US20210057621A1 - Solid state lighting devices having improved color uniformity and associated methods - Google Patents

Solid state lighting devices having improved color uniformity and associated methods Download PDF

Info

Publication number
US20210057621A1
US20210057621A1 US17/011,915 US202017011915A US2021057621A1 US 20210057621 A1 US20210057621 A1 US 20210057621A1 US 202017011915 A US202017011915 A US 202017011915A US 2021057621 A1 US2021057621 A1 US 2021057621A1
Authority
US
United States
Prior art keywords
lens
sse
converter material
light
ssl device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/011,915
Inventor
Martin F. Schubert
Kevin Tetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US17/011,915 priority Critical patent/US20210057621A1/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TETZ, KEVIN, SCHUBERT, MARTIN F.
Publication of US20210057621A1 publication Critical patent/US20210057621A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • H01L51/5275
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Definitions

  • the present technology is related to solid state lighting (“SSL”) devices and associated methods of manufacturing SSL devices.
  • the present technology is related to SSL devices having lenses that improve color uniformity across the SSL device and associated methods.
  • Solid state lighting (“SSL”) devices generally use solid state emitters (“SSEs”) such as semiconductor light-emitting diodes (“LEDs”), organic light-emitting diodes (“OLEDs”), and/or polymer light-emitting diodes (“PLEDs”) as sources of illumination rather than electrical filaments, plasma, or gas.
  • SSEs solid state emitters
  • a conventional type of SSL device has a “white light” SSE.
  • White light requires a mixture of wavelengths to be perceived by human eyes.
  • SSEs typically only emit light at one particular wavelength (e.g., blue light), so SSEs are modified to generate white light.
  • One conventional technique for modulating the light from SSEs includes depositing a converter material (e.g., phosphor) on the SSE. For example, FIG.
  • FIG. 1 shows a conventional SSL device 10 that includes a support 2 , an SSE 4 attached to the support 2 , and a converter material 6 on the SSE 4 .
  • the SSE 4 emits light (e.g., blue light) radially outward along a plurality of first vectors 8 .
  • the converter material 6 scatters some of the light emitted by the SSE 4 and absorbs other light emitted by the SSE 4 .
  • the absorbed light causes the converter material 6 to emit light of a different color along a plurality of second vectors 12 .
  • the light from the converter material along the second vectors 12 can have a desired frequency (e.g., yellow light) such that the combination of light along the first and second vectors 8 and 12 appears white to human eyes if the wavelengths and amplitudes of the emissions are matched appropriately.
  • a desired frequency e.g., yellow light
  • the color of light generally varies across the SSL devices due to the emission angle.
  • the emission angle ⁇ is the angle that light (e.g., along the first vectors 8 ) projects away from an axis N normal to the support 2 .
  • the distance light travels through the converter material 6 accordingly changes as a function of the emission angle ⁇ .
  • the first vectors 8 having greater emission angles ⁇ e.g., 60°
  • FIG. 1 is a schematic cross-sectional diagram of an SSL device in accordance with the prior art.
  • FIG. 2A is a schematic cross-sectional view of an SSL device configured in accordance with an embodiment of the present technology.
  • FIG. 2B is an operational view of the SSL device of FIG. 2A illustrating the emission of light from the SSL device.
  • FIG. 3 is a graph showing the relationship between emission angles and color variations across SSL devices.
  • FIG. 4 is a flow chart showing a method of fabricating SSL devices in accordance with an embodiment of the present technology.
  • FIG. 5A is a schematic cross-sectional view of an SSL device configured in accordance with an embodiment of the present technology
  • FIG. 5B is a top plan view of the SSL device of FIG. 5A .
  • FIG. 6A is a schematic cross-sectional view of an SSL device configured in accordance with another embodiment of the present technology
  • FIG. 6B is a top plan view of the SSL device of FIG. 6A .
  • FIG. 7A is a schematic cross-sectional view of an SSL device
  • FIGS. 7B and 7C are top plan views of the SSL device of FIG. 7A configured in accordance with further embodiments of the present technology.
  • FIG. 8 is a schematic cross-sectional view of an SSL device configured in accordance with yet another embodiment of the present technology.
  • FIG. 9 is a schematic cross-sectional view of an SSL device configured in accordance with an additional embodiment of the present technology.
  • SSL solid state lighting
  • SSE solid state lighting
  • LEDs semiconductor light-emitting diodes
  • PLEDs polymer light-emitting diodes
  • OLEDs organic light-emitting diodes
  • the term “phosphor” generally refers to a material that can continue emitting light after exposure to energy (e.g., electrons and/or photons). Additionally, the term “lens” generally refers to a material (e.g., a transparent encapsulant) that can emit light through its exterior surface.
  • Packaged SSL devices and methods of manufacturing SSL assemblies are specifically described below to provide an enabling disclosure, but the package and methods can be applied to any SSL device. A person skilled in the relevant art will understand that the new technology may have additional embodiments and that the new technology may be practiced without several of the details of the embodiments described below with reference to FIGS. 2A-9 .
  • FIG. 2A is a schematic cross-sectional view of an SSL device 200 configured in accordance with an embodiment of the present technology.
  • the SSL device 200 can include a support 202 and an SSE 204 attached to a surface 210 of the support 202 .
  • the SSL device 200 can further include a converter material 206 positioned over the SSE 204 , and a lens 212 positioned over both the SSE 204 and the converter material 206 .
  • the SSE 204 can include a first semiconductor material 214 , an active region 216 , and a second semiconductor material 218 .
  • the first semiconductor material 214 can be a P-type semiconductor material proximate a first side 208 a of the SSE 204 , such as P-type gallium nitride (“P-GaN”)
  • the second semiconductor material 218 can be an N-type semiconductor material proximate a second side 208 b of the SSE 204 , such as N-type gallium nitride (“N-GaN”).
  • P-GaN P-type gallium nitride
  • N-GaN N-type gallium nitride
  • the P-GaN and N-GaN are reversed such that the P-GaN is proximate the second side 208 b of the SSE 204 and the N-GaN is proximate the first side 208 a .
  • the active region 216 can be indium gallium nitride (“InGaN”).
  • the first semiconductor material 214 , active region 216 , and second semiconductor material 218 can be deposited sequentially using chemical vapor deposition (“CVD”), physical vapor deposition (“PVD”), atomic layer deposition (“ALD”), plating, or other techniques known in the semiconductor fabrication arts.
  • the SSE 204 can emit a first light in the visible spectrum (e.g., from about 390 nm to about 750 nm), in the infrared spectrum (e.g., from about 1050 nm to about 1550 nm), and/or in other suitable spectra.
  • a first light in the visible spectrum (e.g., from about 390 nm to about 750 nm), in the infrared spectrum (e.g., from about 1050 nm to about 1550 nm), and/or in other suitable spectra.
  • the converter material 206 can be placed over at least a portion of the SSE 204 such that light from the SSE 204 irradiates the converter material 206 .
  • the converter material 206 is positioned over a second side 208 b of the SSE 204 and is generally planar.
  • the converter material 206 has a hemispherical or other suitable shape, and/or is spaced apart from the SSE 204 in other locations of the SSL device 200 that are irradiated by the SSE 204 .
  • the irradiated converter material 206 can emit a second light of a certain quality (e.g., color, warmth, intensity, etc.). For example, in one embodiment, the converter material 206 emits yellow light.
  • the second light emitted by the converter material 206 can combine with the first light emitted by the SSE 204 to generate a desired color of light (e.g., white light).
  • the converter material 206 can include a phosphor containing cerium (III)-doped yttrium aluminum garnet (YAG) at a particular concentration for emitting a range of colors from green to yellow and to red under photoluminescence.
  • the converter material 206 can include neodymium-doped YAG, neodymium-chromium double-doped YAG, erbium-doped YAG, ytterbium-doped YAG, neodymium-cerium double-doped YAG, holmium-chromium-thulium triple-doped YAG, thulium-doped YAG, chromium (IV)-doped YAG, dysprosium-doped YAG, samarium-doped YAG, terbium-doped YAG, and/or other suitable wavelength conversion materials.
  • the converter material 206 can include a phospho
  • the lens 212 can be positioned over both the converter material 206 and the SSE 204 such that light emitted by the converter material 206 and the SSE 204 passes through the lens 212 .
  • the lens 212 can include a transmissive material made from silicone, polymethylmethacrylate (PMMA), resin, or other materials with suitable properties for transmitting the radiation emitted by the SSE 204 and the converter material 206 .
  • the lens 212 includes an additional converter material (not shown) that emits light at a different frequency than the converter material 206 proximate to (e.g., the closest to) the SSE 204 to generate a desired color of light from the SSL device 200 .
  • the lens 212 can include a plurality of diffusion features 226 .
  • the exterior surface of the lens 212 has a generally irregular or erratic complex curvature that forms the diffusion features 226 .
  • the diffusion features 226 can have different complex curvatures and/or other suitable shapes.
  • the diffusion features 226 can diffract or otherwise change the direction of light emitted by the SSE 204 and the converter material 206 within the lens or as it exits the lens 212 to scatter the light. As described in more detail below, the scattered light can blend and/or otherwise diffuse the different colors of light together such that the SSL device 200 emits a substantially more uniform color compared to a lens with a flat surface or uniformly hemispherical surface.
  • FIG. 2B is an operational view of the SSL device 200 shown in FIG. 2A that illustrates the emission of light from the SSL device 200 .
  • light can be emitted from the SSE 204 along a plurality of first vectors 230 and from the converter material 206 along a plurality of second vectors 232 .
  • FIG. 2B shows only a portion of the light emitted from the SSL device 200 .
  • the first and second vectors 230 and 232 can be represented as projecting generally radially from the SSE 204 and the converter material 206 , respectively, as if they originated from a point source. In operation, the first and second vectors 230 and 232 project radially from all points across the face of the SSE 204 .
  • the SSE 204 and the converter material 206 can emit the first and second vectors 230 and 232 radially across a viewing plane of approximately 180°, stopping at the surface 210 of the support 202 .
  • the support 202 can be configured such that viewing plane is wider or narrower.
  • the lens 212 can be sized large enough relative to the SSE 204 such that the SSE 204 functions at least generally as a point source.
  • the lens 212 can have a generally circular base portion and at the surface 210 of the support 202 that corresponds to the radial projection of the light from the SSE 204 .
  • the lens 212 can be smaller with respect to the SSE 204 .
  • the base of such a smaller lens 212 can have a shape that generally corresponds to the shape of the SSE 204 .
  • the smaller lens 212 can have a shape that does not correspond to the shape of the SSE 204 .
  • each first vector 230 projects away from an axis 228 (i.e., an axis normal to the support 202 ) at an emission angle ⁇ .
  • the axis 228 corresponds with 0° such that the emission angle ⁇ shown in FIG. 2B can range from vertical (0°) to horizontal (90° and ⁇ 90°).
  • First vectors 230 having larger emission angles ⁇ travel longer paths through the converter material 206 .
  • the converter material 206 absorbs some of the light and generates light of a different color along the second vectors 232 .
  • larger emission angles ⁇ increase the light (e.g., yellow light) emitted by the converter material 206 along the second vectors 232 .
  • the converter material 206 scatters light from the SSE 204 . This can further increase the path length that light from the SSE 204 travels through the converter material 206 , which increases the light absorbed by the converter material 206 and decreases the light (e.g., blue light) emitted by the SSE 204 .
  • the SSL device 200 emits more of a first color of light (e.g., blue light) from the SSE 204 along the first vectors 230 at a central portion of the SSL device 200 and more of a second color of light (e.g., yellow light) from the converter material 206 along the second vectors 232 at peripheral portions of the SSL device 200 .
  • a first color of light e.g., blue light
  • a second color of light e.g., yellow light
  • the diffusion features 226 of the lens 212 can diffract or otherwise change the direction of light from the first and second vectors 230 and 232 to other vectors that intersect and blend together as they exit the lens 212 .
  • the diffusion features 226 can accordingly scatter light along irregular or erratic vectors at the surface of the lens 212 .
  • the diffusion features 226 can be configured at different angles relative to the SSE 204 and/or the substrate 202 such that light along the first vectors 230 with a higher emission angles ⁇ diffract or otherwise change direction toward the axis 228 and intersect with light from the second vectors 232 and/or first vectors 230 with lower emission angles ⁇ .
  • their respective colors can combine to generate a generally uniform color across the SSL device 200 .
  • the diffusion features 226 of the lens 212 diffract or otherwise change the direction of the first and second vectors 230 and 232 in random, irregular, or generally erratic directions.
  • the lens 212 can change the direction of light such that light from the first and second vectors 230 and 232 intersects in a particular pattern to provide a desired light distribution.
  • the diffusion features 226 of the lens 212 can be configured to collimate the light emitted by the SSL device 200 , project the light emitted by the SSL device 200 at a wide angle (e.g., toward the periphery of the SSL device 200 ), and/or emit light in other suitable light distributions.
  • FIG. 3 is a graph showing the relationship between emission angles ⁇ and color variations duv across SSL devices.
  • the graph includes a first curve 334 that illustrates the color variation across a conventional SSL device.
  • the first curve 334 shows that increasing the emission angle ⁇ varies the color of light emitted across the conventional SSL device.
  • the peripheral portions of the conventional SSL device emit more light (e.g., yellow light) from the converter material, while the central portion of the conventional SSL device emits more light (e.g., blue light) from the SSE.
  • the conventional SSL device emits a nonuniform color of light.
  • the graph of FIG. 3 also has a second curve 336 that illustrates the color variation across an SSL device configured in accordance with selected embodiments of the present technology (e.g., the SSL device 200 described above with reference to FIGS. 2A and 2B ).
  • the second curve 336 is generally flat irrespective of variations in the emission angle ⁇ .
  • diffusion features of a lens e.g., the diffusion features 226 of the lens 212 shown in FIGS. 2A and 2B
  • many embodiments of SSL devices configured in accordance with the present technology are expected to provide superior color uniformity across the viewing plane.
  • FIG. 4 is a flow chart of a method 400 for fabricating SSL devices in accordance with an embodiment of the present technology.
  • the method 400 can include positioning SSEs on a surface of a support wafer (block 402 ).
  • the SSEs and the support wafer can be generally similar to the SSE 204 and the support 202 described above with reference to FIGS. 2A and 2B .
  • the SSEs can be positioned on the support wafer using surface mounting and/or other suitable methods for attaching SSEs on supports.
  • the support wafer can comprise a material that encourages epitaxial growth such that the SSEs can be formed directly on the support wafer.
  • the method 400 can further include positioning a converter material over each of the SSEs (block 404 ).
  • the converter material can be phosphor and/or other converter materials generally similar to the converter material 206 described with reference to FIG. 2A .
  • the converter material can be placed over the SSEs using CVD, PVD, and/or other suitable methods for depositing converter material on the SSEs.
  • the converter material may be positioned anywhere where light from the corresponding SSE can irradiate energized particles (e.g., electrons and/or photons) in the converter material. In selected embodiments, the converter material can be applied in discrete sections over individual SSEs.
  • the method 400 can continue by positioning a lens over one or more of the SSEs (block 406 ).
  • the lenses can be formed over the SSEs.
  • a mold can be filled with a lens material (e.g., silicone, epoxy, and/or another suitably transparent lens material) and placed over at least one SSE such that the lens material encapsulates the SSE and the corresponding converter material.
  • the mold can be compressed, heated, and/or otherwise processed to harden the lens material and attach the lens to the support wafer.
  • the lens is injection molded over one or more SSEs by placing a mold over the SSE(s) and injecting the lens material into the mold at elevated temperatures and pressures.
  • the lens is formed separately from the SSEs, placed over the SSEs, and attached to the support wafer.
  • the method 400 can include singulating individual SSL devices between the lenses (block 408 ).
  • the SSEs are singulated before the lenses are positioned over the SSEs.
  • the SSEs are singulated even before the converter material is deposited on the SSEs.
  • the singulated SSL devices can emit a substantially uniform color of light.
  • FIG. 5A is a schematic cross-sectional view of an SSL device 500 configured in accordance with an additional embodiment of the present technology
  • FIG. 5B is a top plan view of the SSL device 500
  • the SSL device 500 includes the support 202 , the SSE 204 , and the converter material 206 .
  • the SSL device 500 includes a lens 512 that has diffusion features 526 that are symmetric relative to a central axis C-C. As shown in FIG. 5A , the diffusion features 526 can be concentric shoulders, steps or ridges in the lens 512 .
  • the lens 512 can include more or less ridges and/or can have other shapes symmetric with respect to the central axis C-C. Similar to the diffusion features 226 shown in FIGS. 2A and 2B , the diffusion features 526 of the SSL device 500 change the direction of light as it exits the lens 512 such that light emitted from the SSE 204 intersects with itself and light emitted by the converter material 206 . Accordingly, the lens 512 can blend different colors of light from the SSE 204 and the converter material 206 to reduce the color variance across the SSL device 500 . Additionally, as shown in FIGS. 5A and 5B , the lens 512 can be large relative to the SSE 204 such that the SSE 204 functions effectively as a point source.
  • the lens 512 can have a generally circular base portion at the surface 210 of the support 202 and a stepped dome-like shape that corresponds to the radial projection of light emitted by the SSE 204 .
  • FIGS. 6A and 6B are a schematic cross-sectional view and a top plan view, respectively of an SSL device 600 in accordance with another embodiment of the present technology.
  • the SSL device 600 includes the concentric ridges that form the diffusion features 526 .
  • the SSL device 600 includes a lens 612 shaped generally similar to the shape of the SSE 204 . In the embodiment illustrated in FIG. 6B , for example, the SSE 204 has a rectangular shape and the lens 612 has a corresponding rectangular shape.
  • the lens 612 has a different shape (e.g., square, oval) corresponding to the shape of the SSE 204 .
  • the complimentary shape of the lens 612 allows the lens 612 to be smaller than domed or hemispherical lenses.
  • the smaller lens 612 shown in FIG. 6 can be used in applications with space constraints and/or when the size of the SSE 204 requires the lens to have a low vertical profile (e.g., long lights).
  • FIG. 7A is a schematic cross-sectional view of an SSL device 700 in accordance with yet another embodiment of the present technology
  • FIGS. 7B and 7C are top plan views of the SSL device 700 of FIG. 7A
  • the SSL device 700 can include a lens 712 having a plurality of diffusion features 726 in the form of depressions.
  • the diffusion features 726 can be dimples as shown in FIG. 7B and/or concentric grooves as shown in FIG. 7C .
  • the diffusion features 726 can be other suitable depressions and/or the depressions can change over different portions of the lens 712 . Similar to the lenses described above, the diffusion features 726 of the lens 712 shown in FIG. 7A-C can scatter light as it exits the lens 712 to blend different colors of light into a substantially uniform color across the SSL device 700 .
  • the lens 712 can be positioned over a plurality of SSEs 204 at the surface 210 of the support 202 .
  • the converter material 206 can be placed on a front side of each SSE 204 in discrete segments (e.g., wafer level converter material 206 ). In other embodiments, the converter material 206 can cover more surfaces of the SSEs 204 . In further embodiments, the converter material 206 can be deposited over the plurality of SSEs 204 in a single layer. In still further embodiments, some of the SSEs 204 may be exposed rather than covered by the converter material 206 .
  • the SSEs 204 at the peripheral portion of the SSL device 700 may not be covered with the converter material 206 such that light emitted from the SSEs at the side of the SSL device 700 is not altered by the converter material 206 .
  • the converter material 206 can be spaced apart from the SSE 204 in a location that is still irradiated by the SSE 204 .
  • the lens 712 has a hemispherical shape and is large enough that the SSEs 204 act effectively as point sources.
  • the lens 712 can have a shape that at least generally corresponds to the shape the SSEs 204 .
  • the SSEs 204 can be arranged in a rectangular array across the surface 210 of the support 202 , and the lens 712 can have a generally rectangular base portion at the surface 210 of the support 202 corresponding to the shape of the array.
  • FIG. 8 is a schematic cross-sectional view of an SSL device 800 in accordance with a further embodiment of the present technology.
  • the SSL device 800 can include a lens 812 that has a plurality of protrusions that form a plurality of diffusion features 826 .
  • the diffusion features 826 can change the direction of light as it exits the lens 812 to blend different colors of light together and thereby mitigate the color nonuniformity caused by the emission angle.
  • the SSL device 800 shown in FIG. 8 does not include a layer of converter material covering the SSE 204 . Rather, the lens 812 can include the converter material 0606 .
  • the converter material 206 is distributed throughout the lens 812 .
  • the converter material 206 is localized in specific regions within the lens 812 .
  • the converter material 206 can be positioned in a central portion of the lens 812 such that the light emitted from the SSE 204 at the peripheral portions of the lens 812 is not altered by the converter material 206 .
  • the lens 812 can include a plurality of different converter materials 206 localized in specific regions within the lens 812 to emit light with different wavelengths.
  • FIG. 9 is a schematic cross-sectional view of an SSL device 900 configured in accordance with an additional embodiment of the present technology.
  • the SSL device 900 includes two lenses.
  • a first lens 938 can be over the SSE 204 and a converter material 906 can be on the first lens 938 .
  • the converter material 906 can be at least generally similar to the converter material 206 described above with reference to FIGS. 2A and 5A-7C .
  • a second lens 912 can be positioned over and/or around the first lens 938 and the converter material 906 .
  • the second lens 912 can be at least generally similar to the lenses having diffusion features described above with reference to FIGS. 2A, 2B and 5A-8 .
  • the second lens 912 can have a plurality of irregular diffusion features 926 that scatter light as it exits the second lens 912 to mitigate color variance caused by the emission angle.
  • the second lens 912 can be used to retrofit an existing SSL device that includes the first lens 938 to increase the color uniformity of the existing SSL device.
  • the SSL devices shown in FIGS. 2A and 5A-7C include converter material 206 having a generally rectangular cross-sectional shape.
  • the converter material 206 can have a different cross-sectional shape (e.g., semicircular, irregular) or be incorporated into the lenses.
  • lenses in accordance with the present technology can have different shapes than those shown in the Figures.
  • a lens can have any shape that changes the direction of the light as it exits the lens to blend different colors of light together.
  • the SSL devices shown above can include both a converter material over an SSE as shown in FIGS. 2A, 5A-7C and 9 and a second converter material distributed throughout a lens as shown in FIG. 8 .
  • advantages associated with certain embodiments of the new technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, but not all of the embodiments within the scope of the technology necessarily exhibit such advantages. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Solid state lighting (SSL) devices and methods of manufacturing SSL devices are disclosed herein. In one embodiment, an SSL device comprises a support having a surface and a solid state emitter (SSE) at the surface of the support. The SSE can emit a first light propagating along a plurality of first vectors. The SSL device can further include a converter material over at least a portion of the SSE. The converter material can emit a second light propagating along a plurality of second vectors. Additionally, the SSL device can include a lens over the SSE and the converter material. The lens can include a plurality of diffusion features that change the direction of the first light and the second light such that the first and second lights blend together as they exit the lens. The SSL device can emit a substantially uniform color of light.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/167,172, filed Oct. 22, 2018; which is a continuation of U.S. patent application Ser. No. 15/982,330, filed May 17, 2018, now U.S. Pat. No. 10,243,120; which is a divisional of U.S. patent application Ser. No. 14/684,192, filed Apr. 10, 2015, now U.S. Pat. No. 10,002,994; which is a continuation of U.S. patent application Ser. No. 13/092,669, filed Apr. 22, 2011, now U.S. Pat. No. 9,029,887; each of which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • The present technology is related to solid state lighting (“SSL”) devices and associated methods of manufacturing SSL devices. In particular, the present technology is related to SSL devices having lenses that improve color uniformity across the SSL device and associated methods.
  • BACKGROUND
  • Solid state lighting (“SSL”) devices generally use solid state emitters (“SSEs”) such as semiconductor light-emitting diodes (“LEDs”), organic light-emitting diodes (“OLEDs”), and/or polymer light-emitting diodes (“PLEDs”) as sources of illumination rather than electrical filaments, plasma, or gas. A conventional type of SSL device has a “white light” SSE. White light requires a mixture of wavelengths to be perceived by human eyes. However, SSEs typically only emit light at one particular wavelength (e.g., blue light), so SSEs are modified to generate white light. One conventional technique for modulating the light from SSEs includes depositing a converter material (e.g., phosphor) on the SSE. For example, FIG. 1 shows a conventional SSL device 10 that includes a support 2, an SSE 4 attached to the support 2, and a converter material 6 on the SSE 4. The SSE 4 emits light (e.g., blue light) radially outward along a plurality of first vectors 8. The converter material 6 scatters some of the light emitted by the SSE 4 and absorbs other light emitted by the SSE 4. The absorbed light causes the converter material 6 to emit light of a different color along a plurality of second vectors 12. The light from the converter material along the second vectors 12 can have a desired frequency (e.g., yellow light) such that the combination of light along the first and second vectors 8 and 12 appears white to human eyes if the wavelengths and amplitudes of the emissions are matched appropriately.
  • One challenge associated with conventional SSL devices (e.g., the SSL device 10 shown in FIG. 1) is that the color of light generally varies across the SSL devices due to the emission angle. As shown in FIG. 1, when the SSE 4 is treated as a point source, the emission angle θ is the angle that light (e.g., along the first vectors 8) projects away from an axis N normal to the support 2. The distance light travels through the converter material 6 accordingly changes as a function of the emission angle θ. As shown in FIG. 1, for example, the first vectors 8 having greater emission angles θ (e.g., 60°) travel greater distances through the converter material 6 than the first vectors 8 having smaller emission angles θ (e.g., 10°). The longer a first vector 8 travels through the converter material 6, the more light from the SSE 4 the converter material 6 absorbs, and the more light the converter material 6 generates. As a result, light with a large emission angle θ and thereby a longer path through the converter material 6 includes less blue light from the SSE 4 and generates more yellow light from the converter material 6. Conversely, light with a small emission angle θ and thereby a shorter path through the converter material 6 includes more blue light from the SSE 4 and generates less yellow light from the converter material 6. Therefore, when viewed head-on, the color of light emitted by the SSL device 10 may appear more bluish, and when viewed from the side, the color of light may appear more yellowish. Accordingly, the emission angle θ of the light can result in color variance across the viewing angle of the SSL device 10.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross-sectional diagram of an SSL device in accordance with the prior art.
  • FIG. 2A is a schematic cross-sectional view of an SSL device configured in accordance with an embodiment of the present technology.
  • FIG. 2B is an operational view of the SSL device of FIG. 2A illustrating the emission of light from the SSL device.
  • FIG. 3 is a graph showing the relationship between emission angles and color variations across SSL devices.
  • FIG. 4 is a flow chart showing a method of fabricating SSL devices in accordance with an embodiment of the present technology.
  • FIG. 5A is a schematic cross-sectional view of an SSL device configured in accordance with an embodiment of the present technology, and FIG. 5B is a top plan view of the SSL device of FIG. 5A.
  • FIG. 6A is a schematic cross-sectional view of an SSL device configured in accordance with another embodiment of the present technology, and FIG. 6B is a top plan view of the SSL device of FIG. 6A.
  • FIG. 7A is a schematic cross-sectional view of an SSL device, and FIGS. 7B and 7C are top plan views of the SSL device of FIG. 7A configured in accordance with further embodiments of the present technology.
  • FIG. 8 is a schematic cross-sectional view of an SSL device configured in accordance with yet another embodiment of the present technology.
  • FIG. 9 is a schematic cross-sectional view of an SSL device configured in accordance with an additional embodiment of the present technology.
  • DETAILED DESCRIPTION
  • Specific details of several embodiments of solid state lighting (“SSL”) devices and associated methods of manufacturing SSL devices are described below. The term “SSL” generally refers to “solid state light” and/or “solid state lighting” according to the context in which it is used. The term “SSE” generally refers to solid state components that convert electrical energy into electromagnetic radiation in the visible, ultraviolet, infrared, and/or other spectra. SSEs include semiconductor light-emitting diodes (“LEDs”), polymer light-emitting diodes (“PLEDs”), organic light-emitting diodes (“OLEDs”), or other types of solid state devices that convert electrical energy into electromagnetic radiation in a desired spectrum. The term “phosphor” generally refers to a material that can continue emitting light after exposure to energy (e.g., electrons and/or photons). Additionally, the term “lens” generally refers to a material (e.g., a transparent encapsulant) that can emit light through its exterior surface. Packaged SSL devices and methods of manufacturing SSL assemblies are specifically described below to provide an enabling disclosure, but the package and methods can be applied to any SSL device. A person skilled in the relevant art will understand that the new technology may have additional embodiments and that the new technology may be practiced without several of the details of the embodiments described below with reference to FIGS. 2A-9.
  • FIG. 2A is a schematic cross-sectional view of an SSL device 200 configured in accordance with an embodiment of the present technology. The SSL device 200 can include a support 202 and an SSE 204 attached to a surface 210 of the support 202. The SSL device 200 can further include a converter material 206 positioned over the SSE 204, and a lens 212 positioned over both the SSE 204 and the converter material 206.
  • As shown in FIG. 2A, the SSE 204 can include a first semiconductor material 214, an active region 216, and a second semiconductor material 218. The first semiconductor material 214 can be a P-type semiconductor material proximate a first side 208 a of the SSE 204, such as P-type gallium nitride (“P-GaN”), and the second semiconductor material 218 can be an N-type semiconductor material proximate a second side 208 b of the SSE 204, such as N-type gallium nitride (“N-GaN”). This configuration is suitable for SSEs 204 formed on silicon growth substrates and subsequently attached to the support 202. In other embodiments, such as when the SSE 204 is formed on a sapphire growth substrate, the P-GaN and N-GaN are reversed such that the P-GaN is proximate the second side 208 b of the SSE 204 and the N-GaN is proximate the first side 208 a. The active region 216 can be indium gallium nitride (“InGaN”). The first semiconductor material 214, active region 216, and second semiconductor material 218 can be deposited sequentially using chemical vapor deposition (“CVD”), physical vapor deposition (“PVD”), atomic layer deposition (“ALD”), plating, or other techniques known in the semiconductor fabrication arts. In operation, the SSE 204 can emit a first light in the visible spectrum (e.g., from about 390 nm to about 750 nm), in the infrared spectrum (e.g., from about 1050 nm to about 1550 nm), and/or in other suitable spectra.
  • As shown in FIG. 2A, the converter material 206 can be placed over at least a portion of the SSE 204 such that light from the SSE 204 irradiates the converter material 206. In the illustrated embodiment, the converter material 206 is positioned over a second side 208 b of the SSE 204 and is generally planar. In other embodiments, the converter material 206 has a hemispherical or other suitable shape, and/or is spaced apart from the SSE 204 in other locations of the SSL device 200 that are irradiated by the SSE 204. The irradiated converter material 206 can emit a second light of a certain quality (e.g., color, warmth, intensity, etc.). For example, in one embodiment, the converter material 206 emits yellow light. The second light emitted by the converter material 206 can combine with the first light emitted by the SSE 204 to generate a desired color of light (e.g., white light).
  • The converter material 206 can include a phosphor containing cerium (III)-doped yttrium aluminum garnet (YAG) at a particular concentration for emitting a range of colors from green to yellow and to red under photoluminescence. In other embodiments, the converter material 206 can include neodymium-doped YAG, neodymium-chromium double-doped YAG, erbium-doped YAG, ytterbium-doped YAG, neodymium-cerium double-doped YAG, holmium-chromium-thulium triple-doped YAG, thulium-doped YAG, chromium (IV)-doped YAG, dysprosium-doped YAG, samarium-doped YAG, terbium-doped YAG, and/or other suitable wavelength conversion materials. In further embodiments, the converter material 206 can include silicate phosphor, nitrate phosphor, aluminate phosphor and/or other types of salt or ester based phosphors.
  • As further shown in FIG. 2A, the lens 212 can be positioned over both the converter material 206 and the SSE 204 such that light emitted by the converter material 206 and the SSE 204 passes through the lens 212. The lens 212 can include a transmissive material made from silicone, polymethylmethacrylate (PMMA), resin, or other materials with suitable properties for transmitting the radiation emitted by the SSE 204 and the converter material 206. In selected embodiments, the lens 212 includes an additional converter material (not shown) that emits light at a different frequency than the converter material 206 proximate to (e.g., the closest to) the SSE 204 to generate a desired color of light from the SSL device 200.
  • Additionally, as shown in FIG. 2A, the lens 212 can include a plurality of diffusion features 226. For example, in the illustrated embodiment, the exterior surface of the lens 212 has a generally irregular or erratic complex curvature that forms the diffusion features 226. In other embodiments, the diffusion features 226 can have different complex curvatures and/or other suitable shapes. The diffusion features 226 can diffract or otherwise change the direction of light emitted by the SSE 204 and the converter material 206 within the lens or as it exits the lens 212 to scatter the light. As described in more detail below, the scattered light can blend and/or otherwise diffuse the different colors of light together such that the SSL device 200 emits a substantially more uniform color compared to a lens with a flat surface or uniformly hemispherical surface.
  • FIG. 2B is an operational view of the SSL device 200 shown in FIG. 2A that illustrates the emission of light from the SSL device 200. As shown in FIG. 2B, light can be emitted from the SSE 204 along a plurality of first vectors 230 and from the converter material 206 along a plurality of second vectors 232. For clarity, FIG. 2B shows only a portion of the light emitted from the SSL device 200. The first and second vectors 230 and 232 can be represented as projecting generally radially from the SSE 204 and the converter material 206, respectively, as if they originated from a point source. In operation, the first and second vectors 230 and 232 project radially from all points across the face of the SSE 204. In the embodiment shown in FIG. 2B, for example, the SSE 204 and the converter material 206 can emit the first and second vectors 230 and 232 radially across a viewing plane of approximately 180°, stopping at the surface 210 of the support 202. In other embodiments, the support 202 can be configured such that viewing plane is wider or narrower.
  • As shown in FIG. 2B, the lens 212 can be sized large enough relative to the SSE 204 such that the SSE 204 functions at least generally as a point source. When the SSE 204 operates as a point source, the lens 212 can have a generally circular base portion and at the surface 210 of the support 202 that corresponds to the radial projection of the light from the SSE 204. In other embodiments, such as when vertical height is a constraint, the lens 212 can be smaller with respect to the SSE 204. The base of such a smaller lens 212 can have a shape that generally corresponds to the shape of the SSE 204. In other embodiments, the smaller lens 212 can have a shape that does not correspond to the shape of the SSE 204.
  • As further shown in FIG. 2B, each first vector 230 projects away from an axis 228 (i.e., an axis normal to the support 202) at an emission angle θ. The axis 228 corresponds with 0° such that the emission angle θ shown in FIG. 2B can range from vertical (0°) to horizontal (90° and −90°). First vectors 230 having larger emission angles θ travel longer paths through the converter material 206. As light from the SSE 204 travels through the converter material 206, the converter material 206 absorbs some of the light and generates light of a different color along the second vectors 232. Thus, larger emission angles θ increase the light (e.g., yellow light) emitted by the converter material 206 along the second vectors 232. Additionally, the converter material 206 scatters light from the SSE 204. This can further increase the path length that light from the SSE 204 travels through the converter material 206, which increases the light absorbed by the converter material 206 and decreases the light (e.g., blue light) emitted by the SSE 204. Thus, the SSL device 200 emits more of a first color of light (e.g., blue light) from the SSE 204 along the first vectors 230 at a central portion of the SSL device 200 and more of a second color of light (e.g., yellow light) from the converter material 206 along the second vectors 232 at peripheral portions of the SSL device 200.
  • To mitigate such color nonuniformity, the diffusion features 226 of the lens 212 can diffract or otherwise change the direction of light from the first and second vectors 230 and 232 to other vectors that intersect and blend together as they exit the lens 212. The diffusion features 226 can accordingly scatter light along irregular or erratic vectors at the surface of the lens 212. For example, the diffusion features 226 can be configured at different angles relative to the SSE 204 and/or the substrate 202 such that light along the first vectors 230 with a higher emission angles θ diffract or otherwise change direction toward the axis 228 and intersect with light from the second vectors 232 and/or first vectors 230 with lower emission angles θ. As light from the first and second vectors 230 and 232 intersect, their respective colors can combine to generate a generally uniform color across the SSL device 200.
  • In the embodiment illustrated in FIG. 2B, the diffusion features 226 of the lens 212 diffract or otherwise change the direction of the first and second vectors 230 and 232 in random, irregular, or generally erratic directions. In other embodiments, the lens 212 can change the direction of light such that light from the first and second vectors 230 and 232 intersects in a particular pattern to provide a desired light distribution. For example, the diffusion features 226 of the lens 212 can be configured to collimate the light emitted by the SSL device 200, project the light emitted by the SSL device 200 at a wide angle (e.g., toward the periphery of the SSL device 200), and/or emit light in other suitable light distributions.
  • FIG. 3 is a graph showing the relationship between emission angles θ and color variations duv across SSL devices. The graph includes a first curve 334 that illustrates the color variation across a conventional SSL device. The first curve 334 shows that increasing the emission angle θ varies the color of light emitted across the conventional SSL device. As a result, the peripheral portions of the conventional SSL device emit more light (e.g., yellow light) from the converter material, while the central portion of the conventional SSL device emits more light (e.g., blue light) from the SSE. Accordingly, the conventional SSL device emits a nonuniform color of light.
  • The graph of FIG. 3 also has a second curve 336 that illustrates the color variation across an SSL device configured in accordance with selected embodiments of the present technology (e.g., the SSL device 200 described above with reference to FIGS. 2A and 2B). As shown in FIG. 3, the second curve 336 is generally flat irrespective of variations in the emission angle θ. As described above, diffusion features of a lens (e.g., the diffusion features 226 of the lens 212 shown in FIGS. 2A and 2B) can diffract and blend light as it exits the lens to mitigate color variance caused by the emission angle θ. Accordingly, many embodiments of SSL devices configured in accordance with the present technology are expected to provide superior color uniformity across the viewing plane.
  • FIG. 4 is a flow chart of a method 400 for fabricating SSL devices in accordance with an embodiment of the present technology. The method 400 can include positioning SSEs on a surface of a support wafer (block 402). The SSEs and the support wafer can be generally similar to the SSE 204 and the support 202 described above with reference to FIGS. 2A and 2B. The SSEs can be positioned on the support wafer using surface mounting and/or other suitable methods for attaching SSEs on supports. In other embodiments, the support wafer can comprise a material that encourages epitaxial growth such that the SSEs can be formed directly on the support wafer.
  • The method 400 can further include positioning a converter material over each of the SSEs (block 404). The converter material can be phosphor and/or other converter materials generally similar to the converter material 206 described with reference to FIG. 2A. The converter material can be placed over the SSEs using CVD, PVD, and/or other suitable methods for depositing converter material on the SSEs. The converter material may be positioned anywhere where light from the corresponding SSE can irradiate energized particles (e.g., electrons and/or photons) in the converter material. In selected embodiments, the converter material can be applied in discrete sections over individual SSEs.
  • The method 400 can continue by positioning a lens over one or more of the SSEs (block 406). In several embodiments, the lenses can be formed over the SSEs. For example, during overmolding, a mold can be filled with a lens material (e.g., silicone, epoxy, and/or another suitably transparent lens material) and placed over at least one SSE such that the lens material encapsulates the SSE and the corresponding converter material. The mold can be compressed, heated, and/or otherwise processed to harden the lens material and attach the lens to the support wafer. In other embodiments, the lens is injection molded over one or more SSEs by placing a mold over the SSE(s) and injecting the lens material into the mold at elevated temperatures and pressures. In further embodiments, the lens is formed separately from the SSEs, placed over the SSEs, and attached to the support wafer. Once the lenses are positioned over the SSEs and the converter material, the method 400 can include singulating individual SSL devices between the lenses (block 408). In selected embodiments, the SSEs are singulated before the lenses are positioned over the SSEs. In other embodiments, the SSEs are singulated even before the converter material is deposited on the SSEs. The singulated SSL devices can emit a substantially uniform color of light.
  • FIG. 5A is a schematic cross-sectional view of an SSL device 500 configured in accordance with an additional embodiment of the present technology, and FIG. 5B is a top plan view of the SSL device 500. Several features of the SSL device 500 are generally similar to the features of the SSL device 200 shown in FIGS. 2A and 2B. For example, the SSL device 500 includes the support 202, the SSE 204, and the converter material 206. In the embodiment illustrated in FIGS. 5A and 5B, the SSL device 500 includes a lens 512 that has diffusion features 526 that are symmetric relative to a central axis C-C. As shown in FIG. 5A, the diffusion features 526 can be concentric shoulders, steps or ridges in the lens 512. In other embodiments, the lens 512 can include more or less ridges and/or can have other shapes symmetric with respect to the central axis C-C. Similar to the diffusion features 226 shown in FIGS. 2A and 2B, the diffusion features 526 of the SSL device 500 change the direction of light as it exits the lens 512 such that light emitted from the SSE 204 intersects with itself and light emitted by the converter material 206. Accordingly, the lens 512 can blend different colors of light from the SSE 204 and the converter material 206 to reduce the color variance across the SSL device 500. Additionally, as shown in FIGS. 5A and 5B, the lens 512 can be large relative to the SSE 204 such that the SSE 204 functions effectively as a point source. Accordingly, as shown in FIG. 5B, the lens 512 can have a generally circular base portion at the surface 210 of the support 202 and a stepped dome-like shape that corresponds to the radial projection of light emitted by the SSE 204.
  • FIGS. 6A and 6B are a schematic cross-sectional view and a top plan view, respectively of an SSL device 600 in accordance with another embodiment of the present technology. Several features of the SSL device 600 are generally similar to the features of the SSL device 500 shown in FIGS. 5A and 5B. For example, the SSL device 600 includes the concentric ridges that form the diffusion features 526. The SSL device 600 includes a lens 612 shaped generally similar to the shape of the SSE 204. In the embodiment illustrated in FIG. 6B, for example, the SSE 204 has a rectangular shape and the lens 612 has a corresponding rectangular shape. In other embodiments, the lens 612 has a different shape (e.g., square, oval) corresponding to the shape of the SSE 204. The complimentary shape of the lens 612 allows the lens 612 to be smaller than domed or hemispherical lenses. The smaller lens 612 shown in FIG. 6 can be used in applications with space constraints and/or when the size of the SSE 204 requires the lens to have a low vertical profile (e.g., long lights).
  • FIG. 7A is a schematic cross-sectional view of an SSL device 700 in accordance with yet another embodiment of the present technology, and FIGS. 7B and 7C are top plan views of the SSL device 700 of FIG. 7A. Several features of the SSL device 700 are generally similar to the features of the SSL devices 200, 500 and 600 shown in FIGS. 2A, 2B, 5A-6B, and are accordingly not described in detail below. As shown in FIGS. 7A-C, the SSL device 700 can include a lens 712 having a plurality of diffusion features 726 in the form of depressions. For example, the diffusion features 726 can be dimples as shown in FIG. 7B and/or concentric grooves as shown in FIG. 7C. In other embodiments, the diffusion features 726 can be other suitable depressions and/or the depressions can change over different portions of the lens 712. Similar to the lenses described above, the diffusion features 726 of the lens 712 shown in FIG. 7A-C can scatter light as it exits the lens 712 to blend different colors of light into a substantially uniform color across the SSL device 700.
  • As further shown in FIGS. 7A-C, the lens 712 can be positioned over a plurality of SSEs 204 at the surface 210 of the support 202. Referring to FIG. 7A, the converter material 206 can be placed on a front side of each SSE 204 in discrete segments (e.g., wafer level converter material 206). In other embodiments, the converter material 206 can cover more surfaces of the SSEs 204. In further embodiments, the converter material 206 can be deposited over the plurality of SSEs 204 in a single layer. In still further embodiments, some of the SSEs 204 may be exposed rather than covered by the converter material 206. For example, the SSEs 204 at the peripheral portion of the SSL device 700 may not be covered with the converter material 206 such that light emitted from the SSEs at the side of the SSL device 700 is not altered by the converter material 206. In additional embodiments, the converter material 206 can be spaced apart from the SSE 204 in a location that is still irradiated by the SSE 204.
  • In the embodiment shown in FIGS. 7A-7C, the lens 712 has a hemispherical shape and is large enough that the SSEs 204 act effectively as point sources. In other embodiments, the lens 712 can have a shape that at least generally corresponds to the shape the SSEs 204. For example, the SSEs 204 can be arranged in a rectangular array across the surface 210 of the support 202, and the lens 712 can have a generally rectangular base portion at the surface 210 of the support 202 corresponding to the shape of the array.
  • FIG. 8 is a schematic cross-sectional view of an SSL device 800 in accordance with a further embodiment of the present technology. Several features of the SSL device 800 are generally similar to the features of the SSL devices described above. For example, as shown in FIG. 8, the SSL device 800 can include a lens 812 that has a plurality of protrusions that form a plurality of diffusion features 826. The diffusion features 826 can change the direction of light as it exits the lens 812 to blend different colors of light together and thereby mitigate the color nonuniformity caused by the emission angle. The SSL device 800 shown in FIG. 8, however, does not include a layer of converter material covering the SSE 204. Rather, the lens 812 can include the converter material 0606. In the embodiment illustrated in FIG. 8, for example, the converter material 206 is distributed throughout the lens 812. In other embodiments, the converter material 206 is localized in specific regions within the lens 812. For example, the converter material 206 can be positioned in a central portion of the lens 812 such that the light emitted from the SSE 204 at the peripheral portions of the lens 812 is not altered by the converter material 206. In other embodiments, the lens 812 can include a plurality of different converter materials 206 localized in specific regions within the lens 812 to emit light with different wavelengths.
  • FIG. 9 is a schematic cross-sectional view of an SSL device 900 configured in accordance with an additional embodiment of the present technology. Several features of the SSL device 900 are generally similar to the features of the SSL devices shown above. The SSL device 900, however, includes two lenses. As shown in FIG. 9, a first lens 938 can be over the SSE 204 and a converter material 906 can be on the first lens 938. The converter material 906 can be at least generally similar to the converter material 206 described above with reference to FIGS. 2A and 5A-7C. As further shown in FIG. 9, a second lens 912 can be positioned over and/or around the first lens 938 and the converter material 906. The second lens 912 can be at least generally similar to the lenses having diffusion features described above with reference to FIGS. 2A, 2B and 5A-8. For example, the second lens 912 can have a plurality of irregular diffusion features 926 that scatter light as it exits the second lens 912 to mitigate color variance caused by the emission angle. In selected embodiments, the second lens 912 can be used to retrofit an existing SSL device that includes the first lens 938 to increase the color uniformity of the existing SSL device.
  • From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the disclosure. For example, the SSL devices shown in FIGS. 2A and 5A-7C include converter material 206 having a generally rectangular cross-sectional shape. However, in other embodiments, the converter material 206 can have a different cross-sectional shape (e.g., semicircular, irregular) or be incorporated into the lenses. Additionally, lenses in accordance with the present technology can have different shapes than those shown in the Figures. For example, a lens can have any shape that changes the direction of the light as it exits the lens to blend different colors of light together. Certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, the SSL devices shown above can include both a converter material over an SSE as shown in FIGS. 2A, 5A-7C and 9 and a second converter material distributed throughout a lens as shown in FIG. 8. Additionally, while advantages associated with certain embodiments of the new technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, but not all of the embodiments within the scope of the technology necessarily exhibit such advantages. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims (21)

1. (canceled)
2. A solid state lighting (SSL) device, comprising:
a support having a surface and a center line axis projecting normal to the surface;
a solid state emitter (SSE) at the surface of the support, the SSE emitting a first light propagating away from the surface along a plurality of first vectors, each first vector having a corresponding first emission angle relative to the center line axis;
a converter material over the SSE, the converter material emitting a second light propagating away from the surface along a plurality of second vectors, each second vector having a corresponding second emission angle relative to the center line axis; and
a lens over the SSE and the converter material, the lens having a plurality of diffusion features configured to redirect the second light along a plurality of third vectors when exiting the lens, each third vector having a corresponding third emission angle relative to the center line axis less than the second emission angle of the corresponding one of the second vectors.
3. The SSL device of claim 2, wherein the second light propagating along the plurality of third vectors intersects with the first light propagating along the plurality of first vectors.
4. The SSL device of claim 2, wherein the diffusion features are symmetrical relative to the center line axis.
5. The SSL device of claim 2, wherein the diffusion features comprise at least one of concentric shoulders, steps, or ridges formed on an exterior surface of the lens.
6. The SSL device of claim 2, wherein the lens is sufficiently large relative to the SSE such that the SSE functions effectively as a point source.
7. The SSL device of claim 2, wherein the lens has a generally circular base portion at the surface of the support and a stepped dome-like shape.
8. The SSL device of claim 2, wherein the lens has a generally rectangular base portion at the surface of the support and a stepped pyramid-like shape.
9. A solid state lighting (SSL) device, comprising:
a support having a surface and a center line axis projecting normal to the surface;
a plurality of solid state emitters (SSEs) arranged in an array at the surface of the support, each SSE emitting a first light propagating away from the surface along a plurality of first vectors, each first vector having a corresponding first emission angle relative to the center line axis;
a converter material over at least a portion of the plurality of SSEs, the converter material emitting a second light propagating away from the surface along a plurality of second vectors, each second vector having a corresponding second emission angle relative to the center line axis; and
a lens over the plurality of SSEs and the converter material, the lens having a plurality of diffusion features configured to redirect the second light along a plurality of third vectors when exiting the lens, each third vector having a corresponding third emission angle relative to the center line axis less than the second emission angle of the corresponding one of the second vectors.
10. The SSL device of claim 9, wherein the diffusion features comprise multiple groups of depressions, individual groups of depressions forming concentric circles on an exterior surface of the lens.
11. The SSL device of claim 9, wherein the diffusion features comprise concentric grooves on an exterior surface of the lens.
12. The SSL device of claim 9, wherein:
at least one SSE of the plurality has a first footprint at the surface of the support; and
the converter material over the at least one SSE has a second footprint same as the first footprint.
13. The SSL device of claim 9, wherein the converter material is a single layer over the portion of the plurality of SSEs.
14. The SSL device of claim 9, wherein the plurality of SSEs includes an exposed portion uncovered by the converter material at a peripheral portion of the SSL device.
15. The SSL device of claim 9, wherein the lens has a hemispherical shape, and is sufficiently large enough such that the SSEs act effectively as point sources.
16. The SSL device of claim 9, wherein:
the plurality of SSEs is arranged in a rectangular array across the surface of the support; and
the lens has a generally rectangular base portion at the surface of the support corresponding to the rectangular array of the plurality of SSEs.
17. A solid state lighting (SSL) device, comprising:
a support having a surface and a center line axis projecting normal to the surface;
a solid state emitter (SSE) at the surface of the support, the SSE emitting a first light propagating away from the surface along a plurality of first vectors, each first vector having a corresponding first angle relative to the center line axis; and
a lens over the SSE, the lens including:
a converter material emitting a second light propagating away from the surface along a plurality of second vectors, each second vector having a corresponding second emission angle relative to the center line axis; and
a plurality of diffusion features configured to redirect the second light along a plurality of third vectors when exiting the lens, each third vector having a corresponding third emission angle relative to the center line axis less than the second emission angle of the corresponding one of the second vectors.
18. The SSL device of claim 17, wherein the converter material is distributed throughout the lens.
19. The SSL device of claim 17, wherein the converter material is localized in a central portion of the lens such that the first light emitted from the SSE at a peripheral portion of the lens is not altered by the converter material.
20. The SSL device of claim 17, wherein the converter material is localized in a peripheral portion of the lens such that the first light emitted from the SSE at a central portion of the lens is not altered by the converter material.
21. The SSL device of claim 17, wherein the converter material is a first converter material localized in a first region of the lens, and the lens includes a second converter material localized in a second region of the lens, the second converter material emitting a third light different than the first light and the second light.
US17/011,915 2011-04-22 2020-09-03 Solid state lighting devices having improved color uniformity and associated methods Abandoned US20210057621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/011,915 US20210057621A1 (en) 2011-04-22 2020-09-03 Solid state lighting devices having improved color uniformity and associated methods

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13/092,669 US9029887B2 (en) 2011-04-22 2011-04-22 Solid state lighting devices having improved color uniformity and associated methods
US14/684,192 US10002994B2 (en) 2011-04-22 2015-04-10 Solid state lighting devices having improved color uniformity and associated methods
US15/982,330 US10243120B2 (en) 2011-04-22 2018-05-17 Solid state lighting devices having improved color uniformity and associated methods
US16/167,172 US10804447B2 (en) 2011-04-22 2018-10-22 Solid state lighting devices having improved color uniformity and associated methods
US17/011,915 US20210057621A1 (en) 2011-04-22 2020-09-03 Solid state lighting devices having improved color uniformity and associated methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/167,172 Continuation US10804447B2 (en) 2011-04-22 2018-10-22 Solid state lighting devices having improved color uniformity and associated methods

Publications (1)

Publication Number Publication Date
US20210057621A1 true US20210057621A1 (en) 2021-02-25

Family

ID=47020606

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/092,669 Active 2031-09-02 US9029887B2 (en) 2011-04-22 2011-04-22 Solid state lighting devices having improved color uniformity and associated methods
US14/684,192 Active US10002994B2 (en) 2011-04-22 2015-04-10 Solid state lighting devices having improved color uniformity and associated methods
US15/982,330 Active US10243120B2 (en) 2011-04-22 2018-05-17 Solid state lighting devices having improved color uniformity and associated methods
US16/167,172 Active US10804447B2 (en) 2011-04-22 2018-10-22 Solid state lighting devices having improved color uniformity and associated methods
US17/011,915 Abandoned US20210057621A1 (en) 2011-04-22 2020-09-03 Solid state lighting devices having improved color uniformity and associated methods

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US13/092,669 Active 2031-09-02 US9029887B2 (en) 2011-04-22 2011-04-22 Solid state lighting devices having improved color uniformity and associated methods
US14/684,192 Active US10002994B2 (en) 2011-04-22 2015-04-10 Solid state lighting devices having improved color uniformity and associated methods
US15/982,330 Active US10243120B2 (en) 2011-04-22 2018-05-17 Solid state lighting devices having improved color uniformity and associated methods
US16/167,172 Active US10804447B2 (en) 2011-04-22 2018-10-22 Solid state lighting devices having improved color uniformity and associated methods

Country Status (3)

Country Link
US (5) US9029887B2 (en)
TW (1) TWI523274B (en)
WO (1) WO2012145421A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029887B2 (en) 2011-04-22 2015-05-12 Micron Technology, Inc. Solid state lighting devices having improved color uniformity and associated methods
US8637877B2 (en) * 2011-05-05 2014-01-28 Cree, Inc. Remote phosphor light emitting devices
US9450152B2 (en) * 2012-05-29 2016-09-20 Micron Technology, Inc. Solid state transducer dies having reflective features over contacts and associated systems and methods
JP2014197527A (en) * 2013-03-04 2014-10-16 信越化学工業株式会社 Vehicle direction indicator
US9470395B2 (en) 2013-03-15 2016-10-18 Abl Ip Holding Llc Optic for a light source
EP2994290B1 (en) 2013-05-10 2023-10-04 ABL IP Holding LLC Silicone optics
US9976710B2 (en) 2013-10-30 2018-05-22 Lilibrand Llc Flexible strip lighting apparatus and methods
TW201518656A (en) * 2013-11-14 2015-05-16 Ind Tech Res Inst Light-emitting device package
KR20160054666A (en) * 2014-11-06 2016-05-17 삼성전자주식회사 Light source module and lighting device having the same
US11060702B2 (en) 2016-03-08 2021-07-13 Ecosense Lighting Inc. Lighting system with lens assembly
WO2018140727A1 (en) 2017-01-27 2018-08-02 Lilibrand Llc Lighting systems with high color rendering index and uniform planar illumination
US20180328552A1 (en) 2017-03-09 2018-11-15 Lilibrand Llc Fixtures and lighting accessories for lighting devices
CN114981592B (en) 2018-05-01 2024-08-09 克鲁斯有限公司 Lighting system and device with central silicone module
CN114364913A (en) 2018-12-17 2022-04-15 生态照明公司 Stripe lighting system conforming to AC driving power
JP7288343B2 (en) * 2019-05-16 2023-06-07 スタンレー電気株式会社 light emitting device
CN110824590A (en) * 2019-11-25 2020-02-21 京东方科技集团股份有限公司 Preparation method of micro-lens array, preparation method of display device and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233485A1 (en) * 2003-03-20 2005-10-20 Alexander Shishov Light emitting diode package with self dosing feature and methods of forming same
US20070201225A1 (en) * 2006-02-27 2007-08-30 Illumination Management Systems LED device for wide beam generation
US20080111147A1 (en) * 2005-08-12 2008-05-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Phosphor-Converted LED Devices Having Improved Light Distribution Uniformity
US20080303757A1 (en) * 2007-06-06 2008-12-11 Sony Corporation Light emitting device, area light source apparatus and image display apparatus
US20100123386A1 (en) * 2008-11-13 2010-05-20 Maven Optronics Corp. Phosphor-Coated Light Extraction Structures for Phosphor-Converted Light Emitting Devices
US20110013116A1 (en) * 2009-07-03 2011-01-20 Panasonic Corporation Lighting device, surface light source, and liquid-crystal display apparatus

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2073300A (en) * 1932-11-29 1937-03-09 Eastman Kodak Co Autocollimating unit
US2220145A (en) * 1938-07-26 1940-11-05 Cooke Hereward Lester Headlight
JP2742880B2 (en) * 1994-08-12 1998-04-22 大日本印刷株式会社 Surface light source, display device using the same, and light diffusion sheet used for them
JP3228858B2 (en) * 1995-10-17 2001-11-12 アルプス電気株式会社 Light emitting diode device
JP3650952B2 (en) * 1998-06-29 2005-05-25 株式会社村田製作所 Dielectric lens, dielectric lens antenna using the same, and radio apparatus using the same
US6653765B1 (en) 2000-04-17 2003-11-25 General Electric Company Uniform angular light distribution from LEDs
KR20020001594A (en) * 2000-06-26 2002-01-09 가마이 고로 Light pipe, plane light source unit and reflection type liquid-crystal display device
US6576488B2 (en) 2001-06-11 2003-06-10 Lumileds Lighting U.S., Llc Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
US6811085B2 (en) * 2001-10-26 2004-11-02 Symbol Technologies, Inc. Miniature imager
US6583936B1 (en) * 2002-03-11 2003-06-24 Eastman Kodak Company Patterned roller for the micro-replication of complex lenses
JP3587205B2 (en) * 2002-04-03 2004-11-10 セイコーエプソン株式会社 Light transmissive sheet, rear projection type projector, light transmissive sheet manufacturing apparatus, program, and computer-readable recording medium
US6682331B1 (en) 2002-09-20 2004-01-27 Agilent Technologies, Inc. Molding apparatus for molding light emitting diode lamps
US7667238B2 (en) * 2003-04-15 2010-02-23 Luminus Devices, Inc. Light emitting devices for liquid crystal displays
US20080273027A1 (en) * 2004-05-12 2008-11-06 Eric Feremans Methods and Devices for Generating and Viewing a Planar Image Which Is Perceived as Three Dimensional
US20060072319A1 (en) * 2004-10-05 2006-04-06 Dziekan Michael E Method of using light emitting diodes for illumination sensing and using ultra-violet light sources for white light illumination
US7858408B2 (en) * 2004-11-15 2010-12-28 Koninklijke Philips Electronics N.V. LED with phosphor tile and overmolded phosphor in lens
US7452737B2 (en) 2004-11-15 2008-11-18 Philips Lumileds Lighting Company, Llc Molded lens over LED die
US7344902B2 (en) 2004-11-15 2008-03-18 Philips Lumileds Lighting Company, Llc Overmolded lens over LED die
US7352011B2 (en) 2004-11-15 2008-04-01 Philips Lumileds Lighting Company, Llc Wide emitting lens for LED useful for backlighting
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
WO2006129246A2 (en) 2005-05-31 2006-12-07 Koninklijke Philips Electronics N.V. Light-source with fabric diffusing layer
WO2006129244A2 (en) 2005-05-31 2006-12-07 Koninklijke Philips Electronics N.V. Light-source with fabric diffusing layer
US20070108463A1 (en) * 2005-11-17 2007-05-17 Chua Janet B Y Light-emitting diode with UV-blocking nano-particles
US7446675B2 (en) * 2005-12-27 2008-11-04 L3 Communications Corporation Solid state avionics display instrument
DE102006005042A1 (en) 2006-02-03 2007-08-09 Tridonic Optoelectronics Gmbh Light-emitting device with non-activated phosphor
WO2008069320A1 (en) * 2006-12-08 2008-06-12 Mitsubishi Rayon Co., Ltd., Lens sheet, surface light source device and liquid crystal display device
CN101256256A (en) * 2007-02-27 2008-09-03 鸿富锦精密工业(深圳)有限公司 Lens module and assembled method
JP5038755B2 (en) * 2007-03-26 2012-10-03 パナソニック株式会社 Light emitting device
TWI351115B (en) 2007-05-18 2011-10-21 Everlight Electronics Co Ltd Light-emitting diode module and the manufacturing method thereof
US20090015548A1 (en) * 2007-06-28 2009-01-15 Keiko Tazaki Image projection system
US20100263723A1 (en) * 2007-07-19 2010-10-21 University Of Cincinnati Nearly Index-Matched Luminescent Glass-Phosphor Composites For Photonic Applications
TW200951560A (en) * 2008-06-06 2009-12-16 Univ Nat Taiwan Composite light guiding curved surface structure
US8105853B2 (en) 2008-06-27 2012-01-31 Bridgelux, Inc. Surface-textured encapsulations for use with light emitting diodes
TWI357164B (en) * 2008-06-30 2012-01-21 E Pin Optical Industry Co Ltd Aspherical led angular lens for narrow distributio
US8129735B2 (en) 2008-09-24 2012-03-06 Koninklijke Philips Electronics N.V. LED with controlled angular non-uniformity
US8022612B2 (en) 2008-11-10 2011-09-20 Global Oled Technology, Llc. White-light LED having two or more commonly controlled portions with improved angular color performance
KR100998017B1 (en) * 2009-02-23 2010-12-03 삼성엘이디 주식회사 Lens for Light Emitting Diode Package and Light Emitting Diode Package Having The Same
US8415692B2 (en) 2009-07-06 2013-04-09 Cree, Inc. LED packages with scattering particle regions
US20110031516A1 (en) 2009-08-07 2011-02-10 Koninklijke Philips Electronics N.V. Led with silicone layer and laminated remote phosphor layer
JP2011077214A (en) 2009-09-30 2011-04-14 Okaya Electric Industries Co Ltd Led lamp
KR101064090B1 (en) * 2009-11-17 2011-09-08 엘지이노텍 주식회사 The light-
US9029887B2 (en) 2011-04-22 2015-05-12 Micron Technology, Inc. Solid state lighting devices having improved color uniformity and associated methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233485A1 (en) * 2003-03-20 2005-10-20 Alexander Shishov Light emitting diode package with self dosing feature and methods of forming same
US20080111147A1 (en) * 2005-08-12 2008-05-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Phosphor-Converted LED Devices Having Improved Light Distribution Uniformity
US20070201225A1 (en) * 2006-02-27 2007-08-30 Illumination Management Systems LED device for wide beam generation
US20080303757A1 (en) * 2007-06-06 2008-12-11 Sony Corporation Light emitting device, area light source apparatus and image display apparatus
US20100123386A1 (en) * 2008-11-13 2010-05-20 Maven Optronics Corp. Phosphor-Coated Light Extraction Structures for Phosphor-Converted Light Emitting Devices
US20110013116A1 (en) * 2009-07-03 2011-01-20 Panasonic Corporation Lighting device, surface light source, and liquid-crystal display apparatus

Also Published As

Publication number Publication date
US20180269365A1 (en) 2018-09-20
US20190058097A1 (en) 2019-02-21
US10243120B2 (en) 2019-03-26
US10002994B2 (en) 2018-06-19
TWI523274B (en) 2016-02-21
US9029887B2 (en) 2015-05-12
US20150287895A1 (en) 2015-10-08
US10804447B2 (en) 2020-10-13
TW201248934A (en) 2012-12-01
US20120267650A1 (en) 2012-10-25
WO2012145421A1 (en) 2012-10-26

Similar Documents

Publication Publication Date Title
US20210057621A1 (en) Solid state lighting devices having improved color uniformity and associated methods
US20240145440A1 (en) Solid state lighting device with different illumination parameters at different regions of an emitter array
TWI324834B (en) Phosphor-converted led devices having improved light distribution uniformity
TWI597860B (en) Methods of fabricating light-emitting diodes, light-emitting device and method for fabricating the same
US9543475B2 (en) Light emitting device and method of manufacturing the same
KR102146595B1 (en) Led with shaped growth substrate for side emission
US8552438B2 (en) Multi-lens solid state lighting devices
US20170025589A1 (en) Light emitting structure and method for manufacturing the same
TW201413171A (en) Lighting apparatus and method of fabricating the same, and photonic lighting module
US11552229B2 (en) Spacer layer arrangements for light-emitting diodes
WO2021211648A1 (en) Light-altering material arrangements for light-emitting devices
WO2020232668A1 (en) Arrangements for light emitting diode packages
US20230261154A1 (en) Light-emitting diode packages with selectively placed light-altering materials and related methods
US20240266478A1 (en) Lumiphoric particle structures in wavelength conversion elements for light-emitting diodes and related methods
US20230106479A1 (en) Lumiphoric material arrangements for multiple-junction light-emitting diodes
US20230246144A1 (en) Arrangements of light-altering coatings in light-emitting diode packages
KR20130008376A (en) A light-emitting diode device and method for the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHUBERT, MARTIN F.;TETZ, KEVIN;SIGNING DATES FROM 20110419 TO 20110420;REEL/FRAME:053691/0123

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION