US20200364138A1 - Apparatuses and methods for write address tracking - Google Patents

Apparatuses and methods for write address tracking Download PDF

Info

Publication number
US20200364138A1
US20200364138A1 US16/983,779 US202016983779A US2020364138A1 US 20200364138 A1 US20200364138 A1 US 20200364138A1 US 202016983779 A US202016983779 A US 202016983779A US 2020364138 A1 US2020364138 A1 US 2020364138A1
Authority
US
United States
Prior art keywords
data
cache
array
circuitry
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/983,779
Inventor
Gary L. Howe
Timothy P. Finkbeiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lodestar Licensing Group LLC
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US16/983,779 priority Critical patent/US20200364138A1/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FINKBEINER, TIMOTHY P., HOWE, GARY L.
Publication of US20200364138A1 publication Critical patent/US20200364138A1/en
Assigned to LODESTAR LICENSING GROUP LLC reassignment LODESTAR LICENSING GROUP LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0215Addressing or allocation; Relocation with look ahead addressing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1016Performance improvement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1028Power efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure relates generally to semiconductor memory and methods, and more particularly, to apparatuses and methods for write address tracking.
  • Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other computing systems. There are many different types of memory including volatile and non-volatile memory. Volatile memory can require power to maintain its data (e.g., host data, error data, etc.) and includes random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), synchronous dynamic random access memory (SDRAM), and thyristor random access memory (TRAM), among others.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • SDRAM synchronous dynamic random access memory
  • TAM thyristor random access memory
  • Non-volatile memory can provide persistent data by retaining stored data when not powered and can include NAND flash memory, NOR flash memory, and resistance variable memory such as phase change random access memory (PCRAM), resistive random access memory (RRAM), and magnetoresistive random access memory (MRAM), such as spin torque transfer random access memory (STT RAM), among others.
  • PCRAM phase change random access memory
  • RRAM resistive random access memory
  • MRAM magnetoresistive random access memory
  • STT RAM spin torque transfer random access memory
  • Computing systems often include a number of processing resources (e.g., one or more processors), which may retrieve and execute instructions and store the results of the executed instructions to a suitable location.
  • a processing resource e.g., CPU
  • ALU arithmetic logic unit
  • FPU floating point unit
  • combinatorial logic block for example, which can be used to execute instructions by performing logical operations such as AND, OR, NOT, NAND, NOR, and XOR, and invert (e.g., inversion) logical operations on data (e.g., one or more operands).
  • a number of components in a computing system may be involved in providing instructions to the functional unit circuitry for execution.
  • the instructions may be executed, for instance, by a processing resource such as a controller and/or host processor.
  • Data (e.g., the operands on which the instructions will be executed) may be stored in a memory array that is accessible by the functional unit circuitry.
  • the instructions and/or data may be retrieved from the memory array and sequenced and/or buffered before the functional unit circuitry begins to execute instructions on the data.
  • intermediate results of the instructions and/or data may also be sequenced and/or buffered.
  • Data stored in the memory array and/or intermediate results of the instructions may be stored in a memory cache.
  • the memory cache can be used to transfer and/or operate on the stored data.
  • data located in the cache When data located in the cache is operated on, changed, and/or updated, the data may conflict with corresponding data stored in the memory array.
  • an entire cache of data In order to update the memory array, an entire cache of data may be written to the memory array in order to correlate the data in the cache to the data in the memory array.
  • the processing resources may be external to the memory array, and data is accessed via a bus between the processing resources and the memory array to execute a set of instructions.
  • Processing performance may be improved in a processor-in-memory (PIM) device, in which a processor may be implemented internal and/or near to a memory (e.g., directly on a same chip as the memory array).
  • PIM processor-in-memory
  • a PIM device may save time by reducing and/or eliminating external communications and may also conserve power.
  • FIG. 1 is a block diagram of an apparatus in the form of a computing system including one example of a processing in memory (PIM) capable device coupled to a host in accordance with the present disclosure.
  • PIM processing in memory
  • FIG. 2 is a schematic diagram illustrating a system for tracking write addresses in accordance with the present disclosure.
  • FIG. 3 is a block diagram illustrating a portion of one example of a PIM capable device in greater detail in accordance with the present disclosure.
  • FIG. 4 is a schematic diagram illustrating sensing circuitry of a memory device in accordance with a number of embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating circuitry for data transfer in a memory device in accordance with a number of embodiments of the present disclosure.
  • An example apparatus includes an array of memory cells and a cache coupled to the array.
  • the example apparatus can include tracking circuitry coupled to the cache.
  • the tracking circuitry can be configured to track write addresses of data written to the cache.
  • tracking circuitry is configured to track write addresses. For example, data can be written from a memory array to a cache. At least a portion of the data written to the cache can be updated and the data in the cache can be written to the memory array to maintain consistency between the memory array and the cache. Further, a write address associated with the data can be tracked when the write address corresponds to data in a cache that has been updated. For example, when data in a cache associated with a first write address is updated to include a change in that data in the cache, the first write address is tracked as being updated (e.g., a latch corresponding to the first write address may set an indicator bit).
  • the second write address is indicated as not being updated (e.g., a latch corresponding to the second write address may not have one or more indicator bits set).
  • a latch corresponding to the second write address may not have one or more indicator bits set.
  • duplicative power and/or additional transfer time may be involved as data that is already consistent will be transferred (e.g., the non-updated data will be written even though the non-updated data has not changed).
  • data may be written to a cache.
  • the data written to the cache can be updated and written back to the memory array.
  • the data that has been updated and is associated with the first write address can be written to the memory array and data that has not been updated and is associated with the second write address will not be written to the memory array. In this way, power and/or transfer time will be saved by transferring updated data from the cache to the memory array without transferring data that has not been updated.
  • a number of” a particular thing can refer to one or more of such things (e.g., a number of memory arrays can refer to one or more memory arrays).
  • a “plurality of” is intended to refer to more than one of such things.
  • FIG. 1 is a block diagram of an apparatus in the form of a computing system 100 including one example of a processing in memory (PIM) capable device 101 coupled to a host 110 .
  • the PIM capable device 101 also referred to as “memory device 101 ”
  • memory device 101 may include a controller 140 .
  • FIG. 1 is provided as an example of a system including a current PIM capable device 101 architecture.
  • the memory device 101 may include a memory array 130 , a command interface 136 , sensing circuitry 150 , and additional logic circuitry 170 .
  • the system 100 can include separate integrated circuits or both the logic and memory can be on the same integrated device as with a system on a chip (SoC).
  • SoC system on a chip
  • the system 100 can be, for instance, a server system and/or a high performance computing (HPC) system and/or a portion thereof.
  • HPC high performance computing
  • the memory array 130 can be a DRAM array, SRAM array, STT RAM array, PCRAM array, TRAM array, RRAM array, NAND flash array, and/or NOR flash array, for instance.
  • the array 130 can comprise memory cells arranged in rows coupled by access lines (which may be referred to herein as word lines or select lines) and columns coupled by sense lines, which may be referred to herein as data lines or digit lines. Although a single array 130 is shown in FIG. 1 , embodiments are not so limited.
  • memory device 101 may include a number of arrays 130 (e.g., a number of banks of DRAM cells, NAND flash cells, etc.).
  • the memory device 101 includes address circuitry 142 to latch address signals provided over a data bus 156 (e.g., an I/O bus) through I/O circuitry 144 . Status and/or exception information can be provided from the controller 140 on the memory device 101 to a host 102 and/or logic resource through an out-of-band bus 157 . Address signals are received through address circuitry 142 and decoded by a row decoder 146 and a column decoder 152 to access the memory array 130 . Data can be read from memory array 130 by sensing voltage and/or current changes on the data lines using sensing circuitry 150 . The sensing circuitry 150 can read and latch a page (e.g., row) of data from the memory array 130 .
  • a data bus 156 e.g., an I/O bus
  • I/O circuitry 144 e.g., an I/O bus
  • Status and/or exception information can be provided from the controller 140 on the memory device 101 to a host 102 and/or logic resource
  • the I/O circuitry 144 can be used for bi-directional data communication with host 110 over the data bus 156 .
  • the write circuitry 148 is used to write data to the memory array 130 .
  • Address, control and/or commands, e.g., processing in memory (PIM) commands, may be received to the controller 140 via bus 154 .
  • PIM processing in memory
  • Command interface 136 may include control registers, e.g., double data rate (DDR) control registers in a DRAM, to control the operation of the array 130 , e.g., DRAM array, and/or controller 140 .
  • the command interface 136 may be coupled to the I/O circuitry 144 and/or controller 140 .
  • the command interface 136 may be memory mapped I/O registers.
  • the memory mapped I/O registers can be mapped to a plurality of locations in memory where microcode instructions are stored.
  • embodiments are not so limited. For example, any number of memory arrays with a cache between the main array and a host interface can use the command interface 136 .
  • controller 140 may decode signals received via bus 154 from the host 110 . These signals can include chip enable signals, write enable signals, and address latch signals that are used to control operations performed on the memory array 130 , including data read, data write, and data erase operations.
  • portions of the controller 140 can be a reduced instruction set computer (RISC) type controller operating on 32 and/or 64 bit length instructions.
  • the controller 140 is responsible for executing instructions from the host 110 and/or logic components in association with the sensing circuitry 150 to perform logical Boolean operations such as AND, OR, XOR, etc. Further, the controller 140 can control shifting data (e.g., right or left) in an array, e.g., memory array 130 .
  • portions of the controller 140 can include control logic, a sequencer, timing circuitry and/or some other type of controller, described further in connection with FIG. 2 .
  • the sensing circuitry 150 can comprise a plurality of sense amplifiers and a plurality of compute components, which may serve as and be referred to herein as an accumulator, and can be used to perform logical operations (e.g., on data associated with complementary data lines).
  • the sensing circuitry 150 can be used to perform logical operations using data stored in array 130 as inputs and store the results of the logical operations back to the array 130 without transferring data via a sense line address access (e.g., without firing a column decode signal).
  • various compute functions can be performed using, and within, sensing circuitry 150 rather than (or in association with) being performed by processing resources external to the sensing circuitry (e.g., by a processing resource associated with host 110 and/or other processing circuitry, such as ALU circuitry, located on memory device 101 (e.g., on controller 140 or elsewhere)).
  • sensing circuitry 150 is configured to perform logical operations on data stored in memory array 130 and store the result back to the memory array 130 without enabling an I/O line (e.g., a local I/O line) coupled to the sensing circuitry 150 .
  • the sensing circuitry 150 can be formed on pitch with the memory cells of the array 130 . Additional peripheral sense amplifiers, extended row address (XRA) registers, cache and/or data buffering, e.g., additional logic circuitry 170 , can be coupled to the sensing circuitry 150 and can be used to store, e.g., cache and/or buffer, results of operations described herein.
  • XRA extended row address
  • additional logic circuitry 170 can be coupled to the sensing circuitry 150 and can be used to store, e.g., cache and/or buffer, results of operations described herein.
  • circuitry external to array 130 and sensing circuitry 150 is not needed to perform compute functions as the sensing circuitry 150 can perform the appropriate logical operations to perform such compute functions without the use of an external processing resource. Therefore, the sensing circuitry 150 may be used to compliment and/or to replace, at least to some extent, such an external processing resource (or at least the bandwidth consumption of such an external processing resource).
  • the sensing circuitry 150 may be used to perform logical operations (e.g., to execute instructions) in addition to logical operations performed by an external processing resource (e.g., on host 110 ).
  • processing resources on host 110 and/or sensing circuitry 150 on memory device 101 may be limited to performing only certain logical operations and/or a certain number of logical operations.
  • Enabling an I/O line can include enabling (e.g., turning on) a transistor having a gate coupled to a decode signal (e.g., a column decode signal) and a source/drain coupled to the I/O line.
  • a decode signal e.g., a column decode signal
  • embodiments are not limited to not enabling an I/O line.
  • the sensing circuitry e.g., 150
  • the local I/O line(s) may be enabled in order to transfer a result to a suitable location other than back to the array 130 (e.g., to an external register).
  • FIG. 2 is a schematic diagram illustrating a system for tracking write addresses in accordance with the present disclosure.
  • the system illustrated in FIG. 2 can include a memory array 230 coupled to a cache 270 .
  • the memory array 230 can store data to be processed by the controller 240 and/or additional controllers (not illustrated).
  • the data stored in the memory array 230 can be stored to the cache 270 in a number of memory cells and/or registers.
  • the data stored to the cache 270 can be requested by additional components and/or memory locations (such as memory bank 321 - 7 in FIG. 3 ).
  • a memory location e.g., memory bank 321 - 7
  • the data can be transferred from the cache 270 to the memory location using a number of I/O lines (e.g., shared I/O line 555 in FIG. 5 ).
  • a controller 240 can be coupled to the cache 270 .
  • the controller 240 can send a number of indications to the cache 270 .
  • a first indication 274 can indicate to copy data in the cache 270 to the memory array 230 .
  • a second indication 276 can indicate column addresses 276 associated with data to the cache 270 , indicating where the data is stored in the cache 270 and/or in the memory array 230 .
  • a command interface 236 can be coupled to the cache 270 .
  • the command interface 236 can be a Double Data Rate (DDR) Synchronous Dynamic Random-Access Memory (SDRAM) command interface.
  • the command interface 236 can send a write command 266 to the cache 270 .
  • the write command 266 can be transferred through latch circuitry 260 of the cache 270 and indicate to the latch circuitry that data 272 associated with the write command 266 will be updated.
  • the tracking circuitry including logic 264 and latch circuitry 260 is illustrated as being a portion of the cache 270 , embodiments are not so limited.
  • the logic 264 and/or the latch circuitry 260 can be located outside the cache 270 and can be coupled to and/or in communication with the cache 270 .
  • the latch circuitry 260 can include a latch 262 that corresponds to a particular write address.
  • the command interface 236 can send a write command 266 to write a particular portion of data 272 associated with a particular column address 268 .
  • the latch 262 can store a particular data value.
  • the latch 262 storing the particular data value can be a set flag that indicates that the portion of data 272 (corresponding to the column address 268 ) has been updated.
  • portions of the data of the cache 270 that include a set flag in the latch circuitry 260 are written to the memory array.
  • data e.g., data 272
  • a latch e.g., latch 262
  • Additional portions of the data of the cache 270 that do not include a set flag e.g., a latch corresponding to each column address of the additional portions includes a data value that indicates the additional portions have not been updated
  • a column address 276 associated with data to be written from the cache 270 to the memory array 230 can be compared, using logic circuitry 264 , to a column address 268 associated with data indicated by the command interface 236 to be updated in the cache.
  • the command interface can send write commands 266 to the cache to update a first set of data 272 associated with column addresses 268 .
  • the controller 240 indicates, at 274 , to write data from the cache 270 associated with indicated column addresses, at 276 , to the memory array 230 .
  • the first set of data 272 is written to the memory array 230 and a second set of data (not illustrated) is not written to the memory array 230 .
  • the controller indicates, at 274 , to copy a first set of column addresses (indicated at 276 ).
  • the first set of column addresses are received by logic circuitry 264 and compared to the column addresses 268 that have entered the latch circuitry 260 .
  • the data associated with set flag is written to the memory array.
  • Each of the column addresses indicated at 276 are compared to a corresponding latch 262 and written to the memory array 230 when a corresponding latch 262 includes a set flag and not written to the memory array 230 when the corresponding latch 262 does not include a set flag. This can avoid having to transfer a full cache to the memory array 230 in response to at least a portion of the data in the cache being updated and/or altered.
  • the controller 240 can indicate to copy column addresses 276 associated with all data stored in the cache 270 .
  • the latch circuitry 260 can track column addresses that correspond to updated data 272 .
  • the unwritten and/or non-updated column addresses can be masked such that in response to all column addresses of the cache 270 being selected to be written to the memory array 230 , only the column addresses of data that have been updated are written to the memory array 230 .
  • Masking can include blocking column select activation lines of the unwritten data of the column addresses and/or disabling write data drivers associated with the unwritten data of the column addresses. For example, array write paths (from the cache 270 to the memory array 230 ) are enabled for addresses associated with data written (updated) to the cache 270 .
  • Array write paths (from the cache 270 to the memory array 230 ) are masked for addresses associated with data not written (non-updated) to the cache 270 .
  • the write address latch circuitry 260 can be cleared in response to a write from the cache 270 to the memory array 230 . In this way, transferring of updated data is not duplicated and tracking of write addresses is restarted after each write to the memory array 230 from the cache 270 .
  • a number of I/O data lines can determine a configuration of the system. For example, a system with 64 I/O lines can use a minimum data size of 512 bits such that eight cycles can be correlated to a 4 k data transfer at a time. In this example, 32 enable bits would be used to store data in a 16 k wide data register. Further, 32 enable bits each corresponding to 512 bits equals 16 k wide data. In an example including a system with 32 I/O lines, a minimum data size of 256 bits can be used with 64 enable bits for a 16 k wide data register. In an example including a system with 16 I/O lines, a minimum data size of 128 bits can be used with 128 enable bits for a 16 k wide data register.
  • a cache control mode can be used to control reads and writes. For example, a particular word line and a particular column address of the cache 270 can be activated such that an entire cache 270 of data is not transferred.
  • FIG. 3 is another block diagram in greater detail of a portion of one example of a PIM capable device 320 such as memory device 101 in FIG. 1 .
  • a controller 340 - 1 , . . . , 340 - 7 (referred to generally as controller 340 ) may be associated with each bank 321 - 1 , . . . , 321 - 7 (referred to generally as 321 ) to the PIM capable device 320 .
  • Eight banks are shown in the example of FIG. 3 . However, embodiments are not limited to this example number.
  • Controller 340 may represent controller 140 shown in FIG. 1 .
  • Each bank may include one or more arrays of memory cells (not shown).
  • each bank may include one or more arrays such as array 130 in FIG. 1 and can include decoders, other circuitry and registers shown in FIG. 1 .
  • controllers 340 - 1 , . . . , 340 - 7 are shown having control logic 331 - 1 , . . . , 331 - 7 , sequencers 332 - 1 , . . . , 332 - 7 , and timing circuitry 333 - 1 , . . . , 333 - 7 as part of a controller 340 on one or more memory banks 321 of a memory device 320 .
  • the PIM capable device 320 may represent part of memory device 101 shown in FIG. 1 .
  • the PIM capable device 320 may include a high speed interface (HSI) 341 to receive data, addresses, control signals, and/or commands at the PIM capable device 320 .
  • the HSI 341 may be coupled to a bank arbiter 345 associated with the PIM capable device 320 .
  • the HSI 341 may be configured to receive commands and/or data from a host, e.g., 110 as in FIG. 1 .
  • the bank arbiter 345 may be coupled to the plurality of banks 321 - 1 , . . . , 321 - 7 .
  • control logic 331 - 1 , . . . , 331 - 7 may be in the form of a microcoded engine responsible for fetching and executing machine instructions, e.g., microcode instructions, from an array of memory cells, e.g., an array as array 130 in FIG. 1 , that is part of each bank 321 - 1 , . . . , 321 - 7 (not detailed in FIG. 3 ).
  • the sequencers 332 - 1 , . . . , 332 - 7 may also be in the form of microcoded engines.
  • 331 - 7 may be in the form of a very large instruction word (VLIW) type processing resource and the sequencers 332 - 1 , . . . , 332 - 7 , and the timing circuitry 333 - 1 , . . . , 333 - 7 may be in the form of state machines and transistor circuitry.
  • VLIW very large instruction word
  • the control logic 331 - 1 , . . . , 331 - 7 may decode microcode instructions into function calls, e.g., microcode function calls (uCODE), implemented by the sequencers 332 - 1 , . . . , 332 - 7 .
  • the microcode function calls can be the operations that the sequencers 332 - 1 , . . . , 332 - 7 receive and execute to cause the PIM device 320 to perform particular logical operations using the sensing circuitry such as sensing circuitry 150 in FIG. 1 .
  • the timing circuitry 333 - 1 , . . . , 333 - 7 may provide timing to coordinate performance of the logical operations and be responsible for providing conflict free access to the arrays such as array 130 in FIG. 1 .
  • the controllers 340 - 1 , . . . , 340 - 7 may be coupled to sensing circuitry 150 and/or additional logic circuitry 170 , including cache, buffers, sense amplifiers, extended row address (XRA) latches, and/or registers 350 / 370 - 1 , associated with arrays of memory cells via control lines and data paths shown in FIG. 3 as 355 - 1 , 355 - 7 .
  • sensing circuitry 150 and logic 170 shown in FIG. 1 can be associated to the arrays of memory cells 130 using data I/Os shown as 355 - 1 , . . . , 355 - 7 in FIG. 3 .
  • the controllers 340 - 1 , . . . , 340 - 7 may control regular DRAM operations for the arrays such as a read, write, copy, and/or erase operations, etc. Additionally, however, microcode instructions retrieved and executed by the control logic 331 - 1 , . . . , 331 - 7 and the microcode function calls received and executed by the sequencers 332 - 1 , . . . , 332 - 7 cause sensing circuitry 150 shown in FIG. 1 to perform additional logical operations such as addition, multiplication, or, as a more specific example, Boolean operations such as an AND, OR, XOR, etc., which are more complex than regular DRAM read and write operations. Hence, in this PIM capable device 320 example, microcode instruction execution and logic operations are performed on the banks 321 - 1 , . . . , 321 - 7 to the PIM device 320 .
  • control logic 331 - 1 , . . . , 331 - 7 , sequencers 332 - 1 , . . . , 332 - 7 , and timing circuitry 333 - 1 , . . . , 333 - 7 may operate to generate sequences of operation cycles for a DRAM array.
  • each sequence may be designed to perform operations, such as a Boolean logic operations AND, OR, XOR, etc., which together achieve a specific function.
  • the sequences of operations may repetitively perform a logical operation for a one (1) bit add in order to calculate a multiple bit sum.
  • Each sequence of operations may be fed into a first in/first out (FIFO) buffer coupled to the timing circuitry 333 - 1 , . . . , 333 - 7 to provide timing coordination with the sensing circuitry 150 and/or additional logic circuitry 170 associated with the array of memory cells 130 , e.g., DRAM arrays, shown in FIG. 1 .
  • FIFO first in/first out
  • the timing circuitry 333 - 1 , . . . , 333 - 7 provides timing and provides conflict free access to the arrays from four (4) FIFO queues.
  • one FIFO queue may support array computation, one may be for Instruction fetch, one for microcode (e.g., Ucode) instruction fetch, and one for DRAM I/O.
  • Both the control logic 331 - 1 , . . . , 331 - 7 and the sequencers 332 - 1 , . . . , 332 - 7 can generate status information, which is routed back to the bank arbiter 345 via a FIFO interface.
  • the bank arbiter 345 may aggregate this status data and report it back to a host 110 via the HSI 341 .
  • FIG. 4 is a schematic diagram illustrating sensing circuitry 450 in accordance with a number of embodiments of the present disclosure.
  • the sensing circuitry 450 can correspond to sensing circuitry 150 shown in FIG. 1 .
  • a memory cell can include a storage element (e.g., capacitor) and an access device (e.g., transistor).
  • a first memory cell can include transistor 402 - 1 and capacitor 403 - 1
  • a second memory cell can include transistor 402 - 2 and capacitor 403 - 2 , etc.
  • the memory array 430 is a DRAM array of 1T1C (one transistor one capacitor) memory cells, although other embodiments of configurations can be used (e.g., 2T2C with two transistors and two capacitors per memory cell).
  • the memory cells may be destructive read memory cells (e.g., reading the data stored in the cell destroys the data such that the data originally stored in the cell is refreshed after being read).
  • the cells of the memory array 430 can be arranged in rows coupled by access (word) lines 404 -X (Row X), 404 -Y (Row Y), etc., and columns coupled by pairs of complementary sense lines (e.g., digit lines DIGIT(D) and DIGIT(D)_ shown in FIG. 4 and DIGIT_ 0 and DIGIT_ 0 * shown in FIG. 5 ).
  • the individual sense lines corresponding to each pair of complementary sense lines can also be referred to as digit lines 405 - 1 for DIGIT (D) and 405 - 2 for DIGIT (D)_, respectively, or corresponding reference numbers in FIG. 5 .
  • digit lines 405 - 1 for DIGIT (D) and 405 - 2 for DIGIT (D)_ respectively, or corresponding reference numbers in FIG. 5 .
  • FIG. 4 Although only one pair of complementary digit lines are shown in FIG. 4 , embodiments of the present disclosure are not so limited, and an array of memory cells can
  • rows and columns are illustrated as orthogonally oriented in a plane, embodiments are not so limited.
  • the rows and columns may be oriented relative to each other in any feasible three-dimensional configuration.
  • the rows and columns may be oriented at any angle relative to each other, may be oriented in a substantially horizontal plane or a substantially vertical plane, and/or may be oriented in a folded topology, among other possible three-dimensional configurations.
  • Memory cells can be coupled to different digit lines and word lines.
  • a first source/drain region of a transistor 402 - 1 can be coupled to digit line 405 - 1 (D)
  • a second source/drain region of transistor 402 - 1 can be coupled to capacitor 403 - 1
  • a gate of a transistor 402 - 1 can be coupled to word line 404 -Y.
  • a first source/drain region of a transistor 402 - 2 can be coupled to digit line 405 - 2 (D)_
  • a second source/drain region of transistor 402 - 2 can be coupled to capacitor 403 - 2
  • a gate of a transistor 402 - 2 can be coupled to word line 404 -X.
  • a cell plate as shown in FIG. 4 , can be coupled to each of capacitors 403 - 1 and 403 - 2 .
  • the cell plate can be a common node to which a reference voltage (e.g., ground) can be applied in various memory array configurations.
  • a reference voltage e.g., ground
  • the memory array 430 is configured to couple to sensing circuitry 450 in accordance with a number of embodiments of the present disclosure.
  • the sensing circuitry 450 comprises a sense amplifier 406 and a compute component 431 corresponding to respective columns of memory cells (e.g., coupled to respective pairs of complementary digit lines).
  • the sense amplifier 406 can be coupled to the pair of complementary digit lines 405 - 1 and 405 - 2 .
  • the compute component 431 can be coupled to the sense amplifier 406 via pass gates 407 - 1 and 407 - 2 .
  • the gates of the pass gates 407 - 1 and 407 - 2 can be coupled to operation selection logic 413 .
  • the operation selection logic 413 can be configured to include pass gate logic for controlling pass gates that couple the pair of complementary digit lines un-transposed between the sense amplifier 406 and the compute component 431 and swap gate logic for controlling swap gates that couple the pair of complementary digit lines transposed between the sense amplifier 406 and the compute component 431 .
  • the operation selection logic 413 can also be coupled to the pair of complementary digit lines 405 - 1 and 405 - 2 .
  • the operation selection logic 413 can be configured to control continuity of pass gates 407 - 1 and 407 - 2 based on a selected operation.
  • the sense amplifier 406 can be operated to determine a data value (e.g., logic state) stored in a selected memory cell.
  • the sense amplifier 406 can comprise a cross coupled latch, which can be referred to herein as a primary latch.
  • the circuitry corresponding to sense amplifier 406 comprises a latch 415 including four transistors coupled to a pair of complementary digit lines D 405 - 1 and (D)_ 405 - 2 .
  • embodiments are not limited to this example.
  • the latch 415 can be a cross coupled latch (e.g., gates of a pair of transistors) such as n-channel transistors (e.g., NMOS transistors) 427 - 1 and 427 - 2 are cross coupled with the gates of another pair of transistors, such as p-channel transistors (e.g., PMOS transistors) 429 - 1 and 429 - 2 ).
  • n-channel transistors e.g., NMOS transistors
  • p-channel transistors e.g., PMOS transistors
  • the voltage on one of the digit lines 405 - 1 (D) or 405 - 2 (D)_ will be slightly greater than the voltage on the other one of digit lines 405 - 1 (D) or 405 - 2 (D)_.
  • An ACT signal and an RNL* signal can be driven low to enable (e.g., fire) the sense amplifier 406 .
  • the digit lines 405 - 1 (D) or 405 - 2 (D)_ having the lower voltage will turn on one of the PMOS transistor 429 - 1 or 429 - 2 to a greater extent than the other of PMOS transistor 429 - 1 or 429 - 2 , thereby driving high the digit line 405 - 1 (D) or 405 - 2 (D)_ having the higher voltage to a greater extent than the other digit line 405 - 1 (D) or 405 - 2 (D)_ is driven high.
  • the digit line 405 - 1 (D) or 405 - 2 (D)_ having the higher voltage will turn on one of the NMOS transistor 427 - 1 or 427 - 2 to a greater extent than the other of the NMOS transistor 427 - 1 or 427 - 2 , thereby driving low the digit line 405 - 1 (D) or 405 - 2 (D)_ having the lower voltage to a greater extent than the other digit line 405 - 1 (D) or 405 - 2 (D)_ is driven low.
  • the digit line 405 - 1 (D) or 405 - 2 (D)_ having the slightly greater voltage is driven to the voltage of the supply voltage V CC through a source transistor, and the other digit line 405 - 1 (D) or 405 - 2 (D)_ is driven to the voltage of the reference voltage (e.g., ground) through a sink transistor.
  • the reference voltage e.g., ground
  • the cross coupled NMOS transistors 427 - 1 and 427 - 2 and PMOS transistors 429 - 1 and 429 - 2 serve as a sense amplifier pair, which amplify the differential voltage on the digit lines 405 - 1 (D) and 405 - 2 (D)_ and operate to latch a data value sensed from the selected memory cell.
  • Embodiments are not limited to the sense amplifier 406 configuration illustrated in FIG. 4 .
  • the sense amplifier 406 can be a current-mode sense amplifier and a single-ended sense amplifier (e.g., sense amplifier coupled to one digit line).
  • embodiments of the present disclosure are not limited to a folded digit line architecture such as that shown in FIG. 4 .
  • the sense amplifier 406 can, in conjunction with the compute component 431 , be operated to perform various operations using data from an array as input.
  • the result of an operation can be stored back to the array without transferring the data via a digit line address access and/or moved between banks without using an external data bus (e.g., without firing a column decode signal such that data is transferred to circuitry external from the array and sensing circuitry via local I/O lines).
  • a number of embodiments of the present disclosure can enable performing operations and compute functions associated therewith using less power than various previous approaches.
  • a number of embodiments can enable an increased (e.g., faster) processing capability as compared to previous approaches.
  • the sense amplifier 406 can further include equilibration circuitry 414 , which can be configured to equilibrate the digit lines 405 - 1 (D) and 405 - 2 (D)_.
  • the equilibration circuitry 414 comprises a transistor 424 coupled between digit lines 405 - 1 (D) and 405 - 2 (D)_.
  • the equilibration circuitry 414 also comprises transistors 425 - 1 and 425 - 2 each having a first source/drain region coupled to an equilibration voltage (e.g., V DD /2), where V DD is a supply voltage associated with the array.
  • V DD equilibration voltage
  • a second source/drain region of transistor 425 - 1 can be coupled digit line 405 - 1 (D), and a second source/drain region of transistor 425 - 2 can be coupled digit line 405 - 2 (D)_.
  • Gates of transistors 424 , 425 - 1 , and 425 - 2 can be coupled together, and to an equilibration (EQ) control signal line 426 .
  • EQ equilibration
  • FIG. 4 shows sense amplifier 406 comprising the equilibration circuitry 414
  • the equilibration circuitry 414 may be implemented discretely from the sense amplifier 406 , implemented in a different configuration than that shown in FIG. 4 , or not implemented at all.
  • the sensing circuitry 450 e.g., sense amplifier 406 and compute component 431
  • the sensing circuitry 450 can be operated to perform a selected operation and initially store the result in one of the sense amplifier 406 or the compute component 431 without transferring data from the sensing circuitry via a local or global I/O line and/or moved between banks without using an external data bus (e.g., without performing a sense line address access via activation of a column decode signal, for instance).
  • Boolean logical operations involving data values
  • Performance of operations is fundamental and commonly used. Boolean logical operations are used in many higher level operations. Consequently, speed and/or power efficiencies that can be realized with improved operations, can translate into speed and/or power efficiencies of higher order functionalities.
  • the compute component 431 can also comprise a latch, which can be referred to herein as a secondary latch 464 .
  • the secondary latch 464 can be configured and operated in a manner similar to that described above with respect to the primary latch 415 , with the exception that the pair of cross coupled p-channel transistors (e.g., PMOS transistors) included in the secondary latch can have their respective sources coupled to a supply voltage (e.g., V DD ), and the pair of cross coupled n-channel transistors (e.g., NMOS transistors) of the secondary latch can have their respective sources selectively coupled to a reference voltage (e.g., ground), such that the secondary latch is continuously enabled.
  • the configuration of the compute component 431 is not limited to that shown in FIG. 4 , and various other embodiments are feasible.
  • a memory device (e.g., 101 in FIG. 1 ) can be configured to couple to a host (e.g., 110 ) via a data bus (e.g., 156 ) and a control bus (e.g., 154 ).
  • a bank e.g., bank 321 - 1 in FIG. 3
  • the bank can include sensing circuitry (e.g., 150 in FIG. 1 and corresponding reference numbers 450 in FIGS. 4 and 550 in FIG. 5 ) coupled to the plurality of subarrays via a plurality of columns (e.g., 522 in FIG. 5 ) of the memory cells.
  • the sensing circuitry can include a sense amplifier and a compute component (e.g., 406 and 431 , respectively, in FIG. 4 ) coupled to each of the columns.
  • the bank can include a plurality of sensing stripes (e.g., 350 / 370 in FIG. 3 ) each with sensing circuitry coupled to a respective subarray of the plurality of the subarrays.
  • a controller e.g., 140 in FIG. 1
  • coupled to the bank can be configured to direct, as described herein, movement of data values stored in a first subarray (e.g., from data values in a row of the subarray sensed (cached) by the coupled sensing stripe) to be stored in latches of a latch stripe and/or a latch component.
  • Moving (e.g., copying, transferring, and/or transporting) data values between sense amplifiers and/or compute components (e.g., 406 and 431 , respectively, in FIG. 4 ) in a sensing stripe and corresponding sense amplifiers and/or compute components that form latches in a latch stripe can be enabled by a number of selectably coupled shared I/O lines (e.g., 355 in FIG. 3 ) shared by the sensing component stripe and the latch stripe, as described herein.
  • shared I/O lines e.g., 355 in FIG. 3
  • the memory device can include a sensing stripe configured to include a number of a plurality of sense amplifiers and compute components (e.g., 506 - 0 , 506 - 1 , . . . , 506 - 7 and 531 - 0 , 531 - 1 , . . . , 331 - 7 , respectively, as shown in FIG. 5 ) that can correspond to a number of the plurality of columns (e.g., 522 in FIGS. 5 and 405-1 and 405-2 in FIG.
  • a sensing stripe configured to include a number of a plurality of sense amplifiers and compute components (e.g., 506 - 0 , 506 - 1 , . . . , 506 - 7 and 531 - 0 , 531 - 1 , . . . , 331 - 7 , respectively, as shown in FIG. 5 ) that can correspond to a number of the plurality of columns
  • the column select circuitry can be configured to selectably sense data in a particular column of memory cells of a subarray by being selectably coupled to a plurality of (e.g., four, eight, and sixteen, among other possibilities) sense amplifiers and/or compute components.
  • a number of a plurality of sensing stripes (e.g., 350 / 370 in FIG. 3 ) in the bank can correspond to a number of the plurality of subarrays in the bank.
  • a sensing stripe can include a number of sense amplifiers and/or compute components configured to move (e.g., copy, transfer, and/or transport) an amount of data sensed from a row of the first subarray in parallel to a plurality of shared I/O lines.
  • the amount of data can correspond to at least a thousand bit width of the plurality of shared I/O lines.
  • the array of memory cells can include an implementation of DRAM memory cells where the controller is configured, in response to a command, to move (e.g., copy, transfer, and/or transport) data from the source location to the destination location via a shared I/O line.
  • the source location can be in a first bank and the destination location can be in a second bank in the memory device and/or the source location can be in a first subarray of one bank in the memory device and the destination location can be in a second subarray of a different bank.
  • the data can be moved as described in connection with FIG. 1 .
  • the first subarray and the second subarray can be in the same section of the bank or the subarrays can be in different sections of the bank.
  • the apparatus can be configured to move (e.g., copy, transfer, and/or transport) data from a source location, including a particular row (e.g., 519 in FIG. 5 ) and column address associated with a first number of sense amplifiers and compute components) to a shared I/O line.
  • the apparatus can be configured to move the data to a destination location, including a particular row and column address associated with a second number of sense amplifiers and compute components.
  • each shared I/O line e.g., 555
  • 2048 shared I/O lines e.g., complementary pairs of shared I/O lines
  • 2048 shared I/O lines can be configured as a 2048 bit wide shared I/O line.
  • FIG. 5 is a schematic diagram illustrating circuitry for data transfer in a memory device in accordance with a number of embodiments of the present disclosure.
  • FIG. 5 shows eight sense amplifiers (e.g., sense amplifiers 0 , 1 , . . . , 7 shown at 506 - 0 , 506 - 1 , . . . , 506 - 7 , respectively) each coupled to a respective pair of complementary sense lines (e.g., digit lines 505 - 1 and 505 - 2 ).
  • FIG. 5 also shows eight compute components (e.g., compute components 0 , 1 , . . . , 7 shown at 531 - 0 , 531 - 1 , . . .
  • the pass gates can be connected as shown in FIG. 4 and can be controlled by an operation selection signal, Pass.
  • an output of the selection logic can be coupled to the gates of the pass gates 507 - 1 and 507 - 2 and digit lines 505 - 1 and 505 - 2 .
  • Corresponding pairs of the sense amplifiers and compute components can contribute to formation of the sensing circuitry indicated at 550 - 0 , 550 - 1 , . . . , 550 - 7 .
  • Data values present on the pair of complementary digit lines 505 - 1 and 505 - 2 can be loaded into the compute component 531 - 0 as described in connection with FIG. 4 .
  • the pass gates 507 - 1 and 507 - 2 are enabled, data values on the pair of complementary digit lines 505 - 1 and 505 - 2 can be passed from the sense amplifiers to the compute component (e.g., 506 - 0 to 531 - 0 ).
  • the data values on the pair of complementary digit lines 505 - 1 and 505 - 2 can be the data value stored in the sense amplifier 506 - 0 when the sense amplifier is fired.
  • the sense amplifiers 506 - 0 , 506 - 1 , . . . , 506 - 7 in FIG. 5 can each correspond to sense amplifier 406 shown in FIG. 4 .
  • the compute components 531 - 0 , 531 - 1 , . . . , 531 - 7 shown in FIG. 5 can each correspond to compute component 431 shown in FIG. 4 .
  • a combination of one sense amplifier with one compute component can contribute to the sensing circuitry (e.g., 550 - 0 , 550 - 1 , . . .
  • the paired combinations of the sense amplifiers 506 - 0 , 506 - 1 , . . . , 506 - 7 and the compute components 531 - 0 , 531 - 1 , . . . , 531 - 7 , shown in FIG. 5 can be included in the sensing stripes, as shown at 350 / 370 - 1 in FIG. 3 .
  • FIG. 5 The configurations of embodiments illustrated in FIG. 5 are shown for purposes of clarity and are not limited to these configurations.
  • the configuration illustrated in FIG. 5 for the sense amplifiers 506 - 0 , 506 - 1 , . . . , 506 - 7 in combination with the compute components 531 - 0 , 531 - 1 , . . . , 531 - 7 and the shared I/O line 555 is not limited to half the combination of the sense amplifiers 506 - 0 , 506 - 1 , . . . , 506 - 7 with the compute components 531 - 0 , 531 - 1 , . . .
  • the sensing circuitry being formed above the columns 522 of memory cells (not shown) and half being formed below the columns 522 of memory cells.
  • the number of such combinations of the sense amplifiers with the compute components forming the sensing circuitry configured to couple to a shared I/O line limited to eight.
  • the configuration of the shared I/O line 555 is not limited to being split into two for separately coupling each of the two sets of complementary digit lines 505 - 1 and 505 - 2 , nor is the positioning of the shared I/O line 555 limited to being in the middle of the combination of the sense amplifiers and the compute components forming the sensing circuitry (e.g., rather than being at either end of the combination of the sense amplifiers and the compute components).
  • the circuitry illustrated in FIG. 5 also shows column select circuitry 558 - 1 and 558 - 2 that is configured to implement data movement operations with respect to particular columns 522 of a subarray 525 , the complementary digit lines 505 - 1 and 505 - 2 associated therewith, and the shared I/O line 555 (e.g., as directed by the controller 140 shown in FIG. 1 ).
  • column select circuitry 558 - 1 has select lines 0 , 2 , 4 , and 6 that are configured to couple with corresponding columns, such as column 0 ( 532 - 0 ), column 2 , column 4 , and column 6 .
  • Column select circuitry 558 - 2 has select lines 1 , 3 , 5 , and 7 that are configured to couple with corresponding columns, such as column 1 , column 3 , column 5 , and column 7 .
  • Controller 140 can be coupled to column select circuitry 558 to control select lines (e.g., select line 0 ) to access data values stored in the sense amplifiers, compute components, and/or present on the pair of complementary digit lines (e.g., 505 - 1 and 505 - 2 when selection transistors 559 - 1 and 559 - 2 are activated via signals from select line 0 ).
  • select lines e.g., select line 0
  • select lines e.g., select line 0
  • the pair of complementary digit lines e.g., 505 - 1 and 505 - 2 when selection transistors 559 - 1 and 559 - 2 are activated via signals from select line 0 .
  • Activating the selection transistors 559 - 1 and 559 - 2 enables coupling of sense amplifier 506 - 0 , compute component 531 - 0 , and/or complementary digit lines 505 - 1 and 505 - 2 of column 0 ( 522 - 0 ) to move data values on digit line 0 and digit line 0 * to shared I/O line 555 .
  • the moved data values may be data values from a particular row 519 stored (cached) in sense amplifier 506 - 0 and/or compute component 531 - 0 .
  • Data values from each of columns 0 through 7 can similarly be selected by controller 140 activating the appropriate selection transistors.
  • enabling (e.g., activating) the selection transistors can enable a particular sense amplifier and/or compute component (e.g., 506 - 0 and/or 531 - 0 , respectively) to be coupled with a shared I/O line 555 such that data values stored by an amplifier and/or compute component can be moved to (e.g., placed on and/or transferred to) the shared I/O line 555 .
  • one column at a time is selected (e.g., column 522 - 0 ) to be coupled to a particular shared I/O line 555 to move (e.g., copy, transfer, and/or transport) the stored data values.
  • the shared I/O line 355 is illustrated as a shared, differential I/O line pair (e.g., shared I/O line and shared I/O line*).
  • selection of column 0 could yield two data values (e.g., two bits with values of 0 and/or 1) from a row (e.g., row 519 ) and/or as stored in the sense amplifier and/or compute component associated with complementary digit lines 505 - 1 and 505 - 2 .
  • These data values could be input in parallel to each shared, differential I/O pair (e.g., shared I/O and shared I/O*) of the shared differential I/O line 555 .
  • sensing circuitry sense amplifiers
  • compute component dynamic latches
  • isolation devices isolation devices
  • shift circuitry shift circuitry

Abstract

Apparatuses and methods are provided for write address tracking. An example apparatus can include an array of memory cells and a cache coupled to the array. The example apparatus can include tracking circuitry coupled to the cache. The tracking circuitry can be configured to track write addresses of data written to the cache.

Description

    PRIORITY INFORMATION
  • This application is a Continuation of U.S. application Ser. No. 15/215,296, filed Jul. 20, 2016, which issues as U.S. Pat. No. 10,733,089 on Aug. 4, 2020, the contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates generally to semiconductor memory and methods, and more particularly, to apparatuses and methods for write address tracking.
  • BACKGROUND
  • Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other computing systems. There are many different types of memory including volatile and non-volatile memory. Volatile memory can require power to maintain its data (e.g., host data, error data, etc.) and includes random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), synchronous dynamic random access memory (SDRAM), and thyristor random access memory (TRAM), among others. Non-volatile memory can provide persistent data by retaining stored data when not powered and can include NAND flash memory, NOR flash memory, and resistance variable memory such as phase change random access memory (PCRAM), resistive random access memory (RRAM), and magnetoresistive random access memory (MRAM), such as spin torque transfer random access memory (STT RAM), among others.
  • Computing systems often include a number of processing resources (e.g., one or more processors), which may retrieve and execute instructions and store the results of the executed instructions to a suitable location. A processing resource (e.g., CPU) can comprise a number of functional units such as arithmetic logic unit (ALU) circuitry, floating point unit (FPU) circuitry, and/or a combinatorial logic block, for example, which can be used to execute instructions by performing logical operations such as AND, OR, NOT, NAND, NOR, and XOR, and invert (e.g., inversion) logical operations on data (e.g., one or more operands). For example, functional unit circuitry may be used to perform arithmetic operations such as addition, subtraction, multiplication, and/or division on operands via a number of logical operations.
  • A number of components in a computing system may be involved in providing instructions to the functional unit circuitry for execution. The instructions may be executed, for instance, by a processing resource such as a controller and/or host processor. Data (e.g., the operands on which the instructions will be executed) may be stored in a memory array that is accessible by the functional unit circuitry. The instructions and/or data may be retrieved from the memory array and sequenced and/or buffered before the functional unit circuitry begins to execute instructions on the data. Furthermore, as different types of operations may be executed in one or multiple clock cycles through the functional unit circuitry, intermediate results of the instructions and/or data may also be sequenced and/or buffered. Data stored in the memory array and/or intermediate results of the instructions may be stored in a memory cache. The memory cache can be used to transfer and/or operate on the stored data. When data located in the cache is operated on, changed, and/or updated, the data may conflict with corresponding data stored in the memory array. In order to update the memory array, an entire cache of data may be written to the memory array in order to correlate the data in the cache to the data in the memory array.
  • In many instances, the processing resources (e.g., processor and/or associated functional unit circuitry) may be external to the memory array, and data is accessed via a bus between the processing resources and the memory array to execute a set of instructions. Processing performance may be improved in a processor-in-memory (PIM) device, in which a processor may be implemented internal and/or near to a memory (e.g., directly on a same chip as the memory array). A PIM device may save time by reducing and/or eliminating external communications and may also conserve power.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an apparatus in the form of a computing system including one example of a processing in memory (PIM) capable device coupled to a host in accordance with the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a system for tracking write addresses in accordance with the present disclosure.
  • FIG. 3 is a block diagram illustrating a portion of one example of a PIM capable device in greater detail in accordance with the present disclosure.
  • FIG. 4 is a schematic diagram illustrating sensing circuitry of a memory device in accordance with a number of embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating circuitry for data transfer in a memory device in accordance with a number of embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • An example apparatus includes an array of memory cells and a cache coupled to the array. The example apparatus can include tracking circuitry coupled to the cache. The tracking circuitry can be configured to track write addresses of data written to the cache.
  • According to various embodiments of the present disclosure, tracking circuitry is configured to track write addresses. For example, data can be written from a memory array to a cache. At least a portion of the data written to the cache can be updated and the data in the cache can be written to the memory array to maintain consistency between the memory array and the cache. Further, a write address associated with the data can be tracked when the write address corresponds to data in a cache that has been updated. For example, when data in a cache associated with a first write address is updated to include a change in that data in the cache, the first write address is tracked as being updated (e.g., a latch corresponding to the first write address may set an indicator bit). In addition, when data in a cache associated with a second write address is not updated, the second write address is indicated as not being updated (e.g., a latch corresponding to the second write address may not have one or more indicator bits set). In previous approaches, in response to a command to transfer data from a cache to a memory array the entire cache may be written to the memory array to maintain consistency of data between them. However, this can involve significant power and/or transfer time to write data (including non-updated data) from the cache to the memory array. Thus, in some embodiments where data in the memory array is written into the cache but not updated, duplicative power and/or additional transfer time may be involved as data that is already consistent will be transferred (e.g., the non-updated data will be written even though the non-updated data has not changed).
  • In accordance with embodiments of the present disclosure, data may be written to a cache. The data written to the cache can be updated and written back to the memory array. In response to a command to write the data in the cache to the memory array, the data that has been updated and is associated with the first write address can be written to the memory array and data that has not been updated and is associated with the second write address will not be written to the memory array. In this way, power and/or transfer time will be saved by transferring updated data from the cache to the memory array without transferring data that has not been updated.
  • In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure. As used herein, “a number of” a particular thing can refer to one or more of such things (e.g., a number of memory arrays can refer to one or more memory arrays). A “plurality of” is intended to refer to more than one of such things.
  • The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 130 may reference element “30” in FIG. 1, and a similar element may be referenced as 230 in FIG. 2. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, as will be appreciated, the proportion and the relative scale of the elements provided in the figures are intended to illustrate certain embodiments of the present invention, and should not be taken in a limiting sense.
  • FIG. 1 is a block diagram of an apparatus in the form of a computing system 100 including one example of a processing in memory (PIM) capable device 101 coupled to a host 110. The PIM capable device 101 (also referred to as “memory device 101”) may include a controller 140. FIG. 1 is provided as an example of a system including a current PIM capable device 101 architecture.
  • As shown in the example of FIG. 1, the memory device 101 may include a memory array 130, a command interface 136, sensing circuitry 150, and additional logic circuitry 170. The system 100 can include separate integrated circuits or both the logic and memory can be on the same integrated device as with a system on a chip (SoC). The system 100 can be, for instance, a server system and/or a high performance computing (HPC) system and/or a portion thereof.
  • For clarity, the system 100 has been simplified to focus on features with relevance to the present disclosure. The memory array 130 can be a DRAM array, SRAM array, STT RAM array, PCRAM array, TRAM array, RRAM array, NAND flash array, and/or NOR flash array, for instance. The array 130 can comprise memory cells arranged in rows coupled by access lines (which may be referred to herein as word lines or select lines) and columns coupled by sense lines, which may be referred to herein as data lines or digit lines. Although a single array 130 is shown in FIG. 1, embodiments are not so limited. For instance, memory device 101 may include a number of arrays 130 (e.g., a number of banks of DRAM cells, NAND flash cells, etc.).
  • The memory device 101 includes address circuitry 142 to latch address signals provided over a data bus 156 (e.g., an I/O bus) through I/O circuitry 144. Status and/or exception information can be provided from the controller 140 on the memory device 101 to a host 102 and/or logic resource through an out-of-band bus 157. Address signals are received through address circuitry 142 and decoded by a row decoder 146 and a column decoder 152 to access the memory array 130. Data can be read from memory array 130 by sensing voltage and/or current changes on the data lines using sensing circuitry 150. The sensing circuitry 150 can read and latch a page (e.g., row) of data from the memory array 130. The I/O circuitry 144 can be used for bi-directional data communication with host 110 over the data bus 156. The write circuitry 148 is used to write data to the memory array 130. Address, control and/or commands, e.g., processing in memory (PIM) commands, may be received to the controller 140 via bus 154.
  • Command interface 136 may include control registers, e.g., double data rate (DDR) control registers in a DRAM, to control the operation of the array 130, e.g., DRAM array, and/or controller 140. As such, the command interface 136 may be coupled to the I/O circuitry 144 and/or controller 140. In various embodiments the command interface 136 may be memory mapped I/O registers. The memory mapped I/O registers can be mapped to a plurality of locations in memory where microcode instructions are stored. However, embodiments are not so limited. For example, any number of memory arrays with a cache between the main array and a host interface can use the command interface 136.
  • In various embodiments, controller 140 may decode signals received via bus 154 from the host 110. These signals can include chip enable signals, write enable signals, and address latch signals that are used to control operations performed on the memory array 130, including data read, data write, and data erase operations. In one or more embodiments, portions of the controller 140 can be a reduced instruction set computer (RISC) type controller operating on 32 and/or 64 bit length instructions. In various embodiments, the controller 140 is responsible for executing instructions from the host 110 and/or logic components in association with the sensing circuitry 150 to perform logical Boolean operations such as AND, OR, XOR, etc. Further, the controller 140 can control shifting data (e.g., right or left) in an array, e.g., memory array 130. Additionally, portions of the controller 140 can include control logic, a sequencer, timing circuitry and/or some other type of controller, described further in connection with FIG. 2.
  • Examples of the sensing circuitry 150 and its operations are described further below in connection with FIG. 4. In various embodiments the sensing circuitry 150 can comprise a plurality of sense amplifiers and a plurality of compute components, which may serve as and be referred to herein as an accumulator, and can be used to perform logical operations (e.g., on data associated with complementary data lines).
  • In various embodiments, the sensing circuitry 150 can be used to perform logical operations using data stored in array 130 as inputs and store the results of the logical operations back to the array 130 without transferring data via a sense line address access (e.g., without firing a column decode signal). As such, various compute functions can be performed using, and within, sensing circuitry 150 rather than (or in association with) being performed by processing resources external to the sensing circuitry (e.g., by a processing resource associated with host 110 and/or other processing circuitry, such as ALU circuitry, located on memory device 101 (e.g., on controller 140 or elsewhere)).
  • In various previous approaches, data associated with an operand, for instance, would be read from memory via sensing circuitry and provided to external ALU circuitry via I/O lines (e.g., via local I/O lines and/or global I/O lines). The external ALU circuitry could include a number of registers and would perform compute functions using the operands, and the result would be transferred back to the array via the I/O lines. In contrast, in a number of embodiments of the present disclosure, sensing circuitry 150 is configured to perform logical operations on data stored in memory array 130 and store the result back to the memory array 130 without enabling an I/O line (e.g., a local I/O line) coupled to the sensing circuitry 150. The sensing circuitry 150 can be formed on pitch with the memory cells of the array 130. Additional peripheral sense amplifiers, extended row address (XRA) registers, cache and/or data buffering, e.g., additional logic circuitry 170, can be coupled to the sensing circuitry 150 and can be used to store, e.g., cache and/or buffer, results of operations described herein.
  • Thus, in various embodiments, circuitry external to array 130 and sensing circuitry 150 is not needed to perform compute functions as the sensing circuitry 150 can perform the appropriate logical operations to perform such compute functions without the use of an external processing resource. Therefore, the sensing circuitry 150 may be used to compliment and/or to replace, at least to some extent, such an external processing resource (or at least the bandwidth consumption of such an external processing resource).
  • However, in a number of embodiments, the sensing circuitry 150 may be used to perform logical operations (e.g., to execute instructions) in addition to logical operations performed by an external processing resource (e.g., on host 110). For instance, processing resources on host 110 and/or sensing circuitry 150 on memory device 101 may be limited to performing only certain logical operations and/or a certain number of logical operations.
  • Enabling an I/O line can include enabling (e.g., turning on) a transistor having a gate coupled to a decode signal (e.g., a column decode signal) and a source/drain coupled to the I/O line. However, embodiments are not limited to not enabling an I/O line. For instance, in a number of embodiments, the sensing circuitry (e.g., 150) can be used to perform logical operations without enabling column decode lines of the array; however, the local I/O line(s) may be enabled in order to transfer a result to a suitable location other than back to the array 130 (e.g., to an external register).
  • FIG. 2 is a schematic diagram illustrating a system for tracking write addresses in accordance with the present disclosure. The system illustrated in FIG. 2 can include a memory array 230 coupled to a cache 270. The memory array 230 can store data to be processed by the controller 240 and/or additional controllers (not illustrated). The data stored in the memory array 230 can be stored to the cache 270 in a number of memory cells and/or registers. The data stored to the cache 270 can be requested by additional components and/or memory locations (such as memory bank 321-7 in FIG. 3). For example, a memory location (e.g., memory bank 321-7) may request data stored in the memory array 230 that is also stored in the cache 270 for processing. The data can be transferred from the cache 270 to the memory location using a number of I/O lines (e.g., shared I/O line 555 in FIG. 5).
  • A controller 240 can be coupled to the cache 270. The controller 240 can send a number of indications to the cache 270. A first indication 274 can indicate to copy data in the cache 270 to the memory array 230. A second indication 276 can indicate column addresses 276 associated with data to the cache 270, indicating where the data is stored in the cache 270 and/or in the memory array 230.
  • A command interface 236 can be coupled to the cache 270. The command interface 236 can be a Double Data Rate (DDR) Synchronous Dynamic Random-Access Memory (SDRAM) command interface. The command interface 236 can send a write command 266 to the cache 270. The write command 266 can be transferred through latch circuitry 260 of the cache 270 and indicate to the latch circuitry that data 272 associated with the write command 266 will be updated. While the tracking circuitry including logic 264 and latch circuitry 260 is illustrated as being a portion of the cache 270, embodiments are not so limited. For example, the logic 264 and/or the latch circuitry 260 can be located outside the cache 270 and can be coupled to and/or in communication with the cache 270.
  • The latch circuitry 260 can include a latch 262 that corresponds to a particular write address. For example, the command interface 236 can send a write command 266 to write a particular portion of data 272 associated with a particular column address 268. In response to the write command 266 being sent to the latch circuitry 260, the latch 262 can store a particular data value. The latch 262 storing the particular data value can be a set flag that indicates that the portion of data 272 (corresponding to the column address 268) has been updated.
  • As described herein, in response to a controller sending an indication 274 to copy data in the cache 270 to the memory array 230, portions of the data of the cache 270 that include a set flag in the latch circuitry 260 are written to the memory array. For example, data (e.g., data 272) associated with a latch (e.g., latch 262) that stores a data value indicating the data has been updated and/or written to is written to the memory array 230. Additional portions of the data of the cache 270 that do not include a set flag (e.g., a latch corresponding to each column address of the additional portions includes a data value that indicates the additional portions have not been updated) are not written to the memory array 230. For example, a column address 276 associated with data to be written from the cache 270 to the memory array 230 can be compared, using logic circuitry 264, to a column address 268 associated with data indicated by the command interface 236 to be updated in the cache.
  • Put another way, the command interface can send write commands 266 to the cache to update a first set of data 272 associated with column addresses 268. In response to the controller 240 indicating, at 274, to write data from the cache 270 associated with indicated column addresses, at 276, to the memory array 230, the first set of data 272 is written to the memory array 230 and a second set of data (not illustrated) is not written to the memory array 230. For example, the controller indicates, at 274, to copy a first set of column addresses (indicated at 276). The first set of column addresses are received by logic circuitry 264 and compared to the column addresses 268 that have entered the latch circuitry 260. In response to a column address at 274 matching a column address 268 that includes a set flag in a corresponding latch 262, the data associated with set flag is written to the memory array. Each of the column addresses indicated at 276 are compared to a corresponding latch 262 and written to the memory array 230 when a corresponding latch 262 includes a set flag and not written to the memory array 230 when the corresponding latch 262 does not include a set flag. This can avoid having to transfer a full cache to the memory array 230 in response to at least a portion of the data in the cache being updated and/or altered.
  • In some embodiments, the controller 240 can indicate to copy column addresses 276 associated with all data stored in the cache 270. The latch circuitry 260 can track column addresses that correspond to updated data 272. The unwritten and/or non-updated column addresses can be masked such that in response to all column addresses of the cache 270 being selected to be written to the memory array 230, only the column addresses of data that have been updated are written to the memory array 230. Masking can include blocking column select activation lines of the unwritten data of the column addresses and/or disabling write data drivers associated with the unwritten data of the column addresses. For example, array write paths (from the cache 270 to the memory array 230) are enabled for addresses associated with data written (updated) to the cache 270. Array write paths (from the cache 270 to the memory array 230) are masked for addresses associated with data not written (non-updated) to the cache 270. The write address latch circuitry 260 can be cleared in response to a write from the cache 270 to the memory array 230. In this way, transferring of updated data is not duplicated and tracking of write addresses is restarted after each write to the memory array 230 from the cache 270.
  • In some embodiments, a number of I/O data lines can determine a configuration of the system. For example, a system with 64 I/O lines can use a minimum data size of 512 bits such that eight cycles can be correlated to a 4 k data transfer at a time. In this example, 32 enable bits would be used to store data in a 16 k wide data register. Further, 32 enable bits each corresponding to 512 bits equals 16 k wide data. In an example including a system with 32 I/O lines, a minimum data size of 256 bits can be used with 64 enable bits for a 16 k wide data register. In an example including a system with 16 I/O lines, a minimum data size of 128 bits can be used with 128 enable bits for a 16 k wide data register.
  • In a number of embodiments, a cache control mode can be used to control reads and writes. For example, a particular word line and a particular column address of the cache 270 can be activated such that an entire cache 270 of data is not transferred.
  • FIG. 3 is another block diagram in greater detail of a portion of one example of a PIM capable device 320 such as memory device 101 in FIG. 1. In the example of FIG. 3, a controller 340-1, . . . , 340-7 (referred to generally as controller 340) may be associated with each bank 321-1, . . . , 321-7 (referred to generally as 321) to the PIM capable device 320. Eight banks are shown in the example of FIG. 3. However, embodiments are not limited to this example number. Controller 340 may represent controller 140 shown in FIG. 1. Each bank may include one or more arrays of memory cells (not shown). For example each bank may include one or more arrays such as array 130 in FIG. 1 and can include decoders, other circuitry and registers shown in FIG. 1. In the example PIM capable device 320 shown in FIG. 3, controllers 340-1, . . . , 340-7 are shown having control logic 331-1, . . . , 331-7, sequencers 332-1, . . . , 332-7, and timing circuitry 333-1, . . . , 333-7 as part of a controller 340 on one or more memory banks 321 of a memory device 320. The PIM capable device 320 may represent part of memory device 101 shown in FIG. 1.
  • As shown in the example of FIG. 3, the PIM capable device 320 may include a high speed interface (HSI) 341 to receive data, addresses, control signals, and/or commands at the PIM capable device 320. In various embodiments, the HSI 341 may be coupled to a bank arbiter 345 associated with the PIM capable device 320. The HSI 341 may be configured to receive commands and/or data from a host, e.g., 110 as in FIG. 1. As shown in the example of FIG. 3, the bank arbiter 345 may be coupled to the plurality of banks 321-1, . . . , 321-7.
  • In the example shown in FIG. 3, the control logic 331-1, . . . , 331-7 may be in the form of a microcoded engine responsible for fetching and executing machine instructions, e.g., microcode instructions, from an array of memory cells, e.g., an array as array 130 in FIG. 1, that is part of each bank 321-1, . . . , 321-7 (not detailed in FIG. 3). The sequencers 332-1, . . . , 332-7 may also be in the form of microcoded engines. Alternatively, the control logic 331-1, . . . , 331-7 may be in the form of a very large instruction word (VLIW) type processing resource and the sequencers 332-1, . . . , 332-7, and the timing circuitry 333-1, . . . , 333-7 may be in the form of state machines and transistor circuitry.
  • The control logic 331-1, . . . , 331-7 may decode microcode instructions into function calls, e.g., microcode function calls (uCODE), implemented by the sequencers 332-1, . . . , 332-7. The microcode function calls can be the operations that the sequencers 332-1, . . . , 332-7 receive and execute to cause the PIM device 320 to perform particular logical operations using the sensing circuitry such as sensing circuitry 150 in FIG. 1. The timing circuitry 333-1, . . . , 333-7 may provide timing to coordinate performance of the logical operations and be responsible for providing conflict free access to the arrays such as array 130 in FIG. 1.
  • As described in connection with FIG. 1, the controllers 340-1, . . . , 340-7 may be coupled to sensing circuitry 150 and/or additional logic circuitry 170, including cache, buffers, sense amplifiers, extended row address (XRA) latches, and/or registers 350/370-1, associated with arrays of memory cells via control lines and data paths shown in FIG. 3 as 355-1, 355-7. As such, sensing circuitry 150 and logic 170 shown in FIG. 1 can be associated to the arrays of memory cells 130 using data I/Os shown as 355-1, . . . , 355-7 in FIG. 3. The controllers 340-1, . . . , 340-7 may control regular DRAM operations for the arrays such as a read, write, copy, and/or erase operations, etc. Additionally, however, microcode instructions retrieved and executed by the control logic 331-1, . . . , 331-7 and the microcode function calls received and executed by the sequencers 332-1, . . . , 332-7 cause sensing circuitry 150 shown in FIG. 1 to perform additional logical operations such as addition, multiplication, or, as a more specific example, Boolean operations such as an AND, OR, XOR, etc., which are more complex than regular DRAM read and write operations. Hence, in this PIM capable device 320 example, microcode instruction execution and logic operations are performed on the banks 321-1, . . . , 321-7 to the PIM device 320.
  • As such, the control logic 331-1, . . . , 331-7, sequencers 332-1, . . . , 332-7, and timing circuitry 333-1, . . . , 333-7 may operate to generate sequences of operation cycles for a DRAM array. In the PIM capable device 320 example, each sequence may be designed to perform operations, such as a Boolean logic operations AND, OR, XOR, etc., which together achieve a specific function. For example, the sequences of operations may repetitively perform a logical operation for a one (1) bit add in order to calculate a multiple bit sum. Each sequence of operations may be fed into a first in/first out (FIFO) buffer coupled to the timing circuitry 333-1, . . . , 333-7 to provide timing coordination with the sensing circuitry 150 and/or additional logic circuitry 170 associated with the array of memory cells 130, e.g., DRAM arrays, shown in FIG. 1.
  • In the example PIM capable device 320 shown in FIG. 3, the timing circuitry 333-1, . . . , 333-7 provides timing and provides conflict free access to the arrays from four (4) FIFO queues. In this example, one FIFO queue may support array computation, one may be for Instruction fetch, one for microcode (e.g., Ucode) instruction fetch, and one for DRAM I/O. Both the control logic 331-1, . . . , 331-7 and the sequencers 332-1, . . . , 332-7 can generate status information, which is routed back to the bank arbiter 345 via a FIFO interface. The bank arbiter 345 may aggregate this status data and report it back to a host 110 via the HSI 341.
  • FIG. 4 is a schematic diagram illustrating sensing circuitry 450 in accordance with a number of embodiments of the present disclosure. The sensing circuitry 450 can correspond to sensing circuitry 150 shown in FIG. 1.
  • A memory cell can include a storage element (e.g., capacitor) and an access device (e.g., transistor). For instance, a first memory cell can include transistor 402-1 and capacitor 403-1, and a second memory cell can include transistor 402-2 and capacitor 403-2, etc. In this embodiment, the memory array 430 is a DRAM array of 1T1C (one transistor one capacitor) memory cells, although other embodiments of configurations can be used (e.g., 2T2C with two transistors and two capacitors per memory cell). In a number of embodiments, the memory cells may be destructive read memory cells (e.g., reading the data stored in the cell destroys the data such that the data originally stored in the cell is refreshed after being read).
  • The cells of the memory array 430 can be arranged in rows coupled by access (word) lines 404-X (Row X), 404-Y (Row Y), etc., and columns coupled by pairs of complementary sense lines (e.g., digit lines DIGIT(D) and DIGIT(D)_ shown in FIG. 4 and DIGIT_0 and DIGIT_0* shown in FIG. 5). The individual sense lines corresponding to each pair of complementary sense lines can also be referred to as digit lines 405-1 for DIGIT (D) and 405-2 for DIGIT (D)_, respectively, or corresponding reference numbers in FIG. 5. Although only one pair of complementary digit lines are shown in FIG. 4, embodiments of the present disclosure are not so limited, and an array of memory cells can include additional columns of memory cells and digit lines (e.g., 4,096, 8,192, 16,384, etc.).
  • Although rows and columns are illustrated as orthogonally oriented in a plane, embodiments are not so limited. For example, the rows and columns may be oriented relative to each other in any feasible three-dimensional configuration. For example, the rows and columns may be oriented at any angle relative to each other, may be oriented in a substantially horizontal plane or a substantially vertical plane, and/or may be oriented in a folded topology, among other possible three-dimensional configurations.
  • Memory cells can be coupled to different digit lines and word lines. For example, a first source/drain region of a transistor 402-1 can be coupled to digit line 405-1 (D), a second source/drain region of transistor 402-1 can be coupled to capacitor 403-1, and a gate of a transistor 402-1 can be coupled to word line 404-Y. A first source/drain region of a transistor 402-2 can be coupled to digit line 405-2 (D)_, a second source/drain region of transistor 402-2 can be coupled to capacitor 403-2, and a gate of a transistor 402-2 can be coupled to word line 404-X. A cell plate, as shown in FIG. 4, can be coupled to each of capacitors 403-1 and 403-2. The cell plate can be a common node to which a reference voltage (e.g., ground) can be applied in various memory array configurations.
  • The memory array 430 is configured to couple to sensing circuitry 450 in accordance with a number of embodiments of the present disclosure. In this embodiment, the sensing circuitry 450 comprises a sense amplifier 406 and a compute component 431 corresponding to respective columns of memory cells (e.g., coupled to respective pairs of complementary digit lines). The sense amplifier 406 can be coupled to the pair of complementary digit lines 405-1 and 405-2. The compute component 431 can be coupled to the sense amplifier 406 via pass gates 407-1 and 407-2. The gates of the pass gates 407-1 and 407-2 can be coupled to operation selection logic 413.
  • The operation selection logic 413 can be configured to include pass gate logic for controlling pass gates that couple the pair of complementary digit lines un-transposed between the sense amplifier 406 and the compute component 431 and swap gate logic for controlling swap gates that couple the pair of complementary digit lines transposed between the sense amplifier 406 and the compute component 431. The operation selection logic 413 can also be coupled to the pair of complementary digit lines 405-1 and 405-2. The operation selection logic 413 can be configured to control continuity of pass gates 407-1 and 407-2 based on a selected operation.
  • The sense amplifier 406 can be operated to determine a data value (e.g., logic state) stored in a selected memory cell. The sense amplifier 406 can comprise a cross coupled latch, which can be referred to herein as a primary latch. In the example illustrated in FIG. 4, the circuitry corresponding to sense amplifier 406 comprises a latch 415 including four transistors coupled to a pair of complementary digit lines D 405-1 and (D)_ 405-2. However, embodiments are not limited to this example. The latch 415 can be a cross coupled latch (e.g., gates of a pair of transistors) such as n-channel transistors (e.g., NMOS transistors) 427-1 and 427-2 are cross coupled with the gates of another pair of transistors, such as p-channel transistors (e.g., PMOS transistors) 429-1 and 429-2).
  • In operation, when a memory cell is being sensed (e.g., read), the voltage on one of the digit lines 405-1 (D) or 405-2 (D)_ will be slightly greater than the voltage on the other one of digit lines 405-1 (D) or 405-2 (D)_. An ACT signal and an RNL* signal can be driven low to enable (e.g., fire) the sense amplifier 406. The digit lines 405-1 (D) or 405-2 (D)_ having the lower voltage will turn on one of the PMOS transistor 429-1 or 429-2 to a greater extent than the other of PMOS transistor 429-1 or 429-2, thereby driving high the digit line 405-1 (D) or 405-2 (D)_ having the higher voltage to a greater extent than the other digit line 405-1 (D) or 405-2 (D)_ is driven high.
  • Similarly, the digit line 405-1 (D) or 405-2 (D)_ having the higher voltage will turn on one of the NMOS transistor 427-1 or 427-2 to a greater extent than the other of the NMOS transistor 427-1 or 427-2, thereby driving low the digit line 405-1 (D) or 405-2 (D)_ having the lower voltage to a greater extent than the other digit line 405-1 (D) or 405-2 (D)_ is driven low. As a result, after a short delay, the digit line 405-1 (D) or 405-2 (D)_ having the slightly greater voltage is driven to the voltage of the supply voltage VCC through a source transistor, and the other digit line 405-1 (D) or 405-2 (D)_ is driven to the voltage of the reference voltage (e.g., ground) through a sink transistor. Therefore, the cross coupled NMOS transistors 427-1 and 427-2 and PMOS transistors 429-1 and 429-2 serve as a sense amplifier pair, which amplify the differential voltage on the digit lines 405-1 (D) and 405-2 (D)_ and operate to latch a data value sensed from the selected memory cell.
  • Embodiments are not limited to the sense amplifier 406 configuration illustrated in FIG. 4. As an example, the sense amplifier 406 can be a current-mode sense amplifier and a single-ended sense amplifier (e.g., sense amplifier coupled to one digit line). Also, embodiments of the present disclosure are not limited to a folded digit line architecture such as that shown in FIG. 4.
  • The sense amplifier 406 can, in conjunction with the compute component 431, be operated to perform various operations using data from an array as input. In a number of embodiments, the result of an operation can be stored back to the array without transferring the data via a digit line address access and/or moved between banks without using an external data bus (e.g., without firing a column decode signal such that data is transferred to circuitry external from the array and sensing circuitry via local I/O lines). As such, a number of embodiments of the present disclosure can enable performing operations and compute functions associated therewith using less power than various previous approaches. Additionally, since a number of embodiments eliminate the need to transfer data across local and global I/O lines and/or external data buses in order to perform compute functions (e.g., between memory and discrete processor), a number of embodiments can enable an increased (e.g., faster) processing capability as compared to previous approaches.
  • The sense amplifier 406 can further include equilibration circuitry 414, which can be configured to equilibrate the digit lines 405-1 (D) and 405-2 (D)_. In this example, the equilibration circuitry 414 comprises a transistor 424 coupled between digit lines 405-1 (D) and 405-2 (D)_. The equilibration circuitry 414 also comprises transistors 425-1 and 425-2 each having a first source/drain region coupled to an equilibration voltage (e.g., VDD/2), where VDD is a supply voltage associated with the array. A second source/drain region of transistor 425-1 can be coupled digit line 405-1 (D), and a second source/drain region of transistor 425-2 can be coupled digit line 405-2 (D)_. Gates of transistors 424, 425-1, and 425-2 can be coupled together, and to an equilibration (EQ) control signal line 426. As such, activating EQ enables the transistors 424, 425-1, and 425-2, which effectively shorts digit lines 405-1 (D) and 405-2 (D)_ together and to the equilibration voltage (e.g., VDD/2).
  • Although FIG. 4 shows sense amplifier 406 comprising the equilibration circuitry 414, embodiments are not so limited, and the equilibration circuitry 414 may be implemented discretely from the sense amplifier 406, implemented in a different configuration than that shown in FIG. 4, or not implemented at all.
  • As described further below, in a number of embodiments, the sensing circuitry 450 (e.g., sense amplifier 406 and compute component 431) can be operated to perform a selected operation and initially store the result in one of the sense amplifier 406 or the compute component 431 without transferring data from the sensing circuitry via a local or global I/O line and/or moved between banks without using an external data bus (e.g., without performing a sense line address access via activation of a column decode signal, for instance).
  • Performance of operations (e.g., Boolean logical operations involving data values) is fundamental and commonly used. Boolean logical operations are used in many higher level operations. Consequently, speed and/or power efficiencies that can be realized with improved operations, can translate into speed and/or power efficiencies of higher order functionalities.
  • As shown in FIG. 4, the compute component 431 can also comprise a latch, which can be referred to herein as a secondary latch 464. The secondary latch 464 can be configured and operated in a manner similar to that described above with respect to the primary latch 415, with the exception that the pair of cross coupled p-channel transistors (e.g., PMOS transistors) included in the secondary latch can have their respective sources coupled to a supply voltage (e.g., VDD), and the pair of cross coupled n-channel transistors (e.g., NMOS transistors) of the secondary latch can have their respective sources selectively coupled to a reference voltage (e.g., ground), such that the secondary latch is continuously enabled. The configuration of the compute component 431 is not limited to that shown in FIG. 4, and various other embodiments are feasible.
  • As described herein, a memory device (e.g., 101 in FIG. 1) can be configured to couple to a host (e.g., 110) via a data bus (e.g., 156) and a control bus (e.g., 154). A bank (e.g., bank 321-1 in FIG. 3) in the memory device can include a plurality of subarrays of memory cells. The bank can include sensing circuitry (e.g., 150 in FIG. 1 and corresponding reference numbers 450 in FIGS. 4 and 550 in FIG. 5) coupled to the plurality of subarrays via a plurality of columns (e.g., 522 in FIG. 5) of the memory cells. The sensing circuitry can include a sense amplifier and a compute component (e.g., 406 and 431, respectively, in FIG. 4) coupled to each of the columns.
  • The bank can include a plurality of sensing stripes (e.g., 350/370 in FIG. 3) each with sensing circuitry coupled to a respective subarray of the plurality of the subarrays. A controller (e.g., 140 in FIG. 1) coupled to the bank can be configured to direct, as described herein, movement of data values stored in a first subarray (e.g., from data values in a row of the subarray sensed (cached) by the coupled sensing stripe) to be stored in latches of a latch stripe and/or a latch component. Moving (e.g., copying, transferring, and/or transporting) data values between sense amplifiers and/or compute components (e.g., 406 and 431, respectively, in FIG. 4) in a sensing stripe and corresponding sense amplifiers and/or compute components that form latches in a latch stripe can be enabled by a number of selectably coupled shared I/O lines (e.g., 355 in FIG. 3) shared by the sensing component stripe and the latch stripe, as described herein.
  • The memory device can include a sensing stripe configured to include a number of a plurality of sense amplifiers and compute components (e.g., 506-0, 506-1, . . . , 506-7 and 531-0, 531-1, . . . , 331-7, respectively, as shown in FIG. 5) that can correspond to a number of the plurality of columns (e.g., 522 in FIGS. 5 and 405-1 and 405-2 in FIG. 4) of the memory cells, where the number of sense amplifiers and/or compute components can be selectably coupled to the plurality of shared I/O lines (e.g., via column select circuitry 558-1 and 558-2). The column select circuitry can be configured to selectably sense data in a particular column of memory cells of a subarray by being selectably coupled to a plurality of (e.g., four, eight, and sixteen, among other possibilities) sense amplifiers and/or compute components.
  • In some embodiments, a number of a plurality of sensing stripes (e.g., 350/370 in FIG. 3) in the bank can correspond to a number of the plurality of subarrays in the bank. A sensing stripe can include a number of sense amplifiers and/or compute components configured to move (e.g., copy, transfer, and/or transport) an amount of data sensed from a row of the first subarray in parallel to a plurality of shared I/O lines. In some embodiments, the amount of data can correspond to at least a thousand bit width of the plurality of shared I/O lines.
  • As described herein, the array of memory cells can include an implementation of DRAM memory cells where the controller is configured, in response to a command, to move (e.g., copy, transfer, and/or transport) data from the source location to the destination location via a shared I/O line. In various embodiments, the source location can be in a first bank and the destination location can be in a second bank in the memory device and/or the source location can be in a first subarray of one bank in the memory device and the destination location can be in a second subarray of a different bank. According to embodiments, the data can be moved as described in connection with FIG. 1. The first subarray and the second subarray can be in the same section of the bank or the subarrays can be in different sections of the bank.
  • As described herein, the apparatus can be configured to move (e.g., copy, transfer, and/or transport) data from a source location, including a particular row (e.g., 519 in FIG. 5) and column address associated with a first number of sense amplifiers and compute components) to a shared I/O line. In addition, the apparatus can be configured to move the data to a destination location, including a particular row and column address associated with a second number of sense amplifiers and compute components. As the reader will appreciate, each shared I/O line (e.g., 555) can actually include a complementary pair of shared I/O lines (e.g., shared I/O line and shared I/O line* as shown in the example configuration of FIG. 4). In some embodiments described herein, 2048 shared I/O lines (e.g., complementary pairs of shared I/O lines) can be configured as a 2048 bit wide shared I/O line.
  • FIG. 5 is a schematic diagram illustrating circuitry for data transfer in a memory device in accordance with a number of embodiments of the present disclosure. FIG. 5 shows eight sense amplifiers (e.g., sense amplifiers 0, 1, . . . , 7 shown at 506-0, 506-1, . . . , 506-7, respectively) each coupled to a respective pair of complementary sense lines (e.g., digit lines 505-1 and 505-2). FIG. 5 also shows eight compute components (e.g., compute components 0, 1, . . . , 7 shown at 531-0, 531-1, . . . , 531-7) each coupled to a respective sense amplifier (e.g., as shown for sense amplifier 0 at 506-0) via respective pass gates 507-1 and 507-2 and digit lines 505-1 and 505-2. For example, the pass gates can be connected as shown in FIG. 4 and can be controlled by an operation selection signal, Pass. For example, an output of the selection logic can be coupled to the gates of the pass gates 507-1 and 507-2 and digit lines 505-1 and 505-2. Corresponding pairs of the sense amplifiers and compute components can contribute to formation of the sensing circuitry indicated at 550-0, 550-1, . . . , 550-7.
  • Data values present on the pair of complementary digit lines 505-1 and 505-2 can be loaded into the compute component 531-0 as described in connection with FIG. 4. For example, when the pass gates 507-1 and 507-2 are enabled, data values on the pair of complementary digit lines 505-1 and 505-2 can be passed from the sense amplifiers to the compute component (e.g., 506-0 to 531-0). The data values on the pair of complementary digit lines 505-1 and 505-2 can be the data value stored in the sense amplifier 506-0 when the sense amplifier is fired.
  • The sense amplifiers 506-0, 506-1, . . . , 506-7 in FIG. 5 can each correspond to sense amplifier 406 shown in FIG. 4. The compute components 531-0, 531-1, . . . , 531-7 shown in FIG. 5 can each correspond to compute component 431 shown in FIG. 4. A combination of one sense amplifier with one compute component can contribute to the sensing circuitry (e.g., 550-0, 550-1, . . . , 550-7) of a portion of a DRAM memory subarray 525 configured to an I/O line 555 shared by a number of sensing component stripes for subarrays and/or latch components, as described herein. The paired combinations of the sense amplifiers 506-0, 506-1, . . . , 506-7 and the compute components 531-0, 531-1, . . . , 531-7, shown in FIG. 5, can be included in the sensing stripes, as shown at 350/370-1 in FIG. 3.
  • The configurations of embodiments illustrated in FIG. 5 are shown for purposes of clarity and are not limited to these configurations. For instance, the configuration illustrated in FIG. 5 for the sense amplifiers 506-0, 506-1, . . . , 506-7 in combination with the compute components 531-0, 531-1, . . . , 531-7 and the shared I/O line 555 is not limited to half the combination of the sense amplifiers 506-0, 506-1, . . . , 506-7 with the compute components 531-0, 531-1, . . . , 531-7 of the sensing circuitry being formed above the columns 522 of memory cells (not shown) and half being formed below the columns 522 of memory cells. Nor are the number of such combinations of the sense amplifiers with the compute components forming the sensing circuitry configured to couple to a shared I/O line limited to eight. In addition, the configuration of the shared I/O line 555 is not limited to being split into two for separately coupling each of the two sets of complementary digit lines 505-1 and 505-2, nor is the positioning of the shared I/O line 555 limited to being in the middle of the combination of the sense amplifiers and the compute components forming the sensing circuitry (e.g., rather than being at either end of the combination of the sense amplifiers and the compute components).
  • The circuitry illustrated in FIG. 5 also shows column select circuitry 558-1 and 558-2 that is configured to implement data movement operations with respect to particular columns 522 of a subarray 525, the complementary digit lines 505-1 and 505-2 associated therewith, and the shared I/O line 555 (e.g., as directed by the controller 140 shown in FIG. 1). For example, column select circuitry 558-1 has select lines 0, 2, 4, and 6 that are configured to couple with corresponding columns, such as column 0 (532-0), column 2, column 4, and column 6. Column select circuitry 558-2 has select lines 1, 3, 5, and 7 that are configured to couple with corresponding columns, such as column 1, column 3, column 5, and column 7.
  • Controller 140 can be coupled to column select circuitry 558 to control select lines (e.g., select line 0) to access data values stored in the sense amplifiers, compute components, and/or present on the pair of complementary digit lines (e.g., 505-1 and 505-2 when selection transistors 559-1 and 559-2 are activated via signals from select line 0). Activating the selection transistors 559-1 and 559-2 (e.g., as directed by the controller 140) enables coupling of sense amplifier 506-0, compute component 531-0, and/or complementary digit lines 505-1 and 505-2 of column 0 (522-0) to move data values on digit line 0 and digit line 0* to shared I/O line 555. For example, the moved data values may be data values from a particular row 519 stored (cached) in sense amplifier 506-0 and/or compute component 531-0. Data values from each of columns 0 through 7 can similarly be selected by controller 140 activating the appropriate selection transistors.
  • Moreover, enabling (e.g., activating) the selection transistors (e.g., selection transistors 559-1 and 559-2) can enable a particular sense amplifier and/or compute component (e.g., 506-0 and/or 531-0, respectively) to be coupled with a shared I/O line 555 such that data values stored by an amplifier and/or compute component can be moved to (e.g., placed on and/or transferred to) the shared I/O line 555. In some embodiments, one column at a time is selected (e.g., column 522-0) to be coupled to a particular shared I/O line 555 to move (e.g., copy, transfer, and/or transport) the stored data values. In the example configuration of FIG. 5, the shared I/O line 355 is illustrated as a shared, differential I/O line pair (e.g., shared I/O line and shared I/O line*). Hence, selection of column 0 (522-0) could yield two data values (e.g., two bits with values of 0 and/or 1) from a row (e.g., row 519) and/or as stored in the sense amplifier and/or compute component associated with complementary digit lines 505-1 and 505-2. These data values could be input in parallel to each shared, differential I/O pair (e.g., shared I/O and shared I/O*) of the shared differential I/O line 555.
  • While example embodiments including various combinations and configurations of sensing circuitry, sense amplifiers, compute component, dynamic latches, isolation devices, and/or shift circuitry have been illustrated and described herein, embodiments of the present disclosure are not limited to those combinations explicitly recited herein. Other combinations and configurations of the sensing circuitry, sense amplifiers, compute component, dynamic latches, isolation devices, and/or shift circuitry disclosed herein are expressly included within the scope of this disclosure.
  • Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of one or more embodiments of the present disclosure. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the one or more embodiments of the present disclosure includes other applications in which the above structures and methods are used. Therefore, the scope of one or more embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
  • In the foregoing Detailed Description, some features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (21)

1-20. (canceled)
21. An apparatus, comprising:
an array of memory cells;
a cache coupled to the array;
sensing circuitry comprising a plurality of sense amplifiers each coupled to the array; and
a shared input/output (I/O) line shared by each of the plurality of sense amplifiers;
a command interface coupled to the cache and configured to provide commands to the cache along with corresponding column addresses and updated data received through the shared I/O line and to be written to the cache; and
tracking circuitry coupled to the cache, wherein the tracking circuitry is configured to track write addresses of data written to the cache from the shared I/O line.
22. The apparatus of claim 21, further comprising a controller coupled to the cache and configured to:
send a command for copying cache data from the cache to the array, the command having an associated column address.
23. The apparatus of claim 22, wherein the controller is further configured to transfer data from the shared I/O line to the sensing circuitry and selectably transfer data from the plurality of sense amplifiers to a portion of the array corresponding to a number of columns of memory cells;
24. The apparatus of claim 21, wherein the tracking circuitry comprises latch circuitry and the column addresses are latched in the latch circuitry.
25. The apparatus of claim 24, wherein the tracking circuitry is further configured to track each of the column addresses associated with the updated data received to the cache via the command interface.
26. The apparatus of claim 21, wherein the tracking circuitry is configured to set a flag associated with a first column address in response to updated data associated with the first column address being written to the cache.
27. The apparatus of claim 26, wherein the tracking circuitry further comprises a latch to store a data value that indicates the flag is set.
28. The apparatus of claim 26, wherein the tracking circuitry is configured to not set a flag associated with a second column address in response to data associated with the second column address not being written to the cache.
29. The apparatus of claim 21, wherein the tracking circuitry is configured to latch a data value that corresponds to a column address associated with at least one of the write commands.
30. A method, comprising:
writing data stored in an array of memory cells to a cache;
updating a portion of the data stored in the cache, wherein the updated data is transferred via a shared input/output (I/O) line coupled to each of a plurality of sense amplifiers coupled to the array and via a compute component coupled to at least one of the plurality of sense amplifiers;
tracking column addresses associated with the updated portion of the data; and
in response to receiving a write command, from a controller, to copy at least the updated portion of data from the cache to the array, comparing the column addresses associated with the write command with the tracked column addresses.
31. The method of claim 30, further comprising, in response to the column addresses matching the tracked column addresses, writing the updated portion of the data associated with each of the matched column addresses to the array.
32. The method of claim 31, further comprising not writing portions of the data associated with column addresses that do not match.
33. The method of claim 30, further comprising, in response to a command being sent via a command interface to update a portion of the data associated with column addresses and stored in the cache with data received across the shared I/O line, modifying the portion of the data associated with the command.
34. An apparatus, comprising:
an array of memory cells;
sensing circuitry comprising a plurality of sense amplifiers each coupled to the array; and
a shared input/output (I/O) line shared by each of the plurality of sense amplifiers;
a controller coupled to a cache and configured to transfer data from the shared I/O line to the sensing circuitry and selectably transfer data from the plurality of sense amplifiers to a portion of the array corresponding to a number of columns of memory cells;
a command interface coupled to the cache and configured to provide commands to the cache along with corresponding column addresses and updated data received through the shared I/O line and to be written to the cache; and
tracking circuitry configured to compare the column address of one of the commands for copying cache data from the cache to the array to tracked addresses associated with the updated data received to the cache via the command interface.
35. The apparatus of claim 34, wherein the controller is a DDR4 SDRAM controller.
36. The apparatus of claim 34, wherein the controller is further configured to, in response to the tracking circuitry matching the column address and one of the tracked addresses, write data associated with the each of the matched column addresses from the cache to the array.
37. The apparatus of claim 36, wherein the controller is further configured to not write data associated with a column address that does not match a tracked address of the tracked addresses.
38. The apparatus of claim 34, wherein the command interface is a DRAM command interface.
39. The apparatus of claim 34, wherein the controller is further configured to cause latching of a value in a latch in response to receiving a write command associated with a column address.
40. The apparatus of claim 39, wherein the controller is further configured to cause:
writing data associated with the latched value to the array; and
clearing of the latched value in response to the writing of the data associated with the tracked column addresses to the array.
US16/983,779 2016-07-20 2020-08-03 Apparatuses and methods for write address tracking Pending US20200364138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/983,779 US20200364138A1 (en) 2016-07-20 2020-08-03 Apparatuses and methods for write address tracking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/215,296 US10733089B2 (en) 2016-07-20 2016-07-20 Apparatuses and methods for write address tracking
US16/983,779 US20200364138A1 (en) 2016-07-20 2020-08-03 Apparatuses and methods for write address tracking

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/215,296 Continuation US10733089B2 (en) 2016-07-20 2016-07-20 Apparatuses and methods for write address tracking

Publications (1)

Publication Number Publication Date
US20200364138A1 true US20200364138A1 (en) 2020-11-19

Family

ID=60988557

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/215,296 Active 2037-01-18 US10733089B2 (en) 2016-07-20 2016-07-20 Apparatuses and methods for write address tracking
US16/983,779 Pending US20200364138A1 (en) 2016-07-20 2020-08-03 Apparatuses and methods for write address tracking

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/215,296 Active 2037-01-18 US10733089B2 (en) 2016-07-20 2016-07-20 Apparatuses and methods for write address tracking

Country Status (1)

Country Link
US (2) US10733089B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220100606A1 (en) * 2020-09-25 2022-03-31 Advanced Micro Devices, Inc. Error detection and correction in memory modules using programmable ecc engines
US20220197647A1 (en) * 2020-12-18 2022-06-23 Advanced Micro Devices, Inc. Near-memory determination of registers
US20230131117A1 (en) * 2021-10-27 2023-04-27 Sandisk Technologies Llc Data conversion with data path circuits for use in double sense amp architecture with fractional bit assignment in non-volatile memory structures

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10387046B2 (en) * 2016-06-22 2019-08-20 Micron Technology, Inc. Bank to bank data transfer
US10236038B2 (en) 2017-05-15 2019-03-19 Micron Technology, Inc. Bank to bank data transfer
US10614875B2 (en) 2018-01-30 2020-04-07 Micron Technology, Inc. Logical operations using memory cells
US11194477B2 (en) 2018-01-31 2021-12-07 Micron Technology, Inc. Determination of a match between data values stored by three or more arrays
US10437557B2 (en) 2018-01-31 2019-10-08 Micron Technology, Inc. Determination of a match between data values stored by several arrays
US10725696B2 (en) 2018-04-12 2020-07-28 Micron Technology, Inc. Command selection policy with read priority
US10440341B1 (en) 2018-06-07 2019-10-08 Micron Technology, Inc. Image processor formed in an array of memory cells
US11175915B2 (en) 2018-10-10 2021-11-16 Micron Technology, Inc. Vector registers implemented in memory
US10769071B2 (en) 2018-10-10 2020-09-08 Micron Technology, Inc. Coherent memory access
US10483978B1 (en) 2018-10-16 2019-11-19 Micron Technology, Inc. Memory device processing
US11184446B2 (en) 2018-12-05 2021-11-23 Micron Technology, Inc. Methods and apparatus for incentivizing participation in fog networks
US10867655B1 (en) 2019-07-08 2020-12-15 Micron Technology, Inc. Methods and apparatus for dynamically adjusting performance of partitioned memory
US11360768B2 (en) 2019-08-14 2022-06-14 Micron Technolgy, Inc. Bit string operations in memory
GB2586276B (en) * 2019-08-16 2022-03-30 Advanced Risc Mach Ltd Capability write address tracking
US11449577B2 (en) 2019-11-20 2022-09-20 Micron Technology, Inc. Methods and apparatus for performing video processing matrix operations within a memory array
US11853385B2 (en) 2019-12-05 2023-12-26 Micron Technology, Inc. Methods and apparatus for performing diversity matrix operations within a memory array
US11227641B1 (en) 2020-07-21 2022-01-18 Micron Technology, Inc. Arithmetic operations in memory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875452A (en) * 1995-12-21 1999-02-23 International Business Machines Corporation DRAM/SRAM with uniform access time using buffers, write back, address decode, read/write and refresh controllers
US20060072369A1 (en) * 2004-10-04 2006-04-06 Research In Motion Limited System and method for automatically saving memory contents of a data processing device on power failure
US20140250279A1 (en) * 2013-03-04 2014-09-04 Micron Technology, Inc. Apparatuses and methods for performing logical operations using sensing circuitry
US9529726B2 (en) * 2013-07-15 2016-12-27 Everspin Technologies, Inc. Memory device with page emulation mode

Family Cites Families (295)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380046A (en) 1979-05-21 1983-04-12 Nasa Massively parallel processor computer
JPS6032911B2 (en) 1979-07-26 1985-07-31 株式会社東芝 semiconductor storage device
US4435792A (en) 1982-06-30 1984-03-06 Sun Microsystems, Inc. Raster memory manipulation apparatus
US4727474A (en) 1983-02-18 1988-02-23 Loral Corporation Staging memory for massively parallel processor
EP0214718A3 (en) 1985-07-22 1990-04-04 Alliant Computer Systems Corporation Digital computer
US5201039A (en) 1987-09-30 1993-04-06 Mitsubishi Denki Kabushiki Kaisha Multiple address-space data processor with addressable register and context switching
US4843264A (en) 1987-11-25 1989-06-27 Visic, Inc. Dynamic sense amplifier for CMOS static RAM
US5276643A (en) 1988-08-11 1994-01-04 Siemens Aktiengesellschaft Integrated semiconductor circuit
JPH0713858B2 (en) 1988-08-30 1995-02-15 三菱電機株式会社 Semiconductor memory device
US5023838A (en) 1988-12-02 1991-06-11 Ncr Corporation Random access memory device with integral logic capability
US4958378A (en) 1989-04-26 1990-09-18 Sun Microsystems, Inc. Method and apparatus for detecting changes in raster data
US5253308A (en) 1989-06-21 1993-10-12 Amber Engineering, Inc. Massively parallel digital image data processor using pixel-mapped input/output and relative indexed addressing
EP0446721B1 (en) 1990-03-16 2000-12-20 Texas Instruments Incorporated Distributed processing memory
US5034636A (en) 1990-06-04 1991-07-23 Motorola, Inc. Sense amplifier with an integral logic function
US5210850A (en) 1990-06-15 1993-05-11 Compaq Computer Corporation Memory address space determination using programmable limit registers with single-ended comparators
JP3361825B2 (en) 1990-08-22 2003-01-07 テキサス インスツルメンツ インコーポレイテツド Memory array architecture
JPH06103599B2 (en) 1990-11-16 1994-12-14 三菱電機株式会社 Semiconductor integrated circuit device
US5325519A (en) 1991-10-18 1994-06-28 Texas Microsystems, Inc. Fault tolerant computer with archival rollback capabilities
FR2685973B1 (en) 1992-01-03 1994-02-25 France Telecom MEMORY POINT FOR ASSOCIATIVE MEMORY.
KR950005095Y1 (en) 1992-03-18 1995-06-22 문정환 A dram with bilateral global bit line
KR940004434A (en) 1992-08-25 1994-03-15 윌리엄 이. 힐러 Smart Dynamic Random Access Memory and Its Processing Method
KR950004854B1 (en) 1992-10-08 1995-05-15 삼성전자 주식회사 Semiconductor memory device
US5485373A (en) 1993-03-25 1996-01-16 Taligent, Inc. Language-sensitive text searching system with modified Boyer-Moore process
US5440482A (en) 1993-03-25 1995-08-08 Taligent, Inc. Forward and reverse Boyer-Moore string searching of multilingual text having a defined collation order
US5369622A (en) 1993-04-20 1994-11-29 Micron Semiconductor, Inc. Memory with isolated digit lines
US5754478A (en) 1993-04-20 1998-05-19 Micron Technology, Inc. Fast, low power, write scheme for memory circuits using pulsed off isolation device
JP2663838B2 (en) 1993-07-27 1997-10-15 日本電気株式会社 Semiconductor integrated circuit device
JP3252306B2 (en) 1993-08-10 2002-02-04 株式会社日立製作所 Semiconductor nonvolatile storage device
JP3904244B2 (en) 1993-09-17 2007-04-11 株式会社ルネサステクノロジ Single chip data processor
JP3251421B2 (en) 1994-04-11 2002-01-28 株式会社日立製作所 Semiconductor integrated circuit
US5655113A (en) 1994-07-05 1997-08-05 Monolithic System Technology, Inc. Resynchronization circuit for a memory system and method of operating same
JPH0831168A (en) 1994-07-13 1996-02-02 Hitachi Ltd Semiconductor storage device
US5481500A (en) 1994-07-22 1996-01-02 International Business Machines Corporation Precharged bit decoder and sense amplifier with integrated latch usable in pipelined memories
US5615404A (en) 1994-10-31 1997-03-25 Intel Corporation System having independently addressable bus interfaces coupled to serially connected multi-ported signal distributors generating and maintaining frame based polling schedule favoring isochronous peripherals
US5638128A (en) 1994-11-08 1997-06-10 General Instrument Corporation Of Delaware Pixel interpolation filters for video decompression processor
US5724366A (en) 1995-05-16 1998-03-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
KR0146530B1 (en) 1995-05-25 1998-09-15 김광호 Semiconductor memory device
US7301541B2 (en) 1995-08-16 2007-11-27 Microunity Systems Engineering, Inc. Programmable processor and method with wide operations
US6385634B1 (en) 1995-08-31 2002-05-07 Intel Corporation Method for performing multiply-add operations on packed data
JP2812262B2 (en) 1995-08-31 1998-10-22 日本電気株式会社 Associative memory
JP2817836B2 (en) 1995-11-30 1998-10-30 日本電気株式会社 Semiconductor memory device
JP3356612B2 (en) 1996-02-29 2002-12-16 インターナショナル・ビジネス・マシーンズ・コーポレーション High-speed contour smoothing method and apparatus
US6092186A (en) 1996-05-07 2000-07-18 Lucent Technologies Inc. Apparatus and method for aborting un-needed instruction fetches in a digital microprocessor device
US5915084A (en) 1996-09-30 1999-06-22 Advanced Micro Devices, Inc. Scannable sense amplifier circuit
US5991209A (en) 1997-04-11 1999-11-23 Raytheon Company Split sense amplifier and staging buffer for wide memory architecture
JP3592887B2 (en) 1997-04-30 2004-11-24 株式会社東芝 Nonvolatile semiconductor memory device
US6510098B1 (en) 1997-05-28 2003-01-21 Cirrus Logic, Inc. Method and apparatus for transferring data in a dual port memory
JPH1115773A (en) 1997-06-24 1999-01-22 Matsushita Electron Corp Semiconductor integrated circuit, computer system, data processor and data processing method
US5935263A (en) 1997-07-01 1999-08-10 Micron Technology, Inc. Method and apparatus for memory array compressed data testing
US6195734B1 (en) 1997-07-02 2001-02-27 Micron Technology, Inc. System for implementing a graphic address remapping table as a virtual register file in system memory
US6181698B1 (en) 1997-07-09 2001-01-30 Yoichi Hariguchi Network routing table using content addressable memory
US6025221A (en) 1997-08-22 2000-02-15 Micron Technology, Inc. Processing methods of forming integrated circuitry memory devices, methods of forming DRAM arrays, and related semiconductor masks
US5991785A (en) 1997-11-13 1999-11-23 Lucent Technologies Inc. Determining an extremum value and its index in an array using a dual-accumulation processor
US5867429A (en) 1997-11-19 1999-02-02 Sandisk Corporation High density non-volatile flash memory without adverse effects of electric field coupling between adjacent floating gates
US6163862A (en) 1997-12-01 2000-12-19 International Business Machines Corporation On-chip test circuit for evaluating an on-chip signal using an external test signal
JP3488612B2 (en) 1997-12-11 2004-01-19 株式会社東芝 Sense amplifier circuit
US5986942A (en) 1998-01-20 1999-11-16 Nec Corporation Semiconductor memory device
JPH11260057A (en) 1998-03-13 1999-09-24 Nec Corp Semiconductor memory device
JPH11265995A (en) 1998-03-17 1999-09-28 Mitsubishi Electric Corp Semiconductor storage device
JPH11306751A (en) 1998-04-22 1999-11-05 Toshiba Corp Semiconductor storage
US6005799A (en) 1998-08-06 1999-12-21 Silicon Aquarius Methods and circuits for single-memory dynamic cell multivalue data storage
US6141286A (en) 1998-08-21 2000-10-31 Micron Technology, Inc. Embedded DRAM architecture with local data drivers and programmable number of data read and data write lines
US7409694B2 (en) 1998-09-09 2008-08-05 Microsoft Corporation Highly componentized system architecture with loadable virtual memory manager
JP2000173269A (en) 1998-12-08 2000-06-23 Mitsubishi Electric Corp Semiconductor storage device
KR100381968B1 (en) 1998-12-30 2004-03-24 주식회사 하이닉스반도체 High speed action DRAM
US5999435A (en) 1999-01-15 1999-12-07 Fast-Chip, Inc. Content addressable memory device
US6389507B1 (en) 1999-01-15 2002-05-14 Gigabus, Inc. Memory device search system and method
US6134164A (en) 1999-04-22 2000-10-17 International Business Machines Corp. Sensing circuit for a memory cell array
US6741104B2 (en) 1999-05-26 2004-05-25 Micron Technology, Inc. DRAM sense amplifier for low voltages
US6157578A (en) 1999-07-15 2000-12-05 Stmicroelectronics, Inc. Method and apparatus for accessing a memory device
US6208544B1 (en) 1999-09-09 2001-03-27 Harris Corporation Content addressable memory cell providing simultaneous read and compare capability
US6578058B1 (en) 1999-10-06 2003-06-10 Agilent Technologies, Inc. System and method for comparing values from target systems
US7124221B1 (en) 1999-10-19 2006-10-17 Rambus Inc. Low latency multi-level communication interface
US6418498B1 (en) 1999-12-30 2002-07-09 Intel Corporation Integrated system management memory for system management interrupt handler independent of BIOS and operating system
JP4627103B2 (en) 2000-01-18 2011-02-09 富士通セミコンダクター株式会社 Semiconductor memory device and control method thereof
AU2000224587A1 (en) 2000-02-04 2001-08-14 Hitachi Ltd. Semiconductor device
AU2001239907A1 (en) 2000-02-29 2001-09-12 Stephen J. Guerreri Method and apparatus for building a memory image
US7028170B2 (en) 2000-03-08 2006-04-11 Sun Microsystems, Inc. Processing architecture having a compare capability
JP3983969B2 (en) 2000-03-08 2007-09-26 株式会社東芝 Nonvolatile semiconductor memory device
US6678678B2 (en) 2000-03-09 2004-01-13 Braodcom Corporation Method and apparatus for high speed table search
JP3822412B2 (en) 2000-03-28 2006-09-20 株式会社東芝 Semiconductor memory device
US6965648B1 (en) 2000-05-04 2005-11-15 Sun Microsystems, Inc. Source synchronous link integrity validation
KR100872213B1 (en) 2000-07-07 2008-12-05 모사이드 테크놀로지스, 인코포레이티드 A method for performing a read command in a memory device
US6466499B1 (en) 2000-07-11 2002-10-15 Micron Technology, Inc. DRAM sense amplifier having pre-charged transistor body nodes
US7302582B2 (en) 2000-08-21 2007-11-27 United States Postal Service Delivery point validation system
US6301164B1 (en) 2000-08-25 2001-10-09 Micron Technology, Inc. Antifuse method to repair columns in a prefetched output memory architecture
US6704828B1 (en) 2000-08-31 2004-03-09 Micron Technology, Inc. System and method for implementing data pre-fetch having reduced data lines and/or higher data rates
US6948056B1 (en) 2000-09-28 2005-09-20 Intel Corporation Maintaining even and odd array pointers to extreme values by searching and comparing multiple elements concurrently where a pointer is adjusted after processing to account for a number of pipeline stages
US6622227B2 (en) * 2000-12-27 2003-09-16 Intel Corporation Method and apparatus for utilizing write buffers in memory control/interface
US6304477B1 (en) 2001-01-31 2001-10-16 Motorola, Inc. Content addressable magnetic random access memory
US6563754B1 (en) 2001-02-08 2003-05-13 Integrated Device Technology, Inc. DRAM circuit with separate refresh memory
US6650158B2 (en) 2001-02-21 2003-11-18 Ramtron International Corporation Ferroelectric non-volatile logic elements
US6532180B2 (en) * 2001-06-20 2003-03-11 Micron Technology, Inc. Write data masking for higher speed DRAMs
US6807614B2 (en) 2001-07-19 2004-10-19 Shine C. Chung Method and apparatus for using smart memories in computing
US7546438B2 (en) 2001-07-19 2009-06-09 Chung Shine C Algorithm mapping, specialized instructions and architecture features for smart memory computing
ITRM20010531A1 (en) 2001-08-31 2003-02-28 Micron Technology Inc LOW POWER AND HIGH VOLTAGE DETECTOR DEVICE FOR DITIPO FLASH MEMORIES.
US7260672B2 (en) 2001-09-07 2007-08-21 Intel Corporation Using data stored in a destructive-read memory
US7062689B2 (en) 2001-12-20 2006-06-13 Arm Limited Method and apparatus for memory self testing
US20040073773A1 (en) 2002-02-06 2004-04-15 Victor Demjanenko Vector processor architecture and methods performed therein
US6707729B2 (en) 2002-02-15 2004-03-16 Micron Technology, Inc. Physically alternating sense amplifier activation
WO2003088033A1 (en) 2002-04-09 2003-10-23 University Of Rochester Multiplier-based processor-in-memory architectures for image and graphics processing
JP2003331598A (en) 2002-05-13 2003-11-21 Mitsubishi Electric Corp Semiconductor memory device
US7406494B2 (en) 2002-05-14 2008-07-29 Texas Instruments Incorporated Method of generating a cycle-efficient bit-reverse index array for a wireless communication system
JP2003346484A (en) 2002-05-23 2003-12-05 Mitsubishi Electric Corp Nonvolatile semiconductor storage device
US6789099B2 (en) 2002-06-10 2004-09-07 International Business Machines Corporation Sense-amp based adder with source follower evaluation tree
US7054178B1 (en) 2002-09-06 2006-05-30 Etron Technology, Inc. Datapath architecture for high area efficiency
US6987693B2 (en) 2002-09-24 2006-01-17 Sandisk Corporation Non-volatile memory and method with reduced neighboring field errors
US7079407B1 (en) 2002-10-18 2006-07-18 Netlogic Microsystems, Inc. Content addressable memory (CAM) device including match line sensing
US6765834B2 (en) 2002-11-19 2004-07-20 Hewlett-Packard Development Company, L.P. System and method for sensing memory cells of an array of memory cells
KR100546307B1 (en) 2002-12-05 2006-01-26 삼성전자주식회사 Semiconductor device comprising precharge circuit for precharging and/or equalizing global input and output line and layout of precharging and/or equalizing transistor
US6731542B1 (en) 2002-12-05 2004-05-04 Advanced Micro Devices, Inc. Circuit for accurate memory read operations
US6888372B1 (en) 2002-12-20 2005-05-03 Altera Corporation Programmable logic device with soft multiplier
AU2002353406A1 (en) 2002-12-27 2004-07-22 Solid State System Co., Ltd. Nonvolatile memory unit with specific cache
US7346903B2 (en) 2003-02-04 2008-03-18 Sun Microsystems, Inc. Compiling and linking modules of a cycle-based logic design
US6768679B1 (en) 2003-02-10 2004-07-27 Advanced Micro Devices, Inc. Selection circuit for accurate memory read operations
US6819612B1 (en) 2003-03-13 2004-11-16 Advanced Micro Devices, Inc. Apparatus and method for a sense amplifier circuit that samples and holds a reference voltage
US6865122B2 (en) 2003-04-11 2005-03-08 Intel Corporation Reclaiming blocks in a block-alterable memory
US7454451B2 (en) 2003-04-23 2008-11-18 Micron Technology, Inc. Method for finding local extrema of a set of values for a parallel processing element
US7447720B2 (en) 2003-04-23 2008-11-04 Micron Technology, Inc. Method for finding global extrema of a set of bytes distributed across an array of parallel processing elements
US7574466B2 (en) 2003-04-23 2009-08-11 Micron Technology, Inc. Method for finding global extrema of a set of shorts distributed across an array of parallel processing elements
US9015390B2 (en) 2003-04-25 2015-04-21 Micron Technology, Inc. Active memory data compression system and method
DE10319271A1 (en) 2003-04-29 2004-11-25 Infineon Technologies Ag Memory circuitry and manufacturing method
JP3898152B2 (en) 2003-05-27 2007-03-28 ローム株式会社 Storage device with operation function and operation storage method
DE602004007532T2 (en) 2003-09-04 2008-03-20 Nxp B.V. INTEGRATED CIRCUIT AND METHOD FOR CACHE MICROPOSITION
US6956770B2 (en) 2003-09-17 2005-10-18 Sandisk Corporation Non-volatile memory and method with bit line compensation dependent on neighboring operating modes
US7177183B2 (en) 2003-09-30 2007-02-13 Sandisk 3D Llc Multiple twin cell non-volatile memory array and logic block structure and method therefor
US7913125B2 (en) 2003-11-04 2011-03-22 Lsi Corporation BISR mode to test the redundant elements and regular functional memory to avoid test escapes
US6950771B1 (en) 2003-12-09 2005-09-27 Xilinx, Inc. Correlation of electrical test data with physical defect data
US7401281B2 (en) 2004-01-29 2008-07-15 International Business Machines Corporation Remote BIST high speed test and redundancy calculation
US7631236B2 (en) 2004-01-29 2009-12-08 International Business Machines Corporation Hybrid built-in self test (BIST) architecture for embedded memory arrays and an associated method
JP4819316B2 (en) 2004-02-23 2011-11-24 ルネサスエレクトロニクス株式会社 Semiconductor device
US7088606B2 (en) 2004-03-10 2006-08-08 Altera Corporation Dynamic RAM storage techniques
US7020017B2 (en) 2004-04-06 2006-03-28 Sandisk Corporation Variable programming of non-volatile memory
US7120063B1 (en) 2004-05-07 2006-10-10 Spansion Llc Flash memory cell and methods for programming and erasing
US8522205B2 (en) 2004-05-18 2013-08-27 Oracle International Corporation Packaging multiple groups of read-only files of an application's components into multiple shared libraries
JP2006127460A (en) 2004-06-09 2006-05-18 Renesas Technology Corp Semiconductor device, semiconductor signal processing apparatus and crossbar switch
US7061817B2 (en) 2004-06-30 2006-06-13 Micron Technology, Inc. Data path having grounded precharge operation and test compression capability
US7116602B2 (en) 2004-07-15 2006-10-03 Micron Technology, Inc. Method and system for controlling refresh to avoid memory cell data losses
US7434024B2 (en) 2004-08-30 2008-10-07 Ati Technologies, Inc. SIMD processor with register addressing, buffer stall and methods
US7685365B2 (en) 2004-09-30 2010-03-23 Intel Corporation Transactional memory execution utilizing virtual memory
US20060069849A1 (en) 2004-09-30 2006-03-30 Rudelic John C Methods and apparatus to update information in a memory
US20060149804A1 (en) 2004-11-30 2006-07-06 International Business Machines Corporation Multiply-sum dot product instruction with mask and splat
US7230851B2 (en) 2004-12-23 2007-06-12 Sandisk Corporation Reducing floating gate to floating gate coupling effect
KR100673901B1 (en) 2005-01-28 2007-01-25 주식회사 하이닉스반도체 Semiconductor device for low voltage
US7543119B2 (en) 2005-02-10 2009-06-02 Richard Edward Hessel Vector processor
US7624313B2 (en) 2005-03-28 2009-11-24 Hewlett-Packard Development Company, L.P. TCAM BIST with redundancy
US7187585B2 (en) 2005-04-05 2007-03-06 Sandisk Corporation Read operation for non-volatile storage that includes compensation for coupling
US7196928B2 (en) 2005-04-05 2007-03-27 Sandisk Corporation Compensating for coupling during read operations of non-volatile memory
US7193898B2 (en) 2005-06-20 2007-03-20 Sandisk Corporation Compensation currents in non-volatile memory read operations
KR100720644B1 (en) 2005-11-17 2007-05-21 삼성전자주식회사 Memory device and method of operating the same
JP4804479B2 (en) 2005-12-13 2011-11-02 スパンション エルエルシー Semiconductor device and control method thereof
JP5129450B2 (en) 2006-01-16 2013-01-30 ルネサスエレクトロニクス株式会社 Information processing device
US8077533B2 (en) 2006-01-23 2011-12-13 Freescale Semiconductor, Inc. Memory and method for sensing data in a memory using complementary sensing scheme
JP4989900B2 (en) 2006-01-31 2012-08-01 ルネサスエレクトロニクス株式会社 Parallel processing unit
US7400532B2 (en) 2006-02-16 2008-07-15 Micron Technology, Inc. Programming method to reduce gate coupling interference for non-volatile memory
KR100755370B1 (en) 2006-04-17 2007-09-04 삼성전자주식회사 Semiconductor memory device
TW200828333A (en) 2006-04-28 2008-07-01 Samsung Electronics Co Ltd Sense amplifier circuit and sense amplifier-based flip-flop having the same
US7752417B2 (en) 2006-06-05 2010-07-06 Oracle America, Inc. Dynamic selection of memory virtualization techniques
US7372715B2 (en) 2006-06-14 2008-05-13 Micron Technology, Inc. Architecture and method for NAND flash memory
US8069377B2 (en) 2006-06-26 2011-11-29 Micron Technology, Inc. Integrated circuit having memory array including ECC and column redundancy and method of operating the same
US7724559B2 (en) 2006-07-14 2010-05-25 International Business Machines Corporation Self-referenced match-line sense amplifier for content addressable memories
US7443729B2 (en) 2006-07-20 2008-10-28 Sandisk Corporation System that compensates for coupling based on sensing a neighbor using coupling
US7885119B2 (en) 2006-07-20 2011-02-08 Sandisk Corporation Compensating for coupling during programming
US7692466B2 (en) 2006-08-18 2010-04-06 Ati Technologies Ulc Sense amplifier based flip-flop
US7805587B1 (en) 2006-11-01 2010-09-28 Nvidia Corporation Memory addressing controlled by PTE fields
US8151082B2 (en) 2007-12-06 2012-04-03 Fusion-Io, Inc. Apparatus, system, and method for converting a storage request into an append data storage command
US7471536B2 (en) 2006-12-08 2008-12-30 Texas Instruments Incorporated Match mismatch emulation scheme for an addressed location in a CAM
US7460387B2 (en) 2007-01-05 2008-12-02 International Business Machines Corporation eDRAM hierarchical differential sense amp
US7743303B2 (en) 2007-01-22 2010-06-22 Micron Technology, Inc. Defective memory block remapping method and system, and memory device and processor-based system using same
US7937535B2 (en) 2007-02-22 2011-05-03 Arm Limited Managing cache coherency in a data processing apparatus
US7804718B2 (en) 2007-03-07 2010-09-28 Mosaid Technologies Incorporated Partial block erase architecture for flash memory
US7492640B2 (en) 2007-06-07 2009-02-17 Sandisk Corporation Sensing with bit-line lockout control in non-volatile memory
JP2009009665A (en) 2007-06-29 2009-01-15 Elpida Memory Inc Semiconductor storage device
US7996749B2 (en) 2007-07-03 2011-08-09 Altera Corporation Signal loss detector for high-speed serial interface of a programmable logic device
US7489543B1 (en) 2007-07-25 2009-02-10 Micron Technology, Inc. Programming multilevel cell memory arrays
US7694195B2 (en) 2007-08-14 2010-04-06 Dell Products L.P. System and method for using a memory mapping function to map memory defects
US7869273B2 (en) 2007-09-04 2011-01-11 Sandisk Corporation Reducing the impact of interference during programming
US7787319B2 (en) 2007-09-06 2010-08-31 Innovative Silicon Isi Sa Sense amplifier circuitry for integrated circuit having memory cell array, and method of operating same
US8042082B2 (en) 2007-09-12 2011-10-18 Neal Solomon Three dimensional memory in a system on a chip
US7965564B2 (en) 2007-09-18 2011-06-21 Zikbit Ltd. Processor arrays made of standard memory cells
US7663928B2 (en) 2007-10-09 2010-02-16 Ememory Technology Inc. Sense amplifier circuit having current mirror architecture
WO2009052527A1 (en) 2007-10-19 2009-04-23 Virident Systems, Inc. Managing memory systems containing components with asymmetric characteristics
US7924628B2 (en) 2007-11-14 2011-04-12 Spansion Israel Ltd Operation of a non-volatile memory array
US7979667B2 (en) 2007-12-10 2011-07-12 Spansion Llc Memory array search engine
US7755960B2 (en) 2007-12-17 2010-07-13 Stmicroelectronics Sa Memory including a performance test circuit
US8495438B2 (en) 2007-12-28 2013-07-23 Texas Instruments Incorporated Technique for memory imprint reliability improvement
US7808854B2 (en) 2008-02-19 2010-10-05 Kabushiki Kaisha Toshiba Systems and methods for data transfers between memory cells
JP5194302B2 (en) 2008-02-20 2013-05-08 ルネサスエレクトロニクス株式会社 Semiconductor signal processing equipment
US20090254694A1 (en) 2008-04-02 2009-10-08 Zikbit Ltd. Memory device with integrated parallel processing
US8332580B2 (en) 2008-04-02 2012-12-11 Zikbit Ltd. System, method and apparatus for memory with embedded associative section for computations
US7957206B2 (en) 2008-04-04 2011-06-07 Micron Technology, Inc. Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same
US8339824B2 (en) 2008-07-02 2012-12-25 Cooke Laurence H Nearest neighbor serial content addressable memory
US8417921B2 (en) 2008-08-15 2013-04-09 Apple Inc. Running-min and running-max instructions for processing vectors using a base value from a key element of an input vector
US8555037B2 (en) 2008-08-15 2013-10-08 Apple Inc. Processing vectors using wrapping minima and maxima instructions in the macroscalar architecture
US8259509B2 (en) 2008-08-18 2012-09-04 Elpida Memory, Inc. Semiconductor memory device and method with auxiliary I/O line assist circuit and functionality
ITRM20080543A1 (en) 2008-10-09 2010-04-10 Micron Technology Inc ARCHITECTURE AND METHOD FOR MEMORY PROGRAMMING.
KR101596283B1 (en) 2008-12-19 2016-02-23 삼성전자 주식회사 Semiconductor memory device having improved precharge scheme for local I/O lines
KR101622922B1 (en) 2009-03-06 2016-05-20 삼성전자 주식회사 Semiconductor memory device having improved precharge scheme for local I/O lines
US8484276B2 (en) 2009-03-18 2013-07-09 International Business Machines Corporation Processing array data on SIMD multi-core processor architectures
KR20100134235A (en) 2009-06-15 2010-12-23 삼성전자주식회사 Semiconductor memory device
US7898864B2 (en) 2009-06-24 2011-03-01 Sandisk Corporation Read operation for memory with compensation for coupling based on write-erase cycles
US8412987B2 (en) 2009-06-30 2013-04-02 Micron Technology, Inc. Non-volatile memory to store memory remap information
US8412985B1 (en) 2009-06-30 2013-04-02 Micron Technology, Inc. Hardwired remapped memory
US8238173B2 (en) 2009-07-16 2012-08-07 Zikbit Ltd Using storage cells to perform computation
US9076527B2 (en) 2009-07-16 2015-07-07 Mikamonu Group Ltd. Charge sharing in a TCAM array
JP4951041B2 (en) 2009-08-06 2012-06-13 株式会社東芝 Semiconductor memory device
CN102548545A (en) 2009-08-18 2012-07-04 道康宁公司 Multi-layer transdermal patch
US8059438B2 (en) 2009-08-28 2011-11-15 International Business Machines Corporation Content addressable memory array programmed to perform logic operations
US8077532B2 (en) 2009-09-02 2011-12-13 Micron Technology, Inc. Small unit internal verify read in a memory device
US8482975B2 (en) 2009-09-14 2013-07-09 Micron Technology, Inc. Memory kink checking
US8495465B1 (en) 2009-10-15 2013-07-23 Apple Inc. Error correction coding over multiple memory pages
US9477636B2 (en) 2009-10-21 2016-10-25 Micron Technology, Inc. Memory having internal processors and data communication methods in memory
WO2011048522A2 (en) 2009-10-21 2011-04-28 Zikbit Ltd. Neighborhood operations for parallel processing
US8650232B2 (en) 2009-10-26 2014-02-11 Via Technologies, Inc. System and method for determination of a horizontal minimum of digital values
KR101634340B1 (en) 2009-11-03 2016-06-28 삼성전자주식회사 Method for programming semiconductor memory device
US8583896B2 (en) 2009-11-13 2013-11-12 Nec Laboratories America, Inc. Massively parallel processing core with plural chains of processing elements and respective smart memory storing select data received from each chain
KR20110054773A (en) 2009-11-18 2011-05-25 삼성전자주식회사 Semiconductor memory device for improving bit line disturbance
US8089815B2 (en) 2009-11-24 2012-01-03 Sandisk Technologies Inc. Programming memory with bit line floating to reduce channel-to-floating gate coupling
US8605015B2 (en) 2009-12-23 2013-12-10 Syndiant, Inc. Spatial light modulator with masking-comparators
JP2011146102A (en) 2010-01-15 2011-07-28 Elpida Memory Inc Semiconductor device and data processing system
CN102141905B (en) 2010-01-29 2015-02-25 上海芯豪微电子有限公司 Processor system structure
US8164942B2 (en) 2010-02-01 2012-04-24 International Business Machines Corporation High performance eDRAM sense amplifier
US8533245B1 (en) 2010-03-03 2013-09-10 Altera Corporation Multipliers with a reduced number of memory blocks
US9317536B2 (en) 2010-04-27 2016-04-19 Cornell University System and methods for mapping and searching objects in multidimensional space
KR101119371B1 (en) 2010-04-29 2012-03-06 주식회사 하이닉스반도체 Semiconductor memory apparatus and a method of operating thereof
US8559232B2 (en) 2010-05-03 2013-10-15 Aplus Flash Technology, Inc. DRAM-like NVM memory array and sense amplifier design for high temperature and high endurance operation
US8351278B2 (en) 2010-06-23 2013-01-08 International Business Machines Corporation Jam latch for latching memory array output data
KR101143471B1 (en) 2010-07-02 2012-05-11 에스케이하이닉스 주식회사 Sense amplifier and semiconductor apparatus including the same
US20120017039A1 (en) 2010-07-16 2012-01-19 Plx Technology, Inc. Caching using virtual memory
US8462532B1 (en) 2010-08-31 2013-06-11 Netlogic Microsystems, Inc. Fast quaternary content addressable memory cell
US8347154B2 (en) 2010-09-21 2013-01-01 International Business Machines Corporation Use of hashing function to distinguish random and repeat errors in a memory system
US8904115B2 (en) 2010-09-28 2014-12-02 Texas Instruments Incorporated Cache with multiple access pipelines
US8332367B2 (en) 2010-10-20 2012-12-11 International Business Machines Corporation Parallel data redundancy removal
KR101148352B1 (en) 2010-11-02 2012-05-21 에스케이하이닉스 주식회사 Semiconductor memory device and method for operating thereof
JP5528987B2 (en) 2010-11-11 2014-06-25 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device
US8553481B2 (en) 2010-11-29 2013-10-08 Apple Inc. Sense amplifier latch with integrated test data multiplexer
US9165023B2 (en) 2011-01-31 2015-10-20 Freescale Semiconductor, Inc. Integrated circuit device and method for determining an index of an extreme value within an array of values
KR20120088973A (en) 2011-02-01 2012-08-09 삼성전자주식회사 Local sense amplifier and semiconductor memory device including the same
JP2012174016A (en) 2011-02-22 2012-09-10 Renesas Electronics Corp Data processor and data processing method thereof
JP5259765B2 (en) 2011-03-29 2013-08-07 株式会社東芝 Nonvolatile semiconductor memory
US8725730B2 (en) 2011-05-23 2014-05-13 Hewlett-Packard Development Company, L.P. Responding to a query in a data processing system
US8706958B2 (en) 2011-09-01 2014-04-22 Thomas Hein Data mask encoding in data bit inversion scheme
US20140247673A1 (en) 2011-10-28 2014-09-04 Naveen Muralimanohar Row shifting shiftable memory
US20130111122A1 (en) * 2011-10-31 2013-05-02 Futurewei Technologies, Inc. Method and apparatus for network table lookups
US8891297B2 (en) 2011-11-01 2014-11-18 Micron Technology, Inc. Memory cell sensing
US9830158B2 (en) 2011-11-04 2017-11-28 Nvidia Corporation Speculative execution and rollback
KR101321481B1 (en) 2011-11-04 2013-10-28 에스케이하이닉스 주식회사 Semiconductor Memory Apparatus and Test Circuit Therefor
KR20130052971A (en) 2011-11-14 2013-05-23 삼성전자주식회사 Method of operating non-volatile memory devices
WO2013078085A1 (en) 2011-11-22 2013-05-30 Mips Technologies, Inc. Processor with kernel mode access to user space virtual addresses
WO2013081588A1 (en) 2011-11-30 2013-06-06 Intel Corporation Instruction and logic to provide vector horizontal compare functionality
KR20130072869A (en) 2011-12-22 2013-07-02 에스케이하이닉스 주식회사 Precharge circuit and non-volatile memory device
US20140108480A1 (en) 2011-12-22 2014-04-17 Elmoustapha Ould-Ahmed-Vall Apparatus and method for vector compute and accumulate
US20130286705A1 (en) 2012-04-26 2013-10-31 David B. Grover Low power content addressable memory hitline precharge and sensing circuit
US8938603B2 (en) 2012-05-31 2015-01-20 Samsung Electronics Co., Ltd. Cache system optimized for cache miss detection
US20130332707A1 (en) 2012-06-07 2013-12-12 Intel Corporation Speed up big-number multiplication using single instruction multiple data (simd) architectures
KR102062301B1 (en) 2013-01-03 2020-01-03 삼성전자주식회사 Page copy method in memory device and page management method in memory system
US20140215185A1 (en) 2013-01-29 2014-07-31 Atmel Norway Fetching instructions of a loop routine
US9171153B2 (en) 2013-05-17 2015-10-27 Hewlett-Packard Development Company, L.P. Bloom filter with memory element
US8964496B2 (en) 2013-07-26 2015-02-24 Micron Technology, Inc. Apparatuses and methods for performing compare operations using sensing circuitry
US8971124B1 (en) 2013-08-08 2015-03-03 Micron Technology, Inc. Apparatuses and methods for performing logical operations using sensing circuitry
US9153305B2 (en) 2013-08-30 2015-10-06 Micron Technology, Inc. Independently addressable memory array address spaces
US9019785B2 (en) 2013-09-19 2015-04-28 Micron Technology, Inc. Data shifting via a number of isolation devices
US9449675B2 (en) 2013-10-31 2016-09-20 Micron Technology, Inc. Apparatuses and methods for identifying an extremum value stored in an array of memory cells
US9430191B2 (en) 2013-11-08 2016-08-30 Micron Technology, Inc. Division operations for memory
US20150270015A1 (en) 2014-03-19 2015-09-24 Micron Technology, Inc. Memory mapping
US9934856B2 (en) 2014-03-31 2018-04-03 Micron Technology, Inc. Apparatuses and methods for comparing data patterns in memory
KR102068101B1 (en) 2014-05-08 2020-01-20 마이크론 테크놀로지, 인크. Hybrid memory cube system interconnect directory-based cache coherence methodology
WO2015171905A1 (en) 2014-05-08 2015-11-12 Micron Technology, Inc. In-memory lightweight coherency
US9711207B2 (en) 2014-06-05 2017-07-18 Micron Technology, Inc. Performing logical operations using sensing circuitry
US9449674B2 (en) 2014-06-05 2016-09-20 Micron Technology, Inc. Performing logical operations using sensing circuitry
US9910787B2 (en) 2014-06-05 2018-03-06 Micron Technology, Inc. Virtual address table
US9830999B2 (en) 2014-06-05 2017-11-28 Micron Technology, Inc. Comparison operations in memory
US9786335B2 (en) 2014-06-05 2017-10-10 Micron Technology, Inc. Apparatuses and methods for performing logical operations using sensing circuitry
US10074407B2 (en) 2014-06-05 2018-09-11 Micron Technology, Inc. Apparatuses and methods for performing invert operations using sensing circuitry
US9711206B2 (en) 2014-06-05 2017-07-18 Micron Technology, Inc. Performing logical operations using sensing circuitry
US9496023B2 (en) 2014-06-05 2016-11-15 Micron Technology, Inc. Comparison operations on logical representations of values in memory
US9779019B2 (en) 2014-06-05 2017-10-03 Micron Technology, Inc. Data storage layout
US9455020B2 (en) 2014-06-05 2016-09-27 Micron Technology, Inc. Apparatuses and methods for performing an exclusive or operation using sensing circuitry
US9704540B2 (en) 2014-06-05 2017-07-11 Micron Technology, Inc. Apparatuses and methods for parity determination using sensing circuitry
US9740607B2 (en) 2014-09-03 2017-08-22 Micron Technology, Inc. Swap operations in memory
US9589602B2 (en) 2014-09-03 2017-03-07 Micron Technology, Inc. Comparison operations in memory
US9904515B2 (en) 2014-09-03 2018-02-27 Micron Technology, Inc. Multiplication operations in memory
US9847110B2 (en) 2014-09-03 2017-12-19 Micron Technology, Inc. Apparatuses and methods for storing a data value in multiple columns of an array corresponding to digits of a vector
US9898252B2 (en) 2014-09-03 2018-02-20 Micron Technology, Inc. Multiplication operations in memory
US9747961B2 (en) 2014-09-03 2017-08-29 Micron Technology, Inc. Division operations in memory
US10068652B2 (en) 2014-09-03 2018-09-04 Micron Technology, Inc. Apparatuses and methods for determining population count
US9940026B2 (en) 2014-10-03 2018-04-10 Micron Technology, Inc. Multidimensional contiguous memory allocation
US9836218B2 (en) 2014-10-03 2017-12-05 Micron Technology, Inc. Computing reduction and prefix sum operations in memory
US10163467B2 (en) 2014-10-16 2018-12-25 Micron Technology, Inc. Multiple endianness compatibility
US10147480B2 (en) 2014-10-24 2018-12-04 Micron Technology, Inc. Sort operation in memory
US9779784B2 (en) 2014-10-29 2017-10-03 Micron Technology, Inc. Apparatuses and methods for performing logical operations using sensing circuitry
US9747960B2 (en) 2014-12-01 2017-08-29 Micron Technology, Inc. Apparatuses and methods for converting a mask to an index
US10073635B2 (en) 2014-12-01 2018-09-11 Micron Technology, Inc. Multiple endianness compatibility
US10032493B2 (en) 2015-01-07 2018-07-24 Micron Technology, Inc. Longest element length determination in memory
US10061590B2 (en) 2015-01-07 2018-08-28 Micron Technology, Inc. Generating and executing a control flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875452A (en) * 1995-12-21 1999-02-23 International Business Machines Corporation DRAM/SRAM with uniform access time using buffers, write back, address decode, read/write and refresh controllers
US20060072369A1 (en) * 2004-10-04 2006-04-06 Research In Motion Limited System and method for automatically saving memory contents of a data processing device on power failure
US20140250279A1 (en) * 2013-03-04 2014-09-04 Micron Technology, Inc. Apparatuses and methods for performing logical operations using sensing circuitry
US9529726B2 (en) * 2013-07-15 2016-12-27 Everspin Technologies, Inc. Memory device with page emulation mode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220100606A1 (en) * 2020-09-25 2022-03-31 Advanced Micro Devices, Inc. Error detection and correction in memory modules using programmable ecc engines
US11874739B2 (en) * 2020-09-25 2024-01-16 Advanced Micro Devices, Inc. Error detection and correction in memory modules using programmable ECC engines
US20220197647A1 (en) * 2020-12-18 2022-06-23 Advanced Micro Devices, Inc. Near-memory determination of registers
US20230131117A1 (en) * 2021-10-27 2023-04-27 Sandisk Technologies Llc Data conversion with data path circuits for use in double sense amp architecture with fractional bit assignment in non-volatile memory structures
US11776640B2 (en) * 2021-10-27 2023-10-03 Sandisk Technologies Llc Data conversion with data path circuits for use in double sense amp architecture with fractional bit assignment in non-volatile memory structures

Also Published As

Publication number Publication date
US10733089B2 (en) 2020-08-04
US20180024769A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US20200364138A1 (en) Apparatuses and methods for write address tracking
US11755206B2 (en) Bank to bank data transfer
US10482948B2 (en) Apparatuses and methods for data movement
US11263123B2 (en) Apparatuses and methods for memory device as a store for program instructions
US11625194B2 (en) Updating a register in memory
US20220004497A1 (en) Apparatuses and methods for cache operations
US11468944B2 (en) Utilization of data stored in an edge section of an array
US11682449B2 (en) Apparatuses and methods for compute in data path
US10878856B2 (en) Data transfer between subarrays in memory
US11372550B2 (en) Apparatuses and methods for simultaneous in data path compute operations
US20180276539A1 (en) Apparatuses and methods for operating neural networks
US20230070383A1 (en) Bank to bank data transfer

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOWE, GARY L.;FINKBEINER, TIMOTHY P.;REEL/FRAME:053387/0164

Effective date: 20160718

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION COUNTED, NOT YET MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: LODESTAR LICENSING GROUP LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:065033/0940

Effective date: 20230323

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED