US20210204298A1 - System and Method for Configuring Channel State Information in a Communications System - Google Patents

System and Method for Configuring Channel State Information in a Communications System Download PDF

Info

Publication number
US20210204298A1
US20210204298A1 US17/193,566 US202117193566A US2021204298A1 US 20210204298 A1 US20210204298 A1 US 20210204298A1 US 202117193566 A US202117193566 A US 202117193566A US 2021204298 A1 US2021204298 A1 US 2021204298A1
Authority
US
United States
Prior art keywords
csi
cqi
cqi report
report configuration
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/193,566
Inventor
Ke Wang
Hao Bi
Zhongfeng Li
Jianmin Lu
David Jean-Marie Mazzarese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FutureWei Technologies Inc
Original Assignee
FutureWei Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FutureWei Technologies Inc filed Critical FutureWei Technologies Inc
Priority to US17/193,566 priority Critical patent/US20210204298A1/en
Publication of US20210204298A1 publication Critical patent/US20210204298A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • H04W72/082
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting

Definitions

  • the present disclosure relates generally to digital communications, and more particularly to a system and method for configuring channel state information in a communications system.
  • a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) Release 11 (Rel-11) compliant channel state information (CSI) process provides a CSI feedback mechanism to cope with a new transmission mode, TM10.
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evolution
  • Rel-11 channel state information
  • CSI channel state information
  • the Rel-11 CSI process has been described as “a combination of a non-zero power (NZP) CSI reference symbol (CSI-RS) resource and an interference measurement resource (IMR).
  • NZP non-zero power
  • IMR interference measurement resource
  • a given CSI process can be used by periodic and/or aperiodic reporting.”
  • the CSI process configuration itself contains most of the radio resource control (RRC) parameters for downlink coordinated multiple point (CoMP) operation.
  • RRC radio resource control
  • Example embodiments of the present disclosure which provide a system and method for configuring channel state information in a communications system.
  • a method for communicating in a wireless communications system includes generating, by a device, a channel state information (CSI) process information element (IE) including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information.
  • the method also includes transmitting, by the device, the CSI process IE.
  • CSI process information element including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information.
  • the method also includes transmitting, by the device, the CSI process IE.
  • a method for communicating in a wireless communications system includes receiving, by a receiving device, a channel state information (CSI) process information element (IE) including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information.
  • the method also includes processing, by the device, the CSI process IE.
  • a device in accordance with another example embodiment of the present disclosure, includes a processor, and a transmitter operatively coupled to the processor.
  • the processor generates a channel state information (CSI) process information element (IE) including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information.
  • the transmitter transmits the CSI process IE.
  • a receiving device includes a receiver, and a processor operatively coupled to the receiver.
  • the receiver receives a channel state information (CSI) process information element (IE) including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information.
  • the processor operates on the CSI process IE.
  • One advantage of an embodiment is that multiple CSI processes may be configured for a single carrier, permitting a receiving device to measure channel quality for channels from multiple transmission points.
  • a further advantage of an embodiment is that the multiple CSI processes are referenced according to their respective identifiers, which helps to reduce signaling overhead.
  • FIG. 1 illustrates an example communications system according to example embodiments described herein;
  • FIG. 2 illustrates an example message exchange diagram highlighting messages exchanged between a first device and a second device according to example embodiments described herein;
  • FIG. 3 illustrates an example CoMP transmission in a communications system according to example embodiments described herein;
  • FIG. 4 illustrates an example flow diagram of operations occurring in a device as the device configures CSI processes for a receiving device according to example embodiments described herein;
  • FIG. 5 a illustrates an example flow diagram of operations occurring in a device as the device configures CSI processes for a receiving device with information for each CSI process being individually signaled according to example embodiments described herein;
  • FIG. 5 b illustrates an example flow diagram of operations occurring in a device as the device configures CSI processes for a receiving device with information for CSI processes of a single receiving device being signaled together according to example embodiments described herein;
  • FIG. 6 illustrates an example flow diagram of operations occurring in a receiving device as the receiving device performs CSI reporting according to example embodiments described herein;
  • FIG. 7 a illustrates a first example IE used to transmit information about a CSI process according to example embodiments described herein;
  • FIG. 7 b illustrates a second example IE used to transmit information about a CSI process according to example embodiments described herein;
  • FIG. 7 c illustrates a third example IE used to transmit information about a CSI process according to example embodiments described herein;
  • FIG. 7 d illustrates a fourth example IE used to transmit information about a CSI process according to example embodiments described herein;
  • FIG. 8 illustrates an example first communications device according to example embodiments described herein.
  • FIG. 9 illustrates an example second communications device according to example embodiments described herein.
  • a device transmits a CSI process IE including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information.
  • CSI-RS non-zero power CSI-reference signal
  • IMR interference measurement resource
  • CQI channel quality indicator
  • a receiving device receives a CSI process IE including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information.
  • CSI-RS non-zero power CSI-reference signal
  • IMR interference measurement resource
  • CQI channel quality indicator
  • the present disclosure will be described with respect to example embodiments in a specific context, namely a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) compliant communications system that supports multiple CSI processes for a single carrier.
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evolution
  • the disclosure may also be applied, however, to other standards compliant and non-standards communications systems that support multiple CSI processes per single carrier.
  • FIG. 1 illustrates a communications system 100 .
  • Communications system 100 includes a plurality of evolved NodeBs (eNBs), including eNB 105 and eNB 107 , serving a plurality of user equipments (UEs), such as UE 110 - 116 .
  • eNBs may also be referred to as NodeBs, base stations, communications controllers, and the like, while UEs may also be referred to as mobile stations, mobiles, terminals, users, subscribers, and the like.
  • UEs may also be referred to as mobile stations, mobiles, terminals, users, subscribers, and the like.
  • transmission to or from a UE occur on network resources allocated to the UE by its serving eNB. While it is understood that communications systems may employ multiple eNBs capable of communicating with a number of UEs, only two eNBs, and a number of UEs are illustrated for simplicity.
  • a first device may be able to measure the quality of a communications channel between itself and a second device in an incoming direction based on transmissions received from the second device.
  • the first device may be able to perform a measurement of the quality or the state of a first one-way communications channel starting at the second device and ending at the first device.
  • it may not so easy to measure the quality or the state of a second one-way communications channel starting at the first device and ending at the second device.
  • channel reciprocity may be used to derive the quality or the state of the second one-way communications channel from the quality or the state of the first one-way communications channel.
  • channel reciprocity usually does not provide good results when used with frequency division duplexed communications channels or when there is not a corresponding one-way communications channel going in the opposite direction.
  • a technique that is commonly used is to have the second device measure the quality or the state of the second one-way communications channel based on transmissions made by the first device and then reporting the measured quality or the measured state of the second one-way communications channel to the first device.
  • the quality or the state of the communications channel is referred to as CSI, and this technique is commonly referred to as CSI reporting.
  • FIG. 2 illustrates a message exchange diagram 200 highlighting messages exchanged between a first device 205 and a second device 210 .
  • Message exchange diagram 200 highlights messages exchanged between first device 205 and second device 210 as second device 210 measures and reports CSI for a one-way communications channel between first device 205 and second device 210 .
  • First device 205 may configure CSI operations at second device 210 by transmitting configuration information (or an indication thereof) to second device 210 (shown as event 215 ).
  • the configuration information may include a specified time-frequency resource(s) that second device 210 is to measure to determine the CSI of the one-way channel, what signal first device 205 is transmitting in the specified time-frequency resource(s), when second device 210 is report the CSI, how long second device 210 is to continue with the CSI operations, and the like.
  • First device 205 may transmit the signal in the specified time-frequency resource(s) for measurement purposes (shown as event 220 ).
  • Second device 210 may measure the signal in the specified time-frequency resource(s) and generate a channel quality indicator (CQI) in accordance with the measurement (shown as event 225 ).
  • CQI may be considered to be a quantized representation of the CSI.
  • Second device 210 may report the CQI to first device 205 in accordance with the configuration information (shown as event 230 ).
  • the discussion of FIG. 2 focuses on the reporting of CQI by second device 210
  • second device 210 may report the CSI in a variety of forms, including: raw measurement, unquantized CSI, a transformation of the CSI, a mathematical function of the CSI, and the like.
  • CoMP Coordinated multiple point
  • 3GPP LTE technical standards that allows multiple transmission points (e.g., eNBs, macro cells, pico cells, remote antennas, remote radio heads (RRHs), and the like) to transmit to a single receiving point (e.g., UE, eNB, and the like) to improve resource utilization, diversity gain, communications system performance, and the like.
  • multiple transmission points e.g., eNBs, macro cells, pico cells, remote antennas, remote radio heads (RRHs), and the like
  • UE e.g., UE, eNB, and the like
  • FIG. 3 illustrates CoMP transmission in a communications system 300 .
  • communications system 300 includes three transmission points (transmission point 305 , transmission point 307 , and transmission point 309 ) and a UE 320 .
  • the three transmission points transmit to UE 320 and UE 320 combines the transmissions from the three transmission points to potentially achieve greater communications efficiency than if it only received transmissions from a single transmission point.
  • the three transmission points may need to know the quality or the state of communications channels between themselves and UE 320 .
  • UE 320 may make separate measurements of transmissions made by each of the three transmission points and report the CSI to the three transmission points.
  • the support for the simultaneous configuration of multiple CSI processes in a single carrier in 3GPP LTE Release 11 may allow for efficient implementation of CoMP transmission in a communications system.
  • a device i.e., one of the three transmission points, a controller of one of the three transmission points, an entity in the communications system tasked to configure CSI, and the like
  • may configure a receiving point e.g., UE 320 to initialize an appropriate number of CSI processes ( 3 in this example) to measure the communications channels from a plurality of transmission points (e.g., the three transmission points) to the receiving point (e.g., UE 320 ).
  • a device i.e., the transmission point, a controller of the transmission point, an entity in the communications system tasked to configure CSI, and the like
  • a CSI configuration is presented.
  • a first part of the CSI configuration includes a CSI process identifier (CSI ID) that may be used to identify corresponding CSI processing in a given evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) carrier.
  • CSI ID CSI process identifier
  • E-UTRAN evolved Universal Mobile Telecommunications System
  • a second part of the CSI configuration includes a CSI measurement part (i.e., resources to be used for the CSI measurement), including a NZP CSI-RS and an IMR.
  • a third part of the CSI configuration includes a report (reporting) configuration for periodic and/or aperiodic reporting, for example. It is noted that since CSI processes are configured on a per carrier basis, it is reasonable that the elements (parts) of the CSI processes are also configured on a per carrier basis.
  • the CSI processes may implemented in 3GPP LTE compliant communications systems and devices, such as eNBs, UEs, and the like.
  • FIG. 4 illustrates a flow diagram of operations 400 occurring in a device as the device configures CSI processes for a receiving device.
  • Operations 400 may be indicative of operations occurring in a device, such as an eNB, a controller of an eNB, a UE, and the like, as the device configures CSI processes of a receiving device, such as a UE or an eNB.
  • Operations 400 may begin with the device configuring CSI processes for a receiving device(s) (such as UEs, eNBs, or a combination of UEs and eNBs) (block 405 ).
  • the device may separately configure CSI processes for each receiving device.
  • the device may configure the CSI processes for a first receiving device, configure the CSI processes for a second receiving device, and the like.
  • the device may generate information about the configured CSI processes (block 407 ).
  • the device may generate a CSI process information element (IE).
  • the device may transmit information about the configured CSI processes (e.g., the CSI process IEs) to the receiving devices (block 410 ).
  • the device may transmit the information about the configured CSI processes to each individual receiving device using a radio resource control (RRC) message, the RRC message may contain all of information about the configured CSI processes for the individual receiving device.
  • RRC radio resource control
  • multiple RRC messages may be transmitted by the device to each individual receiving device, with each RRC message containing information about a single configured CSI process.
  • the device may receive a CQI (or some other form of information about the channel quality or channel state) from a receiving device in accordance with the information about the configured CSI process(s) (block 415 ).
  • FIG. 5 a illustrates a flow diagram of operations 500 occurring in a device as the device configures CSI processes for a receiving device with information for each CSI process being individually signaled.
  • the device may configure the CSI processes for the receiving devices (block 505 ) and generate a CSI process IE for the CSI processes.
  • the device may transmit information for each individual CSI process (i.e., the CSI process IEs) to a receiving device (block 510 ).
  • the device may receive a CQI (or some other form of information about the channel quality or channel state) from a receiving device in accordance with the information for the CSI process(s) (block 515 ).
  • FIG. 5 b illustrates a flow diagram of operations 550 occurring in a device as the device configures CSI processes for a receiving device with information for CSI processes of a single receiving device being signaled together.
  • the device may configure the CSI processes for the receiving devices (block 555 ) and generate a CSI process IE for the CSI processes.
  • the device may transmit information for CSI processes of a single receiving device (i.e., the CSI process IEs) to the receiving device in single message (block 560 ).
  • the device may receive a CQI (or some other form of information about the channel quality or channel state) from a receiving device in accordance with the information for the CSI process(s) (block 565 ).
  • FIG. 6 illustrates a flow diagram of operations 600 occurring in a receiving device as the receiving device performs CSI reporting.
  • Operations 600 may be indicative of operations occurring in a receiving device, such as a UE or an eNB, as the receiving device performs CSI reporting.
  • Operations 600 may begin with the receiving device receiving information about a CSI process(es) configured for the receiving device, i.e., the CSI process IEs (block 605 ). If multiple CSI processes are configured for the receiving device, the receiving device may receive a single message containing information about the CSI processes or multiple messages containing information about an individual CSI process. The receiving device may measure the communications channel in accordance with the information about the CSI processes (blocks 610 ). According to an example embodiment, measuring the communications channel may include the receiving device measuring a signal strength using NZP CSI-RS resources for each CSI process (block 615 ) and an interference using the IMR for each CSI process (block 620 ).
  • the receiving device may make power adjustments to the measurements (block 625 ). A detailed discussion of the power adjustments is presented below.
  • the receiving device may generate a CQI report (block 630 ) and transmit the CQI report in accordance with the information about the CSI process, in the form of a CQI (or some other form of information about the channel quality or channel state), for example (block 635 ).
  • the information about the CSI report may specify when the receiving device is to transmit the CSI report, such as time, periodicity, frequency, receipt of an event (such as a transmit trigger, for example), and the like.
  • Blocks 615 - 630 may be considered to be processing of the CSI process IEs by the receiving device.
  • the information about the CSI process(es) may be transmitted by a device to a receiving device.
  • the information about the CSI process(es) may be transmitted in a higher layer message, such as a RRC message.
  • FIG. 7 a illustrates a first example IE 700 used to transmit information about a CSI process.
  • IE 700 may be an example of a CSI process IE and may be transmitted by the device.
  • IE 700 may include a CSI process identifier 705 that may be used to identify a corresponding CSI process, a NZP CSI-RS identifier 707 that may be used to identify a resource(s) to be measured for the CSI report from a list of NZP CSI-RS resources, an IMR identifier 709 that may be used to identify a ratio to be used to measure interference from a list of IMRs, and a CQI report configuration identifier 711 that may be used to identify the report configuration (i.e., if the report is to be periodic or aperiodic, as well as parameters such as report time, report period, report frequency, report event, and the like) from a list of possible CQI report configurations.
  • the report configuration i.e., if the report
  • CQI report configuration identifier 711 may be associated with a CQI report configuration IE, which includes the list of possible CQI report configurations for the CSI process. The use of CQI report configuration identifier 711 may permit the CQI reporting to be configured independently across CSI processes. Similarly, a CSI process may be configured with periodic and/or aperiodic reporting so corresponding CQI report configuration IE may contain periodic and/or aperiodic reporting configurations as desired.
  • FIG. 7 b illustrates a second example IE 720 used to transmit information about a CSI process. It may be possible that different CSI processes have the same aperiodic reporting configuration but different periodic reporting configurations, and vice versa. A further enhancement that may help reduce configuration overhead is to have separate identifiers for CQI aperiodic reporting configurations and CQI periodic reporting configurations.
  • IE 720 may include a CSI process identifier 725 that may be used to identify a corresponding CSI process, a NZP CSI-RS identifier 727 that may be used to identify a resource(s) to be measured for the CSI report from a list of NZP CSI-RS resources, an IMR identifier 729 that may be used to identify a resource to be used to measure interference from a list of IMRs, a CQI aperiodic report configuration identifier 731 that may be used to identify an aperiodic CQI report configuration from a list of possible aperiodic CQI report configurations to be used for the aperiodic reporting of the CQI, and a CQI periodic report configuration identifier 733 that may be used to identify a periodic CQI report configuration from a list of possible periodic CQI report configurations to be used for the periodic reporting of the CQI.
  • FIG. 7 c illustrates a third example IE 740 used to transmit information about a CSI process.
  • IE 740 may include a CSI process identifier 745 that may be used to identify a corresponding CSI process, a NZP CSI-RS identifier 747 that may be used to identify a resource(s) to be measured for the CSI report from a list of NZP CSI-RS resources, an IMR identifier 749 that may be used to identify a resource to be used to measure interference from a list of IMRs, and a CQI report configuration IE 751 that may be used to convey information regarding the CQI reporting configuration, e.g., aperiodic and/or periodic, period, frequency, event, time, and the like.
  • IE 740 includes the CQI reporting configuration to be use in CQI report configuration IE 751 .
  • FIG. 7 d illustrates a fourth example IE 760 used to transmit information about a CSI process.
  • a CQI report configuration IE may be used.
  • IE 760 is a CQI report configuration IE and may include a CSI process identifier 765 that may be used to identify a corresponding CSI process to which the CQI report configuration IE is applied, a NZP CSI-RS identifier 767 that may be used to identity a resource(s) to be measured for the CSI report from a list of NZP CSI-RS resources, an IMR identifier 769 that may be used to identify a resource to be used to measure interference from a list of IMRs, and other parameters related to the measurement reporting.
  • Examples of the other parameters related to the measurement reporting include CQI reporting configuration information, such as aperiodic and/or periodic nature, period, frequency, event, time, and the like.
  • a variation of IE 760 may include a CSI process identifier 765 that may be used to identify a corresponding CSI process to which the CQI report configuration IE is applied, and other parameters related to the measurement reporting.
  • example embodiments presented herein explore a variety of techniques for signaling the configuration of the CSI processes.
  • some example embodiments permit the same periodic and/or aperiodic CQI reporting to be configured for multiple CSI processes.
  • example embodiments that use an identifier to refer to a particular CSI process configuration generally have lower CSI process configuration overhead than those that do not.
  • Each CSI process may be configured with or without subframe sets. There may be a number of options for configuring subframe sets, including:
  • the power offset typically refers to a power offset between the reference signal and a physical downlink shared channel (PDSCH) used for calculating the CSI feedback.
  • Pc may be defined per NZP CSI-RS resource or per CSI process.
  • eICIC enhanced intercell interference coordination
  • the Pc value of different CSI processes may be different because the CSI process is used to evaluate different CoMP processing techniques (e.g., dynamic point selection (DPS), dynamic point blanking (DPB), joint transmission (JT), and the like). Therefore, the Pc defined in the NZP CSI-RS resource may not be able to reflect the actual Pc of the CSI process.
  • DPS dynamic point selection
  • DB dynamic point blanking
  • JT joint transmission
  • the Pc is configured per CSI process IE to indicate the corresponding offset for the CSI process, if no subframe sets are configured for the CSI process. Otherwise, an additional Pc offset (e.g, Pc offset1 or Pc1) is configured, where the original Pc (e.g., Pc) is used for subframe set 1 and the additional Pc offset (e.g., Pc offset1 or Pc1) is used for subframe set 2.
  • Pc offset1 or Pc1 two Pcs (e.g., Pc offset1 and Pc offset2) are configured per CSI process, where a first Pc is used for subframe set 1 and a second Pc is used for subframe set 2.
  • a Pc identifier is configured per CSI process IE with each Pc identifier associating to a Pc configuration IE. If no subframe sets are configured for a CSI process, an associated Pc configuration IE includes one Pc. If subframe sets are configured for a CSI process, an associated Pc configuration IE includes two Pcs, with a first Pc being associated with subframe set 1 and a second Pc being associated with subframe set 2. A list of Pc configuration IEs may be configured, with a maximum number of Pc configuration IEs being equal to the number of CSI processes. It is noted that the actual Pc value of a CSI process may be equal to the Pc associated with the NZP CSI-RS (for the CSI process) plus a corresponding Pc offset.
  • a Pc is configured per CSI process IE if no subframe sets are configured for the CSI process. If subframe sets are configured for a CSI process, an additional Pc may be defined, wherein Pc may be used for subframe set 1 and the additional Pc may be used for subframe set 2. In other words, two Pcs are configured per CSI process IE when subframe sets are configured, where a first Pc is used for subframe set 1 and a second Pc is used for subframe set 2.
  • a Pc identifier is configured per CSI process IE with each Pc identifier associating to a Pc configuration IE. If an associated Pc configuration IE includes one Pc, no subframe sets are configured for the CSI process. If an associated Pc configuration IE includes two Pcs, subframe sets are configured for a CSI process with a first Pc being associated with subframe set 1 and a second Pc being associated with subframe set 2.
  • a list of Pc configuration IEs may be configured, with a maximum number of Pc configuration IEs being equal to the number of CSI processes.
  • Trigger bits include Bit 1 indicating CC (a bitmap) and Bit 2 indicating reporting CSI processes (also a bitmap).
  • FIG. 8 illustrates a first communications device 800 .
  • Communications device 800 may be an implementation of device, such as an eNB, an access point, a communications controller, a base station, and the like, or a network entity tasked to configure CSI processes.
  • Communications device 800 may be used to implement various ones of the embodiments discussed herein.
  • a transmitter 805 is configured to transmit packets, information about CSI process configurations, and the like.
  • Communications device 800 also includes a receiver 810 that is configured to receive packets, CQI reports, and the like.
  • a CSI process configuring unit 820 is configured to specify CSI processes for receiving devices.
  • CSI process configuring unit 820 is configured to specify CSI process identifiers, NZP CSI-RS resource identifiers, IMR identifiers, CQI reporting configurations, CQI reporting configuration IEs, Pc, and the like.
  • An information generating unit 822 is configured to generate information for the configured CSI processes.
  • Information generating unit 822 is configured to generate messages for transmission to the receiving devices.
  • a CQI report processing unit 824 is configured to process CQI reports received from the receiving devices and to determine channel quality or channel state information from the CQI reports.
  • a memory 830 is configured to store data, CSI process IEs, CSI process configurations, CSI reporting configuration IEs, identifiers, CQI reports, channel quality or state information, and the like.
  • the elements of communications device 800 may be implemented as specific hardware logic blocks. In an alternative, the elements of communications device 800 may be implemented as software executing in a processor, controller, application specific integrated circuit, or so on. In yet another alternative, the elements of communications device 800 may be implemented as a combination of software and/or hardware.
  • receiver 810 and transmitter 805 may be implemented as a specific hardware block, while CSI process configuring unit 820 , information generating unit 822 , and CQI report processing unit 824 may be software modules executing in a microprocessor (such as processor 815 ) or a custom circuit or a custom compiled logic array of a field programmable logic array.
  • CSI process configuring unit 820 , information generating unit 822 , and CQI report processing unit 824 may be modules stored in memory 830 .
  • FIG. 9 illustrates a second communications device 900 .
  • Communications device 800 may be an implementation of a receiving device, such as an eNB, an access point, a communications controller, a base station, and the like, or a UE, a mobile, a mobile station, a terminal, a user, a subscriber, and the like.
  • Communications device 900 may be used to implement various ones of the embodiments discussed herein.
  • a transmitter 905 is configured to transmit packets, CQI reports, and the like.
  • Communications device 900 also includes a receiver 910 that is configured to receive packets, information about CSI process configurations, and the like.
  • An information processing unit 920 is configured to process information about CSI process configurations to determine the configurations of CSI processes of the receiving device.
  • a measuring unit 922 is configured to measure a communications channel using the NZP CSI-RS resources and interference using the IMRs provided by the information about CSI process configurations. Measuring unit 922 is configured to make power adjustments according to Pc values as needed.
  • a reporting unit 924 is configured to generate CQI reports from the measurements made by measuring unit 922 . Reporting unit 924 is configured to generate messages containing the CQI reports in accordance with CQI report configuration information or IEs.
  • a memory 930 is configured to store data, CSI process IEs, information about CSI processes, CSI reporting configuration IEs, identifiers, CQI reports, channel quality or state measurements, and the like.
  • the elements of communications device 900 may be implemented as specific hardware logic blocks. In an alternative, the elements of communications device 900 may be implemented as software executing in a processor, controller, application specific integrated circuit, or so on. In yet another alternative, the elements of communications device 900 may be implemented as a combination of software and/or hardware.
  • receiver 910 and transmitter 905 may be implemented as a specific hardware block, while information processing unit 920 , measuring unit 922 , and reporting unit 924 may be software modules executing in a microprocessor (such as processor 815 ) or a custom circuit or a custom compiled logic array of a field programmable logic array.
  • Information processing unit 920 , measuring unit 922 , and reporting unit 924 may be modules stored in memory 930 .
  • PhysicalConfigDedicated SEQUENCE ⁇ pdsch-ConfigDedicated PDSCH-ConfigDedicated OPTIONAL, -- Need ON pucch-ConfigDedicated PUCCH-ConfigDedicated OPTIONAL, -- Need ON pusch-ConfigDedicated PUSCH-ConfigDedicated OPTIONAL, -- Need ON uplinkPowerControlDedicated UplinkPowerControlDedicated OPTIONAL, -- Need ON tpc-PDCCH-ConfigPUCCH TPC-PDCCH-Config OPTIONAL, -- Need ON tpc-PDCCH-ConfigPUSCH TPC-PDCCH-Config OPTIONAL, -- Need ON cqi-ReportConfig CQI-ReportConfig OPTIONAL, -- Cond CQI-r8 soundingRS-UL-ConfigDedicated SoundingRS-UL-ConfigDedicated OPTIONAL, -- Need ON antennaInfo CHOICE ⁇ explicitValue AntennaInfoDedicated, defaultValue NULL ⁇ OPTIONAL, -- Cond AI-r8 schedulingRequestConfig
  • AI-r8 The field is optionally present, need ON, if antennaInfoDedicated-r10 is absent. Otherwise the field is not present AI-r10 The field is optionally present, need ON, if antennaInfoDedicated is absent. Otherwise the field is not present CommonUL The field is mandatory present if ul-Configuration of RadioResourceConfigCommonSCell-r10 is present; otherwise it is optional, need ON. CQI-r8 The field is optionally present, need ON, if cqi-ReportConfig-r10 is absent. Otherwise the field is not present CQI-r10 The field is optionally present, need ON, if cqi-ReportConfig is absent.
  • SCellAdd The field is mandatory present if cellIdentification is present; otherwise it is optional, need ON.
  • CQI-r11 The field is optionally present, need ON, if cqi-ReportConfig and cqi-ReportConfig-r10 are absent. Otherwise the field is not present.
  • the IE IMR-Config is the CSI-RS resource configuration that may be configured on a serving frequency to measure the interference and noise when using transmission mode 10.
  • IMR-Config-r11 SEQUENCE ⁇ imr-Id IMR-Id, resourceConfig2-r11 INTEGER (0..15), subframeConfig-r11 INTEGER (0..154) ... ⁇ -- ASN1STOP
  • IMR consists of 4 REs, hence there are overall 16 configurations.
  • IMR-Config-r11 field descriptions 1. resourceConfig2 2. Parameter: 4 RE CSI reference signal configurations. see TS 36.211. 3. subframeConfig 4. Parameter: I CSI-RS , see TS 36.211 [21, table 6.10.5.3-1].
  • the IE IMR-Id is used to identify an IMR resource configuration that is configured by the IE IMR-Config.
  • the identity is unique within the scope of a carrier frequency.
  • IMR-Id INTEGER (1.. maxIMR-r11) -- ASN1STOP
  • the IE CQI-ReportConfig is used to specify the CQI reporting configuration.
  • the IE CQI-ReportConfig-Id is used to identify a CQI Report configuration that is configured by the IE CQI-ReportConfig.
  • the identity is unique within the scope of a carrier frequency.
  • the IE CSI-Process-Config is the CSI feedback configuration that E-UTRAN may configure on a serving frequency when using transmission mode 10.
  • CSI-Process-Config-r11 SEQUENCE ⁇ csi-Process-Id CSI-Process-Id, csi-RS-Identity-r11 CSI-RS-Identity-r11, imr-Id IMR-Id, cqi-ReportConfig-Id CQI-ReportConfig-Id ... ⁇ -- ASN1STOP
  • the IE CSI-Process-Id is used to identify a CSI process that is configured by the IE CST Process-Config.
  • the identity is unique within the scope of a carrier frequency.
  • maxBands INTEGER :: 64 -- Maximum number of bands listed in EUTRA DE caps
  • maxCDMA-BandClass INTEGER :: 32 -- Maximum value of the CDMA band classes
  • maxCellBlack INTEGER :: 16 -- Maximum number of blacklisted physical cell identity -- ranges listed in SIB type 4 and 5

Abstract

A method for communicating in a wireless communications system includes generating a channel state information (CSI) process information element (IE) including a CSI process identifier, a non-zero padded CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information. The method also includes transmitting the CSI process IE.

Description

  • This application is a continuation of U.S. application Ser. No. 14/040,306, filed on Sep. 27, 2013, and entitled “System and Method for Configuring Channel State Information in a Communications System”, which claims the benefit of U.S. Provisional Application No. 61/706,610, filed on Sep. 27, 2012, entitled “System and Method for Channel State Information Configuration,” which application is hereby incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates generally to digital communications, and more particularly to a system and method for configuring channel state information in a communications system.
  • BACKGROUND
  • In general, a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) Release 11 (Rel-11) compliant channel state information (CSI) process provides a CSI feedback mechanism to cope with a new transmission mode, TM10. Compared with CSI processes in earlier releases of 3GPP LTE, multiple CSI processes in Rel-11 can be simultaneously configured in a single carrier. The Rel-11 CSI process has been described as “a combination of a non-zero power (NZP) CSI reference symbol (CSI-RS) resource and an interference measurement resource (IMR). A given CSI process can be used by periodic and/or aperiodic reporting.” Hence, the CSI process configuration itself contains most of the radio resource control (RRC) parameters for downlink coordinated multiple point (CoMP) operation.
  • SUMMARY OF THE DISCLOSURE
  • Example embodiments of the present disclosure which provide a system and method for configuring channel state information in a communications system.
  • In accordance with an example embodiment of the present disclosure, a method for communicating in a wireless communications system is provided. The method includes generating, by a device, a channel state information (CSI) process information element (IE) including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information. The method also includes transmitting, by the device, the CSI process IE.
  • In accordance with another example embodiment of the present disclosure, a method for communicating in a wireless communications system is provided. The method includes receiving, by a receiving device, a channel state information (CSI) process information element (IE) including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information. The method also includes processing, by the device, the CSI process IE.
  • In accordance with another example embodiment of the present disclosure, a device is provided. The device includes a processor, and a transmitter operatively coupled to the processor. The processor generates a channel state information (CSI) process information element (IE) including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information. The transmitter transmits the CSI process IE.
  • In accordance with another example embodiment of the present disclosure, a receiving device is provided. The receiving device includes a receiver, and a processor operatively coupled to the receiver. The receiver receives a channel state information (CSI) process information element (IE) including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information. The processor operates on the CSI process IE.
  • One advantage of an embodiment is that multiple CSI processes may be configured for a single carrier, permitting a receiving device to measure channel quality for channels from multiple transmission points.
  • A further advantage of an embodiment is that the multiple CSI processes are referenced according to their respective identifiers, which helps to reduce signaling overhead.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
  • FIG. 1 illustrates an example communications system according to example embodiments described herein;
  • FIG. 2 illustrates an example message exchange diagram highlighting messages exchanged between a first device and a second device according to example embodiments described herein;
  • FIG. 3 illustrates an example CoMP transmission in a communications system according to example embodiments described herein;
  • FIG. 4 illustrates an example flow diagram of operations occurring in a device as the device configures CSI processes for a receiving device according to example embodiments described herein;
  • FIG. 5a illustrates an example flow diagram of operations occurring in a device as the device configures CSI processes for a receiving device with information for each CSI process being individually signaled according to example embodiments described herein;
  • FIG. 5b illustrates an example flow diagram of operations occurring in a device as the device configures CSI processes for a receiving device with information for CSI processes of a single receiving device being signaled together according to example embodiments described herein;
  • FIG. 6 illustrates an example flow diagram of operations occurring in a receiving device as the receiving device performs CSI reporting according to example embodiments described herein;
  • FIG. 7a illustrates a first example IE used to transmit information about a CSI process according to example embodiments described herein;
  • FIG. 7b illustrates a second example IE used to transmit information about a CSI process according to example embodiments described herein;
  • FIG. 7c illustrates a third example IE used to transmit information about a CSI process according to example embodiments described herein;
  • FIG. 7d illustrates a fourth example IE used to transmit information about a CSI process according to example embodiments described herein;
  • FIG. 8 illustrates an example first communications device according to example embodiments described herein; and
  • FIG. 9 illustrates an example second communications device according to example embodiments described herein.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • The operating of the current example embodiments and the structure thereof are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific structures of the disclosure and ways to operate the disclosure, and do not limit the scope of the disclosure.
  • One embodiment of the disclosure relates to configuring channel state information in a communications system. For example, a device transmits a CSI process IE including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information. As another example, a receiving device receives a CSI process IE including a CSI process identifier, a non-zero power CSI-reference signal (CSI-RS) identifier, an interference measurement resource (IMR) identifier, and channel quality indicator (CQI) report configuration information.
  • The present disclosure will be described with respect to example embodiments in a specific context, namely a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) compliant communications system that supports multiple CSI processes for a single carrier. The disclosure may also be applied, however, to other standards compliant and non-standards communications systems that support multiple CSI processes per single carrier.
  • FIG. 1 illustrates a communications system 100. Communications system 100 includes a plurality of evolved NodeBs (eNBs), including eNB 105 and eNB 107, serving a plurality of user equipments (UEs), such as UE 110-116. eNBs may also be referred to as NodeBs, base stations, communications controllers, and the like, while UEs may also be referred to as mobile stations, mobiles, terminals, users, subscribers, and the like. Generally, transmission to or from a UE occur on network resources allocated to the UE by its serving eNB. While it is understood that communications systems may employ multiple eNBs capable of communicating with a number of UEs, only two eNBs, and a number of UEs are illustrated for simplicity.
  • In order to achieve good performance and to increase communications efficiency, devices that transmit and/or receive (such as eNBs and UEs, as well as those that are involved in supporting communications) may need to have an idea of the quality or the state of communications channels used to transmit and/or receive. Typically, a first device may be able to measure the quality of a communications channel between itself and a second device in an incoming direction based on transmissions received from the second device. In other words, the first device may be able to perform a measurement of the quality or the state of a first one-way communications channel starting at the second device and ending at the first device. However, it may not so easy to measure the quality or the state of a second one-way communications channel starting at the first device and ending at the second device. In time division duplex communications channels, channel reciprocity may be used to derive the quality or the state of the second one-way communications channel from the quality or the state of the first one-way communications channel. However, channel reciprocity usually does not provide good results when used with frequency division duplexed communications channels or when there is not a corresponding one-way communications channel going in the opposite direction.
  • In frequency division duplex communications channels, a technique that is commonly used is to have the second device measure the quality or the state of the second one-way communications channel based on transmissions made by the first device and then reporting the measured quality or the measured state of the second one-way communications channel to the first device. The quality or the state of the communications channel is referred to as CSI, and this technique is commonly referred to as CSI reporting.
  • FIG. 2 illustrates a message exchange diagram 200 highlighting messages exchanged between a first device 205 and a second device 210. Message exchange diagram 200 highlights messages exchanged between first device 205 and second device 210 as second device 210 measures and reports CSI for a one-way communications channel between first device 205 and second device 210.
  • First device 205 may configure CSI operations at second device 210 by transmitting configuration information (or an indication thereof) to second device 210 (shown as event 215). As an illustrative example, the configuration information may include a specified time-frequency resource(s) that second device 210 is to measure to determine the CSI of the one-way channel, what signal first device 205 is transmitting in the specified time-frequency resource(s), when second device 210 is report the CSI, how long second device 210 is to continue with the CSI operations, and the like. First device 205 may transmit the signal in the specified time-frequency resource(s) for measurement purposes (shown as event 220).
  • Second device 210 may measure the signal in the specified time-frequency resource(s) and generate a channel quality indicator (CQI) in accordance with the measurement (shown as event 225). CQI may be considered to be a quantized representation of the CSI. Second device 210 may report the CQI to first device 205 in accordance with the configuration information (shown as event 230). Although the discussion of FIG. 2 focuses on the reporting of CQI by second device 210, second device 210 may report the CSI in a variety of forms, including: raw measurement, unquantized CSI, a transformation of the CSI, a mathematical function of the CSI, and the like.
  • Coordinated multiple point (CoMP) operation is a relatively new addition to the 3GPP LTE technical standards that allows multiple transmission points (e.g., eNBs, macro cells, pico cells, remote antennas, remote radio heads (RRHs), and the like) to transmit to a single receiving point (e.g., UE, eNB, and the like) to improve resource utilization, diversity gain, communications system performance, and the like. For discussion purposes, CoMP transmission is discussed in detail. However, the example embodiments are also operable with CoMP reception. Therefore, the focus on CoMP transmission should not be construed as being limiting to either the scope or the spirit of the example embodiments.
  • FIG. 3 illustrates CoMP transmission in a communications system 300. As shown in FIG. 3, communications system 300 includes three transmission points (transmission point 305, transmission point 307, and transmission point 309) and a UE 320. The three transmission points transmit to UE 320 and UE 320 combines the transmissions from the three transmission points to potentially achieve greater communications efficiency than if it only received transmissions from a single transmission point.
  • As discussed previously, in order to obtain good communications performance, the three transmission points may need to know the quality or the state of communications channels between themselves and UE 320. UE 320 may make separate measurements of transmissions made by each of the three transmission points and report the CSI to the three transmission points.
  • According to an example embodiment, the support for the simultaneous configuration of multiple CSI processes in a single carrier in 3GPP LTE Release 11 may allow for efficient implementation of CoMP transmission in a communications system. A device (i.e., one of the three transmission points, a controller of one of the three transmission points, an entity in the communications system tasked to configure CSI, and the like) may configure a receiving point (e.g., UE 320) to initialize an appropriate number of CSI processes (3 in this example) to measure the communications channels from a plurality of transmission points (e.g., the three transmission points) to the receiving point (e.g., UE 320).
  • It is noted that in a CoMP reception scenario where a transmission point transmits to multiple receiving points, a device (i.e., the transmission point, a controller of the transmission point, an entity in the communications system tasked to configure CSI, and the like) may configure each of the receiving points to initialize an appropriate number of CSI processes to measure the communications channel from the transmission point to each of the receiving points. Since multiple receiving points are involved, the device may separately configure each receiving point. However, it may be possible to broadcast CSI configuration information to all of the receiving points.
  • According to an example embodiment, utilizing the features of 3GPP LTE Release 11 CSI processes (including: multiple CSI process may be simultaneously configured for a carrier, and a combination of NZP resources and an IMR), a CSI configuration is presented. A first part of the CSI configuration includes a CSI process identifier (CSI ID) that may be used to identify corresponding CSI processing in a given evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) carrier. A second part of the CSI configuration includes a CSI measurement part (i.e., resources to be used for the CSI measurement), including a NZP CSI-RS and an IMR. A third part of the CSI configuration includes a report (reporting) configuration for periodic and/or aperiodic reporting, for example. It is noted that since CSI processes are configured on a per carrier basis, it is reasonable that the elements (parts) of the CSI processes are also configured on a per carrier basis. The CSI processes may implemented in 3GPP LTE compliant communications systems and devices, such as eNBs, UEs, and the like.
  • FIG. 4 illustrates a flow diagram of operations 400 occurring in a device as the device configures CSI processes for a receiving device. Operations 400 may be indicative of operations occurring in a device, such as an eNB, a controller of an eNB, a UE, and the like, as the device configures CSI processes of a receiving device, such as a UE or an eNB.
  • Operations 400 may begin with the device configuring CSI processes for a receiving device(s) (such as UEs, eNBs, or a combination of UEs and eNBs) (block 405). According to an example embodiment, the device may separately configure CSI processes for each receiving device. In other words, the device may configure the CSI processes for a first receiving device, configure the CSI processes for a second receiving device, and the like. The device may generate information about the configured CSI processes (block 407). As an example, the device may generate a CSI process information element (IE). The device may transmit information about the configured CSI processes (e.g., the CSI process IEs) to the receiving devices (block 410). According to an example embodiment, the device may transmit the information about the configured CSI processes to each individual receiving device using a radio resource control (RRC) message, the RRC message may contain all of information about the configured CSI processes for the individual receiving device. Alternatively, multiple RRC messages may be transmitted by the device to each individual receiving device, with each RRC message containing information about a single configured CSI process. The device may receive a CQI (or some other form of information about the channel quality or channel state) from a receiving device in accordance with the information about the configured CSI process(s) (block 415).
  • FIG. 5a illustrates a flow diagram of operations 500 occurring in a device as the device configures CSI processes for a receiving device with information for each CSI process being individually signaled. The device may configure the CSI processes for the receiving devices (block 505) and generate a CSI process IE for the CSI processes. The device may transmit information for each individual CSI process (i.e., the CSI process IEs) to a receiving device (block 510). The device may receive a CQI (or some other form of information about the channel quality or channel state) from a receiving device in accordance with the information for the CSI process(s) (block 515).
  • FIG. 5b illustrates a flow diagram of operations 550 occurring in a device as the device configures CSI processes for a receiving device with information for CSI processes of a single receiving device being signaled together. The device may configure the CSI processes for the receiving devices (block 555) and generate a CSI process IE for the CSI processes. The device may transmit information for CSI processes of a single receiving device (i.e., the CSI process IEs) to the receiving device in single message (block 560). The device may receive a CQI (or some other form of information about the channel quality or channel state) from a receiving device in accordance with the information for the CSI process(s) (block 565).
  • FIG. 6 illustrates a flow diagram of operations 600 occurring in a receiving device as the receiving device performs CSI reporting. Operations 600 may be indicative of operations occurring in a receiving device, such as a UE or an eNB, as the receiving device performs CSI reporting.
  • Operations 600 may begin with the receiving device receiving information about a CSI process(es) configured for the receiving device, i.e., the CSI process IEs (block 605). If multiple CSI processes are configured for the receiving device, the receiving device may receive a single message containing information about the CSI processes or multiple messages containing information about an individual CSI process. The receiving device may measure the communications channel in accordance with the information about the CSI processes (blocks 610). According to an example embodiment, measuring the communications channel may include the receiving device measuring a signal strength using NZP CSI-RS resources for each CSI process (block 615) and an interference using the IMR for each CSI process (block 620).
  • The receiving device may make power adjustments to the measurements (block 625). A detailed discussion of the power adjustments is presented below. The receiving device may generate a CQI report (block 630) and transmit the CQI report in accordance with the information about the CSI process, in the form of a CQI (or some other form of information about the channel quality or channel state), for example (block 635). As an illustrative example, the information about the CSI report may specify when the receiving device is to transmit the CSI report, such as time, periodicity, frequency, receipt of an event (such as a transmit trigger, for example), and the like. Blocks 615-630 may be considered to be processing of the CSI process IEs by the receiving device.
  • As discussed previously, the information about the CSI process(es) may be transmitted by a device to a receiving device. Generally, the information about the CSI process(es) may be transmitted in a higher layer message, such as a RRC message. However, it may be possible to broadcast the information about the CSI process(es).
  • FIG. 7a illustrates a first example IE 700 used to transmit information about a CSI process. IE 700 may be an example of a CSI process IE and may be transmitted by the device. IE 700 may include a CSI process identifier 705 that may be used to identify a corresponding CSI process, a NZP CSI-RS identifier 707 that may be used to identify a resource(s) to be measured for the CSI report from a list of NZP CSI-RS resources, an IMR identifier 709 that may be used to identify a ratio to be used to measure interference from a list of IMRs, and a CQI report configuration identifier 711 that may be used to identify the report configuration (i.e., if the report is to be periodic or aperiodic, as well as parameters such as report time, report period, report frequency, report event, and the like) from a list of possible CQI report configurations. CQI report configuration identifier 711 may be associated with a CQI report configuration IE, which includes the list of possible CQI report configurations for the CSI process. The use of CQI report configuration identifier 711 may permit the CQI reporting to be configured independently across CSI processes. Similarly, a CSI process may be configured with periodic and/or aperiodic reporting so corresponding CQI report configuration IE may contain periodic and/or aperiodic reporting configurations as desired.
  • FIG. 7b illustrates a second example IE 720 used to transmit information about a CSI process. It may be possible that different CSI processes have the same aperiodic reporting configuration but different periodic reporting configurations, and vice versa. A further enhancement that may help reduce configuration overhead is to have separate identifiers for CQI aperiodic reporting configurations and CQI periodic reporting configurations. IE 720 may include a CSI process identifier 725 that may be used to identify a corresponding CSI process, a NZP CSI-RS identifier 727 that may be used to identify a resource(s) to be measured for the CSI report from a list of NZP CSI-RS resources, an IMR identifier 729 that may be used to identify a resource to be used to measure interference from a list of IMRs, a CQI aperiodic report configuration identifier 731 that may be used to identify an aperiodic CQI report configuration from a list of possible aperiodic CQI report configurations to be used for the aperiodic reporting of the CQI, and a CQI periodic report configuration identifier 733 that may be used to identify a periodic CQI report configuration from a list of possible periodic CQI report configurations to be used for the periodic reporting of the CQI.
  • FIG. 7c illustrates a third example IE 740 used to transmit information about a CSI process. IE 740 may include a CSI process identifier 745 that may be used to identify a corresponding CSI process, a NZP CSI-RS identifier 747 that may be used to identify a resource(s) to be measured for the CSI report from a list of NZP CSI-RS resources, an IMR identifier 749 that may be used to identify a resource to be used to measure interference from a list of IMRs, and a CQI report configuration IE 751 that may be used to convey information regarding the CQI reporting configuration, e.g., aperiodic and/or periodic, period, frequency, event, time, and the like. Rather than using an identifier to associate with a particular CQI reporting configuration, IE 740 includes the CQI reporting configuration to be use in CQI report configuration IE 751.
  • FIG. 7d illustrates a fourth example IE 760 used to transmit information about a CSI process. Instead of being configured in a CSI process IE, a CQI report configuration IE may be used. IE 760 is a CQI report configuration IE and may include a CSI process identifier 765 that may be used to identify a corresponding CSI process to which the CQI report configuration IE is applied, a NZP CSI-RS identifier 767 that may be used to identity a resource(s) to be measured for the CSI report from a list of NZP CSI-RS resources, an IMR identifier 769 that may be used to identify a resource to be used to measure interference from a list of IMRs, and other parameters related to the measurement reporting. Examples of the other parameters related to the measurement reporting include CQI reporting configuration information, such as aperiodic and/or periodic nature, period, frequency, event, time, and the like. A variation of IE 760 may include a CSI process identifier 765 that may be used to identify a corresponding CSI process to which the CQI report configuration IE is applied, and other parameters related to the measurement reporting.
  • The example embodiments presented herein explore a variety of techniques for signaling the configuration of the CSI processes. As an example, some example embodiments permit the same periodic and/or aperiodic CQI reporting to be configured for multiple CSI processes. As another example, example embodiments that use an identifier to refer to a particular CSI process configuration generally have lower CSI process configuration overhead than those that do not.
  • Please refer to an Addendum to the specification for example embodiments of specific implementations of CSI process configurations.
  • Each CSI process may be configured with or without subframe sets. There may be a number of options for configuring subframe sets, including:
      • The configuration of the subframe sets is included in a CQI report configuration for each CSI process;
      • The configuration of the subframe sets is included in each CSI process IE; and
      • If the subframe sets are configured for more than one CSI process on a component carrier, all CSI processes that have subframe sets configured shall use the same pair of subframe sets.
        Therefore, a common subframe set configuration IE may be defined in a carrier and an indicator is included with each CSI process IE to indicate whether the common subframe set configuration IE applies to the CSI process defined by the CSI process IE. One technique that may be used is to define a common subframe set configuration IE using a CQI report configuration IE as used previously. It is noted that when carrier aggregation (CA) is used, currently restricted subframe sets apply only to primary component carrier (PCC) and does not impact secondary component carrier (SCC). Therefore, if the subframe set restraint extends to the SCC, the common subframe set configuration IE may be defined in a CQI report configuration for SCell (“CQI-ReportConfigSCell”). Another technique may be to define a separate IE, e.g., a CSI subframe pattern configuration IE in a given carrier.
  • Power is another consideration in CSI process configuration. With respect to CSI process configuration, the power offset (“Pc”) typically refers to a power offset between the reference signal and a physical downlink shared channel (PDSCH) used for calculating the CSI feedback. Pc may be defined per NZP CSI-RS resource or per CSI process. Additionally, when enhanced intercell interference coordination (eICIC) is used, there may be two different subsets, e.g., time-frequency subsets, which are configured for a CSI process, and the Pc values for these subsets may be different. It may be possible to configure the Pc in a number of different ways depending on different assumptions.
  • Assuming that the Pc is defined per NZP CSI-RS resource configured, the Pc value of different CSI processes may be different because the CSI process is used to evaluate different CoMP processing techniques (e.g., dynamic point selection (DPS), dynamic point blanking (DPB), joint transmission (JT), and the like). Therefore, the Pc defined in the NZP CSI-RS resource may not be able to reflect the actual Pc of the CSI process.
  • According to an example embodiment, the Pc is configured per CSI process IE to indicate the corresponding offset for the CSI process, if no subframe sets are configured for the CSI process. Otherwise, an additional Pc offset (e.g, Pc offset1 or Pc1) is configured, where the original Pc (e.g., Pc) is used for subframe set 1 and the additional Pc offset (e.g., Pc offset1 or Pc1) is used for subframe set 2. In other words, two Pcs (e.g., Pc offset1 and Pc offset2) are configured per CSI process, where a first Pc is used for subframe set 1 and a second Pc is used for subframe set 2.
  • According to another example embodiment, a Pc identifier is configured per CSI process IE with each Pc identifier associating to a Pc configuration IE. If no subframe sets are configured for a CSI process, an associated Pc configuration IE includes one Pc. If subframe sets are configured for a CSI process, an associated Pc configuration IE includes two Pcs, with a first Pc being associated with subframe set 1 and a second Pc being associated with subframe set 2. A list of Pc configuration IEs may be configured, with a maximum number of Pc configuration IEs being equal to the number of CSI processes. It is noted that the actual Pc value of a CSI process may be equal to the Pc associated with the NZP CSI-RS (for the CSI process) plus a corresponding Pc offset.
  • According to an example embodiment, if the Pc is defined per CSI process configured, then a Pc is configured per CSI process IE if no subframe sets are configured for the CSI process. If subframe sets are configured for a CSI process, an additional Pc may be defined, wherein Pc may be used for subframe set 1 and the additional Pc may be used for subframe set 2. In other words, two Pcs are configured per CSI process IE when subframe sets are configured, where a first Pc is used for subframe set 1 and a second Pc is used for subframe set 2.
  • According to an alternative example embodiment, if the Pc is defined per CSI process configured, then a Pc identifier is configured per CSI process IE with each Pc identifier associating to a Pc configuration IE. If an associated Pc configuration IE includes one Pc, no subframe sets are configured for the CSI process. If an associated Pc configuration IE includes two Pcs, subframe sets are configured for a CSI process with a first Pc being associated with subframe set 1 and a second Pc being associated with subframe set 2. A list of Pc configuration IEs may be configured, with a maximum number of Pc configuration IEs being equal to the number of CSI processes.
  • In a situation with multiple carrier configuration (CoMP+CA), the configuration of aperiodic CQI feedback may be different for a primary cell (PCell) and a secondary cell (SCell). Therefore, the CQI report configuration for the PCell and the SCell is also different. Trigger bits include Bit1 indicating CC (a bitmap) and Bit2 indicating reporting CSI processes (also a bitmap).
  • FIG. 8 illustrates a first communications device 800. Communications device 800 may be an implementation of device, such as an eNB, an access point, a communications controller, a base station, and the like, or a network entity tasked to configure CSI processes. Communications device 800 may be used to implement various ones of the embodiments discussed herein. As shown in FIG. 8, a transmitter 805 is configured to transmit packets, information about CSI process configurations, and the like. Communications device 800 also includes a receiver 810 that is configured to receive packets, CQI reports, and the like.
  • A CSI process configuring unit 820 is configured to specify CSI processes for receiving devices. CSI process configuring unit 820 is configured to specify CSI process identifiers, NZP CSI-RS resource identifiers, IMR identifiers, CQI reporting configurations, CQI reporting configuration IEs, Pc, and the like. An information generating unit 822 is configured to generate information for the configured CSI processes. Information generating unit 822 is configured to generate messages for transmission to the receiving devices. A CQI report processing unit 824 is configured to process CQI reports received from the receiving devices and to determine channel quality or channel state information from the CQI reports. A memory 830 is configured to store data, CSI process IEs, CSI process configurations, CSI reporting configuration IEs, identifiers, CQI reports, channel quality or state information, and the like.
  • The elements of communications device 800 may be implemented as specific hardware logic blocks. In an alternative, the elements of communications device 800 may be implemented as software executing in a processor, controller, application specific integrated circuit, or so on. In yet another alternative, the elements of communications device 800 may be implemented as a combination of software and/or hardware.
  • As an example, receiver 810 and transmitter 805 may be implemented as a specific hardware block, while CSI process configuring unit 820, information generating unit 822, and CQI report processing unit 824 may be software modules executing in a microprocessor (such as processor 815) or a custom circuit or a custom compiled logic array of a field programmable logic array. CSI process configuring unit 820, information generating unit 822, and CQI report processing unit 824 may be modules stored in memory 830.
  • FIG. 9 illustrates a second communications device 900. Communications device 800 may be an implementation of a receiving device, such as an eNB, an access point, a communications controller, a base station, and the like, or a UE, a mobile, a mobile station, a terminal, a user, a subscriber, and the like. Communications device 900 may be used to implement various ones of the embodiments discussed herein. As shown in FIG. 9, a transmitter 905 is configured to transmit packets, CQI reports, and the like. Communications device 900 also includes a receiver 910 that is configured to receive packets, information about CSI process configurations, and the like.
  • An information processing unit 920 is configured to process information about CSI process configurations to determine the configurations of CSI processes of the receiving device. A measuring unit 922 is configured to measure a communications channel using the NZP CSI-RS resources and interference using the IMRs provided by the information about CSI process configurations. Measuring unit 922 is configured to make power adjustments according to Pc values as needed. A reporting unit 924 is configured to generate CQI reports from the measurements made by measuring unit 922. Reporting unit 924 is configured to generate messages containing the CQI reports in accordance with CQI report configuration information or IEs. A memory 930 is configured to store data, CSI process IEs, information about CSI processes, CSI reporting configuration IEs, identifiers, CQI reports, channel quality or state measurements, and the like.
  • The elements of communications device 900 may be implemented as specific hardware logic blocks. In an alternative, the elements of communications device 900 may be implemented as software executing in a processor, controller, application specific integrated circuit, or so on. In yet another alternative, the elements of communications device 900 may be implemented as a combination of software and/or hardware.
  • As an example, receiver 910 and transmitter 905 may be implemented as a specific hardware block, while information processing unit 920, measuring unit 922, and reporting unit 924 may be software modules executing in a microprocessor (such as processor 815) or a custom circuit or a custom compiled logic array of a field programmable logic array. Information processing unit 920, measuring unit 922, and reporting unit 924 may be modules stored in memory 930.
  • Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims.
  • Addendum—CSI Process Configuration PhysicalConfigDedicated Information Element
  • -- ASN1START
    PhysicalConfigDedicated ::= SEQUENCE {
    pdsch-ConfigDedicated PDSCH-ConfigDedicated OPTIONAL, -- Need
    ON
    pucch-ConfigDedicated PUCCH-ConfigDedicated OPTIONAL, -- Need
    ON
    pusch-ConfigDedicated PUSCH-ConfigDedicated OPTIONAL, -- Need
    ON
    uplinkPowerControlDedicated UplinkPowerControlDedicated OPTIONAL, -- Need
    ON
    tpc-PDCCH-ConfigPUCCH TPC-PDCCH-Config OPTIONAL, -- Need
    ON
    tpc-PDCCH-ConfigPUSCH TPC-PDCCH-Config OPTIONAL, -- Need
    ON
    cqi-ReportConfig CQI-ReportConfig OPTIONAL, -- Cond
    CQI-r8
    soundingRS-UL-ConfigDedicated SoundingRS-UL-ConfigDedicated OPTIONAL, -- Need
    ON
    antennaInfo CHOICE {
    explicitValue AntennaInfoDedicated,
    defaultValue NULL
    } OPTIONAL, -- Cond AI-r8
    schedulingRequestConfig SchedulingRequestConfig OPTIONAL, -- Need
    ON
    ...,
    [[ cqi-ReportConfig-v920 CQI-ReportConfig-v920 OPTIONAL, -- Cond
    CQI-r8
    antennaInfo-v920 AntennaInfoDedicated-v920 OPTIONAL -- Cond
    AI-r8
    ]],
    [[ antennaInfo-r10 CHOICE {
    explicitValue-r10 AntennaInfoDedicated-r10,
    defaultValue NULL
    } OPTIONAL, -- Cond AI-
    r10
    antennaInfoUL-r10 AntennaInfoUL-r10 OPTIONAL, -- Need
    ON
    cif-Presence-r10 BOOLEAN OPTIONAL, -- Need
    ON
    cqi-ReportConfig-r10 CQI-ReportConfig-r10 OPTIONAL, -- Cond
    CQI-r10
    csi-RS-Config-r10 CSI-RS-Config-r10 OPTIONAL, -- Need
    ON
    pucch-ConfigDedicated-v1020 PUCCH-ConfigDedicated-v1020 OPTIONAL, -- Need
    ON
    pusch-ConfigDedicated-v1020 PUSCH-ConfigDedicated-v1020 OPTIONAL, -- Need
    ON
    schedulingRequestConfig-v1020 SchedulingRequestConfig-v1020 OPTIONAL, -- Need
    ON
    soundingRS-UL-ConfigDedicated-v1020
    SoundingRS-UL-ConfigDedicated-v1020 OPTIONAL, -- Need ON
    soundingRS-UL-ConfigDedicatedAperiodic-r10
    SoundingRS-UL-ConfigDedicatedAperiodic-r10 OPTIONAL, -- Need
    ON
    uplinkPowerControlDedicated-v1020 UplinkPowerControlDedicated-v1020 OPTIONAL --
    Need ON
    ]],
    [[ additionalSpectrumEmissionCA-r10 CHOICE {
    release NULL,
    setup SEQUENCE {
    additionalSpectrumEmissionPCell-r10 AdditionalSpectrumEmission
    }
    } OPTIONAL -- Need ON
    ]]
    [[ --NZP CSI-RS
    csi-RS-ToReleaseList-r11 CSI-RS-ToReleaseList-r11 OPTIONAL, -- Need ON
    csi-RS-ToAddModList-r11 CSI-RS-ToAddModList-r11 OPTIONAL -- Need ON
    --IMR
    imr-ToRemoveList-r11 IMR-ToRemoveList-r11 OPTIONAL, -- Need ON
    imr-ToAddModList-r11 IMR-ToAddModList-r11 OPTIONAL, -- Need ON
    --CQI ReportConfig
    cqi-ReportConfigToRemoveList-r11 CQI-ReportConfigToRemoveList-r11 OPTIONAL, -- Cond
    CQI-r11
    cqi-ReportConfigToAddModList-r11 CQI-ReportConfigToAddModList-r11  OPTIONAL, -- Cond
    CQI-r11
    --CSI process configurations
    csi-ProcessIdToRemoveList-r11 CSI-ProcessIdToRemoveList-r11 OPTIONAL, -- Cond CQI-
    r11
    csi-ProcessIdToAddModList-r11 CSI-ProcessIdToAddModList-r11 OPTIONAL, -- Cond CQI-
    r11
    ]]
    }
    PhysicalConfigDedicatedSCell-r10 ::= SEQUENCE {
    -- DL configuration as well as configuration applicable for DL and UL
    nonUL-Configuration-r10 SEQUENCE {
    antennaInfo-r10 AntennaInfoDedicated-r10 OPTIONAL, -- Need
    ON
    crossCarrierSchedulingConfig-r10 CrossCarrierSchedulingConfig-r10 OPTIONAL, -
    - Need ON
    csi-RS-Config-r10 CSI-RS-Config-r10 OPTIONAL, -- Need
    ON
    pdsch-ConfigDedicated-r10 PDSCH-ConfigDedicated OPTIONAL -- Need
    ON
    } OPTIONAL, -- Cond SCellAdd
    -- UL configuration
    ul-Configuration-r10 SEQUENCE {
    antennaInfoUL-r10 AntennaInfoUL-r10 OPTIONAL, -- Need
    ON
    pusch-ConfigDedicatedSCell-r10 PUSCH-ConfigDedicatedSCell-r10 OPTIONAL, -
    - Need ON
    uplinkPowerControlDedicatedSCell-r10 UplinkPowerControlDedicatedSCell-r10 OPTIONAL,
    -- Need ON
    cqi-ReportConfigSCell-r10 CQI-ReportConfigSCell-r10 OPTIONAL, --Need
    ON
    soundingRS-UL-ConfigDedicated-r10 SoundingRS-UL-ConfigDedicated OPTIONAL, --
    Need ON
    soundingRS-UL-ConfigDedicated-v1020
    SoundingRS-UL-ConfigDedicated-v1020 OPTIONAL, -- Need ON
    soundingRS-UL-ConfigDedicatedAperiodic-r10
    SoundingRS-UL-ConfigDedicatedAperiodic-r10 OPTIONAL -- Need
    ON
    } OPTIONAL, -- Cond
    CommonUL
    ...,
    [[ --NZP CSI-RS
    csi-RS-ToReleaseList-r11 CSI-RS-ToReleaseList-r11 OPTIONAL, -- Need ON
    csi-RS-ToAddModList-r11 CSI-RS-ToAddModList-r11 OPTIONAL -- Need ON
    --IMR
    imr-ToRemoveList-r11 IMR-ToRemoveList-r11 OPTIONAL, -- Need ON
    imr-ToAddModList-r11 IMR-ToAddModList-r11 OPTIONAL, -- Need ON
    --CQI ReportConfig
    cqi-ReportConfigToRemoveList-r11 CQI-ReportConfigToRemoveList-r11 OPTIONAL, -- Cond
    CQI-r11
    cqi-ReportConfigToAddModList-r11 CQI-ReportConfigToAddModList-r11  OPTIONAL, -- Cond
    CQI-r11
    --CSI process configurations
    csi-ProcessIdToRemoveList-r11 CSI-ProcessIdToRemoveList-r11 OPTIONAL, -- Cond CQI-
    r11
    csi-ProcessIdToAddModList-r11 CSI-ProcessIdToAddModList-r11 OPTIONAL, -- Cond CQI-
    r11
    ]]
    }
    CSI-RS-ToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-r11)) OF CSI-RS-Identity-r11
    CSI-RS-ToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-r11)) OF CSI-RS-Config2-r11
    IMR-ToRemoveList-r11 ::= SEQUENCE (SIZE(1..maxIMR-r11)) OF IMR-Id
    IMR-ToAddModList-r11 ::= SEQUENCE (SIZE(1..maxIMR-r11)) OF IMR-Config-r11
    CQI-ReportConfigToRemoveList-r11 ::= SEQUENCE (SIZE (1..maxCSI-process-r11)) OF CQI-
    ReportConfig-Id
    CQI-ReportConfigToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-process-r11)) OF CQI-
    ReportConfig-r11
    CSI-ProcessIdToRemoveList-r11 ::= SEQUENCE (SIZE (1..maxCSI-process-r11)) OF CSI-Process-Id
    CSI-ProcessIdToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-process-r11)) OF CSI-ProcessConfig-
    r11
    -- ASN1STOP
  • Conditional presence Explanation
    AI-r8 The field is optionally present, need ON, if
    antennaInfoDedicated-r10 is absent. Otherwise
    the field is not present
    AI-r10 The field is optionally present, need ON, if
    antennaInfoDedicated is absent. Otherwise
    the field is not present
    CommonUL The field is mandatory present if
    ul-Configuration of
    RadioResourceConfigCommonSCell-r10 is
    present; otherwise it is optional, need ON.
    CQI-r8 The field is optionally present, need ON, if
    cqi-ReportConfig-r10 is absent. Otherwise
    the field is not present
    CQI-r10 The field is optionally present, need ON, if
    cqi-ReportConfig is absent. Otherwise
    the field is not present
    SCellAdd The field is mandatory present if
    cellIdentification is present; otherwise
    it is optional, need ON.
    CQI-r11 The field is optionally present, need ON,
    if cqi-ReportConfig and cqi-ReportConfig-r10
    are absent. Otherwise the field is not present.
  • IMR-Config
  • The IE IMR-Config is the CSI-RS resource configuration that may be configured on a serving frequency to measure the interference and noise when using transmission mode 10.
  • IMR-Config Information Elements
  • -- ASN1START
    IMR-Config-r11 ::= SEQUENCE {
    imr-Id IMR-Id,
    resourceConfig2-r11 INTEGER (0..15),
    subframeConfig-r11 INTEGER (0..154)
    ...
    }
    -- ASN1STOP
  • Note: IMR consists of 4 REs, hence there are overall 16 configurations.
  • IMR-Config-r11 field descriptions
    1. resourceConfig2
    2. Parameter: 4 RE CSI reference signal configurations. see TS 36.211.
    3. subframeConfig
    4. Parameter: ICSI-RS, see TS 36.211 [21, table 6.10.5.3-1].
      • IMR-Id
  • The IE IMR-Id is used to identify an IMR resource configuration that is configured by the IE IMR-Config. The identity is unique within the scope of a carrier frequency.
  • IMR-Id Information Elements
  • -- ASN1START
    IMR-Id ::= INTEGER (1.. maxIMR-r11)
    -- ASN1STOP
  • CQI-ReportConfig
  • The IE CQI-ReportConfig is used to specify the CQI reporting configuration.
  • CQI-ReportConfig Information Elements
  • -- ASN1START
    CQI-ReportConfig ::= SEQUENCE {
    cqi-ReportModeAperiodic CQI-ReportModeAperiodic OPTIONAL, -- Need OR
    nomPDSCH-RS-EPRE-Offset INTEGER (−1..6),
    cqi-ReportPeriodic CQI-ReportPeriodic OPTIONAL -- Need ON
    }
    CQI-ReportConfig-v920 ::= SEQUENCE {
    cqi-Mask-r9 ENUMERATED {setup} OPTIONAL, -- Cond cqi-Setup
    pmi-RI-Report-r9 ENUMERATED {setup} OPTIONAL -- Cond PMIRI
    }
    CQI-ReportConfig-r10 ::= SEQUENCE {
    cqi-ReportAperiodic-r10 CQI-ReportAperiodic-r10 OPTIONAL, -- Need ON
    nomPDSCH-RS-EPRE-Offset INTEGER (−1..6),
    cqi-ReportPeriodic-r10 CQI-ReportPeriodic-r10 OPTIONAL, -- Need ON
    pmi-RI-Report-r9 ENUMERATED {setup} OPTIONAL, -- Cond
    PMIRIPCell
    csi-SubframePatternConfig-r10 CHOICE {
    release NULL,
    setup SEQUENCE {
    csi-MeasSubframeSet1-r10 MeasSubframePattern-r10,
    csi-MeasSubframeSet2-r10 MeasSubframePattern-r10
    }
    } OPTIONAL -- Need ON
    }
    CQI-ReportConfig-r11 ::= SEQUENCE {
    cqi-ReportConfig-Id CQI-ReportConfig-Id,
    --need RAN1 inputs
    cqi-ReportAperiodic-r11 CQI-ReportAperiodic-r11 OPTIONAL, -- Need ON
    cqi-ReportPeriodic-r11 CQI-ReportPeriodic-r11 OPTIONAL, -- Need ON
    .........
    }
    CQI-ReportConfigSCell-r10 ::= SEQUENCE {
    cqi-ReportModeAperiodic-r10 CQI-ReportModeAperiodic OPTIONAL, -- Need OR
    nomPDSCH-RS-EPRE-Offset-r10 INTEGER (−1..6),
    cqi-ReportPeriodicSCell-r10 CQI-ReportPeriodic-r10 OPTIONAL, -- Need ON
    pmi-RI-Report-r10 ENUMERATED {setup} OPTIONAL -- Cond
    PMIRISCell
    }
    CQI-ReportPeriodic ::= CHOICE {
    release NULL,
    setup SEQUENCE {
    cqi-PUCCH-ResourceIndex INTEGER (0..1185),
    cqi-pmi-ConfigIndex INTEGER (0..1023),
    cqi-FormatIndicatorPeriodic CHOICE {
    widebandCQI NULL,
    subbandCQI SEQUENCE {
    k INTEGER (1..4)
    }
    },
    ri-ConfigIndex INTEGER (0..1023) OPTIONAL, -- Need
    OR
    simultaneousAckNackAndCQI BOOLEAN
    }
    }
    CQI-ReportPeriodic-r10 ::= CHOICE {
    release NULL,
    setup SEQUENCE {
    cqi-PUCCH-ResourceIndex-r10 INTEGER (0..1184),
    cqi-PUCCH- CSI-RS-ConfigNZP -r10 INTEGER (0..1184) OPTIONAL, --
    Need OR
    cqi-pmi-ConfigIndex INTEGER (0..1023),
    cqi-FormatIndicatorPeriodic-r10 CHOICE {
    widebandCQI-r10 SEQUENCE {
    csi-ReportMode-r10 ENUMERATED {submode1, submode2} OPTIONAL -- Need
    OR
    },
    subbandCQI-r10 SEQUENCE {
    k INTEGER (1..4),
    periodicityFactor-r10 ENUMERATED {n2, n4}
    }
    },
    ri-ConfigIndex INTEGER (0..1023) OPTIONAL, -- Need
    OR
    simultaneousAckNackAndCQI BOOLEAN,
    cqi-Mask-r9 ENUMERATED {setup} OPTIONAL, -- Need
    OR
    csi-ConfigIndex-r10 CHOICE {
    release NULL,
    setup SEQUENCE {
    cqi-pmi-ConfigIndex2-r10 INTEGER (0..1023),
    ri-ConfigIndex2-r10 INTEGER (0..1023) OPTIONAL -- Need
    OR
    }
    } OPTIONAL -- Need
    ON
    }
    }
    CQI-ReportAperiodic-r10 ::= CHOICE {
    release NULL,
    setup SEQUENCE {
    cqi-ReportModeAperiodic-r10 CQI-ReportModeAperiodic,
    aperiodicCSI-Trigger-r10 SEQUENCE {
    trigger1-r10 BIT STRING (SIZE (8)),
    trigger2-r10 BIT STRING (SIZE (8))
    }  OPTIONAL -- Need
    OR
    }
    }
    CQI-ReportModeAperiodic ::= ENUMERATED {
    rm12, rm20, rm22, rm30, rm31,
    spare3, spare2, spare1
    }
    -- ASN1STOP
  • CQI-ReportConfig-Id
  • The IE CQI-ReportConfig-Id is used to identify a CQI Report configuration that is configured by the IE CQI-ReportConfig. The identity is unique within the scope of a carrier frequency.
  • IMR-Id Information Elements
  • -- ASN1START
    CQI-ReportConfig-Id ::= INTEGER (1.. maxCSI-process-r11)
    -- ASN1STOP
  • CSI-Process-Config
  • The IE CSI-Process-Config is the CSI feedback configuration that E-UTRAN may configure on a serving frequency when using transmission mode 10.
  • CSI-Process-Config Information Elements
  • -- ASN1START
    CSI-Process-Config-r11 ::= SEQUENCE {
    csi-Process-Id CSI-Process-Id,
    csi-RS-Identity-r11 CSI-RS-Identity-r11,
    imr-Id IMR-Id,
    cqi-ReportConfig-Id CQI-ReportConfig-Id
    ...
    }
    -- ASN1STOP
  • CSI-Process-Id
  • The IE CSI-Process-Id is used to identify a CSI process that is configured by the IE CST Process-Config. The identity is unique within the scope of a carrier frequency.
  • CSI-Process-Id Information Elements
  • -- ASN1START
    CSI-Process-Id ::= INTEGER (1.. maxCSI-process-r11)
    -- ASN1STOP
  • 6.4 RRC Multiplicity and Type Constraint Values
  • Multiplicity and Type Constraint Definitions
  • -- ASN1START
    maxBandComb-r10 INTEGER ::= 128 -- Maximum number of band combinations.
    maxBands INTEGER ::= 64 -- Maximum number of bands listed in EUTRA DE caps
    maxBandwidthClass-r10 INTEGER ::= 16 -- Maximum number of supported CA BW classes per band
    maxBandwidthCombSet-r10 INTEGER ::= 32 -- Maximum number of bandwidth combination sets per
    -- supported band combination
    maxCDMA-BandClass INTEGER ::= 32 -- Maximum value of the CDMA band classes
    maxCellBlack INTEGER ::= 16 -- Maximum number of blacklisted physical cell
    identity
    -- ranges listed in SIB type 4 and 5
    maxCellInfoGERAN-r9 INTEGER ::= 32 -- Maximum number of GERAN cells for which system in-
    -- formation can be provided as redirection
    assistance
    maxCellInfoUTRA-r9 INTEGER ::= 16 -- Maximum number of UTRA cells for which system
    -- information can be provided as redirection
    -- assistance
    maxFreqUTRA-TDD-r10 INTEGER ::= 6 -- Maximum number of UTRA TDD carrier frequencies for
    -- which system information can be provided as
    -- redirection assistance
    maxCellInter INTEGER ::= 16 -- Maximum number of neighbouring inter-frequency
    -- cells listed in SIB type 5
    maxCellIntra INTEGER ::= 16 -- Maximum number of neighbouring intra-frequency
    -- cells listed in SIB type 4
    maxCellListGERAN INTEGER ::= 3 -- Maximum number of lists of GERAN cells
    maxCellMeas INTEGER ::= 32 -- Maximum number of entries in each of the
    -- cell lists in a measurement object
    maxCellReport INTEGER ::= 8 -- Maximum number of reported cells
    maxCSI-process-r11 INTEGER ::= 3/4 -- Maximum number of CSI processes per carrier
    frequency
    maxDRB INTEGER ::= 11 -- Maximum number of Data Radio Bearers
    maxEARFCN INTEGER ::= 65535 -- Maximum value of EUTRA carrier fequency
    maxFreq INTEGER ::= 8 -- Maximum number of carrier frequencies
    maxGERAN-SI INTEGER ::= 10 -- Maximum number of GERAN SI blocks that can be
    -- provided as part of NACC information
    maxGNFG INTEGER ::= 16 -- Maximum number of GERAN neighbour freq groups
    maxIMR-r11 INTEGER ::= 3/4 -- Maximum number of IMR per carrier frequency
    maxLogMeasReport-r10 INTEGER ::= 520 -- Maximum number of logged measurement entries
    -- that can be reported by the UE in one message
    maxMBSFN-Allocations INTEGER ::= 8 -- Maximum number of MBSFN frame allocations with
    -- different offset
    maxMBSFN-Area INTEGER ::= 8
    maxMBSFN-Area-1 INTEGER ::= 7
    maxMeasId INTEGER ::= 32
    maxMultiBands INTEGER ::= 8 -- Maximum number of additional frequency bands
    -- that a cell belongs to
    maxObjectId INTEGER ::= 32
    maxPageRec INTEGER ::= 16 --
    maxPhysCellIdRange-r9 INTEGER ::= 4 -- Maximum number of physical cell identity ranges
    maxPNOffset INTEGER ::= 511 -- Maximum number of CDMA2000 PNOffsets
    maxPMCH-PerMBSFN INTEGER ::= 15
    maxRAT-Capabilities INTEGER ::= 8 -- Maximum number of interworking RATs (incl EUTRA)
    maxReportConfigId INTEGER ::= 32
    maxRSTD-Freq-r10 INTEGER ::= 3 -- Maximum number of frequency layers for RSTD
    -- measurement
    maxSCell-r10 INTEGER ::= 4 -- Maximum number of SCells
    maxServCell-r10 INTEGER ::= 5 -- Maximum number of Serving cells
    maxServiceCount INTEGER ::= 16 -- Maximum number of MBMS services that can be
    included
    -- in an MBMS counting request and response
    maxServiceCount-1 INTEGER ::= 15
    maxSessionPerPMCH INTEGER ::= 29
    maxSessionPerPMCH-1 INTEGER ::= 28
    maxSIB INTEGER ::= 32 -- Maximum number of SIBs
    maxSIB-1 INTEGER ::= 31
    maxSI-Message INTEGER ::= 32 -- Maximum number of SI messages
    maxSimultaneousBands-r10 INTEGER ::= 64 -- Maximum number of simultaneously aggregated bands
    maxCSI-RS-r11 INTEGER ::= 3 -- Maximum number of CSI RS resource
    -- configurations (per frequency)
    maxUTRA-FDD-Carrier INTEGER ::= 16 -- Maximum number of UTRA FDD carrier frequencies
    maxUTRA-TDD-Carrier INTEGER ::= 16 -- Maximum number of UTRA TDD carrier frequencies
    -- ASN1STOP
  • NOTE: The value of maxDRB aligns with SA2.
  • End of EUTRA-RRC-Definitions
  • -- ASN1START
    END
    -- ASN1STOP

Claims (18)

What is claimed is:
1. A method for communicating in a wireless communications system, the method comprising:
selecting, by a network node, a channel quality indicator (CQI) report configuration from a plurality of CQI report configurations, the CQI report configuration specifying which CQIs are to be reported; and
transmitting, by the network node, a message including channel state information (CSI) process (CSI-process) information element (IE) to a user equipment (UE), the CSI-process IE including a CQI report configuration identifier (cqi-ReportConfig-Id) identifying the CQI report configuration.
2. The method of claim 1, wherein the CSI-process IE further comprises a periodic CQI report configuration identifier identifying a periodic CQI report configuration.
3. The method of claim 1, wherein each of the plurality of CQI report configurations comprises a set of parameters specifying a manner in which CQIs are reported, and each of the plurality of CQI report configurations is associated with a CQI report configuration identifier uniquely identifying a respective CQI report configuration from the plurality of CQI report configurations.
4. The method of claim 1, wherein the message further comprises a CQI report configuration IE.
5. The method of claim 1, wherein the CSI-process IE further comprises an aperiodic CQI report configuration identifier identifying an aperiodic CQI report configuration.
6. The method of claim 1, wherein the CSI-process IE further comprises information about a single CSI process.
7. The method of claim 1, wherein the CSI-process IE further comprises information about CSI processes associated with the UE.
8. The method of claim 1, wherein the CSI-process IE further comprises a power offset.
9. The method of claim 1, further comprising receiving a CQI report in accordance with the CQI report configuration.
10. An apparatus comprising:
a processor; and
a non-transitory computer readable storage medium storing programing for execution by the processor, the programming includes instructions to a placeholder
select a channel quality indicator (CQI) report configuration from a plurality of CQI report configurations, the CQI report configuration specifying which CQIs are to be reported; and
transmit a message including channel state information (CSI) process (CSI-process) information element (IE) to a user equipment (UE), the CSI-process IE including a CQI report configuration identifier (cqi-ReportConfig-Id) identifying the CQI report configuration.
11. The apparatus of claim 10, wherein the CSI-process IE further comprises a periodic CQI report configuration identifier identifying a periodic CQI report configuration.
12. The apparatus of claim 10, wherein each of the plurality of CQI report configurations comprises a set of parameters specifying a manner in which CQIs are reported, and each of the plurality of CQI report configurations is associated with a CQI report configuration identifier uniquely identifying a respective CQI report configuration from the plurality of CQI report configurations.
13. The apparatus of claim 10, wherein the message further comprises a CQI report configuration IE.
14. The apparatus of claim 10, wherein the CSI-process IE further comprises an aperiodic CQI report configuration identifier identifying an aperiodic CQI report configuration.
15. The apparatus of claim 10, wherein the CSI-process IE further comprises information about a single CSI process.
16. The apparatus of claim 10, wherein the CSI-process IE further comprises information about CSI processes associated with the UE.
17. The apparatus of claim 10, wherein the CSI-process IE further comprises a power offset.
18. The apparatus of claim 10, further comprising receiving a CQI report in accordance with the CQI report configuration.
US17/193,566 2012-09-27 2021-03-05 System and Method for Configuring Channel State Information in a Communications System Pending US20210204298A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/193,566 US20210204298A1 (en) 2012-09-27 2021-03-05 System and Method for Configuring Channel State Information in a Communications System

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261706610P 2012-09-27 2012-09-27
US14/040,306 US10945270B2 (en) 2012-09-27 2013-09-27 System and method for configuring channel state information in a communications system
US17/193,566 US20210204298A1 (en) 2012-09-27 2021-03-05 System and Method for Configuring Channel State Information in a Communications System

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/040,306 Continuation US10945270B2 (en) 2012-09-27 2013-09-27 System and method for configuring channel state information in a communications system

Publications (1)

Publication Number Publication Date
US20210204298A1 true US20210204298A1 (en) 2021-07-01

Family

ID=50338751

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/040,306 Active 2034-06-18 US10945270B2 (en) 2012-09-27 2013-09-27 System and method for configuring channel state information in a communications system
US17/193,566 Pending US20210204298A1 (en) 2012-09-27 2021-03-05 System and Method for Configuring Channel State Information in a Communications System

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/040,306 Active 2034-06-18 US10945270B2 (en) 2012-09-27 2013-09-27 System and method for configuring channel state information in a communications system

Country Status (6)

Country Link
US (2) US10945270B2 (en)
EP (2) EP2893753B1 (en)
JP (1) JP2015534396A (en)
CN (2) CN109547164B (en)
BR (1) BR112015006977B1 (en)
WO (1) WO2014052926A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154383A1 (en) * 2012-04-13 2013-10-17 엘지전자 주식회사 Method and apparatus for reporting channel state information in wireless communication system
JP2015534396A (en) * 2012-09-27 2015-11-26 華為技術有限公司Huawei Technologies Co.,Ltd. System and method for configuring channel state information in a communication system
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
US9544112B2 (en) * 2013-03-19 2017-01-10 Lg Electronics Inc. Method by which terminal transmits and receives signal in multi cell-based wireless communication system, and device for same
GB2513910B (en) * 2013-05-10 2015-08-05 Broadcom Corp Methods, apparatus and computer programs for operating user equipment
EP3018933B1 (en) * 2013-07-05 2019-09-04 Sharp Kabushiki Kaisha Terminal device, base station device, integrated circuit, and communication method
JP6629745B2 (en) 2014-02-18 2020-01-15 エルジー エレクトロニクス インコーポレイティド Method and apparatus for reporting channel state information in a wireless communication system supporting change of usage of wireless resources
GB201405117D0 (en) * 2014-03-21 2014-05-07 Nvidia Corp Estimating channel information
KR102231078B1 (en) * 2014-06-03 2021-03-24 삼성전자 주식회사 Method and apparatus for transmitting and receiving feedback information in mobile communication system
JP6630348B2 (en) * 2014-10-10 2020-01-15 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Method for dynamic CSI feedback
US9603110B2 (en) * 2015-01-20 2017-03-21 Qualcomm Incorporated Adaptive frequency correction in multiple radio devices
US9883491B2 (en) * 2015-01-29 2018-01-30 Intel Corporation Aperiodic channel state information (CSI) reporting for carrier aggregation
WO2016159629A1 (en) * 2015-03-31 2016-10-06 엘지전자 주식회사 Method for transmitting aperiodic reference signal for channel status information feedback in wireless communication system and device therefor
US11641255B2 (en) * 2015-04-05 2023-05-02 Comcast Cable Communications, Llc Uplink control information transmission in a wireless network
US9877334B2 (en) * 2015-04-05 2018-01-23 Ofinno Technologies, Llc Cell configuration in a wireless device and wireless network
US10158414B2 (en) 2015-06-18 2018-12-18 Samsung Electronics Co., Ltd. Advanced beamforming and feedback methods for MIMO wireless communication systems
WO2017164590A1 (en) * 2016-03-24 2017-09-28 엘지전자 주식회사 Method for transmitting/receiving reference signal in next generation communication system, and device therefor
WO2017197224A1 (en) * 2016-05-13 2017-11-16 Intel Corporation Inter evolved nodeb coordinated beamforming
US11006303B2 (en) * 2016-08-11 2021-05-11 Lg Electronics Inc. Channel state reporting method in wireless communication system and device therefor
CN107733500B (en) * 2016-08-11 2023-08-22 华为技术有限公司 Channel state information measurement feedback method and device
WO2019028878A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated Techniques for non-zero-power beams in wireless systems
WO2021198928A1 (en) * 2020-03-31 2021-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Channel quality indication (cqi) saturation mitigation
WO2021208007A1 (en) * 2020-04-16 2021-10-21 Qualcomm Incorporated Subband power offset configuration for channel state information reporting
CN116528283A (en) * 2022-01-22 2023-08-01 华为技术有限公司 Communication method, device and system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090168718A1 (en) * 2008-01-02 2009-07-02 Interdigital Patent Holdings, Inc. Configuration for cqi reporting in lte
US20100135169A1 (en) * 2006-12-22 2010-06-03 Telefonaktiebolaget L M Ericssson (Publ) Channel Quality Reporting Method and Arrangement in a Telecommunication System
US20120182879A1 (en) * 2009-09-29 2012-07-19 Panasonic Corporation Wireless communication apparatus, wireless communication base station and wireless communication system
US20130039327A1 (en) * 2010-04-30 2013-02-14 Nokia Corporation Aperiodic cqi/pmi request in carrier aggregation
US20130208604A1 (en) * 2011-08-12 2013-08-15 Interdigital Patent Holdings, Inc. Interference Measurement In Wireless Networks
US20130308715A1 (en) * 2012-05-18 2013-11-21 Samsung Electronics Co., Ltd Apparatus and method for channel state information codeword construction for a cellular wireless communication system
US20130315185A1 (en) * 2011-03-03 2013-11-28 Lg Electronics Inc. Method and device for transmitting control information in wireless communication system
US20140086155A1 (en) * 2011-09-26 2014-03-27 Texas Instruments Incorporated METHOD AND APPARATUS FOR CSI FEEDBACK IN CoMP (COORDINATED MULTI-POINT) SYSTEMS
US10945270B2 (en) * 2012-09-27 2021-03-09 Futurewei Technologies, Inc. System and method for configuring channel state information in a communications system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9185570B2 (en) 2010-05-18 2015-11-10 Lg Electronics Inc. Method and apparatus for performing channel measurement in a distributed multi-node system
WO2012006005A2 (en) 2010-06-29 2012-01-12 Interdigital Patent Holdings, Inc. Demodulation reference signal based channel state information feedback in ofdm-mimo systems
US9014025B2 (en) 2010-10-04 2015-04-21 Futurewei Technologies, Inc. System and method for coordinating different types of base stations in a heterogeneous communications system
US9252930B2 (en) * 2011-01-07 2016-02-02 Futurewei Technologies, Inc. Reference signal transmission and reception method and equipment
CN102595469B (en) * 2011-01-12 2016-11-16 中兴通讯股份有限公司 A kind of determination method of channel quality indication (CQI) information
US8995400B2 (en) * 2011-02-11 2015-03-31 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/RRH system
CN102638432B (en) 2011-02-12 2016-09-28 中兴通讯股份有限公司 The method for mapping resource of null tone block coding and device
US9020488B2 (en) * 2011-08-05 2015-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Prioritization of wireless terminal measurements
CN102368697B (en) 2011-09-30 2018-04-03 中兴通讯股份有限公司 Interferometry signals, interferometry and feedback method and its device
US9729273B2 (en) * 2012-03-30 2017-08-08 Sharp Kabushiki Kaisha Collision resolution among transmission schedules of uplink control information (UCI)

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100135169A1 (en) * 2006-12-22 2010-06-03 Telefonaktiebolaget L M Ericssson (Publ) Channel Quality Reporting Method and Arrangement in a Telecommunication System
US20090168718A1 (en) * 2008-01-02 2009-07-02 Interdigital Patent Holdings, Inc. Configuration for cqi reporting in lte
US20120182879A1 (en) * 2009-09-29 2012-07-19 Panasonic Corporation Wireless communication apparatus, wireless communication base station and wireless communication system
US20130039327A1 (en) * 2010-04-30 2013-02-14 Nokia Corporation Aperiodic cqi/pmi request in carrier aggregation
US20130315185A1 (en) * 2011-03-03 2013-11-28 Lg Electronics Inc. Method and device for transmitting control information in wireless communication system
US20130208604A1 (en) * 2011-08-12 2013-08-15 Interdigital Patent Holdings, Inc. Interference Measurement In Wireless Networks
US20140086155A1 (en) * 2011-09-26 2014-03-27 Texas Instruments Incorporated METHOD AND APPARATUS FOR CSI FEEDBACK IN CoMP (COORDINATED MULTI-POINT) SYSTEMS
US20130308715A1 (en) * 2012-05-18 2013-11-21 Samsung Electronics Co., Ltd Apparatus and method for channel state information codeword construction for a cellular wireless communication system
US10945270B2 (en) * 2012-09-27 2021-03-09 Futurewei Technologies, Inc. System and method for configuring channel state information in a communications system

Also Published As

Publication number Publication date
CN104662969B (en) 2019-01-25
BR112015006977B1 (en) 2022-06-28
EP2893753A4 (en) 2015-07-15
CN109547164A (en) 2019-03-29
BR112015006977A8 (en) 2019-08-20
EP3416432A1 (en) 2018-12-19
BR112015006977A2 (en) 2017-07-04
US10945270B2 (en) 2021-03-09
WO2014052926A1 (en) 2014-04-03
CN109547164B (en) 2022-01-14
JP2015534396A (en) 2015-11-26
CN104662969A (en) 2015-05-27
EP2893753A1 (en) 2015-07-15
EP3416432B1 (en) 2019-12-04
US20140086084A1 (en) 2014-03-27
EP2893753B1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
US20210204298A1 (en) System and Method for Configuring Channel State Information in a Communications System
EP3949227B1 (en) Method for differentiating multiple physical downlink shared channel (pdsch) transmission schemes
EP3598676B1 (en) Method for transmitting data, terminal device, and network device
US10419174B2 (en) Method for configuring an interference measurement resource in a wireless communication system, and apparatus for thereof
US9923684B2 (en) Methods to support inter-eNodeB CoMP
US20200112864A1 (en) Method for setting interference measurement resource in wireless communication system and apparatus therefor
CN110198210B (en) System and method for multipoint communication
KR20190103325A (en) Signal transmission method and apparatus
CN112292828A (en) Channel state information measurement and feedback for transmission mode switching
US11765744B2 (en) Method for cell cyclic downlink transmission in wireless communication system and apparatus therefor
AU2012346827B2 (en) Method for receiving downlink control channel by means of a terminal in a wireless channel system and apparatus for same
WO2014005386A1 (en) Virtual carrier aggregation method, base station and user equipment
CN104145431A (en) Method for terminal receiving downlink signal in wireless communication system and apparatus for same
US20180124743A1 (en) Method for transmitting or receiving evolved multicast and broadcast signals in wireless communication system and apparatus therefor
WO2018127149A1 (en) Channel state information processing method, apparatus and system
KR102301580B1 (en) Signaling in RRC and MAC to PDSCH resource mapping for periodic and quasi-persistent reference signal assumptions
JPWO2016002323A1 (en) Base station, user terminal, radio communication system, and communication control method
WO2022024079A1 (en) Indication of tci states for aperiodic csi-rs with low configuration overhead
US9525530B2 (en) Method for feeding back channel state information in wireless communication system and apparatus for same
CN116171588A (en) Method for group-based L1-SINR measurement and reporting
CN117769870A (en) Systems and methods for PDSCH-based CSI measurement

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED