US20220167141A1 - System and method for call management - Google Patents

System and method for call management Download PDF

Info

Publication number
US20220167141A1
US20220167141A1 US17/448,610 US202117448610A US2022167141A1 US 20220167141 A1 US20220167141 A1 US 20220167141A1 US 202117448610 A US202117448610 A US 202117448610A US 2022167141 A1 US2022167141 A1 US 2022167141A1
Authority
US
United States
Prior art keywords
wireless device
call
processors
request
call handler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/448,610
Inventor
Preet ANAND
Peter Antypas
Motiejus OSIPOVAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rapidsos Inc
Original Assignee
Rapidsos Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201462021709P priority Critical
Priority to US14/794,780 priority patent/US9838858B2/en
Priority to US15/436,484 priority patent/US9992655B2/en
Priority to US15/958,186 priority patent/US10425799B2/en
Priority to US16/509,296 priority patent/US11153737B2/en
Application filed by Rapidsos Inc filed Critical Rapidsos Inc
Priority to US17/448,610 priority patent/US20220167141A1/en
Assigned to Pave Digital, Inc. reassignment Pave Digital, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OSIPOVAS, MOTIEJUS, ANAND, PREET, ANTYPAS, PETER
Assigned to RAPIDSOS, INC. reassignment RAPIDSOS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Pave Digital, Inc.
Publication of US20220167141A1 publication Critical patent/US20220167141A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/50Connection management for emergency connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/12Application layer protocols, e.g. WAP [Wireless Application Protocol]

Abstract

A system and method are provided in accordance with the various aspects of the invention that enhance the information regarding a caller and a call location. Such calls are typically sent to a dispatcher that handles urgent or emergency calls. The information provided can be in the form of a message that is includes specifics about the call initiator and the nature of and/or reason for the call; a message that is converted to verbal form from text-to-speech; and/or the message may include location information, especially as it relates to representing a wireless device as a landline location based on nearby communication options, such as Wi-Fi or Bluetooth beacons.

Description

    RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 16/509,296, filed Jul. 11, 2019, which is a continuation of U.S. patent application Ser. No. 15/958,186, filed Apr. 20, 2018, now U.S. Pat. No. 10,425,799, which is a continuation of U.S. patent application Ser. No. 15/436,484, filed Feb. 17, 2017, now U.S. Pat. No. 9,992,655, which is a continuation of U.S. patent application Ser. No. 14/794,780 filed Jul. 8, 2015, now U.S. Pat. No. 9,838,858, which claims priority under 35 USC 119 from U.S. Provisional Application Ser. No. 62/021,709 filed on Jul. 8, 2014, titled SYSTEM AND METHOD FOR CALL MANAGEMENT, the entire disclosures of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention relates to communication systems and, more particularly, but not exclusively, to a call handling and routing associated with an urgent or emergency call.
  • BACKGROUND OF THE INVENTION
  • With the explosive growth in mobile devices, many people are initiating call related to urgent or emergency services using a wireless device or mobile phone. As such, the information associated with the caller or the location of the caller needs to be accurately identified. Current approaches do not provide an accurate location or often fails to provide sufficient information regarding the location. Therefore what is needed is a system and method that provides as much information as possible about a caller and the location of the caller to the emergency call handler.
  • SUMMARY OF THE INVENTION
  • A system and method are provided in accordance with the various aspects of the invention that provide information regarding a caller and a call location to the urgent or emergency call handler, which call may be referred to as a distress call. The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail. Those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. The inventive techniques and concepts described herein apply to wireless communications systems including the radio access systems of GSM, UMTS, LTE, LTE-Advanced, IEEE 802 (WiFi, WiMAN, WiMAX), Bluetooth, UWB and NFC.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The foregoing summary, as well as the following detailed description, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the various aspects and embodiments of the invention, the drawings shown exemplary constructions of the aspects of the invention. However, the invention is not limited to the specific methods and instrumentalities disclosed in the drawings, which are as follows:
  • FIG. 1 shows a device within a wireless environment in accordance with the various aspects and embodiments of the invention.
  • FIG. 2 shows functional elements of a device in accordance with the various aspects and embodiments of the invention.
  • FIG. 3 shows a flow process that includes steps in initiating a call and routing the call in accordance with the various aspects and embodiments of the invention.
  • FIG. 4 shows a flow process for delivering a message in accordance with the various aspects and embodiments of the invention.
  • FIG. 5 shows a flow process that includes steps in initiating a call and routing the call to simulating a landline in accordance with the various aspects and embodiments of the invention.
  • FIG. 6 shows a flow process that includes steps in initiating a call and routing the call to a call handler and a third party in accordance with the various aspects and embodiments of the invention.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • Illustrative embodiments as found in the various aspects of the invention are disclosed with reference to the figures, wherein like numerals refer to like features. Wireless devices have evolved in both operation and form-factors, converging the personal computer (PC) with the cellular phone, pager, and other communications devices. Besides communications functions (e.g. Voice Telephony, Short-message-service (SMS), Multi-media Messaging Service (MMS), TCP/IP data connectivity) and upgraded general processing power, sensors have been added to the wireless device. For instance, a wireless device (e.g. a smartphone, feature phone, netbook, Personal Digital assistant (PDA), tablet computer or PC with wireless LAN capability) may include:
      • Camera/Video functions;
      • Location data (Satellite-based);
      • Location data (Mobile-based);
      • Location data (Network-based);
      • Motion data (e.g. compass, accelerometer);
      • Capacitive Sensors;
      • Address Book, Contacts lists, recent called/emailed data; and
      • Application specific sensing, reading and monitoring capabilities.
  • Referring now to FIG. 1 and FIG. 2, based on the various aspects of the invention, illustrates a block diagram of a wireless device 10, which may also be a mobile telephone or a mobile terminal. It should be understood, however, that the wireless device 10, as illustrated and hereinafter described, is merely illustrative of one type of wireless device and/or mobile device that would benefit from embodiments of the invention and, therefore, should not be taken to limit the scope of embodiments of the invention. While several aspects and embodiments of the wireless and mobile device are illustrated and will be hereinafter described for purposes of example, other types of mobile terminals, such as portable digital assistants (PDAs), pagers, mobile televisions, gaming devices, laptop computers, cameras, video recorders, audio/video player, radio, GPS devices, or any combination of the aforementioned, and other types of voice and text communications systems, can readily employ aspects and embodiments of the invention.
  • The wireless device 10, as shown in FIG. 2, includes a processor module 200 and a memory module 202. Additionally, In accordance with some aspects of the invention, the wireless device 10 also includes a GPS module or chip 204 that is in communication with a GPS system or satellite. In accordance with some further aspects of the invention, the wireless device 10 includes a Wi-Fi communication module 206 capable of communicating with a nearby Wi-Fi access point or hotspot. In accordance with further aspects of the invention, the wireless device 10 includes a Bluetooth communication module 208 capable of initiating a Bluetooth communication session when a nearby Bluetooth beacon is detected. In accordance with aspects of the invention, the wireless device 10 also includes a display or touch screen 210 that is in communication with the processor module 200.
  • In addition, while several embodiments of the method of the invention are performed or used by a wireless device 10, the method may be employed by other than a mobile terminal. Moreover, while the system and method of embodiments of the invention will be primarily described in conjunction with mobile communications applications, it will be appreciated by one skilled in the art that the system and method of embodiments of the invention can be utilized in conjunction with a variety of other applications, both in the mobile communications industries and outside of the mobile communications industries.
  • Referring again to FIG. 1, the wireless device 10 includes an antenna 12 (or multiple antennae) in operable connection or communication with a transmitter 14 and a receiver 16 in accordance with one aspect of the invention. In accordance with other aspects of the invention, the transmitter 14 and the receiver 16 may be part of a transceiver 15. The wireless device 10 may further include an apparatus, such as a controller 20 or other processing element, which provides signals to and receives signals from the transmitter 14 and receiver 16, respectively. The signals include signaling information in accordance with the air interface standard of the applicable cellular system, and also user speech, received data and/or user generated data. In this regard, the wireless device 10 is capable of operating with one or more air interface standards, communication protocols, modulation types, and access types.
  • Referring now to FIG. 3 a process of sending a message to an urgent or emergency call handler is shown. The process is initiated, in accordance with some aspects of the invention, through a touch screen or display of the wireless device 10. The user initiates the process by pressing an icon or some specific location on the screen of the wireless device 10. The wireless device 10 sends a message, such as an SMS message, to a dispatcher or call handler. The dispatcher may also receive a call that is related to or associated with the message being delivered to the call handler. The message sent to the dispatcher or call handler may include information about the location of the caller.
  • For example, in accordance with the aspects of the invention, the message includes the location of the wireless device 10 based on or relative to a map. The dispatcher's system or computer runs an application or program that can receive the message, then the message is received by the dispatcher and the location of the wireless device 10 is shown on the map. Once the request from the wireless device 10 is initiated, identify information about the caller is retrieved from the memory of the wireless device 10. Additional information, in accordance with some aspects of the invention, including location and identity and coordinates is sent to the dispatcher's system from the wireless device 10. The call is initiated with the dispatcher and the dispatcher or call handler receives that call as well as the location and identity information. In accordance with some aspects of the invention, the caller's location is referenced with respect to a landmark or well known address. For example, the location is in relation to another object such as a landmark or address as “the caller is 100 feet north of the Statue of Liberty.” Thus, there are several aspects of the invention that relate to providing location information or locating the caller and the scope of the invention is not limited thereby.
  • As will be apparent to one skilled in the art, the information may be sent, in accordance with the aspects of the invention, from the wireless device 10 to a remote location that collects the information associated with the initiation of the message and the wireless device 10 and send that in the form of a message to the dispatcher's system.
  • Referring now to FIG. 4, a process is shown for initiating a call. This time the message is delayed by an application running on the wireless device 10 while the application on the wireless device 10 searches for location information based on nearby networks, such as Wi-Fi or Bluetooth based networks, as well as GPS location information. The application can then add the additional information, as outlined below, to the message in the form of information or an SMS message.
  • The additional information, in accordance with some aspects of the invention, may include coordinates that are transformed into a local address via a database that is associated with the nearest Wi-Fi/Bluetooth network's physical location. This will help provide a higher degree of location information to the call handler. In accordance with further aspects of the invention, the SMS that is sent may include additional information, including the nature or reason for the call. In accordance with some aspects of the invention, the additional information includes specific information regarding the user. For example, the wireless devices 10 may have personal medical information for the caller, in the instance that the caller is the person in need of a medical assistance. In accordance with other aspects, the wireless device may include information-medical and non-medical-collected about the person in need of medical assistance. For example, the wireless device 10 may have captured a photo or a video-associated with the emergency situation or the location—that is provided as part of the additional information. In accordance with additional aspects of the invention the wireless device 10 can provide any other medical information or identifying information to allow the responder to better prepare for responding and easily locate or spot the message sender.
  • Referring now to FIG. 5, in accordance with some aspects of the invention, a call is initiated through the touch screen of the wireless device 10 using a quick access simple tap or button selection. The call is delayed by the wireless device while the application on the device searches for location information based on nearby networks, such as Wi-Fi or Bluetooth based networks, as well as GPS location information. The application adds the additional information, as outlined in FIG. 5, to the call details. The additional information, in accordance with some aspects of the invention, may include coordinates that are transformed into a local address via a database that stores lookup information that is associated with the nearest Wi-Fi/Bluetooth network's physical location. This additional information is provided to the call handler such that the call handler detects a call and can retrieve address information that was written to the emergency database associated with this call before the call was routed to the call handler.
  • Referring now to FIG. 6, in accordance with some aspects of the invention, a call is initiated through the touch screen of the wireless device 10 using a tap or button selection features on the touch screen for the purpose of initiating the call. In accordance with one aspect of the invention, the access button may be designed to initiate both an emergency call and a call to a location's private security. In accordance with other aspects and feature of the embodiments of the invention, there may be provided separate call initiation features on the touch screen that each provide a call to a respective call handler, with one being for 911 emergency call and the other being for a private call handler for help that does not rise to the level of 911 emergencies, such as assistance with automobile failure or other similar forms of help.
  • Once the call is initiated, the application on the wireless device 10 delays the call while the application on the wireless device 10 searches for location information based on nearby networks, such as Wi-Fi or Bluetooth based networks, as well as GPS location information. The application adds the additional information, as outlined in FIG. 5, to the call details. The additional information, in accordance with some aspects of the invention, may include coordinates that are transformed into a local address via a database that stores lookup information associated with the nearest Wi-Fi/Bluetooth network's physical location. This additional information is provided to the call handler, such that the call handler detects a call and can retrieve address information that was written to the emergency database associated with this call before the call was routed to the call handler. The call handler may receive the information in text form, on a display, as a text-to-speech file, or any other format that is required by the call handler. Once the information associated with the call is provided, the user is then bridged onto the call with the dispatcher.
  • In accordance with further aspects of the invention, the call that is initiated by the user at the touch screen may be routed to a remote server or location and any or all of the features performed at the wireless device 10, as outlined above, may be handled off the wireless device 10 by the remote location. Thus, when a request is received via user input on the touchscreen of the wireless device 10, this initiates the processor to look up in memory what to execute. The application and the user setting, in accordance with the various aspects of the invention, determine if the executed software application initiates the process of determining the smartphone's location or if that function is passed on to a remote server or location. For example, in accordance with one aspect of the invention, the GPS chipset 204 approximates position by continuously receiving the signal of the nearest satellites and then comparing signal strength. This provides initial latitude and longitudinal coordinates of the wireless device 10. In accordance with further aspects of the invention, the latitude and longitudinal coordinates are refined as the Wi-Fi radio processes the broadcast signal of the nearest access points. By comparing the relative strength of the nearby access point's signals to the known location of the access points, via software, a more accurate position is obtained. This further refines the given latitude and longitude coordinates.
  • In accordance with further aspects of the invention, if there is a nearby Bluetooth beacon, which is uniquely registered to a specific location or address, then that location is used to further enhance the location information for the initiated call and it is sent to the call handlers or emergency responders. If not, the Wi-Fi refined longitude and latitude GPS components are referenced against a database via an application programming interface to produce an identifiable address (reverse geo-coding).
  • Referring again to FIG. 4, in accordance with the various aspects of the invention, the address, either from the Bluetooth network or Wi-Fi refined GPS lookup, is then added to or inserted, by the software, into a programmatically created short message (SMS) along with user's name and a standard message. This programmatically created SMS is then sent to 911, dispatcher, call handler, and/or the emergency services, unless the user cancels the alert during the built in delay timer.
  • By way of illustration, the wireless device 10 is capable of operating in accordance with any of a number of first, second, third and/or fourth-generation communication protocols or the like. For example, the wireless device 10 may be capable of operating in accordance with second-generation (2G) wireless communication protocols IS-136 (time division multiple access (TDMA)), GSM (global system for mobile communication), and IS-95 (code division multiple access (CDMA)), or with third-generation (3G) wireless communication protocols, such as Universal Mobile Telecommunications System (UMTS), CDMA2000, wideband CDMA (WCDMA) and time division-synchronous CDMA (TD-SCDMA), with fourth-generation (4G) wireless communication protocols or the like.
  • As an alternative (or additionally), the wireless device 10 may be capable of operating in accordance with non-cellular communication mechanisms. For example, the wireless device 10 may be capable of communication in a wireless local area network (WLAN) or other communication networks. The wireless device 10 can also have multiple networking capabilities including nomadic wired tethering, local-area-network transceivers (e.g. IEEE802 Wi-Fi), wide-area-network transceivers (IEEE 802.16 WiMAN/WiMAX, cellular data transceivers, (e.g. LTE) and short-range, data-only wireless protocols such as Ultra-wide-band (UWB), Bluetooth, RFID, Near-field-communications (NFC), etc.
  • A single site location based on the geographic location of the wireless network transmission antenna and the beacon ID (e.g. BTS ID, Cell ID, SSID) may be developed either by the wireless device 10, the remote location or the network; use of timing information of the signal path between the wireless device 10 and network may allow enhancement of the single site location. Using several beacon identities and power levels potentially may increase accuracy over a single site location using a power-difference-of-arrival technique.
  • Databases of beacon identifiers, beacon power levels, and network transmitter geographical locations may be uploaded to the wireless device 10 allowing for use of the aforementioned techniques using just the passive receiver(s) of the wireless device 10. A transmission (or series of transmissions) from the wireless device 10 is enough to localize a transmitter. An interaction of the wireless device 10 with the network where identifiers either physical (e.g. Electronic Serial Number, Media Access Control (MAC) address); or virtual (e.g. Temporary Mobile Station Identifier (TMSI) or IP address) can allow both localization and identification of the wireless device 10.
  • Referring again to FIG. 1 and now to FIG. 2, in accordance with the aspects of the invention, an exemplary instance of a system is shown. It is understood that the apparatus, such as the controller 20, may include circuitry desirable for implementing audio and logic functions of the wireless device 10. For example, the controller 20 may include a digital signal processor device, a microprocessor device, and various analog to digital converters, digital to analog converters, and other support circuits including digital signal processors. Control and signal processing functions of the wireless device 10 are allocated between these devices according to their respective capabilities and design. The controller 20 may also include the functionality to convolutionally encode and interleave message and data prior to modulation and transmission. The controller 20 can additionally include an internal voice coder, and may include an internal data modem. Further, the controller 20 may include functionality to operate one or more software programs, which may be stored in memory. For example, the controller 20 may be capable of operating a connectivity program, such as a conventional Web browser. The connectivity program may then allow the wireless device 10 to transmit and receive Web content, such as location-based content and/or other web page content, according to a Wireless Application Protocol (WAP), Hypertext Transfer Protocol (HTTP) and/or the like, for example.
  • The wireless device 10 may also comprise a user interface including an output device such as a conventional earphone or speaker 24, a ringer 22, a microphone 26, a display or touch screen 28, and a user input interface, all of which are coupled to the controller 20. The user input interface, which allows the wireless device 10 to receive data, may include any of a number of devices allowing the wireless device 10 to receive data, such as a keypad 30, a touch display (not shown) or other input device. In embodiments including the keypad 30, the keypad 30 may include the conventional numeric (0-9) and related keys (#, *), and other hard and soft keys used for operating the wireless device 10. Alternatively, the keypad 30 may include a conventional QWERTY keypad arrangement. The keypad 30 may also include various soft keys with associated functions. In addition, or alternatively, the wireless device 10 may include an interface device such as a joystick or other user input interface. The wireless device 10 further includes a battery 34, such as a vibrating battery pack, for powering various circuits that are required to operate the wireless device 10, as well as optionally providing mechanical vibration as a detectable output.
  • The wireless device 10 may further include a user identity module (UIM) 42. The UIM 42 is typically a memory device having a processor built in. The UIM 42 may include, for example, a subscriber identity module (SIM), a universal integrated circuit card (UICC), a universal subscriber identity module (USIM), a removable user identity module (R-UIM), etc. The UIM 42 typically stores information elements related to a mobile subscriber. In addition to the UIM 42, the wireless device 10 may be equipped with memory. For example, the wireless device 10 may include volatile memory 40, such as volatile Random Access Memory (RAM) including a cache area for the temporary storage of data. The wireless device 10 may also include other non-volatile memory 38, which can be embedded and/or may be removable. The non-volatile memory 38 can additionally or alternatively comprise an electrically erasable programmable read only memory (EEPROM), flash memory or the like. The memories can store any of a number of pieces of information, and data, used by the wireless device 10 to implement the functions of the wireless device 10. For example, the memories can include an identifier, such as an international mobile equipment identification (IMEI) code, capable of uniquely identifying the wireless device 10. Furthermore, the memories may store instructions for determining cell id information. Specifically, the memories may store an application program for execution by the controller 20, which determines an identity of the current cell, i.e., cell id identity or cell id information, with which the wireless device 10 is in communication.
  • Although not every element of every possible mobile network is shown and described herein, it should be appreciated that the wireless device 10 may be coupled to one or more of any of a number of different networks through a base station (not shown). In this regard, the network(s) may be capable of supporting communication in accordance with any one or more of a number of first-generation (1G), second-generation (2G), 2.5G, third-generation (3G), 3.9G, fourth-generation (4G) mobile communication protocols or the like. For example, one or more of the network(s) can be capable of supporting communication in accordance with 2G wireless communication protocols IS-136 (TDMA), GSM, and IS-95 (CDMA). Also, for example, one or more of the network(s) can be capable of supporting communication in accordance with 2.5G wireless communication protocols GPRS, Enhanced Data GSM Environment (EDGE), or the like. Further, for example, one or more of the network(s) can be capable of supporting communication in accordance with 3G wireless communication protocols such as a UMTS network employing WCDMA radio access technology. Some narrow-band analog mobile phone service (NAMPS), as well as total access communication system (TACS), network(s) may also benefit from embodiments of the invention, as should dual or higher mode mobile stations (e.g., digital/analog or TDMA/CDMA/analog phones).
  • The wireless device 10 can further be coupled to one or more wireless access points (APs) (not shown). The APs may comprise access points configured to communicate with the wireless device 10 in accordance with techniques such as, for example, radio frequency (RF), infrared (IrDA) or any of a number of different wireless networking techniques, including WLAN techniques such as IEEE 802.11 (e.g., 802.11a, 802.11b, 802.11g, 802.11n, etc.), world interoperability for microwave access (WiMAX) techniques such as IEEE 802.16, and/or wireless Personal Area Network (WPAN) techniques such as IEEE 802.15, BlueTooth (BT), ultra wideband (UWB) and/or the like. The APs may be coupled to the Internet (not shown). The APs can be directly coupled to the Internet. In accordance with other aspects of the invention, the APs are indirectly coupled to the Internet. Furthermore, in one embodiment, the BS may be considered as another AP. As will be appreciated, by directly or indirectly connecting the wireless devices 10 to the Internet, the wireless device 10 can communicate with other devices, a computing system, etc., to thereby carry out various functions of the wireless device 10, such as to transmit data, content or the like to, and/or receive content, data or the like from other devices. As used herein, the terms “data,” “content,” “information” and similar terms may be used interchangeably to refer to data capable of being transmitted, received and/or stored in accordance with the various aspects and embodiments of the invention. Thus, use of any such terms should not be taken to limit the spirit and scope of embodiments of the invention.
  • Although not shown, the wireless device 10 may communicate in accordance with, for example, RF, BT, IrDA or any of a number of different wireline or wireless communication techniques, including LAN, WLAN, WiMAX, UWB techniques and/or the like. One or more of the computing systems that are in communication with the wireless device 10 can additionally, or alternatively, include a removable memory capable of storing content, which can thereafter be transferred to the wireless device 10. Further, the wireless device 10 can be coupled to one or more electronic devices, such as displays, printers, digital projectors and/or other multimedia capturing, producing and/or storing devices (e.g., other terminals). Furthermore, it should be understood that embodiments of the invention may be resident on a communication device such as the wireless device 10, or may be resident on a network device or other device accessible to the wireless device 10.
  • In accordance with the various aspects of the invention, the wireless device 10 includes on board location systems. While the on-board location systems (e.g. Global-Navigation-Satellite-System Receivers (GNSS)) may be used to develop a location estimate for the wireless device 10, the location of a wireless device 10 may be determined from the interaction (i.e. radio messaging) between the wires device 10 and the network (e.g. cellular system, WiMAN, WiMAX, WiFi, Bluetooth, NFC).
  • The true scope the invention is not limited to the various aspects of the invention or presently preferred embodiments disclosed herein and indeed could be applied to any reprogrammable remote sensing or other computing device with a wireless communications facility. For example, the foregoing disclosure of a presently preferred embodiment of the Intelligent Access Control System uses explanatory terms, such as mobile device, cellular system and wireless local area network and the like, which should not be construed so as to limit the scope of protection of the following claims, or to otherwise imply that the inventive aspects of the intelligent access control system are limited to the particular methods and apparatus disclosed. Moreover, as will be understood by those skilled in the art, many of the inventive aspects disclosed herein are based on software applications and operating systems running on generic hardware processing platforms. These functional entities are, in essence, programmable data collection, analysis, and storage devices that could take a variety of forms without departing from the inventive concepts disclosed herein. In many cases, the place of implementation (i.e., the functional element) described herein is merely a designer's preference and not a hard requirement. Accordingly, except as they may be expressly so limited, the scope of protection of the following claims is not intended to be limited to the specific embodiments described above.
  • It is noted that, as used in this description, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Reference throughout this specification to “one aspect,” “another aspect,” “one embodiment,” “an embodiment,” “certain embodiment,” or similar language means that a particular aspect, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, appearances of the phrases “in one embodiment,” “in at least one embodiment,” “in an embodiment,” “in certain embodiments,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
  • It will be apparent that various aspects of the invention as related to certain embodiments may be implemented in software, hardware, application logic, or a combination of software, hardware, and application logic. The software, application logic and/or hardware may reside on a server, an electronic device, or be a service. If desired, part of the software, application logic and/or hardware may reside on an electronic device and part of the software, application logic and/or hardware may reside on a remote location, such as server.
  • In accordance with the teaching of the invention and certain embodiments, a program or code may be noted as running on a computing device. A computing device is an article of manufacture. Examples of an article of manufacture include: a server, a mainframe computer, a mobile telephone, a multimedia-enabled smartphone, a tablet computer, a personal digital assistant, a personal computer, a laptop, or other special purpose computer each having one or more processors (e.g., a Central Processing Unit, a Graphical Processing Unit, or a microprocessor) that is configured to execute a computer readable program code (e.g., an algorithm, hardware, firmware, and/or software) to receive data, transmit data, store data, or perform methods. The article of manufacture (e.g., computing device) includes a non-transitory computer readable medium having a series of instructions, such as computer readable program steps encoded therein. In certain embodiments, the non-transitory computer readable medium includes one or more data repositories. The non-transitory computer readable medium includes corresponding computer readable program code and may include one or more data repositories. Processors access the computer readable program code encoded on the corresponding non-transitory computer readable mediums and execute one or more corresponding instructions.
  • Other hardware and software components and structures are also contemplated. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the invention, representative illustrative methods and materials are now described.
  • All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or system in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
  • All statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of invention is embodied by the appended claims.

Claims (21)

1.-30. (canceled)
31. A method for programmatically generating messages for emergency service requests, the method comprising:
receiving, by one or more processors of a wireless device via a user interface of the wireless device, a first request to generate an emergency service request;
determining, by the one or more processors, location coordinates of the wireless device according to one or more wireless transmissions received by the wireless device;
retrieving, by the one or more processors, an identification of a person associated with the wireless device; and
transmitting, by the one or more processors via a network interface of the wireless device to a server, a second request comprising the location coordinates and retrieved identification of the person, wherein the server generates (a) a geographic location associated with the location coordinates and (b) an emergency message comprising the geographic location, an identity based on the identification of the person, and a written request for help that are transmitted to a call handler.
32. The method of claim 31, further comprising initiating a timer, by the one or more processors, responsive to receipt of the first request via the user interface, wherein transmitting the second request is performed responsive to expiration of the timer.
33. The method of claim 32, wherein determining the location coordinates of the wireless device according to the wireless transmissions received by the wireless device and retrieving the identification of the person associated with the wireless device are performed responsive to initiation of the timer and prior to expiration of the timer.
34. The method of claim 31, wherein transmitting the second request is performed responsive to not detecting, by the one or more processors prior to expiration of the timer, a request via the user interface to cancel the emergency message.
35. The method of claim 31, wherein the call handler is a private call handler.
36. The method of claim 31, wherein the call handler is a 911 call taking center.
37. The method of claim 31, wherein the geographic location and the identity based on the identification of the person are displayable on a display at the call handler.
38. The method of claim 31, further comprising initiating, by the one or more processors, a call with the call handler.
39. The method of claim 38, wherein the call with the call handler is initiated after the emergency message is transmitted to the call handler.
40. The method of claim 31, wherein the emergency message is a short message service (SMS) or multimedia messaging service (MMS) message.
41. A wireless device for programmatically generating messages for emergency service requests, the wireless device comprising one or more processors operative to:
receive, by the one or more processors of a wireless device via a user interface of the wireless device, a first request to generate an emergency service request;
determine, by the one or more processors, location coordinates of the wireless device according to one or more wireless transmissions received by the wireless device;
retrieve, by the one or more processors, an identification of a person associated with the wireless device;
transmit, by the one or more processors via a network interface of the wireless device to a server, a second request comprising the location coordinates and retrieved identification of the person, wherein the server generates (a) a geographic location associated with the location coordinates, and (b) an emergency message comprising the geographic location, an identity based on the identification of the person, and a written request for help that are transmitted to the call handler.
42. The device of claim 41, wherein the one or more processors are further operative to initiate a timer, responsive to receipt of the first request via the user interface, wherein transmission of the second request is performed responsive to expiration of the timer.
43. The device of claim 42, wherein the location coordinates of the wireless device are determined according to the wireless transmissions received by the wireless device and the identification of the person associated with the wireless device is retrieved in response to initiation of the timer and prior to expiration of the timer.
44. The device of claim 41, wherein the second request is transmitted in response to not detecting, by the one or more processors prior to expiration of the timer, a request via the user interface to cancel the emergency message.
45. The device of claim 41, wherein the call handler is a private call handler.
46. The device of claim 41, wherein the call handler is a 911 call taking center.
47. The device of claim 41, wherein the geographic location and the identity based on the identification of the person are displayable on a display at the call handler.
48. The device of claim 41, wherein the one or more processors are further operative to initiate a call with the call handler.
49. The device of claim 48, wherein the call with the call handler is initiated after the emergency message is transmitted to the call handler.
50. The device of claim 41, wherein the emergency message is a short message service (SMS) or multimedia messaging service (MMS) message.
US17/448,610 2014-07-08 2021-09-23 System and method for call management Pending US20220167141A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US201462021709P true 2014-07-08 2014-07-08
US14/794,780 US9838858B2 (en) 2014-07-08 2015-07-08 System and method for call management
US15/436,484 US9992655B2 (en) 2014-07-08 2017-02-17 System and method for call management
US15/958,186 US10425799B2 (en) 2014-07-08 2018-04-20 System and method for call management
US16/509,296 US11153737B2 (en) 2014-07-08 2019-07-11 System and method for call management
US17/448,610 US20220167141A1 (en) 2014-07-08 2021-09-23 System and method for call management

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/448,610 US20220167141A1 (en) 2014-07-08 2021-09-23 System and method for call management
US17/671,493 US20220174468A1 (en) 2014-07-08 2022-02-14 System and method for call management

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/509,296 Continuation US11153737B2 (en) 2014-07-08 2019-07-11 System and method for call management

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/671,493 Continuation US20220174468A1 (en) 2014-07-08 2022-02-14 System and method for call management

Publications (1)

Publication Number Publication Date
US20220167141A1 true US20220167141A1 (en) 2022-05-26

Family

ID=55303155

Family Applications (6)

Application Number Title Priority Date Filing Date
US14/794,780 Active US9838858B2 (en) 2014-07-08 2015-07-08 System and method for call management
US15/436,484 Active US9992655B2 (en) 2014-07-08 2017-02-17 System and method for call management
US15/958,186 Active US10425799B2 (en) 2014-07-08 2018-04-20 System and method for call management
US16/509,296 Active US11153737B2 (en) 2014-07-08 2019-07-11 System and method for call management
US17/448,610 Pending US20220167141A1 (en) 2014-07-08 2021-09-23 System and method for call management
US17/671,493 Pending US20220174468A1 (en) 2014-07-08 2022-02-14 System and method for call management

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US14/794,780 Active US9838858B2 (en) 2014-07-08 2015-07-08 System and method for call management
US15/436,484 Active US9992655B2 (en) 2014-07-08 2017-02-17 System and method for call management
US15/958,186 Active US10425799B2 (en) 2014-07-08 2018-04-20 System and method for call management
US16/509,296 Active US11153737B2 (en) 2014-07-08 2019-07-11 System and method for call management

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/671,493 Pending US20220174468A1 (en) 2014-07-08 2022-02-14 System and method for call management

Country Status (1)

Country Link
US (6) US9838858B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9838858B2 (en) * 2014-07-08 2017-12-05 Rapidsos, Inc. System and method for call management
EP3195563B1 (en) 2014-09-19 2021-12-15 Rapidsos Inc. Method for emergency call management
US9659484B1 (en) 2015-11-02 2017-05-23 Rapidsos, Inc. Method and system for situational awareness for emergency response
US10051119B2 (en) 2015-11-12 2018-08-14 Laaser Critical Communications, Corp. Caller location determination systems and methods
WO2017106775A1 (en) 2015-12-17 2017-06-22 Rapidsos, Inc. Devices and methods for efficient emergency calling
US9998507B2 (en) 2015-12-22 2018-06-12 Rapidsos, Inc. Systems and methods for robust and persistent emergency communications
US9986404B2 (en) 2016-02-26 2018-05-29 Rapidsos, Inc. Systems and methods for emergency communications amongst groups of devices based on shared data
US10916139B2 (en) 2016-03-18 2021-02-09 Beyond Lucid Technologies, Inc. System and method for post-vehicle crash intelligence
JP6919978B2 (en) 2016-04-26 2021-08-18 ラピッドエスオーエス,インク. Systems and methods for emergency communications
CA3023982A1 (en) 2016-05-09 2017-11-16 Rapidsos, Inc. Systems and methods for emergency communications
WO2018039142A1 (en) 2016-08-22 2018-03-01 Rapidsos, Inc. Predictive analytics for emergency detection and response management
US10299311B2 (en) 2016-09-21 2019-05-21 Carbyne Ltd. System and method for ensuring continuous communication between a user device and an emergency dispatcher unit
JP2020507841A (en) 2017-01-17 2020-03-12 カレオ,インコーポレイテッド Drug delivery device with wireless connection and event detection
US10375558B2 (en) 2017-04-24 2019-08-06 Rapidsos, Inc. Modular emergency communication flow management system
WO2019113129A1 (en) 2017-12-05 2019-06-13 Rapidsos, Inc. Social media content for emergency management
US10820181B2 (en) 2018-02-09 2020-10-27 Rapidsos, Inc. Emergency location analysis system
WO2019241161A1 (en) 2018-06-11 2019-12-19 Rapidsos, Inc. Systems and user interfaces for emergency data integration
CN109240101B (en) * 2018-09-21 2022-04-15 深圳市华拓科技有限公司 Equipment remote control method and control system
US10977927B2 (en) 2018-10-24 2021-04-13 Rapidsos, Inc. Emergency communication flow management and notification system
US11218584B2 (en) 2019-02-22 2022-01-04 Rapidsos, Inc. Systems and methods for automated emergency response
US11146680B2 (en) 2019-03-29 2021-10-12 Rapidsos, Inc. Systems and methods for emergency data integration
WO2020205033A1 (en) 2019-03-29 2020-10-08 Rapidsos, Inc. Systems and methods for emergency data integration
US11330664B1 (en) 2020-12-31 2022-05-10 Rapidsos, Inc. Apparatus and method for obtaining emergency data and providing a map view

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277705B2 (en) * 2002-12-23 2007-10-02 Qualcomm Incorporated Method, apparatus, and system for selecting a service provider system
US9020462B2 (en) * 2007-03-13 2015-04-28 Blackberry Limited Enhanced handling of duress situations
US20170150335A1 (en) * 2015-11-12 2017-05-25 LaaSer Critical Communications Corp. Text message sender location and psap determination systems and methods

Family Cites Families (398)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379337A (en) 1991-08-16 1995-01-03 U S West Advanced Technologies, Inc. Method and system for providing emergency call service
US5479482A (en) * 1993-08-30 1995-12-26 At&T Corp. Cellular terminal for providing public emergency call location information
US5563931A (en) 1994-08-16 1996-10-08 Sos Wireless Communications & National Dispatch Center Emergency wireless telephone and control system, and method
US5596625A (en) * 1994-09-28 1997-01-21 U S West Technologies, Inc. Method for routing emergency calls during busy interface channel conditions
US5742666A (en) 1994-10-05 1998-04-21 Tele Digital Development, Inc. Emergency mobile telephone
US8041341B1 (en) 1995-06-07 2011-10-18 Single Touch Interactive, Inc. System of providing information to a telephony subscriber
US5710803A (en) 1995-06-13 1998-01-20 Kowal; Robert Emergency phone messaging system
US7271704B2 (en) 1996-01-23 2007-09-18 Mija Industries, Inc. Transmission of data to emergency response personnel
US6014555A (en) 1996-06-21 2000-01-11 Tendler Cellular, Inc. System for providing the telephone number of a telephone making an emergency call
US6477362B1 (en) 1997-04-22 2002-11-05 Ericsson Inc. Systems and methods for providing information to emergency service centers
US6256489B1 (en) 1997-04-24 2001-07-03 Lucent Technologies Inc. Enhanced emergency service for ISDN based emergency services in a wireless telecommunications system
JPH10314133A (en) 1997-05-21 1998-12-02 Teruo Ido Biological signal radio equipment of arm mounting type
US6707421B1 (en) 1997-08-19 2004-03-16 Siemens Vdo Automotive Corporation Driver information system
JPH1170086A (en) 1997-08-29 1999-03-16 Atsukusu Kk Emergency informing system
JP4044656B2 (en) 1997-10-14 2008-02-06 富士通株式会社 Data communication system and apparatus
US20060193278A1 (en) 1997-10-15 2006-08-31 Wolfgang Theimer Mobile telephone for Internet applications
US6167255A (en) 1998-07-29 2000-12-26 @Track Communications, Inc. System and method for providing menu data using a communication network
US6133853A (en) 1998-07-30 2000-10-17 American Calcar, Inc. Personal communication and positioning system
KR100343165B1 (en) 1998-09-04 2002-08-22 삼성전자 주식회사 Computer having the function of emergency call and emergency calling method using a computer
US6594634B1 (en) 1998-09-14 2003-07-15 Medtronic Physio-Control Corp. Method and apparatus for reporting emergency incidents
WO2000022593A1 (en) 1998-10-14 2000-04-20 Siemens Automotive Corporation Driver information system
US6249674B1 (en) 1998-12-16 2001-06-19 Nortel Networks Limited Emergency disablement of termination restrictions
US6363138B1 (en) 1999-02-04 2002-03-26 Red Sky Technologies, Inc. E-911/ALI information manager and management system
US6262655B1 (en) 1999-03-29 2001-07-17 Matsushita Electric Industrial Co., Ltd. Emergency reporting system and terminal apparatus therein
US20020027975A1 (en) 1999-08-12 2002-03-07 Oxley L. Thomas Multiple identification access codes for a single data file
EP1246494B1 (en) 1999-08-30 2005-02-02 Swisscom Mobile AG Emergency call in a telecommunications network
US6510315B1 (en) 1999-10-05 2003-01-21 Intel Corporation Systems and methods for maintaining the voice path connection during caller disconnect of an emergency 911 call
US6252943B1 (en) 1999-11-03 2001-06-26 At&T Corp Telephone network having dual gateway interconnection architecture for handling emergency services
US6459782B1 (en) 1999-11-10 2002-10-01 Goldstar Information Technologies, Llc System and method of developing mapping and directions from caller ID
GB2357670A (en) 1999-12-24 2001-06-27 Nokia Networks Oy Controlling a base station transmitter comprising a multi-carrier power amplifier
US6574323B1 (en) 2000-01-13 2003-06-03 Verizon Services Corp. Special need processing of services provided by an advanced intelligent network
US6556816B1 (en) 2000-01-31 2003-04-29 Lucent Technologies Inc. Method and apparatus for re-establishing a call in a communication system
US6650901B1 (en) 2000-02-29 2003-11-18 3Com Corporation System and method for providing user-configured telephone service in a data network telephony system
US20010051849A1 (en) 2000-02-29 2001-12-13 Boone James W. Emergency response information system
US6993118B2 (en) 2000-03-04 2006-01-31 Intrado Inc. System and method for accessing personal information relating to a caller in a remote telecommunication network
US6587545B1 (en) 2000-03-04 2003-07-01 Lucent Technologies Inc. System for providing expanded emergency service communication in a telecommunication network
US6600812B1 (en) * 2000-03-07 2003-07-29 Smart911, Inc. Method and apparatus for providing emergency response information
US6628933B1 (en) 2000-03-17 2003-09-30 Samsung Electronics Co., Ltd. System and method for prevention of emergency call drops in a wireless network
US6292687B1 (en) 2000-05-25 2001-09-18 Lowell Dewitt James Medical emergency response and locating system
US7783500B2 (en) 2000-07-19 2010-08-24 Ijet International, Inc. Personnel risk management system and methods
FR2812156A1 (en) 2000-07-21 2002-01-25 Gemplus Card Int Elderly persons emergency call system having emergency call unit wireless communication network accessing with handset server communication and emergency call handset/emergency call unit routing.
US7092370B2 (en) 2000-08-17 2006-08-15 Roamware, Inc. Method and system for wireless voice channel/data channel integration
US6594666B1 (en) 2000-09-25 2003-07-15 Oracle International Corp. Location aware application development framework
FI113713B (en) 2000-09-29 2004-05-31 Veikkaus Ab Oy Methods and arrangements for betting with off-line terminals
US20020120698A1 (en) 2000-11-20 2002-08-29 Tamargo J. William Method and system for emergency electronic communication network
US6502030B2 (en) 2001-01-25 2002-12-31 Labarge, Inc. Web based vehicle tracking and user on-board status system
US6571092B2 (en) 2001-02-15 2003-05-27 Nokia Networks Oy Technique for enabling emergency call callback of a terminal without a valid subscriber identity
WO2002082832A2 (en) 2001-04-03 2002-10-17 At & T Wireless Services, Inc. Methods and apparatus for mobile station location estimation
US6853302B2 (en) 2001-10-10 2005-02-08 David A. Monroe Networked personal security system
US20030109245A1 (en) 2001-11-05 2003-06-12 Mccalmont Patti L Routing of emergency calls based on geographic location of originating telephone end office
US6680998B1 (en) 2001-11-19 2004-01-20 Cisco Technology, Inc. Providing private network information during emergency calls
US20060085275A1 (en) 2002-01-16 2006-04-20 Stokes Patricia L System and method for facilitating online transactions
US6950499B2 (en) 2002-10-23 2005-09-27 Sbc Properties, L.P. Method of providing 911 service to a private branch exchange
US8494868B2 (en) 2002-05-07 2013-07-23 Priority Dispatch Corporation Method and system for a seamless interface between an emergency medical dispatch system and a nurse triage system
CN100441027C (en) 2002-08-08 2008-12-03 亚那整合装置科技股份有限公司 Location information of emergency call providing system using mobile network
US8068881B2 (en) 2002-08-09 2011-11-29 Avon Associates, Inc. Voice controlled multimedia and communications system
US7327280B2 (en) 2002-08-15 2008-02-05 California Institute Of Technology Emergency vehicle traffic signal preemption system
US7676215B2 (en) 2002-10-16 2010-03-09 Alcatel Lucent Usa Inc. Emergency call back method
US7640008B2 (en) 2002-10-18 2009-12-29 Kineto Wireless, Inc. Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7050786B2 (en) 2002-10-30 2006-05-23 Lockheed Martin Corporation Method and apparatus for locating a wireless device
US20040203572A1 (en) 2002-12-31 2004-10-14 Naveen Aerrabotu Emergency call-back for mobile terminals in a limited service mode
WO2004066240A2 (en) 2003-01-21 2004-08-05 Byron King Gps based vehicle warning and location system and method
JP3934065B2 (en) 2003-01-24 2007-06-20 松下電器産業株式会社 Emergency call terminal device and system
US7797459B1 (en) 2003-02-11 2010-09-14 At&T Intellectual Property Ii, L.P. Access independent common architecture for real-time communications services for networking environments
US7324801B2 (en) 2003-03-06 2008-01-29 Motorola, Inc. Emergency call-back for a wireless communication device equipped with a user removable module
US7054611B2 (en) 2003-03-29 2006-05-30 Intrado Inc. System and method for providing mobile caller information to a special number service station
US7409428B1 (en) 2003-04-22 2008-08-05 Cooper Technologies Company Systems and methods for messaging to multiple gateways
US7006829B2 (en) 2003-05-14 2006-02-28 Bellsouth Intellectual Property Corporation Method and system for routing a telephone call
US7577636B2 (en) 2003-05-28 2009-08-18 Fernandez Dennis S Network-extensible reconfigurable media appliance
US7313402B1 (en) 2003-06-24 2007-12-25 Verizon Corporate Services Group Inc. System and method for evaluating accuracy of an automatic location identification system
US7251470B2 (en) 2003-06-25 2007-07-31 Nokia Corporation Emergency response system with personal emergency device
US20050085215A1 (en) 2003-10-21 2005-04-21 Nokia Corporation Method and related apparatus for emergency calling in a touch screen mobile phone from a touch screen and keypad lock active state
US7016478B2 (en) 2003-11-24 2006-03-21 Lucent Technologies Inc. 911 emergency voice/data telecommunication network
US7483519B2 (en) 2003-12-23 2009-01-27 At&T Intellectual Property I, L.P. Caller controlled systems to suppress system to de-activate 911 indicator
US7212111B2 (en) 2003-12-30 2007-05-01 Motorola, Inc. Method and system for use in emergency notification and determining location
US20060154642A1 (en) 2004-02-20 2006-07-13 Scannell Robert F Jr Medication & health, environmental, and security monitoring, alert, intervention, information and network system with associated and supporting apparatuses
US7177399B2 (en) 2004-02-27 2007-02-13 Nortel Network Limited Determining the geographical location from which an emergency call originates in a packet-based communications network
US7308250B2 (en) 2004-03-16 2007-12-11 Broadcom Corporation Integration of secure identification logic into cell phone
WO2005089087A2 (en) 2004-03-19 2005-09-29 United States Postal Service System and method for providing centralized emergency management
CA2561939C (en) 2004-04-02 2011-10-18 Spatial Data Analytics Corporation Method and system for forecasting events and results based on geospatial modeling
US7180415B2 (en) 2004-04-30 2007-02-20 Speed 3 Endeavors, Llc Safety/security alert system
US8682279B2 (en) 2004-05-07 2014-03-25 Interdigital Technology Corporation Supporting emergency calls on a wireless local area network
JP4422556B2 (en) 2004-06-10 2010-02-24 株式会社ルネサステクノロジ Nonvolatile semiconductor memory device and writing method thereof
US8265587B2 (en) 2004-06-17 2012-09-11 West Corporation System and method for amending instructions for emergency auxiliary services following an emergency services request
US7519351B2 (en) 2004-07-09 2009-04-14 Lucent Technologies Inc. Emergency mode operation in a wireless communication network
US20080294058A1 (en) 2004-08-16 2008-11-27 Dror Shklarski Wearable Device, System and Method for Measuring a Pulse While a User is in Motion
WO2006047425A2 (en) 2004-10-25 2006-05-04 Intrado, Inc. System and method for unilateral verification of caller location information
US7684782B2 (en) * 2005-04-13 2010-03-23 Wirelesswerx International, Inc. Method and system for initiating and handling an emergency call utilizing geographical zones
US20080194238A1 (en) 2004-11-11 2008-08-14 Sun Tae Kwon Wireless Terminal Having Information Exchange Facility, Information Exchange System and Method Using the Wireless Terminal
US7224773B2 (en) 2004-12-23 2007-05-29 At&T Corp. Method and apparatus for providing emergency calls to a disabled endpoint device
US7177400B2 (en) 2005-01-19 2007-02-13 Intrado Inc. System and method for providing a map image supplemental to automatic location identification information
US7437143B1 (en) 2005-02-23 2008-10-14 Sprint Spectrum L.P. Method and system for setting up emergency services calls to an emergency services network
US7565131B2 (en) 2005-03-08 2009-07-21 Alcatel-Lucent Usa Inc. Emergency call back through intersystem paging
US7646854B2 (en) 2005-03-14 2010-01-12 Scenera Technologies, Llc Method and system for collecting contemporaneous information relating to a critical event
US20060217105A1 (en) * 2005-03-25 2006-09-28 Siemens Communications, Inc. Method and system to provide location and multimedia data using a wireless device
JP4983005B2 (en) 2005-04-12 2012-07-25 富士通株式会社 Electronic device, priority connection device, priority connection method, and priority connection program
US8140363B2 (en) 2005-05-02 2012-03-20 Alphatrac, Inc. System and method for integrating hazard-based decision making tools and processes
JP4706040B2 (en) 2005-06-06 2011-06-22 長崎県公立大学法人 Life crisis emergency call system
US20070003024A1 (en) 2005-06-22 2007-01-04 Cml Emergency Services Inc. Network emergency call taking system and method
US20060293024A1 (en) 2005-06-23 2006-12-28 Lucent Technologies Inc. Methods and apparatus for improved 911 support for VoIP service
US10178522B2 (en) 2005-08-02 2019-01-08 Qualcomm Incorporated VoIP emergency call support
WO2007014574A1 (en) 2005-08-02 2007-02-08 Galini Associates Ltd System and method for controlling multiple services with restricted access
US20070030146A1 (en) 2005-08-03 2007-02-08 Gps-911, Llc Sensor-Based Communications Device Activator
US8515386B2 (en) 2005-08-05 2013-08-20 Dennis J. Hasenfang Emergency services for voice over IP telephony (E-VoIP)
US7548158B2 (en) 2005-08-08 2009-06-16 Telecommunication Systems, Inc. First responder wireless emergency alerting with automatic callback and location triggering
US8045954B2 (en) 2005-08-19 2011-10-25 University Of South Florida Wireless emergency-reporting system
US7333818B2 (en) 2005-08-25 2008-02-19 Kyocera Corporation System and method for call processing in a mobile device with position location capability
US7515560B2 (en) 2005-09-07 2009-04-07 F4W, Inc. Apparatus and method for dynamically updating and communicating within flexible networks
US7821930B2 (en) 2005-09-12 2010-10-26 Microsoft Corporation Fault-tolerant communications in routed networks
US7889066B2 (en) 2005-09-20 2011-02-15 Selflink Llc Self-configuring emergency event alarm system having connection to a public safety answering point
WO2007087077A2 (en) 2006-01-17 2007-08-02 Medical Envelope L.L.C. System and method for providing medical and contact information during an emergency call
US7844247B2 (en) 2006-01-25 2010-11-30 International Business Machines Corporation System for automatic wireless utilization of cellular telephone devices in an emergency by co-opting nearby cellular telephone devices
CA2646607C (en) * 2006-03-20 2016-09-06 Rave Wireless, Inc. Personal security system
CA2662606C (en) 2008-04-18 2016-01-12 Rave Wireless, Inc. Personalized message escrow
US8126424B2 (en) * 2006-03-20 2012-02-28 Rave Wireless, Inc. Personalized message escrow with graphical route representation
US8165562B2 (en) * 2006-03-20 2012-04-24 Rave Wireless, Inc. Personalized message escrow
US8442481B2 (en) 2006-05-16 2013-05-14 RedSky Technologies, Inc. Emergency location information gateway for public safety answering points (PSAPs) and method of use
US8918075B2 (en) 2006-05-16 2014-12-23 RedSky Technologies, Inc. Method and system for an emergency location information service (E-LIS) from wearable devices
US10511950B2 (en) 2006-05-16 2019-12-17 RedSky Technologies, Inc. Method and system for an emergency location information service (E-LIS) for Internet of Things (IoT) devices
US7937067B2 (en) 2006-05-16 2011-05-03 Red Sky Technologies, Inc. System and method for an emergency location information service (E-LIS)
US8442482B2 (en) 2006-05-16 2013-05-14 RedSky Technologies, Inc. Method and system for an emergency location information service (E-LIS)
US9635534B2 (en) 2006-05-16 2017-04-25 RedSky Technologies, Inc. Method and system for an emergency location information service (E-LIS) from automated vehicles
US9094816B2 (en) 2006-05-16 2015-07-28 RedSky Technologies, Inc. Method and system for an emergency location information service (E-LIS) from unmanned aerial vehicles (UAV)
US8755767B2 (en) * 2006-05-16 2014-06-17 RedSky Technologies, Inc. Method and system for an emergency location information service (E-LIS)
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US8441924B2 (en) 2006-07-20 2013-05-14 Verizon Services Organization Inc. Redundant capability in a fiber optic network
BRPI0603938B1 (en) 2006-08-18 2019-10-22 Inst Alberto Luiz Coimbra De Pos Graduacao E Pesquisa De Engenharia Coppe/Ufrj Method for Forming Spontaneous Virtual Communities Based on Common Interests Using Wireless Communication Equipment
US8774370B2 (en) 2006-08-21 2014-07-08 Connexon Telecom Inc. System and method for delivering callback numbers for emergency calls in a VOIP system
US20080077474A1 (en) 2006-09-20 2008-03-27 Dumas Mark E Method and system for global consolidated risk, threat and opportunity assessment
KR101305286B1 (en) 2006-09-21 2013-09-06 엘지전자 주식회사 Mobile communications terminal and method for telephone calling emergency call
US9408046B2 (en) 2006-10-03 2016-08-02 Telecommunication Systems, Inc. 911 data messaging
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US8531995B2 (en) * 2006-11-01 2013-09-10 At&T Intellectual Property I, L.P. Systems and methods for location management and emergency support for a voice over internet protocol device
US7469138B2 (en) * 2006-12-04 2008-12-23 International Business Machines Corporation Method and system for providing location information for mobile internet calling devices
US7848733B2 (en) 2006-12-28 2010-12-07 Trueposition, Inc. Emergency wireless location system including a location determining receiver
US20080166990A1 (en) 2007-01-09 2008-07-10 Shrage Toiv Telephone Directory Assistance System
AU2008208041B2 (en) 2007-01-22 2011-07-07 Iar, Llc Emergency responder reply system and related methods
EP1959659B1 (en) 2007-02-15 2009-04-22 Research In Motion Limited Emergency number selection for mobile communications device
US7813750B2 (en) 2007-03-05 2010-10-12 Hobby Patrick L Emergency radio communications system incorporating integral public safety radio bridging capability
US20100156626A1 (en) 2007-03-20 2010-06-24 Brian Story Remote Telemetric Panic and Service Apparatus
US8149269B2 (en) 2007-04-10 2012-04-03 West Corporation Emergency services call delivery from a legacy communications device to a VoIP PSAP
US8624727B2 (en) 2008-01-28 2014-01-07 Saigh And Son, Llc Personal safety mobile notification system
US8275352B2 (en) 2007-06-28 2012-09-25 Apple Inc. Location-based emergency information
KR100919042B1 (en) 2007-08-21 2009-09-24 주식회사 케이티테크 Apparatus and method for transferring rescue asking message
EP2196014A4 (en) 2007-09-17 2014-12-24 Telecomm Systems Inc Emergency 911 data messaging
US8289953B2 (en) 2007-10-16 2012-10-16 Centurylink Intellectual Property Llc System and method for providing location information to a public safety answering point during an emergency 911 call from a softphone
WO2009061858A1 (en) 2007-11-05 2009-05-14 T-Mobile Usa, Inc. Method and system for allowing incoming emergency communications on a disabled device
US20090134982A1 (en) 2007-11-27 2009-05-28 Alertus Technologies, Llc System and method for distributing alert notifications
US20090257345A1 (en) 2007-12-07 2009-10-15 Nsgdatacom, Inc. Apparatus, method and computer program product for providing self adapting transport of public switched telephone network (pstn) circuits over a wireless network
US8116723B2 (en) 2008-01-17 2012-02-14 Kaltsukis Calvin L Network server emergency information accessing method
US8868028B1 (en) 2008-01-17 2014-10-21 Calvin L. Kaltsukis Network server emergency information accessing method
US20090207843A1 (en) 2008-02-15 2009-08-20 Andreasen Flemming S System and method for providing network address translation control in a network environment
US8364117B2 (en) 2008-02-21 2013-01-29 Centurylink Intellectual Property Llc System and method for updating location information of voice-over-internet protocol based devices for E911 service
KR20090092900A (en) 2008-02-28 2009-09-02 신준호 Safety and Care System for Child and Feeble Person
US20090262682A1 (en) 2008-04-18 2009-10-22 Amit Khetawat Method and Apparatus for Transport of RANAP Messages over the Iuh Interface in a Home Node B System
US8401565B2 (en) 2008-05-22 2013-03-19 Nokia Corporation Delayed emergency position determination and transmission
US8102972B2 (en) 2008-06-05 2012-01-24 Telecommunication Systems, Inc. Emergency services selective router interface translator
US8620255B2 (en) 2008-06-16 2013-12-31 Qualcomm Incorporated Method and apparatus for supporting emergency calls and location for femto access points
US20090322513A1 (en) 2008-06-27 2009-12-31 Franklin Dun-Jen Hwang Medical emergency alert system and method
US9025734B2 (en) 2008-07-03 2015-05-05 Centurylink Intellectual Property Llc PSAP capabilities defining system and method for handling emergency text messaging
US8165560B2 (en) 2008-08-20 2012-04-24 Sony Mobile Communications Ab System and method for providing data to an emergency call center
US8195121B2 (en) 2008-09-15 2012-06-05 T-Mobile Usa, Inc. Method and system for establishing messaging communication with a service provider, such as a PSAP (public safety answering point)
US10089854B2 (en) 2008-09-24 2018-10-02 Iintegrate Systems Pty Ltd Alert generation system and method
WO2010042554A1 (en) 2008-10-06 2010-04-15 Boar's Head Corporation D/B/A Public Safety Network A system and method for determining the routing of 911 calls
US9285504B2 (en) 2008-11-13 2016-03-15 Saint Louis University Apparatus and method for providing environmental predictive indicators to emergency response managers
KR101049910B1 (en) 2008-11-18 2011-07-19 한국전자통신연구원 Apparatus and method for emergency response service using mobile terminal
US8195215B2 (en) 2008-12-18 2012-06-05 Motorola Solutions, Inc. Method and system for forming a communication group for content distribution related to an event
US20100159871A1 (en) 2008-12-22 2010-06-24 Nortel Networks Limited Predictive notification system for emergency services
US8300772B2 (en) 2008-12-31 2012-10-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for emergency call processing
US8649759B2 (en) 2009-01-28 2014-02-11 Blackberry Limited Method of providing location information in an emergency
US8265022B2 (en) 2009-02-10 2012-09-11 Apple Inc. Apparatus and methods for transmission of emergency call data over wireless networks
EP3133846B1 (en) 2009-03-03 2018-11-07 Airbiquity, Inc. In-vehicle system (ivs) control of emergency data communications
US10600315B2 (en) 2009-03-23 2020-03-24 Chris Kelly Mesh network enabled building safety system and method
US8484352B2 (en) * 2009-03-30 2013-07-09 Rave Wireless, Inc. Emergency information services
US8984143B2 (en) * 2010-03-30 2015-03-17 Rave Wireless, Inc. Emergency information services
US20100261448A1 (en) 2009-04-09 2010-10-14 Vixxi Solutions, Inc. System and method for emergency text messaging
WO2010123421A1 (en) 2009-04-22 2010-10-28 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatuses for transmission of warning information in a cellular communications network
US8682281B2 (en) 2009-04-24 2014-03-25 T-Mobile Usa, Inc. Monitoring application and method for establishing emergency communication sessions with disabled devices based on transmitted messages
US8867485B2 (en) 2009-05-05 2014-10-21 Telecommunication Systems, Inc. Multiple location retrieval function (LRF) network having location continuity
US8369822B2 (en) 2009-05-28 2013-02-05 At&T Intellectual Property I, Lp Systems and methods for providing emergency callback procedures
US20110009086A1 (en) 2009-07-10 2011-01-13 Todd Poremba Text to 9-1-1 emergency communication
US8594015B2 (en) 2009-07-29 2013-11-26 T-Mobile Usa, Inc. System and method for providing emergency service in an IP-based wireless network
US8249546B1 (en) 2009-08-18 2012-08-21 Sprint Spectrum L.P. Method and system for improving access to emergency services over a shared wireless communications medium
US9384491B1 (en) 2009-08-19 2016-07-05 Allstate Insurance Company Roadside assistance
US20110071880A1 (en) 2009-09-23 2011-03-24 Donald Spector Location-based Emergency Response System and Method
US8150367B1 (en) * 2009-09-30 2012-04-03 Google Inc. System and method of determining a location based on location of detected signals
US9237431B2 (en) 2009-10-13 2016-01-12 Verizon Patent And Licensing Inc. Method and apparatus for extended emergency service
TWI455633B (en) 2009-11-05 2014-10-01 Htc Corp Reestablishment of an rrc connection for an emergency call in an lte network
MX2012005570A (en) 2009-11-11 2012-12-17 Lifestream Corp Wireless device emergency services connection and panic button, with crime and safety information system.
US8509729B2 (en) 2009-11-17 2013-08-13 At&T Mobility Ii Llc Interactive personal emergency communications
US8750268B2 (en) 2009-12-04 2014-06-10 Blackberry Limited System and method for multimedia emergency access in a wireless network
KR20110066404A (en) 2009-12-11 2011-06-17 주식회사 에스원 Method and system of self-calling and emergency report using mobile device, and recording medium thereof
US8478229B2 (en) 2009-12-17 2013-07-02 Verizon Patent And Licensing Inc. Method and apparatus for notifying registered devices of an emergency call
US20110153368A1 (en) 2009-12-17 2011-06-23 XtremeGIS, Inc. User Interactive Reinsurance Risk Analysis Application
US8811935B2 (en) 2010-01-12 2014-08-19 Blackberry Limited Emergency services in home cells system and method
US20120002792A1 (en) 2010-01-14 2012-01-05 Michael Chang Wireless intercom emergency assistance system
KR101142344B1 (en) 2010-01-25 2012-06-13 티더블유모바일 주식회사 Emergency signal transmission system using of a mobile phone and method of the same
US20110201357A1 (en) 2010-02-12 2011-08-18 David Garrett Method and system for refining a location of a base station and/or a mobile device based on signal strength measurements and corresponding transmitter and/or receiver antenna patterns
JP2011223285A (en) 2010-04-09 2011-11-04 Kyocera Corp Portable electronic equipment
US8472973B2 (en) * 2010-04-23 2013-06-25 Microsoft Corporation Adaptive energy-efficient location determination
US8417212B2 (en) 2010-05-18 2013-04-09 General Motors Llc Methods for providing emergency services to a mobile vehicle
US8417090B2 (en) 2010-06-04 2013-04-09 Matthew Joseph FLEMING System and method for management of surveillance devices and surveillance footage
US8284748B2 (en) 2010-07-07 2012-10-09 Apple Inc. Ad hoc formation and tracking of location-sharing groups
US8989699B2 (en) 2010-07-27 2015-03-24 Ford Global Technologies, Llc Methods and apparatus for selective emergency alert notification and response
CN102143436B (en) 2010-09-17 2015-05-06 华为软件技术有限公司 Urgent call processing method in PoC service, server and system
US8311522B1 (en) 2010-09-28 2012-11-13 E.Digital Corporation System and method for managing mobile communications
US20120092161A1 (en) * 2010-10-18 2012-04-19 Smartwatch, Inc. Systems and methods for notifying proximal community members of an emergency or event
US9937355B2 (en) 2010-11-08 2018-04-10 Zoll Medical Corporation Remote medical device alarm
US9077676B2 (en) * 2010-11-10 2015-07-07 Rave Wireless, Inc. Intelligent messaging
US8825687B2 (en) * 2010-11-10 2014-09-02 Rave Wireless, Inc. Data management system
US8644301B2 (en) 2010-11-29 2014-02-04 Clearwire Ip Holdings Llc Systems and methods of supporting emergency communications
US8806030B2 (en) 2010-12-06 2014-08-12 Microsoft Corporation Multichannel connections in file system sessions
US8538468B2 (en) 2010-12-14 2013-09-17 At&T Mobility Ii Llc Provision of text messages to emergency call takers
US20120157795A1 (en) 2010-12-15 2012-06-21 Ross Medical Corporation Patient Emergency Response System
EP2668794B1 (en) 2011-01-26 2014-12-24 Telefonaktiebolaget L M Ericsson (Publ) Relaying contact information between a private emergency point and a public emergency point
WO2012102751A1 (en) 2011-01-27 2012-08-02 Hewlett-Packard Development Company, L. P. Methods for providing an emergency contact service in a telecommunications network using permissions based on status of requesting entities
US8396970B2 (en) 2011-02-01 2013-03-12 Limelight Networks, Inc. Content processing between locations workflow in content delivery networks
US8862055B2 (en) 2011-02-04 2014-10-14 Takwak GmBh Systems and methods for defining group of users with mobile devices
US9374787B2 (en) 2011-02-10 2016-06-21 Alcatel Lucent Method and apparatus of smart power management for mobile communication terminals using power thresholds
US8576066B2 (en) 2011-02-28 2013-11-05 International Business Machines Corporation Managing emergency response services using mobile communication devices
US8369488B2 (en) 2011-03-15 2013-02-05 At&T Mobility Ii Llc Triggering a 911 voice call from a non-voice message
WO2012129561A1 (en) 2011-03-24 2012-09-27 Pariyani Ankur Dynamic risk analysis using alarm database
JP5705621B2 (en) 2011-04-05 2015-04-22 株式会社Nttドコモ Lifesaving first aid system and method and lifesaving first aid device
US20120258681A1 (en) 2011-04-07 2012-10-11 Mobile Security Worldwide Ltd. Method for emergency signaling via mobile telecommunications device
US8760290B2 (en) * 2011-04-08 2014-06-24 Rave Wireless, Inc. Public safety analysis system
US10341494B2 (en) 2011-04-08 2019-07-02 Rave Wirless, Inc. Emergency response data management
GB201107849D0 (en) 2011-05-11 2011-06-22 Cambridge Silicon Radio Ltd Cooperative positioning
US9167443B2 (en) 2011-05-18 2015-10-20 Radius Networks, Inc. System and method for managing content exchanges in a wireless network using a listener module
US9258680B2 (en) * 2011-05-20 2016-02-09 Empire Technology Development Llc Location-transmitting device for determining location of a wireless communication device
US20120309340A1 (en) 2011-06-01 2012-12-06 Embarq Holdings Company, Llc System and method for communicating emergency information through messaging
US8340630B1 (en) 2011-06-02 2012-12-25 Trueposition, Inc. Remotely activatable locator with backchannel
US8249547B1 (en) 2011-06-16 2012-08-21 Albert Fellner Emergency alert device with mobile phone
US9008078B2 (en) 2011-06-28 2015-04-14 Verizon Patent And Licensing Inc. Enhanced emergency services for fixed wireless customer premises equipment
US8761721B2 (en) 2011-07-27 2014-06-24 Verizon Patent And Licensing Inc. Integrated emergency call support for mobile and nomadic devices
US20130030825A1 (en) 2011-07-29 2013-01-31 General Electric Company Systems and methods for automated triage and scheduling in an emergency department
US20130203373A1 (en) 2011-08-12 2013-08-08 Qualcomm Incorporated Emergency messaging between citizens and authorities
US10045153B2 (en) 2011-08-18 2018-08-07 Rivada Research, Llc Enhanced location based information enabling self-realized leases
US20170238136A1 (en) 2011-08-18 2017-08-17 Rivada Research, Llc Method and System for Improving the Location of Fixed Wireless CBSD Nodes
WO2013028877A2 (en) 2011-08-24 2013-02-28 FRESS, Inc. Method and apparatus for creating emergency social network
US8923801B2 (en) 2011-08-25 2014-12-30 Avaya Inc. Method by which PSAPs can identify and request information from cellular devices that are near emergent events
US8649806B2 (en) 2011-09-02 2014-02-11 Telecommunication Systems, Inc. Aggregate location dynometer (ALD)
US9020476B2 (en) 2011-09-12 2015-04-28 Leipzig Technology, Llc System and method for remote care and monitoring using a mobile device
US9078092B2 (en) * 2011-09-23 2015-07-07 Rave Wireless, Inc. Routing engine for emergency communications
US9426304B2 (en) 2011-09-26 2016-08-23 Solacom Technologies Inc. Answering or releasing emergency calls from a map display for an emergency services platform
US8766789B2 (en) 2011-09-30 2014-07-01 Cardiocom, Llc First emergency response device
US10178537B2 (en) 2011-11-10 2019-01-08 Sirengps, Llc Emergency messaging system and method of responding to an emergency
CN104054301B (en) 2011-11-11 2018-05-08 卡尔加里科学公司 Remotely access the session transmission and hang-up in application framework
US8897807B2 (en) * 2011-11-15 2014-11-25 Cellco Partnership Using mobile messaging service message(s) as bearer for location related communications during voice call
US9294428B2 (en) 2012-01-18 2016-03-22 Kinectus, Llc Systems and methods for establishing communications between mobile device users
WO2013112411A1 (en) 2012-01-24 2013-08-01 Secure Couture, Llc System utilizing a combination for including information within an outbound communication channel of a mobile telephony-capable computing device
EP2807809B1 (en) 2012-01-26 2018-12-26 Telefonaktiebolaget LM Ericsson (publ) Providing an ims voice session via a packet switch network and an emergency voice session via a circuit switch network
US8751265B2 (en) * 2012-02-06 2014-06-10 Rave Wireless, Inc. Location-based information for emergency management
US20130226369A1 (en) 2012-02-23 2013-08-29 Sirius XM Radio, Inc. Portable vehicle telematics systems and methods
US9147336B2 (en) * 2012-02-29 2015-09-29 Verizon Patent And Licensing Inc. Method and system for generating emergency notifications based on aggregate event data
US20130237175A1 (en) 2012-03-12 2013-09-12 Rave Wireless, Inc. Adaptive mobile messaging interface for implementing emergency protocols
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US10911515B2 (en) 2012-05-24 2021-02-02 Deka Products Limited Partnership System, method, and apparatus for electronic patient care
US20130331058A1 (en) 2012-06-12 2013-12-12 Help Now Technologies, Llc Emergency alert system
US20130331055A1 (en) 2012-06-12 2013-12-12 Guardity Technologies, Inc. Qualifying Automatic Vehicle Crash Emergency Calls to Public Safety Answering Points
US9161196B2 (en) 2012-08-07 2015-10-13 Google Technology Holdings LLC Apparatus and method for secure private location information transfer
US8868025B2 (en) 2012-08-14 2014-10-21 Qualcomm Incorporated Methods, systems and devices for prioritizing access to wireless networks
US10142469B2 (en) 2012-09-10 2018-11-27 Tools/400 Inc. Emergency 9-1-1 portal and application
US9438731B2 (en) 2012-09-10 2016-09-06 Tools/400 Inc. Emergency 9-1-1 portal and application
US9055425B2 (en) 2012-09-27 2015-06-09 Nokia Technologies Oy Method and apparatus for enhancing emergency calling with mobile devices
US8943556B2 (en) 2012-09-28 2015-01-27 Intel Corporation Secure information release
JP6154906B2 (en) 2012-10-19 2017-06-28 マカフィー, インコーポレイテッド Safety and emergency services
US20140113606A1 (en) 2012-10-23 2014-04-24 Bandwidth.Com, Inc. Systems and Methods for Managing Phone Numbers Associated With Multi-Mode Communication Devices
KR20140052780A (en) 2012-10-25 2014-05-07 계명대학교 산학협력단 Method for processing and transmitting location information in emergency situation using smart device and system of the same
US10708121B2 (en) 2012-11-05 2020-07-07 Comcast Cable Communications, Llc Intelligent network
WO2014074420A1 (en) 2012-11-06 2014-05-15 Secure Couture, Llc System for providing emergency communictions between mobile computing devices and emergency services answering points
KR20140060039A (en) 2012-11-09 2014-05-19 삼성전자주식회사 Method and terminal for tranmitting emergency message
US20140142979A1 (en) 2012-11-21 2014-05-22 Tracy Mitsunaga Medical Quick Response Codes and Information Storage and Retrieval System
US9210561B2 (en) 2012-11-28 2015-12-08 Lookout, Inc. Method and system for managing an emergency for enhanced user security using a mobile communication device
US8874070B2 (en) 2012-11-29 2014-10-28 At&T Intellectual Property, I, L.P. Text message generation for emergency services as a backup to voice communications
EP2925214A4 (en) 2012-11-30 2016-09-21 Kinsa Inc Mobile-enabled health system
US8843105B2 (en) 2012-12-04 2014-09-23 At&T Intellectual Property I, L.P. Centralized rescue network
US8989698B2 (en) 2012-12-04 2015-03-24 At&T Intellectual Property I, L.P. Supplemental rescue resources
US9319450B2 (en) 2012-12-10 2016-04-19 At&T Intellectual Property I, L.P. Emergency alert messages via social media
US9167379B1 (en) 2012-12-17 2015-10-20 Tritech Software Systems Automatic location-based emergency response system
US8948732B1 (en) 2013-01-14 2015-02-03 beamSmart Inc. System and method for responding to service requests and facilitating communication between relevant parties
US20140199959A1 (en) 2013-01-14 2014-07-17 Microsoft Corporation Location determination for emergency services in wireless networks
KR20140093568A (en) 2013-01-17 2014-07-28 한양대학교 산학협력단 Smart disaster-prevention platform and smart sharing disaster-prevention method on web 2. 0
AU2014212257B2 (en) 2013-01-31 2017-06-29 Jeffrey J. Clawson System and method for text messaging for emergency response
US9443415B2 (en) 2013-02-06 2016-09-13 Michael Nepo Disseminating information to facilitate user safety
US20140222462A1 (en) 2013-02-07 2014-08-07 Ian Shakil System and Method for Augmenting Healthcare Provider Performance
US9426833B2 (en) 2013-03-01 2016-08-23 T-Mobile Usa, Inc. Systems and methods for emergency call route failover
US9171450B2 (en) 2013-03-08 2015-10-27 Qualcomm Incorporated Emergency handling system using informative alarm sound
US20140257846A1 (en) 2013-03-11 2014-09-11 International Business Machines Corporation Identifying potential audit targets in fraud and abuse investigations
US9648477B2 (en) 2013-03-14 2017-05-09 Sirius Xm Connected Vehicle Services Inc. Method and apparatus for providing customization of public safety answering point information delivery
US9107058B2 (en) 2013-04-08 2015-08-11 Nokia Technologies Oy Method and apparatus for emergency phone in a vehicle key
US10375513B2 (en) 2013-05-01 2019-08-06 3 Electric Sheep Pty Ltd Event notification systems and methods
CA2947936A1 (en) 2013-05-04 2014-11-13 Christopher Decharms Mobile security technology
US9426638B1 (en) 2013-05-14 2016-08-23 Tapshield Protection, LLC System and method for signaling and responding to an emergency situation
US9408051B2 (en) 2013-05-29 2016-08-02 Avaya Inc. Context-aware social media disaster response and emergency management
US9324120B2 (en) 2013-06-07 2016-04-26 Emergency University, Inc. Method and apparatus for emergency response notification
AU2014278595B2 (en) 2013-06-13 2017-04-06 Apple Inc. System and method for emergency calls initiated by voice command
US8866606B1 (en) 2013-07-16 2014-10-21 Rockwilli RMR LLC Systems and methods for automated personal emergency responses
US9148771B2 (en) 2013-07-29 2015-09-29 Motorola Solutions, Inc. Method to provide context-aware linkage between NG9-1-1 SMS and public safety incident
JP2015041976A (en) 2013-08-23 2015-03-02 株式会社日立製作所 Diversion route calculation method in emergency
US20150065082A1 (en) 2013-08-27 2015-03-05 Akhil SEHGAL Personal safety device, system and a method
US9497585B1 (en) 2013-09-12 2016-11-15 Symantec Corporation Systems and methods for managing emergency information
CN103488729B (en) 2013-09-17 2017-02-15 清华大学 General internet address construction method and system based on extensible markup language
US20150081066A1 (en) * 2013-09-17 2015-03-19 Sony Corporation Presenting audio based on biometrics parameters
DE202013008368U1 (en) 2013-09-20 2015-01-08 Ultravex Trading Llc Personal and property protection system
US9894489B2 (en) 2013-09-30 2018-02-13 William J. Johnson System and method for situational proximity observation alerting privileged recipients
US20150099481A1 (en) 2013-10-03 2015-04-09 White Cheetah, Inc. Method and system for providing alert notifications
KR101612423B1 (en) 2013-10-21 2016-04-22 대한민국 Disaster detecting system using social media
US9572002B2 (en) 2013-10-22 2017-02-14 Patrocinium Systems LLC Interactive emergency information and identification systems and methods
CN105874826B (en) 2013-11-08 2021-01-15 瑞典爱立信有限公司 Method and apparatus for assisting emergency calls
US9231641B2 (en) 2013-11-15 2016-01-05 Motorola Solutions, Inc. Temperature monitoring cable
EP3080948B1 (en) 2013-12-12 2019-03-20 BlackBerry Limited Secure communication channels
US9554260B2 (en) 2013-12-16 2017-01-24 Alertsz, LLC System and method for distributed messaging among members of a community
US9148772B2 (en) 2013-12-19 2015-09-29 Cellco Partnership Volte device preference for E911
WO2015103067A1 (en) * 2014-01-03 2015-07-09 Mcafee, Inc. Secure context sharing for priority calling and various personal safety mechanisms
US20150229766A1 (en) 2014-02-13 2015-08-13 Synergem Technologies, Inc. Methods and Systems for Routing Emergency Service Calls Background
KR20150097031A (en) 2014-02-17 2015-08-26 모다정보통신 주식회사 Method and Apparatus for Detecting and Forecasting Dangerous Object by Device Information Exchange among Devices
US8890685B1 (en) 2014-02-18 2014-11-18 Guardly Corporation Emergency notification using indoor positioning
CN104883267B (en) 2014-02-28 2018-07-20 新华三技术有限公司 network configuration access method and device
US20150269700A1 (en) 2014-03-24 2015-09-24 Athoc, Inc. Exchange of crisis-related information amongst multiple individuals and multiple organizations
US9877177B2 (en) 2014-04-03 2018-01-23 Comcast Cable Communications, Llc Emergency information delivery
US9294610B2 (en) 2014-05-02 2016-03-22 Gecom S.P.A. Emergency alert system and program for portable devices
US20150317809A1 (en) 2014-05-05 2015-11-05 The Curators Of The University Of Missouri Systems and methods for emergency situation communications
US20150350262A1 (en) 2014-06-02 2015-12-03 Nokia Corporation Causation of establishment of a location sharing group
US9414212B2 (en) 2014-06-08 2016-08-09 Viken Nokhoudian Community emergency request communication system
US10002375B1 (en) 2014-06-10 2018-06-19 Amazon Technologies, Inc. Hashtag shopping and rating
KR20170018401A (en) 2014-06-11 2017-02-17 코닌클리케 필립스 엔.브이. Personal emergency response system with predictive emergency dispatch risk assessment
US9503361B2 (en) 2014-06-13 2016-11-22 Cisco Technology, Inc. Active/static path redundancy
US20170300629A1 (en) 2014-06-20 2017-10-19 The Emergency Contact Project, Inc. Responder-aware auto-triggering of triaged contact events
US9129219B1 (en) 2014-06-30 2015-09-08 Palantir Technologies, Inc. Crime risk forecasting
EP3164855B1 (en) 2014-07-06 2019-01-30 Universal Site Monitoring Unit Trust Personal hazard detection system with redundant position registration and communication
US11237525B2 (en) * 2014-07-07 2022-02-01 Shenzhen GOODIX Technology Co., Ltd. Smart watch
US9838858B2 (en) 2014-07-08 2017-12-05 Rapidsos, Inc. System and method for call management
US9374698B2 (en) 2014-08-22 2016-06-21 Verizon Patent And Licensing Inc. Personalized emergency identification and communication
US9338305B2 (en) 2014-08-26 2016-05-10 Verizon Patent And Licensing Inc. Calling back a device that made a call
US9629185B1 (en) 2014-09-03 2017-04-18 Tritech Software Systems Establishing text communication sessions between wireless mobile devices and emergency call centers
EP3195563B1 (en) 2014-09-19 2021-12-15 Rapidsos Inc. Method for emergency call management
US10142213B1 (en) 2014-09-22 2018-11-27 Symantec Corporation Techniques for providing event driven notifications
CN104539776A (en) 2014-11-24 2015-04-22 小米科技有限责任公司 Alarm prompting method and device
US10750343B2 (en) 2014-12-12 2020-08-18 Telefonaktiebolaget Lm Ericsson (Publ) Configuration technique for an emergency session
US10111078B2 (en) 2014-12-18 2018-10-23 Qualcomm Incorporated Techniques to support emergency calls with over-the-top service provider
US9386414B1 (en) 2015-01-26 2016-07-05 Apple Inc. Location support for emergency calls
US10693923B2 (en) 2015-01-28 2020-06-23 Vmware, Inc. Establishing streaming sessions during remote sessions
US9549419B2 (en) 2015-01-30 2017-01-17 Telecommunication Systems, Inc. Trigger mechanism
KR101666820B1 (en) 2015-02-10 2016-10-17 주식회사 주빅스 Air quality prediction and management system for environment disaster early detection
US9420099B1 (en) 2015-03-30 2016-08-16 Avaya Inc. Merging multiple emergency calls and information therefrom at emergency systems
CA2886535A1 (en) 2015-04-10 2016-10-10 Nafsica Antypas Ualert mobile app
US20160316493A1 (en) 2015-04-23 2016-10-27 Telecommunication Systems, Inc. Next Generation Public-Safety Answering Point (PSAP) Administration via Text Messaging
US10051684B2 (en) 2015-05-04 2018-08-14 Qualcomm Incorporated Transfer of uncompensated barometric pressure information
US10356589B2 (en) * 2015-05-15 2019-07-16 Rave Wireless, Inc. Real-time over the top 9-1-1 caller location data
US10278050B2 (en) 2015-05-26 2019-04-30 Noonlight, Inc. Systems and methods for providing assistance in an emergency
KR101627741B1 (en) 2015-06-11 2016-06-07 양선종 remote controlling and lifesaving apparatus using a wearable device system within a car
US9754485B2 (en) 2015-06-16 2017-09-05 DataSpark, PTE. LTD. Traffic prediction and real time analysis system
US20170004427A1 (en) 2015-06-30 2017-01-05 The Boeing Company Selection of emergency responders
US10320879B2 (en) 2015-07-09 2019-06-11 Verizon Patent And Licensing Inc. Software service discovery and service evolution management
US9826358B2 (en) 2015-07-09 2017-11-21 GeoVisible, Inc. Method and system for geolocation and coordinated communication with emergency responders
CA2993787A1 (en) 2015-07-27 2017-02-02 Nourish Technology, Inc. A system and process for managing preparation and packaging of food and/or beverage products for a precise delivery time.
US20160307436A1 (en) 2015-07-30 2016-10-20 Monty Nixon Emergency Safety Monitoring System and Method
KR101602482B1 (en) 2015-08-13 2016-03-21 (주)아이넷테크 Fire protection management system using geographical information and the control method thereof
US9734721B2 (en) 2015-08-14 2017-08-15 Here Global B.V. Accident notifications
US9609128B2 (en) 2015-09-01 2017-03-28 At&T Intellectual Property I, L.P. Emergency signal for M2M devices
US20170078226A1 (en) 2015-09-14 2017-03-16 At&T Intellectual Property I, L.P. Communication adaptation
US9898004B2 (en) 2015-10-20 2018-02-20 GM Global Technology Operations LLC Method and system for operating a vehicle when an occupant experiences a potential medical condition
US9659484B1 (en) 2015-11-02 2017-05-23 Rapidsos, Inc. Method and system for situational awareness for emergency response
US9544750B1 (en) 2015-11-12 2017-01-10 LaaSer Critical Communications Corp. Caller location determination systems and methods
US9402159B1 (en) 2015-11-12 2016-07-26 LaaSer Critical Communications Corp. Caller location determination systems and methods
US9693213B2 (en) 2015-11-12 2017-06-27 LaaSer Critical Communications Corp. Caller location and PSAP determination systems and methods
US10051119B2 (en) 2015-11-12 2018-08-14 Laaser Critical Communications, Corp. Caller location determination systems and methods
US20170161614A1 (en) 2015-12-07 2017-06-08 Rapidsos, Inc. Systems and methods for predicting emergency situations
US10142816B2 (en) 2015-12-16 2018-11-27 Qualcomm Incorporated Systems and methods for emergency data communication
US20170180966A1 (en) * 2015-12-17 2017-06-22 Rave Wireless, Inc. Notification of emergencies based on wireless signal recognition
WO2017106775A1 (en) 2015-12-17 2017-06-22 Rapidsos, Inc. Devices and methods for efficient emergency calling
US9998507B2 (en) 2015-12-22 2018-06-12 Rapidsos, Inc. Systems and methods for robust and persistent emergency communications
WO2017139281A1 (en) 2016-02-08 2017-08-17 Security Services Northwest, Inc. Location based security alert system
US20170245113A1 (en) 2016-02-24 2017-08-24 T-Mobile Usa, Inc. Selecting a location determination method for a mobile device within a wireless communication network
KR102126239B1 (en) 2016-02-25 2020-06-25 한국전자통신연구원 Apparatus and method for notify emergency of automobile using external terminal
US9986404B2 (en) 2016-02-26 2018-05-29 Rapidsos, Inc. Systems and methods for emergency communications amongst groups of devices based on shared data
JP6919978B2 (en) 2016-04-26 2021-08-18 ラピッドエスオーエス,インク. Systems and methods for emergency communications
US20170323209A1 (en) 2016-05-06 2017-11-09 1Q Llc Situational Awareness System
CA3023982A1 (en) 2016-05-09 2017-11-16 Rapidsos, Inc. Systems and methods for emergency communications
US10021246B2 (en) 2016-05-12 2018-07-10 Avaya Inc. Identifying information pertinent to an emergent event through social media postings
CN106021508A (en) 2016-05-23 2016-10-12 武汉大学 Sudden event emergency information mining method based on social media
US9918211B2 (en) 2016-06-13 2018-03-13 At&T Mobility Ii Llc Mobile emergency response network
US20180039737A1 (en) 2016-08-02 2018-02-08 Umbra Health Corporation Patient directed data synchronization of electronic health records using a patient controlled health record
WO2018039142A1 (en) 2016-08-22 2018-03-01 Rapidsos, Inc. Predictive analytics for emergency detection and response management
EP3651434B1 (en) 2016-08-26 2022-08-10 Intrinsic Value, LLC Systems, devices, and methods for emergency responses and safety
US10085143B2 (en) 2016-09-30 2018-09-25 Qnexis Inc. System for managing organizational emergencies and coordinating emergency responses
US10140482B2 (en) 2016-10-12 2018-11-27 Phase Iv Engineering Inc. RFID scheme in harsh environments
US10397741B2 (en) 2016-11-11 2019-08-27 Shoreline Tracking Systems, LLC System and method for service tracking
US10009390B1 (en) 2016-12-20 2018-06-26 Hashington GCV System and method for location-based sharing of information and location-based response to the shared information
US10375558B2 (en) 2017-04-24 2019-08-06 Rapidsos, Inc. Modular emergency communication flow management system
WO2019113129A1 (en) 2017-12-05 2019-06-13 Rapidsos, Inc. Social media content for emergency management
US10820181B2 (en) 2018-02-09 2020-10-27 Rapidsos, Inc. Emergency location analysis system
WO2019204228A1 (en) 2018-04-16 2019-10-24 Rapidsos, Inc. Emergency data management and access system
US20200126174A1 (en) 2018-08-10 2020-04-23 Rapidsos, Inc. Social media analytics for emergency management
US20200059776A1 (en) 2018-08-14 2020-02-20 Rapidsos, Inc. Systems & methods for intelligently managing multimedia for emergency response
US11218584B2 (en) 2019-02-22 2022-01-04 Rapidsos, Inc. Systems and methods for automated emergency response
WO2020205033A1 (en) 2019-03-29 2020-10-08 Rapidsos, Inc. Systems and methods for emergency data integration
WO2021034859A1 (en) 2019-08-19 2021-02-25 Rapidsos, Inc. Systems and methods for delivering and supporting digital requests for emergency service

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277705B2 (en) * 2002-12-23 2007-10-02 Qualcomm Incorporated Method, apparatus, and system for selecting a service provider system
US9020462B2 (en) * 2007-03-13 2015-04-28 Blackberry Limited Enhanced handling of duress situations
US20170150335A1 (en) * 2015-11-12 2017-05-25 LaaSer Critical Communications Corp. Text message sender location and psap determination systems and methods

Also Published As

Publication number Publication date
US20170171735A1 (en) 2017-06-15
US9838858B2 (en) 2017-12-05
US9992655B2 (en) 2018-06-05
US20220174468A1 (en) 2022-06-02
US20180242133A1 (en) 2018-08-23
US20190335310A1 (en) 2019-10-31
US10425799B2 (en) 2019-09-24
US11153737B2 (en) 2021-10-19
US20160050550A1 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
US20220167141A1 (en) System and method for call management
US20200413225A1 (en) Sending location information from within a communication application
US9148772B2 (en) Volte device preference for E911
EP2677337B1 (en) Method and apparatus for providing semantic location in electronic device
EP2884722B1 (en) Method and apparatus for sharing location information of electronic device
US10091612B2 (en) Establishing geo-fences and related alarms
US9693286B2 (en) Emission control for wireless location management
US9071685B2 (en) Method and apparatus for time-based mediation of wireless communications
MX2010014322A (en) Automated locating of a mobile station without an alert at the mobile station.
EP3920558A1 (en) Method for determining that terminal device is located inside geofence, and terminal device
EP2053881B1 (en) Sending location information from within a communication application
CN107343270B (en) Emergency call method and terminal
CN111010669B (en) Position sharing method and device
AU2017442559B2 (en) Device, system and method for crowd control
WO2015192486A1 (en) Positioning method, device, terminal and computer storage medium
KR100488177B1 (en) System and method for informing location
CN108781343A (en) The external method and system accessed for controlling communication port
CN111092808B (en) Information sharing method and terminal equipment
CN109791209B (en) Positioning method and device
US20210243584A1 (en) Locating method for emergency caller with assistance vectoring
US20210243583A1 (en) Location based emergency alert
Ugale et al. A Location-Based Personal Task Reminder for Mobile Users In Wireless College Campus Environment (Indoor And Outdoor)
KR20150135011A (en) System and method for offering position information of utility pole

Legal Events

Date Code Title Description
AS Assignment

Owner name: PAVE DIGITAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANAND, PREET;ANTYPAS, PETER;OSIPOVAS, MOTIEJUS;SIGNING DATES FROM 20160712 TO 20160714;REEL/FRAME:058747/0986

AS Assignment

Owner name: RAPIDSOS, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PAVE DIGITAL, INC.;REEL/FRAME:059026/0067

Effective date: 20161101

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED