV), and its variants that use the angiotensin converting enzyme 2 (ACE2) receptors on the surface of epithelial cells, endothelial cells and other cell types, for viral entry. The pharmaceutical micronutrient composition, in one embodiment, is mixture D, which is used in humans to treat, prevent, inhibit and stop inflammation caused by severe acute respiratory syndrome-related coronaviruses (SARS-CoV-1, SARS-CoV-2 and their variants), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) and its variants.
- Others features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.
- Example embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
-
FIGS. 1A and 1B show several cellular and systemic mechanisms of coronavirus infection. -
FIG. 2 shows the results of binding of the receptor binding domain (RBD) of SARS-CoV-2 to the human ACE2 receptor. -
FIG. 3 shows a dose-dependent binding of SARS-CoV-2 pseudo-virions to immobilized epithelial cells overexpressing hACE2. -
FIGS. 4A, 4B and 4C show viability of cells upon treatment with indicated polyphenols for 1 h, 3 h, and 48 h. -
FIGS. 5A and 5B show SARS-CoV-2 pseudo-virions binding to cells at different patterns of treatment. -
FIGS. 6A and 6B show SARS-CoV-2 pseudo-virions' entry to cells at different pattern of treatment. -
FIGS. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J, 7K show images of syncytia taken after treatment with indicated polyphenols. -
FIG. 8 shows quantification of syncytia after treatment with indicated polyphenols. -
FIG. 9 shows selection of the most effective formulation based on RBD to ACE2 binding inhibition of various micronutrient mixtures. -
FIG. 10 shows the test for safety for mixture D in human small alveolar epithelial cells. -
FIG. 11 shows inhibition of RBD binding and efficacy of the Mixture alone and its combination with Vitamin D. -
FIG. 12 shows inhibition of cellular internalization of the mutated forms of SARS-CoV-2: viral strains from the UK, Brazil, and South Africa. -
FIG. 13 shows inhibition of cellular entry of the mutated forms of SARS-CoV-2: viral strains from the UK, Brazil, and South Africa, upon application of different patterns of treatment. -
FIG. 14 shows inhibition of ACE2 expression under normal and pro-inflammatory conditions. -
FIG. 15 shows inhibition of viral RNA-dependent RNA polymerase (RdRp) activity by mixture D with and without vitamin D. -
FIG. 16 shows inhibition of furin activity by mixture D. -
FIG. 17 shows inhibition of cellular activity of native cathepsin L by mixture D applied individually and with vitamin D. -
FIG. 18 shows mixture D's inhibitory effect on activity of recombinant cathepsin L and the effects of additional vitamin D. -
FIG. 19 shows anti-inflammatory effect: inhibition of IL6 secretion under normal and pro-inflammatory conditions by mixture D alone and combined with vitamin D. - Other features of the present embodiments will be apparent from the detailed description that follows.
- The life cycle of the virus with the host consists of the following five steps: attachment, penetration, biosynthesis, maturation, and release. Once viruses bind to host receptors (attachment), they enter host cells through endocytosis or membrane fusion (penetration). Once viral contents are released inside the host cells, viral RNA enters the nucleus for replication. Viral messenger RNA (mRNA) is used to make viral proteins (biosynthesis). New viral particles are then made (maturation) and released. Coronaviruses consist of four structural proteins: spike (S), membrane (M), envelope (E) and nucleocapsid (N). Spike is composed of a transmembrane trimetric glycoprotein protruding from the viral surface, which determines the diversity of coronaviruses and host tropism.
- Since several mechanisms are involved in the pathogenicity of SARS-CoV-2, all of which are ultimately regulated at the level of cellular metabolism, the most effective approach to viral infectivity suppression is by identifying molecules that are able to safely regulate and/or inhibit the expression of infection-pathway-related proteins.
-
FIG. 1A shows the cellular mechanism of viral entry and several entry points for the SARS-CoV-2 virus and others through ACE2 receptors, which, having entered, require furin and cathepsin L for replication, protein synthesis, maturation and release into the bloodstream.FIG. 1B shows the systemic effect of the release of interleukin 6 (IL-6) in response to inflammation caused by viral infection. IL-6 may be a therapeutic target for inhibiting the cytokine storm and cytokine storm-associated organ damage. We would show that this is a good target to prevent organ damage. - The safest and most effective molecules able to exert such a regulatory role are natural compounds, namely micronutrients. These natural compounds are by their very nature able to affect simultaneously, multiple biochemical processes in cellular metabolism.
- A “mammal” to be treated by the subject method may mean either a human or non-human animal, such as mice, primates and vertebrates. The specific diseases that would be targets for a treatment using a pharmaceutical micronutrient composition are infections caused by SARS-CoV-2, SARS-CoV-2 variants (such as the UK, Nigeria, South Africa and Brazil variants, and 19 other mutations), MERS-CoV (the beta coronavirus that causes Middle East respiratory syndrome, or MERS), SARS-CoV (the beta coronavirus that causes severe acute respiratory syndrome, or SARS), SARS-CoV-2, and all their subtypes, four main sub-groupings of coronaviruses, known as alpha, beta, gamma and delta.
- Our earlier study showed that a natural micronutrient composition containing vitamin C, certain minerals, amino acids and plant extracts was effective in significantly decreasing cellular ACE2 expression in human lung alveolar epithelial and vascular endothelial cells. Also, a combination of phytobiological compounds demonstrated efficacy in inhibiting viral binding to ACE2 cellular receptors and affecting other mechanisms associated with viral infectivity.
- Here we claim the efficacy of certain combinations of micronutrients in significantly inhibiting coronavirus infectivity, including viral binding to the ACE2 receptor, viral entry into the cell, intracellular viral replication, and other mechanisms. In this study we tested the efficacy of a specific nutrient compositions containing vitamin C, N-acetylcysteine, resveratrol, theaflavins, curcumin, quercetin, naringenin, baicalin and extracts of cruciferous plants (broccoli, cabbage, cauliflower) on key aspects of CoV infectivity: inhibition of viral RBD binding to ACE2 receptors, cellular expression of ACE2 receptors, inhibition of key enzymes involved in coronavirus activity, and anti-inflammatory and anti-coagulant effects of this formulation.
- The results show that this micronutrient composition was effective in inhibiting RBD binding of spike protein of SARS-CoV-2 to the ACE2 receptor (by about 75% at 5 mcg/ml and 85% inhibition at 10 mcg/ml). At these concentrations, this micronutrient composition should be considered as a safe and affordable approach in controlling the current COVID-19 pandemic.
- Cell cultures: Human Small Airways Epithelial Cells (HSAEpC, purchased from ATCC) were cultured in Airways Epithelial Cells Growth Medium (ATCC) in plastic flasks at 37° C. and 5% CO2. For the experiment HSAEpC, passage 5-7, were plated to collagen-covered 96-well plastic plates (Corning) in 100 μL growth medium and were grown to confluent layer for 4-7 days. Human cell lung epithelial cell line A549 (obtained from ATCC) was cultured in DMEM supplemented with 10% fecal bovine serum.
- Micronutrient composition: the micronutrient combination used in our experiments was developed at the Dr. Rath Research Institute (San Jose, Ca). The composition of all five mixtures tested is presented in Table 1.
-
TABLE 1 All micronutrients used in different combinations as mixtures: Micronutrient- Mixture D Vitamin C N-acetylcysteine Theaflavin-3,3′-digallate Resveratrol Cruciferous plant extracts Curcumin Quercetin Naringenin Baicalin -
TABLE 2 Mixture A, mixture B, mixture C, mixture D and mixture E are represented in corresponding column A, B, C, D and E. Ingredients A B C D E Green Tea Extract X X X 1 mg to 10,000 mg Resveratrol X X X X X 10 mg to 5,000 mg Cruciferous plant X X X X X extract 5 mg to 5,000 mg Curcumin X X X X X 5 mg to 10,000 m Quercetin X X X X X 5 mg to 2,000 mg Naringenin X X X X X 5 mg to 3,000 mg Baicalin X X X X X 5 mg to 3,000 mg Theaflavin X X X 5 mg to 3,000 mg Vitamin C X X X X X 10 mg to 200,000 mg N- acetylcysteine X X 2 mg to 30,000 mg Fucoidan X X - Cell-Cell fusion assay: Cell-cell fusion assay was performed according to Ou et al. Briefly, A549 cells transduced with eGFP-luciferase-SARS-CoV-2 spike S1 lentivirus vector (GenScript, Piscataway, N.J.) were detached with 1 mM EDTA, treated with indicated concentrations of selected polyphenols for 1b. at 37° C. and overlaid on 80-95% confluent human A549 lung epithelial cells overexpressing hACE2. After 4 h. incubation at 37° C., images of syncytia were captured with a Zeiss Axio Observer A1 fluorescence microscope (Carl Zeiss Meditec, Inc, Dublin, Calif.). Positive control was 20 μg/ml anti-ACE2 antibody. Results are expressed as a percentage of polyphenol-free control (mean+/−SD, n=3).
- Cell supplementation: The micronutrient mixture was dissolved in DMSO either as 1 mg/ml or 10 mg/ml stock solutions. For ACE2 expression experiments HSAEpC cells were supplemented with indicated doses of the formulation in 100 μL/well cell growth medium for 3-7 days. Applied nutrient concentrations were expressed as micrograms per ml (ug/ml).
- ACE-2 expression assay (ELISA): Human Small Airways Epithelial Cells (HSAEpC) were supplied by ATCC (American Type Culture Collection, Manassas, Va.) and cultured in Small Airways Epithelial Cells culture medium (ATCC). HSAEpC cells were seeded in 96-well plates covered with collagen at 6 passage and grown to confluent layer. Cell culture medium was supplemented with indicated amounts of mixture D and 50 mcg/ml ascorbic acid in 100 mcl per well. After 72 h. cells were supplemented with fresh medium and the same addition for another 72 h. After 6 days' incubation, cell layers were washed twice with phosphate-buffered saline (PBS) and fixed with 3% formaldehyde in PBS with 0.5% Triton X100 for 1 h. at 4° C. Fixed cells were washed four times with PBS and incubated with 1% bovine serum albumin (BSA) in PBS overnight at 4° C. ACE2 expression was measured with ELISA assay using primary anti-ACE2 polyclonal antibodies (SIGMA) and secondary goat anti-mouse IgG antibodies conjugated with horseradish peroxidase (HRP, Rockland). Amounts of retained HRP were determined by HRP substrate colored reaction as optical density at 450 nm using a microplate reader. Results were calculated with Microsoft Excel software and presented as percentage of unsupplemented controls (an average of three repetitions+/−standard deviation).
- Receptor binding and entry assays: cell lines and pseudoviruses: Human alveolar epithelial cell line A549 was obtained from ATCC. Human alveolar epithelial cell line A549, stably overexpressing hACE2 receptor (hACE2/A549), was obtained from GenScript (Piscataway, N.J.). Both cell lines were maintained in Dulbecco's MEM containing 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 μg/ml streptomycin. Pseudovirus particles with spike glycoprotein as the envelope protein, with eGFP and luciferase (eGFP-luciferase-SARS-CoV-2 spike glycoprotein pseudotyped particles) and pseudotyped ΔG-luciferase (G*ΔG-luciferase) rVSV, were purchased from Kerafast (Boston, Mass.). Bald pseudovirus particles with eGFP and luciferase (eGFP-luciferase-SARS-CoV-2 pseudo-typed particles) were purchased from BPS Bioscience (San Diego, Calif.). Lentiviral particles carrying human TMPRSS2 were from Addgene (Watertown, Mass.).
- Test compounds, antibodies, recombinant proteins and inhibitors: Curcumin, tea extract standardized to 85% theaflavins, theaflavin-3,3′-digallate, gallic acid, tannic acid, Andrographis paniculata extract, andrographolide, licorice extract, glycyrrhizic acid, broccoli extract, L-sulforaphane, usnic acid, malic acid, D-limonene and ammonia chloride were purchased from Sigma (St. Louis, Mo.). All other polyphenols and camostat mesylate were obtained from Cayman Chemical Company (Ann Arbor, Mich.). All antibodies were from Santa Cruz Biotechnology (Santa Cruz, Calif.). TMPRSS2 recombinant protein was from Creative BioMart (Shirley, N.Y.).
- SARS-CoV-2 RBD binding to hACE2: Binding/neutralization reaction was performed using a SARS-CoV-2 surrogate virus neutralization test kit that can detect either antibody or inhibitors that block the interaction between the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and the hACE2 cell surface receptor (GenScript, Piscataway, N.J.). For screening assay tested polyphenols at 100 μg/ml were incubated with either HRP-conjugated receptor-binding domain (RBD fragment) of SARS-CoV-2 spike S1 domain, or with hACE2 immobilized on 96-well plate for 30 min. at 37° C. Next, the samples that were incubated with RBD fragment were transferred into 96-well plate with immobilized hACE2 receptor and incubated for additional 15 min. at 37° C., whereas hACE2 immobilized plates already incubated with different polyphenols were washed four times with washing buffer and treated with HRP-conjugated RBD fragments, and then incubated for 15 min. at 37° C. Subsequently, all plates were washed four times with washing buffer and developed with tetramethylbenzidine (TMB) substrate solution for up to 5 min. followed by the addition of stop buffer. Optical density was measured immediately at 450 nm with a plate reader (Molecular Devices, San Jose, Calif.). Positive and negative controls were provided by the manufacturer. Results are expressed as a percentage of polyphenol-free control (mean+/−SD, n=5).
- RBD binding: This assay was performed using a GenScript SARS-CoV-2 surrogate virus neutralization test kit that can detect either antibody or inhibitors that block the interaction between the RBD of the viral spike protein with the ACE2 cell surface receptor. All test samples with indicated concentrations, and positive and negative controls (provided by the manufacturer) were diluted with the sample dilution buffer with a volume ratio of 1:9. In separate tubes, HRP-conjugated RBD was also diluted with the HRP dilution buffer with a volume ratio of 1:99. Binding/neutralization reaction was performed according to manufacturer's protocol. Briefly, diluted positive and negative controls as well as the test samples with indicated concentrations were mixed with the diluted HRP-RBD solution with a volume ratio of 1:1 and incubated for 30 min. at 37° C. Next, 100 μL each of the positive control mixture, negative control mixture, and the test sample mixtures were added to the corresponding wells with immobilized ACE2 receptor and incubated for 15 min. at 37° C. Subsequently, the plates were washed four times with 260 μl/well of the 1× wash solution, and TMB solution was added to each well (100 μl/well). Plates were incubated in the dark at room temperature for up to 5 min. Next, 50 μl/well of stop solution was added to quench the reaction, and the absorbance was measured immediately in plate reader at 450 nm. Experiment was performed three times in duplicates. Data are presented as % of control.
- Binding of pseudo-typed virion mutants of SARS-CoV-2 to hACE2 receptor: The experiment was conducted according to GenScript recommendations with small modifications. Briefly, eGFP-luciferase-SARS-CoV-2 spike protein encapsulated pseudo-virions were incubated at 37° C. with 5 and 10 μg/ml of mixture D and simultaneously added to hACE2/A549 cells. Cells were incubated for an additional 1 h. at 37° C. Subsequently, cells were washed three times with washing buffer, and primary antibody against SARS-CoV-2 spike protein at 1:1000 dilution, followed by HRP-conjugated secondary antibody at 1:2500 dilution, were employed in ELISA assay. The transduction efficiency was quantified by recording of the luciferase activity, utilizing a luciferase assay system (Promega, Madison, Wis.) and a spectrofluorometer (Tecan Group Ltd., Switzerland). Positive and negative controls were provided by the manufacturer. Data are presented as % of control without mixture addition (mean+/−SD, n=6).
- Cathepsin L activity assay: Experiment was performed in cell lysates using a Cathepsin L Activity Assay Kit (Abcam, Cambridge, Mass.) according to the manufacturer's protocol. Briefly, 5×106 A549 cells treated with mixture D at 5 and 10 μg/ml concentrations for 24 h. were washed with cold 1×PBS, and lysed 100 μl with CL buffer for 8 min. After 3 minutes of centrifugion at 4° C., supernatants were collected and enzymatic reaction was set up by mixing 50 μl of treated sample, 50 μl of control sample, 50 μl of background control sample, 50 μl of positive and negative controls. Next, 50 μl CL buffer and 1 μl mM DTT were added, followed by addition of 2 μl of 10 mM CL substrate Ac-FR-AFC, except for the background control. Samples were incubated at 37° C. for 1 h. and fluorescence was recorded at extension/emission=400/505 nm with a fluorescence spectrometer (Tecan Group Ltd., Switzerland). Data are presented as % of control without PB addition (mean+/−SD, n=6).
- Effect of mixture D on the activity of isolated cathepsin L was tested using Cathepsin L Activity Screening Assay Kit (BPS Bioscience, San Diego, Calif.) according to the manufacturer's protocol. Briefly, mixture D at 5.0 and 10 μg/ml concentrations was added to cathepsin L (0.2 mU/μl) for 15 mins at 22° C., prior to fluorogenic substrate (Ac-FR-AFC) (10 μM) addition and incubation for 60 mins at RT. Positive control contained only cathepsin L, and negative control containing cathepsin L and cathepsin L inhibitor E64d (25 μM). The fluorescence was recorded at extension/emission=360/480 nm with a fluorescence spectrometer (Tecan Group Ltd., Switzerland). Data are presented as a percentage of control without PB addition (mean+/−SD, n=6).
- Furin activity assay: Effects of mixture D on furin enzymatic activity were evaluated using a SensoLyte Rh110 Furin Activity Assay Kit (AnaSpec, Fremont, Calif.) in accordance with the manufacturer's protocol. Briefly, mixture D at 10 and 20 μg/ml concentrations was mixed with furin recombinant protein for 15 min., followed by the addition of fluorogenic Rh110 furin substrate. The samples were incubated for 1 h. at 22° C. and the fluorescence was recorded at extension/emission=490/520 nm with a fluorescence spectrometer (Perceptive Biosystems Cytofluor 4000). Results were calculated with Microsoft Excel software and presented as a percentage of unsupplemented controls (an average of three repetitions+/−standard deviation).
- In vitro RdRp activity: In vitro RdRp activity was examined using a SARS-CoV-2 RNA Polymerase Assay Kit (ProFoldin, Hudson, Mass.) according to the manufacturer's protocol. Briefly, 0.5 μl of 50× recombinant RdRp was incubated with 2.5 μl of 50× buffer and 21 μl of Mixture D at 5 and 10 μg/ml concentrations for 15 min at RT, followed by the addition of master mix containing 0.5 μl of 50×NTPs and 0.5 μl of 50× template (as a single-stranded polyribonucleotide). The reaction (25 μl) was incubated for 2 h at 34° C. and then stopped by addition of 65 μl of 10× fluorescence dye, and the fluorescence signal was recorded within 10 min at extension/emission=488/535 nm using a fluorescence spectrometer (Tecan, Group Ltd., Switzerland). Results are expressed as a percentage of control without PB addition (mean+/−SD, n=6).
- Interleukin 6 (IL-6) assay: Human Small Airways Epithelial Cells (HSAEpC) were supplied by ATCC and cultured in Small Airways Epithelial Cells culture medium (ATCC). SAEC cells were seeded in six-well plates covered with collagen at 6 passage and grown to confluent layer. Cell culture medium was supplemented with indicated amounts of Mixture D mixture, 50 mcg/ml ascorbic acid and Vitamin D3 in 3 ml per well. After 72 hours incubation conditioned media were collected and IL-6 content was measured using R&D Systems Human IL6 ELISA assay in accordance with the manufacture's protocol. Results were calculated with Microsoft Excel software and presented as a percentage of unsupplemented controls (an average of three repetitions+/−standard deviation).
- Our study helps to unravel previously unidentified but important antiviral mechanisms of natural compounds and expands our understanding of SARS-CoV-2 biology. Clinical evaluation of their efficacy in SARS-CoV-2 pathophysiology would be particularly interesting during later steps of the infection process. This should include their effects on host responses following SARS-CoV-2 infection and whether or not their antiviral potential could support or complement current pharmacological treatments.
- Efficacy of polyphenols and plant extracts in preventing binding of the RBD sequence of SARS-CoV-2 and hACE2 receptor. We investigated the ability of several classes of polyphenols to inhibit the binding of the RBD sequence of the SARS-CoV-2 spike protein to the hACE2 receptor taking a two-stage approach. In the first step we screened 51 different polyphenols and plant extracts for their ability to inhibit binding of an HRP-conjugated RBD fragment of SARS-CoV-2 spike protein to the immobilized hACE2 receptor and its direct binding to the hACE2 receptor itself.
- As presented in Table 3 and Table 4, three polyphenols, brazilin, theaflavin-3,3′-di-gallate, and curcumin, showed the highest efficacy (100%) in inhibiting RBD binding to hACE2 when used at 100 μg/ml concentrations. At the same time these and other tested polyphenols did not significantly bind to the ACE2 receptor itself.
- Here, we provide in vitro experimental evidence that among 51 polyphenols selected in this study, brazilin, theaflavin-3,3′-digallate and curcumin exhibited the highest affinity in binding to the RBD-spike protein of SARS-CoV-2. While curcumin, at considerably low concentrations, showed moderate binding to hACE2 receptor, neither brazilin, nor theaflavin-3,3′-digallate displayed binding affinity to this receptor.
- We further investigated this effect by using hA549 cells expressing spike protein. By applying spike-protein-enveloped pseudo-virions and a different pattern of exposure to polyphenols, we observed that all three polyphenol compounds can inhibit viral attachment to the cell surface ACE2 receptors after both short-term (1 h. and 3 h.) and long-term (48 h.) exposure or incubation pattern. When the SARS-CoV-2 virions were pre-incubated with these compounds for 1 h., added simultaneously, or when the compounds were added 1 h. post-infection, the virions' ability to bind to cell surface ACE2 receptors and transduce cells was decreased by all test compounds in dose-dependent fashion. Interestingly, the same inhibitory effect of polyphenols, although at their higher but still non-toxic concentrations, was observed when SARS-CoV-2 pseudo-virions where forcibly attached to the cells by spinfection. In addition, we noticed that brazilin, theaflavin-3,3′-digallate, and curcumin can reduce cell-cell fusion between spike-expressing cells and hACE2 overexpressing cellular monolayer. These results collectively indicate that all these three compounds have inhibitory properties directed especially towards RBD-SARS-CoV-2.
-
TABLE 3 Effects of various classes of polyphenols in preventing RBD of SARS-CoV-2 binding and ACE2 receptor binding. Tested polyphenols and alkaloids Binding with RBD Binging with ACE2 (0.1 mg/ml) (% of control ± SD) (% of control ± SD) Phenolic acids Gallic acid 18.3 ± 4.5 6.5 ± 1.3 Tannic acid 79.4 ± 2.3 7.2 ± 2.3 Curcumin 100 ± 0.2 4.6 ± 2.4 Chlorogenic acid 25.5 ± 2.5 4.7 ± 1.6 Rosmarinic acid 22.5 ± 3.8 7.9 ± 1.8 Flavonoids Fisetin 22.4 ± 1.9 6.0 ± 2.4 Quercetin 22.4 ± 6.5 7.8 ± 3.3 Morin 30.5 ± 5.8 5.6 ± 3.1 Myricetin 45.5 ± 5.4 5.6 ± 2.1 Kaempferol 15.6 ± 2.9 6.2 ± 2.5 Rutin 20.6 ± 6.3 4.8 ± 2.0 Luteolin 10.4 ± 4.7 4.8 ± 1.6 Baicalein 22.5 ± 5.1 7.4 ± 1.4 Baicalin 10.3 ± 2.9 4.9 ± 1.9 Scutellarin 8.1 ± 3.7 7.5 ± 1.7 Naringin 23.6 ± 6.4 3.7 ± 1.1 Naringenin 20 ± 5.1 8.3 ± 1.6 Hesperidin 90.3 ± 3.8 8.3 ± 2.3 Hesperetin 42.5 ± 4.6 4.9 ± 2.7 Apigenin 17.1 ± 4.1 8.3 ± 1.9 Genistein 22.1 ± 2.8 9.4 ± 2.7 Phloroglucinol 69.5 ± 3.6 5.9 ± 3.4 Schisandrin 22.4 ± 3.3 5.1 ± 2.7 Urolithin A 31.1 ± 4.6 8.8 ± 1.6 Punicalagin 32.3 ± 5.9 5.4 ± 2.3 Brazilin 100 ± 0.1 4.6 ± 2.2 Hispidulin 20.1 ± 6.0 7.4 ± 2.1 Papaverine 1.6 ± 0.2 6.5 ± 3.7 Silymarin 30.0 ± 2.6 8.8 ± 3.8 Procyanidin B2 31.1 ± 3.6 5.8 ± 2.7 Procyanidin B3 32.3 ± 3.7 7.8 ± 2.7 Stilbenes Trans-resveratrol 22.3 ± 2.9 5.5 ± 2.4 Pterostilbene 23.1 ± 2.8 9.4 ± 2.5 Alkaloids Palmatine 40.4 ± 6.1 8.5 ± 2.7 Berberine 17.3 ± 2.7 9.4 ± 2.4 Cannabidiol 1.4 ± 0.3 5.8 ± 2.0 Castanospermine 8.2 ± 2.3 5.5 ± 3.1 Usnic acid 22.0 ± 3.4 5.7 ± 1.7 Malic acid 1.2 ± 3.7 5.8 ± 1.4 Terpenes D-limonene 27.2 ± 6.4 6.4 ± 1.5 Carnosic acid 27.1 ± 5.1 6.9 ± 4.1 -
TABLE 4 Binding ability of selected plant extracts and their major components, to RBD of SARS-CoV-2 and to ACE2 receptor. Tested plant extracts Binding to RBD Binging to ACE2 (0.1 mg/ml) (% of control ± DS) (% of control ± DS) Tea extract (85% catechin 88.3 ± 3.7 5.4 ± 1.2 standardized) (+)-gallocatechin 69.5 ± 2.8 5.7 ± 1.6 (−)-catechin gallate 37.4 ± 4.7 8.6 ± 1.5 (−)-gallocatechin gallate 75.4 ± 5.6 7.5 ± 1.7 (−)-gallocatechin 73.5 ± 6.7 3.9 ± 2.3 (+)-epigallocatechin gallate 87.5 ± 6.8 5.9 ± 2.0 Tea extract (85 % theaflavins 100 ± 0.3 5.6 ± 2.1 standardized) Theafalvin 27.3 ± 1.4 7.9 ± 1.9 Theaflavine-3′3- digallate 100 ± 0.1 5.6 ± 2.3 Broccoli extract 28.6 ± 2.6 9.7 ± 1.8 L-sulforaphane 30.2 ± 3.6 6.7 ± 1.5 Andrographis paniculata 18.4 ± 1.8 5.8 ± 3.6 extract Andrographolide 22.1 ± 2.5 5.6 ± 2.4 Licorice extract 18.3 ± 3.6 5.7 ± 1.4 Glycyrrhizic acid 22.2 ± 2.3 10.1 ± 2.8 - As shown in
FIG. 2 , the inhibitory effect of these most effective polyphenols, curcumin. theaflavin-3′3-digallate and brazilin, on RBD-hACE2 binding, was dose dependent and ranged from 20% to 95% at the concentrations from 2.5-10 μg/ml, respectively. - In a second step, we incubated A549 cells expressing SARS-CoV-2 spike protein with these three test polyphenols for 1 h. and then exposed them to soluble hACE2 receptor. In this experiment, we also observed dose-dependent interference in spike protein-hACE2 binding ranging from 15% to 95% at 2.5-10 μg/ml, respectively, which corresponded to previously obtained results (
FIG. 3 ). - Cell viability tests revealed that short-term incubation (i.e., 1 h. and 3 h.) with these polyphenols at concentrations up to 25 pig/ml showed no cytotoxicity, as shown in
FIG. 4A ,FIG. 4B andFIG. 4C . As presented onFIG. 5A , brazilin, theaflavin-3.3-digallate, and curcumin similarly inhibited binding of SARS-CoV-2 spike protein pseudo-typed virions to hACE2/A549 in dose-dependent fashion, regardless of exposure time and the application pattern. Statistically significant inhibition of pseudo-virions binding by all test polyphenols was observed already at 5.0 μg/ml and 10 μg/ml when tested before 1 h. (FIG. 5A ) and simultaneously (FIG. 5B ). - Another series of experiments also revealed that brazilin, theaflavin-3.3′-digallate and curcumin, applied at non-toxic concentrations (i.e., 5.0-25 μg/ml), have a similar dose-dependent inhibitory effect on binding of SARS-CoV-2 spike protein pseudo-typed virions A549 to hACE2/A549. Inhibition of virions transduction ranged from 20% to 80% without spinfection, and from 20% to 40% when spinfection was applied (
FIG. 6A ). Without spinfection, statistically significant inhibition by test polyphenols was observed starting from 5.0 μg/ml concentration, both when SARS-CoV-2 spike pseudo-virions were incubated with selectedpolyphenols 1 h. before hACE2/A549 cells exposure, and when they were added simultaneously with test polyphenols (FIG. 3A ). When test polyphenols were added 1 h. after SARS-CoV-2 spike pseudo-virions were exposed to hACE2/A549 cells, significant inhibitory effect of polyphenols was observed starting from 10 μg/ml concentration. - Test polyphenols showed different efficacy on cell transduction by the pseudo-virions. When the viral transduction of hACE2/A549 cells was forced by the application of spinfection, curcumin showed significant inhibitory effect at lower concentrations compared with brazilin and theaflavin-3′3-digallate. As such, exposure of SARS-CoV-2 virions to curcumin for 1 h. before and simultaneously with adding to hACE2/A549 cells resulted in inhibition of transduction starting from its 5.0 μg/ml concentration. Higher (10 μg/ml) concentrations of brazilin and theaflavin-3,3′-digallate were required to achieve statistically significant inhibitory effects using the same patterns of exposure. All test polyphenols added 1 h. after SARS-CoV-2 virions were applied to the cells, resulted in significant inhibition of transduction at 10 μg/ml concentration of each compound (
FIG. 6B ). - The effect of test polyphenols on fusion of A549 cells expressing SARS-CoV-2 spike protein pseudo-typed virions with lung epithelial cells expressing hACE2 is presented in
FIG. 4 . A549 pseudo-virion expressing cells preincubated with test polyphenols and then layered for 4 h. on hCE2/A549 cells showed a significantly decreased attachment. Pre-incubation with brazilin at 25 μg/ml decreased cell attachment by 40%, with theaflavin-3′3-digallate by 40% to 70% at 10-25 μg/ml, and with curcumin by 70% to 95% at the same concentrations (10-25 μg/ml). These results were consistent with the previously obtained sets of data. -
FIGS. 7A, 7B, 7C, 7D . 7E, 7F, 7G, 7H, 7I, 7J, 7K andFIG. 8 show the effect of test polyphenols on fusion to the human ACE2 receptor overexpressing A549 cells. A. Cell-cell fusion of A549 cells expressing eGFP spike protein with A549 cells stably expressing human ACE2 receptor. A549 cells expressing eGFP spike protein were pre-treated with indicated polyphenols at different concentrations for 1 h. at 37° C. and co-cultured for an additional 4 h. at 37° C. with A549 cells stably expressing human ACE2 receptor. The scale bar indicates 250 μm. B. Quantitative analysis of formed syncytia. Experiments were done in triplicate and repeated three times. Data are presented as percentage of control f SD; A p<0.01, * p<0.001. Control—0.025% DMSO, positive control—20 μg/ml anti-ACE2 antibody. -
FIG. 9 shows Mixture D (resveratrol, cruciferous plant extract, curcumin, quercetin, naringenin, baicalin, theaflavin, vitamin C and N-acetylcysteine) gives the best inhibition of binding. -
FIG. 10 shows the safety of the mixture D on human alveolar cells. The pharmaceutical micronutrient composition mixture D was applied at 5 and 10 mcg/ml doses individually and in combinations with vitamin D and was safe to be used on human small alveolar epithelial cells. -
FIG. 11 shows inhibition of RBD binding of the mixture D alone and its combination with vitamin D. Mixture D was effective in inhibiting RBD binding to ACE2 receptors by 75% at 5 mcg/ml and by 85% at 10 mcg/ml compared to control. The mixture D in combination with vitamin D did not further enhance this inhibitory effect. We can safely say that mixture D alone has high efficacy and inhibits RBD binding. -
FIG. 12 shows results of inhibition of cellular internalization of the mutated forms of SARS-CoV-2: viral strains from the UK, Brazil and South Africa. Mixture D (10 mcg/ml) added simultaneously with mutated virions to cells overexpressing ACE2 was equally effective in inhibiting cellular entry of these mutated forms of SARS-CoV-2: by 48% for UK mutation, by 47% for Brazilian mutation, by 48% for South African mutation. These effects were concentration dependent. Exposure of viral particles to the mixture D for 1 h, before combining them with cells also inhibited cellular entry of these viral mutants by up to 40%. These results not only show efficacy for inhibiting cellular entry by viral strains but also show that the direct exposure of viral particles to this pharmaceutical micronutrient compound helps to prevent the viral entry. -
FIG. 13 shows inhibition of cellular entry by mutated forms of SARS-CoV-2, viral strains from the UK, Brazil and South Africa, owing to the inhibitory effect of the mixture D when applied simultaneously with the virions and cells. -
FIG. 14 shows inhibition of ACE2 expression under normal and pro-inflammatory conditions. Exposure of human small alveolar epithelial cells to the mixture D for 6 days resulted in inhibition of ACE2 expression by 73% at 12 mcg/ml. This inhibitory effect of the mixture D on ACE2 expression persisted and was even enhanced under pro-inflammatory conditions (inhibition between 83-86%). -
FIG. 15 shows inhibition of viral RdRp activity and effects of vitamin D. It shows mixture D alone can inhibit RdRp activity by 53% when used at 10 mcg/ml, and by 30% at 5 mcg/ml compared to control. Combinations of the mixture D with vitamin D did not further enhance RdRp inhibition. -
FIG. 16 shows inhibition of furin activity in the cells, owing to mixture D activity. Mixture D applied individually at 10 mcg/ml could decrease furin activity by 33%, and at 20 mcg/ml by 52%.FIG. 17 shows the test results of inhibition of cellular activity of cathepsin L by mixture D and the effects of vitamin D and Mixture D. Mixture D applied to the cells individually and in combination with vitamin D shows 20% inhibition of cathepsin L activity. Mixture D in combination with vitamin D does not further enhance this inhibitory effect. -
FIG. 18 shows anti-inflammatory effect: inhibition of IL-6 secretion under normal and pro-inflammatory conditions by the mixture D alone and combined with vitamin D. Mixture D (10 mcg/ml) applied to small alveolar endothelial cells for 3 days decreased IL-6 secretion by 50%. Exposure of HSAEpC to lipopolysaccharide (LPS, 5 mcg/ml) increased IL-6 secretion by 43%. Under this pro-inflammatory condition, the mixture D could inhibit IL-6 secretion by 55%. This inhibitory effect was increased to 83% by a combination of the mixture D (10 mcg/ml) with 10 mcg/ml of vitamin D. - Drug formulations suitable for these administration routes can be produced by adding one or more pharmacologically acceptable carrier to the agent and then treating the micronutrient composition through a routine process known to those skilled in the art. The mode of administration includes, but is not limited to, non-invasive peroral, topical (for example, transdermal), enteral, transmucosal, targeted delivery, sustained-release delivery, delayed release, pulsed release and parenteral methods. Peroral administration may be administered both in liquid and dry state. In one embodiment, pharmaceutical micronutrient composition would be more specifically mixture D.
- Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored bases, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin or sucrose and acacia), each containing a predetermined amount of a subject composition as an active ingredient. Subject compositions may also be administered as a bolus, electuary or paste.
- When an oral solid drug product is prepared, pharmaceutical micronutrient composition is mixed with an excipient (and, if necessary, one or more additives such as a binder, a disintegrant, a lubricant, a coloring agent, a sweetening agent, and a flavoring agent), and the resultant mixture is processed through a routine method, to thereby produce an oral solid drug product such as tablets, coated tablets, granules, powder or capsules. Additives may be those generally employed in the art. Examples of excipients include lactate, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose and silicic acid. Binders include water, ethanol, propanol, simple syrup, glucose solution, starch solution, liquefied gelatin, carboxymethylcellulose, hydroxypropyl cellulose, hydroxypropyl starch, methyl cellulose, ethyl cellulose, shellac, calcium phosphate and polyvinyl pyrrolidone. Disintegrants include dried starch, sodium arginate, powdered agar, sodium hydroxy carbonate, calcium carbonate, sodium lauryl sulfate, monoglyceryl stearate and lactose. Lubricants include purified talc, stearic acid salts, borax and polyethylene glycol. Sweetening agents include sucrose, orange peel, citric acid and tartaric acid.
- When a liquid drug product for oral administration is prepared, pharmaceutical micronutrient composition is mixed with an additive such as a sweetening agent, a buffer, a stabilizer, or a flavoring agent, and the resultant mixture is processed through a routine method, to produce an orally administered liquid drug product such as an internal solution medicine, syrup or elixir. Examples of the sweetening agent include vanillin; examples of the buffer include sodium citrate; and examples of the stabilizer include tragacanth, acacia, and gelatin.
- For the purposes of transdermal (e.g., topical) administration, dilute sterile, aqueous or partially aqueous solutions (usually in about 0.1% to 5% concentration), otherwise similar to the above parenteral solutions, may be prepared with pharmaceutical micronutrient composition.
- Formulations containing pharmaceutical micronutrient composition for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing a subject composition with one or more suitable non-irritating carriers, comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated compound(s) and composition(s). Formulations that are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
- A targeted-release portion for capsules containing pharmaceutical micronutrient composition can be added to the extended-release system by means of either applying an immediate-release layer on top of the extended release core; using coating or compression processes, or in a multiple-unit system such as a capsule containing extended- and immediate-release beads.
- When used with respect to a pharmaceutical micronutrient composition, the term “sustained release” is art recognized. For example, a therapeutic composition that releases a substance over time may exhibit sustained-release characteristics, in contrast to a bolus type administration in which the entire amount of the substance is made biologically available at one time. In particular embodiments, upon contact with body fluids, including blood, spinal fluid, mucus secretions, lymph or the like, one or more of the pharmaceutically acceptable excipients may undergo gradual or delayed degradation (e.g., through hydrolysis), with concomitant release of any material incorporated therein, e.g., a therapeutic and/or biologically active salt and/or composition, for a sustained or extended period (as compared with the release from a bolus). This release may result in prolonged delivery of therapeutically effective amounts of any of the therapeutic agents disclosed herein.
- Current efforts in the area of drug delivery include the development of targeted delivery, in which the drug is only active in the target area of the body (for example, mucous membranes such as in the nasal cavity), and sustained-release formulations, in which the pharmaceutical micronutrient composition is released over a period of time in a controlled manner from a formulation. Types of sustained release formulations include liposomes, drug-loaded biodegradable microspheres and pharmaceutical micronutrient composition polymer conjugates.
- Delayed-release dosage formulations are created by coating a solid dosage form with a film of a polymer, which is insoluble in the acid environment of the stomach, but soluble in the neutral environment of the small intestine. The delayed-release dosage units can be prepared, for example, by coating a pharmaceutical micronutrient composition with a selected coating material. The pharmaceutical micronutrient composition may be a tablet for incorporation into a capsule, a tablet for use as an inner core in a “coated core” dosage form, or a plurality of drug-containing beads, particles or granules, for incorporation into either a tablet or a capsule. Preferred coating materials include bioerodible, gradually hydrolysable, gradually water-soluble, and/or enzymatically degradable polymers, and may be conventional “enteric” polymers. Enteric polymers, as will be appreciated by those skilled in the art, become soluble in the higher pH environment of the lower gastrointestinal tract, or slowly erode as the dosage form passes through the gastrointestinal tract, while enzymatically degradable polymers are degraded by bacterial enzymes present in the lower gastrointestinal tract, particularly in the colon. Alternatively, a delayed-release tablet may be formulated by dispersing a drug within a matrix of a suitable material such as a hydrophilic polymer or a fatty compound. Suitable hydrophilic polymers include, but are not limited to, polymers or copolymers of cellulose, cellulose ester, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate and vinyl or enzymatically degradable polymers or copolymers as described above. These hydrophilic polymers are particularly useful for providing a delayed-release matrix. Fatty compounds for use as a matrix material include, but are not limited to, waxes (e.g., carnauba wax) and glycerol tristearate. Once the active ingredient is mixed with the matrix material, the mixture can be compressed into tablets.
- A pulsed-release dosage is one that mimics a multiple dosing profile without repeated dosing, and typically allows at least a twofold reduction in dosing frequency as compared with the drug presented as a conventional dosage form (e.g., as a solution or prompt drug-releasing, conventional solid dosage form). A pulsed-release profile is characterized by a time period of no release (lag time) or reduced release, followed by rapid drug release. These can be formulated for critically ill patients using the instant pharmaceutical micronutrient composition.
- The phrases “parenteral administration” and “administered parenterally” as used herein refer to modes of administration other than enteral and topical, such as injections, and include without limitation intravenous, intramuscular, intrapleural, intravascular, intrapericardial, intra-arterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal and intrastemal injection and infusion.
- Certain pharmaceutical compositions disclosed herein, suitable for parenteral administration, comprise one or more subject compositions in combination with one or more pharmaceutically acceptable sterile, isotonic, aqueous, or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders, which may be reconstituted into sterile injectable solutions or dispersions just prior to use, and which may contain antioxidants, buffers, bacteriostats, solutes that render the formulation isotonic within the blood of the intended recipient, or suspending or thickening agents.
- When an injection product is prepared, pharmaceutical micronutrient composition is mixed with an additive such as a pH regulator, a buffer, a stabilizer, an isotonicity agent or a local anesthetic, and the resultant mixture is processed through a routine method, to thereby produce an injection for subcutaneous injection, intramuscular injection, or intravenous injection. Examples of the pH regulator or buffer include sodium citrate, sodium acetate and sodium phosphate; examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycolic acid, and thiolactic acid; examples of the local anesthetic include procaine hydrochloride and lidocaine hydrochloride; and examples of the isotonicity agent include sodium chloride and glucose.
- Adjuvants are used to enhance the immune response. Various types of adjuvants are available. Haptens and Freund's adjuvant may also be used to produce water-in-oil emulsions of immunogens.
- The phrase “pharmaceutically acceptable” is art recognized. In certain embodiments, the term includes compositions, polymers and other materials and/or dosage forms that are within the scope of sound medical judgment, suitable for use in contact with the tissues of mammals, both human beings and animals, without excessive toxicity, irritation, allergic response or other problem or complication, commensurate with a reasonable benefit-risk ratio.
- The phrase “pharmaceutically acceptable carrier” is art recognized, and includes, for example, pharmaceutically acceptable materials, compositions or vehicles, such as a liquid or solid filler, diluent, solvent or encapsulating material involved in carrying or transporting any subject composition from one organ or portion of the body, to another organ or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of a subject composition, and not injurious to the patient. In certain embodiments, a pharmaceutically acceptable carrier is non-pyrogenic. Some examples of materials that may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.
- In certain embodiments, the pharmaceutical micronutrient compositions described herein are formulated in a manner such that said compositions will be delivered to a mammal in a therapeutically effective amount, as part of a prophylactic, preventive or therapeutic treatment to overcome the infection caused by corona viruses (irrespective of the type).
- In certain embodiments, the dosage of the pharmaceutical micronutrient compositions, which may be referred to as therapeutic composition provided herein, may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials. For example, the blood samples may be tested for their immune response to their corresponding viral load or lack thereof.
- The therapeutic pharmaceutical micronutrient composition provided by this application may be administered to a subject in need of treatment by a variety of conventional routes of administration, including orally, topically, parenterally, e.g., intravenously, subcutaneously or intramedullary. Further, the therapeutic compositions may be administered intranasally, as a rectal suppository, or using a “flash” formulation, i.e., allowing the medication to dissolve in the mouth without the need to use water. Furthermore, the compositions may be administered to a subject in need of treatment by controlled-release dosage forms, site-specific drug delivery, transdermal drug delivery, patch-mediated drug delivery (active/passive), by stereotactic injection, or in nanoparticles.
- Expressed in terms of concentration, an active ingredient can be present in the therapeutic compositions of the present invention for localized use via the cutis, intranasally, pharyngolaryngeally, bronchially, intravaginally, rectally or ocularly.
- For use as aerosols, the active ingredients can be packaged in a pressurized aerosol container together with a gaseous or liquefied propellant, for example dichlorodifluoromethane, carbon dioxide, nitrogen, propane and the like, with the usual adjuvants such as cosolvents and wetting agents, as may be necessary or desirable. The most common routes of administration also include the preferred transmucosal (nasal, buccal/sublingual, vaginal, ocular and rectal) and inhalation routes.
- In addition, in certain embodiments, the subject pharmaceutical micronutrient composition of the present application may be lyophilized or subjected to another appropriate drying technique such as spray drying. The subject compositions may be administered once, or may be divided into a number of smaller doses to be administered at varying intervals of time, depending in part on the release rate of the compositions and the desired dosage.
- Formulations useful in the methods provided herein include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of a subject pharmaceutical micronutrient composition that may be combined with a carrier material to produce a single dose may vary depending upon the subject being treated and the particular mode of administration.
- The therapeutically acceptable amount described herein may be administered in inhalant or aerosol formulations. The inhalant or aerosol formulations may comprise one or more agents, such as adjuvants, diagnostic agents, imaging agents, or therapeutic agents useful in inhalation therapy. The final aerosol formulation may, for example, contain 0.005-90% w/w, for instance 0.005-50%, 0.005-5% w/w, or 0.01-1.0% w/w, of medicament relative to the total weight of the formulation.
- Examples of suitable aqueous and non-aqueous carriers that may be employed in the pharmaceutical micronutrient composition include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol and the like), and suitable mixtures thereof, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Proper fluidity may be maintained, for example by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
Claims (15)
1. A method of treating a mammal using a pharmaceutical micronutrient composition, comprising:
administering the pharmaceutical micronutrient composition containing an ascorbate in the range of 10 mg to 200,000 mg, N-acetylcysteine in the range of 2 mg to 30,000 mg, theaflavin in the range 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, cruciferous plant extracts in the range of 5 mg to 5,000 mg, curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, naringenin in the range of 5 mg to 3,000 mg, polyphenol extract from green tea in the range of 1 mg to 10,000 mg, brazilin in the range of 1 mg to 5,000 mg and baicalin in the range of 5 mg to 3,000 mg to treat the mammal infected by a virus.
2. The method of claim 1 , wherein the ascorbate is at least one of or a combination of a L-ascorbic acid, magnesium ascorbate, calcium ascorbate, ascorbyl palmitate, ascorbyl phosphate, sodium ascorbyl phosphate and another pharmaceutically acceptable form of ascorbate.
3. The method of claim 1 , wherein the pharmaceutical micronutrient composition consists of the ascorbate in the range of 10 mg to 200,000 mg, theaflavin in the range 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, polyphenol extract from green tea in the range of 1 mg to 10,000 mg, cruciferous plant extracts in the range of 5 mg to 5,000 mg, curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, naringenin in the range of 5 mg to 3,000 mg, and baicalin in the range of 5 mg to 3,000 mg.
4. The method of claim 1 , wherein the pharmaceutical micronutrient composition consists of the ascorbate in the range of 10 mg to 200,000 mg, N-acetylcysteine in the range of 2 mg to 30,000 mg, resveratrol in the range of 10 mg to 5,000 mg, polyphenol extract from green tea in the range of 1 mg to 10,000 mg, cruciferous plant extracts in the range of 5 mg to 5,000 mg, curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, naringenin in the range of 5 mg to 3,000 mg, and baicalin in the range of 5 mg to 3,000 mg.
5. The method of claim 1 , wherein the pharmaceutical micronutrient composition consists of the ascorbate in the range of 10 mg to 200,000 mg, N-acetylcysteine in the range of 2 mg to 30,000 mg, theaflavin in the range 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, cruciferous plant extracts in the range of 5 mg to 5,000 mg, curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, naringenin in the range of 5 mg to 3,000 mg, and baicalin in the range of 5 mg to 3,000 mg.
6. The method of claim 1 , wherein the baicalein is from natural and synthetic source, theaflavin is from a plant source, curcumin is from a plant source, resveratrol is from a plant source, quercetin is from a plant source, cruciferous plant extract is from a plant source, naringenin is from a plant source, and N-acetylcysteine is from a plant source.
7. The method of claim 1 , wherein a viral infectious disease is treated using the pharmaceutical micronutrient composition.
8. The method of claim 1 , wherein the human and other species are treated for a viral infection by administering the pharmaceutical micronutrient composition.
9. The method of claim 8 , wherein the viral infection or viral disease is that which uses a cellular receptor for a viral entry on a surface of an epithelial cells, endothelial cells or other cell types.
10. The method of claim 9 , wherein the viral infection or viral disease is that which uses an angiotensin converting enzyme 2 (ACE2) receptor on the surface of an epithelial cell, endothelial cell and other cell types, for the viral entry.
11. The method of claim 10 , wherein the pharmaceutical micronutrient composition is used to treat the human and other species with severe acute respiratory syndrome-related to a coronaviruses (SARS-CoV-1), SARS-CoV2 and their variants or mutants that use angiotensin converting enzyme 2 (ACE2) receptors on the surface of epithelial cells, endothelial cells and other cell types, for viral entry.
12. The method of claim 11 , wherein the pharmaceutical micronutrient composition is used to treat the human and other species with a Middle East respiratory syndrome-related coronavirus (MERS-CoV), and its variants or mutants that use the angiotensin converting enzyme 2 (ACE2) receptor on the surface of epithelial cells, endothelial cells and other cell types, for viral entry.
13. A method of treating a mammal, comprising:
formulating a pharmaceutical micronutrient composition consisting of an ascorbate in the range of 10 mg to 200,000 mg, N-acetylcysteine in the range of 2 mg to 30,000 mg, theaflavin in the range of 5 mg to 3,000 mg, resveratrol in the range of 10 mg to 5,000 mg, cruciferous plant extracts in the range of 5 mg to 5,000 mg, curcumin in the range of 5 mg to 10,000 mg, quercetin in the range of 5 mg to 2,000 mg, naringenin in the range of 5 mg to 3,000 mg, and baicalin in the range of 5 mg to 3,000 mg; and
administering the pharmaceutical micronutrient composition to treat a human and other mammals with a Middle East respiratory syndrome-related coronavirus (MERS-CoV), SARS CoV, SARS-CoV2 and their variants or mutants that use the angiotensin converting enzyme 2 (ACE2) receptor on the surface of epithelial cells, endothelial cells and other cell types for viral entry.
14. The method of claim 13 , wherein the pharmaceutical micronutrient composition is formulated as an oral, non-invasive peroral, topical (for example, transdermal), enteral, transmucosal, targeted delivery, sustained-release delivery, delayed-release, pulsed-release and parenteral form.
15. The pharmaceutical micronutrient composition according to claim 13 , wherein the pharmaceutical micronutrient composition is introduced with a food, drinking water, tube feeding, and as an adjunct to other medicinal treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/728,769 US20220304976A1 (en) | 2020-04-10 | 2022-04-25 | Method of simultaneously treating viral disease caused coronavirus, its variants and mutants using a pharmaceutical micronutrient composition |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063008560P | 2020-04-10 | 2020-04-10 | |
US202063042821P | 2020-06-23 | 2020-06-23 | |
US202063065564P | 2020-08-14 | 2020-08-14 | |
US202163149633P | 2021-02-15 | 2021-02-15 | |
US202163149636P | 2021-02-15 | 2021-02-15 | |
US17/212,727 US11419847B2 (en) | 2020-04-10 | 2021-03-25 | Pharmaceutical micronutrient composition and its use to simultaneously inhibit multiple cellular mechanisms of infectivity caused by coronavirus, its variants and mutants |
US17/728,769 US20220304976A1 (en) | 2020-04-10 | 2022-04-25 | Method of simultaneously treating viral disease caused coronavirus, its variants and mutants using a pharmaceutical micronutrient composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/212,727 Continuation US11419847B2 (en) | 2020-04-10 | 2021-03-25 | Pharmaceutical micronutrient composition and its use to simultaneously inhibit multiple cellular mechanisms of infectivity caused by coronavirus, its variants and mutants |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220304976A1 true US20220304976A1 (en) | 2022-09-29 |
Family
ID=78005762
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/212,727 Active US11419847B2 (en) | 2020-04-10 | 2021-03-25 | Pharmaceutical micronutrient composition and its use to simultaneously inhibit multiple cellular mechanisms of infectivity caused by coronavirus, its variants and mutants |
US17/728,769 Abandoned US20220304976A1 (en) | 2020-04-10 | 2022-04-25 | Method of simultaneously treating viral disease caused coronavirus, its variants and mutants using a pharmaceutical micronutrient composition |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/212,727 Active US11419847B2 (en) | 2020-04-10 | 2021-03-25 | Pharmaceutical micronutrient composition and its use to simultaneously inhibit multiple cellular mechanisms of infectivity caused by coronavirus, its variants and mutants |
Country Status (1)
Country | Link |
---|---|
US (2) | US11419847B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT4164629T (en) * | 2020-06-18 | 2024-08-26 | Horphag Research Ip (Pyc) Ltd. | Procyanidins for the treatment of endothelial dysfunction triggered by covid-19 |
US20220143123A1 (en) * | 2020-07-13 | 2022-05-12 | Therapeutic Solutions International, Inc. | Prevention of Pathological Coagulation in COVID-19 and other Inflammatory Conditions |
WO2023133412A2 (en) * | 2022-01-05 | 2023-07-13 | Prophase Labs, Inc. | Compositions having synergistic anti-viral action and methods for treating coronavirus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7776915B2 (en) * | 2005-03-24 | 2010-08-17 | Tracie Martyn International, Llc | Topical formulations and methods of use |
EP2153732A1 (en) * | 2008-08-04 | 2010-02-17 | DSM IP Assets B.V. | Production of Beadlets Comprising Hygroscopic Plant Extracts |
CA2787318A1 (en) * | 2010-01-21 | 2011-07-28 | Paul Bradley Addis | Composition for perinatal and neonatal stroke |
US9192661B2 (en) * | 2010-07-06 | 2015-11-24 | Novartis Ag | Delivery of self-replicating RNA using biodegradable polymer particles |
HRP20220607T1 (en) * | 2012-11-26 | 2022-06-24 | Modernatx, Inc. | Terminally modified rna |
-
2021
- 2021-03-25 US US17/212,727 patent/US11419847B2/en active Active
-
2022
- 2022-04-25 US US17/728,769 patent/US20220304976A1/en not_active Abandoned
Non-Patent Citations (15)
Title |
---|
Abian. International Journal of Biological Macromolecules 164, 2020, 1693-1703 (Year: 2020) * |
Babaei. Food Sci. Nutr. 2020; 8:5215-5227 (Year: 2020) * |
Bosquet. Authorea. July 16, 2020 (Year: 2020) * |
Carr. Nutrients, 2020, 12(11) 3286 (Year: 2020) * |
Chowdhury. frontiers in Immunology, 2020, vol 11, Art. 590716 (Year: 2020) * |
Clementi. Pharmacological Research, vol. 163, 2021, 105255 (Year: 2021) * |
Gates. International Journal of Analytical Chemistry, vol. 2012, Article ID 259217, 7 pages, 2012 (Year: 2012) * |
Laksmiani. Biomedical and Pharmacology Journal, June 2020, Vol. 13(2) 873-881 (Year: 2020) * |
Maiti. Novel multi-docking of Theaflavin-3’-O-gallate to SARS CoV-2 and human proteins with comparison to Hydroxychloroquine, Dexamethasone and Epigallocatechin gallate (September 18, 2020). Available at SSRN: https://ssrn.com/abstract=3695034 (Year: 2020) * |
Ohgitani. bioRxiv 2020.12.04.412098 (Year: 2020) * |
Pasquereau. Viruses 2021, 13(2) 354 (Year: 2021) * |
Shi. Therapeutics and Clinical Risk Management, 2020:16 1047-1055 (Year: 2020) * |
Su. bioRxiv 2020.04.13.038687 (Year: 2020) * |
Utomo. Preprints, 2020, 2020032014 (Year: 2020) * |
Vanduchova. J. Med Food, 22 (2) 2019, 121-126 (Year: 2019) * |
Also Published As
Publication number | Publication date |
---|---|
US11419847B2 (en) | 2022-08-23 |
US20210315857A1 (en) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11419847B2 (en) | Pharmaceutical micronutrient composition and its use to simultaneously inhibit multiple cellular mechanisms of infectivity caused by coronavirus, its variants and mutants | |
US20230321126A1 (en) | Micronutrient combination to inhibit coronavirus cell infection | |
KR102174576B1 (en) | Mek inhibitors in the treatment of virus diseases | |
KR102169476B1 (en) | Composition for preventing or treating sars coronavirus 2 infection disease | |
RU2505306C2 (en) | Composition for preventing and treating viral infections | |
WO2024001265A1 (en) | Use of ophiopogonin d in preparing anti-rotavirus medicament | |
CN113679726A (en) | Application of salvia miltiorrhiza extract and quinone compounds in resisting coronavirus | |
TW202313081A (en) | Method and composition for preventing and treating covid-19 and long covid | |
Naik et al. | Therapeutic Strategies in the Management of COVID-19 | |
US20240024337A1 (en) | Interaction of sars-cov-2 proteins with molecular and cellular mechanisms of host cells and formulations to treat covid-19 | |
CN114786659A (en) | MEK inhibitors for the treatment of hantavirus infection | |
EP4064861A1 (en) | A pharmaceutical micronutrient composition and its use to simultaneously inhibit multiple cellular mechanisms of infectivity caused by coronavirus, its variants and mutants | |
WO2022173456A1 (en) | A pharmaceutical micronutrient composition and its use to simultaneously inhibit multiple cellular mechanisms of infectivity caused by coronavirus, its variants and mutants | |
US11452710B1 (en) | Micronutrient and plant extract composition and method of improving bone health | |
CN115089637A (en) | Application of evodia rutaecarpa alcohol extract and/or rutaecarpine in preparation of novel coronavirus resistant medicines | |
US20230233488A1 (en) | Novel use of a modulator of glucosylceramide degradation for viral infections | |
KR20230021009A (en) | Azelastine as an antiviral treatment | |
AU2021106876A4 (en) | Formulations comprising botanical extracts | |
CN111568900A (en) | Application of indomethacin in resisting coronavirus infection | |
US20230190848A1 (en) | P2et reduces covid severity by inhibition of viral replication, reduction of pulmonar fibrosis markers and modulation of inmune response | |
US20240122893A1 (en) | Methods for inhibiting coronaviruses using sulforaphane | |
CN114404439B (en) | Blocking agent for inhibiting different types of porcine reproductive and respiratory syndrome virus infection | |
US20230226136A1 (en) | A synergistic formulation for management of respiratory pathogens including coronaviruses | |
US11304922B1 (en) | Pharmaceutical micronutrient composition for simultaneously treating nervous system function, cognitive ability and response to stressors | |
WO2022138696A1 (en) | Pharmaceutical composition for preventing or treating coronavirus infections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RATH, MATTHIAS W, NEVADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIEDZWIECKI, ALEKSANDRA;IVANOV, VADIM O;GOC, ANNA;AND OTHERS;SIGNING DATES FROM 20220405 TO 20220413;REEL/FRAME:059702/0223 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |