US20220022386A1 - A striper arrangement for striping a lawn and a robotic work tool comprising the striper arrangement - Google Patents

A striper arrangement for striping a lawn and a robotic work tool comprising the striper arrangement Download PDF

Info

Publication number
US20220022386A1
US20220022386A1 US17/276,710 US201917276710A US2022022386A1 US 20220022386 A1 US20220022386 A1 US 20220022386A1 US 201917276710 A US201917276710 A US 201917276710A US 2022022386 A1 US2022022386 A1 US 2022022386A1
Authority
US
United States
Prior art keywords
striper
mat
arrangement
work tool
robotic work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/276,710
Inventor
Anders Danling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Husqvarna AB
Original Assignee
Husqvarna AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Husqvarna AB filed Critical Husqvarna AB
Assigned to HUSQVARNA AB reassignment HUSQVARNA AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DANLING, Anders
Publication of US20220022386A1 publication Critical patent/US20220022386A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D43/00Mowers combined with apparatus performing additional operations while mowing
    • A01D43/006Mowers combined with apparatus performing additional operations while mowing with devices for pressing or compacting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B45/00Machines for treating meadows or lawns, e.g. for sports grounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/001Accessories not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D43/00Mowers combined with apparatus performing additional operations while mowing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G20/00Cultivation of turf, lawn or the like; Apparatus or methods therefor
    • A01G20/30Apparatus for treating the lawn or grass surface
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C19/00Design or layout of playing courts, rinks, bowling greens or areas for water-skiing; Covers therefor
    • A63C19/06Apparatus for setting-out or dividing courts
    • A63C19/065Line markings, e.g. tapes; Methods therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/835Mowers; Mowing apparatus of harvesters specially adapted for particular purposes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C19/00Design or layout of playing courts, rinks, bowling greens or areas for water-skiing; Covers therefor
    • A63C19/06Apparatus for setting-out or dividing courts
    • A63C19/065Line markings, e.g. tapes; Methods therefor
    • A63C2019/067Machines for marking

Abstract

A striper arrangement (200) for striping a lawn (1) configured to be arranged on a robotic work tool (100). The striper arrangement (200) comprises a striper mat (10) and a holding arrangement (300) for holding the striper mat (10) in contact with a N surface of a lawn (1) and is configured such that the striper mat (10) is movable in upwards and downwards direction; and further configured to bias the striper mat (10) in downwards direction by a biasing force (BF), such that movement of the striper mat (10) in upwards direction is restricted until a counter force (CF) exerted by the striper mat (10) onto the holding arrangement (300) exceeds the biasing force (BF). The counterforce (CF) is the force exerted by the striper mat (10) onto the holding arrangement (300) when the striper mat (10) transits from a convex bent shape to a concave bent shape or vice versa. A robotic work tool 100 comprising a striper arrangement (200) for striping a lawn (1).

Description

    TECHNICAL FIELD
  • The present disclosure relates to a striper arrangement for striping a lawn configured to be arranged on a robotic work tool, such as a lawn mower.
  • The present disclosure also relates to a robotic work tool, such as a lawn mower comprising a striper arrangement.
  • BACKGROUND ART
  • Lawn striping is a technique for creating patterns on lawns by flattening one row of grass in one direction and an adjacent row of grass in another direction. Typically, lawn striping is applied on sports fields such as football- or baseball fields in which the grass on the entire field is striped in parallel rows of grass that is flattened in opposite directions.
  • Conventionally, striping of lawns is performed by flattening the grass with a rubber mat that is attached to a ride-on lawn mower or a tractor that is driven by a person.
  • Robotic lawn mowers are increasingly used for maintaining lawns and sports fields. Robotic lawn mowers are advantageous for these tasks since they operate autonomous and thus reduce the need and cost for personnel operating lawn mowers.
  • However, it has shown that when robotic lawn mowers are equipped with striper mats, the striper mat may impede the maneuvering of the robotic lawn mower. For example, the striper mat may impede the robotic lawn mower when the robotic lawn mower changes driving direction from forward to reverse.
  • FIG. 5 shows schematically a situation where a robotic lawn mower 100 with a striper mat 10 reverses driving direction from forward to backwards. During this maneuver, friction between the edge of the striper mat 10 and the ground 1 causes the striper mat 10 to transit from a convex bent shape to a concave bent shape. During this transition, the striper mat 10 exerts a counter force onto the robotic lawn mower 100 which impedes the rearward motion of robotic lawn mower and results in that the robotic lawn mower is lifted from the ground by the striper mat.
  • There is a need for an improved lawn striping arrangement for robotic work tools, such as robotic lawn mowers.
  • SUMMARY OF THE DISCLOSURE
  • It is therefore an object of the present disclosure to provide a striper arrangement for striping a lawn configured to be arranged on a robotic work tool that solves or at least mitigates one of the problems of the prior-art. It is an object of the present disclosure to provide a striper arrangement that allows for smooth maneuvering of the robotic work tool that comprises the striper arrangement. A further object of the present disclosure is to provide a striper arrangement that is robust and of simple construction. Yet a further object of the present disclosure is the provide a striper arrangement that may be realized at low cost.
  • Yet a further object of the present disclosure is to provide a robotic work tool, such as a robotic lawnmower, comprising a striper arrangement for striping a lawn.
  • According to a first aspect of the present disclosure at least one of the aforementioned objects is solved by a striper arrangement for striping a lawn configured to be arranged on a robotic work tool; wherein the striper arrangement comprises a striper mat and a holding arrangement for holding the striper mat in contact with a surface of a lawn, wherein the holding arrangement is configured to be joined to, or be a part of, the robotic work tool, wherein the holding arrangement is configured such that:
  • the striper mat is movable in upwards and downwards direction; and further configured to
  • bias the striper mat in downwards direction by a biasing force, such that movement of the striper mat in upwards direction is restricted until a counter force exerted by the striper mat onto the holding arrangement exceeds the biasing force.
  • The striper arrangement according to the disclosure provides an advantage when the robotic work tool changes between forward driving direction and reverse, for example, during a backward turn. According to the present disclosure, the striper mat is movable in upwards/downwards direction but biased downwards so that the striper mat applies a sufficient pressure onto the lawn. Therefore, when the striper mat transits from a convex bent shape to a concave bent shape during the backward turn, the striper mat moves upwards as soon as the counter force from the striper mat exceeds the biasing force the striper arrangement. This allows the bent striper mat to straighten out, which in turn allows the striper mat to smoothly transit from convex to concave bent shape. Thus, the striper arrangement of the present disclosure, allows free maneuverability of the robotic work tool between forward and rearward driving direction without impediment from the striper mat or that the striper mat lifts the robotic work tool.
  • The holding arrangement may comprise a striper mat holder that is joined to the striper mat and a striper mat holder attachment configured to be joined to, or be a part of, the robotic work tool. The striper mat holder may thereby be connected to the striper mat holder attachment such that the striper mat holder is movable in upwards/downwards direction. Preferably, the striper mat holder is pivotally coupled to the striper mat holder attachment such that the striper mat holder may pivot in upwards/downwards direction relative the striper mat holder attachment. In summary, this holding arrangement is simple, yet robust and reliable.
  • In detail, the striper mat holder attachment may comprise at least one elongate attachment part which is configured to, in use, extend from the robotic work tool. The striper mat holder may thereby comprise a central elongated portion which is joined to an upper edge of the striper mat and at least one elongated extension part which extends from the central portion and that is pivotally attached to the striper mat holder attachment by a pivot shaft.
  • The striper arrangement comprises a biasing element configured to provide the biasing force (BF) onto the striper mat. Typically, the biasing element is a spring element. The biasing element is preferably coupled to the striper mat holder and to the striper mat holder attachment. Spring elements are preferred since they are available in many forms and therefore may be easily integrated into the construction of the striper arrangement. Spring elements may readily be selected in dependency of their spring characteristics to fit various types of robotic work tools, striper mats and operating conditions.
  • Typically, the counterforce (CF) is the force exerted by the striper mat onto the holding arrangement when the striper mat transits from a convex bent shape to a concave bent shape or vice versa. The counter force (CF) may be determined by practical trials and used as basis for selecting a biasing element that provides a suitable biasing force (BF).
  • According to a further aspect, the present disclosure relates to a robotic work tool comprising a striper arrangement according to the first aspect.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1a-1d : Schematic drawings of a robotic work tool comprising a striper arrangement according to a first embodiment of the present disclosure.
  • FIG. 2a-2c : Schematic drawings of striper arrangement according to the first embodiment of the present disclosure.
  • FIG. 3: A schematic drawing of a robotic work tool according to the present disclosure.
  • FIG. 4: A schematic drawing of a robotic work tool according the present disclosure operating on a lawn.
  • FIG. 5: A schematic drawing of a robotic work tool having a fixed striper mat.
  • DEFINITIONS
  • When, in the present disclosure, reference is made to directions such as “upwards” or “downwards” it is intended that these directions are in relation to the ground surface that the robotic work tool is operating on. Thus, “upwards” is in direction substantially away from the ground surface and “downwards” is in direction substantially towards the ground surface.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • The robotic work tool according to the present disclosure will now be described more fully hereinafter. The robotic work tool according to the present disclosure may however be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Same reference numbers refer to same elements throughout the description.
  • FIG. 1a shows schematically a robotic work tool 100, embodied as a robotic lawn mower. The robotic work tool 100 is positioned on the surface of a lawn 1 and has a front 101 and a rear and comprises a pair of rear wheels 111, which may be propelled by a motor (not shown) a pair of front wheels 112 and a housing 120 which protects components of the robotic work tool such as motor, cutting tool, sensors and the controller for controlling the robotic work tool with e.g. regards to maneuvering performance. These parts will be described hereinafter with regards to FIGS. 3 and 4. In FIG. 1, the robotic work tool is moving in a forward driving direction indicated by arrow 5. That is, the front 101 of the robotic work tool 100 is facing in the driving direction.
  • The robotic work tool 100 comprises a striper arrangement 200 for striping the lawn 1. The striper arrangement 200 comprises a striper mat 10 and a holding arrangement 300 for holding the striper mat 10 in contact with the lawn 1. The holding arrangement 300 is arranged at the rear 102 of the robotic work tool 100, however alternatively it may be arranged at the front 101 of the robotic work tool. The striper mat is manufactured of flexible material such as a rubber material. For example, textile reinforced rubber. The striper mat may have an arbitrary width, for example 50 cm to create sufficiently wide stripes on the lawn. The thickness of the striper mat may be 6 mm. The length of the striper mat depends on dimensions of the robotic work tool and the position of the holder arrangement 300 on the robotic work tool. However, the length is adapted such that the striper mat 10 is bent into a concave/convex shape when striping the lawn 1. In FIG. 1, the striper mat 10 is trailed behind the robotic work tool 100. The grass 2 behind the striper mat 10 is thus flattened by and the grass 3 in front of striper mat 10 is un-flattened.
  • FIG. 2a shows the striper arrangement 200 in detail. Thus, the holding arrangement 300 is configured such that the striper mat 10 is movable in upwards- and downwards direction. In the embodiment shown in FIG. 2a , the holding arrangement 300 thereby comprises a striper mat holder 30 which comprises a central elongated portion 31 which is joined to the upper edge 11 of the striper mat 10 and a first and a second elongated extension part 32 that extends, e.g. orthogonally, from the central elongated portion 31. The striper mat holder may for example be manufactured by metal profiles having a square or rectangular cross-section. For example, steel or aluminum profiles. The width of the striper mat holder 30, i.e. the length of the central elongated portion 31 may correspond to the width of the striper mat 10. It is possible that the striper mat holder 30 comprises only one, or more than two, elongate extension parts 32 that extends from the central elongate portion 31.
  • The holding arrangement 300 further comprises a striper mat holder arrangement 40 which comprises a first and a second elongate attachment part 42 which is are configured to extend, i.e. protrude, from the robotic work tool 100. For example, from the rear 102 of the robotic work tool. Also, the first and the second elongate attachment part 42 may be manufactured of profiles of a suitable length and cross-section. For example, steel or aluminum profiles having a square or rectangular cross-section. The striper mat holder arrangement 40 may comprise a central elongated portion 41. The first and the second elongate attachment part 42 may thereby extend, e.g. orthogonally from opposite ends of the central elongated portion 41. The striper mat holder arrangement 40, may be attached to the robotic work tool 100 by e.g. bolts (not shown). In correspondence with the striper mat holder 30 it is possible that also the striper mat holder arrangement 40 comprises only one, or more than two elongate attachment parts 42 that may extend from the central elongate portion 41.
  • The striper mat holder 30 is movable connected to the striper mat holder attachment 40 such that the striper mat holder 30, and thus the striper mat 10, is movable in upwards, downwards direction. In the embodiment shown in FIG. 2 the striper mat holder 30 is pivotally connected, i.e. pivotally coupled, to the striper mat holder attachment 40. The first and second elongated extension portions 32 of the striper mat holder 30 are thereby pivotally coupled to a respective one of the first and the second elongated attachment part 42 of the striper mat holder attachment 40. The pivotal coupling of the striper mat holder 30 and the striper mat holder attachment 40 may be achieved by a pivot shaft 60 that extends through openings in the first and second elongated extension portions 32 of the striper mat holder 30 and through openings in the first and the second elongated attachment parts 42 of the striper mat holder attachment 40. Alternatively (not shown), one pivot shaft 60 may connect the first elongated extension portion 32 with the first elongated attachment part 42 and a second pivot shaft 60 may connect the second elongated extension portion 32 with the second elongated attachment part 42.
  • It is obvious that the striper mat holder 30 may be movable connected to the striper mat holder attachment 40 in other ways than described above. For example, the striper mat holder 30 may be arranged to translate vertically in the striper mat holder attachment 40. An example of such an arrangement is shown in FIG. 2c in which the first elongated extension portion 32 of the striper mat holder 30 is movable attached to a slot 70 that extends vertically in the first elongated attachment part 42 of the striper mat holder attachment 40.
  • The holding arrangement 300 is further configured to bias the striper mat bias the striper mat 10 in downwards direction by a biasing force (BF). The holder arrangement 300 thereby comprises a biasing element, 50 such as a spring element which is coupled to the striper mat holder attachment 40 and to the striper mat holder 30 such that the striper mat holder 30, and thus the striper mat 10, is biased downwards. By “biased” is thereby meant that a force is permanently applied onto the striper mat holder 30 and forces, i.e. presses the striper mat holder 30 downwards.
  • In FIG. 2a , the biasing element 50 is a torsion spring. The torsion spring is manufactured of steel wire and comprises a coiled middle section 51 and a first leg 52 and a second leg 53. The coiled middle section 51 is arranged around the pivot shaft 60 and the first leg 51 is attached to the first elongated attachment part 42 of the striper mat holder attachment 40. The other leg 52 of the torsion spring 50 is attached to the first elongated extension portion 32 of the striper mat holder 30. The torsion spring 50 is arranged such that the legs 51, 52 strive apart from each other and create a downwards directed biasing force on the striper mat holder 30.
  • It is obvious that the biasing force may be achieved in other ways. For example, the biasing element 50 may be a pressure spring, or a pneumatic spring or a piece of compressed rubber. The biasing element 50 may also be attached directly to the robotic work tool and coupled to the striper mat holder 30, or alternatively to the striper mat.
  • The biasing force (BF) restricts movement of the striper mat 10 in upwards direction until a counter force (CF) exerted by the striper mat 10 onto the holding arrangement 300 exceeds the biasing force (BF).
  • FIG. 2b shows the holding arrangement 300 in a situation in which the striper mat holder 30 is pivoted upwards by a counter force (CF) that is applied onto the striper mat. In FIG. 2b , the counter force (CF) exceeds the biasing force (BF) from the biasing element 50 and forces the striper mat holder 30 upwards.
  • Preferably, the biasing force BF is selected such that it is substantially equal to a counter force (CF) exerted by the striper mat 10 when the striper mat 10 transits from a convex bent shape to a concave bent shape, or vice versa.
  • This feature is in the following described with reference to FIGS. 1a -1 d.
  • FIG. 1b shows a situation in which the robotic work tool 100 described under FIG. 1a has changed driving direction from forward to reverse to make a backward turn. In this situation, friction between the lower edge 12 of the concavely bent striper mat 10 and the surface of the lawn 1 prevents the striper mat 10 from sliding over the surface of the lawn. Since the slider mat 10 does not follow the rearward movement of the robotic work tool 100, a counter force (CF) starts immediately to build up in the flexible striper mat 10 as the striper mat 10 strives to transit from a concave bent shape into a convex bent shape. The counter force (CF) is exerted onto the holder arrangement 300, i.e. onto the striper mat holder 30 (see FIG. 2a ) and exceeds the biasing force (BF). The striper mat holder 30 and thus the striper mat 10 is therefore allowed to move upwards which allows the striper mat 10 to smoothly transit, without any lifting of the robotic work tool 100, into a concave bent shape as shown in FIG. 1c . In this situation, the counter force (CF) decreases and the biasing force (BF) prevails and forces the striper mat 10 downwards to the state shown in FIG. 1d . The robotic work tool 100 may now complete the backwards turn. The procedure described above is repeated in inverted order when the robotic work tool 100 reverses driving direction from the rearward direction as shown in FIG. 1d to forward direction.
  • The counter force (CF) from the striper mat 10 may vary in dependency of e.g. dimension and material of the striper mat or operating conditions. However, the counter force (CF) produced during the transit between convex and concave shape of the striper mat 10 may be determined by practical trials. It may, for example, be measured with a potentiometer. It is then possible to use such measurements for providing a suitable biasing force, for example selecting a biasing element with appropriate spring characteristics.
  • Further Description of the Robotic Work Tool
  • Following is a description of further parts of the robotic work tool.
  • FIG. 3 shows a schematic overview of the robotic work tool 100, which is exemplified by a robotic lawnmower 100. The housing 120 has been omitted in order to not obscure other parts of the robotic work tool.
  • Thus, the robotic work tool 100 comprises a chassis 110 and pair of wheels. One pair of front wheels 112 is arranged in the front of the chassis 110 and one pair of rear wheels 111 is arranged in the rear of the chassis 110. At least some of the wheels 111, 112 are drivably connected to at least one electric motor 450. It is appreciated that while the description herein is focused on electric motors, combustion engines may alternatively be used possibly in combination with an electric motor. A striper arrangement 200 according to the present disclosure is arranged at the rear of the robotic lawn mower 100.
  • In the example of FIG. 3, each of the rear wheels 111 is connected to a respective electric motor 450. This allows for driving the rear wheels 150 independently of one another which, for example, enables steep turning.
  • The robotic work tool 100 also comprises a controller 400. The controller 400 may be implemented using instructions that enable hardware functionality, for example, by using executable computer program instructions in a general-purpose or special-purpose processor that may be stored on a computer readable storage medium (disk, memory etc.) 410 to be executed by such a processor. The controller 400 is configured to read instructions from the memory 410 and execute these instructions to control the operation of the robotic work tool 100 including, but not being limited to, the propulsion of the robotic work tool. The controller 400 may be implemented using any suitable processor or Programmable Logic Circuit (PLC). The memory 410 may be implemented using any technology for computer-readable memories such as ROM, RAM, SRAM, DRAM, FLASH, DDR, SDRAM or some other memory technology.
  • The robotic work tool 100, may comprise a grass cutting device 460, such as a rotating blade driven by a cutter motor 465. In the embodiment of FIG. 3 the grass cutting device 460 and the cutter motor 465 are arranged in the front carriage 101. The cutter motor 465 is connected to the controller 400 which enables the controller 400 to control the operation of the cutter motor 465. The controller 400 may also be configured to determine the load exerted on the rotating blade, by for example measure the power delivered to the cutter motor 465 or by measuring the axle torque exerted by the rotating blade. The robotic work tool 100 also has (at least) one battery 480 for providing power to the motors 450 and the cutter motor 465. The robotic work tool may further have a satellite navigation device 490, such as a GPS-device, which may be used by the robotic lawn work tool 100 to navigate within a work area.
  • FIG. 4 shows the robotic work tool 100 in a striping operation within a work area 500 in the form of a lawn. Thus, the robotic work tool 100 may be configured to navigate, using information received by satellite navigation device 490, in the work area 500. The robotic work tool 100 is thereby configured to run a distance in a first direction over the work area 500 and thereby stripe a first section 501 of the work area 500. The robotic work tool 100 is further configured to make a 180° turn and run a distance adjacent the first section 501, possibly with an overlap, such that a second section 502 of the work area 500 is striped.

Claims (11)

1. A striper arrangement for striping a lawn configured to be arranged on a robotic work, the striper arrangement comprising:
a striper mat; and
a holding arrangement for holding the striper mat in contact with a surface of a lawn,
wherein the holding arrangement is configured to be joined to, or be a part of, the robotic work tool,
wherein the holding arrangement is configured such that:
the striper mat is movable in upwards and downwards direction; and further configured to bias the striper mat in a downwards direction by a biasing force, such that movement of the striper mat in an upwards direction is restricted until a counter force exerted by the striper mat onto the holding arrangement exceeds the biasing force,
wherein the counterforce is a force exerted by the striper mat onto the holding arrangement when the striper mat transits from a convex bent shape to a concave bent shape or vice versa.
2. The striper arrangement according to claim 1, wherein the holding arrangement comprises a striper mat holder joined to the striper mat and a striper mat holder attachment configured to be joined to, or be a part of, the robotic work tool, and
wherein the striper mat holder is connected to the striper mat holder attachment such that the striper mat holder is movable in upwards/downwards direction.
3. The striper arrangement according to claim 2, wherein the striper mat holder is pivotally coupled to the striper mat holder attachment such that the striper mat holder is pivotable in the upwards/downwards direction relative the striper mat holder attachment.
4. The striper arrangement according to claim 3, wherein the striper mat holder attachment comprises at least one elongate attachment part which is configured to, in use, extend from the robotic work tool,
wherein the striper mat holder comprises a central elongated portion which is joined to an upper edge of the striper mat, and
wherein at least one elongated extension part that extends from the central portion and that is pivotally attached to the striper mat holder attachment by a pivot shaft.
5. The striper arrangement according to claim 1, further comprising a biasing element configured to provide the biasing force onto the striper mat.
6. The striper arrangement according to claim 5, wherein the biasing element is a spring element.
7. The striper arrangement according to claim 5, wherein the biasing element is coupled to the striper mat holder and to the striper mat holder attachment.
8. The striper arrangement according to claim 1, wherein the striper mat is flexible.
9. A robotic work tool comprising a striper arrangement, the striper arrangement comprising:
a striper mat; and
a holding arrangement for holding the striper mat in contact with a surface of a lawn,
wherein the holding arrangement is configured to be joined to, or be a part of, the robotic work tool,
wherein the holding arrangement is configured such that:
the striper mat is movable in upwards and downwards direction; and further configured to bias the striper mat in a downwards direction by a biasing force such that movement of the striper mat in an upwards direction is restricted until a counter force exerted by the striper mat onto the holding arrangement exceeds the biasing force,
wherein the counterforce is a force exerted by the striper mat onto the holding arrangement when the striper mat transits from a convex bent shape to a concave bent shape or vice versa.
10. The robotic work tool according to claim 9, wherein the robotic work tool has a chassis with a front and a rear, front wheels and rear wheels and a housing, wherein the striper arrangement is arranged at the rear or the front.
11. The robotic work tool according to claim 9, wherein the robotic work tool is a robotic lawnmower.
US17/276,710 2018-09-27 2019-09-05 A striper arrangement for striping a lawn and a robotic work tool comprising the striper arrangement Pending US20220022386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1851149A SE542562C2 (en) 2018-09-27 2018-09-27 A striper arrangement for striping a lawn and a robotic work tool comprising the striper arrangement
PCT/SE2019/050831 WO2020067953A1 (en) 2018-09-27 2019-09-05 A striper arrangement for striping a lawn and a robotic work tool comprising the striper arrangement

Publications (1)

Publication Number Publication Date
US20220022386A1 true US20220022386A1 (en) 2022-01-27

Family

ID=69952331

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/276,710 Pending US20220022386A1 (en) 2018-09-27 2019-09-05 A striper arrangement for striping a lawn and a robotic work tool comprising the striper arrangement

Country Status (5)

Country Link
US (1) US20220022386A1 (en)
EP (1) EP3855882A4 (en)
CN (1) CN112752502A (en)
SE (1) SE542562C2 (en)
WO (1) WO2020067953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564351B2 (en) * 2020-02-11 2023-01-31 Reliable Production Machining & Welding Lawn striping mechanism

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181371A (en) * 1991-08-05 1993-01-26 Crane Plastics Company Flexible joint assembly for partition assemblage
US6523335B2 (en) * 2001-04-24 2003-02-25 Richard F. Vanderipe Lawn mower roller having a universal mount for mounting grass bending roller
GB2386971B (en) * 2002-03-26 2005-11-30 Mcmurtry Ltd Method of operating an automated land maintenance vehicle
US6832468B2 (en) * 2002-06-17 2004-12-21 J. Keith Weinlader Lawn striping method and apparatus
US7024845B2 (en) * 2004-06-03 2006-04-11 The Toro Company Grass striping apparatus for use with lawn vehicle
CN2779840Y (en) * 2005-01-05 2006-05-17 湖尔阿力·湖海 Improved straw cutting and raking machine
CN2867829Y (en) * 2005-11-10 2007-02-14 吴军波 Electric-manual two-purpose mower
GB2443785A (en) * 2006-11-15 2008-05-21 Husqvarna Uk Ltd Brake assembly for lawnmower
US20120023882A1 (en) * 2007-09-27 2012-02-02 Ariens Company Universal mounting structure for a lawn striper
US7631477B2 (en) * 2007-11-01 2009-12-15 Mtd Products Inc Adjustable striping roller for lawn mower
JP5337585B2 (en) * 2009-06-03 2013-11-06 本田技研工業株式会社 Lawn mower
DE202009018621U1 (en) * 2009-06-26 2012-05-23 Gerhard Dücker GmbH & Co. KG Mowing and / or cutting device
JP5593108B2 (en) * 2010-03-30 2014-09-17 本田技研工業株式会社 Walking lawn mower
EP2818034B1 (en) * 2013-06-28 2017-01-11 Robert Bosch Gmbh Lawnmower with skid
US20150096278A1 (en) * 2013-10-04 2015-04-09 S & B Lawn Systems, Inc. Lawncare implements
CN205794094U (en) * 2016-06-03 2016-12-14 辽宁省农业科学院耕作栽培研究所 A kind of multifunctional straw field returning apparatus with stubble ploughing
CN205961841U (en) * 2016-08-19 2017-02-22 深圳市银星智能科技股份有限公司 Mowing robot
CN107771433A (en) * 2016-08-27 2018-03-09 史树元 Practical multi-functional mower
CN106612901A (en) * 2016-11-09 2017-05-10 甘肃威尔晟农业装备制造有限公司 Front-arranged mower-crusher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564351B2 (en) * 2020-02-11 2023-01-31 Reliable Production Machining & Welding Lawn striping mechanism

Also Published As

Publication number Publication date
EP3855882A4 (en) 2022-06-08
WO2020067953A1 (en) 2020-04-02
SE542562C2 (en) 2020-06-09
EP3855882A1 (en) 2021-08-04
CN112752502A (en) 2021-05-04
SE1851149A1 (en) 2020-03-28

Similar Documents

Publication Publication Date Title
US8234010B2 (en) Tethered robot positioning
DE60304846T2 (en) AUTONOMOUS DEVICE FOR THE CARE OF FLOOR AREAS DEPENDING ON AMBIENT CONDITIONS
JP6651961B2 (en) Agricultural work device and method for controlling agricultural work device
US20220022386A1 (en) A striper arrangement for striping a lawn and a robotic work tool comprising the striper arrangement
CN107018744A (en) Blade assembly for mobile robot of mowing
US20090184491A1 (en) Steering for towed implements
US4143899A (en) Gathering implement
EP3927141A1 (en) Robotic lawnmower with folding mechanism and locking mechanism
KR101309745B1 (en) Weeder using Side Weeding Unit
EP3366102B1 (en) Method for protecting a part of a body
US9943024B2 (en) Work vehicle
Ohkawa et al. Development of the autonomous brush-cutting robot using articulated steering vehicle
CN113905608B (en) Autonomous robot lawn mower
US20220217904A1 (en) Autonomous Robotic Lawnmower Comprising Suspension Means Progressively Limiting Pivotal Movement of a Cutting Unit
US20210086813A1 (en) Steerable multi-terrain cart and method therefor
KR102407996B1 (en) Horizontal transfer type weeding rotary equipped with front distance sensor
Chang et al. Integration of laser scanner and odometry for autonomous robotics lawn-mower
CN215683405U (en) Grass cutter
CN213005289U (en) Agricultural robot
US20210212255A1 (en) Landscaping Trimmer
US20220087093A1 (en) Variable width frame systems
WO2020165068A1 (en) Apparatus, preferably autonomous robot apparatus, for mowing grass
KR20230070865A (en) multipurpose mobility for improving movement ability in smart farm
EP3489060A1 (en) Farm tractor
JP5774924B2 (en) Ground maintenance equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUSQVARNA AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DANLING, ANDERS;REEL/FRAME:056197/0019

Effective date: 20180928

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION