US20220213133A1 - Ferric Organic Compounds, Uses Thereof and Methods of Making Same - Google Patents

Ferric Organic Compounds, Uses Thereof and Methods of Making Same Download PDF

Info

Publication number
US20220213133A1
US20220213133A1 US17/405,543 US202117405543A US2022213133A1 US 20220213133 A1 US20220213133 A1 US 20220213133A1 US 202117405543 A US202117405543 A US 202117405543A US 2022213133 A1 US2022213133 A1 US 2022213133A1
Authority
US
United States
Prior art keywords
ferric
ferric citrate
citrate
organic compounds
novel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/405,543
Inventor
David W.K. KWOK
Nikolay Wintchev Stoynov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panion and BF Biotech Inc
Original Assignee
Panion and BF Biotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32912273&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20220213133(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panion and BF Biotech Inc filed Critical Panion and BF Biotech Inc
Priority to US17/405,543 priority Critical patent/US20220213133A1/en
Assigned to BIOPHARMA CREDIT PLC reassignment BIOPHARMA CREDIT PLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AKEBIA THERAPEUTICS, INC., KERYX BIOPHARMACEUTICALS, INC.
Assigned to BIOPHARMA CREDIT PLC reassignment BIOPHARMA CREDIT PLC TENTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: AKEBIA THERAPEUTICS, INC., KERYX BIOPHARMACEUTICALS, INC.
Publication of US20220213133A1 publication Critical patent/US20220213133A1/en
Assigned to BIOPHARMA CREDIT PLC reassignment BIOPHARMA CREDIT PLC ELEVENTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: AKEBIA THERAPEUTICS, INC., KERYX BIOPHARMACEUTICALS, INC.
Assigned to BIOPHARMA CREDIT PLC reassignment BIOPHARMA CREDIT PLC TWELFTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: AKEBIA THERAPEUTICS, INC., KERYX BIOPHARMACEUTICALS, INC.
Assigned to BIOPHARMA CREDIT PLC reassignment BIOPHARMA CREDIT PLC THIRTEENTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: AKEBIA THERAPEUTICS, INC., KERYX BIOPHARMACEUTICALS, INC.
Assigned to BIOPHARMA CREDIT PLC reassignment BIOPHARMA CREDIT PLC FIFTEENTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: AKEBIA THERAPEUTICS, INC., KERYX BIOPHARMACEUTICALS, INC.
Assigned to KERYX BIOPHARMACEUTICALS, INC., AKEBIA THERAPEUTICS, INC. reassignment KERYX BIOPHARMACEUTICALS, INC. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: BIOPHARMA CREDIT PLC
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/02Iron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/295Iron group metal compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/04Chelating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/418Preparation of metal complexes containing carboxylic acid moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids

Definitions

  • This invention relates to ferric organic compounds, such as ferric citrate, methods of making the ferric organic compounds, and uses of the ferric organic compounds in the treatment of various disorders.
  • Ferric iron containing compounds are useful in the treatment of a number of disorders, including, but not limited to, hyperphosphatemia and metabolic acidosis.
  • Previous studies and inventions have reported the use of ferric compounds in binding with dietary phosphates, and such ferric compounds are potentially useful for the treatment of hyperphosphatemia in renal failure patients (U.S. Pat. No. 5,753,706, 1998; U.S. Pat. No. 6,903,235, 2005; CN 1315174, 2001; Yang W. C., et al., Nephrol. Dial. Transplant 17:265:270 (2002)).
  • Elevated amounts of phosphate in the blood can be removed by administering compounds such as ferric citrate.
  • ferric iron binds phosphate, and the ferric phosphate compounds precipitate in the gastrointestinal tract, resulting in effective removal of dietary phosphate from the body. It is also believed that the absorbed citrate from ferric citrate is converted to bicarbonate which corrects metabolic acidosis, a condition common in renal failure patients.
  • U.S. Pat. No. 5,753,706 discloses the use of ferric containing compounds including ferric citrate and ferric acetate in the crystalline form, in an orally effective 1 gram dosage form, to bind to soluble dietary phosphate, causing precipitation of phosphate as ferric or ferrous phosphates in the gastrointestinal tract thus preventing oral absorption of soluble phosphates from dietary sources. Since the binding of ferric ions to soluble phosphate in the gastrointestinal tract would require dissolution of the orally administered ferric citrate, and since the rate of dissolution of crystalline ferric citrate is slow (over 10-12 hours at 37° C.), oral administration of a substantially large dose of 1 g of ferric citrate is required.
  • a related Chinese patent application (CN 1315174) also discloses a similar use of ferric citrate and related compounds in an oral solution dosage form for the treatment of hyperphosphatemia in renal failure patients.
  • Fe(III) is a lewis acid and is chemically less soluble in the stomach at pH normally below 5 than at intestinal pH normally above 7.
  • the stomach is believed to be an important site of action for the dissolution of Fe(III) compounds. It is also believed that the stomach is also an important site of action for Fe(III) to mediate its action in binding to dietary phosphates, preventing phosphate from reaching the intestine and thus reducing the absorption of phosphates from the intestine.
  • This invention relates to novel forms of ferric organic compounds, methods of making these compounds, and uses of these compounds in the treatment of various disorders, including, but not limited to, hyperphosphatemia and metabolic acidosis.
  • the novel forms of ferric organic compounds are synthesized by adding an alkaline metal hydroxide to a water soluble ferric iron salt.
  • the alkaline metal hydroxide can comprise sodium hydroxide, potassium hydroxide, or any other suitable alkaline metal hydroxide.
  • the soluble ferric iron salt can comprise ferric chloride hexahydrate, or any other suitable ferric iron salt.
  • the alkaline metal hydroxide is added at a specific rate and temperature to form a uniform polyiron oxo colloidal suspension.
  • the colloidal suspension is then washed, and solid crystalline organic acid is added at a specific temperature to form the ferric organic compound in solution.
  • the organic acid can comprise citric acid, acetic acid, isocitric acid, succinic acid, fumaric acid, tartaric acid, or any other suitable organic acid.
  • the novel forms of the ferric organic compounds are precipitated out of solution using an organic solvent.
  • the organic solvent can comprise ethanol, methanol, butanol, acetone, isopropyl alcohol, tetrahydrofuran, or any other suitable organic solvent.
  • the resulting novel forms of the ferric organic compounds have an enhanced dissolution rate.
  • the novel form of ferric organic compound comprises a novel form of ferric citrate.
  • the novel form of ferric citrate is synthesized by adding sodium hydroxide at a specific rate and temperature to ferric chloride hexahydrate to form a uniform colloidal suspension of ferric hydroxide. Solid crystalline citric acid is added to the colloidal suspension and heated to a specific temperature range to form ferric citrate in solution. The novel form of ferric citrate is precipitated out of solution using an organic solvent.
  • the novel form of ferric citrate has the formula C 6 H 5 O 7 Fe and has novel physical properties as determined by dissolution rates.
  • the compound can have an intrinsic dissolution rate range, as determined by USP (United States Pharmacopeia) intrinsic dissolution assay in water, between 1.9 to 4.0 mg/cm 2 /min.
  • the novel form of ferric citrate is more aqueously soluble in a wider range of pH than commercially available forms of ferric citrate.
  • the novel form of ferric citrate can have a large active surface area compared to commercially available forms of ferric organic compounds or complexes.
  • novel form of ferric organic compounds can be used to more effectively deliver ferric organic compounds by the route of oral administration to patients suffering from illnesses which are responsive to treatment with ferric organic compounds, including, but not limited to, hyperphosphatemia and metabolic acidosis.
  • This invention relates to use of the novel form of ferric organic compounds, including novel forms of ferric citrate to treat patients suffering from disorders responsive to ferric organic compound treatment.
  • This invention also relates to methods of treating patients suffering from disorders responsive to ferric organic compound treatment by administering a therapeutically effective amount of ferric organic compound to the patients.
  • This invention further relates to a composition for treating hyperphosphatemia in a subject, comprising an effective amount of ferric citrate.
  • the subject is a human being.
  • the amount of ferric citrate effective in treating hyperphosphatemia is between 3 to 6 grams/day. In a further embodiment, the effective amount is 3 or 4.5 grams/day.
  • This invention further relates to a method for treating hyperphosphatemia in a subject, comprising administering to said subject an effective amount of ferric citrate.
  • the subject is a human being.
  • the amount of ferric citrate effective in treating hyperphosphatemia in a subject is between 3 to 6 grams/day. In a further embodiment, the effective amount is or 4.5 grams/day. It will be within the knowledge and abilities of a person having ordinary skill in the art to perform a dose-ranging study to determine the effective amount of ferric organic compounds or ferric citrate of the present invention.
  • FIG. 1 is a schematic diagram outlining the method of making novel forms of ferric organic compounds according to the invention.
  • FIG. 2 is a plot of the dissolution profile of the novel form of ferric citrate of the invention compared to a commercially available compound.
  • FIG. 3 is an isotherm graph of volume adsorbed vs. relative pressure demonstrating BET active surface area of the novel form of ferric citrate.
  • Coulter SA 3100 Serial No. z11017; Software Version 2.13; Elapsed time: 29 min.; Outgas time: 60 min.; Outgas temperature: 40° C.
  • FIG. 4 is an X-ray diffraction spectra of the novel form of ferric citrate. Range: 4.00 to 40.00 (Deg); Step Scan Rate: 0.02 Deg/min.
  • FIG. 5 is a thermogravimetric analysis of the novel form of ferric citrate. Method: Heating 10° C./MIN, N2@40 CC/MIN; Size: 10.5480 mg.
  • This invention provides a method of synthesizing a form of ferric organic compound which comprises obtaining a ferric iron salt; adding an alkaline metal hydroxide to the ferric iron salt at a rate and temperature effective to produce a uniform polyiron oxo suspension; isolating a precipitate from the suspension; adding an organic acid to the precipitate; forming a ferric-organic acid solution by heating the organic acid and the precipitate; and precipitating the form of ferric organic compound from the ferric-organic acid solution by adding an organic solvent to the solution.
  • the alkaline metal hydroxide is added at a rate of less than 20 ml/min. In another embodiment, the alkaline metal hydroxide is added at a rate of between about 10 ml/min and about 20 ml/min. In a preferred embodiment, a nominal rate of 10 to 20 ml/min is preferred.
  • the alkaline metal hydroxide is added to the ferric iron salt at a temperature of less than 40° C. In another embodiment, the alkaline metal hydroxide is added to the ferric iron salt at a temperature between about 10° C. and about 40° C. In a preferred embodiment, a nominal temperature of 30° C. is preferred.
  • heating the organic acid and the precipitate comprises heating the organic acid and the precipitate to a temperature between about 75° C. to about 95° C. In a preferred embodiment, the range is between about 80° C. and about 90° C. In another preferred embodiment, a nominal temperature of 85° C. is preferred.
  • precipitating the form of ferric organic compound from the ferric-organic acid solution by adding an organic solvent to the solution comprises cooling the ferric-organic acid solution to less than 30° C. before adding the organic solvent.
  • the ferric-organic acid solution is cooled to a nominal temperature of 20° C.
  • cooling the ferric-organic acid solution comprises cooling the ferric-organic acid solution to a temperature between about 10° C. and about 30° C.
  • the ferric-organic acid solution is cooled to a nominal temperature of 20° C.
  • the ferric iron salt comprises ferric chloride hexahydrate.
  • the organic acid includes but is not limited to succinic acid, fumaric acid or tartaric acid. In another embodiment, the organic acid comprises citric acid.
  • the alkaline metal hydroxide includes but is not limited to sodium hydroxide or potassium hydroxide. In another embodiment, the alkaline metal hydroxide comprises sodium hydroxide.
  • the organic solvent includes but is not limited to ethanol, methanol, butanol, isopropyl alcohol, acetone or tetrahydrofuran.
  • This invention provides a method of synthesizing a form of ferric citrate which comprises obtaining ferric chloride hexahydrate; adding sodium hydroxide to the ferric chloride hexahydrate at a rate and temperature effective to produce a uniform polyiron oxo suspension; isolating a precipitate from the suspension; adding crystalline citric acid to the precipitate; forming a ferric-citric acid solution by heating the citric acid and the precipitate; and precipitating the form of ferric citrate from the ferric-citric acid solution by adding an organic solvent to the solution.
  • sodium hydroxide is added to ferric chloride hexahydrate at a rate of less than 20 ml/min. In another embodiment, sodium hydroxide is added to ferric chloride hexahydrate at a rate of between about 10 ml/min and about 20 ml/min. In a preferred embodiment, a nominal rate of 10 to 20 ml/min is preferred.
  • sodium hydroxide is added to ferric chloride hexahydrate at a temperature of less than 40° C. In another embodiment, sodium hydroxide is added to ferric chloride hexahydrate at a temperature between about 10° C. and about 40° C. In a preferred embodiment, a nominal temperature of 30° C. is preferred.
  • the ferric-citric acid solution is formed by heating the citric acid and the precipitate to a temperature between about 75° C. to about 95° C. In a preferred embodiment, the range is between about 80° C. and about 90° C. In another preferred embodiment, a nominal temperature of 85° C. is preferred.
  • precipitating the form of ferric citrate from the ferric-citric acid solution by adding an organic solvent to the solution comprises cooling the ferric-citric acid solution to less than 30° C. before adding the organic solvent.
  • the ferric-organic acid solution is cooled to a nominal temperature of 20° C.
  • cooling the ferric-citric acid solution comprises cooling the ferric-citric acid solution to a temperature between about 10° C. and about 30° C. In a preferred embodiment, the ferric-organic acid solution is cooled to a nominal temperature of 20° C.
  • the organic solvent includes but is not limited to ethanol, methanol, butanol, isopropyl alcohol, acetone or tetrahydrofuran.
  • This invention provides a use of a form of ferric organic compound or ferric citrate as describe above for treating a subject suffering from a disorder responsive to ferric organic compound therapy.
  • the subject is a human being.
  • the disorder includes but is not limited to hyperphosphatemia or metabolic acidosis.
  • Yang et al. An open-label, crossover study of a new phosphate-binding agent in haemodialysis patients: ferric citrate.
  • Nephrol Dial Transplant. 17(2):265-70, 2002 reported that ferric citrate is effective and well tolerated as a treatment for hyperphosphatemia in patients.
  • This invention provides a method of treating a subject suffering from a disorder responsive to ferric organic compound therapy comprising administering to the subject a therapeutically effective amount of a ferric organic compound as described above.
  • the subject is a human being.
  • the ferric organic compound is ferric citrate.
  • the disorder includes but is not limited to hyperphosphatemia or metabolic acidosis.
  • This invention provides a form of a ferric organic compound having an enhanced dissolution rate.
  • the said organic compound includes but is not limited to citric acid, acetic acid, isocitric acid, succinic acid, fumaric acid, tartaric acid or other related organic compounds.
  • the said ferric organic compound has a large active surface area compared to conventional ferric organic compounds.
  • This invention provides a form of ferric citrate having the formula C 6 H 5 O 7 Fe and/or having physical properties as determined by dissolution rates.
  • the dissolution rate as determined by USP intrinsic dissolution assay in water, is between 1.9 to 4.0 mg/cm2/min.
  • This invention provides a form of ferric citrate having a BET (Brunauer Emmett Teller) active surface area exceeding 16 sq ⁇ m/g and a BET active surface area isotherm as shown in FIG. 3 .
  • BET Brunauer Emmett Teller
  • This invention provides a form of ferric citrate having the x-ray diffraction pattern shown in FIG. 4 .
  • This invention provides a form of ferric citrate having three transition temperatures as determined by thermogravimetric analysis (TGA) and having a TGA profile as shown in FIG. 5 .
  • TGA thermogravimetric analysis
  • This invention provides a form of ferric citrate, wherein the form of ferric citrate has a large active surface area compared to conventional ferric organic compound complexes.
  • This invention provides a use of a form of ferric organic compound or ferric citrate to treat a subject suffering from a disorder responsive to ferric organic compound therapy.
  • the disorder includes but is not limited to hyperphosphatemia or metabolic acidosis.
  • This invention provides a method of treating a subject suffering from a disorder responsive to ferric organic compound therapy comprising administering to the subject a therapeutically effective amount of a form of ferric organic compound or ferric citrate as described above.
  • the disorder includes but is not limited to hyperphosphatemia or metabolic acidosis.
  • This invention provides a form of ferric organic compound or ferric citrate as describe above, wherein said form of ferric organic compound or ferric citrate is in an orally administrable form which includes, but is not limited to, a powder, a suspension, an emulsion, a capsule, a granule, a troche, a pill, a liquid, a spirit or a syrup.
  • the ferric organic compound or ferric citrate is in a form or in an acceptable carrier suitable for topical, sublingual, parenteral or gastrointestinal administration, or aerosolization.
  • This invention provides a composition comprising a form of ferric organic compound or ferric citrate as describe above and a suitable carrier.
  • suitable carrier includes, but not limited to, any suitable carrier for administering pharmaceutical compositions known to those of ordinary skill in the art.
  • the type of carrier will vary depending on the mode of administration.
  • suitable carrier includes but not limited to water, saline, alcohol, a fat, a wax or a buffer.
  • suitable carrier includes but not limited to any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate.
  • Biodegradable microspheres e.g., polylactate polyglycolate
  • This invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a form of ferric organic compound or ferric citrate as describe above and a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier comprises a controlled release formulation.
  • This invention provides a pharmaceutical composition comprising an effective amount of a form of ferric organic compound or ferric citrate as describe above for treating disorders responsive to ferric organic compound therapy.
  • the disorder includes but is not limited to hyperphosphatemia and metabolic acidosis.
  • pharmaceutically acceptable carriers includes, but is not limited to, a liquid, an aerosol, a capsule, a tablet, a pill, a powder, a gel, an ointment, a cream, a granule, water, phosphate buffered saline, Ringer's solution, dextrose solution, serum-containing solutions, Hank's solution, other aqueous physiologically balanced solutions, oils, esters, glycols, biocompatible polymers, polymeric matrices, capsules, microcapsules, microparticles, bolus preparations, osmotic pumps, diffusion devices, liposomes, lipospheres, cells or cellular membranes.
  • synthesis scheme 10 is a general method for synthesizing novel forms of ferric organic compounds.
  • the starting materials as indicated in box 20 , comprise soluble ferric iron salts.
  • the soluble ferric iron salts can comprise ferric chloride hexahydrate (FeCl 3 6H 2 O), as indicated in box 21 , or any other suitable soluble ferric iron salt.
  • an alkaline metal hydroxide (box 30 ) is added at a specific rate and temperature to the soluble ferric iron salt.
  • the alkaline metal hydroxide can comprise sodium hydroxide, potassium hydroxide, or any other suitable alkaline metal hydroxide as indicated in box 31 .
  • the colloidal suspension precipitate is collected and rinsed (box 40 ) with distilled water to remove any soluble impurities. After rinsing, the precipitate is re-suspended and, as indicated in box 50 , crystalline organic acid is added to the precipitate and heated to a particular temperature range, preferably between about 80° C.
  • the organic acid can comprise any suitable organic acid.
  • Box 51 lists some of the possible organic acids which can be used, including, but not limited to, citric acid, acetic acid, isocitric acid, succinic acid, fumaric acid, and tartaric acid.
  • the addition of the organic acid allows the acid to form complexes with the precipitate in solution.
  • the ferric organic compound is precipitated out of solution with an organic solvent to form a novel form of ferric organic compound (box 70 ).
  • Various organic solvents can be used, including, but not limited to, the solvents described in box 61 , such as ethanol, methanol, butanol, acetone, isopropyl alcohol, tetrahydrofuran, or any other suitable organic solvent.
  • novel forms of ferric organic compounds produced according to the methods described above are more soluble than commercially available ferric organic compounds, over a wider range of pH levels. This increase in solubility of the novel ferric organic compounds is believed to be a result of the unique significantly large active surface area of the novel forms of ferric organic compounds. For example, at pH 8.0, the intrinsic dissolution rate of novel form of ferric citrate is 3.08 times greater than the commercially available ferric citrate. See Table 3.
  • novel forms of ferric organic compounds are useful in the treatment of hyperphosphatemia, metabolic acidosis, and any other disorders responsive to ferric organic compound therapy. Because the novel forms of ferric organic compounds are more soluble than commercially available ferric organic compounds, smaller amounts of the ferric organic compounds can be used to effectively treat patients suffering from such disorders.
  • Improved aqueous solubility is particularly relevant to the use of the novel forms of ferric organic compounds in the treatment of disorders responsive to ferric organic compound therapy. Because the novel forms of ferric organic compounds are more soluble, they will be more effective when taken orally, and therefore can be taken in lower doses. The novel forms of ferric organic compounds are more soluble over a wider pH range than commercially available ferric organic compounds, therefore the novel forms of ferric organic compounds can be more effective by being soluble in the small intestine. For example, in an experiment simulating the alkaline condition in the small intestine, the novel form of ferric citrate showed better dissolution rate than the commercially available ferric citrate. It is suggested that the novel form of ferric citrate can be more effective by being more soluble in the small intestine. See Table 3. As a result, patients can take lower doses of medication with lower incidences of side effects.
  • the novel form of ferric citrate has a significantly higher rate of aqueous solubility under physiological conditions than commercially available forms of ferric citrate, and therefore the novel form is believed to provide a significant improvement in the orally effective use of ferric citrate at a reduced dosage.
  • the novel form of ferric citrate will provide a lower incidence of ulcerative gastrointestinal adverse effects associated with commercially available ferric citrate compounds.
  • the increased rate of dissolution of the novel form of ferric citrate will provide a more rapid onset of action in binding to dietary phosphate.
  • the novel forms of ferric organic compounds can be administered in a number of forms, including orally administrable forms, which can comprise the novel forms of ferric organic compounds alone or in combination with a pharmaceutically acceptable carrier.
  • the orally administrable form includes, but is not limited to, a tablet, a powder, a suspension, an emulsion, a capsule, a granule, a troche, a pill, a liquid, a spirit, or a syrup.
  • the composition can be administered to human beings or other animals suffering from illnesses responsive to ferric organic compound therapy.
  • the starting materials for making a novel form of ferric citrate comprise a 1.85M solution of ferric chloride hexahydrate (FeCl 3 6H 2 O).
  • a volume of 5M sodium hydroxide necessary to produce a 1:3 ratio of ferric iron to hydroxide ion is added to the ferric chloride hexahydrate solution at a rate of less than 20 ml per minute, preferably between about 10 ml per minute and about 20 ml per minute.
  • the temperature of the mixture is maintained below 40° C., preferably between about 10° C. to about 40° C., while the sodium hydroxide is added to form a polyiron oxide colloidal suspension of ferric hydroxide.
  • the pH of the suspension is measured while the sodium hydroxide is added. Once the pH is above 7.0, the suspension is cooled until it is less than 30° C., preferably between about 10° C. to about 30° C. The suspension is then filtered through a 1 mm pore filter to breakup aggregates and remove large particles of ferric hydroxide precipitate. The filtered ferric hydroxide suspension is then centrifuged. The supernatant is discarded, then the precipitated ferric hydroxide is centrifuged again to remove any remaining supernatant. The ferric hydroxide precipitate is then resuspended with distilled water. The centrifugation-resuspension steps are repeated two more times to wash the ferric hydroxide precipitate and remove water soluble impurities. The resulting ferric hydroxide precipitate is then homogenized.
  • An amount of citric acid necessary to produce a 1:1 ratio of ferric iron to citrate is added to the precipitate.
  • the mixture is heated to between about 80° C. to about 90° C. in an oil bath until the color of the mixture changes from orange-brown to a clear black-brown, or until all of the ferric hydroxide precipitate is dissolved.
  • the reaction is cooled until it is less than 30° C., preferably between about 10° C. to about 30° C., and the pH is measured to determine that it is within 0.8 and 1.5.
  • the reaction is centrifuged, and the supernatant is collected.
  • the novel form of ferric citrate is precipitated from the supernatant by adding 5 volumes of organic solvent.
  • organic solvents can be used, including ethanol, methanol, butanol, acetone, isopropyl alcohol, or tetrahydrofuran. Table 1 below lists the relative amounts of ferric citrate formed in solution using various solvents. Once the solvent is added, the mixture is stirred until a light beige precipitate forms. The suspension is centrifuged and the supernatant is discarded. The precipitate is washed and centrifuged with the solvent two more times. The precipitate is then dried in a vacuum oven for 8 to 16 hours at ambient temperature or by any other suitable industrial processes such as fluidized-bed drying.
  • the dried precipitate is ground with a mortar and pestle and dried for another 8 to 24 hours at ambient temperature.
  • the fine precipitate is finely ground by milling again and screened through a 45 mesh size (35 micron) sieve.
  • the novel form of ferric citrate powder is dried in the vacuum oven again or fluidized-bed drying again and dried at ambient temperature until 1 hour of drying leads to less than 0.25% loss in weight.
  • the chemical purity of the novel form of ferric citrate was ascertained by negative-ion liquid chromatography or mass spectrometry (LC/MS) flow-injection method which provided measurement of all mass ions present in solution. Specifically, the mass ions at m/z 243.6 for the novel form of ferric citrate and at m/z 190.6 for citric acid amongst other related and non-related ions in solution were observed.
  • LC/MS analysis also enabled the observation of a number of ferric citrate related and non-related substances and permitted the determination of the relative purity of the novel form of ferric citrate amongst the minor impurities. Such information is critical for application of the novel form of ferric citrate as pharmaceutical grade material.
  • Table 2 The representative chemical purity of the novel form of ferric citrate from three process batches are presented in Table 2.
  • the intrinsic dissolution rates of commercially available ferric citrate were compared with the novel form of ferric citrate.
  • the intrinsic dissolution rate is defined as the dissolution rate of pure substances under the condition of constant surface area.
  • the dissolution rate and bioavailability of a drug substance is influence by its solid state properties: crystallinity, amorphism, polymorphism, hydration, solvation, particle size and particle surface area.
  • the measured intrinsic dissolution rate is dependent on these solid-state properties and is typically determined by exposing a constant surface area of a material to an appropriate dissolution medium while maintaining constant temperature, stirring rate, and pH.
  • the intrinsic dissolution rates are presented in Table 3.
  • FIG. 2 is a graph which compares the dissolution profile of the novel form of ferric citrate to the dissolution profile of commercially available ferric citrate compounds.
  • the intrinsic dissolution rates of the novel form of ferric citrate produced by the method of the invention are approximately 3.8 times greater than that determined for a commercially available ferric citrate material.
  • This increase in dissolution rate of the novel form of ferric citrate is believed to be a result of the significantly large active surface area of the novel form of ferric citrate compared to commercially available materials.
  • the BET active surface area of novel form of ferric citrate is at least 16 times larger than the commercially available ferric citrate. See Table 4.
  • a BET active surface area isotherm of the novel form of ferric citrate is shown in FIG. 3 .
  • the analysis of active surface area is based on BET theory which describes the phenomenon of mass and energy interaction and phase changes during gas adsorption onto solid surfaces and in pore spaces.
  • BET active surface area measurement the volume of a monolayer of gas is determined which allows the surface area of the sample to be determined using the area occupied by a single layer of adsorbed gas molecule.
  • Table 4 is a comparison of the active surface area of the novel form of ferric citrate compared to the active surface area of commercially available ferric citrate compounds.
  • the x-ray diffraction spectra of the novel form of ferric citrate are presented in FIG. 4 , showing diffraction features characteristics of crystalline materials.
  • the thermogravimetric analysis of the novel form of ferric citrate is presented in FIG. 5 , showing heat absorption isotherms characteristics of the novel material.

Abstract

The present invention discloses a novel form of ferric organic compounds, including a form of ferric citrate, which are soluble over a wider range of pH, and which have a large active surface area. The ferric organic compounds of the present invention can be delivered effectively by oral route with better delivery to treat patients suffering from hyperphosphatemia, metabolic acidosis and other disorders responsive to ferric organic compound therapy.

Description

  • This application is a continuation of Ser. No. 17/141,765, filed Jan. 5, 2021, which is a continuation application of Ser. No. 16/885,471, filed May 28, 2020, which is a Continuation of U.S. Ser. No. 16/589,905, filed Oct. 1, 2019; which is a Continuation of U.S. Ser. No. 15/918,308, filed Mar. 12, 2018; which is a Continuation of U.S. Ser. No. 15/143,987, filed May 2, 2016, which issued as U.S. Pat. No. 9,913,821 on Mar. 13, 2018; which is a Continuation of U.S. Ser. No. 14/502,774, filed Sep. 30, 2014, which issued as U.S. Pat. No. 9,328,133 on May 3, 2016; which is a Continuation of U.S. Ser. No. 14/011,357, filed Aug. 27, 2013, which issued as U.S. Pat. No. 8,846,976 on Sep. 30, 2014; which is a Continuation of U.S. Ser. No. 13/672,900, filed Nov. 9, 2012, which issued as U.S. Pat. No. 8,609,896 on Dec. 17, 2013; which is a Continuation of U.S. Ser. No. 12/711,679, filed Feb. 24, 2010, which issued as U.S. Pat. No. 8,338,642 on Dec. 25, 2012; which is a Continuation of U.S. Ser. No. 11/206,981, filed Aug. 18, 2005, which issued as U.S. Pat. No. 7,767,851 on Aug. 3, 2010; which is a Continuation-in-part of International App'l No. PCT/US2004/004646, filed Feb. 18, 2004; which claims the benefit of U.S. Ser. No. 60/462,684, filed Apr. 15, 2003, and U.S. Ser. No. 60/447,690, filed Feb. 19, 2003. The entire contents and disclosures of the preceding applications are hereby incorporated by reference into this application.
  • Throughout this application, various publications are referenced. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains.
  • TECHNICAL FIELD
  • This invention relates to ferric organic compounds, such as ferric citrate, methods of making the ferric organic compounds, and uses of the ferric organic compounds in the treatment of various disorders.
  • BACKGROUND OF THE INVENTION 1) Uses of Iron Compounds
  • Ferric iron containing compounds are useful in the treatment of a number of disorders, including, but not limited to, hyperphosphatemia and metabolic acidosis. Previous studies and inventions have reported the use of ferric compounds in binding with dietary phosphates, and such ferric compounds are potentially useful for the treatment of hyperphosphatemia in renal failure patients (U.S. Pat. No. 5,753,706, 1998; U.S. Pat. No. 6,903,235, 2005; CN 1315174, 2001; Yang W. C., et al., Nephrol. Dial. Transplant 17:265:270 (2002)). Elevated amounts of phosphate in the blood can be removed by administering compounds such as ferric citrate. Once in solution, the ferric iron binds phosphate, and the ferric phosphate compounds precipitate in the gastrointestinal tract, resulting in effective removal of dietary phosphate from the body. It is also believed that the absorbed citrate from ferric citrate is converted to bicarbonate which corrects metabolic acidosis, a condition common in renal failure patients.
  • U.S. Pat. No. 5,753,706 discloses the use of ferric containing compounds including ferric citrate and ferric acetate in the crystalline form, in an orally effective 1 gram dosage form, to bind to soluble dietary phosphate, causing precipitation of phosphate as ferric or ferrous phosphates in the gastrointestinal tract thus preventing oral absorption of soluble phosphates from dietary sources. Since the binding of ferric ions to soluble phosphate in the gastrointestinal tract would require dissolution of the orally administered ferric citrate, and since the rate of dissolution of crystalline ferric citrate is slow (over 10-12 hours at 37° C.), oral administration of a substantially large dose of 1 g of ferric citrate is required. A related Chinese patent application (CN 1315174) also discloses a similar use of ferric citrate and related compounds in an oral solution dosage form for the treatment of hyperphosphatemia in renal failure patients.
  • 2) Solution Chemistry of Fe(III) Compounds
  • Fe(III) is a lewis acid and is chemically less soluble in the stomach at pH normally below 5 than at intestinal pH normally above 7. The stomach is believed to be an important site of action for the dissolution of Fe(III) compounds. It is also believed that the stomach is also an important site of action for Fe(III) to mediate its action in binding to dietary phosphates, preventing phosphate from reaching the intestine and thus reducing the absorption of phosphates from the intestine.
  • SUMMARY OF THE INVENTION
  • In accordance with these and other objects of the invention, a brief summary of the present invention is presented. Some simplifications and omission may be made in the following summary, which is intended to highlight and introduce some aspects of the present invention, but not to limit its scope. Detailed descriptions of a preferred exemplary embodiment adequate to allow those of ordinary skill in the art to make and use the invention concepts will follow in later sections.
  • This invention relates to novel forms of ferric organic compounds, methods of making these compounds, and uses of these compounds in the treatment of various disorders, including, but not limited to, hyperphosphatemia and metabolic acidosis.
  • The novel forms of ferric organic compounds are synthesized by adding an alkaline metal hydroxide to a water soluble ferric iron salt. The alkaline metal hydroxide can comprise sodium hydroxide, potassium hydroxide, or any other suitable alkaline metal hydroxide. The soluble ferric iron salt can comprise ferric chloride hexahydrate, or any other suitable ferric iron salt. The alkaline metal hydroxide is added at a specific rate and temperature to form a uniform polyiron oxo colloidal suspension. The colloidal suspension is then washed, and solid crystalline organic acid is added at a specific temperature to form the ferric organic compound in solution. The organic acid can comprise citric acid, acetic acid, isocitric acid, succinic acid, fumaric acid, tartaric acid, or any other suitable organic acid. The novel forms of the ferric organic compounds are precipitated out of solution using an organic solvent. The organic solvent can comprise ethanol, methanol, butanol, acetone, isopropyl alcohol, tetrahydrofuran, or any other suitable organic solvent. The resulting novel forms of the ferric organic compounds have an enhanced dissolution rate.
  • In one embodiment, the novel form of ferric organic compound comprises a novel form of ferric citrate. The novel form of ferric citrate is synthesized by adding sodium hydroxide at a specific rate and temperature to ferric chloride hexahydrate to form a uniform colloidal suspension of ferric hydroxide. Solid crystalline citric acid is added to the colloidal suspension and heated to a specific temperature range to form ferric citrate in solution. The novel form of ferric citrate is precipitated out of solution using an organic solvent.
  • The novel form of ferric citrate has the formula C6H5O7Fe and has novel physical properties as determined by dissolution rates. The compound can have an intrinsic dissolution rate range, as determined by USP (United States Pharmacopeia) intrinsic dissolution assay in water, between 1.9 to 4.0 mg/cm2/min. The novel form of ferric citrate is more aqueously soluble in a wider range of pH than commercially available forms of ferric citrate. The novel form of ferric citrate can have a large active surface area compared to commercially available forms of ferric organic compounds or complexes.
  • Because it is more soluble, the novel form of ferric organic compounds, including novel forms of ferric citrate, can be used to more effectively deliver ferric organic compounds by the route of oral administration to patients suffering from illnesses which are responsive to treatment with ferric organic compounds, including, but not limited to, hyperphosphatemia and metabolic acidosis.
  • This invention relates to use of the novel form of ferric organic compounds, including novel forms of ferric citrate to treat patients suffering from disorders responsive to ferric organic compound treatment.
  • This invention also relates to methods of treating patients suffering from disorders responsive to ferric organic compound treatment by administering a therapeutically effective amount of ferric organic compound to the patients.
  • This invention further relates to a composition for treating hyperphosphatemia in a subject, comprising an effective amount of ferric citrate. In an embodiment, the subject is a human being. In another embodiment, the amount of ferric citrate effective in treating hyperphosphatemia is between 3 to 6 grams/day. In a further embodiment, the effective amount is 3 or 4.5 grams/day.
  • This invention further relates to a method for treating hyperphosphatemia in a subject, comprising administering to said subject an effective amount of ferric citrate. In an embodiment, the subject is a human being. In another embodiment, the amount of ferric citrate effective in treating hyperphosphatemia in a subject is between 3 to 6 grams/day. In a further embodiment, the effective amount is or 4.5 grams/day. It will be within the knowledge and abilities of a person having ordinary skill in the art to perform a dose-ranging study to determine the effective amount of ferric organic compounds or ferric citrate of the present invention.
  • DETAILED DESCRIPTION OF THE FIGURES
  • In drawings which illustrate specific embodiments of the invention, but which should not be construed as restricting the spirit or scope of the invention in any way:
  • FIG. 1 is a schematic diagram outlining the method of making novel forms of ferric organic compounds according to the invention.
  • FIG. 2 is a plot of the dissolution profile of the novel form of ferric citrate of the invention compared to a commercially available compound.
  • FIG. 3 is an isotherm graph of volume adsorbed vs. relative pressure demonstrating BET active surface area of the novel form of ferric citrate. Produced by Coulter SA 3100 (Serial No. z11017; Software Version 2.13; Elapsed time: 29 min.; Outgas time: 60 min.; Outgas temperature: 40° C.)
  • FIG. 4 is an X-ray diffraction spectra of the novel form of ferric citrate. Range: 4.00 to 40.00 (Deg); Step Scan Rate: 0.02 Deg/min.
  • FIG. 5 is a thermogravimetric analysis of the novel form of ferric citrate. Method: Heating 10° C./MIN, N2@40 CC/MIN; Size: 10.5480 mg.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Throughout the following description, specific details are set forth in order to provide a more thorough understanding of the invention. However, the invention may be practiced without these particulars. In other instances, well known elements have not been shown or described in detail to avoid unnecessarily obscuring the invention. Accordingly, the specification and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
  • This invention provides a method of synthesizing a form of ferric organic compound which comprises obtaining a ferric iron salt; adding an alkaline metal hydroxide to the ferric iron salt at a rate and temperature effective to produce a uniform polyiron oxo suspension; isolating a precipitate from the suspension; adding an organic acid to the precipitate; forming a ferric-organic acid solution by heating the organic acid and the precipitate; and precipitating the form of ferric organic compound from the ferric-organic acid solution by adding an organic solvent to the solution.
  • In an embodiment, the alkaline metal hydroxide is added at a rate of less than 20 ml/min. In another embodiment, the alkaline metal hydroxide is added at a rate of between about 10 ml/min and about 20 ml/min. In a preferred embodiment, a nominal rate of 10 to 20 ml/min is preferred.
  • In an embodiment, the alkaline metal hydroxide is added to the ferric iron salt at a temperature of less than 40° C. In another embodiment, the alkaline metal hydroxide is added to the ferric iron salt at a temperature between about 10° C. and about 40° C. In a preferred embodiment, a nominal temperature of 30° C. is preferred.
  • In an embodiment, heating the organic acid and the precipitate comprises heating the organic acid and the precipitate to a temperature between about 75° C. to about 95° C. In a preferred embodiment, the range is between about 80° C. and about 90° C. In another preferred embodiment, a nominal temperature of 85° C. is preferred. In an embodiment, precipitating the form of ferric organic compound from the ferric-organic acid solution by adding an organic solvent to the solution comprises cooling the ferric-organic acid solution to less than 30° C. before adding the organic solvent. In a preferred embodiment, the ferric-organic acid solution is cooled to a nominal temperature of 20° C. In an embodiment, cooling the ferric-organic acid solution comprises cooling the ferric-organic acid solution to a temperature between about 10° C. and about 30° C. In a preferred embodiment, the ferric-organic acid solution is cooled to a nominal temperature of 20° C.
  • In an embodiment, the ferric iron salt comprises ferric chloride hexahydrate.
  • In an embodiment, the organic acid includes but is not limited to succinic acid, fumaric acid or tartaric acid. In another embodiment, the organic acid comprises citric acid.
  • In an embodiment, the alkaline metal hydroxide includes but is not limited to sodium hydroxide or potassium hydroxide. In another embodiment, the alkaline metal hydroxide comprises sodium hydroxide.
  • In an embodiment, the organic solvent includes but is not limited to ethanol, methanol, butanol, isopropyl alcohol, acetone or tetrahydrofuran.
  • This invention provides a method of synthesizing a form of ferric citrate which comprises obtaining ferric chloride hexahydrate; adding sodium hydroxide to the ferric chloride hexahydrate at a rate and temperature effective to produce a uniform polyiron oxo suspension; isolating a precipitate from the suspension; adding crystalline citric acid to the precipitate; forming a ferric-citric acid solution by heating the citric acid and the precipitate; and precipitating the form of ferric citrate from the ferric-citric acid solution by adding an organic solvent to the solution.
  • In an embodiment, sodium hydroxide is added to ferric chloride hexahydrate at a rate of less than 20 ml/min. In another embodiment, sodium hydroxide is added to ferric chloride hexahydrate at a rate of between about 10 ml/min and about 20 ml/min. In a preferred embodiment, a nominal rate of 10 to 20 ml/min is preferred.
  • In an embodiment, sodium hydroxide is added to ferric chloride hexahydrate at a temperature of less than 40° C. In another embodiment, sodium hydroxide is added to ferric chloride hexahydrate at a temperature between about 10° C. and about 40° C. In a preferred embodiment, a nominal temperature of 30° C. is preferred.
  • In an embodiment, the ferric-citric acid solution is formed by heating the citric acid and the precipitate to a temperature between about 75° C. to about 95° C. In a preferred embodiment, the range is between about 80° C. and about 90° C. In another preferred embodiment, a nominal temperature of 85° C. is preferred.
  • In an embodiment, precipitating the form of ferric citrate from the ferric-citric acid solution by adding an organic solvent to the solution comprises cooling the ferric-citric acid solution to less than 30° C. before adding the organic solvent. In a preferred embodiment, the ferric-organic acid solution is cooled to a nominal temperature of 20° C.
  • In an embodiment, cooling the ferric-citric acid solution comprises cooling the ferric-citric acid solution to a temperature between about 10° C. and about 30° C. In a preferred embodiment, the ferric-organic acid solution is cooled to a nominal temperature of 20° C.
  • In an embodiment, the organic solvent includes but is not limited to ethanol, methanol, butanol, isopropyl alcohol, acetone or tetrahydrofuran.
  • This invention provides a use of a form of ferric organic compound or ferric citrate as describe above for treating a subject suffering from a disorder responsive to ferric organic compound therapy. In an embodiment, the subject is a human being. In another embodiment, the disorder includes but is not limited to hyperphosphatemia or metabolic acidosis. Chen et al., New Phosphate Binding Agent: Ferric Compounds. J Am Soc Nephrol. 10(6):1274-80, 1999, reported that Ferric salts, such as ferric citrate, decrease net intestinal phosphate absorption. Yang et al., An open-label, crossover study of a new phosphate-binding agent in haemodialysis patients: ferric citrate. Nephrol Dial Transplant. 17(2):265-70, 2002, reported that ferric citrate is effective and well tolerated as a treatment for hyperphosphatemia in patients.
  • This invention provides a method of treating a subject suffering from a disorder responsive to ferric organic compound therapy comprising administering to the subject a therapeutically effective amount of a ferric organic compound as described above. In an embodiment, the subject is a human being. In another embodiment, the ferric organic compound is ferric citrate. In a further embodiment, the disorder includes but is not limited to hyperphosphatemia or metabolic acidosis.
  • This invention provides a form of a ferric organic compound having an enhanced dissolution rate. In an embodiment, the said organic compound includes but is not limited to citric acid, acetic acid, isocitric acid, succinic acid, fumaric acid, tartaric acid or other related organic compounds. In another embodiment, the said ferric organic compound has a large active surface area compared to conventional ferric organic compounds.
  • This invention provides a form of ferric citrate having the formula C6H5O7Fe and/or having physical properties as determined by dissolution rates. In an embodiment, the dissolution rate, as determined by USP intrinsic dissolution assay in water, is between 1.9 to 4.0 mg/cm2/min.
  • This invention provides a form of ferric citrate having a BET (Brunauer Emmett Teller) active surface area exceeding 16 sq·m/g and a BET active surface area isotherm as shown in FIG. 3.
  • This invention provides a form of ferric citrate having the x-ray diffraction pattern shown in FIG. 4.
  • This invention provides a form of ferric citrate having three transition temperatures as determined by thermogravimetric analysis (TGA) and having a TGA profile as shown in FIG. 5.
  • This invention provides a form of ferric citrate, wherein the form of ferric citrate has a large active surface area compared to conventional ferric organic compound complexes.
  • This invention provides a use of a form of ferric organic compound or ferric citrate to treat a subject suffering from a disorder responsive to ferric organic compound therapy. In an embodiment, the disorder includes but is not limited to hyperphosphatemia or metabolic acidosis.
  • This invention provides a method of treating a subject suffering from a disorder responsive to ferric organic compound therapy comprising administering to the subject a therapeutically effective amount of a form of ferric organic compound or ferric citrate as described above. In an embodiment, the disorder includes but is not limited to hyperphosphatemia or metabolic acidosis.
  • This invention provides a form of ferric organic compound or ferric citrate as describe above, wherein said form of ferric organic compound or ferric citrate is in an orally administrable form which includes, but is not limited to, a powder, a suspension, an emulsion, a capsule, a granule, a troche, a pill, a liquid, a spirit or a syrup. In an embodiment, the ferric organic compound or ferric citrate is in a form or in an acceptable carrier suitable for topical, sublingual, parenteral or gastrointestinal administration, or aerosolization.
  • This invention provides a composition comprising a form of ferric organic compound or ferric citrate as describe above and a suitable carrier.
  • As used herein, the term suitable carrier includes, but not limited to, any suitable carrier for administering pharmaceutical compositions known to those of ordinary skill in the art. The type of carrier will vary depending on the mode of administration.
  • With regards to compositions for parenteral administration (e.g. subcutaneous injections), the term suitable carrier includes but not limited to water, saline, alcohol, a fat, a wax or a buffer.
  • With regards to compositions for oral administration, the term suitable carrier includes but not limited to any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate.
  • Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention.
  • This invention provides a pharmaceutical composition comprising a form of ferric organic compound or ferric citrate as describe above and a pharmaceutically acceptable carrier. In another embodiment, the pharmaceutically acceptable carrier comprises a controlled release formulation.
  • This invention provides a pharmaceutical composition comprising an effective amount of a form of ferric organic compound or ferric citrate as describe above for treating disorders responsive to ferric organic compound therapy. In an embodiment, the disorder includes but is not limited to hyperphosphatemia and metabolic acidosis.
  • As used herein, pharmaceutically acceptable carriers includes, but is not limited to, a liquid, an aerosol, a capsule, a tablet, a pill, a powder, a gel, an ointment, a cream, a granule, water, phosphate buffered saline, Ringer's solution, dextrose solution, serum-containing solutions, Hank's solution, other aqueous physiologically balanced solutions, oils, esters, glycols, biocompatible polymers, polymeric matrices, capsules, microcapsules, microparticles, bolus preparations, osmotic pumps, diffusion devices, liposomes, lipospheres, cells or cellular membranes.
  • 1. General Method of Synthesis of Novel Forms of Ferric Organic Compounds
  • Referring to FIG. 1, synthesis scheme 10 is a general method for synthesizing novel forms of ferric organic compounds. The starting materials, as indicated in box 20, comprise soluble ferric iron salts. The soluble ferric iron salts can comprise ferric chloride hexahydrate (FeCl36H2O), as indicated in box 21, or any other suitable soluble ferric iron salt. Next, an alkaline metal hydroxide (box 30) is added at a specific rate and temperature to the soluble ferric iron salt. The addition of the alkaline metal hydroxide at a specific rate, preferably between about 10 ml/min and about 20 ml/min, and temperature range, preferably below 40° C., results in the formation of a uniform polyiron oxo colloidal suspension. The alkaline metal hydroxide can comprise sodium hydroxide, potassium hydroxide, or any other suitable alkaline metal hydroxide as indicated in box 31. The colloidal suspension precipitate is collected and rinsed (box 40) with distilled water to remove any soluble impurities. After rinsing, the precipitate is re-suspended and, as indicated in box 50, crystalline organic acid is added to the precipitate and heated to a particular temperature range, preferably between about 80° C. to about 90° C. The organic acid can comprise any suitable organic acid. Box 51 lists some of the possible organic acids which can be used, including, but not limited to, citric acid, acetic acid, isocitric acid, succinic acid, fumaric acid, and tartaric acid. The addition of the organic acid allows the acid to form complexes with the precipitate in solution. At box 60, the ferric organic compound is precipitated out of solution with an organic solvent to form a novel form of ferric organic compound (box 70). Various organic solvents can be used, including, but not limited to, the solvents described in box 61, such as ethanol, methanol, butanol, acetone, isopropyl alcohol, tetrahydrofuran, or any other suitable organic solvent.
  • 2. Solubility Profile of Novel Forms of Ferric Organic Compounds
  • The inventors have found that the novel forms of ferric organic compounds produced according to the methods described above are more soluble than commercially available ferric organic compounds, over a wider range of pH levels. This increase in solubility of the novel ferric organic compounds is believed to be a result of the unique significantly large active surface area of the novel forms of ferric organic compounds. For example, at pH 8.0, the intrinsic dissolution rate of novel form of ferric citrate is 3.08 times greater than the commercially available ferric citrate. See Table 3.
  • 3. Use of Novel Forms of Ferric Organic Compounds in the Treatment of Disorders
  • The novel forms of ferric organic compounds are useful in the treatment of hyperphosphatemia, metabolic acidosis, and any other disorders responsive to ferric organic compound therapy. Because the novel forms of ferric organic compounds are more soluble than commercially available ferric organic compounds, smaller amounts of the ferric organic compounds can be used to effectively treat patients suffering from such disorders.
  • Improved aqueous solubility is particularly relevant to the use of the novel forms of ferric organic compounds in the treatment of disorders responsive to ferric organic compound therapy. Because the novel forms of ferric organic compounds are more soluble, they will be more effective when taken orally, and therefore can be taken in lower doses. The novel forms of ferric organic compounds are more soluble over a wider pH range than commercially available ferric organic compounds, therefore the novel forms of ferric organic compounds can be more effective by being soluble in the small intestine. For example, in an experiment simulating the alkaline condition in the small intestine, the novel form of ferric citrate showed better dissolution rate than the commercially available ferric citrate. It is suggested that the novel form of ferric citrate can be more effective by being more soluble in the small intestine. See Table 3. As a result, patients can take lower doses of medication with lower incidences of side effects.
  • In one embodiment of the invention, the novel form of ferric citrate has a significantly higher rate of aqueous solubility under physiological conditions than commercially available forms of ferric citrate, and therefore the novel form is believed to provide a significant improvement in the orally effective use of ferric citrate at a reduced dosage. By reducing the orally effective dose of ferric citrate, it is believed that the novel form of ferric citrate will provide a lower incidence of ulcerative gastrointestinal adverse effects associated with commercially available ferric citrate compounds. In addition, it is believed that the increased rate of dissolution of the novel form of ferric citrate will provide a more rapid onset of action in binding to dietary phosphate.
  • The novel forms of ferric organic compounds can be administered in a number of forms, including orally administrable forms, which can comprise the novel forms of ferric organic compounds alone or in combination with a pharmaceutically acceptable carrier. The orally administrable form includes, but is not limited to, a tablet, a powder, a suspension, an emulsion, a capsule, a granule, a troche, a pill, a liquid, a spirit, or a syrup. The composition can be administered to human beings or other animals suffering from illnesses responsive to ferric organic compound therapy.
  • EXAMPLES
  • In examples which are intended to illustrate embodiments of the invention but which are not intended to limit the scope of the invention:
  • 1) Method of Making a Novel Form of Ferric Citrate
  • In one embodiment of the invention, the starting materials for making a novel form of ferric citrate comprise a 1.85M solution of ferric chloride hexahydrate (FeCl36H2O). A volume of 5M sodium hydroxide necessary to produce a 1:3 ratio of ferric iron to hydroxide ion is added to the ferric chloride hexahydrate solution at a rate of less than 20 ml per minute, preferably between about 10 ml per minute and about 20 ml per minute. The temperature of the mixture is maintained below 40° C., preferably between about 10° C. to about 40° C., while the sodium hydroxide is added to form a polyiron oxide colloidal suspension of ferric hydroxide. The pH of the suspension is measured while the sodium hydroxide is added. Once the pH is above 7.0, the suspension is cooled until it is less than 30° C., preferably between about 10° C. to about 30° C. The suspension is then filtered through a 1 mm pore filter to breakup aggregates and remove large particles of ferric hydroxide precipitate. The filtered ferric hydroxide suspension is then centrifuged. The supernatant is discarded, then the precipitated ferric hydroxide is centrifuged again to remove any remaining supernatant. The ferric hydroxide precipitate is then resuspended with distilled water. The centrifugation-resuspension steps are repeated two more times to wash the ferric hydroxide precipitate and remove water soluble impurities. The resulting ferric hydroxide precipitate is then homogenized.
  • An amount of citric acid necessary to produce a 1:1 ratio of ferric iron to citrate is added to the precipitate. The mixture is heated to between about 80° C. to about 90° C. in an oil bath until the color of the mixture changes from orange-brown to a clear black-brown, or until all of the ferric hydroxide precipitate is dissolved. The reaction is cooled until it is less than 30° C., preferably between about 10° C. to about 30° C., and the pH is measured to determine that it is within 0.8 and 1.5. The reaction is centrifuged, and the supernatant is collected.
  • The novel form of ferric citrate is precipitated from the supernatant by adding 5 volumes of organic solvent. Various organic solvents can be used, including ethanol, methanol, butanol, acetone, isopropyl alcohol, or tetrahydrofuran. Table 1 below lists the relative amounts of ferric citrate formed in solution using various solvents. Once the solvent is added, the mixture is stirred until a light beige precipitate forms. The suspension is centrifuged and the supernatant is discarded. The precipitate is washed and centrifuged with the solvent two more times. The precipitate is then dried in a vacuum oven for 8 to 16 hours at ambient temperature or by any other suitable industrial processes such as fluidized-bed drying. The dried precipitate is ground with a mortar and pestle and dried for another 8 to 24 hours at ambient temperature. The fine precipitate is finely ground by milling again and screened through a 45 mesh size (35 micron) sieve. The novel form of ferric citrate powder is dried in the vacuum oven again or fluidized-bed drying again and dried at ambient temperature until 1 hour of drying leads to less than 0.25% loss in weight.
  • TABLE 1
    Comparison of relative percentage of novel form of
    ferric citrate formed by different organic solvents
    Relative % of Novel Form of Ferric
    Solvent Citrate Formed in Solution
    ferric citrate 100  
    isopropyl alcohol  89.7
    tetrahydrofuran  90.6
    butanol  99.8
    methanol 101.2
    acetone  99.8
    ethanol  95.8
  • The following chemical equations represent the chemical reactions described in the specific embodiment of the method for making the novel form of ferric citrate:

  • FeCl3+3NaOH→Fe(OH)3+3NaCl  (1)

  • Fe(OH)3+C6H8O7→Fe(C6H5O7)+3H2O  (2).
  • 2) Physical Properties of Novel Form of Ferric Citrate
  • The chemical purity of the novel form of ferric citrate was ascertained by negative-ion liquid chromatography or mass spectrometry (LC/MS) flow-injection method which provided measurement of all mass ions present in solution. Specifically, the mass ions at m/z 243.6 for the novel form of ferric citrate and at m/z 190.6 for citric acid amongst other related and non-related ions in solution were observed. The use of LC/MS analysis also enabled the observation of a number of ferric citrate related and non-related substances and permitted the determination of the relative purity of the novel form of ferric citrate amongst the minor impurities. Such information is critical for application of the novel form of ferric citrate as pharmaceutical grade material. The representative chemical purity of the novel form of ferric citrate from three process batches are presented in Table 2.
  • TABLE 2
    Representative chemical purity of novel form of ferric citrate
    Components of Novel form
    of Ferric citrate Percent w/w anhydrous basis
    Purity of solid state 99.4% 99.6% 99.5%
    ferric citrate
    Assay content purity of 73.1% 78.3% 76.2%
    ferric citrate and ferric
    citrate water adduct in
    solution state
    Assay content of citric 10.3% 10.0%  8.0%
    acid in solution state
    Assay content of ferric 26.3% 21.3% 23.3%
    citrate related substances
    in solution state
    Assay content of ferric  0.6%  0.4%  0.5%
    citrate non-related
    substances in solution
    state
  • The intrinsic dissolution rates of commercially available ferric citrate were compared with the novel form of ferric citrate. The intrinsic dissolution rate is defined as the dissolution rate of pure substances under the condition of constant surface area. The dissolution rate and bioavailability of a drug substance is influence by its solid state properties: crystallinity, amorphism, polymorphism, hydration, solvation, particle size and particle surface area. The measured intrinsic dissolution rate is dependent on these solid-state properties and is typically determined by exposing a constant surface area of a material to an appropriate dissolution medium while maintaining constant temperature, stirring rate, and pH. The intrinsic dissolution rates are presented in Table 3.
  • TABLE 3
    Intrinsic dissolution rates of ferric citrate at
    37° C. in solutions of pH 8
    Mean
    Rate of Intrinsic Intrinsic
    Acetone Dissolution Dissolution
    Addition Rates Rates
    Sample (ml/min) (mg/cm2/min) (mg/cm2/min)
    RFS-12 (sigma/ 10.0 0.83 0.83
    commercially
    available)
    STM-134 10.0 1.88 3.08
    (reference
    material)
    PAN031203A 10.0 3.82
    (experimental
    batch 1)
    PAN031203B 10.0 4.00
    (experimental
    batch 2)
    PAN031203C  9.5 2.68
    (experimental
    batch 3)
    PAN031203D 40   2.95
    (experimental
    batch 4)
    PAN031203E  4.4 3.13
    (experimental
    batch 5)
  • FIG. 2 is a graph which compares the dissolution profile of the novel form of ferric citrate to the dissolution profile of commercially available ferric citrate compounds.
  • The intrinsic dissolution rates of the novel form of ferric citrate produced by the method of the invention, on average, are approximately 3.8 times greater than that determined for a commercially available ferric citrate material. This increase in dissolution rate of the novel form of ferric citrate is believed to be a result of the significantly large active surface area of the novel form of ferric citrate compared to commercially available materials. For example, the BET active surface area of novel form of ferric citrate is at least 16 times larger than the commercially available ferric citrate. See Table 4.
  • A BET active surface area isotherm of the novel form of ferric citrate is shown in FIG. 3. The analysis of active surface area is based on BET theory which describes the phenomenon of mass and energy interaction and phase changes during gas adsorption onto solid surfaces and in pore spaces. In BET active surface area measurement, the volume of a monolayer of gas is determined which allows the surface area of the sample to be determined using the area occupied by a single layer of adsorbed gas molecule. Table 4 is a comparison of the active surface area of the novel form of ferric citrate compared to the active surface area of commercially available ferric citrate compounds.
  • TABLE 4
    BET active surface areas of various forms of ferric citrate
    Mean BET
    Dissolution Active
    Rates Surface
    Sample (mg/cm2/min) Area
    RFS-12-1 (sigma/commercially
    available) 0.76  0.61
    RFS-12-2 (sigma/commercially
    available)
    STM-134-1 (reference material 1) 2.47 16.17
    STM-134-2 (reference material 2)
    STM-182-1 (lab-scale 500 g batch 1) 2.61 19.85
    STM-182-2 (lab-scale 500 g batch 2)
  • The x-ray diffraction spectra of the novel form of ferric citrate are presented in FIG. 4, showing diffraction features characteristics of crystalline materials. The thermogravimetric analysis of the novel form of ferric citrate is presented in FIG. 5, showing heat absorption isotherms characteristics of the novel material.
  • As will be apparent to those skilled in the art in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof. Accordingly, the scope of the invention is to be construed in accordance with the substance defined by the following claims.

Claims (10)

What is claimed is:
1-81. (canceled)
82. A method of treating metabolic acidosis, comprising administering a therapeutically effective amount of an orally administrable form of ferric citrate to a subject, wherein the orally administrable form is prepared from a form of ferric citrate having a BET active surface area greater than 16 m2/g.
83. The method of claim 82, wherein the BET active surface area ranges from 16 m2/g. to 20 m2/g.
84. The method of claim 82, wherein the orally administrable form is selected from a tablet, a powder, a capsule and a granule.
85. The method of claim 84, wherein the orally administrable form is a tablet.
86. The method of claim 82, wherein the therapeutically effective amount is about 3 to 6 grams per day.
87. The method of claim 82, wherein the therapeutically effective amount is selected from 3 grams per day and 4.5 grams per day.
88. The method of claim 82, wherein the therapeutically effective amount is 3 grams per day.
89. The method of claim 82, wherein the therapeutically effective amount is 6 grams per day.
90. The method of claim 82, wherein the subject is a human being.
US17/405,543 2003-02-19 2021-08-18 Ferric Organic Compounds, Uses Thereof and Methods of Making Same Pending US20220213133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/405,543 US20220213133A1 (en) 2003-02-19 2021-08-18 Ferric Organic Compounds, Uses Thereof and Methods of Making Same

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US44769003P 2003-02-19 2003-02-19
US46268403P 2003-04-15 2003-04-15
PCT/US2004/004646 WO2004074444A2 (en) 2003-02-19 2004-02-18 Ferric organic compounds, uses thereof and methods of making same
US11/206,981 US7767851B2 (en) 2003-02-19 2005-08-18 Ferric organic compounds, uses thereof and methods of making same
US12/711,679 US8338642B2 (en) 2003-02-19 2010-02-24 Ferric organic compounds, uses thereof and methods of making same
US13/672,900 US8609896B2 (en) 2003-02-19 2012-11-09 Ferric organic compounds, uses thereof and methods of making same
US14/011,357 US8846976B2 (en) 2003-02-19 2013-08-27 Ferric organic compounds, uses thereof and methods of making same
US14/502,774 US9328133B2 (en) 2003-02-19 2014-09-30 Ferric organic compounds, uses thereof and methods of making same
US15/143,987 US9913821B2 (en) 2003-02-19 2016-05-02 Ferric organic compounds, uses thereof and methods of making same
US15/918,308 US20190055274A1 (en) 2003-02-19 2018-03-12 Ferric organic compounds, uses thereof and methods of making same
US201916589905A 2019-10-01 2019-10-01
US202016885471A 2020-05-28 2020-05-28
US202117141765A 2021-01-05 2021-01-05
US17/405,543 US20220213133A1 (en) 2003-02-19 2021-08-18 Ferric Organic Compounds, Uses Thereof and Methods of Making Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US202117141765A Continuation 2003-02-19 2021-01-05

Publications (1)

Publication Number Publication Date
US20220213133A1 true US20220213133A1 (en) 2022-07-07

Family

ID=32912273

Family Applications (12)

Application Number Title Priority Date Filing Date
US11/206,981 Expired - Lifetime US7767851B2 (en) 2003-02-19 2005-08-18 Ferric organic compounds, uses thereof and methods of making same
US12/711,679 Active 2024-11-14 US8338642B2 (en) 2003-02-19 2010-02-24 Ferric organic compounds, uses thereof and methods of making same
US13/672,900 Expired - Lifetime US8609896B2 (en) 2003-02-19 2012-11-09 Ferric organic compounds, uses thereof and methods of making same
US14/011,291 Expired - Lifetime US8754258B2 (en) 2003-02-19 2013-08-27 Ferric organic compounds, uses thereof and methods of making same
US14/011,325 Expired - Lifetime US8901349B2 (en) 2003-02-19 2013-08-27 Ferric organic compounds, uses thereof and methods of making same
US14/011,357 Expired - Lifetime US8846976B2 (en) 2003-02-19 2013-08-27 Ferric organic compounds, uses thereof and methods of making same
US14/502,774 Expired - Lifetime US9328133B2 (en) 2003-02-19 2014-09-30 Ferric organic compounds, uses thereof and methods of making same
US15/143,987 Expired - Lifetime US9913821B2 (en) 2003-02-19 2016-05-02 Ferric organic compounds, uses thereof and methods of making same
US15/918,308 Abandoned US20190055274A1 (en) 2003-02-19 2018-03-12 Ferric organic compounds, uses thereof and methods of making same
US16/352,455 Abandoned US20190269722A1 (en) 2003-02-19 2019-03-13 Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same
US17/091,090 Abandoned US20210299168A1 (en) 2003-02-19 2020-11-06 Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same
US17/405,543 Pending US20220213133A1 (en) 2003-02-19 2021-08-18 Ferric Organic Compounds, Uses Thereof and Methods of Making Same

Family Applications Before (11)

Application Number Title Priority Date Filing Date
US11/206,981 Expired - Lifetime US7767851B2 (en) 2003-02-19 2005-08-18 Ferric organic compounds, uses thereof and methods of making same
US12/711,679 Active 2024-11-14 US8338642B2 (en) 2003-02-19 2010-02-24 Ferric organic compounds, uses thereof and methods of making same
US13/672,900 Expired - Lifetime US8609896B2 (en) 2003-02-19 2012-11-09 Ferric organic compounds, uses thereof and methods of making same
US14/011,291 Expired - Lifetime US8754258B2 (en) 2003-02-19 2013-08-27 Ferric organic compounds, uses thereof and methods of making same
US14/011,325 Expired - Lifetime US8901349B2 (en) 2003-02-19 2013-08-27 Ferric organic compounds, uses thereof and methods of making same
US14/011,357 Expired - Lifetime US8846976B2 (en) 2003-02-19 2013-08-27 Ferric organic compounds, uses thereof and methods of making same
US14/502,774 Expired - Lifetime US9328133B2 (en) 2003-02-19 2014-09-30 Ferric organic compounds, uses thereof and methods of making same
US15/143,987 Expired - Lifetime US9913821B2 (en) 2003-02-19 2016-05-02 Ferric organic compounds, uses thereof and methods of making same
US15/918,308 Abandoned US20190055274A1 (en) 2003-02-19 2018-03-12 Ferric organic compounds, uses thereof and methods of making same
US16/352,455 Abandoned US20190269722A1 (en) 2003-02-19 2019-03-13 Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same
US17/091,090 Abandoned US20210299168A1 (en) 2003-02-19 2020-11-06 Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same

Country Status (18)

Country Link
US (12) US7767851B2 (en)
EP (3) EP2360139A3 (en)
JP (1) JP4964585B2 (en)
KR (1) KR101149706B1 (en)
CN (1) CN100386336C (en)
AU (1) AU2004213819B2 (en)
CA (1) CA2516471C (en)
CY (1) CY1115602T1 (en)
DK (1) DK1601680T3 (en)
EA (1) EA010028B1 (en)
ES (1) ES2503717T3 (en)
HK (2) HK1077580A1 (en)
MX (1) MXPA05008784A (en)
NZ (1) NZ541991A (en)
PT (1) PT1601680E (en)
SI (1) SI1601680T1 (en)
TW (1) TWI335218B (en)
WO (1) WO2004074444A2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI335218B (en) * 2003-02-19 2011-01-01 Panion & Bf Biotech Inc Ferric organic compounds, uses thereof and methods of making same
US8093423B2 (en) 2003-02-19 2012-01-10 Globoasia, Llc Pharmaceutical-grade ferric organic compounds, uses thereof and method of making same
US20220144872A1 (en) * 2003-02-19 2022-05-12 Panion & Bf Biotech Inc. Pharmaceutical-Grade Ferric Organic Compounds, Uses Thereof and Methods of Making Same
EP2594551A1 (en) * 2005-08-18 2013-05-22 Panion & BF Biotech Inc. Uses of pharmaceutical-grade ferric organic compounds
CN100591654C (en) * 2005-11-30 2010-02-24 苏荣仁 Refining method capable of increasing citric-acid solubility
CN105055446B (en) * 2006-01-30 2022-06-03 宝龄富锦生技股份有限公司 Method for reversing, preventing, delaying or stabilizing soft tissue calcification
WO2007089578A2 (en) * 2006-01-30 2007-08-09 Globoasia, Llc Method for selecting phosphate binder and its uses thereof
GB2451713B (en) 2007-02-06 2009-12-16 Medical Res Council Ligand modified poly oxo-hydroxy metal ion materials, their uses and processes for their preparation
US7816404B2 (en) * 2007-07-20 2010-10-19 Rockwell Medical Technologies, Inc. Methods for the preparation and use of ferric pyrophosphate citrate chelate compositions
KR100905403B1 (en) * 2007-10-18 2009-06-30 한국지질자원연구원 Preparation of IronII Acetate Powder from a Low Grade Magnetite
GB0814326D0 (en) * 2008-08-05 2008-09-10 Medical Res Council Phosphate binding materials and their uses
AU2014218455B2 (en) * 2009-07-21 2016-11-24 Keryx Biopharmaceuticals, Inc. Ferric Citrate Dosage Forms
RU2733410C2 (en) * 2009-07-21 2020-10-01 Керикс Байофармасьютикалз, Инк. Medicinal forms of ferric citrate (iii)
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
US9174846B2 (en) * 2009-09-18 2015-11-03 A123 Systems Llc Ferric phosphate and methods of preparation thereof
CN103442801A (en) 2011-01-03 2013-12-11 俄克拉荷马州大学评议会 Iron coordination polymers for adsorption of arsenate and phosphate
US20120238622A1 (en) * 2011-01-18 2012-09-20 Japan Tobacco Inc. Iron (iii) citrate, substantially free of beta-iron hydroxide oxide
GB201113538D0 (en) 2011-08-04 2011-09-21 Karobio Ab Novel estrogen receptor ligands
DE102011112898A1 (en) 2011-09-08 2013-03-14 Charité - Universitätsmedizin Berlin Nanoparticulate phosphate adsorbent based on maghemite or maghemite / magnetite, its preparation and uses
US9731999B2 (en) 2011-09-23 2017-08-15 Iqbal Gill Chemical admixtures for hydraulic cements
SG11201408521WA (en) 2012-06-21 2015-01-29 Keryx Biopharmaceuticals Inc Use of ferric citrate in the treatment of chronic kidney disease patients
LT3003327T (en) 2013-06-05 2017-12-27 Tricida Inc. Proton-binding polymers for oral administration
EA201690926A1 (en) 2013-11-04 2016-09-30 Керикс Байофармасьютикалз, Инк. CITRATE IRON (III) TO REDUCE HEART FAILURE IN PATIENTS WITH CHRONIC DISEASE OF THE KIDNEYS
WO2015110968A1 (en) * 2014-01-23 2015-07-30 Lupin Limited Pharmaceutical grade ferric citrate and method for its production
WO2015198304A1 (en) 2014-06-22 2015-12-30 Dexcel Pharma Technologies Ltd. Pharmaceutical compositions comprising ferric citrate and methods for the production thereof
EP3229816B1 (en) 2014-12-10 2020-02-05 Tricida Inc. Proton-binding polymers for oral administration
EP3233783A4 (en) * 2014-12-17 2018-06-27 Biophore India Pharmaceuticals Pvt. Ltd. Improved method for the synthesis of ferric oraganic compounds
JP6206420B2 (en) * 2015-01-13 2017-10-04 テクノサイエンス株式会社 Method for producing gel composition containing ferric citrate at high concentration
KR20170123664A (en) * 2015-03-04 2017-11-08 케릭스 바이오파마슈티컬스 인코포레이티드 Use of citrate in the treatment of iron-deficiency anemia
WO2016162794A1 (en) * 2015-04-08 2016-10-13 Leiutis Pharmaceuticals Pvt Ltd Pharmaceutical compositions of ferric citrate
WO2016162888A1 (en) 2015-04-09 2016-10-13 Actavis Group Ptc Ehf. Process for preparing pharmaceutical grade ferric citrate
US20180222836A1 (en) * 2015-08-05 2018-08-09 Lupin Limited Process for the Preparation of Pharmaceutical Grade Ferric Citrate
GB201517893D0 (en) 2015-10-09 2015-11-25 Medical Res Council Methods for producing carboxylate ligand modified ferric iron hydroxide colloids
AU2017242901B2 (en) * 2016-03-31 2020-11-19 Shield TX (UK) Limited Methods for producing ferric maltol compositions from ligand modified and ligand coated ferric hydroxides
BR112018072714A2 (en) 2016-05-06 2019-02-19 Tricida, Inc. hcl binding compositions for and method of treating acid-base disorders
WO2019012552A1 (en) * 2017-07-12 2019-01-17 Ra Chem Pharma Compositions of ferric organic compounds
WO2019012553A1 (en) * 2017-07-12 2019-01-17 Ra Chem Pharma Process for preparation of compositions of ferric organic compounds
US10934380B1 (en) 2017-09-25 2021-03-02 Tricida, Inc. Crosslinked poly(allylamine) polymer pharmaceutical compositions
EP3703706A4 (en) 2017-11-03 2022-04-27 Tricida Inc. Compositions for and method of treating acid-base disorders
WO2019093491A1 (en) * 2017-11-10 2019-05-16 株式会社トクヤマ Method for producing ferric citrate hydrate
US20200299317A1 (en) * 2018-01-22 2020-09-24 Tokuyama Corporation Manufacturing Method of Ferric Citrate
WO2020100912A1 (en) * 2018-11-14 2020-05-22 株式会社トクヤマ Method for producing ferric citrate hydrate
CN112969456B (en) * 2018-11-14 2023-10-17 株式会社德山 Method for producing ferric citrate hydrate
JP7175235B2 (en) * 2019-04-19 2022-11-18 株式会社トクヤマ Method for producing ferric citrate hydrate
US11560339B2 (en) 2019-05-30 2023-01-24 Koch Agronomie Services, LLC Micronutrient foliar solutions
WO2021089766A1 (en) 2019-11-08 2021-05-14 Química Sintética, S.A. Process for the preparation of ferric organic compounds
GB202005054D0 (en) 2020-04-06 2020-05-20 Nemysis Ltd Carboxylate Ligand Modified Ferric Iron Hydroxide Compositions for Use in the Treatment or Prevention of Iron Deficiency Associated with Liver Diseases
US20210332073A1 (en) * 2020-04-26 2021-10-28 RK Pharma Solutions LLC Process for the preparation of ferric citrate
TW202313072A (en) 2021-05-27 2023-04-01 美商凱立克斯生物製藥股份有限公司 Pediatric formulations of ferric citrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767851B2 (en) * 2003-02-19 2010-08-03 Panion & Bf Biotech, Inc. Ferric organic compounds, uses thereof and methods of making same
US8093423B2 (en) * 2003-02-19 2012-01-10 Globoasia, Llc Pharmaceutical-grade ferric organic compounds, uses thereof and method of making same
US9750715B2 (en) * 2006-01-30 2017-09-05 Panion & Biotech Inc. Method of reversing, preventing, delaying or stabilizing soft tissue calcification

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1131360B (en) 1957-11-26 1962-06-14 Vitarine Company Inc Process for stabilizing aqueous solutions that contain vitamin B and vitamin C in addition to vitamin B.
SU142643A1 (en) 1961-03-25 1961-11-30 В.Б. Тихомиров Method for extracting iron compounds from aqueous phase
AT279048B (en) * 1967-07-04 1970-02-25 Pharmazeutische Fabrik Montavit Gmbh Process for the preparation of new, soluble and stable organic iron (III) complex compounds and injection solutions thereof
GB1224589A (en) * 1969-10-06 1971-03-10 Gerhard Gergely Complex iron salts
US4180567A (en) * 1977-09-02 1979-12-25 Pharmachem Corporation Iron preparations and methods of making and administering the same
JPS5626709A (en) * 1979-08-04 1981-03-14 Nichia Kagaku Kogyo Kk Manufacture of water soluble iron salt
DE3228231A1 (en) 1982-07-28 1984-02-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München MEDICINAL PRODUCTS, CALCIUM MIXED SALTS OF POLYMERS, ANIONIC CARBONIC ACIDS AND / OR SULFURIC ACID ESTERS, PROCESS FOR THEIR PRODUCTION AND THEIR USE
IT1222654B (en) * 1987-09-14 1990-09-12 Schering Ag IRON-CITRATE MICELLAR COMPLEX
GB2212396A (en) 1987-12-18 1989-07-26 Procter & Gamble Dietary supplement comprising calcium and delayed release coated iron
US5602116A (en) 1988-08-02 1997-02-11 Bone Care International, Inc. Method for treating and preventing secondary hyperparathyroidism
US4970079A (en) 1989-06-05 1990-11-13 Purdue Research Foundation Method and composition of oxy-iron compounds for treatment of hyperphosphatemia
JP2523057B2 (en) 1990-10-31 1996-08-07 有限会社丸吉商事 Method and apparatus for manufacturing multiple plastic bags
DE69102405T2 (en) * 1990-12-13 1994-09-29 Mitsubishi Gas Chemical Co Activated carbon substance, manufacturing process and application.
JPH05155776A (en) * 1991-12-02 1993-06-22 Otsuka Pharmaceut Factory Inc Therapeutic agent for hyperphosphatemia
DE4239442C2 (en) 1992-11-24 2001-09-13 Sebo Gmbh Use of an adsorbent material modified with polynuclear metal oxide hydroxides for the selective elimination of inorganic phosphate from protein-containing liquids
WO1995032455A1 (en) * 1994-05-25 1995-11-30 Siemens Aktiengesellschaft Dry-developable positive resist
JP3302178B2 (en) 1994-06-22 2002-07-15 日本クラウンコルク株式会社 Synthetic resin container lid
JPH08198760A (en) 1995-01-20 1996-08-06 Japan Organo Co Ltd Phosphate ion-adsorbing agent for oral administration
DE19638044A1 (en) 1996-09-18 1998-03-19 Bayer Ag Immunogenic peptides from foot-and-mouth disease viruses
JP4024891B2 (en) * 1996-12-10 2007-12-19 株式会社キレスト技研 Method for producing aminopolycarboxylic acid ferric salt
US5753706A (en) * 1996-12-16 1998-05-19 Hsu; Chen Hsing Methods for treating renal failure
RU2188033C2 (en) 1997-03-18 2002-08-27 Рош Диагностикс Гмбх Combined pharmaceutical erythropoietin- and iron-containing preparations
TW374018B (en) 1997-03-31 1999-11-11 Chen Hsing Hsu Composition for treating renal failure
US6143243A (en) 1997-12-29 2000-11-07 Prestone Products Corporation Method of inhibiting cavitation-erosion corrosion of aluminum surfaces using carboxylic acid based compositions comprising polymerizable-acid graft polymers
CA2240214A1 (en) 1998-05-05 1999-11-05 James Thomas Beck Process for the production of hydrogen by solar decomposition of water
CN1315174A (en) 2000-03-31 2001-10-03 苏荣仁 Composite medicine for treating renale failure
US6649898B1 (en) * 2000-06-30 2003-11-18 Intel Corporation Method and apparatus for optically enabling a circuit component in a large scale integrated circuit
US7446239B2 (en) 2001-05-07 2008-11-04 Cedars-Sinai Medical Center SCA2 knockout animal and methods of use
US6887897B2 (en) 2001-07-31 2005-05-03 Mission Pharmacal Company Calcium glutarate supplement and phosphorus binder
CN1202067C (en) 2002-09-09 2005-05-18 苏荣仁 Medicinal grade ferrum citricum iron-59 citrate and its preparation method
KR100519387B1 (en) 2002-10-28 2005-10-10 이승재 A bed capable of changing the slope according to the brain waves and controling method thereof
TWI605718B (en) 2003-06-17 2017-11-11 半導體能源研究所股份有限公司 A display device having an image pickup function and a two-way communication system
KR100511227B1 (en) 2003-06-27 2005-08-31 박상래 Portable surveillance camera and personal surveillance system using the same
TWI259772B (en) 2003-09-04 2006-08-11 Panion & Bf Biotech Inc Medical composition comprising ferric citrate, ferric citrate in medical grade and preparation thereof, and dietary nutriment comprising ferric citrate
CN1600302A (en) 2003-09-22 2005-03-30 宝龄富锦生技股份有限公司 Combination of medicine containing ferric citrate, medicine level ferric citrate, preparation method, and diet nutrition containing ferric citrate in medicine level
US6903235B2 (en) 2003-10-08 2005-06-07 Panion & Bf Biotech Inc. Pharmaceutical-grade ferric citrate
KR20060003971A (en) 2004-07-05 2006-01-12 김용화 Myshop
TW200637869A (en) * 2005-01-28 2006-11-01 Chugai Pharmaceutical Co Ltd The spiroketal derivatives and the use as therapeutical agent for diabetes of the same
EP2594551A1 (en) 2005-08-18 2013-05-22 Panion & BF Biotech Inc. Uses of pharmaceutical-grade ferric organic compounds
KR100662752B1 (en) 2005-10-04 2007-01-02 엘에스산전 주식회사 Multi pole circuit breaker
JP4692234B2 (en) 2005-11-10 2011-06-01 ソニー株式会社 Modulation table, modulation apparatus and method, program, and recording medium
KR20080106506A (en) 2006-01-30 2008-12-08 글로보아시아 엘엘씨 Method of treating chronic kidney disease
AU2007224576A1 (en) 2006-03-14 2007-09-20 Basf Se Method of inducing tolerance of plants against bacterioses
KR20080000070A (en) 2006-06-26 2008-01-02 현대자동차주식회사 Control method for opening and closing trunk using of smart key, the smart key and glove box locking device
CN101019848B (en) 2006-11-17 2010-09-15 苏荣仁 Application of ferricitras in preparation of medicine to prevent and treat angiosteosis
CN101682017B (en) 2007-05-31 2012-10-10 株式会社Lg化学 Electrical connecting member of assembling type and secondary battery pack containing the same
JP5526466B2 (en) 2007-07-17 2014-06-18 株式会社大林組 Refractory segment manufacturing method
CN101235186B (en) 2008-01-03 2010-08-11 中国船舶重工集团公司第七二五研究所 Solvent-free epoxy-organic silicon composition capable of self-layering and curing
US8167237B2 (en) * 2008-03-21 2012-05-01 United Technologies Corporation Mounting system for a gas turbine engine
CN102149454B (en) 2008-06-27 2015-09-09 联邦科学及工业研究组织 For the rotary atomizer of atomize molten material
US8984607B1 (en) * 2012-04-20 2015-03-17 Wells Fargo Bank, N.A. Authentication system and method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901349B2 (en) * 2003-02-19 2014-12-02 Panion & Bf Biotech Inc. Ferric organic compounds, uses thereof and methods of making same
US8754257B2 (en) * 2003-02-19 2014-06-17 Panion & Bf Biotech Inc. Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same
US8299298B2 (en) * 2003-02-19 2012-10-30 Globoasia, Llc Pharmaceutical-grade ferric organic compounds, uses thereof and method of making same
US8338642B2 (en) * 2003-02-19 2012-12-25 Panion & Bf Biotech, Inc. Ferric organic compounds, uses thereof and methods of making same
US7767851B2 (en) * 2003-02-19 2010-08-03 Panion & Bf Biotech, Inc. Ferric organic compounds, uses thereof and methods of making same
US8754258B2 (en) * 2003-02-19 2014-06-17 Panion & Bf Biotech Inc. Ferric organic compounds, uses thereof and methods of making same
US8093423B2 (en) * 2003-02-19 2012-01-10 Globoasia, Llc Pharmaceutical-grade ferric organic compounds, uses thereof and method of making same
US8846976B2 (en) * 2003-02-19 2014-09-30 Panion & Bf Biotech Inc. Ferric organic compounds, uses thereof and methods of making same
US8609896B2 (en) * 2003-02-19 2013-12-17 Panion & Bf Biotech Inc. Ferric organic compounds, uses thereof and methods of making same
US9050316B2 (en) * 2003-02-19 2015-06-09 Panion & Bf Biotech Inc. Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same
US9328133B2 (en) * 2003-02-19 2016-05-03 Panion & Bf Biotech Inc. Ferric organic compounds, uses thereof and methods of making same
US9913821B2 (en) * 2003-02-19 2018-03-13 Panion & Bf Biotech Inc. Ferric organic compounds, uses thereof and methods of making same
US9757416B2 (en) * 2003-02-19 2017-09-12 Panion & Bf Biotech Inc. Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same
US9889113B2 (en) * 2006-01-30 2018-02-13 Panion & Bf Biotech Inc. Method for reversing, preventing, delaying or stabilizing soft tissue calcification
US9750715B2 (en) * 2006-01-30 2017-09-05 Panion & Biotech Inc. Method of reversing, preventing, delaying or stabilizing soft tissue calcification
US10898459B2 (en) * 2006-01-30 2021-01-26 Panion & Bf Biotech Inc. Method of treating chronic kidney disease

Also Published As

Publication number Publication date
WO2004074444A2 (en) 2004-09-02
EP2813511A2 (en) 2014-12-17
HK1077580A1 (en) 2006-02-17
EA010028B1 (en) 2008-06-30
JP4964585B2 (en) 2012-07-04
EP2360139A3 (en) 2012-04-11
US20170095441A1 (en) 2017-04-06
EP1601680B8 (en) 2014-11-26
US8846976B2 (en) 2014-09-30
PT1601680E (en) 2014-09-23
US20130079537A1 (en) 2013-03-28
US20140011872A1 (en) 2014-01-09
US20130345460A1 (en) 2013-12-26
TWI335218B (en) 2011-01-01
EP2813511A3 (en) 2014-12-31
US8754258B2 (en) 2014-06-17
US20140018420A1 (en) 2014-01-16
US8609896B2 (en) 2013-12-17
US8338642B2 (en) 2012-12-25
EP1601680A2 (en) 2005-12-07
EP2360139A2 (en) 2011-08-24
AU2004213819B2 (en) 2009-08-27
HK1205129A1 (en) 2015-12-11
KR101149706B1 (en) 2012-05-23
EP1601680A4 (en) 2008-05-28
US9913821B2 (en) 2018-03-13
CN1751056A (en) 2006-03-22
EA200501322A1 (en) 2006-04-28
WO2004074444A3 (en) 2005-04-14
US7767851B2 (en) 2010-08-03
CA2516471C (en) 2013-04-09
CY1115602T1 (en) 2017-01-04
MXPA05008784A (en) 2006-05-25
CN100386336C (en) 2008-05-07
US20150232495A1 (en) 2015-08-20
US20060020026A1 (en) 2006-01-26
US20190269722A1 (en) 2019-09-05
US8901349B2 (en) 2014-12-02
TW200416027A (en) 2004-09-01
NZ541991A (en) 2008-10-31
KR20050107428A (en) 2005-11-11
US20210299168A1 (en) 2021-09-30
DK1601680T3 (en) 2014-10-06
CA2516471A1 (en) 2004-09-02
US20100217025A1 (en) 2010-08-26
EP1601680B1 (en) 2014-06-25
JP2006518391A (en) 2006-08-10
US9328133B2 (en) 2016-05-03
AU2004213819A1 (en) 2004-09-02
US20190055274A1 (en) 2019-02-21
SI1601680T1 (en) 2014-11-28
ES2503717T3 (en) 2014-10-07

Similar Documents

Publication Publication Date Title
US20220213133A1 (en) Ferric Organic Compounds, Uses Thereof and Methods of Making Same
US9050316B2 (en) Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same
CA2619591C (en) Pharmaceutical-grade ferric organic compounds, uses thereof and methods of making same
US20090275654A1 (en) Pharmaceutical Gallium Compositions and Methods
JP2011519859A (en) Pharmaceutical gallium compositions and methods
CN110938001A (en) Chlorogenic acid ethanolamine salt and application thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOPHARMA CREDIT PLC, UNITED KINGDOM

Free format text: SECURITY INTEREST;ASSIGNORS:AKEBIA THERAPEUTICS, INC.;KERYX BIOPHARMACEUTICALS, INC.;REEL/FRAME:058399/0055

Effective date: 20211204

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: BIOPHARMA CREDIT PLC, UNITED KINGDOM

Free format text: TENTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AKEBIA THERAPEUTICS, INC.;KERYX BIOPHARMACEUTICALS, INC.;REEL/FRAME:060529/0168

Effective date: 20220615

AS Assignment

Owner name: BIOPHARMA CREDIT PLC, UNITED KINGDOM

Free format text: ELEVENTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AKEBIA THERAPEUTICS, INC.;KERYX BIOPHARMACEUTICALS, INC.;REEL/FRAME:061297/0238

Effective date: 20220822

AS Assignment

Owner name: BIOPHARMA CREDIT PLC, ENGLAND AND WALES

Free format text: TWELFTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AKEBIA THERAPEUTICS, INC.;KERYX BIOPHARMACEUTICALS, INC.;REEL/FRAME:062012/0561

Effective date: 20221123

AS Assignment

Owner name: BIOPHARMA CREDIT PLC, UNITED KINGDOM

Free format text: THIRTEENTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AKEBIA THERAPEUTICS, INC.;KERYX BIOPHARMACEUTICALS, INC.;REEL/FRAME:063189/0065

Effective date: 20230327

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: BIOPHARMA CREDIT PLC, UNITED KINGDOM

Free format text: FIFTEENTH AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AKEBIA THERAPEUTICS, INC.;KERYX BIOPHARMACEUTICALS, INC.;REEL/FRAME:066205/0143

Effective date: 20231115

AS Assignment

Owner name: KERYX BIOPHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BIOPHARMA CREDIT PLC;REEL/FRAME:066377/0741

Effective date: 20240126

Owner name: AKEBIA THERAPEUTICS, INC., MASSACHUSETTS

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BIOPHARMA CREDIT PLC;REEL/FRAME:066377/0741

Effective date: 20240126