US20220216430A1 - Multi-component host material and an organic electroluminescence device comprising the same - Google Patents

Multi-component host material and an organic electroluminescence device comprising the same Download PDF

Info

Publication number
US20220216430A1
US20220216430A1 US17/689,508 US202217689508A US2022216430A1 US 20220216430 A1 US20220216430 A1 US 20220216430A1 US 202217689508 A US202217689508 A US 202217689508A US 2022216430 A1 US2022216430 A1 US 2022216430A1
Authority
US
United States
Prior art keywords
substituted
unsubstituted
host
layer
deuterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/689,508
Inventor
Hee-Choon Ahn
Young-kwang Kim
Su-Hyun Lee
Ji-Song Jun
Seon-Woo Lee
Chi-Sik Kim
Kyoung-Jin Park
Nam-Kyun Kim
Kyung-Hoon Choi
Jae-Hoon Shim
Young-jun Cho
Kyung-Joo Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials Korea Ltd
Original Assignee
Rohm and Haas Electronic Materials Korea Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Electronic Materials Korea Ltd filed Critical Rohm and Haas Electronic Materials Korea Ltd
Priority to US17/689,508 priority Critical patent/US20220216430A1/en
Publication of US20220216430A1 publication Critical patent/US20220216430A1/en
Priority to US18/495,274 priority patent/US20240090328A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • H01L51/0072
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0052
    • H01L51/0067
    • H01L51/0071
    • H01L51/0073
    • H01L51/0074
    • H01L51/0085
    • H01L51/0094
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • H01L51/5016
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to a multi-component host material and an organic electroluminescence device comprising the same.
  • An electroluminescence device is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time.
  • An organic EL device was first developed by Eastman Kodak, by using small aromatic diamine molecules, and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
  • An organic EL device is a device changing electronic energy to light by applying electricity to an organic electroluminescent material, and generally has a structure comprising an anode, a cathode, and an organic layer between the anode and the cathode.
  • the organic layer of an organic EL device may be comprised of a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer (which comprises host and dopant materials), an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc., and the materials used for the organic layer are categorized by their functions in hole injection material, hole transport material, electron blocking material, light-emitting material, electron buffer material, hole blocking material, electron transport material, electron injection material, etc.
  • the organic EL device due to an application of a voltage, holes are injected from the anode to the light-emitting layer, electrons are injected from the cathode to the light-emitting layer, and excitons of high energies are formed by a recombination of the holes and the electrons.
  • excitons of high energies are formed by a recombination of the holes and the electrons.
  • luminescent organic compounds reach an excited state, and light emission occurs by emitting light from energy due to the excited state of the luminescent organic compounds returning to a ground state.
  • a light-emitting material must have high quantum efficiency, high electron and hole mobility, and the formed light-emitting material layer must be uniform and stable.
  • Light-emitting materials are categorized into blue, green, and red light-emitting materials dependent on the color of the light emission, additionally yellow or orange light-emitting materials.
  • Light-emitting materials can also be categorized into host and dopant materials according to their functions.
  • the host material which acts as a solvent in a solid state and transfers energy needs to have high purity and a molecular weight appropriate for vacuum deposition. Furthermore, the host material needs to have high glass transition temperature and high thermal degradation temperature to achieve thermal stability, high electro-chemical stability to achieve long lifespan, ease of forming amorphous thin film, good adhesion to materials of adjacent layers, and non-migration to other layers.
  • a light-emitting material can be used as a combination of a host and a dopant to improve color purity, luminous efficiency, and stability.
  • an EL device having excellent characteristics has a structure comprising a light-emitting layer formed by doping a dopant to a host. Since host materials greatly influence the efficiency and lifespan of the EL device when using a dopant/host material system as a light emitting material, their selection is important.
  • the objective of the present invention is to provide an organic electroluminescent device having high efficiency and long lifespan.
  • an organic electroluminescent device comprising at least one light-emitting layer between an anode and a cathode, wherein the light-emitting layer comprises a host and a phosphorescent dopant, the host consists of multi-component host compounds, at least a first host compound of the multi-component host compounds is represented by the following formula 1, and a second host compound is represented by the following formula 2:
  • a 1 and A 2 each independently represent a substituted or unsubstituted (C6-C30)aryl
  • L 1 represents a substituted or unsubstituted (C6-C30)arylene
  • X 1 to X 16 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substitute
  • Ma represents a substituted or unsubstituted nitrogen-containing (5- to 11-membered)heteroaryl
  • La represents a single bond, or a substituted or unsubstituted (C6-C30)arylene
  • Xa to Xh each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a
  • the heteroaryl contains at least one hetero atom selected from B, N, O, S, P( ⁇ O), Si, and P.
  • an organic electroluminescent device having high efficiency and long lifespan is provided, and it is possible to manufacture a display device or a lighting device using the organic electroluminescent device.
  • organic electroluminescent device comprising the organic electroluminescent compounds of formulae 1 and 2 will be described in detail.
  • the compound represented by formula 1 can be represented by formula 3, 4, 5, or 6:
  • a 1 , A 2 , L 1 , and X 1 to X16 are as defined in formula 1.
  • a 1 and A 2 each independently represent a substituted or unsubstituted (C6-C30)aryl, preferably, each independently represent a substituted or unsubstituted (C6-C18)aryl, more preferably, each independently represent a (C6-C18)aryl unsubstituted or substituted with a cyano, a (C1-C6)alkyl, a (C6-C12)aryl, or a tri(C6-C12)arylsilyl, and even more preferably, each independently represent phenyl, biphenyl, terphenyl, naphthyl, fluorenyl, phenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, or fluoranthenyl.
  • X 1 to X 16 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substitute
  • L 1 represents a substituted or unsubstituted (C6-C30)arylene, preferably, represents a substituted or unsubstituted (C6-C15)arylene, and more preferably, represents a (C6-C15)arylene unsubstituted or substituted with a cyano, a (C1-C6)alkyl, or a tri(C6-C12)arylsilyl.
  • L 1 can be represented by one of formulae 7 to 19:
  • Xi to Xp each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substitute
  • Xi to Xp may each independently represent hydrogen, a halogen, a cyano, a (C1-C10)alkyl, a (C3-C20)cycloalkyl, a (C6-C12)aryl, a (C1-C6)alkyldi(C6-C12)arylsilyl, or a tri(C6-C12)arylsilyl, and more preferably, each independently represent hydrogen, a cyano, a (C1-C6)alkyl, or a tri(C6-C12)arylsilyl.
  • Ma represents a substituted or unsubstituted nitrogen-containing (5- to 11-membered)heteroaryl, preferably, represents a substituted or unsubstituted nitrogen-containing (6- to 10-membered)heteroaryl, and more preferably, represents a nitrogen-containing (6- to 10-membered)heteroaryl substituted with an unsubstituted (C6-C18)aryl, a (C6-C12)aryl substituted with a cyano, a (C6-C12)aryl substituted with a (C1-C6)alkyl, a (C6-C12)aryl substituted with a tri(C6-C12)arylsilyl, or a (6- to 15-membered)heteroaryl.
  • Ma may represent a monocyclic heteroaryl selected from the group consisting of pyrrolyl, imidazolyl, pyrazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, or a fused heteroaryl selected from the group consisting of benzoimidazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, naphthyridinyl, and quinoxalinyl, and preferably may represent triazinyl, pyrimidinyl, pyridyl, quinolyl, isoquinolyl, quinazolinyl, naphthyridinyl, or quinoxalinyl.
  • La represents a single bond, or a substituted or unsubstituted (C6-C30)arylene, preferably, represents a single bond, or a substituted or unsubstituted (C6-C12)arylene, and more preferably, represents a single bond, or a (C6-C12)arylene unsubstituted or substituted with a tri(C6-C10)arylsilyl.
  • La can represent a single bond, or be represented by one of formulae 7 to 19 as above.
  • Xa to Xh each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substitute
  • (C1-C30)alkyl is meant to be a linear or branched alkyl having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.;
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e. a substituent.
  • a triarylsilyl as Xi to X16 is preferably a triphenylsilyl.
  • the first host compound represented by formula 1 includes the following compounds, but is not limited thereto:
  • the second host compound represented by formula 2 includes the following compounds, but is not limited thereto:
  • the light-emitting layer is a layer from which light is emitted, and can be a single layer or a multi layer of which two or more layers are stacked. In the light-emitting layer, it is preferable that the doping concentration of the dopant compound based on the host compound is less than 20 wt %.
  • the organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
  • the dopant is preferably at least one phosphorescent dopant.
  • the dopant materials applied to the organic electroluminescent device according to the present invention are not limited, but may be preferably selected from metallated complex compounds of iridium, osmium, copper and platinum, more preferably selected from ortho-metallated complex compounds of iridium, osmium, copper and platinum, and even more preferably ortho-metallated iridium complex compounds.
  • the phosphorescent dopant is preferably selected from compounds represented by the following formulae 101 to 103.
  • L is selected from the following structures:
  • R 100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl;
  • R 101 to R 109 , and R 111 to R 123 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a cyano, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (C3-C30)cycloalkyl; adjacent substituents of R106 to R109 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl; and adjacent substituents of R 120 to R 123 may be linked to
  • R 124 to R 127 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R 124 to R 127 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
  • r and s each independently represent an integer of 1 to 3; where r or s is an integer of 2 or more, each of R 100 may be the same or different; and e represents an integer of 1 to 3.
  • the phosphorescent dopant materials include the following:
  • the organic electroluminescent device according to the present invention may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds in the organic layer.
  • the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4th period, transition metals of the 5th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
  • At least one layer is preferably placed on an inner surface(s) of one or both electrode(s); selected from a chalcogenide layer, a metal halide layer and a metal oxide layer.
  • a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer
  • a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer.
  • Such a surface layer provides operation stability for the organic electroluminescent device.
  • said chalcogenide includes SiO x (1 ⁇ X ⁇ 2), AlO x (1 ⁇ X ⁇ 1 .5), SiON, SiAION, etc.; said metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and said metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a layer selected from a hole injection layer, a hole transport layer, or an electron blocking layer, or formed by a combination thereof can be used.
  • Multi layers can be used for the hole injection layer in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer. Two compounds can be simultaneously used in each layer.
  • the hole transport layer and the electron blocking layer can also be formed of multi layers.
  • a layer selected from an electron buffer layer, a hole blocking layer, an electron transport layer, or an electron injection layer, or formed by a combination thereof can be used.
  • Multi layers can be used for the electron buffer layer in order to control the injection of the electrons and enhance the interfacial characteristics between the light-emitting layer and the electron injection layer.
  • Two compounds can be simultaneously used in each layer.
  • the hole blocking layer and the electron transport layer can also be formed of multi layers, and each layer can comprise two or more compounds.
  • the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • a reductive dopant layer may be employed as a charge generating layer to prepare an electroluminescent device having two or more electroluminescent layers and emitting white light.
  • each layer of the organic electroluminescent device of the present invention dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as ink jet printing, nozzle printing, slot coating, spin coating, dip coating, and flow coating methods can be used.
  • the first and second host compounds of the present invention may be co-evaporated or mixture-evaporated.
  • a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
  • a co-evaporation indicates a process for two or more materials to be deposited as a mixture, by introducing each of the two or more materials into respective crucible cells, and applying an electric current to the cells for each of the materials to be evaporated.
  • a mixture-evaporation indicates a process for two or more materials to be deposited as a mixture, by mixing the two or more materials in one crucible cell before the deposition, and applying an electric current to the cell for the mixture to be evaporated.
  • An OLED device was produced using the organic electroluminescent compound according to the present invention.
  • a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an organic light-emitting diode (OLED) device (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and then was stored in isopropanol.
  • the ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus.
  • N 4 ,N 4 ′-diphenyl-N 4 , -bis(9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl]-4,4′-diamine (compound HI-1) was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10 ⁇ 6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate.
  • N-([1,1′-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluorene-2-amine (compound HT-1) was then introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer.
  • the two host materials were evaporated at 1:1 rate, while the dopant was evaporated at a different rate from the host materials, so that the dopant was deposited in a doping amount of 3 wt % based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the hole transport layer.
  • the driving voltage at 1,000 nit, luminous efficiency, CIE color coordinate, and the time taken for the luminance at 5,000 nit to be reduced from 100% to 80% at a constant current of the OLEDs produced as above were measured.
  • An OLED device was produced in the same manner as in Device Examples 2-1 to 2-7, except for using only the first host compound as a host of the light-emitting layer.
  • the driving voltage at 1,000 nit, luminous efficiency, CIE color coordinate, and the time taken for the luminance at 15,000 nit to be reduced from 100% to 80% at a constant current of the OLEDs produced as above were measured.
  • Table 2 below shows the luminous characteristics of the organic electroluminescent devices produced as in the examples above.
  • An OLED device was produced in the same manner as in Device Examples 1-1 to 1-6, except for using compound HT-4 for the second hole transport layer, and using the compounds as listed in Table 3 below for the first host compound and the second host compound used in the host of the light-emitting layer.
  • An OLED device was produced in the same manner as in Device Example 4-1, except for using only the second host compound of Table 3 as a host of the light-emitting layer.
  • the organic electroluminescent device of the present invention comprises a light-emitting layer comprising a host and a phosphorus dopant, and the host consists of a specific combination of multi-component host compounds.
  • the device of the present invention provides superior lifespan characteristics to conventional devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to a multi-component host material and an organic electroluminescent device comprising the same. By comprising a specific combination of the multi-component host compounds, the organic electroluminescent device according to the present invention can provide high luminous efficiency and excellent lifespan characteristics.

Description

    CLAIM OF BENEFIT OF PRIOR APPLICATION
  • This application claims priority under 35 U.S.C. § 120 from U.S. patent application Ser. No. 15/301,975, filed Oct. 5, 2016, which is the National Stage Entry of PCT/KR2015/003890, filed Apr. 17, 2015, both of which are incorporated by reference herein in their entirety.
  • TECHNICAL FIELD
  • The present invention relates to a multi-component host material and an organic electroluminescence device comprising the same.
  • BACKGROUND ART
  • An electroluminescence device (EL device) is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time. An organic EL device was first developed by Eastman Kodak, by using small aromatic diamine molecules, and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
  • An organic EL device (OLED) is a device changing electronic energy to light by applying electricity to an organic electroluminescent material, and generally has a structure comprising an anode, a cathode, and an organic layer between the anode and the cathode. The organic layer of an organic EL device may be comprised of a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer (which comprises host and dopant materials), an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc., and the materials used for the organic layer are categorized by their functions in hole injection material, hole transport material, electron blocking material, light-emitting material, electron buffer material, hole blocking material, electron transport material, electron injection material, etc. In the organic EL device, due to an application of a voltage, holes are injected from the anode to the light-emitting layer, electrons are injected from the cathode to the light-emitting layer, and excitons of high energies are formed by a recombination of the holes and the electrons. By this energy, luminescent organic compounds reach an excited state, and light emission occurs by emitting light from energy due to the excited state of the luminescent organic compounds returning to a ground state.
  • The most important factor determining luminous efficiency in an organic EL device is the light-emitting material. A light-emitting material must have high quantum efficiency, high electron and hole mobility, and the formed light-emitting material layer must be uniform and stable. Light-emitting materials are categorized into blue, green, and red light-emitting materials dependent on the color of the light emission, additionally yellow or orange light-emitting materials. In addition, Light-emitting materials can also be categorized into host and dopant materials according to their functions. Recently, the development of an organic EL device providing high efficiency and long lifespan is an urgent issue. In particular, considering EL characteristic requirements for a middle or large-sized panel of OLED, materials showing better characteristics than conventional ones must be urgently developed. The host material which acts as a solvent in a solid state and transfers energy needs to have high purity and a molecular weight appropriate for vacuum deposition. Furthermore, the host material needs to have high glass transition temperature and high thermal degradation temperature to achieve thermal stability, high electro-chemical stability to achieve long lifespan, ease of forming amorphous thin film, good adhesion to materials of adjacent layers, and non-migration to other layers.
  • A light-emitting material can be used as a combination of a host and a dopant to improve color purity, luminous efficiency, and stability. Generally, an EL device having excellent characteristics has a structure comprising a light-emitting layer formed by doping a dopant to a host. Since host materials greatly influence the efficiency and lifespan of the EL device when using a dopant/host material system as a light emitting material, their selection is important.
  • International Publication Nos. WO 2013/168688 A1 and WO 2009/060757 A1, and Japanese Patent Appln. Laying-Open No. 2013-183036 A1, etc. disclose organic electroluminescent devices using a biscarbazole derivative as a host material. However, the references fail to disclose an organic electroluminescent device using a multi-component host comprising a biscarbazole derivative and a carbazole derivative including a nitrogen-containing heteroaryl.
  • DISCLOSURE OF THE INVENTION Problems to be Solved
  • The objective of the present invention is to provide an organic electroluminescent device having high efficiency and long lifespan.
  • Solution to Problems
  • The present inventors found that the above objective can be achieved by an organic electroluminescent device comprising at least one light-emitting layer between an anode and a cathode, wherein the light-emitting layer comprises a host and a phosphorescent dopant, the host consists of multi-component host compounds, at least a first host compound of the multi-component host compounds is represented by the following formula 1, and a second host compound is represented by the following formula 2:
  • Figure US20220216430A1-20220707-C00001
  • wherein
  • A1 and A2 each independently represent a substituted or unsubstituted (C6-C30)aryl;
  • L1 represents a substituted or unsubstituted (C6-C30)arylene;
  • X1 to X16 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di-(C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen and sulfur;
  • Figure US20220216430A1-20220707-C00002
  • wherein
  • Ma represents a substituted or unsubstituted nitrogen-containing (5- to 11-membered)heteroaryl;
  • La represents a single bond, or a substituted or unsubstituted (C6-C30)arylene;
  • Xa to Xh each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di-(C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen and sulfur; and
  • the heteroaryl contains at least one hetero atom selected from B, N, O, S, P(═O), Si, and P.
  • EFFECTS OF THE INVENTION
  • According to the present invention, an organic electroluminescent device having high efficiency and long lifespan is provided, and it is possible to manufacture a display device or a lighting device using the organic electroluminescent device.
  • EMBODIMENTS OF THE INVENTION
  • Hereinafter, the present invention will be described in detail. However, the following description is intended to explain the invention, and is not meant in any way to restrict the scope of the invention.
  • Hereinafter, the organic electroluminescent device comprising the organic electroluminescent compounds of formulae 1 and 2 will be described in detail.
  • The compound represented by formula 1 can be represented by formula 3, 4, 5, or 6:
  • Figure US20220216430A1-20220707-C00003
  • wherein
  • A1, A2, L1, and X1 to X16 are as defined in formula 1.
  • In formula 1 above, A1 and A2 each independently represent a substituted or unsubstituted (C6-C30)aryl, preferably, each independently represent a substituted or unsubstituted (C6-C18)aryl, more preferably, each independently represent a (C6-C18)aryl unsubstituted or substituted with a cyano, a (C1-C6)alkyl, a (C6-C12)aryl, or a tri(C6-C12)arylsilyl, and even more preferably, each independently represent phenyl, biphenyl, terphenyl, naphthyl, fluorenyl, phenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, or fluoranthenyl.
  • In formula 1 above, X1 to X16 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di-(C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen and sulfur, preferably, each independently represent hydrogen, a cyano, a substituted or unsubstituted (C6-C20)aryl, a substituted or unsubstituted (5- to 20-membered)heteroaryl, or a substituted or unsubstituted tri(C6-C12)arylsilyl, and more preferably, each independently represent hydrogen, a cyano, a (C6-C20)aryl unsubstituted or substituted with a cyano, an unsubstituted (5- to 20-membered)heteroaryl, or an unsubstituted tri(C6-C12)arylsilyl.
  • In formula 1 above, L1 represents a substituted or unsubstituted (C6-C30)arylene, preferably, represents a substituted or unsubstituted (C6-C15)arylene, and more preferably, represents a (C6-C15)arylene unsubstituted or substituted with a cyano, a (C1-C6)alkyl, or a tri(C6-C12)arylsilyl.
  • In addition, L1 can be represented by one of formulae 7 to 19:
  • Figure US20220216430A1-20220707-C00004
    Figure US20220216430A1-20220707-C00005
    Figure US20220216430A1-20220707-C00006
  • wherein
  • Xi to Xp each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di-(C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen and sulfur.
  • Preferably, Xi to Xp may each independently represent hydrogen, a halogen, a cyano, a (C1-C10)alkyl, a (C3-C20)cycloalkyl, a (C6-C12)aryl, a (C1-C6)alkyldi(C6-C12)arylsilyl, or a tri(C6-C12)arylsilyl, and more preferably, each independently represent hydrogen, a cyano, a (C1-C6)alkyl, or a tri(C6-C12)arylsilyl.
  • In formula 2 above, Ma represents a substituted or unsubstituted nitrogen-containing (5- to 11-membered)heteroaryl, preferably, represents a substituted or unsubstituted nitrogen-containing (6- to 10-membered)heteroaryl, and more preferably, represents a nitrogen-containing (6- to 10-membered)heteroaryl substituted with an unsubstituted (C6-C18)aryl, a (C6-C12)aryl substituted with a cyano, a (C6-C12)aryl substituted with a (C1-C6)alkyl, a (C6-C12)aryl substituted with a tri(C6-C12)arylsilyl, or a (6- to 15-membered)heteroaryl.
  • In addition, Ma may represent a monocyclic heteroaryl selected from the group consisting of pyrrolyl, imidazolyl, pyrazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, or a fused heteroaryl selected from the group consisting of benzoimidazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, naphthyridinyl, and quinoxalinyl, and preferably may represent triazinyl, pyrimidinyl, pyridyl, quinolyl, isoquinolyl, quinazolinyl, naphthyridinyl, or quinoxalinyl.
  • In formula 2 above, La represents a single bond, or a substituted or unsubstituted (C6-C30)arylene, preferably, represents a single bond, or a substituted or unsubstituted (C6-C12)arylene, and more preferably, represents a single bond, or a (C6-C12)arylene unsubstituted or substituted with a tri(C6-C10)arylsilyl.
  • In addition, La can represent a single bond, or be represented by one of formulae 7 to 19 as above.
  • In formula 2 above, Xa to Xh each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di-(C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen and sulfur, preferably, each independently represent hydrogen, a cyano, a substituted or unsubstituted (C6-C15)aryl, a substituted or unsubstituted (10- to 20-membered)heteroaryl, or a substituted or unsubstituted tri(C6-C10)arylsilyl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C6-C20) aromatic ring, and more preferably, each independently represent hydrogen; a cyano; a (C6-C15)aryl unsubstituted or substituted with a tri(C6-C10)arylsilyl; a (10- to 20-membered)heteroaryl unsubstituted or substituted with a (C6-C12)aryl or a cyano(C6-C12)aryl; or an unsubstituted tri(C6-C10)arylsilyl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted benzene, a substituted or unsubstituted indole, a substituted or unsubstituted benzoindole, a substituted or unsubstituted indene, a substituted or unsubstituted benzofuran, or a substituted or unsubstituted benzothiophene.
  • Herein, “(C1-C30)alkyl” is meant to be a linear or branched alkyl having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.; “(C2-C30)alkenyl” is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.; “(C2-C30)alkynyl” is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.; “(C3-C30)cycloalkyl” is a mono- or polycyclic hydrocarbon having 3 to 30 carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.; “(3- to 7-membered)heterocycloalkyl” is a cycloalkyl having 3 to 7 ring backbone atoms, preferably 5 to 7, including at least one heteroatom selected from B, N, 0, S, P(=0), Si and P, preferably O, S and N, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc.; “(C6-C30)aryl(ene)” is a monocyclic or fused ring derived from an aromatic hydrocarbon having 6 to 30 carbon atoms, in which the number of carbon atoms is preferably 6 to 20, more preferably 6 to 15, and includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenyl naphthyl, naphthylphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.; “(3- to 30-membered)heteroaryl” is an aryl having 3 to 30 ring backbone atoms, including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, P(=0), Si and P; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl including benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzoimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, benzoindolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenoxazinyl, phenanthridinyl, benzodioxolyl, etc.; “nitrogen-containing (5- to 30-membered)heteroaryl” is an aryl having 5 to 30 ring backbone atoms, preferably 5 to 20, and more preferably 5 to 15, including at least one heteroatom, N; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including pyrrolyl, imidazolyl, pyrazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl including benzoimidazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenanthridinyl, etc. Further, “halogen” includes F, CI, Br, and I.
  • Herein, “substituted” in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e. a substituent. The substituents of the substituted alkyl, the substituted alkenyl, the substituted alkynyl, the substituted cycloalkyl, the substituted aryl(ene), the substituted heteroaryl, the substituted trialkylsilyl, the substituted triarylsilyl, the substituted dialkylarylsilyl, the substituted alkyldiarylsilyl, the substituted mono- or di- arylamino, and the substituted nitrogen-containing heteroaryl in A1, A2, L1, X1 to X16, Ma, La, and Xa to Xh in formulae 1 and 2 each independently are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxyl, a nitro, a hydroxyl, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a (3- to 7-membered)heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthio, a (3- to 30-membered)heteroaryl unsubstituted or substituted with a (C6-C30)aryl, a (C6-C30)aryl unsubstituted or substituted with a cyano, a (3- to 30-membered)heteroaryl, or a tri(C6-C30)arylsilyl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di-(C1-C30)alkylamino, a mono- or di-(C6-C30)arylamino, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl, and a (C1-C30)alkyl(C6-C30)aryl, and preferably are at least one selected from the group consisting of a cyano, a (C1-C6)alkyl, a (5- to 15-membered)heteroaryl, a (C6-C18)aryl unsubstituted or substituted with a cyano or a tri(C6-C12)arylsilyl, a tri(C6-C12)arylsilyl, and a (C1-C6)alkyl(C6-C12)aryl.
  • In formula 1, a triarylsilyl as Xi to X16 is preferably a triphenylsilyl.
  • The first host compound represented by formula 1 includes the following compounds, but is not limited thereto:
  • Figure US20220216430A1-20220707-C00007
    Figure US20220216430A1-20220707-C00008
    Figure US20220216430A1-20220707-C00009
    Figure US20220216430A1-20220707-C00010
    Figure US20220216430A1-20220707-C00011
    Figure US20220216430A1-20220707-C00012
    Figure US20220216430A1-20220707-C00013
    Figure US20220216430A1-20220707-C00014
    Figure US20220216430A1-20220707-C00015
    Figure US20220216430A1-20220707-C00016
    Figure US20220216430A1-20220707-C00017
    Figure US20220216430A1-20220707-C00018
    Figure US20220216430A1-20220707-C00019
    Figure US20220216430A1-20220707-C00020
    Figure US20220216430A1-20220707-C00021
    Figure US20220216430A1-20220707-C00022
    Figure US20220216430A1-20220707-C00023
    Figure US20220216430A1-20220707-C00024
    Figure US20220216430A1-20220707-C00025
    Figure US20220216430A1-20220707-C00026
    Figure US20220216430A1-20220707-C00027
    Figure US20220216430A1-20220707-C00028
    Figure US20220216430A1-20220707-C00029
    Figure US20220216430A1-20220707-C00030
    Figure US20220216430A1-20220707-C00031
    Figure US20220216430A1-20220707-C00032
    Figure US20220216430A1-20220707-C00033
    Figure US20220216430A1-20220707-C00034
    Figure US20220216430A1-20220707-C00035
    Figure US20220216430A1-20220707-C00036
    Figure US20220216430A1-20220707-C00037
    Figure US20220216430A1-20220707-C00038
    Figure US20220216430A1-20220707-C00039
    Figure US20220216430A1-20220707-C00040
    Figure US20220216430A1-20220707-C00041
  • The second host compound represented by formula 2 includes the following compounds, but is not limited thereto:
  • Figure US20220216430A1-20220707-C00042
    Figure US20220216430A1-20220707-C00043
    Figure US20220216430A1-20220707-C00044
    Figure US20220216430A1-20220707-C00045
    Figure US20220216430A1-20220707-C00046
    Figure US20220216430A1-20220707-C00047
    Figure US20220216430A1-20220707-C00048
    Figure US20220216430A1-20220707-C00049
    Figure US20220216430A1-20220707-C00050
    Figure US20220216430A1-20220707-C00051
    Figure US20220216430A1-20220707-C00052
    Figure US20220216430A1-20220707-C00053
    Figure US20220216430A1-20220707-C00054
    Figure US20220216430A1-20220707-C00055
    Figure US20220216430A1-20220707-C00056
    Figure US20220216430A1-20220707-C00057
    Figure US20220216430A1-20220707-C00058
    Figure US20220216430A1-20220707-C00059
    Figure US20220216430A1-20220707-C00060
    Figure US20220216430A1-20220707-C00061
    Figure US20220216430A1-20220707-C00062
    Figure US20220216430A1-20220707-C00063
    Figure US20220216430A1-20220707-C00064
    Figure US20220216430A1-20220707-C00065
    Figure US20220216430A1-20220707-C00066
    Figure US20220216430A1-20220707-C00067
    Figure US20220216430A1-20220707-C00068
    Figure US20220216430A1-20220707-C00069
    Figure US20220216430A1-20220707-C00070
    Figure US20220216430A1-20220707-C00071
    Figure US20220216430A1-20220707-C00072
    Figure US20220216430A1-20220707-C00073
    Figure US20220216430A1-20220707-C00074
    Figure US20220216430A1-20220707-C00075
    Figure US20220216430A1-20220707-C00076
    Figure US20220216430A1-20220707-C00077
    Figure US20220216430A1-20220707-C00078
    Figure US20220216430A1-20220707-C00079
    Figure US20220216430A1-20220707-C00080
    Figure US20220216430A1-20220707-C00081
    Figure US20220216430A1-20220707-C00082
    Figure US20220216430A1-20220707-C00083
    Figure US20220216430A1-20220707-C00084
    Figure US20220216430A1-20220707-C00085
    Figure US20220216430A1-20220707-C00086
    Figure US20220216430A1-20220707-C00087
    Figure US20220216430A1-20220707-C00088
    Figure US20220216430A1-20220707-C00089
    Figure US20220216430A1-20220707-C00090
    Figure US20220216430A1-20220707-C00091
    Figure US20220216430A1-20220707-C00092
    Figure US20220216430A1-20220707-C00093
    Figure US20220216430A1-20220707-C00094
    Figure US20220216430A1-20220707-C00095
    Figure US20220216430A1-20220707-C00096
  • Figure US20220216430A1-20220707-C00097
    Figure US20220216430A1-20220707-C00098
    Figure US20220216430A1-20220707-C00099
    Figure US20220216430A1-20220707-C00100
    Figure US20220216430A1-20220707-C00101
    Figure US20220216430A1-20220707-C00102
    Figure US20220216430A1-20220707-C00103
    Figure US20220216430A1-20220707-C00104
    Figure US20220216430A1-20220707-C00105
    Figure US20220216430A1-20220707-C00106
    Figure US20220216430A1-20220707-C00107
    Figure US20220216430A1-20220707-C00108
    Figure US20220216430A1-20220707-C00109
    Figure US20220216430A1-20220707-C00110
    Figure US20220216430A1-20220707-C00111
    Figure US20220216430A1-20220707-C00112
    Figure US20220216430A1-20220707-C00113
    Figure US20220216430A1-20220707-C00114
    Figure US20220216430A1-20220707-C00115
    Figure US20220216430A1-20220707-C00116
    Figure US20220216430A1-20220707-C00117
  • Figure US20220216430A1-20220707-C00118
    Figure US20220216430A1-20220707-C00119
    Figure US20220216430A1-20220707-C00120
    Figure US20220216430A1-20220707-C00121
    Figure US20220216430A1-20220707-C00122
    Figure US20220216430A1-20220707-C00123
    Figure US20220216430A1-20220707-C00124
    Figure US20220216430A1-20220707-C00125
    Figure US20220216430A1-20220707-C00126
    Figure US20220216430A1-20220707-C00127
    Figure US20220216430A1-20220707-C00128
    Figure US20220216430A1-20220707-C00129
    Figure US20220216430A1-20220707-C00130
    Figure US20220216430A1-20220707-C00131
    Figure US20220216430A1-20220707-C00132
    Figure US20220216430A1-20220707-C00133
    Figure US20220216430A1-20220707-C00134
    Figure US20220216430A1-20220707-C00135
    Figure US20220216430A1-20220707-C00136
    Figure US20220216430A1-20220707-C00137
    Figure US20220216430A1-20220707-C00138
    Figure US20220216430A1-20220707-C00139
    Figure US20220216430A1-20220707-C00140
    Figure US20220216430A1-20220707-C00141
    Figure US20220216430A1-20220707-C00142
    Figure US20220216430A1-20220707-C00143
    Figure US20220216430A1-20220707-C00144
    Figure US20220216430A1-20220707-C00145
    Figure US20220216430A1-20220707-C00146
    Figure US20220216430A1-20220707-C00147
    Figure US20220216430A1-20220707-C00148
    Figure US20220216430A1-20220707-C00149
    Figure US20220216430A1-20220707-C00150
    Figure US20220216430A1-20220707-C00151
    Figure US20220216430A1-20220707-C00152
    Figure US20220216430A1-20220707-C00153
    Figure US20220216430A1-20220707-C00154
    Figure US20220216430A1-20220707-C00155
    Figure US20220216430A1-20220707-C00156
    Figure US20220216430A1-20220707-C00157
    Figure US20220216430A1-20220707-C00158
    Figure US20220216430A1-20220707-C00159
    Figure US20220216430A1-20220707-C00160
    Figure US20220216430A1-20220707-C00161
    Figure US20220216430A1-20220707-C00162
    Figure US20220216430A1-20220707-C00163
    Figure US20220216430A1-20220707-C00164
    Figure US20220216430A1-20220707-C00165
    Figure US20220216430A1-20220707-C00166
    Figure US20220216430A1-20220707-C00167
    Figure US20220216430A1-20220707-C00168
    Figure US20220216430A1-20220707-C00169
    Figure US20220216430A1-20220707-C00170
  • The organic electroluminescent device according to the present invention comprises an anode; a cathode; and at least one organic layer between the anode and the cathode. The organic layer comprises a light-emitting layer, and the light-emitting layer comprises a host and a phosphorescent dopant. The host consists of multi-component host compounds, at least a first host compound of the multi-component host compounds is represented by formula 1, and a second host compound is represented by formula 2.
  • The light-emitting layer is a layer from which light is emitted, and can be a single layer or a multi layer of which two or more layers are stacked. In the light-emitting layer, it is preferable that the doping concentration of the dopant compound based on the host compound is less than 20 wt %.
  • The organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • According to the organic electroluminescent device of the present invention, the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
  • The dopant is preferably at least one phosphorescent dopant. The dopant materials applied to the organic electroluminescent device according to the present invention are not limited, but may be preferably selected from metallated complex compounds of iridium, osmium, copper and platinum, more preferably selected from ortho-metallated complex compounds of iridium, osmium, copper and platinum, and even more preferably ortho-metallated iridium complex compounds. The phosphorescent dopant is preferably selected from compounds represented by the following formulae 101 to 103.
  • Figure US20220216430A1-20220707-C00171
  • wherein L is selected from the following structures:
  • Figure US20220216430A1-20220707-C00172
  • R100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl;
  • R101 to R109, and R111 to R123 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a cyano, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (C3-C30)cycloalkyl; adjacent substituents of R106 to R109 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl; and adjacent substituents of R120 to R123 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., quinoline unsubstituted or substituted with halogen, alkyl, or aryl;
  • R124 to R127 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R124 to R127 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
  • R201 to R211 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R208 to R211 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
  • r and s each independently represent an integer of 1 to 3; where r or s is an integer of 2 or more, each of R100 may be the same or different; and e represents an integer of 1 to 3.
  • Specifically, the phosphorescent dopant materials include the following:
  • Figure US20220216430A1-20220707-C00173
    Figure US20220216430A1-20220707-C00174
    Figure US20220216430A1-20220707-C00175
    Figure US20220216430A1-20220707-C00176
    Figure US20220216430A1-20220707-C00177
    Figure US20220216430A1-20220707-C00178
    Figure US20220216430A1-20220707-C00179
    Figure US20220216430A1-20220707-C00180
    Figure US20220216430A1-20220707-C00181
    Figure US20220216430A1-20220707-C00182
    Figure US20220216430A1-20220707-C00183
    Figure US20220216430A1-20220707-C00184
    Figure US20220216430A1-20220707-C00185
    Figure US20220216430A1-20220707-C00186
    Figure US20220216430A1-20220707-C00187
    Figure US20220216430A1-20220707-C00188
    Figure US20220216430A1-20220707-C00189
    Figure US20220216430A1-20220707-C00190
    Figure US20220216430A1-20220707-C00191
    Figure US20220216430A1-20220707-C00192
  • The organic electroluminescent device according to the present invention may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds in the organic layer.
  • In addition, in the organic electroluminescent device according to the present invention, the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4th period, transition metals of the 5th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
  • According to the present invention, at least one layer (hereinafter, “a surface layer”) is preferably placed on an inner surface(s) of one or both electrode(s); selected from a chalcogenide layer, a metal halide layer and a metal oxide layer. Specifically, a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer, and a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer. Such a surface layer provides operation stability for the organic electroluminescent device. Preferably, said chalcogenide includes SiOx(1≤X≤2), AlOx(1≤X≤1 .5), SiON, SiAION, etc.; said metal halide includes LiF, MgF2, CaF2, a rare earth metal fluoride, etc.; and said metal oxide includes Cs2O, Li2O, MgO, SrO, BaO, CaO, etc.
  • Between the anode and the light-emitting layer, a layer selected from a hole injection layer, a hole transport layer, or an electron blocking layer, or formed by a combination thereof can be used. Multi layers can be used for the hole injection layer in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer. Two compounds can be simultaneously used in each layer. The hole transport layer and the electron blocking layer can also be formed of multi layers.
  • Between the light-emitting layer and the cathode, a layer selected from an electron buffer layer, a hole blocking layer, an electron transport layer, or an electron injection layer, or formed by a combination thereof can be used. Multi layers can be used for the electron buffer layer in order to control the injection of the electrons and enhance the interfacial characteristics between the light-emitting layer and the electron injection layer. Two compounds can be simultaneously used in each layer. The hole blocking layer and the electron transport layer can also be formed of multi layers, and each layer can comprise two or more compounds.
  • In the organic electroluminescent device according to the present invention, a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant is preferably placed on at least one surface of a pair of electrodes. In this case, the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium. Further, the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium. Preferably, the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof. A reductive dopant layer may be employed as a charge generating layer to prepare an electroluminescent device having two or more electroluminescent layers and emitting white light.
  • In order to form each layer of the organic electroluminescent device of the present invention, dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as ink jet printing, nozzle printing, slot coating, spin coating, dip coating, and flow coating methods can be used. The first and second host compounds of the present invention may be co-evaporated or mixture-evaporated.
  • When using a wet film-forming method, a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc. The solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
  • Herein, a co-evaporation indicates a process for two or more materials to be deposited as a mixture, by introducing each of the two or more materials into respective crucible cells, and applying an electric current to the cells for each of the materials to be evaporated. Herein, a mixture-evaporation indicates a process for two or more materials to be deposited as a mixture, by mixing the two or more materials in one crucible cell before the deposition, and applying an electric current to the cell for the mixture to be evaporated.
  • By using the organic electroluminescent device of the present invention, a display system or a lighting system can be produced.
  • Hereinafter, the luminescent properties of the device comprising the host compound of the present invention will be explained in detail with reference to the following examples.
  • Device Examples 1-1 to 1-6: Preparation of an OLED Device by Co-Evaporating the First Host Compound and the Second host Compound of the Present Invention
  • An OLED device was produced using the organic electroluminescent compound according to the present invention. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an organic light-emitting diode (OLED) device (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and then was stored in isopropanol. The ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus. N4,N4′-diphenyl-N4, -bis(9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl]-4,4′-diamine (compound HI-1) was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10−6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate. Next, 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (compound HI-2) was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. N-([1,1′-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluorene-2-amine (compound HT-1) was then introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer. Afterwards, N,N-di([1,1′-biphenyl]-4-yl)-4′-(9H- carbazol-9-yl)[1,1′-biphenyl]-4-amine (compound HT-2) was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. As a host material, a first host compound and a second host compound were introduced into two cells of the vacuum vapor depositing apparatus, respectively. A dopant compound D-96 was introduced into another cell. The two host materials were evaporated at 1:1 rate, while the dopant was evaporated at a different rate from the host materials, so that the dopant was deposited in a doping amount of 3 wt % based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the hole transport layer. 2,4-bis(9,9-dimethyl-9H-fluoren-2-yl)-6-(naphthalen-2-yl)-1,3,5-triazine (compound ET-1) and lithium quinolate (compound EI-1) were then introduced into two cells of the vacuum vapor depositing apparatus, respectively, and evaporated at 1:1 rate to form an electron transport layer having a thickness of 30 nm on the light-emitting layer. After depositing lithium quinolate (compound EI-1) as an electron injection layer having a thickness of 2 nm on the electron transport layer, an AI cathode having a thickness of 80 nm was deposited by another vacuum vapor deposition apparatus. Thus, an OLED device was produced.
  • Figure US20220216430A1-20220707-C00193
    Figure US20220216430A1-20220707-C00194
  • Comparative Examples 1-1 to 1-3: Preparation of an OLED Device Using Only the Second Host Compound as a Host
  • An OLED device was produced in the same manner as in Device Examples 1-1 to 1-6, except for using only the second host compound as a host of the light-emitting layer.
  • The driving voltage at 1,000 nit, luminous efficiency, CIE color coordinate, and the time taken for the luminance at 5,000 nit to be reduced from 100% to 80% at a constant current of the OLEDs produced as above were measured.
  • Table 1 below shows the luminous characteristics of the organic electroluminescent devices produced as in the examples above.
  • TABLE 1
    Color
    Voltage Efficiency Coordinate Lifespan
    Device No. HTL Host Dopant [V] [cd/A] (x, y) [hr]
    Example 1-1 HT-1/HT-2 H1-1:H2-2 D-96 4.4 27.5 0.664, 0.335 1,280
    Example 1-2 HT-1/HT-2 H1-7:H2-29 D-96 3.9 27.7 0.665, 0.332 550
    Example 1-3 HT-1/HT-2 H1-19:H2-29 D-96 4.1 24.6 0.664, 0.332 470
    Example 1-4 HT-1/HT-2 H1-36:H2-154 D-96 4.6 27.8 0.663, 0.335 1,530
    Example 1-5 HT-1/HT-2 H1-36:H2-29 D-96 3.7 28.2 0.666, 0.331 780
    Example 1-6 HT-1/HT-2 H1-36:H2-155 D-96 4.6 26.9 0.664, 0.335 970
    Comp. Ex. 1-1 HT-1/HT-2 H2-2  D-96 4.1 28.2 0.662, 0.337 300
    Comp. Ex. 1-2 HT-1/HT-2 H2-154 D-96 4.5 27.1 0.662, 0.337 420
    Comp. Ex. 1-3 HT-1/HT-2 H2-29  D-96 3.6 27.5 0.668, 0.331 310
  • Device Examples 2-1 to 2-7: Preparation of an OLED Device by Co-Evaporating the First Host Compound and the Second Host Compound of the Present Invention
  • An OLED device was produced in the same manner as in Device Examples 1-1 to 1-6, except for forming the second hole injection layer of 3 nm; forming the first hole transport layer of 40 nm; not forming the second hole transport layer; doping compound D-25 as the dopant of the light-emitting layer in a doping amount of 15 wt % based on the total amount of the host and dopant; forming the electron transport layer of 35 nm by evaporating 2,4-bis(9,9-dimethyl-9H-fluoren-2-yl)-6-(naphthalen-2-yl)-1,3,5-triazine and lithium quinolate at a rate of 4:6; and using other combinations for the first host compound and the second host compound used in the host of the light-emitting layer.
  • Device Examples 2-8 to 2-9: Preparation of an OLED Device by Co-Evaporating the First Host Compound and the Second Host Compound of the Present Invention
  • An OLED device was produced in the same manner as in Device Examples 1-1 to 1-6, except for forming the second hole injection layer of 3 nm; forming the first hole transport layer of 40 nm; not forming the second hole transport layer; doping compound D-1 as the dopant of the light-emitting layer in a doping amount of 15 wt % based on the total amount of the host and dopant; forming the electron transport layer of 35 nm by evaporating 2,4-bis(9,9-dimethyl-9H-fluoren-2-yl)-6-(naphthalen-2-yl)-1,3,5-triazine and lithium quinolate at a rate of 4:6; and using other combinations for the first host compound and the second host compound used in the host of the light-emitting layer.
  • Device Example 2-10: Preparation of an OLED Device by Co-Evaporating the First Host Compound and the Second Host Compound of the Present Invention
  • An OLED device was produced in the same manner as in Device Examples 1-1 to 1-6, except for forming the second hole injection layer of 3 nm; forming the first hole transport layer of 40 nm; not forming the second hole transport layer; doping compound D-136 as the dopant of the light-emitting layer in a doping amount of 15 wt % based on the total amount of the host and dopant; forming the electron transport layer of 35 nm by evaporating 2,4-bis(9,9-dimethyl-9H-fluoren-2-yl)-6-(naphthalen-2-yl)-1,3,5-triazine and lithium quinolate at a rate of 4:6; and using other combinations for the first host compound and the second host compound used in the host of the light-emitting layer.
  • Device Examples 3-1 to 3-3: Preparation of an OLED Device by Co-Evaporating the First Host Compound and the Second Host Compound of the Present Invention
  • An OLED device was produced in the same manner as in Device Examples 2-1 to 2-7, except for forming the first hole injection layer of 10 nm; forming the second hole transport layer of 30 nm using compound HT-3; using compound D-136 as the dopant of the light-emitting layer; and using other combinations for the first host compound and the second host compound used in the host of the light-emitting layer.
  • Device Example 3-4: Preparation of an OLED Device by Co-Evaporating the First Host Compound and the Second Host Compound of the Present Invention
  • An OLED device was produced in the same manner as in Device Examples 2-1 to 2-7, except for forming the first hole injection layer of 10 nm; forming the second hole transport layer of 30 nm using compound HT-3; using compound D-168 as the dopant of the light-emitting layer; and using other combinations for the first host compound and the second host compound used in the host of the light-emitting layer.
  • Comparative Examples 2-1 to 2-3: Preparation of an OLED Device Using Only the First Host Compound as a Host
  • An OLED device was produced in the same manner as in Device Examples 2-1 to 2-7, except for using only the first host compound as a host of the light-emitting layer.
  • Comparative Examples 3-1 to 3-3: Preparation of an OLED Device Using Only the Second Host Compound as a Host
  • An OLED device was produced in the same manner as in Device Examples 2-1 to 2-7, except for using only the second host compound as a host of the light-emitting layer.
  • Comparative Examples 3-4 to 3-6: Preparation of an OLED Device Using only the Second Host Compound as a Host
  • An OLED device was produced in the same manner as in Device Examples 2-8 to 2-9, except for using only the second host compound as a host of the light-emitting layer.
  • Comparative Examples 4-1 to 4-3: Preparation of an OLED Device Using Only the Second Host Compound as a Host
  • An OLED device was produced in the same manner as in Device Examples 3-1 to 3-3, except for using only the second host compound as a host of the light-emitting layer.
  • The driving voltage at 1,000 nit, luminous efficiency, CIE color coordinate, and the time taken for the luminance at 15,000 nit to be reduced from 100% to 80% at a constant current of the OLEDs produced as above were measured.
  • Table 2 below shows the luminous characteristics of the organic electroluminescent devices produced as in the examples above.
  • TABLE 2
    Color
    Voltage Efficiency Coordinate Lifespan
    Device No. HTL Host Dopant [V] [cd/A] (x, y) [hr]
    Example 2-1  HT-1 H1-1:H2-25 D-25  3.2 49.8 0.301, 0.658 350
    Example 2-2  HT-1 H1-1:H2-31 D-25  3 57.1 0.308, 0.655 380
    Example 2-3  HT-1 H1-1:H2-48 D-25  2.9 56.8 0.305, 0.656 400
    Example 2-4  HT-1 H1-1:H2-101 D-25  3 55.5 0.303, 0.657 230
    Example 2-5  HT-1 H1-1:H2-34 D-25  3.1 58.1 0.306, 0.655 440
    Example 2-6  HT-1 H1-4:H2-31 D-25  3 53.3 0.304, 0.656 120
    Example 2-7  HT-1 H1-37:H2-31 D-25  3 53.7 0.306, 0.655 300
    Example 2-8  HT-1 H1-1:H2-31 D-1   2.9 53 0.321, 0.656 560
    Example 2-9  HT-1 H1-1:H2-48 D-1   2.8 55.3 0.319, 0.657 550
    Example 2-10 HT-1 H1-H113:H2-31 D-136 2.8 59.4 0.331, 0.655 600
    Example 3-1  HT-1/HT-3 H1-1:H2-48 D-136 3.1 67.5 0.326, 0.658 590
    Example 3-2  HT-1/HT-3 H1-1:H2-273 D-136 3.1 66.2 0.328, 0.657 700
    Example 3-3  HT-1/HT-3 H1-113:H2-125 D-136 3.1 65.8 0.329, 0.657 700
    Example 3-4  HT-1/HT-3 H1-1:H2-273 D-168 3.0 57.2 0.288, 0.665 450
    Comp. Ex. 2-1 HT-1 H1-1  D-25  6.8 3.1 0.301, 0.653 x
    Comp. Ex. 2-2 HT-1 H1-4  D-25  7.2 3.6 0.295, 0.658 x
    Comp. Ex. 2-3 HT-1 H1-37  D-25  7.0 3.0 0.302, 0.653 x
    Comp. Ex. 3-1 HT-1 H2-31  D-25  2.9 42.8 0.314, 0.652 100
    Comp. Ex. 3-2 HT-1 H2-101 D-25  2.8 50.3 0.315, 0.651 60
    Comp. Ex. 3-3 HT-1 H2-34  D-25  2.7 49.2 0.312, 0.652 100
    Comp. Ex. 3-4 HT-1 H2-31  D-1  2.9 33.5 0.323, 0.653 390
    Comp. Ex. 3-5 HT-1 H2-48  D-1  2.6 41.2 0.325, 0.653 380
    Comp. Ex. 3-6 HT-1 H2-87  D-1  2.8 37.9 0.323, 0.653 420
    Comp. Ex. 4-1 HT-1/HT-3 H2-48  D-136 2.6 51.9 0.334, 0.652 490
    Comp. Ex. 4-2 HT-1/HT-3 H2-125 D-136 3.0 64.9 0.337, 0.649 360
    Comp. Ex. 4-3 HT-1/HT-3 H2-273 D-136 3.3 68.2 0.332, 0.654 440
  • Device Example 4-1: Preparation of an OLED Device by Co-Evaporatinq the First Host Compound and the Second Host Compound of the Present Invention
  • An OLED device was produced in the same manner as in Device Examples 1-1 to 1-6, except for using compound HT-4 for the second hole transport layer, and using the compounds as listed in Table 3 below for the first host compound and the second host compound used in the host of the light-emitting layer.
  • Comparative Example 5-1: Preparation of an OLED Device Using Only the Second Host Compound as a Host
  • An OLED device was produced in the same manner as in Device Example 4-1, except for using only the second host compound of Table 3 as a host of the light-emitting layer.
  • The driving voltage at 1,000 nit, luminous efficiency, CIE color coordinate, and the time taken for the luminance at 5,000 nit to be reduced from 100% to 90% at a constant current of the OLEDs produced as above were measured.
  • Table 3 below shows the luminous characteristics of the organic electroluminescent devices produced as in the examples above.
  • TABLE 3
    Color
    Voltage Efficiency Coordinate Lifespan
    Device No. HTL Host Dopant [V] [cd/A] (x, y) [hr]
    Example 4-1 HT-1/HT-4 H1-7:H2-41 D-96 3.4 30.7 0.665, 0.333 400
    Comp. Ex. 5-1 HT-1/HT-4 H2-41 D-96 3.1 28.3 0.668, 0.331 300
  • The organic electroluminescent device of the present invention comprises a light-emitting layer comprising a host and a phosphorus dopant, and the host consists of a specific combination of multi-component host compounds. The device of the present invention provides superior lifespan characteristics to conventional devices.

Claims (5)

1. An organic electroluminescent device comprising at least one light-emitting layer between an anode and a cathode, wherein the light-emitting layer comprises a host and a phosphorescent dopant, the host consists of multi-component host compounds, at least a first host compound of the multi-component host compounds is represented by the following formula 3, and a second host compound is represented by the following formula 2:
Figure US20220216430A1-20220707-C00195
wherein
A1and A2 each independently represent a (C6-C18)aryl unsubstituted or substituted with deuterium;
L1is represented by the following formula 7;
Figure US20220216430A1-20220707-C00196
Xi to Xl each independently represent hydrogen or deuterium;
X1 to X5, X7 to X10 and X12 to X16 each independently represent hydrogen, deuterium, a (C6-C60)aryl unsubstituted or substituted with deuterium, or a (3- to 30-membered)heteroaryl unsubstituted or substituted with deuterium;
Figure US20220216430A1-20220707-C00197
wherein
Ma represents a substituted or unsubstituted triazinyl;
La represents a single bond, or a (C6-C30)arylene unsubstituted or substituted with deuterium;
Xa to Xh each independently represent hydrogen, deuterium, a (C6-C60)aryl unsubstituted or substituted with deuterium, dibenzofuranyl unsubstituted or substituted with deuterium, or dibenzothiophenyl unsubstituted or substituted with deuterium; provided that at least one of Xa to Xh is dibenzofuranyl unsubstituted or substituted with deuterium, or dibenzothiophenyl unsubstituted or substituted with deuterium.
2. The organic electroluminescent device according to claim 1, wherein in formula 3,
A1 and A2 each independently are selected from the group consisting of phenyl, biphenyl, terphenyl and naphthyl.
3. The organic electroluminescent device according to claim 1, wherein in formula 2,
La is a single bond, or represented by one of the following formulae 7 to 19:
Figure US20220216430A1-20220707-C00198
Figure US20220216430A1-20220707-C00199
Figure US20220216430A1-20220707-C00200
wherein
Xi to Xp each independently represent hydrogen or deuterium.
4. The organic electroluminescent device according to claim 1, wherein the compound represented by formula 3 is selected from the group consisting of:
Figure US20220216430A1-20220707-C00201
Figure US20220216430A1-20220707-C00202
Figure US20220216430A1-20220707-C00203
Figure US20220216430A1-20220707-C00204
Figure US20220216430A1-20220707-C00205
Figure US20220216430A1-20220707-C00206
Figure US20220216430A1-20220707-C00207
Figure US20220216430A1-20220707-C00208
5. The organic electroluminescent device according to claim 1, wherein the compound represented by formula 2 is selected from the group consisting of:
Figure US20220216430A1-20220707-C00209
Figure US20220216430A1-20220707-C00210
Figure US20220216430A1-20220707-C00211
Figure US20220216430A1-20220707-C00212
Figure US20220216430A1-20220707-C00213
US17/689,508 2014-04-18 2022-03-08 Multi-component host material and an organic electroluminescence device comprising the same Abandoned US20220216430A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/689,508 US20220216430A1 (en) 2014-04-18 2022-03-08 Multi-component host material and an organic electroluminescence device comprising the same
US18/495,274 US20240090328A1 (en) 2014-04-18 2023-10-26 Multi-component host material and an organic electroluminescence device comprising the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR10-2014-0046857 2014-04-18
KR20140046857 2014-04-18
KR10-2014-0087769 2014-07-11
KR20140087769A KR101502316B1 (en) 2014-04-18 2014-07-11 Multi-component host material and an organic electroluminescence device comprising the same
PCT/KR2015/003890 WO2015160224A1 (en) 2014-04-18 2015-04-17 Multi-component host material and an organic electroluminescence device comprising the same
US201615301975A 2016-10-05 2016-10-05
US17/689,508 US20220216430A1 (en) 2014-04-18 2022-03-08 Multi-component host material and an organic electroluminescence device comprising the same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/301,975 Continuation US20170125699A1 (en) 2014-04-18 2015-04-17 Multi-component host material and an organic electroluminescence device comprising the same
PCT/KR2015/003890 Continuation WO2015160224A1 (en) 2014-04-18 2015-04-17 Multi-component host material and an organic electroluminescence device comprising the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/495,274 Continuation US20240090328A1 (en) 2014-04-18 2023-10-26 Multi-component host material and an organic electroluminescence device comprising the same

Publications (1)

Publication Number Publication Date
US20220216430A1 true US20220216430A1 (en) 2022-07-07

Family

ID=53027471

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/301,975 Abandoned US20170125699A1 (en) 2014-04-18 2015-04-17 Multi-component host material and an organic electroluminescence device comprising the same
US17/689,508 Abandoned US20220216430A1 (en) 2014-04-18 2022-03-08 Multi-component host material and an organic electroluminescence device comprising the same
US17/689,438 Abandoned US20220216429A1 (en) 2014-04-18 2022-03-08 Multi-component host material and an organic electroluminescence device comprising the same
US18/495,274 Pending US20240090328A1 (en) 2014-04-18 2023-10-26 Multi-component host material and an organic electroluminescence device comprising the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/301,975 Abandoned US20170125699A1 (en) 2014-04-18 2015-04-17 Multi-component host material and an organic electroluminescence device comprising the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/689,438 Abandoned US20220216429A1 (en) 2014-04-18 2022-03-08 Multi-component host material and an organic electroluminescence device comprising the same
US18/495,274 Pending US20240090328A1 (en) 2014-04-18 2023-10-26 Multi-component host material and an organic electroluminescence device comprising the same

Country Status (6)

Country Link
US (4) US20170125699A1 (en)
EP (1) EP3131879B1 (en)
JP (1) JP6681340B2 (en)
KR (1) KR101502316B1 (en)
CN (2) CN106164046A (en)
WO (1) WO2015160224A1 (en)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829745B1 (en) 2014-01-24 2018-02-19 삼성에스디아이 주식회사 Organic compound and composition and organic optoelectric device and display device
US9741941B2 (en) * 2014-04-29 2017-08-22 Universal Display Corporation Organic electroluminescent materials and devices
KR20150141147A (en) * 2014-06-09 2015-12-17 롬엔드하스전자재료코리아유한회사 An organic electroluminescent compound and an organic electroluminescent device comprising the same
KR102357467B1 (en) * 2014-07-22 2022-02-04 롬엔드하스전자재료코리아유한회사 Organic Electroluminescence Device
US9947878B2 (en) * 2014-08-20 2018-04-17 Lg Chem, Ltd. Organic light-emitting device
KR102430648B1 (en) * 2014-09-05 2022-08-09 롬엔드하스전자재료코리아유한회사 A Hole Transport Material and an Organic Electroluminescent Device Comprising the Same
KR102530113B1 (en) 2014-10-23 2023-05-10 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and an organic electroluminescent device comprising the same
KR102503311B1 (en) * 2014-12-10 2023-02-28 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compound and Organic Electroluminescent Device Comprising the Same
WO2016171356A1 (en) * 2015-04-24 2016-10-27 삼성에스디아이 주식회사 Organic compound, composition, and organic optoelectronic diode
KR102426959B1 (en) * 2015-04-27 2022-08-01 메르크 파텐트 게엠베하 Material for organic electroluminescent elements, organic electroluminescent element, display device and lighting device
KR102059021B1 (en) 2015-06-19 2019-12-24 삼성에스디아이 주식회사 Composition for organic optoelectronic device, organic optoelectric device and display device
KR20170001552A (en) 2015-06-26 2017-01-04 롬엔드하스전자재료코리아유한회사 Multi-component host material and organic electroluminescent device comprising the same
WO2016208873A1 (en) 2015-06-26 2016-12-29 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and organic electroluminescent device comprising the same
CN107531650B (en) * 2015-08-21 2020-10-09 株式会社Lg化学 Compound and organic electronic element comprising same
US10270041B2 (en) * 2015-08-28 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR101946020B1 (en) * 2015-09-10 2019-02-08 엘티소재주식회사 Hetero-cyclic compound and organic light emitting device using the same
WO2017069442A1 (en) * 2015-10-23 2017-04-27 삼성에스디아이 주식회사 Composition for organic optoelectronic element, organic optoelectronic element, and display device
KR102579752B1 (en) 2015-12-22 2023-09-19 삼성디스플레이 주식회사 Organic light emitting device
KR20170075114A (en) 2015-12-22 2017-07-03 삼성디스플레이 주식회사 Organic light emitting device
KR20170075118A (en) * 2015-12-22 2017-07-03 삼성디스플레이 주식회사 Organic light emitting device
KR20170075122A (en) 2015-12-22 2017-07-03 삼성디스플레이 주식회사 Organic light emitting device
GB201523037D0 (en) * 2015-12-29 2016-02-10 Univ St Andrews Light emitting compounds
EP3190164B1 (en) 2016-01-05 2019-07-24 Samsung Electronics Co., Ltd Composition, thin film including the composition, and organic light-emitting device including the composition or the thin film
KR102521263B1 (en) * 2016-01-21 2023-04-14 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element comprising the same, and electronic device thereof
KR102642199B1 (en) * 2016-04-07 2024-03-05 삼성디스플레이 주식회사 Organic light emitting device
KR102479135B1 (en) * 2016-04-18 2022-12-21 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescent device comprising the same
WO2017200210A1 (en) * 2016-05-17 2017-11-23 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same
KR20170129599A (en) * 2016-05-17 2017-11-27 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same
US10985328B2 (en) * 2016-05-25 2021-04-20 Universal Display Corporation Organic electroluminescent materials and devices
KR102027961B1 (en) 2016-06-29 2019-10-02 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
KR102054276B1 (en) 2016-06-29 2019-12-10 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
KR102050000B1 (en) 2016-07-12 2019-11-28 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
WO2018012780A1 (en) * 2016-07-14 2018-01-18 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device comprising same organic electric element
CN108603109B (en) * 2016-07-26 2021-08-27 株式会社Lg化学 Organic light emitting device
WO2018021737A1 (en) * 2016-07-29 2018-02-01 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using same, and electronic device thereof
KR102054277B1 (en) * 2016-07-29 2019-12-10 삼성에스디아이 주식회사 Composition for organic optoelectronic device and organic optoelectronic device and display device
KR20180017682A (en) 2016-08-10 2018-02-21 삼성전자주식회사 Silyl-based compound and organic light-emitting device including the same
CN106432051B (en) * 2016-09-20 2019-02-22 长春海谱润斯科技有限公司 A kind of carbazole analog derivative and its preparation method and application
KR102639854B1 (en) * 2016-10-31 2024-02-22 엘지디스플레이 주식회사 Organic compounds and litht emitting diode and organic light emittig diode display device using the compounds
KR101885898B1 (en) * 2016-11-16 2018-08-06 주식회사 엘지화학 Organic light emitting device
US11158817B2 (en) 2017-01-05 2021-10-26 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
KR102582797B1 (en) * 2017-01-10 2023-09-27 롬엔드하스전자재료코리아유한회사 Organic electroluminescent device
WO2018131866A1 (en) * 2017-01-10 2018-07-19 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
KR102668890B1 (en) * 2017-04-03 2024-05-27 듀폰스페셜티머터리얼스코리아 유한회사 Organic electroluminescent device
US11117897B2 (en) * 2017-05-01 2021-09-14 Universal Display Corporation Organic electroluminescent materials and devices
KR20180137772A (en) 2017-06-19 2018-12-28 삼성에스디아이 주식회사 Organic optoelectric device and display device
KR20190047608A (en) * 2017-10-27 2019-05-08 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound and organic electroluminescent device comprising the same
KR20190053792A (en) * 2017-11-10 2019-05-20 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compound, Organic Electroluminescent Material Comprising the Same, and Organic Electroluminescent Device
KR102192367B1 (en) * 2018-01-11 2020-12-17 주식회사 엘지화학 Organic light emitting device
KR20190114764A (en) * 2018-03-29 2019-10-10 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN110526900B (en) * 2018-05-23 2023-12-01 北京鼎材科技有限公司 Organic electroluminescent material and device
WO2019235857A1 (en) * 2018-06-08 2019-12-12 삼성에스디아이 주식회사 Compound for organic optoelectronic element, composition for organic optoelectronic element, organic optoelectronic element, and display device
JP7252959B2 (en) 2018-07-27 2023-04-05 出光興産株式会社 compounds, materials for organic electroluminescence devices, organic electroluminescence devices, and electronic devices
EP3643761A1 (en) 2018-10-25 2020-04-29 Idemitsu Kosan Co., Ltd. Composition, organic electroluminescence device material, composition film, organic electroluminescence device, and electronic device
KR20200057886A (en) 2018-11-16 2020-05-27 삼성디스플레이 주식회사 Organic electroluminescence device and compound for organic electroluminescence device
KR20200061472A (en) * 2018-11-23 2020-06-03 삼성디스플레이 주식회사 Organic electroluminescence device
KR102261645B1 (en) * 2018-11-26 2021-06-08 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising the same
EP3666779B1 (en) * 2018-12-14 2021-10-13 cynora GmbH Organic electroluminescent devices comprising host compounds
KR20210056495A (en) 2019-11-08 2021-05-20 삼성디스플레이 주식회사 Organic electroluminescence device and aromatic compound for organic electroluminescence device
US20220367820A1 (en) * 2020-03-31 2022-11-17 Universal Display Corporation Organic electroluminescent materials and devices
CN113493446A (en) * 2020-04-03 2021-10-12 南京高光半导体材料有限公司 Carbazolyl-based organic electroluminescent compound and organic electroluminescent device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150826A1 (en) * 2011-05-03 2012-11-08 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and an organic electroluminescent device using the same
WO2013146942A1 (en) * 2012-03-28 2013-10-03 出光興産株式会社 Novel compound, material for organic electroluminescence element, and organic electroluminescence element
WO2013168688A1 (en) * 2012-05-10 2013-11-14 コニカミノルタ株式会社 Organic electroluminescence element, illumination device, and display device
US20140061602A1 (en) * 2012-08-31 2014-03-06 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103492B2 (en) * 2002-08-09 2008-06-18 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
EP1464691B1 (en) * 2003-03-26 2013-10-02 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, and display
US20090091253A1 (en) * 2006-03-17 2009-04-09 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
JP5493357B2 (en) * 2006-12-13 2014-05-14 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP2009029726A (en) * 2007-07-25 2009-02-12 Toyo Ink Mfg Co Ltd Compound having carbazolyl group and use thereof
JP2009057307A (en) * 2007-08-31 2009-03-19 Toyo Ink Mfg Co Ltd Compound having carbazolyl group, and use of the same
JP5593696B2 (en) 2007-11-08 2014-09-24 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence device
DE102009023155A1 (en) * 2009-05-29 2010-12-02 Merck Patent Gmbh Materials for organic electroluminescent devices
CN102770981B (en) * 2010-02-26 2015-05-13 新日铁住金化学株式会社 Organic electroluminescent element
KR20140092332A (en) * 2011-10-21 2014-07-23 이데미쓰 고산 가부시키가이샤 Organic electroluminescence element and material for organic electroluminescence element
WO2013084885A1 (en) * 2011-12-05 2013-06-13 出光興産株式会社 Organic electroluminescent element
US9530969B2 (en) 2011-12-05 2016-12-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
JP6060095B2 (en) * 2012-02-03 2017-01-11 出光興産株式会社 Carbazole compound, material for organic electroluminescence device, and organic electroluminescence device
JP5765271B2 (en) 2012-03-02 2015-08-19 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP2015135836A (en) * 2012-03-29 2015-07-27 出光興産株式会社 Organic electroluminescent element and material for organic electroluminescent element
KR20130112342A (en) * 2012-04-03 2013-10-14 롬엔드하스전자재료코리아유한회사 Novel carbazole compounds and organic electroluminescence device containing the same
DE102013208844A1 (en) * 2012-06-01 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, display device, electronic device and lighting device
JP6381874B2 (en) * 2013-07-18 2018-08-29 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150826A1 (en) * 2011-05-03 2012-11-08 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and an organic electroluminescent device using the same
WO2013146942A1 (en) * 2012-03-28 2013-10-03 出光興産株式会社 Novel compound, material for organic electroluminescence element, and organic electroluminescence element
WO2013168688A1 (en) * 2012-05-10 2013-11-14 コニカミノルタ株式会社 Organic electroluminescence element, illumination device, and display device
US20140061602A1 (en) * 2012-08-31 2014-03-06 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Also Published As

Publication number Publication date
EP3131879A4 (en) 2018-01-03
WO2015160224A1 (en) 2015-10-22
JP6681340B2 (en) 2020-04-15
JP2017514302A (en) 2017-06-01
KR101502316B1 (en) 2015-03-13
CN114551746A (en) 2022-05-27
EP3131879B1 (en) 2023-09-13
CN106164046A (en) 2016-11-23
US20240090328A1 (en) 2024-03-14
US20220216429A1 (en) 2022-07-07
US20170125699A1 (en) 2017-05-04
EP3131879A1 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
US11917907B2 (en) Organic electroluminescent device
US20220216430A1 (en) Multi-component host material and an organic electroluminescence device comprising the same
US11130747B2 (en) Plurality of host materials and an organic electroluminescence device comprising the same
US10490752B2 (en) Plurality of host materials and organic electroluminescent device comprising the same
US20220165956A1 (en) Plurality of host materials and organic electroluminescent device comprising the same
US20220102644A1 (en) Organic electroluminescent device
US10069086B2 (en) Plurality of host materials and an organic electroluminescence device comprising the same
US10749119B2 (en) Plurality of host materials and organic electroluminescent device comprising the same
US20230020540A1 (en) Multi-component host material and organic electroluminescent device comprising the same
US20240206333A1 (en) Multi-component host material and organic electroluminescent device comprising the same
US20240099132A1 (en) Multi-component host material and organic electroluminescent device comprising the same
US20210210697A1 (en) Multi-component host material and organic electroluminescent device comprising the same
US20170098784A1 (en) Multi-component host material and an organic electroluminescence device comprising the same
US20170170408A1 (en) Organic electroluminescent device
US20170047527A1 (en) Multi-component host material and organic electroluminescent device comprising the same
US20170309841A1 (en) A plurality of host materials and an organic electroluminescence device comprising the same
US20190131542A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
US20170062730A1 (en) Multi-component host material and organic electroluminescent device comprising the same
US20200216392A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
US20200028082A1 (en) Organic electroluminescence device
US20170335181A1 (en) A novel combination of a host compound and a dopant compound and an organic electroluminescent device comprising the same
US20180223184A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
US20190273209A1 (en) Organic electroluminescent device
US10069087B2 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
US10991889B2 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION