US20210310957A1 - Environmental sensor - Google Patents

Environmental sensor Download PDF

Info

Publication number
US20210310957A1
US20210310957A1 US17/347,910 US202117347910A US2021310957A1 US 20210310957 A1 US20210310957 A1 US 20210310957A1 US 202117347910 A US202117347910 A US 202117347910A US 2021310957 A1 US2021310957 A1 US 2021310957A1
Authority
US
United States
Prior art keywords
polymer
sensing molecules
sensing
molecules
aerogel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/347,910
Inventor
Gabriel Iftime
Jessica Louis Baker Rivest
George A. Gibson
Eric Cocker
Mahati Chintapalli
Quentin Van Overmeere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Palo Alto Research Center Inc
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palo Alto Research Center Inc, Xerox Corp filed Critical Palo Alto Research Center Inc
Priority to US17/347,910 priority Critical patent/US20210310957A1/en
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIBSON, GEORGE A.
Assigned to PALO ALTO RESEARCH CENTER INCORPORATED reassignment PALO ALTO RESEARCH CENTER INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAKER RIVEST, Jessica Louis, CHINTAPALLI, MAHATI, COCKER, ERIC, IFTIME, GABRIEL, VAN OVERMEERE, QUENTIN
Publication of US20210310957A1 publication Critical patent/US20210310957A1/en
Assigned to CITIBANK, N.A., AS AGENT reassignment CITIBANK, N.A., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION RELEASE OF SECURITY INTEREST IN PATENTS AT R/F 062740/0214 Assignors: CITIBANK, N.A., AS AGENT
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PALO ALTO RESEARCH CENTER INCORPORATED
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVAL OF US PATENTS 9356603, 10026651, 10626048 AND INCLUSION OF US PATENT 7167871 PREVIOUSLY RECORDED ON REEL 064038 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: PALO ALTO RESEARCH CENTER INCORPORATED
Assigned to JEFFERIES FINANCE LLC, AS COLLATERAL AGENT reassignment JEFFERIES FINANCE LLC, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols
    • G01N31/224Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols for investigating presence of dangerous gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7796Special mountings, packaging of indicators

Definitions

  • This disclosure relates to sensors, more particularly to sensors dispersed into polymer aerogels.
  • Colorimetric sensors generally consist of materials that change color based upon detection of a particular chemical or other materials. The resulting color may be compared to a standardized scale of colors that defines concentration or other characteristic of the material. Examples include indicator liquids that may be dropped into the liquid under analysis, coated pieces of papers that are dipped into a material or that directly change color in the presence of specific gases, etc.
  • Colorimetric sensors allow for a low cost, no power, and portable alternative to complex, power hungry sensing devices.
  • the application of these types of sensors include such examples as responsive packaging, rapid and inexpensive detection of toxic gases and other materials.
  • Printed colorimetric sensors generally result from printing an ink containing the sensing material, a solvent, and a polymer binder, which keeps the sensing material on the substrate once the ink dries. Solvent evaporation produces a dense polymer layer containing sensing molecules. Detection becomes limited to the top surface of the layer because only the top surface sensing molecules receive exposure to the compound being detected. The compound being detecting does not reach sensing molecules in the deeper layers because the polymer binder blocks their access. Further, the polymer binder may affect the visibility of the color change of the sensing materials if it clouds or obscures the color change.
  • a method of forming a sensor that includes providing a substrate, forming a polymer aerogel layer on the substrate, and infusing the polymer aerogel layer with sensing molecules.
  • FIG. 1 shows a prior art embodiment of a colorimetric sensor.
  • FIG. 2 shows an embodiment of a sensor
  • FIG. 3 shows an embodiment of a method of forming a sensor.
  • FIG. 1 shows an example of a current sensor.
  • the sensor 10 has a substrate 12 and a layer 14 of a polymer binder.
  • the polymer binder 14 generally causes the sensing molecules to remain on the substrate after the solvent has dried.
  • the solvent usually allows the solution of the polymer binder and sensing materials to be thinned to allow their deposition. However, the evaporation of the solvent produces a dense polymer layer.
  • the dense polymer layer reduces the sensitivity of the sensor, because the target molecules such as 20 typically only reach the top layers 18 of the sensing molecules in the sensor.
  • the lower layers such as that represented by sensing molecule 16 do not encounter the target molecules 20 , or encounter them only after a significant delay, as the dense polymer layer serves as a diffusion barrier, inhibiting the target molecules from reaching the lower layers. This reduces the number of active sensing molecules that in turn reduces the amount of coloration obtained by the sensor and delays development of the response. Further, sensing molecules residing deep within the binder are less easy to observe and the scattering, and sometimes outright absorption, of the matrix serve as an optical cloak.
  • FIG. 2 shows an embodiment of a sensor in accordance with the claims presented here.
  • the embodiments here use a polymer aerogel as a binder.
  • the polymer aerogel has high surface area.
  • aerogel as used here, means a low density, high porosity substance that normally results from removing a liquid component from a conventional gel.
  • the particular aerogel here has a small pore size, which reduces the likelihood of light scattering. This ensures that the sensor has high transparency, allowing for easier reading of the color changes of the sensing molecules, eliminating the need for expensive, power hungry detection equipment.
  • the term high surface area means a material that has a surface area higher than 100 meters squared per gram (m 2 /g). In some embodiments, the surface area may be in the range of 600-1000 m 2 /g. The high surface area allows more sensing molecules to attach to the binder, increasing the coloration result.
  • the aerogels used here result from a process of fabrication in which the pore size is controlled.
  • One such approach is disclosed in U.S. patent application Ser. No. 15/728,385.
  • the control of the pore size may result from the use of chain transfer agents (CTA), stable free radical polymerization process (SFRP), or atom radical transfer polymerization (ATRP).
  • CTA chain transfer agents
  • SFRP stable free radical polymerization process
  • ATRP atom radical transfer polymerization
  • Reduction of the pore size allows for better optical clarity, and more specifically: higher transparency to light, and lower haze.
  • a ‘low haze’ aerogel has a haze of 20% or lower
  • a ‘transparent’ aerogel has a transparency of 50% or higher.
  • the sensor 30 may include the substrate 32 that may have a layer of the polymer aerogel 34 upon it.
  • the polymer aerogel may have sufficient mechanical robustness that it can acts as its own substrate or it can be bonded to a substrate by using an adhesive References to the claims to a substrate, may be to a separate substrate, or a substrate formed of the polymer aerogel.
  • the sensing molecules such as 36 contact the target molecules such as 40 through the thickness of the polymer aerogel, rather than just the top layer.
  • the sensing material may be absorbed into the aerogel material, or it may be adsorbed to the internal surfaces of the aerogel. This allows for better coloration and easier analysis of the sensor's response.
  • an embodiment of the sensor consisted of a 1 millimeter thick layer of the polymer aerogel having dispersed sensing molecules has a response time of 2 seconds.
  • the response time depends on the amount of time a target molecule takes to travel through the thickness of the polymer aerogel layer and interact with the amount of sensing material required to cause a perceptible change in color.
  • Comparable sensors made with dense polymer binders have a response time of up to a day or longer because of the dense polymer layer.
  • the sensor of the embodiments here may have much higher sensitivity, which leads to a limit of detection being less than 100 ppm of a target molecule.
  • the sensitivity of the sensor is determined by the change in absorbance due to a change in concentration of the target molecule.
  • the absorbance change is maximized by having a large number of interactions between the target molecule and sensing molecule in a given volume of the sensor.
  • Aerogel sensors have improved sensitivity over dense sensors due to the combination of high internal surface area and high permeability to the target molecule.
  • the high surface area allows for a high loading of the sensing material where it can be easily accessed by the target molecule, and the high permeability of the aerogel allows for a large number of target molecules to enter the volume of the sensor.
  • the transparency and low haze of the aerogel sensor allow a higher number of sensing molecules to be visible per unit of observable area which ensures that coloration change in the depth of the material can be detected by the eye and contributes to the device sensitivity
  • the cost of an aerogel sensor may be lower than that of a dense sensor.
  • the sensor may function as an instantaneous, integrating, or threshold sensor, depending on the selection of the sensing material and target.
  • an instantaneous sensor the effect of the target on the sensing material is reversible, and the response depends on the instantaneous concentration of the target.
  • the effect of the target on the sensing material is irreversible, and the response depends on the total concentration of the target over an interval of time.
  • the integrating sensor or threshold sensor may include a means to restore the material to the initial state, through input of energy such as heat, light, or electricity.
  • the porous structure of the aerogel would facilitate the reversibility of the state of the sensor, by allowing the target molecule to escape.
  • the sensor may also have different types of sensing molecules within it.
  • the sensor may include sensing molecules that change color in response to a first type of target molecule, and sensing molecules of a different type that change color in response to a second type of target molecule.
  • arranging different sensing molecules in any desired spatial pattern may produce an array of different types of sensing molecules on the polymer aerogel layer. This may allow for localized regions of different response colors, or different concentrations.
  • the pattern may be created by printing the sensing material from an ink containing sensing molecules.
  • the different concentrations may be of the same material.
  • a more densely populated region of sensing molecules may turn color at lower concentrations of the target molecule than a less densely populated region, providing for high dynamic range.
  • FIG. 3 shows an embodiment of an overall process of forming a sensor.
  • a polymer gel or aerogel is formed first, and then is infused with the sensing molecules by placing it in a solution containing sensing molecules.
  • a substrate is provided.
  • the substrate may consist of the layer of polymer aerogel itself, or it may be a temporary substrate that is coated with the polymer gel prior to removal of the liquid to form the aerogel.
  • the process forms the porous polymer layer.
  • Two methods are useful for the purpose of the embodiments here.
  • the polymer aerogel is formed by removal of the liquid component of a polymer gel, providing a dry polymer aerogel at the end of 52 .
  • a second approach consists in exchanging the reaction solvent with a different one and keep the polymer gel in solution to provide a wet polymer gel at the end of 52 .
  • the polymer aerogel results from a process of polymerization of vinyl radical polymerizable monomers in the presences of a radical initiator in a compatible solvent.
  • the polymer aerogel is infused with the sensing molecules.
  • the porous polymer substrate may soak in a solution of the sensing material mixed with a solvent. Upon drying, the resulting layer may consist of a layer of polymer aerogel having molecules of the sensing material dispersed throughout it.
  • the solution of sensing material and solvent may be printed on the polymer aerogel layer, causing it to soak into the porous aerogel. When the solvent evaporates, the sensing material will have dispersed through the polymer aerogel layer.
  • the sensing molecules may be present in the solvent at the time of polymer gel formation from polymer precursors. This approach may fix the sensing molecules into the polymer walls of the aerogel with the benefit of enhanced temporal, and chemical stability of the sensing layer because if eliminates or limits the leaching out of the sensing molecule.
  • infusing the polymer aerogel layer with sensing molecules comprises chemically grafting the sensing molecules onto polymer walls during or after the forming of the polymer aerogel.
  • infusing the polymer aerogel layer with sensing molecules comprises copolymerizing sensing molecules containing polymerizable functional groups with polymer aerogel monomers during the forming of the polymer aerogel.
  • the sensing molecule may consist of a polar molecule that changes color in the presence of the target molecules that make up the compound of interest that is highly polar such as an amine or an organic acid.
  • the polymer structure may require polar groups to be present for wetting/compatibilization to maximize the incorporation of the sensing molecule into the polymer aerogel.
  • a typical example that fits this category of sensing molecule/polymer material consists of pH responsive molecules.
  • the molecules of interest are non-polar, such as ethylene detected as a result of fruit decay.
  • the sensing molecules in this embodiment may have low polarity and the polymer material may have low polarity as well.
  • Suitable radical polymerizing groups include vinyl, acrylate, and methacrylate groups.
  • Suitable polar groups for compatibilization include alcohol (—OH), amine (primary, secondary or tertiary, —NH 2 ; —NHR and —NR 2 ) acid groups (ex. carboxylic acid groups (—COOH) and sulfonic acid (—SO 3 H).
  • Non polar compatibilizing groups include aryl (such as phenyl groups), alkyls and combinations.
  • Some free radical initiators may include AIBN, BPO and analogues.
  • Some possible solvents include solvents compatible with polar monomers include DMF, N-methylpyrrolidone, ethanol, glycol, etc. Solvents compatible with non-polar monomers include toluene, xylene and analogues.
  • Chain transfer agents for pore size control include thiols such as dodecanethiol and 4-methylbenzenethiol, halocarbons such as carbon tetrachloride and bromotrichloromethane, and pentaphenylethane.
  • SFRP pore size control agents include stable nitrogen stable free radicals such as TEMPO, 4-hyrdoxy-TEMPO, TIPNO, and SG1.
  • Sensing molecules may consist of a wide range of sensing molecules that have been demonstrated in the prior art with either liquid solutions or with dense polymer films. In many cases, one class of sensing molecule can be used for multiple types of sensors. The main classes include pH indicators that change color as a function of the pH change due to variation of the acid/base environment around the sensors that can indicate the presence of volatile acids, including organic acids, and organic amines. One main application is related to the fabrication of sensors for fish and meat freshness. Spoiled meat emits volatile organic amines. Examples of sensing molecules in this class include phtalocyanine, and bromocresol green.
  • the main classes also include aggregated organic and organometallic dyes that change color due to changes in energy gaps between electronic states in absorbance as the distance between neighboring molecules change. These may also indicate temperature, humidity (RH) or intercalation of contaminants. Examples include phtalocyanine dye, porphyrin dyes, indigo derivatives, azo dyes, anthraquinone dye, triarylmethane dye etc.
  • the main classes may also include: excimers such as fluorescent and phosphorescent dyes; thermochromics that undergo controlled chemical or physical changes from a colorless state to a colored state; and metal nanoparticles with surface plasmon resonances that change in response to the presence of a target molecule.
  • excimers such as fluorescent and phosphorescent dyes
  • thermochromics that undergo controlled chemical or physical changes from a colorless state to a colored state
  • metal nanoparticles with surface plasmon resonances that change in response to the presence of a target molecule examples include leuco dyes, cholesteric liquid crystals, and gold nanoparticles.
  • the active sensing material from the main classes may consist of small molecules, nanoparticles, or macromolecules with color-changing repeat units.
  • a small molecule contains one active molecule and may have a molecular weight of up to 500 Daltons.
  • Macromolecules contain more than one repeat units containing the active sensing molecules and have a molecular weight higher than 500 Daltons.
  • Typical sensing materials include palladium chloride, palladium sulfates, ammonium molybdates, potassium permanganate.
  • An example is the ethylene sensor that changes color due to the emission of ethylene gas as the fruit ripens and gets eventually spoiled.
  • the change in light transmittance, reflection, absorption or fluorescence of the sensing material ranges preferentially in the near ultraviolet to near infrared range (200 nanometers to 2000 nanometers). In different embodiment, the changes take place in a range from near ultraviolet to visible range ( ⁇ 730 nm) of the light spectrum.
  • these sensing molecules can be incorporated in sensors for various applications, including threshold temperature where the sensor undergoes a permanent color change when exposed to temperatures above or below some designed limit. For example, the sensor ensures that a perishable, temperature-sensitive item such as a vaccine is maintained below a certain temperature during transport and/or storage.
  • Another application may consist of sensors for fish and meat freshness where the sensor changes color based on ambient levels of chemicals given off during decay process such as putrescine (tetramethylenediamine) and cadaverine (pentamethylenediamine) Grocery stores could deploy a sensor that sits next to or on meat product and changes color to indicate that the meat has been left out or in the refrigerator for too long.
  • Another food application may involve sensors for fruit ripeness where the sensor changes color based on ambient levels of chemicals given off during ripening process, such as ethylene.
  • a sticker on fruit contains a fruit ripeness sensor along with a color scale that maps color to estimated time before ripeness, allowing a customer to choose the fruit that will be optimally ripe when they plan to eat it.
  • Another application may monitor relative humidity where the sensor undergoes a permanent color change when exposed to ambient relative humidity levels above or below some designed limit or based on the aggregate amount of water vapor adsorbed, such as by integration of relative humidity over time.
  • the container for a chemical ingredient that inactivates when exposed to water vapor contains a sensor of the latter description that indicates when the contained chemical is no longer suitable for use and needs to be replaced.
  • Hazardous gas/material exposure in which a sensor undergoes a color change based on ambient level of a hazardous chemical Sensors placed on natural gas infrastructure equipment that changes color under exposure to hydrogen sulfide, which can be present in natural gas in high concentrations, to warn workers of potentially toxic natural gas leaks in equipment. There may be defense applications for ensuring safety in cities against chemical warfare agents.
  • Another application includes use of these sensors as a pollution sensor where the sensor undergoes permanent color change based on aggregate exposure to some pollutant. Sensors could reside in streams and rivers that change color based on exposure to copper or heavy metals to monitor injection of these pollutants by some upstream agent, such as a factory.
  • Another application may consist of leak detection on the outside of a container where the contents may not be toxic, but it may be important to know if there's a leak.
  • An example of such an application is a hydrogen leak warning sticker on the outside of a gas cylinder. While not a pollution sensor, similar sensors may be used to detect oxygen levels, CO2 levels or time and temperature indicators.
  • sensing labels and sensing strips with enhanced coloration of the above embodiments have several advantages when compared to commercial sensors currently available. These advantages include increased sensitivity for trace detection, decreased response time, and increased dynamic range.

Abstract

A method of forming a sensor includes providing a substrate, forming a polymer aerogel layer on the substrate, and infusing the polymer aerogel layer with sensing molecules.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a divisional of and claims priority to U.S. patent application Ser. No. 15/849,096, filed Dec. 20, 2017, which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • This disclosure relates to sensors, more particularly to sensors dispersed into polymer aerogels.
  • BACKGROUND
  • Colorimetric sensors generally consist of materials that change color based upon detection of a particular chemical or other materials. The resulting color may be compared to a standardized scale of colors that defines concentration or other characteristic of the material. Examples include indicator liquids that may be dropped into the liquid under analysis, coated pieces of papers that are dipped into a material or that directly change color in the presence of specific gases, etc.
  • Colorimetric sensors allow for a low cost, no power, and portable alternative to complex, power hungry sensing devices. The application of these types of sensors include such examples as responsive packaging, rapid and inexpensive detection of toxic gases and other materials.
  • Current colorimetric sensors often suffer from slow response and limited detection of trace amounts of contaminants. The degree of color change in current sensors remains too small to be easily seen directly by the human eye when detecting very low concentrations of analytes. This is particularly a problem when detecting highly toxic gases such as toxic industrial chemicals—including ammonia, phosphine—and chemical warfare gases, where early detection at levels well below the lethal or irreversible damage thresholds are required. Detection may rely upon spectroscopes or other expensive detection equipment, eliminating the advantage of no power and low cost.
  • Printed colorimetric sensors generally result from printing an ink containing the sensing material, a solvent, and a polymer binder, which keeps the sensing material on the substrate once the ink dries. Solvent evaporation produces a dense polymer layer containing sensing molecules. Detection becomes limited to the top surface of the layer because only the top surface sensing molecules receive exposure to the compound being detected. The compound being detecting does not reach sensing molecules in the deeper layers because the polymer binder blocks their access. Further, the polymer binder may affect the visibility of the color change of the sensing materials if it clouds or obscures the color change.
  • SUMMARY
  • According to aspects illustrated here, there is provided a method of forming a sensor that includes providing a substrate, forming a polymer aerogel layer on the substrate, and infusing the polymer aerogel layer with sensing molecules.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a prior art embodiment of a colorimetric sensor.
  • FIG. 2 shows an embodiment of a sensor.
  • FIG. 3 shows an embodiment of a method of forming a sensor.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • FIG. 1 shows an example of a current sensor. The sensor 10 has a substrate 12 and a layer 14 of a polymer binder. The polymer binder 14 generally causes the sensing molecules to remain on the substrate after the solvent has dried. The solvent usually allows the solution of the polymer binder and sensing materials to be thinned to allow their deposition. However, the evaporation of the solvent produces a dense polymer layer.
  • The dense polymer layer reduces the sensitivity of the sensor, because the target molecules such as 20 typically only reach the top layers 18 of the sensing molecules in the sensor. The lower layers such as that represented by sensing molecule 16 do not encounter the target molecules 20, or encounter them only after a significant delay, as the dense polymer layer serves as a diffusion barrier, inhibiting the target molecules from reaching the lower layers. This reduces the number of active sensing molecules that in turn reduces the amount of coloration obtained by the sensor and delays development of the response. Further, sensing molecules residing deep within the binder are less easy to observe and the scattering, and sometimes outright absorption, of the matrix serve as an optical cloak.
  • In contrast, FIG. 2 shows an embodiment of a sensor in accordance with the claims presented here. Unlike the dense polymer binder of the current sensors, the embodiments here use a polymer aerogel as a binder. The polymer aerogel has high surface area. The term aerogel, as used here, means a low density, high porosity substance that normally results from removing a liquid component from a conventional gel. In addition, the particular aerogel here has a small pore size, which reduces the likelihood of light scattering. This ensures that the sensor has high transparency, allowing for easier reading of the color changes of the sensing molecules, eliminating the need for expensive, power hungry detection equipment.
  • As used here, the term high surface area means a material that has a surface area higher than 100 meters squared per gram (m2/g). In some embodiments, the surface area may be in the range of 600-1000 m2/g. The high surface area allows more sensing molecules to attach to the binder, increasing the coloration result.
  • The aerogels used here result from a process of fabrication in which the pore size is controlled. One such approach is disclosed in U.S. patent application Ser. No. 15/728,385. The control of the pore size may result from the use of chain transfer agents (CTA), stable free radical polymerization process (SFRP), or atom radical transfer polymerization (ATRP). Reduction of the pore size allows for better optical clarity, and more specifically: higher transparency to light, and lower haze. As used here, a ‘low haze’ aerogel has a haze of 20% or lower, and a ‘transparent’ aerogel has a transparency of 50% or higher.
  • These aerogels typically have a porosity, such as 20% or higher. This allows better penetration of the sensing molecules into the aerogel during fabrication and better penetration of the target molecules being analyzed by the sensor. As shown in FIG. 2, the sensor 30 may include the substrate 32 that may have a layer of the polymer aerogel 34 upon it. Alternatively, upon drying, the polymer aerogel may have sufficient mechanical robustness that it can acts as its own substrate or it can be bonded to a substrate by using an adhesive References to the claims to a substrate, may be to a separate substrate, or a substrate formed of the polymer aerogel. The sensing molecules such as 36 contact the target molecules such as 40 through the thickness of the polymer aerogel, rather than just the top layer. The sensing material may be absorbed into the aerogel material, or it may be adsorbed to the internal surfaces of the aerogel. This allows for better coloration and easier analysis of the sensor's response.
  • This may also allow for a faster response time. In one experiment, an embodiment of the sensor consisted of a 1 millimeter thick layer of the polymer aerogel having dispersed sensing molecules has a response time of 2 seconds. The response time depends on the amount of time a target molecule takes to travel through the thickness of the polymer aerogel layer and interact with the amount of sensing material required to cause a perceptible change in color. Comparable sensors made with dense polymer binders have a response time of up to a day or longer because of the dense polymer layer.
  • The sensor of the embodiments here may have much higher sensitivity, which leads to a limit of detection being less than 100 ppm of a target molecule. The sensitivity of the sensor is determined by the change in absorbance due to a change in concentration of the target molecule. The absorbance change is maximized by having a large number of interactions between the target molecule and sensing molecule in a given volume of the sensor. Aerogel sensors have improved sensitivity over dense sensors due to the combination of high internal surface area and high permeability to the target molecule. The high surface area allows for a high loading of the sensing material where it can be easily accessed by the target molecule, and the high permeability of the aerogel allows for a large number of target molecules to enter the volume of the sensor. The transparency and low haze of the aerogel sensor allow a higher number of sensing molecules to be visible per unit of observable area which ensures that coloration change in the depth of the material can be detected by the eye and contributes to the device sensitivity
  • For a dense sensor to achieve the same sensitivity as an aerogel sensor, more sensing material is required. The sensing materials are typically the most expensive component of the sensor. Hence, for the same performance, the cost of an aerogel sensor may be lower than that of a dense sensor.
  • The sensor may function as an instantaneous, integrating, or threshold sensor, depending on the selection of the sensing material and target. In the embodiment as an instantaneous sensor, the effect of the target on the sensing material is reversible, and the response depends on the instantaneous concentration of the target. In the embodiments as an integrating sensor or threshold sensor, the effect of the target on the sensing material is irreversible, and the response depends on the total concentration of the target over an interval of time. The integrating sensor or threshold sensor may include a means to restore the material to the initial state, through input of energy such as heat, light, or electricity. In such an embodiment, the porous structure of the aerogel would facilitate the reversibility of the state of the sensor, by allowing the target molecule to escape.
  • The sensor may also have different types of sensing molecules within it. In one embodiment, the sensor may include sensing molecules that change color in response to a first type of target molecule, and sensing molecules of a different type that change color in response to a second type of target molecule. As will be discussed below, arranging different sensing molecules in any desired spatial pattern may produce an array of different types of sensing molecules on the polymer aerogel layer. This may allow for localized regions of different response colors, or different concentrations. In one embodiment, the pattern may be created by printing the sensing material from an ink containing sensing molecules.
  • In one embodiment, the different concentrations may be of the same material. A more densely populated region of sensing molecules may turn color at lower concentrations of the target molecule than a less densely populated region, providing for high dynamic range.
  • FIG. 3 shows an embodiment of an overall process of forming a sensor. In this approach, a polymer gel or aerogel is formed first, and then is infused with the sensing molecules by placing it in a solution containing sensing molecules. At 50, a substrate is provided. As mentioned above, the substrate may consist of the layer of polymer aerogel itself, or it may be a temporary substrate that is coated with the polymer gel prior to removal of the liquid to form the aerogel. At 52, the process forms the porous polymer layer. Two methods are useful for the purpose of the embodiments here. First, the polymer aerogel is formed by removal of the liquid component of a polymer gel, providing a dry polymer aerogel at the end of 52. A second approach consists in exchanging the reaction solvent with a different one and keep the polymer gel in solution to provide a wet polymer gel at the end of 52.
  • In one embodiment, the polymer aerogel results from a process of polymerization of vinyl radical polymerizable monomers in the presences of a radical initiator in a compatible solvent. At 54, the polymer aerogel is infused with the sensing molecules.
  • The infusion may result from many different processes. In one embodiment, the porous polymer substrate may soak in a solution of the sensing material mixed with a solvent. Upon drying, the resulting layer may consist of a layer of polymer aerogel having molecules of the sensing material dispersed throughout it.
  • Alternatively, the solution of sensing material and solvent may be printed on the polymer aerogel layer, causing it to soak into the porous aerogel. When the solvent evaporates, the sensing material will have dispersed through the polymer aerogel layer.
  • In another embodiment, the sensing molecules may be present in the solvent at the time of polymer gel formation from polymer precursors. This approach may fix the sensing molecules into the polymer walls of the aerogel with the benefit of enhanced temporal, and chemical stability of the sensing layer because if eliminates or limits the leaching out of the sensing molecule.
  • In another embodiment, infusing the polymer aerogel layer with sensing molecules comprises chemically grafting the sensing molecules onto polymer walls during or after the forming of the polymer aerogel.
  • In another embodiment, wherein infusing the polymer aerogel layer with sensing molecules comprises copolymerizing sensing molecules containing polymerizable functional groups with polymer aerogel monomers during the forming of the polymer aerogel.
  • Having reasonable compatibility between the sensing molecules and the polymer material may maximize the sensing material absorption within the aerogel pores. In some embodiments, the sensing molecule may consist of a polar molecule that changes color in the presence of the target molecules that make up the compound of interest that is highly polar such as an amine or an organic acid. In this case, the polymer structure may require polar groups to be present for wetting/compatibilization to maximize the incorporation of the sensing molecule into the polymer aerogel.
  • A typical example that fits this category of sensing molecule/polymer material consists of pH responsive molecules. In other embodiments, the molecules of interest are non-polar, such as ethylene detected as a result of fruit decay. The sensing molecules in this embodiment may have low polarity and the polymer material may have low polarity as well.
  • Some monomers consist of polymerizable groups and of additional functional groups to enable compatibilization with the sensed compound of interest. Suitable radical polymerizing groups include vinyl, acrylate, and methacrylate groups. Suitable polar groups for compatibilization include alcohol (—OH), amine (primary, secondary or tertiary, —NH2; —NHR and —NR2) acid groups (ex. carboxylic acid groups (—COOH) and sulfonic acid (—SO3H). Non polar compatibilizing groups include aryl (such as phenyl groups), alkyls and combinations.
  • Some free radical initiators may include AIBN, BPO and analogues. Some possible solvents include solvents compatible with polar monomers include DMF, N-methylpyrrolidone, ethanol, glycol, etc. Solvents compatible with non-polar monomers include toluene, xylene and analogues. Chain transfer agents for pore size control include thiols such as dodecanethiol and 4-methylbenzenethiol, halocarbons such as carbon tetrachloride and bromotrichloromethane, and pentaphenylethane. SFRP pore size control agents include stable nitrogen stable free radicals such as TEMPO, 4-hyrdoxy-TEMPO, TIPNO, and SG1.
  • Sensing molecules may consist of a wide range of sensing molecules that have been demonstrated in the prior art with either liquid solutions or with dense polymer films. In many cases, one class of sensing molecule can be used for multiple types of sensors. The main classes include pH indicators that change color as a function of the pH change due to variation of the acid/base environment around the sensors that can indicate the presence of volatile acids, including organic acids, and organic amines. One main application is related to the fabrication of sensors for fish and meat freshness. Spoiled meat emits volatile organic amines. Examples of sensing molecules in this class include phtalocyanine, and bromocresol green.
  • The main classes also include aggregated organic and organometallic dyes that change color due to changes in energy gaps between electronic states in absorbance as the distance between neighboring molecules change. These may also indicate temperature, humidity (RH) or intercalation of contaminants. Examples include phtalocyanine dye, porphyrin dyes, indigo derivatives, azo dyes, anthraquinone dye, triarylmethane dye etc.
  • The main classes may also include: excimers such as fluorescent and phosphorescent dyes; thermochromics that undergo controlled chemical or physical changes from a colorless state to a colored state; and metal nanoparticles with surface plasmon resonances that change in response to the presence of a target molecule. Examples include leuco dyes, cholesteric liquid crystals, and gold nanoparticles.
  • The active sensing material from the main classes may consist of small molecules, nanoparticles, or macromolecules with color-changing repeat units. A small molecule contains one active molecule and may have a molecular weight of up to 500 Daltons. Macromolecules contain more than one repeat units containing the active sensing molecules and have a molecular weight higher than 500 Daltons.
  • Other examples include transition metal salts that coordinate evolved gases. Typical sensing materials include palladium chloride, palladium sulfates, ammonium molybdates, potassium permanganate. An example is the ethylene sensor that changes color due to the emission of ethylene gas as the fruit ripens and gets eventually spoiled. The change in light transmittance, reflection, absorption or fluorescence of the sensing material ranges preferentially in the near ultraviolet to near infrared range (200 nanometers to 2000 nanometers). In different embodiment, the changes take place in a range from near ultraviolet to visible range (<730 nm) of the light spectrum.
  • Once available these sensors make possible multiple applications. Depending on the specific chemistry, these sensing molecules can be incorporated in sensors for various applications, including threshold temperature where the sensor undergoes a permanent color change when exposed to temperatures above or below some designed limit. For example, the sensor ensures that a perishable, temperature-sensitive item such as a vaccine is maintained below a certain temperature during transport and/or storage.
  • Another application may consist of sensors for fish and meat freshness where the sensor changes color based on ambient levels of chemicals given off during decay process such as putrescine (tetramethylenediamine) and cadaverine (pentamethylenediamine) Grocery stores could deploy a sensor that sits next to or on meat product and changes color to indicate that the meat has been left out or in the refrigerator for too long. Another food application may involve sensors for fruit ripeness where the sensor changes color based on ambient levels of chemicals given off during ripening process, such as ethylene. A sticker on fruit contains a fruit ripeness sensor along with a color scale that maps color to estimated time before ripeness, allowing a customer to choose the fruit that will be optimally ripe when they plan to eat it.
  • Another application may monitor relative humidity where the sensor undergoes a permanent color change when exposed to ambient relative humidity levels above or below some designed limit or based on the aggregate amount of water vapor adsorbed, such as by integration of relative humidity over time. The container for a chemical ingredient that inactivates when exposed to water vapor contains a sensor of the latter description that indicates when the contained chemical is no longer suitable for use and needs to be replaced.
  • Hazardous gas/material exposure in which a sensor undergoes a color change based on ambient level of a hazardous chemical. Sensors placed on natural gas infrastructure equipment that changes color under exposure to hydrogen sulfide, which can be present in natural gas in high concentrations, to warn workers of potentially toxic natural gas leaks in equipment. There may be defense applications for ensuring safety in cities against chemical warfare agents.
  • Another application includes use of these sensors as a pollution sensor where the sensor undergoes permanent color change based on aggregate exposure to some pollutant. Sensors could reside in streams and rivers that change color based on exposure to copper or heavy metals to monitor injection of these pollutants by some upstream agent, such as a factory.
  • Another application may consist of leak detection on the outside of a container where the contents may not be toxic, but it may be important to know if there's a leak. An example of such an application is a hydrogen leak warning sticker on the outside of a gas cylinder. While not a pollution sensor, similar sensors may be used to detect oxygen levels, CO2 levels or time and temperature indicators.
  • sensing labels and sensing strips with enhanced coloration of the above embodiments have several advantages when compared to commercial sensors currently available. These advantages include increased sensitivity for trace detection, decreased response time, and increased dynamic range.
  • It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

Claims (16)

What is claimed is:
1. A method of forming a sensor, comprising:
providing a substrate;
forming a polymer aerogel layer on the substrate; and
infusing the polymer aerogel layer with sensing molecules.
2. The method of claim 1, wherein infusing the porous aerogel layer with sensing molecules comprises soaking the polymer aerogel layer in a solution of sensing molecules mixed with a solvent.
3. The method of claim 1, wherein a porous polymer used to form the polymer aerogel layer is kept in solution before infusion with the solution of sensing molecules mixed with a solvent
4. The method of claim 1, wherein the sensing molecules are present in the solvent at the time of polymer gel formation from polymer precursors.
5. The method of claim 2, further comprising evaporating the solvent.
6. The method of claim 1, wherein infusing the polymer, aerogel layer comprises printing a solution of sensing molecules and a solvent onto the polymer, aerogel layer.
7. The method of claim 6, further comprising evaporating the solvent.
8. The method of claim 1, wherein infusing the polymer, aerogel layer with sensing molecules comprising arranging different sensing molecules in any spatial pattern to produce an array of different types of sensing molecules on the polymer aerogel layer.
9. The method of claim 8, wherein the different sensing molecules respond to different target molecules.
10. The method of claim 8, wherein the different sensing molecules respond to different concentrations of target molecules.
11. The method of claim 8, wherein the pattern is created by printing the sensing material from an ink containing sensing molecules onto the aerogel.
12. The method of claim 1, wherein infusing the polymer aerogel layer with sensing molecules comprises polymerizing in the presence of the sensing molecules during the forming of the polymer aerogel.
13. The method of claim 1, wherein infusing the polymer aerogel layer with sensing molecules comprises chemically grafting the sensing molecules onto polymer walls one of either during or after the forming of the polymer aerogel.
14. The method of claim 1, wherein infusing the polymer aerogel layer with sensing molecules comprises copolymerizing with polymer aerogel monomers during the forming of the polymer aerogel.
15. The method of claim 1, wherein infusing the polymer aerogel layer with sensing molecules comprises forming a polymer aerogel layer on the substrate from a solution containing sensing molecules.
16. The method of claim 15, wherein forming the polymer aerogel layer on the substrate from the solution comprising polymerizable groups and functional groups to enable compatibilization with the sensed compound of interest.
US17/347,910 2017-12-20 2021-06-15 Environmental sensor Abandoned US20210310957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/347,910 US20210310957A1 (en) 2017-12-20 2021-06-15 Environmental sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/849,096 US11067514B2 (en) 2017-12-20 2017-12-20 Environmental sensor
US17/347,910 US20210310957A1 (en) 2017-12-20 2021-06-15 Environmental sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/849,096 Division US11067514B2 (en) 2017-12-20 2017-12-20 Environmental sensor

Publications (1)

Publication Number Publication Date
US20210310957A1 true US20210310957A1 (en) 2021-10-07

Family

ID=64665218

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/849,096 Active 2038-10-05 US11067514B2 (en) 2017-12-20 2017-12-20 Environmental sensor
US17/347,910 Abandoned US20210310957A1 (en) 2017-12-20 2021-06-15 Environmental sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/849,096 Active 2038-10-05 US11067514B2 (en) 2017-12-20 2017-12-20 Environmental sensor

Country Status (3)

Country Link
US (2) US11067514B2 (en)
EP (1) EP3502670B1 (en)
JP (1) JP2019113536A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614409B2 (en) * 2018-12-20 2023-03-28 Palo Alto Research Center Incorporated Printed sensor with vibrant colorimetric particles
TWI717104B (en) * 2019-11-15 2021-01-21 台灣奈米碳素股份有限公司 Product label, system and method for providing instant information of fresh food
US11493451B2 (en) * 2019-12-23 2022-11-08 Palo Alto Research Center Incorporated Colorimetric drug test strip using porous support material
JP7421344B2 (en) 2020-01-14 2024-01-24 矢崎総業株式会社 gas detector
FR3130980A1 (en) * 2021-12-16 2023-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives DETECTION SYSTEM FOR THE DETECTION OF CHEMICAL COMPOUND(S) BASED ON DISTINCT PARTICLES IMPREGNATED WITH DISTINCT DETECTION INDICATORS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040031290A1 (en) * 2002-08-16 2004-02-19 Fitel Usa Corp. High-temperature sintering of soot bodies doped using molecular stuffing
US20050130253A1 (en) * 2003-12-16 2005-06-16 Kimberly-Clark Worldwide, Inc. Solvatochromatic bacterial detection
US20060050268A1 (en) * 2004-09-07 2006-03-09 The Regents Of The University Of California Nanosensors based on functionalized nanoparticles and Surface Enhanced Raman Scattering
US7018501B1 (en) * 2001-07-05 2006-03-28 Nelson Stephen G One-way see-thru panel and method of making same
US20060257094A1 (en) * 2003-02-28 2006-11-16 Gas Sensors Solutions Limited Optical co2 and combined o2/co2 sensors
US20120136079A1 (en) * 2010-11-30 2012-05-31 Aspen Aerogels, Inc. Modified hybrid silica aerogels

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303046B1 (en) * 1997-08-08 2001-10-16 William M. Risen, Jr. Aerogel materials and detectors, liquid and gas absorbing objects, and optical devices comprising same
US6495352B1 (en) * 1999-04-15 2002-12-17 Sandia Corporation Sol-gel method for encapsulating molecules
US7897057B1 (en) 2001-09-04 2011-03-01 Optech Ventures, Llc Sensor for detection of gas such as hydrogen and method of fabrication
JP4035989B2 (en) * 2001-12-11 2008-01-23 三菱化学株式会社 Light-transmitting synthetic resin foam
US7384988B2 (en) 2003-08-26 2008-06-10 Union College Method and device for fabricating aerogels and aerogel monoliths obtained thereby
KR101298047B1 (en) * 2004-01-06 2013-08-20 아스펜 에어로겔, 인코포레이티드 Ormosil aerogels containing silicon bonded linear polymers
US20050186117A1 (en) * 2004-02-19 2005-08-25 Hiroyuki Uchiyama Gas detecting method and gas sensors
US7901632B2 (en) 2004-11-16 2011-03-08 Chi Yung Fu Ultrasensitive olfactory system fabrication with doped aerogels
US8293178B2 (en) * 2007-11-06 2012-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Chemochromic detector for sensing gas leakage and process for producing the same
WO2010028057A1 (en) * 2008-09-04 2010-03-11 The Board Of Trustees Of The University Of Illinois Colorimetric sensor arrays based on nanoporous pigments
US8206311B2 (en) 2009-04-01 2012-06-26 Aerocrine Ab Analyzer for nitric oxide in exhaled breath with multiple-use sensor
JP6566419B2 (en) * 2015-08-19 2019-08-28 国立研究開発法人産業技術総合研究所 Porous body, structure and composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018501B1 (en) * 2001-07-05 2006-03-28 Nelson Stephen G One-way see-thru panel and method of making same
US20040031290A1 (en) * 2002-08-16 2004-02-19 Fitel Usa Corp. High-temperature sintering of soot bodies doped using molecular stuffing
US20060257094A1 (en) * 2003-02-28 2006-11-16 Gas Sensors Solutions Limited Optical co2 and combined o2/co2 sensors
US20050130253A1 (en) * 2003-12-16 2005-06-16 Kimberly-Clark Worldwide, Inc. Solvatochromatic bacterial detection
US20060050268A1 (en) * 2004-09-07 2006-03-09 The Regents Of The University Of California Nanosensors based on functionalized nanoparticles and Surface Enhanced Raman Scattering
US20120136079A1 (en) * 2010-11-30 2012-05-31 Aspen Aerogels, Inc. Modified hybrid silica aerogels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Owens et al., "Sol-gel based materials for biomedical applications", April 2016, Progress in Materials Science, Vol. 77, p. 1-79 (Year: 2016) *

Also Published As

Publication number Publication date
US20190187062A1 (en) 2019-06-20
EP3502670B1 (en) 2020-07-15
EP3502670A1 (en) 2019-06-26
JP2019113536A (en) 2019-07-11
US11067514B2 (en) 2021-07-20

Similar Documents

Publication Publication Date Title
US20210310957A1 (en) Environmental sensor
US20210325358A1 (en) Detection of gases and vapors by patterned nanoparticle liquid crystal alignment
Stumpel et al. An optical sensor for volatile amines based on an inkjet‐printed, hydrogen‐bonded, cholesteric liquid crystalline film
Ma et al. Ultrasensitive, specific, and rapid fluorescence turn‐on nitrite sensor enabled by precisely modulated fluorophore binding
Tavoli et al. Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole
Smith et al. Responsive ionic liquid–polymer 2D photonic crystal gas sensors
AU687854B2 (en) Method for activation of polyanionic fluorescent dyes in low dielectric media with quaternary onium compounds
JP5009737B2 (en) Steam detection device manufacturing method, steam detection device, and steam monitor badge
Eaton et al. Effect of humidity on the response characteristics of luminescent PtOEP thin film optical oxygen sensors
Liu et al. Irreversible spoilage sensors for protein-based food
WO2001035057A2 (en) Ammonia detection and measurement device
Alizadeh et al. A new triazene-1-oxide derivative, immobilized on the triacetyl cellulose membrane as an optical Ni2+ sensor
US20100275835A1 (en) Method for forming an apparatus for indicating the passage of time and the formed apparatus
KR101738761B1 (en) Film for detecting harmful material with enhanced detection sensitivity and the method of preparing the same
Wang et al. High‐Performance Oxygen Sensors Based on EuIII Complex/Polystyrene Composite Nanofibrous Membranes Prepared by Electrospinning
US20050233465A1 (en) Compositions of matter useful as pH indicators and related methods
Fagadar‐Cosma et al. Hybrids formed between polyvinylpyrrolidone and an A3B porphyrin dye: Behaviour in aqueous solutions and chemical response to CO2 presence
Fernández-Ramos et al. Optical humidity sensor using methylene blue immobilized on a hydrophilic polymer
US20230228687A1 (en) Printed sensor with vibrant colorimetric particles
Somani et al. Novel dye+ solid polymer electrolyte material for optical humidity sensing
JP2008524612A (en) Device for detecting at least one chemical component
He et al. Polymer composites for intelligent food packaging
Alias et al. Halochromic PLA/PEG as real‐time solution and vapor sensing
CN101324530B (en) Time process indicating device and its forming method
WO2009153406A1 (en) Indicator

Legal Events

Date Code Title Description
AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GIBSON, GEORGE A.;REEL/FRAME:056547/0393

Effective date: 20171219

Owner name: PALO ALTO RESEARCH CENTER INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IFTIME, GABRIEL;BAKER RIVEST, JESSICA LOUIS;COCKER, ERIC;AND OTHERS;REEL/FRAME:056547/0352

Effective date: 20171219

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: CITIBANK, N.A., AS AGENT, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:062740/0214

Effective date: 20221107

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT R/F 062740/0214;ASSIGNOR:CITIBANK, N.A., AS AGENT;REEL/FRAME:063694/0122

Effective date: 20230517

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PALO ALTO RESEARCH CENTER INCORPORATED;REEL/FRAME:064038/0001

Effective date: 20230416

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVAL OF US PATENTS 9356603, 10026651, 10626048 AND INCLUSION OF US PATENT 7167871 PREVIOUSLY RECORDED ON REEL 064038 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:PALO ALTO RESEARCH CENTER INCORPORATED;REEL/FRAME:064161/0001

Effective date: 20230416

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

AS Assignment

Owner name: JEFFERIES FINANCE LLC, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:065628/0019

Effective date: 20231117

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:066741/0001

Effective date: 20240206