US20200338247A1 - Syringe filling device for fat transfer - Google Patents
Syringe filling device for fat transfer Download PDFInfo
- Publication number
- US20200338247A1 US20200338247A1 US16/927,349 US202016927349A US2020338247A1 US 20200338247 A1 US20200338247 A1 US 20200338247A1 US 202016927349 A US202016927349 A US 202016927349A US 2020338247 A1 US2020338247 A1 US 2020338247A1
- Authority
- US
- United States
- Prior art keywords
- syringe
- tissue
- outlet
- vessel
- material holding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012546 transfer Methods 0.000 title abstract description 82
- 238000011049 filling Methods 0.000 title description 2
- 239000000463 material Substances 0.000 claims abstract description 125
- 238000000034 method Methods 0.000 claims abstract description 67
- 239000012530 fluid Substances 0.000 claims description 146
- 238000012545 processing Methods 0.000 claims description 74
- 238000004891 communication Methods 0.000 claims description 39
- 230000013011 mating Effects 0.000 claims description 24
- 238000005406 washing Methods 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 3
- 210000001519 tissue Anatomy 0.000 abstract description 142
- 210000000577 adipose tissue Anatomy 0.000 abstract description 13
- 238000002513 implantation Methods 0.000 abstract description 7
- 210000004027 cell Anatomy 0.000 description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 238000011068 loading method Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 6
- 230000003416 augmentation Effects 0.000 description 5
- 238000007443 liposuction Methods 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 210000001789 adipocyte Anatomy 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 1
- 241001631457 Cannula Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HGAZMNJKRQFZKS-UHFFFAOYSA-N chloroethene;ethenyl acetate Chemical compound ClC=C.CC(=O)OC=C HGAZMNJKRQFZKS-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Images
Classifications
-
- A61M1/0094—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/88—Draining devices having means for processing the drained fluid, e.g. an absorber
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00792—Plastic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/005—Auxiliary appliance with suction drainage system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/89—Suction aspects of liposuction
- A61M1/892—Suction aspects of liposuction with treatment of the collected fat
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/08—Lipoids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/1782—Devices aiding filling of syringes in situ
Definitions
- the present disclosure relates to surgical instruments and methods including instruments and methods for transfer of tissue such as adipose tissue.
- Autologous fat grafting has become increasingly common and has numerous clinical applications such as facial contouring, breast reconstruction and/or augmentation, and other aesthetic or reconstructive procedures.
- autologous fat grafting has been found to have relatively low donor-site morbidity compared with other surgical options.
- autologous fat grafting provides somewhat unpredictable outcomes.
- the amount of adipose cell viability after implantation is variable, and this issue can result in less than optimal outcomes and/or require multiple or revision procedures.
- Adipocyte viability can be affected by a number of factors including aspiration pressure, injection pressure, and sheer stress. If done improperly, the loading and unloading of cells from syringes and other vessels can result in damage to the cells and reduce overall cell viability after implantation. To mitigate these effects, the user must exert careful control over pressures and sheer stresses when loading and unloading cells. This control can be achieved by introducing a level of automation and repeatability in cell transfer.
- Adipose tissue transfer generally requires one or more steps wherein adipose tissue is passed between tissue collection or delivery devices. These steps can be time-consuming. In addition, the transfer steps, including loading of delivery vessels or syringes, can cause a reduction in cell viability if undesirably large forces (e.g., shear forces) are placed on tissues during the process.
- forces e.g., shear forces
- the present disclosure provides devices and methods for improved tissue transfer, including devices and methods for transferring adipose tissue.
- the devices and methods allow controlled loading of adipose delivery devices, and can reduce operative times, while controlling tissue transfer processes to increase or control the consistency of cell viability during tissue transfer.
- the tissue transfer system includes a material holding or processing vessel.
- the material holding or processing vessel includes an exterior wall surrounding an interior volume for holding tissue, an outlet in fluid communication with the interior volume, and an exterior fluid passage having an opening disposed proximate an opening of the outlet.
- the tissue transfer system also includes a syringe.
- the syringe includes a syringe body having an interior volume and a syringe tip comprising a peripheral wall having a distal opening forming a first passage in fluid communication with the interior volume.
- the syringe tip is adapted to be mated with the outlet of the material holding or processing vessel such that the opening of the outlet is in fluid communication with the first passage of the syringe tip and the exterior fluid passage of the material holding or processing vessel is in fluid communication with the interior volume of the syringe body.
- a tissue transfer vessel is provided according to various embodiments described herein.
- the tissue transfer vessel includes an exterior wall surrounding an interior volume for holding a tissue and an elongated lumen extending from the exterior wall to an outlet.
- the tissue transfer vessel also includes an exterior fluid passage having a proximal opening, a lumen, and a distal opening. The proximal opening, lumen, and distal opening are external to the interior volume, and the distal opening is located proximate an opening of the outlet.
- a method of transferring tissue or other material to a syringe includes selecting a material holding or processing vessel having an outlet and an exterior fluid passage and containing a tissue or other material to be transferred.
- the method includes mating an end of a syringe to the outlet of the vessel to place the interior of the syringe body and the interior of the vessel into fluid communication and to place the exterior fluid passage and the interior of the vessel into fluid communication.
- the method includes attaching a negative pressure source to the exterior fluid passage.
- the method includes engaging the negative pressure source to draw the tissue or other material from the vessel through the outlet and into the syringe body.
- a tissue transfer adapter is provided according to various embodiments described herein.
- the tissue transfer adapter includes an adapter body comprising an outer wall and a first end, a second end, and a third end.
- the tissue transfer adapter also includes an elongated body passing from the first end and extending through the adapter body and past an opening in the second end to a distal tip.
- the elongated body contains a lumen extending therethrough.
- the tissue transfer adapter also includes a fluid passage contained within the outer wall and fluidly coupling the opening of the second end with an opening in the third end.
- the first end of the adapter body is configured to be mated with a container or fluid conduit such that an interior volume of the container or fluid conduit is in fluid communication with the lumen of the elongated body such that upon application of suction to the opening in the third end, a material contained within the container or fluid conduit will be drawn through at least a portion of the lumen of the elongated body and out of the elongated body.
- the tissue transfer adapter includes an adapter body comprising an outer wall and a first end, a second end, and a third end.
- the adapter body comprises an opening in each of the first end and the second end.
- the tissue transfer adapter includes a fluid passage contained within the outer wall and fluidly coupling the opening of the first end with the opening in the second end.
- the tissue transfer adapter includes an elongated body in fluid communication with an opening in the third end that extends from the third end through the adapter body and past the opening in the second end to a distal tip.
- the elongated body contains a lumen extending therethrough to a distal opening.
- the first end of the adapter body is configured to be mated with a container or fluid conduit such that an interior volume of the container or fluid conduit is in fluid communication with the fluid passage such that upon application of suction to an opening in the third end, a material contained within the container or fluid conduit will be drawn into the opening in the first end and out of the opening in the second end.
- a method of transferring tissue using the tissue transfer adapter includes providing a tissue transfer adapter as described above.
- the method includes coupling a syringe to the opening in the second end.
- the method includes coupling a material holding or processing vessel to the opening in the first end.
- the method includes attaching a source of negative pressure to the opening in the third end.
- the method includes applying a negative pressure such that a tissue exits the material holding or processing vessel and enters an interior volume of the syringe.
- the tissue transfer device includes a material holding or processing vessel that includes an exterior wall surrounding an interior volume for holding tissue.
- the exterior wall includes an adapter body comprising an outer wall and a first end, a second end, and a third end.
- the adapter body comprises an opening in each of the first end and the second end.
- the exterior wall includes a fluid passage contained within the outer wall and fluidly coupling the opening of the first end with the opening in the second end.
- the exterior wall includes an elongated body in fluid communication with an opening in the third end that extends from the third end through the adapter body and past the opening in the second end to a distal tip.
- the elongated body contains a lumen extending therethrough to a distal opening.
- the first end of the adapter body is mated with the material holding or processing vessel such that an interior volume of the material holding or processing vessel is in fluid communication with the fluid passage such that upon application of suction to an opening in the third end, a material contained within the material holding or processing vessel will be drawn into the opening in the first end and out of the opening in the second end.
- a method of transferring tissue or other material to a syringe using the tissue transfer device includes selecting a material holding or processing vessel as described above and containing tissue or other material to be transferred.
- the method includes mating a proximal portion of a syringe to a second opening of the tissue transfer adapter of the vessel to place the interior of the syringe body and the interior of the vessel into fluid communication through an elongated body.
- the method includes attaching a negative pressure source to a third opening of the tissue transfer adapter.
- the method includes engaging the negative pressure source to draw the tissue or other material from the vessel through the tissue transfer adapter and into the syringe body.
- FIG. 1A illustrates a perspective view of a system for transferring tissue, according to various embodiments.
- FIG. 1B illustrates a cross-sectional view of the system shown in FIG. 1A .
- FIG. 2 illustrates an enlarged view of a portion of the system shown in FIGS. 1A and 1B .
- FIG. 3A illustrates a cross-sectional view of a portion of a system for transferring tissue, according to various embodiments.
- FIG. 3B illustrates a cross-sectional view of a portion of a system for transferring tissue, according to various embodiments.
- FIG. 4 illustrates a cross-sectional view of a system for processing and transferring tissue, according to various embodiments.
- FIG. 5 illustrates a cross-sectional view of another system for tissue transfers, including components for transfer to multiple delivery devices simultaneously, according to various embodiments.
- FIG. 6 illustrates a cross-sectional view of a portion of a system for transferring tissue wherein an external fluid passage of the vessel is in fluid communication with a secondary fluid passage in the peripheral wall of the syringe, according to various embodiments.
- FIG. 7 illustrates a cross-sectional view of a portion of a device to fill syringes with tissue, according to various embodiments.
- FIG. 8A illustrates a cross-sectional view of an adapter to fill syringes with tissue, according to various embodiments.
- FIG. 8B illustrates a cross-sectional view of an adapter to fill syringes with tissue, according to various embodiments.
- FIG. 8C illustrates an expanded view of an alternative embodiment of an elongated body shown in FIG. 8B according to various embodiments.
- FIG. 8D illustrates an adapter of a tissue transfer system mounted to a material holding or processing vessel in accordance with various embodiments.
- FIG. 8E illustrates adapters of a tissue transfer system connected in series in accordance with various embodiments.
- FIG. 9 is a flow chart illustrating steps of a method for tissue transfer, according to various embodiments.
- Various human and animal tissues can be used to produce products for treating patients.
- various tissue products have been produced for regeneration, repair, augmentation, reinforcement, and/or treatment of human tissues that have been damaged or lost due to various diseases and/or structural damage (e.g., from trauma, surgery, atrophy, and/or long-term wear and degeneration).
- Fat grafting including autologous fat grafting, can be useful for a variety of clinical applications including facial fillers, breast augmentation, buttock augmentation/sculpting, augmentation of other tissue sites, correction of lumpectomy defects, cranial-facial defect correction, and correction of lipoplasty defects (divots).
- grafting of various tissues can be unpredictable and can sometimes result in variable outcomes, multiple procedures, and/or revision surgeries. Although the precise reasons for graft variability are not always known, there is evidence that the viability of grafted cells, including grafted adipose tissues, is affected by surgical techniques such as the amount of pressure and/or shear stress applied to the grafts as they are transferred among vessels and syringes during aspiration and re-injection.
- Control of surgical technique during tissue manipulation can be complex. For example, it may be difficult for clinicians to determine the pressure and/or shear applied to grafts during a particular transfer procedure. This can be true for a variety of reasons.
- the pressure and shear stress exerted on a sample can relate to a number of variables including properties of the particular vessels and injection devices used (e.g., syringe and needle/cannula size, transfer rate, vessel outlet size, vessel withdrawal rate, vessel and injection device material properties [e.g., friction properties], tissue viscosity, clogging of cannulas, and backpressure from a host site) or other mechanical properties. See, e.g., U.S. patent application Ser. No.
- the present disclosure provides devices and methods that assist in loading/unloading of tissue transfer devices, thereby reducing operative time.
- the systems, devices, and methods can be used to transfer adipose tissues or other implantable materials (e.g., injectable or implantable gels, pastes, or putties).
- adipose tissue refers to adipose tissue obtained by any means including, for example, liposuction and/or tumescent liposuction.
- the adipose tissue may be substantially intact or may be altered by, for example, washing with saline, antimicrobials, detergents, or other agents; the addition of therapeutic agents such an analgesics, antimicrobials, and anti-inflammatories; the removal of some cells or acellular components; or disruption or alteration by the collection process itself including, for example, during liposuction or tumescent liposuction.
- the adipose tissue can be autologous tissue, allogeneic tissue, or xenogenic tissue (e.g., porcine tissue).
- a tissue transfer system in one embodiment, includes a vessel and a syringe, wherein the vessel has an exterior fluid passage through which a negative pressure can be applied.
- the exterior fluid passage can be in fluid communication with the interior of the syringe and the vessel and can be configured to facilitate transfer of tissue from the vessel into the syringe.
- the vessel can be constructed in such a way as to limit the ability of the tissue material to enter the exterior fluid passage, thereby preventing clogging of the passage.
- FIGS. 1A and 1B illustrate perspective and cross-sectional views, respectively, of a system 10 for transferring tissue, according to various embodiments; and FIG. 2 illustrates a magnified cross-sectional view of a portion of the system 10 .
- the system 10 can include a material holding or processing vessel 20 and a syringe 30 .
- the material holding or processing vessel 20 can include an exterior wall 22 surrounding an interior volume 24 and an outlet 26 in fluid communication with the interior volume 24 .
- the material holding or processing vessel can also include an exterior fluid passage 28 that includes a lumen 28 c and has one end proximal 28 a to an opening of the outlet 26 .
- the end 28 a of the exterior fluid passage 28 is placed gravitationally higher than the opening of the outlet 26 to minimize aspiration of tissue into the exterior fluid passage during a transfer operation.
- the syringe can also include a syringe tip 32 and a syringe body 33 having an interior volume 34 .
- the syringe tip 32 can be adapted to mate with the vessel outlet 26 .
- tissue material contained within the vessel 20 will be pulled from the interior volume 24 of the vessel 20 into the interior volume 34 of the syringe body 33 .
- the material holding or processing vessel 20 can be formed of a variety of materials and have a variety of shapes.
- the vessel 20 has a bottom portion 29 that is predominantly conical in nature and that terminates at an outlet 26 .
- the outlet 26 can have a variety of suitable configurations, e.g., with a circular, elliptical, or other polygonal cross-sectional shape.
- the material holding or processing vessel 20 can further include an elongated lumen 23 that extends from the exterior wall 22 to the outlet 26 .
- the length of the lumen 23 may be selected such that the outlet 26 at the syringe tip 32 extends into the syringe body 33 when the syringe 30 and vessel 20 are mated.
- material contained within the vessel 20 such as, for example, adipose tissue can be transferred to the interior volume 34 of the syringe body 33 but will not easily pass into the exterior fluid passage 28 . As a result, the tissue is prevented from blocking or clogging the lumen 28 c of the exterior fluid passage 28 during operation.
- the term “syringe” is meant, according to the present application, to refer generally to any tissue holder or container that may be used to receive and transfer tissue. It will be apparent in view of the present disclosure that the syringe 30 can take the form of a range of devices in accordance with various embodiments and that the characteristics of the syringe device can vary depending upon application-specific requirements. According to various embodiments, the syringe 30 contains a syringe body 33 , a syringe tip 32 , and a plunger 36 that seals the interior volume of the syringe. In alternative embodiments, the syringe 30 may be a further material holding or processing vessel or simply a tissue holding system where tissue is collected and retained for later use. According to various embodiments, the syringe 30 may be a tissue holding container suitable for cold- or cryo-storage, or the syringe 30 may be a device similar to a bulb or bladder that can be compressed to expel the tissue after loading.
- the material holding or processing vessel 20 may further include a mating surface 21 that makes contact with an end 32 a of the syringe tip 32 .
- the contact between the mating surface 21 and the end 32 a of the syringe tip 32 can produce a seal to prevent leakage of material outside of the vessel 20 and syringe 30 during transfer.
- This seal can be achieved, for example, by coating the mating surface 21 with a pliant, air-tight and/or water-tight material, by placing an O-ring at the mating surface, or simply through the pressure applied to mate the vessel 20 and syringe 30 .
- the material holding or processing vessel 20 further includes a ridge 25 that facilitates mating between the syringe 30 and the vessel 20 .
- the ridge 25 concentrically surrounds the outlet 26 in exemplary embodiments.
- the ridge 25 can include an interior surface 27 that is configured to mate with an exterior lateral surface 37 of the syringe tip 32 .
- the ridge 25 can help guide the syringe tip 32 into a proper position to mate with the outlet 26 of the vessel 20 .
- the mating surface 21 may act as a positioning element by halting the insertion of the syringe tip 32 at a given point.
- the distal end 28 b of the exterior fluid passage 28 can include an adapter 50 to facilitate connection of a source of negative pressure.
- the adapter 50 could be a plastic through-port, a luer-type connector, a threaded connector, a swage fitting, or a pressure-fit connector.
- the negative pressure source could be a standalone vacuum pump or in-house vacuum provided in an operating room or related facility.
- the proximal end 28 a of the exterior fluid passage 28 may be located near the outlet 26 of the material holding or processing vessel 20 .
- the proximal end 28 a of the exterior fluid passage 28 can be located gravitationally higher than the outlet 26 of the material holding or processing vessel 20 .
- the proximal end 28 a of the exterior fluid passage 28 may be located adjacent to the elongated lumen 23 of the material holding or processing vessel 20 such that the exterior fluid passage 28 and elongated lumen 23 are only in fluid communication through the outlet 26 .
- the syringe 30 may further include a plunger 36 that is adapted to move longitudinally within the syringe body 33 .
- the plunger 36 seals the interior volume 34 of the syringe 30 to allow a negative pressure source connected to the distal end 28 b of the exterior fluid passage 28 to create negative pressure within the interior volume of the syringe 34 .
- the plunger 36 can then be used to force material out of the syringe's interior volume 34 through the syringe tip 32 .
- the syringe 30 further includes a locking mechanism 37 that can secure the plunger 36 in a selected longitudinal position.
- the locking mechanism 37 may be used to hold the plunger 36 at particular positions to limit the size of the interior volume 34 .
- the plunger 36 may be locked so that it does not move as a negative pressure is applied to the interior volume 34 via the exterior fluid passage 28 .
- FIG. 2 illustrates one configuration for the device 10 .
- the exterior fluid passage 28 can have alternative locations and configurations.
- the exterior fluid passage 28 may consist of a lumen 28 ′ that is at least partially interior to the exterior wall 22 of the material holding or processing vessel 20 .
- the exterior fluid passage 28 may be an enclosed lumen 28 ′′ that is substantially exterior to the vessel's walls 22 . It will be appreciated that additional configurations and placement locations for the exterior fluid passage 28 can be contemplated by one of ordinary skill in the art.
- FIG. 3B shows an alternative embodiment of the material holding or processing vessel 20 wherein the ridge 25 is not present.
- the ridge 25 can include other configurations, e.g., the ridge 25 may have straight or tapered walls.
- the interior surface 27 of the ridge may be coated or covered with a material that is tacky or has non-slip properties, such as rubber, or may have a roughened surface to increase the frictional force that holds the syringe tip 32 in place.
- the devices disclosed herein can provide the ability to treat the tissue and then transfer the tissue directly into a syringe 30 without needing an additional transfer step and without opening the system 10 .
- the material holding or processing vessel 20 ′ can additionally include elements to wash or treat tissue before the tissue is transmitted to the syringe 30 ′ as shown in FIG. 4 .
- Such elements include, but are not limited to, inlets and outlets for hoses or other tubes, filters, and mixing blades.
- a vessel such as that provided with the REVOLVETM system (LIFECELL CORPORATION, Branchburg, N.J.), which incorporates such features, may be adapted in accordance with the present disclosure.
- the present devices may be used with any tissue system wherein the tissue holding portion is open to atmospheric pressure to prevent negative pressure buildup with in the tissue holding portion during a transfer operation.
- the material holding or processing vessel may include several support feet 42 to allow the device to rest on a table without tipping.
- the interior volume 24 ′ of the vessel 20 ′ may contain several additional components to facilitate tissue washing and processing.
- the material holding or processing vessel 20 ′ may contain a mesh filter 41 to support the tissue above the bottom portion 29 ′ of the vessel prior to washing.
- the mesh filter 41 may be used to retain unwanted components of the tissue while allowing desirable cells and tissue components to pass through.
- the mesh filter is a 100-500 micron filter that can capture collagen strands and stringy tissue.
- one or more ports 44 may be present on a lid 45 of the material holding or processing device 20 ′.
- the ports 44 may be used as fluid inlets or fluid outlets to facilitate tissue washing and treatment.
- the ports 44 may be suitable to engage with catheter-tip or luer-lock syringe connectors or may be configured to connect to tubing using compression, barbed, luer, threaded, push-to-connect, flared, or any other suitable fittings meeting application-specific requirements. Based on this disclosure, one of ordinary skill in the art will appreciate that a port or ports 44 may be located in other places on the material holding or processing vessel 20 ′ including, but not limited to, the lid 45 , the exterior wall of the vessel 22 ′, or the bottom portion of the vessel 29 ′.
- the interior volume 24 ′ of the vessel 20 ′ may contain a hose 43 to provide a direct connection between a port 44 on the lid 45 of the vessel and the portion of the interior volume 24 ′ of the vessel 20 ′ proximal to the bottom portion 29 ′.
- the hose 43 may be used to withdraw or insert fluids into the interior volume 24 ′ of the vessel 20 ′.
- the interior volume 24 ′ of the vessel 20 ′ may also contain propelling or mixing blades 46 connected to a crank 47 on the lid 45 of the vessel 20 .
- the crank 47 may be located in other places on the material holding or processing vessel 20 ′ including, but not limited to, the lid 45 , the exterior wall of the vessel 22 ′, or the bottom portion of the vessel 29 ′.
- the mixing blades 46 By turning the mixing blades 46 with the crank 47 , the tissue is actively mixed with cleaning solutions and physically processed.
- the mixing blades 46 may include lower blades that scrape the bottom of the mesh filter 41 and lift up the tissue for thorough washing.
- the mixing blades 46 may include a middle comb that sweeps the tissue and picks up stringy tissue and/or top blades that stir the tissue.
- the tissue transfer system may include a plurality of outlets and syringes to enable simultaneous or serial loading of multiple syringes at a time.
- FIG. 5 illustrates an embodiment wherein the material holding or processing vessel 520 includes a plurality of outlets 561 , 562 , 563 , 564 such that the vessel 520 can mate with a plurality of syringes 531 , 532 , 533 , 534 simultaneously to transfer material.
- a plurality of plugs or valves may be provided to seal off outlets that are not needed or used in a particular transfer operation.
- the plugs or valves may be constructed of a variety of materials and may be permanently attached to the vessel or may be separate units.
- FIG. 5 depicts an exemplary embodiment that contains four outlets 561 , 562 , 563 , 564 and four syringes 531 , 532 , 533 , 534 ; however, it will be apparent in view of the present disclosure that any number of outlets and syringes can be used in accordance with various embodiments and that the number of outlets and syringes can vary depending upon application-specific requirements.
- the material holding or processing vessel 520 may include a plurality of discrete exterior fluid passages 541 , 542 , 543 , 544 wherein the proximal end 541 a , 542 a , 543 a , 544 a of each passage is connected to an individual vessel outlet 561 , 562 , 563 , 564 , and the distal end 541 b , 542 b , 543 b , 544 b of each passage emerges separately from the vessel's exterior wall 522 .
- multiple negative pressure sources may be individually controlled to enable tissue transfer only into certain syringes chosen from a plurality of available syringes.
- the material holding or processing vessel 520 may include a single, multiply-connected exterior fluid passage with a plurality of proximal ends that are each connected to an individual vessel outlet 561 , 562 , 563 , 564 .
- Such an exterior fluid passage is advantageous if the number of available sources of negative pressure are limited or if the user desires to limit the number of external connections to the device.
- the plurality of proximal ends of the exterior fluid passage may be actuated individually using a set of valves to provide transfer tissue into only specific syringes chosen from among a plurality.
- the syringe tip 32 may further include a second passage 38 through the peripheral wall 39 of the syringe 30 that is in fluid communication with the interior volume 34 of the syringe body 33 and the exterior fluid passage 28 of the vessel 20 as shown in FIG. 6 .
- This second passage 38 can provide fluid communication between the distal end 28 b of the exterior fluid passage 28 of the vessel 20 , the interior volume 34 of the syringe 30 (through the peripheral wall 39 ), and the interior volume 24 of the vessel 20 .
- tissue transfer vessel in another embodiment, may operate to transfer tissue into any container that can properly mate with the vessel's outlet.
- FIG. 7 illustrates a device to fill syringes with tissue, according to various embodiments.
- the device includes a material holding or processing vessel 20 that can further include an exterior wall 22 surrounding an interior volume 24 and an outlet 26 in fluid communication with the interior volume 24 .
- the material holding or processing vessel 20 can also include an exterior fluid passage 28 .
- the material holding or processing vessel 20 can be formed of a variety of materials and have a variety of shapes.
- the vessel 20 has a bottom portion 29 that is predominantly conical in nature and that terminates at an outlet 26 .
- the outlet 26 can have a variety of suitable configurations, e.g., with a circular, elliptical, or other polygonal cross-sectional shape.
- the material holding or processing vessel 20 can contain additional instruments to facilitate tissue washing or processing. These instruments may include, but are not limited to, mixing blades, fluid inlets, fluid outlets, and filters (see FIG. 4 ).
- the material holding or processing vessel 20 can have a plurality of outlets 26 and a plurality of exterior fluid passages 28 .
- the vessel 20 may have a plurality of discrete exterior fluid passages wherein the proximal end of each passage is connected to an individual vessel outlet and the distal end of each passage emerges separately from the vessel's exterior wall 22 .
- the vessel 20 may have a single, multiply-connected exterior fluid passage 28 with a plurality of proximal ends that are each connected to an individual vessel outlet.
- a tissue transfer system may include a tissue transfer adapter to facilitate transfer of a material out of a container or fluid conduit.
- the tissue transfer adapter may include an adapter body having an outer wall and first, second, and third ends.
- an elongated body containing a lumen may pass through the interior of the adapter body between the first end and the second end while a fluid passage passes through the interior of the adapter body between the third end and the second end.
- an elongated body containing a lumen may pass through the interior of the adapter body between the third end and the second end while a fluid passage passes through the interior of the adapter body between the first end and the second end.
- a tissue transfer adapter may be used with a variety of containers and adipose transfer devices.
- a tissue transfer system 800 may include a material holding or processing vessel 820 , an adapter 810 , and a syringe 830 .
- the adapter may include an adapter body 811 having an outer wall and a plurality of ends 810 a , 810 b , 810 c that may be adapted to connect to the material holding or processing vessel 820 , the syringe 830 , or a source of negative pressure.
- Each of the plurality of ends 810 a , 810 b , 810 c can have an opening.
- the adapter 810 may contain an elongated body 819 having a lumen 813 that is in fluid communication with both the interior volume 824 of the vessel 820 and the interior volume 834 of the syringe 830 .
- the tissue transfer system 800 can be operated in the orientation shown in FIG. 8A (i.e., vertical with the syringe pointing downward).
- a fluid passage 818 may be contained within the adapter body and may surround an elongated body 819 .
- the outer diameter of the elongated body 819 is small enough to leave clearance within the fluid passage 818 for air to flow.
- the outer diameter of the elongated body 819 could be as much as 90% or even 95% of the inner diameter of the fluid passage 818 and still leave room for sufficient airflow.
- a distal end 818 b of the fluid passage 818 may be connected to a source of negative pressure, while the proximal end 818 a of the fluid passage 818 is in fluid communication with the interior volume 834 of the syringe 830 .
- the adapter may be configured to prevent material from passing from the interior volume 824 of a material holding or processing vessel 820 into the fluid passage 818 through a first end 810 a of an adapter body 811 .
- tissue contained within the vessel 820 will be pulled from the interior volume 824 of the vessel 820 , through at least a portion of the lumen 813 , and into the interior volume 834 of the syringe body 833 .
- the inner diameter of the lumen 813 can be as large as possible to allow passage of viscous fluids.
- the inner diameter of the lumen 813 can be large enough to allow passage of particles or cell clusters ranging in size from 200 microns to 3 mm.
- the inner diameter of the lumen 813 can be at least 1.4 mm, which is the inner diameter of a luer-lock tip.
- the adapter 810 may be formed of a variety of materials and have a variety of shapes.
- the adapter 810 depicted in FIG. 8A is shown as a three-way adapter.
- the adapter 810 may include any number of ends and/or outlets in accordance with various embodiments and that the number of ends and/or outlets can vary depending upon application-specific requirements.
- the ends 810 a , 810 b , 810 c of the adapter 810 may be tubular or have flat sides, and the individual ends may have any length as demanded by application-specific requirements.
- the ends 810 a , 810 b , 810 c may terminate in any of a variety of connectors including luer-type connections, threaded fittings, tube fittings, straight-walled or bare tubes, or any other connection as required by a specific application.
- a fluid passage 818 and the lumen 813 of an elongated body 819 may not be in fluid communication with one another within the adapter body 811 but may be in fluid communication through an outlet 816 external to the adapter body 811 .
- the distal end 813 b of the lumen 813 contained within the elongated body 819 may be adapted to mate with the outlet 826 of the vessel 820 such that a leak-free seal is created between the vessel 820 and the lumen 813 .
- the fluid passage 818 may include all of the remaining interior volume of the adapter body 811 that is not contained within the elongated body 819 , or it may be characterized as a separate channel or lumen.
- the elongated body 819 may be created of a variety of materials and may take a variety of shapes.
- the elongated body 819 can be made of stainless steel, metals, plastics, or any other substance that is compatible with the material to be transferred and meets application-specific requirements.
- the elongated body 819 may contain a lumen 813 and can pass through the adapter body 811 .
- the proximal end 813 a of the lumen 813 contained within the elongated body 819 may terminate in an outlet 816 and may also extend out of the adapter 810 and into the mated syringe 830 .
- the outlet 816 lies within the syringe body 833 and beyond the syringe tip 832 .
- an elongated body 819 may contain an exit port 815 located on a portion of the elongated body 819 exterior to the adapter body 811 .
- the outlet 816 or exit port 815 can be placed at least 3 mm gravitationally lower than the adapter body 811 .
- the outlet 816 or exit port 815 can be placed below the neck of the syringe body 833 so that the transferred tissue will fall into the syringe without being carried up into the external fluid passage 818 by the passage of air.
- the outlet 816 of the elongated body 819 may be closed or sealed shut.
- the elongated body 819 can act as a syringe plunger depressor that prevents the syringe plunger 836 from entering the syringe body 834 while the syringe 830 is attached to the adapter body 811 .
- the material holding or processing vessel 820 can be formed of a variety of materials and have a variety of shapes.
- the vessel 820 is a rigid structure having a bottom portion 829 that is predominantly conical in nature.
- the bottom portion 829 may terminate in an outlet 826 .
- the outlet 826 may take any of a number of shapes or forms including, for example but not limited to, circular, elliptical, hexagonal, or polygonal shapes.
- the exterior wall 822 of the bottom portion 829 may include additional elements to allow coupling of the vessel 820 with various connectors. These elements may include, but are not limited to, luer fittings, pipe threads, tube fittings, or any other suitable fitting as required by a particular application.
- the syringe 830 may include a plunger 836 that is adapted to move longitudinally within the syringe body 833 .
- the plunger 836 seals the interior volume 834 of the syringe 830 to allow a negative pressure source connected to the distal end 818 b of the fluid passage 818 of the adapter 810 to create negative pressure within the interior volume of the syringe 834 .
- the plunger 836 can be used to force material out of the syringe's interior volume 834 through the syringe tip 832 .
- the end 832 a of the syringe tip 832 may include additional elements to allow coupling of the syringe 830 with various connector types. These elements may include, but are not limited to, luer fittings, pipe threads, tube fittings, or any other suitable fitting as required by a particular application.
- an alternate embodiment of a tissue transfer system 805 may include a material transfer tube 860 , an adapter 840 , and a syringe 830 .
- the adapter may include an adapter body 841 having an outer wall and a plurality of ends 840 a , 840 b , 840 c that are adapted to connect to the material transfer tube 860 , the syringe 830 , or a source of negative pressure.
- Each of the plurality of ends 840 a , 840 b , 840 c can have an opening.
- the adapter 840 may contain a fluid passage 843 that is in fluid communication with the interior volume 864 of the transfer tube 860 and the interior volume 834 of the syringe 830 .
- a distal end 848 b of a lumen 848 contained within an elongated body 849 may be connected to a source of negative pressure while a proximal end 848 a of the lumen 848 is in fluid communication with the interior volume 834 of the syringe.
- tissue material contained within the tube 860 will be pulled from the interior volume 864 of the tube 860 , through the fluid passage 843 , and into the interior volume 834 of the syringe body 833 .
- the system 805 of FIG. 8B can be operated as close to vertical as possible as depicted in the figure.
- the adapter 840 may be formed of a variety of materials and have a variety of shapes.
- the adapter 840 depicted in FIG. 8B is shown as a three-way adapter.
- the adapter 840 may have any number of ends and/or outlets in accordance with various embodiments and that the number of ends and/or outlets can vary depending upon application-specific requirements.
- the ends 840 a , 840 b , 840 c of the adapter 840 may be tubular or have flat sides, and the individual ends may have any length as demanded by application-specific requirements.
- the ends 840 a , 840 b , 840 c may terminate in any of a variety of connectors including luer-type connections, threaded fittings, tube fittings, straight-walled or bare tubes, or any other connection as required by a specific application.
- a lumen 848 contained within an elongated body 849 and a fluid passage 843 may not be in fluid communication with one another within the adapter body 841 .
- the distal end 843 b of the fluid passage 843 may be adapted to mate with the outlet 866 of the tube 860 such that a leak-free seal is created between the tube 860 and the fluid passage 843 .
- the fluid passage 843 may include all of the remaining interior volume of the adapter body 841 that is not contained within the elongated body 849 , or it may be characterized as a separate channel or lumen.
- the elongated body 849 may be created of a variety of materials and may take a variety of shapes.
- the elongated body 849 can be made of stainless steel, metals, plastics, or any other substance that is compatible with the material to be transferred and that meets application-specific requirements.
- the proximal end 848 a of the lumen 848 may terminate in an outlet 846 and may also extend out of the adapter body 841 and into the mated syringe 830 .
- the outlet 846 lies within the syringe body 833 and beyond the syringe tip 832 .
- the length of the elongated body 849 containing a lumen 848 is determined by the volume of tissue that is desired to be transferred into the syringe 830 . Operation of the system beyond the pre-determined maximum transfer volume may cause tissue to be aspirated into the proximal end 848 a of the lumen 848 .
- the elongated body 849 can contain an air inlet port 845 . The air inlet port 845 can allow air to pass into the elongated body 849 even if the outlet 846 is blocked by contact with a portion of the syringe plunger 833 .
- the material transfer tube 860 can be separately formed or may be formed integrally with a material holding or processing vessel 20 ′.
- the tube 860 may be made from a variety of materials and may take the form of a variety of shapes and sizes.
- the tube 860 may be made of, for example but not limited to, PVC, high-density polyethylene, nylon, latex, silicone, polyurethane, TYGON®, or any other non-reactive tubing or hose as needed to meet application-specific requirements.
- the inner diameter, outer diameter, and wall thickness of the material transfer tube 860 may be any values suitable to meet application-specific requirements.
- the material transfer tube 860 extends from an exit point on the lid 45 of a material holding or processing vessel 20 ′ to the bottom portion 29 ′ of the vessel 20 ′ where material is held before or after processing.
- FIG. 8C an expanded view of an alternative embodiment of the elongated body 849 of FIG. 8B is depicted.
- the proximal end 849 a and the distal end 849 b of the elongated body 849 may have different outer diameters.
- the outer diameter of the distal end 849 b is minimized to create a maximized inner diameter of the fluid passage 843 .
- a large inner diameter of the fluid passage 843 allows faster flow of viscous tissues or fluids into the syringe body 833 .
- the outer diameter of the distal end 849 b of the elongated body 849 is as small as 1 mm.
- the outer diameter of the proximal end 849 a of the elongated body can be flared in some embodiments to be larger than the outer diameter of the distal end 849 b . Because the proximal end 849 a of the elongated body 849 can act as a support column and physically block the syringe plunger 836 from entering the syringe body 833 during a transfer operation, a larger outer diameter can increase the buckling strength of the elongated body 849 .
- the outer diameter of the proximal end 849 a of the elongated body 849 can be in a range of 3 to 4 mm. In some embodiments, the transition between the different outer diameters of the proximal end 849 a and the distal end 849 b can occur in the vicinity of the syringe tip 832 .
- an adapter 840 of a tissue transfer system 808 may be mounted to a material holding or processing vessel 880 .
- the adapter 840 may include an adapter body 841 having a plurality of ends 840 a , 840 b , 840 c that are adapted to connect to the material transfer tube 860 , the syringe 830 , or a source of negative pressure.
- Each of the plurality of ends 840 a , 840 b , 840 c can have an opening.
- One or more of the plurality of ends 840 a , 840 b , 840 c of the adapter 840 may be integrally constructed with the material holding or processing vessel 880 or may be adapted to connect to one or more ports on the vessel.
- One or more of the plurality of ends 840 a , 840 b , 840 c may be in fluid communication with a material transfer tube 860 .
- the tissue transfer system 808 may include a protective sheath 870 that prevents a user from directly contacting the elongated body 849 , which could potentially damage the elongated body 849 or injure the user.
- the protective sheath 870 can be constructed of a variety of materials and may have a variety of shapes and sizes according to application-specific requirements.
- the protective sheath 870 may be made, for example but not limited to, metals or rigid plastics.
- the inner diameter of the protective sheath 870 may be chosen to accommodate the passage of a syringe 830 .
- the protective sheath 870 may be attached to the material holding or processing vessel 880 or the adapter 840 .
- the protective sheath 870 may be detached from its mount and replaced with a sheath having similar properties or different properties including, but not limited to, inner diameter, size, or composition.
- multiple syringes 830 a , 830 b may be filled in sequence by connecting two or more adapters 810 , 890 in series.
- a source of negative pressure may be applied to an end 890 c of the final adapter 890 .
- the negative pressure can thereby be communicated through all of the adapters 810 , 890 and interiors 834 a , 834 b of syringes 830 a , 830 b before reaching a material holding or processing vessel 820 or material transfer tube 860 containing tissue to be transferred.
- the negative pressure can draw the tissue into a lumen 813 of a first adapter 810 .
- the tissue When the tissue reaches an exit port 815 of the lumen 813 , the tissue exits the lumen 813 and begins to fill the interior volume 834 a of the first syringe 830 a .
- the tissue can continue to fill into the fluid passage 818 of the first adapter 810 .
- the tissue can then be pulled through a transfer tube 891 and can enter a lumen 893 of a second adapter 890 .
- the negative pressure source may be shut off to prevent clogging. For clarity, only two adapters and two syringes are displayed in FIG.
- a plurality of syringes 830 a , 830 b can be connected to a vacuum manifold in parallel rather than in series to reduce the path the tissue must travel to reach the final syringe in series.
- FIG. 9 illustrates an exemplary method 900 for tissue transfer.
- the method 900 includes selecting 910 a material holding or processing vessel having an outlet and an exterior fluid passage and containing tissue or other material to be transferred.
- the method 900 includes mating 920 an end of a syringe to the outlet of the vessel to place the interior of the syringe body and the interior of the vessel into fluid communication, and the exterior fluid passage and the interior of the vessel into fluid communication.
- the method 900 includes attaching 930 a negative pressure source to the exterior fluid passage.
- the method 900 includes engaging 940 the negative pressure source to draw the tissue or other material from the vessel through the outlet and into the syringe body.
- the method 900 includes allowing 950 tissue to flow until the desired volume has been collected.
- the method 900 includes detaching 960 the syringe from the vessel.
- the method 900 includes proceeding 970 to re-implantation.
- the step of selecting 910 a material holding or processing vessel having an outlet and an exterior fluid passage and containing tissue or other material to be transferred can include, for example but not limited to, selecting a material holding or processing vessel 20 including an outlet 26 and an exterior fluid passage 28 and filled with adipose tissue as described above in connection with FIGS. 1A, 1B, and 2 .
- the step of mating 920 an end of a syringe to the outlet of the vessel to place the interior of the syringe body and the interior of the vessel into fluid communication, and the exterior fluid passage and the interior of the vessel into fluid communication can include, for example but not limited to, coupling an end 32 a of a syringe 30 to an outlet 26 of a vessel 20 such that the interior surface 27 of a ridge 25 is in contact with the peripheral wall 39 of the syringe 30 as described above in connection with FIGS. 1A, 1B, and 2 .
- the step of attaching 930 a negative pressure source to the exterior fluid passage can include, for example but not limited to, attaching a standalone vacuum pump or in-house vacuum provided in an operating room or related facility as described above in connection with FIGS. 1A, 1B, and 2 .
- the step of engaging 940 the negative pressure source to draw the tissue or other material from the vessel through the outlet and into the syringe body can include, for example but not limited to, powering on a vacuum pump or releasing a hose clamp to enable the vacuum source to draw tissue from a vessel 20 through an outlet 26 and into a syringe body 33 as described above in connection with FIGS. 1A, 1B, and 2 .
- the step of allowing 950 tissue to flow until the desired volume has been collected can include, for example but not limited to, determining how much tissue is available to be transferred and/or how much tissue is needed in the new location and using that determination to disable the vacuum source when the proper volume has been reached.
- the step of detaching 960 the syringe from the vessel can include, for example but not limited to, disconnecting the syringe 30 from the vessel 20 as described above in connection with FIGS. 1A, 1B, and 2 .
- the step of proceeding 970 to re-implantation can include, for example but not limited to, attaching a needle or cannula to a syringe tip 32 of a syringe 30 , releasing a plunger lock 37 on the syringe 30 , and injecting tissue into a patient.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Prostheses (AREA)
Abstract
The present disclosure provides systems and methods for transfer of tissue or other materials such as adipose tissue. The systems and methods can include a vessel and a syringe to facilitate transfer of tissue between one or more vessels and tissue implantation devices.
Description
- This application is a divisional application from U.S. patent application Ser. No. 15/386,450, filed Dec. 21, 2016, which claims priority to U.S. Provisional Patent Application No. 62/270,789, filed Dec. 22, 2015, the entire contents of the above applications being incorporated herein by reference.
- The present disclosure relates to surgical instruments and methods including instruments and methods for transfer of tissue such as adipose tissue.
- Autologous fat grafting has become increasingly common and has numerous clinical applications such as facial contouring, breast reconstruction and/or augmentation, and other aesthetic or reconstructive procedures. In addition, autologous fat grafting has been found to have relatively low donor-site morbidity compared with other surgical options.
- In some cases, however, autologous fat grafting provides somewhat unpredictable outcomes. For example, the amount of adipose cell viability after implantation is variable, and this issue can result in less than optimal outcomes and/or require multiple or revision procedures.
- Adipocyte viability can be affected by a number of factors including aspiration pressure, injection pressure, and sheer stress. If done improperly, the loading and unloading of cells from syringes and other vessels can result in damage to the cells and reduce overall cell viability after implantation. To mitigate these effects, the user must exert careful control over pressures and sheer stresses when loading and unloading cells. This control can be achieved by introducing a level of automation and repeatability in cell transfer.
- Adipose tissue transfer generally requires one or more steps wherein adipose tissue is passed between tissue collection or delivery devices. These steps can be time-consuming. In addition, the transfer steps, including loading of delivery vessels or syringes, can cause a reduction in cell viability if undesirably large forces (e.g., shear forces) are placed on tissues during the process.
- The present disclosure provides devices and methods for improved tissue transfer, including devices and methods for transferring adipose tissue. The devices and methods allow controlled loading of adipose delivery devices, and can reduce operative times, while controlling tissue transfer processes to increase or control the consistency of cell viability during tissue transfer.
- A tissue transfer system is provided according to various embodiments described herein. The tissue transfer system includes a material holding or processing vessel. The material holding or processing vessel includes an exterior wall surrounding an interior volume for holding tissue, an outlet in fluid communication with the interior volume, and an exterior fluid passage having an opening disposed proximate an opening of the outlet. The tissue transfer system also includes a syringe. The syringe includes a syringe body having an interior volume and a syringe tip comprising a peripheral wall having a distal opening forming a first passage in fluid communication with the interior volume. The syringe tip is adapted to be mated with the outlet of the material holding or processing vessel such that the opening of the outlet is in fluid communication with the first passage of the syringe tip and the exterior fluid passage of the material holding or processing vessel is in fluid communication with the interior volume of the syringe body.
- A tissue transfer vessel is provided according to various embodiments described herein. The tissue transfer vessel includes an exterior wall surrounding an interior volume for holding a tissue and an elongated lumen extending from the exterior wall to an outlet. The tissue transfer vessel also includes an exterior fluid passage having a proximal opening, a lumen, and a distal opening. The proximal opening, lumen, and distal opening are external to the interior volume, and the distal opening is located proximate an opening of the outlet.
- A method of transferring tissue or other material to a syringe is provided according to various embodiments described herein. The method includes selecting a material holding or processing vessel having an outlet and an exterior fluid passage and containing a tissue or other material to be transferred. The method includes mating an end of a syringe to the outlet of the vessel to place the interior of the syringe body and the interior of the vessel into fluid communication and to place the exterior fluid passage and the interior of the vessel into fluid communication. The method includes attaching a negative pressure source to the exterior fluid passage. The method includes engaging the negative pressure source to draw the tissue or other material from the vessel through the outlet and into the syringe body.
- A tissue transfer adapter is provided according to various embodiments described herein. The tissue transfer adapter includes an adapter body comprising an outer wall and a first end, a second end, and a third end. The tissue transfer adapter also includes an elongated body passing from the first end and extending through the adapter body and past an opening in the second end to a distal tip. The elongated body contains a lumen extending therethrough. The tissue transfer adapter also includes a fluid passage contained within the outer wall and fluidly coupling the opening of the second end with an opening in the third end. The first end of the adapter body is configured to be mated with a container or fluid conduit such that an interior volume of the container or fluid conduit is in fluid communication with the lumen of the elongated body such that upon application of suction to the opening in the third end, a material contained within the container or fluid conduit will be drawn through at least a portion of the lumen of the elongated body and out of the elongated body.
- A tissue transfer adapter is provided according to various embodiments described herein. The tissue transfer adapter includes an adapter body comprising an outer wall and a first end, a second end, and a third end. The adapter body comprises an opening in each of the first end and the second end. The tissue transfer adapter includes a fluid passage contained within the outer wall and fluidly coupling the opening of the first end with the opening in the second end. The tissue transfer adapter includes an elongated body in fluid communication with an opening in the third end that extends from the third end through the adapter body and past the opening in the second end to a distal tip. The elongated body contains a lumen extending therethrough to a distal opening. The first end of the adapter body is configured to be mated with a container or fluid conduit such that an interior volume of the container or fluid conduit is in fluid communication with the fluid passage such that upon application of suction to an opening in the third end, a material contained within the container or fluid conduit will be drawn into the opening in the first end and out of the opening in the second end.
- A method of transferring tissue using the tissue transfer adapter is provided according to various embodiments described herein. The method includes providing a tissue transfer adapter as described above. The method includes coupling a syringe to the opening in the second end. The method includes coupling a material holding or processing vessel to the opening in the first end. The method includes attaching a source of negative pressure to the opening in the third end. The method includes applying a negative pressure such that a tissue exits the material holding or processing vessel and enters an interior volume of the syringe.
- A tissue transfer device is provided according to various embodiments described herein. The tissue transfer device includes a material holding or processing vessel that includes an exterior wall surrounding an interior volume for holding tissue. The exterior wall includes an adapter body comprising an outer wall and a first end, a second end, and a third end. The adapter body comprises an opening in each of the first end and the second end. The exterior wall includes a fluid passage contained within the outer wall and fluidly coupling the opening of the first end with the opening in the second end. The exterior wall includes an elongated body in fluid communication with an opening in the third end that extends from the third end through the adapter body and past the opening in the second end to a distal tip. The elongated body contains a lumen extending therethrough to a distal opening. The first end of the adapter body is mated with the material holding or processing vessel such that an interior volume of the material holding or processing vessel is in fluid communication with the fluid passage such that upon application of suction to an opening in the third end, a material contained within the material holding or processing vessel will be drawn into the opening in the first end and out of the opening in the second end.
- A method of transferring tissue or other material to a syringe using the tissue transfer device is provided according to various embodiments described herein. The method includes selecting a material holding or processing vessel as described above and containing tissue or other material to be transferred. The method includes mating a proximal portion of a syringe to a second opening of the tissue transfer adapter of the vessel to place the interior of the syringe body and the interior of the vessel into fluid communication through an elongated body. The method includes attaching a negative pressure source to a third opening of the tissue transfer adapter. The method includes engaging the negative pressure source to draw the tissue or other material from the vessel through the tissue transfer adapter and into the syringe body.
-
FIG. 1A illustrates a perspective view of a system for transferring tissue, according to various embodiments. -
FIG. 1B illustrates a cross-sectional view of the system shown inFIG. 1A . -
FIG. 2 illustrates an enlarged view of a portion of the system shown inFIGS. 1A and 1B . -
FIG. 3A illustrates a cross-sectional view of a portion of a system for transferring tissue, according to various embodiments. -
FIG. 3B illustrates a cross-sectional view of a portion of a system for transferring tissue, according to various embodiments. -
FIG. 4 illustrates a cross-sectional view of a system for processing and transferring tissue, according to various embodiments. -
FIG. 5 illustrates a cross-sectional view of another system for tissue transfers, including components for transfer to multiple delivery devices simultaneously, according to various embodiments. -
FIG. 6 illustrates a cross-sectional view of a portion of a system for transferring tissue wherein an external fluid passage of the vessel is in fluid communication with a secondary fluid passage in the peripheral wall of the syringe, according to various embodiments. -
FIG. 7 illustrates a cross-sectional view of a portion of a device to fill syringes with tissue, according to various embodiments. -
FIG. 8A illustrates a cross-sectional view of an adapter to fill syringes with tissue, according to various embodiments. -
FIG. 8B illustrates a cross-sectional view of an adapter to fill syringes with tissue, according to various embodiments. -
FIG. 8C illustrates an expanded view of an alternative embodiment of an elongated body shown inFIG. 8B according to various embodiments. -
FIG. 8D illustrates an adapter of a tissue transfer system mounted to a material holding or processing vessel in accordance with various embodiments. -
FIG. 8E illustrates adapters of a tissue transfer system connected in series in accordance with various embodiments. -
FIG. 9 is a flow chart illustrating steps of a method for tissue transfer, according to various embodiments. - Reference will now be made in detail to certain exemplary embodiments according to the present disclosure, certain examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
- In this application, the use of the singular includes the plural unless specifically stated otherwise. In this application, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including”, as well as other forms such as “included” and “includes”, is not limiting. In this application, the use of the word “exterior” is not limited to strictly external locations but is also extended to mean “not in fluid communication with”.
- The use of the word “syringe” is not limited to any industry standard and includes any of a variety of receptacles in different shapes and sizes. Any range described herein will be understood to include the endpoints and all values between the endpoints. In this application, “gravitationally higher than” refers to an object further from the Earth's surface than another object while “gravitationally lower than” refers to an object closer to the Earth's surface than another object.
- The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this application including but not limited to patents, patent applications, articles, books, and treatises are hereby expressly incorporated by reference in their entirety for any purpose.
- Various human and animal tissues can be used to produce products for treating patients. For example, various tissue products have been produced for regeneration, repair, augmentation, reinforcement, and/or treatment of human tissues that have been damaged or lost due to various diseases and/or structural damage (e.g., from trauma, surgery, atrophy, and/or long-term wear and degeneration). Fat grafting, including autologous fat grafting, can be useful for a variety of clinical applications including facial fillers, breast augmentation, buttock augmentation/sculpting, augmentation of other tissue sites, correction of lumpectomy defects, cranial-facial defect correction, and correction of lipoplasty defects (divots).
- Grafting of various tissues, however, can be unpredictable and can sometimes result in variable outcomes, multiple procedures, and/or revision surgeries. Although the precise reasons for graft variability are not always known, there is evidence that the viability of grafted cells, including grafted adipose tissues, is affected by surgical techniques such as the amount of pressure and/or shear stress applied to the grafts as they are transferred among vessels and syringes during aspiration and re-injection.
- Control of surgical technique during tissue manipulation can be complex. For example, it may be difficult for clinicians to determine the pressure and/or shear applied to grafts during a particular transfer procedure. This can be true for a variety of reasons. For example, the pressure and shear stress exerted on a sample can relate to a number of variables including properties of the particular vessels and injection devices used (e.g., syringe and needle/cannula size, transfer rate, vessel outlet size, vessel withdrawal rate, vessel and injection device material properties [e.g., friction properties], tissue viscosity, clogging of cannulas, and backpressure from a host site) or other mechanical properties. See, e.g., U.S. patent application Ser. No. 14/682,342, titled “Injection Sensor with Feedback Mechanism,” to Barere et al., which describes devices for controlling shear and/or other adipose injection variable, and is herein incorporated by reference. Accordingly, the present disclosure provides devices and methods to facilitate control of surgical techniques to improve graft outcomes.
- In addition, loading of injection devices or otherwise transferring tissue prior to implantation or during processing can be time consuming. Accordingly, the present disclosure provides devices and methods that assist in loading/unloading of tissue transfer devices, thereby reducing operative time. In some embodiments, the systems, devices, and methods can be used to transfer adipose tissues or other implantable materials (e.g., injectable or implantable gels, pastes, or putties).
- As used herein, “adipose tissue” refers to adipose tissue obtained by any means including, for example, liposuction and/or tumescent liposuction. In addition, the adipose tissue may be substantially intact or may be altered by, for example, washing with saline, antimicrobials, detergents, or other agents; the addition of therapeutic agents such an analgesics, antimicrobials, and anti-inflammatories; the removal of some cells or acellular components; or disruption or alteration by the collection process itself including, for example, during liposuction or tumescent liposuction. The adipose tissue can be autologous tissue, allogeneic tissue, or xenogenic tissue (e.g., porcine tissue).
- In one embodiment, a tissue transfer system includes a vessel and a syringe, wherein the vessel has an exterior fluid passage through which a negative pressure can be applied. As discussed in detail below, the exterior fluid passage can be in fluid communication with the interior of the syringe and the vessel and can be configured to facilitate transfer of tissue from the vessel into the syringe. The vessel can be constructed in such a way as to limit the ability of the tissue material to enter the exterior fluid passage, thereby preventing clogging of the passage.
-
FIGS. 1A and 1B illustrate perspective and cross-sectional views, respectively, of asystem 10 for transferring tissue, according to various embodiments; andFIG. 2 illustrates a magnified cross-sectional view of a portion of thesystem 10. - The
system 10 can include a material holding or processingvessel 20 and asyringe 30. As discussed further below, the material holding or processingvessel 20 can include anexterior wall 22 surrounding aninterior volume 24 and anoutlet 26 in fluid communication with theinterior volume 24. In addition, the material holding or processing vessel can also include anexterior fluid passage 28 that includes alumen 28 c and has one end proximal 28 a to an opening of theoutlet 26. In exemplary embodiments, theend 28 a of theexterior fluid passage 28 is placed gravitationally higher than the opening of theoutlet 26 to minimize aspiration of tissue into the exterior fluid passage during a transfer operation. The syringe can also include asyringe tip 32 and asyringe body 33 having aninterior volume 34. Thesyringe tip 32 can be adapted to mate with thevessel outlet 26. When thesyringe 30 andvessel 20 are mated and a negative pressure is applied to thedistal end 28 b of theexternal fluid passage 28, tissue material contained within thevessel 20 will be pulled from theinterior volume 24 of thevessel 20 into theinterior volume 34 of thesyringe body 33. - The material holding or processing
vessel 20 can be formed of a variety of materials and have a variety of shapes. In some embodiments, thevessel 20 has abottom portion 29 that is predominantly conical in nature and that terminates at anoutlet 26. Theoutlet 26 can have a variety of suitable configurations, e.g., with a circular, elliptical, or other polygonal cross-sectional shape. - In some embodiments, the material holding or processing
vessel 20 can further include anelongated lumen 23 that extends from theexterior wall 22 to theoutlet 26. The length of thelumen 23 may be selected such that theoutlet 26 at thesyringe tip 32 extends into thesyringe body 33 when thesyringe 30 andvessel 20 are mated. When theoutlet 26 is extended into the syringe body 33 (and particularly extended gravitationally lower than theinlet 28 a), material contained within thevessel 20 such as, for example, adipose tissue can be transferred to theinterior volume 34 of thesyringe body 33 but will not easily pass into theexterior fluid passage 28. As a result, the tissue is prevented from blocking or clogging thelumen 28 c of theexterior fluid passage 28 during operation. - The term “syringe” is meant, according to the present application, to refer generally to any tissue holder or container that may be used to receive and transfer tissue. It will be apparent in view of the present disclosure that the
syringe 30 can take the form of a range of devices in accordance with various embodiments and that the characteristics of the syringe device can vary depending upon application-specific requirements. According to various embodiments, thesyringe 30 contains asyringe body 33, asyringe tip 32, and aplunger 36 that seals the interior volume of the syringe. In alternative embodiments, thesyringe 30 may be a further material holding or processing vessel or simply a tissue holding system where tissue is collected and retained for later use. According to various embodiments, thesyringe 30 may be a tissue holding container suitable for cold- or cryo-storage, or thesyringe 30 may be a device similar to a bulb or bladder that can be compressed to expel the tissue after loading. - The material holding or processing
vessel 20 may further include amating surface 21 that makes contact with anend 32 a of thesyringe tip 32. The contact between themating surface 21 and theend 32 a of thesyringe tip 32 can produce a seal to prevent leakage of material outside of thevessel 20 andsyringe 30 during transfer. This seal can be achieved, for example, by coating themating surface 21 with a pliant, air-tight and/or water-tight material, by placing an O-ring at the mating surface, or simply through the pressure applied to mate thevessel 20 andsyringe 30. - In some embodiments, the material holding or processing
vessel 20 further includes aridge 25 that facilitates mating between thesyringe 30 and thevessel 20. Theridge 25 concentrically surrounds theoutlet 26 in exemplary embodiments. Theridge 25 can include aninterior surface 27 that is configured to mate with an exteriorlateral surface 37 of thesyringe tip 32. Theridge 25 can help guide thesyringe tip 32 into a proper position to mate with theoutlet 26 of thevessel 20. In certain embodiments, themating surface 21 may act as a positioning element by halting the insertion of thesyringe tip 32 at a given point. - In some embodiments, the
distal end 28 b of theexterior fluid passage 28 can include anadapter 50 to facilitate connection of a source of negative pressure. For example, theadapter 50 could be a plastic through-port, a luer-type connector, a threaded connector, a swage fitting, or a pressure-fit connector. In various embodiments, the negative pressure source could be a standalone vacuum pump or in-house vacuum provided in an operating room or related facility. In accordance with various embodiments, theproximal end 28 a of theexterior fluid passage 28 may be located near theoutlet 26 of the material holding or processingvessel 20. In some embodiments, theproximal end 28 a of theexterior fluid passage 28 can be located gravitationally higher than theoutlet 26 of the material holding or processingvessel 20. In embodiments containing anelongated lumen 23, theproximal end 28 a of theexterior fluid passage 28 may be located adjacent to theelongated lumen 23 of the material holding or processingvessel 20 such that theexterior fluid passage 28 andelongated lumen 23 are only in fluid communication through theoutlet 26. - The
syringe 30 may further include aplunger 36 that is adapted to move longitudinally within thesyringe body 33. Theplunger 36 seals theinterior volume 34 of thesyringe 30 to allow a negative pressure source connected to thedistal end 28 b of theexterior fluid passage 28 to create negative pressure within the interior volume of thesyringe 34. When thesyringe 30 is unmated from thevessel 20, theplunger 36 can then be used to force material out of the syringe'sinterior volume 34 through thesyringe tip 32. In some embodiments, thesyringe 30 further includes alocking mechanism 37 that can secure theplunger 36 in a selected longitudinal position. Thelocking mechanism 37 may be used to hold theplunger 36 at particular positions to limit the size of theinterior volume 34. In addition, theplunger 36 may be locked so that it does not move as a negative pressure is applied to theinterior volume 34 via theexterior fluid passage 28. -
FIG. 2 illustrates one configuration for thedevice 10. However, a number of variations can be included. For example, as illustrated inFIG. 3A , theexterior fluid passage 28 can have alternative locations and configurations. For example, theexterior fluid passage 28 may consist of alumen 28′ that is at least partially interior to theexterior wall 22 of the material holding or processingvessel 20. As another example, theexterior fluid passage 28 may be anenclosed lumen 28″ that is substantially exterior to the vessel'swalls 22. It will be appreciated that additional configurations and placement locations for theexterior fluid passage 28 can be contemplated by one of ordinary skill in the art. - Furthermore, other variations to the device 10 (including variations to the
vessel 20 and/or syringe 30) can be made. For example,FIG. 3B shows an alternative embodiment of the material holding or processingvessel 20 wherein theridge 25 is not present. Furthermore, in additional embodiments (not pictured), theridge 25 can include other configurations, e.g., theridge 25 may have straight or tapered walls. Further, theinterior surface 27 of the ridge may be coated or covered with a material that is tacky or has non-slip properties, such as rubber, or may have a roughened surface to increase the frictional force that holds thesyringe tip 32 in place. - The devices disclosed herein can provide the ability to treat the tissue and then transfer the tissue directly into a
syringe 30 without needing an additional transfer step and without opening thesystem 10. In some embodiments, the material holding or processingvessel 20′ can additionally include elements to wash or treat tissue before the tissue is transmitted to thesyringe 30′ as shown inFIG. 4 . Such elements include, but are not limited to, inlets and outlets for hoses or other tubes, filters, and mixing blades. For example, a vessel such as that provided with the REVOLVE™ system (LIFECELL CORPORATION, Branchburg, N.J.), which incorporates such features, may be adapted in accordance with the present disclosure. The present devices may be used with any tissue system wherein the tissue holding portion is open to atmospheric pressure to prevent negative pressure buildup with in the tissue holding portion during a transfer operation. - According to various embodiments, the material holding or processing vessel may include
several support feet 42 to allow the device to rest on a table without tipping. Theinterior volume 24′ of thevessel 20′ may contain several additional components to facilitate tissue washing and processing. In various embodiments, the material holding or processingvessel 20′ may contain amesh filter 41 to support the tissue above thebottom portion 29′ of the vessel prior to washing. Themesh filter 41 may be used to retain unwanted components of the tissue while allowing desirable cells and tissue components to pass through. In one embodiment, the mesh filter is a 100-500 micron filter that can capture collagen strands and stringy tissue. In accordance with various embodiments, one ormore ports 44 may be present on alid 45 of the material holding orprocessing device 20′. Theports 44 may be used as fluid inlets or fluid outlets to facilitate tissue washing and treatment. Theports 44 may be suitable to engage with catheter-tip or luer-lock syringe connectors or may be configured to connect to tubing using compression, barbed, luer, threaded, push-to-connect, flared, or any other suitable fittings meeting application-specific requirements. Based on this disclosure, one of ordinary skill in the art will appreciate that a port orports 44 may be located in other places on the material holding or processingvessel 20′ including, but not limited to, thelid 45, the exterior wall of thevessel 22′, or the bottom portion of thevessel 29′. - In accordance with various embodiments, the
interior volume 24′ of thevessel 20′ may contain ahose 43 to provide a direct connection between aport 44 on thelid 45 of the vessel and the portion of theinterior volume 24′ of thevessel 20′ proximal to thebottom portion 29′. Thehose 43 may be used to withdraw or insert fluids into theinterior volume 24′ of thevessel 20′. According to various embodiments, theinterior volume 24′ of thevessel 20′ may also contain propelling or mixingblades 46 connected to a crank 47 on thelid 45 of thevessel 20. The crank 47 may be located in other places on the material holding or processingvessel 20′ including, but not limited to, thelid 45, the exterior wall of thevessel 22′, or the bottom portion of thevessel 29′. - By turning the
mixing blades 46 with thecrank 47, the tissue is actively mixed with cleaning solutions and physically processed. In some embodiments, themixing blades 46 may include lower blades that scrape the bottom of themesh filter 41 and lift up the tissue for thorough washing. In some embodiments, themixing blades 46 may include a middle comb that sweeps the tissue and picks up stringy tissue and/or top blades that stir the tissue. - In some cases, it may be desirable to fill more than a single syringe at a time. For example, an operation may require more tissue than will fit in the volume of a single syringe, and to save time, it may be beneficial to allow simultaneous filling of multiple syringes. To address this need, the tissue transfer system may include a plurality of outlets and syringes to enable simultaneous or serial loading of multiple syringes at a time.
-
FIG. 5 illustrates an embodiment wherein the material holding orprocessing vessel 520 includes a plurality ofoutlets vessel 520 can mate with a plurality ofsyringes FIG. 5 depicts an exemplary embodiment that contains fouroutlets syringes - In one embodiment, the material holding or
processing vessel 520 may include a plurality of discrete exteriorfluid passages proximal end individual vessel outlet distal end exterior wall 522. In this embodiment, multiple negative pressure sources may be individually controlled to enable tissue transfer only into certain syringes chosen from a plurality of available syringes. - In another embodiment, the material holding or
processing vessel 520 may include a single, multiply-connected exterior fluid passage with a plurality of proximal ends that are each connected to anindividual vessel outlet - In certain embodiments, the
syringe tip 32 may further include asecond passage 38 through the peripheral wall 39 of thesyringe 30 that is in fluid communication with theinterior volume 34 of thesyringe body 33 and theexterior fluid passage 28 of thevessel 20 as shown inFIG. 6 . Thissecond passage 38 can provide fluid communication between thedistal end 28 b of theexterior fluid passage 28 of thevessel 20, theinterior volume 34 of the syringe 30 (through the peripheral wall 39), and theinterior volume 24 of thevessel 20. When thesyringe 30 is decoupled from thevessel 20, a plug can be introduced into the syringe's peripheral wall 39 to prevent material from escaping through thesecondary passage 38 while the syringe is being used during re-implantation. - In another embodiment, a tissue transfer vessel is disclosed. The tissue transfer vessel may operate to transfer tissue into any container that can properly mate with the vessel's outlet.
-
FIG. 7 illustrates a device to fill syringes with tissue, according to various embodiments. The device includes a material holding or processingvessel 20 that can further include anexterior wall 22 surrounding aninterior volume 24 and anoutlet 26 in fluid communication with theinterior volume 24. The material holding or processingvessel 20 can also include anexterior fluid passage 28. - The material holding or processing
vessel 20 can be formed of a variety of materials and have a variety of shapes. In some embodiments, thevessel 20 has abottom portion 29 that is predominantly conical in nature and that terminates at anoutlet 26. Theoutlet 26 can have a variety of suitable configurations, e.g., with a circular, elliptical, or other polygonal cross-sectional shape. In accordance with various embodiments, the material holding or processingvessel 20 can contain additional instruments to facilitate tissue washing or processing. These instruments may include, but are not limited to, mixing blades, fluid inlets, fluid outlets, and filters (seeFIG. 4 ). According to various embodiments, the material holding or processingvessel 20 can have a plurality ofoutlets 26 and a plurality of exteriorfluid passages 28. In some embodiments, thevessel 20 may have a plurality of discrete exterior fluid passages wherein the proximal end of each passage is connected to an individual vessel outlet and the distal end of each passage emerges separately from the vessel'sexterior wall 22. In some embodiments, thevessel 20 may have a single, multiply-connectedexterior fluid passage 28 with a plurality of proximal ends that are each connected to an individual vessel outlet. - In one embodiment, a tissue transfer system may include a tissue transfer adapter to facilitate transfer of a material out of a container or fluid conduit. As described in greater detail below, the tissue transfer adapter may include an adapter body having an outer wall and first, second, and third ends. In one embodiment, an elongated body containing a lumen may pass through the interior of the adapter body between the first end and the second end while a fluid passage passes through the interior of the adapter body between the third end and the second end. In some embodiments, an elongated body containing a lumen may pass through the interior of the adapter body between the third end and the second end while a fluid passage passes through the interior of the adapter body between the first end and the second end. Upon the application of suction to an opening in the third end, material contained within the container or fluid conduit is transferred through an opening in the first end to an opening in the second end through the adapter body. A tissue transfer adapter may be used with a variety of containers and adipose transfer devices.
- Turning to
FIG. 8A , a tissue transfer system 800 may include a material holding orprocessing vessel 820, anadapter 810, and asyringe 830. As discussed further below, the adapter may include anadapter body 811 having an outer wall and a plurality ofends processing vessel 820, thesyringe 830, or a source of negative pressure. Each of the plurality ofends adapter 810 may contain anelongated body 819 having alumen 813 that is in fluid communication with both theinterior volume 824 of thevessel 820 and theinterior volume 834 of thesyringe 830. In exemplary embodiments, the tissue transfer system 800 can be operated in the orientation shown inFIG. 8A (i.e., vertical with the syringe pointing downward). - A
fluid passage 818 may be contained within the adapter body and may surround anelongated body 819. In some embodiments, the outer diameter of theelongated body 819 is small enough to leave clearance within thefluid passage 818 for air to flow. In an example embodiment where theelongated body 819 and thefluid passage 818 have cylindrical cross-sections, the outer diameter of theelongated body 819 could be as much as 90% or even 95% of the inner diameter of thefluid passage 818 and still leave room for sufficient airflow. Adistal end 818 b of thefluid passage 818 may be connected to a source of negative pressure, while theproximal end 818 a of thefluid passage 818 is in fluid communication with theinterior volume 834 of thesyringe 830. In accordance with various embodiments, the adapter may be configured to prevent material from passing from theinterior volume 824 of a material holding orprocessing vessel 820 into thefluid passage 818 through afirst end 810 a of anadapter body 811. When thesyringe 830 andvessel 820 are mated to theadapter body 811 and a negative pressure is applied at thedistal end 818 b of theexternal fluid passage 818, tissue contained within thevessel 820 will be pulled from theinterior volume 824 of thevessel 820, through at least a portion of thelumen 813, and into theinterior volume 834 of thesyringe body 833. In an exemplary embodiment, the inner diameter of thelumen 813 can be as large as possible to allow passage of viscous fluids. For example, the inner diameter of thelumen 813 can be large enough to allow passage of particles or cell clusters ranging in size from 200 microns to 3 mm. In some embodiments, the inner diameter of thelumen 813 can be at least 1.4 mm, which is the inner diameter of a luer-lock tip. - The
adapter 810 may be formed of a variety of materials and have a variety of shapes. Theadapter 810 depicted inFIG. 8A is shown as a three-way adapter. However, it will be apparent in view of the present disclosure that theadapter 810 may include any number of ends and/or outlets in accordance with various embodiments and that the number of ends and/or outlets can vary depending upon application-specific requirements. The ends 810 a, 810 b, 810 c of theadapter 810 may be tubular or have flat sides, and the individual ends may have any length as demanded by application-specific requirements. The ends 810 a, 810 b, 810 c may terminate in any of a variety of connectors including luer-type connections, threaded fittings, tube fittings, straight-walled or bare tubes, or any other connection as required by a specific application. - In accordance with various embodiments, a
fluid passage 818 and thelumen 813 of anelongated body 819 may not be in fluid communication with one another within theadapter body 811 but may be in fluid communication through anoutlet 816 external to theadapter body 811. Thedistal end 813 b of thelumen 813 contained within theelongated body 819 may be adapted to mate with theoutlet 826 of thevessel 820 such that a leak-free seal is created between thevessel 820 and thelumen 813. Thefluid passage 818 may include all of the remaining interior volume of theadapter body 811 that is not contained within theelongated body 819, or it may be characterized as a separate channel or lumen. - The
elongated body 819 may be created of a variety of materials and may take a variety of shapes. For example, theelongated body 819 can be made of stainless steel, metals, plastics, or any other substance that is compatible with the material to be transferred and meets application-specific requirements. Theelongated body 819 may contain alumen 813 and can pass through theadapter body 811. Theproximal end 813 a of thelumen 813 contained within theelongated body 819 may terminate in anoutlet 816 and may also extend out of theadapter 810 and into the matedsyringe 830. In certain embodiments, theoutlet 816 lies within thesyringe body 833 and beyond thesyringe tip 832. In accordance with various embodiments, anelongated body 819 may contain anexit port 815 located on a portion of theelongated body 819 exterior to theadapter body 811. In some embodiments, theoutlet 816 orexit port 815 can be placed at least 3 mm gravitationally lower than theadapter body 811. In exemplary embodiments, theoutlet 816 orexit port 815 can be placed below the neck of thesyringe body 833 so that the transferred tissue will fall into the syringe without being carried up into theexternal fluid passage 818 by the passage of air. In embodiments that contain anexit port 815, theoutlet 816 of theelongated body 819 may be closed or sealed shut. Further to such embodiments, theelongated body 819 can act as a syringe plunger depressor that prevents thesyringe plunger 836 from entering thesyringe body 834 while thesyringe 830 is attached to theadapter body 811. - The material holding or
processing vessel 820 can be formed of a variety of materials and have a variety of shapes. In some embodiments, thevessel 820 is a rigid structure having abottom portion 829 that is predominantly conical in nature. Thebottom portion 829 may terminate in anoutlet 826. Theoutlet 826 may take any of a number of shapes or forms including, for example but not limited to, circular, elliptical, hexagonal, or polygonal shapes. According to various embodiments, theexterior wall 822 of thebottom portion 829 may include additional elements to allow coupling of thevessel 820 with various connectors. These elements may include, but are not limited to, luer fittings, pipe threads, tube fittings, or any other suitable fitting as required by a particular application. - The
syringe 830 may include aplunger 836 that is adapted to move longitudinally within thesyringe body 833. When thesyringe 830 is mated to theadapter body 811, theplunger 836 seals theinterior volume 834 of thesyringe 830 to allow a negative pressure source connected to thedistal end 818 b of thefluid passage 818 of theadapter 810 to create negative pressure within the interior volume of thesyringe 834. When thesyringe 830 is unmated from theadapter 810, theplunger 836 can be used to force material out of the syringe'sinterior volume 834 through thesyringe tip 832. According to various embodiments, theend 832 a of thesyringe tip 832 may include additional elements to allow coupling of thesyringe 830 with various connector types. These elements may include, but are not limited to, luer fittings, pipe threads, tube fittings, or any other suitable fitting as required by a particular application. - With reference to
FIG. 8B , an alternate embodiment of atissue transfer system 805 may include amaterial transfer tube 860, anadapter 840, and asyringe 830. As discussed further below, the adapter may include anadapter body 841 having an outer wall and a plurality ofends material transfer tube 860, thesyringe 830, or a source of negative pressure. Each of the plurality ofends adapter 840 may contain afluid passage 843 that is in fluid communication with theinterior volume 864 of thetransfer tube 860 and theinterior volume 834 of thesyringe 830. Adistal end 848 b of alumen 848 contained within anelongated body 849 may be connected to a source of negative pressure while aproximal end 848 a of thelumen 848 is in fluid communication with theinterior volume 834 of the syringe. When thesyringe 830 andtube 860 are mated to theadapter body 841 and a negative pressure is applied at thedistal end 848 b of thelumen 848, tissue material contained within thetube 860 will be pulled from theinterior volume 864 of thetube 860, through thefluid passage 843, and into theinterior volume 834 of thesyringe body 833. In exemplary embodiments, thesystem 805 ofFIG. 8B can be operated as close to vertical as possible as depicted in the figure. - The
adapter 840 may be formed of a variety of materials and have a variety of shapes. Theadapter 840 depicted inFIG. 8B is shown as a three-way adapter. However, it will be apparent in view of the present disclosure that theadapter 840 may have any number of ends and/or outlets in accordance with various embodiments and that the number of ends and/or outlets can vary depending upon application-specific requirements. The ends 840 a, 840 b, 840 c of theadapter 840 may be tubular or have flat sides, and the individual ends may have any length as demanded by application-specific requirements. The ends 840 a, 840 b, 840 c may terminate in any of a variety of connectors including luer-type connections, threaded fittings, tube fittings, straight-walled or bare tubes, or any other connection as required by a specific application. - In accordance with various embodiments, a
lumen 848 contained within anelongated body 849 and afluid passage 843 may not be in fluid communication with one another within theadapter body 841. Thedistal end 843 b of thefluid passage 843 may be adapted to mate with theoutlet 866 of thetube 860 such that a leak-free seal is created between thetube 860 and thefluid passage 843. Thefluid passage 843 may include all of the remaining interior volume of theadapter body 841 that is not contained within theelongated body 849, or it may be characterized as a separate channel or lumen. - The
elongated body 849 may be created of a variety of materials and may take a variety of shapes. For example, theelongated body 849 can be made of stainless steel, metals, plastics, or any other substance that is compatible with the material to be transferred and that meets application-specific requirements. Theproximal end 848 a of thelumen 848 may terminate in anoutlet 846 and may also extend out of theadapter body 841 and into the matedsyringe 830. In certain embodiments, theoutlet 846 lies within thesyringe body 833 and beyond thesyringe tip 832. In accordance with various embodiments, the length of theelongated body 849 containing alumen 848 is determined by the volume of tissue that is desired to be transferred into thesyringe 830. Operation of the system beyond the pre-determined maximum transfer volume may cause tissue to be aspirated into theproximal end 848 a of thelumen 848. In some embodiments, theelongated body 849 can contain anair inlet port 845. Theair inlet port 845 can allow air to pass into theelongated body 849 even if theoutlet 846 is blocked by contact with a portion of thesyringe plunger 833. - The
material transfer tube 860 can be separately formed or may be formed integrally with a material holding or processingvessel 20′. Thetube 860 may be made from a variety of materials and may take the form of a variety of shapes and sizes. Thetube 860 may be made of, for example but not limited to, PVC, high-density polyethylene, nylon, latex, silicone, polyurethane, TYGON®, or any other non-reactive tubing or hose as needed to meet application-specific requirements. The inner diameter, outer diameter, and wall thickness of thematerial transfer tube 860 may be any values suitable to meet application-specific requirements. In a preferred embodiment, thematerial transfer tube 860 extends from an exit point on thelid 45 of a material holding or processingvessel 20′ to thebottom portion 29′ of thevessel 20′ where material is held before or after processing. - In
FIG. 8C , an expanded view of an alternative embodiment of theelongated body 849 ofFIG. 8B is depicted. As shown, theproximal end 849 a and thedistal end 849 b of theelongated body 849 may have different outer diameters. In some embodiments, the outer diameter of thedistal end 849 b is minimized to create a maximized inner diameter of thefluid passage 843. A large inner diameter of thefluid passage 843 allows faster flow of viscous tissues or fluids into thesyringe body 833. In certain embodiments, the outer diameter of thedistal end 849 b of theelongated body 849 is as small as 1 mm. - The outer diameter of the
proximal end 849 a of the elongated body can be flared in some embodiments to be larger than the outer diameter of thedistal end 849 b. Because theproximal end 849 a of theelongated body 849 can act as a support column and physically block thesyringe plunger 836 from entering thesyringe body 833 during a transfer operation, a larger outer diameter can increase the buckling strength of theelongated body 849. In an exemplary embodiment, the outer diameter of theproximal end 849 a of theelongated body 849 can be in a range of 3 to 4 mm. In some embodiments, the transition between the different outer diameters of theproximal end 849 a and thedistal end 849 b can occur in the vicinity of thesyringe tip 832. - With reference to
FIG. 8D , anadapter 840 of atissue transfer system 808 may be mounted to a material holding orprocessing vessel 880. As discussed further below, theadapter 840 may include anadapter body 841 having a plurality ofends material transfer tube 860, thesyringe 830, or a source of negative pressure. Each of the plurality ofends ends adapter 840 may be integrally constructed with the material holding orprocessing vessel 880 or may be adapted to connect to one or more ports on the vessel. One or more of the plurality ofends material transfer tube 860. In accordance with various embodiments, thetissue transfer system 808 may include a protective sheath 870 that prevents a user from directly contacting theelongated body 849, which could potentially damage theelongated body 849 or injure the user. - The protective sheath 870 can be constructed of a variety of materials and may have a variety of shapes and sizes according to application-specific requirements. The protective sheath 870 may be made, for example but not limited to, metals or rigid plastics. The inner diameter of the protective sheath 870 may be chosen to accommodate the passage of a
syringe 830. According to various embodiments, the protective sheath 870 may be attached to the material holding orprocessing vessel 880 or theadapter 840. In some embodiments, the protective sheath 870 may be detached from its mount and replaced with a sheath having similar properties or different properties including, but not limited to, inner diameter, size, or composition. - With reference to
FIG. 8E ,multiple syringes more adapters end 890 c of thefinal adapter 890. The negative pressure can thereby be communicated through all of theadapters interiors 834 a, 834 b ofsyringes processing vessel 820 ormaterial transfer tube 860 containing tissue to be transferred. The negative pressure can draw the tissue into alumen 813 of afirst adapter 810. When the tissue reaches anexit port 815 of thelumen 813, the tissue exits thelumen 813 and begins to fill the interior volume 834 a of thefirst syringe 830 a. When the interior volume 834 a of thefirst syringe 830 a is filled, the tissue can continue to fill into thefluid passage 818 of thefirst adapter 810. The tissue can then be pulled through atransfer tube 891 and can enter alumen 893 of asecond adapter 890. When all of thesyringes FIG. 8E ; however, it will be apparent from this disclosure to one skilled in the art that an unlimited number of adapters and syringes could potentially be used in series as described herein. In an alternative embodiment, a plurality ofsyringes - The process and method of safely transferring tissue in an automated way is also illuminated in this manuscript. In an exemplary method, a system similar to that described above is engaged with a source of negative pressure to transfer the tissue from a vessel to a syringe.
-
FIG. 9 illustrates anexemplary method 900 for tissue transfer. Themethod 900 includes selecting 910 a material holding or processing vessel having an outlet and an exterior fluid passage and containing tissue or other material to be transferred. Themethod 900 includesmating 920 an end of a syringe to the outlet of the vessel to place the interior of the syringe body and the interior of the vessel into fluid communication, and the exterior fluid passage and the interior of the vessel into fluid communication. Themethod 900 includes attaching 930 a negative pressure source to the exterior fluid passage. Themethod 900 includes engaging 940 the negative pressure source to draw the tissue or other material from the vessel through the outlet and into the syringe body. Themethod 900 includes allowing 950 tissue to flow until the desired volume has been collected. Themethod 900 includes detaching 960 the syringe from the vessel. Themethod 900 includes proceeding 970 to re-implantation. - The step of selecting 910 a material holding or processing vessel having an outlet and an exterior fluid passage and containing tissue or other material to be transferred can include, for example but not limited to, selecting a material holding or processing
vessel 20 including anoutlet 26 and anexterior fluid passage 28 and filled with adipose tissue as described above in connection withFIGS. 1A, 1B, and 2 . - The step of
mating 920 an end of a syringe to the outlet of the vessel to place the interior of the syringe body and the interior of the vessel into fluid communication, and the exterior fluid passage and the interior of the vessel into fluid communication can include, for example but not limited to, coupling anend 32 a of asyringe 30 to anoutlet 26 of avessel 20 such that theinterior surface 27 of aridge 25 is in contact with the peripheral wall 39 of thesyringe 30 as described above in connection withFIGS. 1A, 1B, and 2 . - The step of attaching 930 a negative pressure source to the exterior fluid passage can include, for example but not limited to, attaching a standalone vacuum pump or in-house vacuum provided in an operating room or related facility as described above in connection with
FIGS. 1A, 1B, and 2 . - The step of engaging 940 the negative pressure source to draw the tissue or other material from the vessel through the outlet and into the syringe body can include, for example but not limited to, powering on a vacuum pump or releasing a hose clamp to enable the vacuum source to draw tissue from a
vessel 20 through anoutlet 26 and into asyringe body 33 as described above in connection withFIGS. 1A, 1B, and 2 . - The step of allowing 950 tissue to flow until the desired volume has been collected can include, for example but not limited to, determining how much tissue is available to be transferred and/or how much tissue is needed in the new location and using that determination to disable the vacuum source when the proper volume has been reached.
- The step of detaching 960 the syringe from the vessel can include, for example but not limited to, disconnecting the
syringe 30 from thevessel 20 as described above in connection withFIGS. 1A, 1B, and 2 . - The step of proceeding 970 to re-implantation can include, for example but not limited to, attaching a needle or cannula to a
syringe tip 32 of asyringe 30, releasing aplunger lock 37 on thesyringe 30, and injecting tissue into a patient. - Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of this disclosure. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the disclosed devices and methods being indicated by the following claims.
Claims (20)
1. A method of transferring tissue or other material to a syringe, comprising:
selecting a material holding or processing vessel having an outlet and an exterior fluid passage and containing a tissue or other material to be transferred;
mating an end of a syringe to the outlet of the vessel to place an interior volume of the syringe body and the interior of the vessel into fluid communication and to place the exterior fluid passage and the interior of the vessel into fluid communication;
attaching a negative pressure source to the exterior fluid passage; and
engaging the negative pressure source to draw the tissue or other material from the vessel through the outlet and into the interior volume of the syringe body.
2. The method of claim 1 , wherein the material holding or processing vessel further comprises an elongated lumen extending from the exterior wall to the outlet.
3. The method of claim 1 , wherein mating the end of the syringe further comprises mating an interior surface of a ridge of the material holding or processing vessel with an exterior lateral surface of a distal portion of the syringe.
4. The method of claim 1 further comprising a step of washing or treating the tissue inside the material holding or processing vessel.
5. The method of claim 4 , wherein washing or treating the tissue includes using at least one filter, fluid inlet, or fluid outlet of the material holding or processing vessel to facilitate tissue washing or treatment.
6. The method of claim 4 , wherein washing or treating the tissue includes using at least one mixing blade, filter, fluid inlet, or fluid outlet to facilitate tissue washing or treatment.
7. The method of claim 1 , wherein mating the end of the syringe further comprises mating the end of a tip of the syringe with a mating surface of the material holding or processing vessel.
8. The method of claim 1 , wherein attaching the negative pressure source to the exterior fluid passage includes attaching the negative pressure source to an adapter at a distal end of the exterior fluid passage.
9. The method of claim 1 , further comprising moving a plunger longitudinally within the syringe body while tissue is being drawn into the syringe body.
10. The method of claim 9 , further comprising locking the plunger at a selected longitudinal position using a locking mechanism.
11. The method of claim 1 , wherein the exterior fluid passage has a proximal opening, a lumen, and a distal opening, wherein the proximal opening, lumen, and distal opening are external to the interior volume, and the distal opening is located proximate an opening of the outlet.
12. The method of claim 1 , wherein the material holding or processing vessel comprises a plurality of outlets and a plurality of exterior fluid passages, the method further comprising mating multiple syringes with the plurality of outlets of the material holding or processing vessel.
13. The method of claim 1 , wherein mating the end of the syringe to the outlet of the vessel includes placing a passage through a peripheral wall of a tip of the syringe in fluid communication with the interior volume of the syringe body and the exterior fluid passage of the vessel.
14. A method of transferring tissue or other material to a syringe, comprising:
providing a material holding or processing vessel including an exterior wall surrounding an interior volume for holding tissue, an outlet in fluid communication with the interior volume, and an exterior fluid passage having an opening disposed proximate an opening of the outlet;
providing a syringe including a syringe body having an interior syringe volume, a syringe tip comprising a peripheral wall having a distal opening forming a first passage in fluid communication with the interior volume, wherein the syringe tip is adapted to be mated with the outlet of the material holding or processing vessel such that the opening of the outlet is in fluid communication with the first passage of the syringe tip and the exterior fluid passage of the material holding or processing vessel is in fluid communication with the interior volume of the syringe body;
mating the outlet to the syringe tip;
attaching a negative pressure source to the exterior fluid passage; and
engaging the negative pressure source to draw the tissue or other material from the vessel through the outlet and into the syringe body.
15. The method of claim 14 , wherein the material holding or processing vessel further comprises an elongated lumen extending from the exterior wall to the outlet.
16. The method of claim 14 , wherein mating the outlet further comprises mating an interior surface of a ridge of the material holding or processing vessel with an exterior lateral surface of a distal portion of the syringe.
17. The method of claim 14 , further comprising a step of washing or treating the tissue inside the material holding or processing vessel.
18. The method of claim 17 , wherein washing or treating the tissue includes using at least one filter, fluid inlet, or fluid outlet of the material holding or processing vessel to facilitate tissue washing or treatment.
19. The method of claim 17 , wherein washing or treating the tissue includes using at least one mixing blade, filter, fluid inlet, or fluid outlet to facilitate tissue washing or treatment.
20. The method of claim 14 , wherein mating the outlet further comprises mating the end of a tip of the syringe with a mating surface of the material holding or processing vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/927,349 US20200338247A1 (en) | 2015-12-22 | 2020-07-13 | Syringe filling device for fat transfer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562270789P | 2015-12-22 | 2015-12-22 | |
US15/386,450 US10729827B2 (en) | 2015-12-22 | 2016-12-21 | Syringe filling device for fat transfer |
US16/927,349 US20200338247A1 (en) | 2015-12-22 | 2020-07-13 | Syringe filling device for fat transfer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/386,450 Division US10729827B2 (en) | 2015-12-22 | 2016-12-21 | Syringe filling device for fat transfer |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200338247A1 true US20200338247A1 (en) | 2020-10-29 |
Family
ID=57777736
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/386,450 Expired - Fee Related US10729827B2 (en) | 2015-12-22 | 2016-12-21 | Syringe filling device for fat transfer |
US16/927,349 Abandoned US20200338247A1 (en) | 2015-12-22 | 2020-07-13 | Syringe filling device for fat transfer |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/386,450 Expired - Fee Related US10729827B2 (en) | 2015-12-22 | 2016-12-21 | Syringe filling device for fat transfer |
Country Status (5)
Country | Link |
---|---|
US (2) | US10729827B2 (en) |
EP (1) | EP3393390A1 (en) |
AU (1) | AU2016378566A1 (en) |
CA (1) | CA3008035A1 (en) |
WO (1) | WO2017112755A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014150288A2 (en) | 2013-03-15 | 2014-09-25 | Insera Therapeutics, Inc. | Vascular treatment devices and methods |
US9248384B2 (en) | 2013-10-02 | 2016-02-02 | Allergan, Inc. | Fat processing system |
ITUB20154668A1 (en) * | 2015-10-14 | 2017-04-14 | Mario Goisis | DEVICE FOR FILTRATION OF GREASE EXTRACTED WITH LIPOSUCTION SURGICAL PROCEDURES |
CN108697423A (en) | 2016-02-16 | 2018-10-23 | 伊瑟拉医疗公司 | The part flow arrangement of suction unit and anchoring |
USD847864S1 (en) | 2018-01-22 | 2019-05-07 | Insera Therapeutics, Inc. | Pump |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7011755B2 (en) * | 2001-05-31 | 2006-03-14 | Zuk Jr Peter | Disposable vacuum filtration funnel with integral prefilter |
US20140291234A1 (en) * | 2013-03-25 | 2014-10-02 | Haitao Chi | Disposable integrated polymeric vacuum filtration funnel |
US20140363891A1 (en) * | 2010-07-09 | 2014-12-11 | The Gid Group, Inc. | Method and apparatus for processing adipose tissue |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3791524A (en) | 1972-04-13 | 1974-02-12 | Atomic Energy Commission | Tissue collector |
US4681571A (en) | 1981-04-23 | 1987-07-21 | C. R. Bard, Inc. | Suction canister with disposable liner and check valve |
US5372945A (en) | 1985-06-06 | 1994-12-13 | Alchas; Paul G. | Device and method for collecting and processing fat tissue and procuring microvessel endothelial cells to produce endothelial cell product |
US4753634A (en) | 1986-10-31 | 1988-06-28 | Johnson Gerald W | Fat collection syringe |
SE8801098D0 (en) | 1988-03-24 | 1988-03-24 | Pharmacia Ab | APPARATUS AND METHOD FOR AUTOMATIC EXTRACTION OF EXTRA-CHROMOSOMAL DNA FROM A CELL SUSPENSION IN A CONTAINER |
US5301685A (en) | 1989-01-10 | 1994-04-12 | Guirguis Raouf A | Method and apparatus for obtaining a cytology monolayer |
US5209732A (en) | 1989-03-17 | 1993-05-11 | Merit Medical Systems, Inc. | Locking syringe with thread-release lock |
US5336616A (en) | 1990-09-12 | 1994-08-09 | Lifecell Corporation | Method for processing and preserving collagen-based tissues for transplantation |
NZ242533A (en) | 1991-05-03 | 1995-05-26 | Becton Dickinson Co | Device for collecting and processing fat tissue; vessel with rinsing and digesting chamber, drain chamber and isolation chamber |
US5610074A (en) | 1993-02-24 | 1997-03-11 | Beritashvili; David R. | Centrifugal method and apparatus for isolating a substance from a mixture of substances in a sample liquid |
US5409833A (en) | 1993-07-01 | 1995-04-25 | Baxter International Inc. | Microvessel cell isolation apparatus |
US5888409A (en) | 1995-06-07 | 1999-03-30 | Cedars-Sinai Medical Center | Methods for cell isolation and collection |
US6200606B1 (en) | 1996-01-16 | 2001-03-13 | Depuy Orthopaedics, Inc. | Isolation of precursor cells from hematopoietic and nonhematopoietic tissues and their use in vivo bone and cartilage regeneration |
US5785640A (en) | 1996-05-23 | 1998-07-28 | Kresch; Arnold J. | Method for treating female incontinence |
US5901717A (en) | 1996-08-16 | 1999-05-11 | Dornoch Medical Systems, Inc. | Liquid waste disposal and canister flushing system and method |
US5911700A (en) | 1997-03-11 | 1999-06-15 | Microaire Surgical Instruments | Power assisted liposuction and lipoinjection equipment |
US5786207A (en) | 1997-05-28 | 1998-07-28 | University Of Pittsburgh | Tissue dissociating system and method |
AU8476698A (en) | 1997-07-03 | 1999-01-25 | Osiris Therapeutics, Inc. | Human mesenchymal stem cells from peripheral blood |
USD401336S (en) | 1997-07-24 | 1998-11-17 | Somnus Medical Technologies, Inc. | Tissue ablation device |
WO1999037751A1 (en) | 1998-01-23 | 1999-07-29 | Imclone Systems Incorporated | Purified populations of stem cells |
USD424194S (en) | 1998-10-16 | 2000-05-02 | Bio-Plexus, Inc. | Catheter needle assembly |
US20010030152A1 (en) | 1999-12-20 | 2001-10-18 | Wright David A. | Compound mixer and filter for lapping machine |
US6733537B1 (en) | 2000-06-02 | 2004-05-11 | Reconstructive Technologies, Inc. | Apparatus for tissue expansion using pulsatile motion |
CN1187356C (en) | 2000-11-22 | 2005-02-02 | 南宁枫叶药业有限公司 | System for extracting tetradoxin with high yield |
US6544788B2 (en) | 2001-02-15 | 2003-04-08 | Vijay Singh | Disposable perfusion bioreactor for cell culture |
US6626890B2 (en) | 2001-06-06 | 2003-09-30 | Tony R. Brown | Fat removal device and method |
US7172572B2 (en) | 2001-10-04 | 2007-02-06 | Boston Scientific Scimed, Inc. | Manifold system for a medical device |
US7264608B2 (en) | 2001-12-05 | 2007-09-04 | Fenwal, Inc. | Manual processing systems and methods for providing blood components conditioned for pathogen inactivation |
US7651684B2 (en) | 2001-12-07 | 2010-01-26 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in augmenting autologous fat transfer |
US7595043B2 (en) | 2001-12-07 | 2009-09-29 | Cytori Therapeutics, Inc. | Method for processing and using adipose-derived stem cells |
KR101150666B1 (en) | 2001-12-07 | 2012-07-05 | 사이토리 테라퓨틱스, 인크. | Systems and Methods for treating Patients with Processed Lipoaspirate Cells |
US7585670B2 (en) | 2001-12-07 | 2009-09-08 | Cytori Therapeutics, Inc. | Automated methods for isolating and using clinically safe adipose derived regenerative cells |
US7514075B2 (en) | 2001-12-07 | 2009-04-07 | Cytori Therapeutics, Inc. | Systems and methods for separating and concentrating adipose derived stem cells from tissue |
US9144583B2 (en) | 2002-03-29 | 2015-09-29 | Tissue Genesis, Inc. | Cell separation apparatus and methods of use |
AU2003249642A1 (en) | 2002-05-24 | 2003-12-12 | Biomet Manufacturing Corp. | Apparatus and method for separating and concentrating fluids containing multiple components |
US7361368B2 (en) | 2002-06-28 | 2008-04-22 | Advanced Cardiovascular Systems, Inc. | Device and method for combining a treatment agent and a gel |
US7176034B2 (en) | 2002-07-03 | 2007-02-13 | St. Joseph's Healthcare | Apparatus and method for filtering biological samples |
US7927810B2 (en) | 2002-11-19 | 2011-04-19 | Katsuya Togawa | Plasma or serum separation membrane and filter apparatus including the plasma or serum separation membrane |
US7691087B2 (en) | 2002-11-25 | 2010-04-06 | Scimed Life Systems, Inc. | Injection device |
KR100473568B1 (en) | 2003-01-25 | 2005-03-10 | 이희영 | Closed loop fat transplantation system |
USD492995S1 (en) | 2003-04-03 | 2004-07-13 | Valera Pharmaceuticals, Inc. | Implanting device |
DE10327254B4 (en) | 2003-06-17 | 2010-01-28 | Disetronic Licensing Ag | Modular infusion pump |
US7749741B2 (en) | 2003-09-22 | 2010-07-06 | Battelle Memorial Institute | Tissue dissociation device |
US7588732B2 (en) | 2004-03-30 | 2009-09-15 | Genesis Biosystems, Inc. | Autologus tissue harvesting and irrigation device |
US20060051865A1 (en) | 2004-08-31 | 2006-03-09 | Higgins Joel C | Systems and methods for isolating stromal cells from adipose tissue and uses thereof |
US20140193852A9 (en) | 2004-12-23 | 2014-07-10 | Erik Vossman | Adipose tissue collection and pre-processing devices for use in liposuction procedure |
WO2006086201A2 (en) | 2005-02-07 | 2006-08-17 | Hanuman Llc | Platelet rich plasma concentrate apparatus and method |
US8622997B2 (en) | 2005-03-23 | 2014-01-07 | Ronald D. Shippert | Tissue transfer method and apparatus |
US7789872B2 (en) | 2005-03-23 | 2010-09-07 | Shippert Ronald D | Tissue transplantation method and apparatus |
US7794449B2 (en) | 2005-03-23 | 2010-09-14 | Shippert Ronald D | Tissue transplantation method and apparatus |
US7780649B2 (en) | 2005-03-23 | 2010-08-24 | Shippert Ronald D | Tissue transplantation method and apparatus |
US8062286B2 (en) | 2005-03-23 | 2011-11-22 | Shippert Ronald D | Tissue transplantation method and apparatus |
US7713232B2 (en) | 2005-11-04 | 2010-05-11 | Medrad, Inc. | System for washing and processing of cells for delivery thereof to tissue |
WO2007089295A2 (en) | 2006-01-26 | 2007-08-09 | Hyaluron, Inc. | Process for aseptic vacuum filling and stoppering of low viscosity liquids in containers |
US7758556B2 (en) | 2006-03-23 | 2010-07-20 | Perez-Cruet Miguelangelo J | Device for collecting bone material during a surgical procedure |
US20090042267A1 (en) | 2006-04-07 | 2009-02-12 | Waste To Water Corporation | Food waste treatment device using microorganisms |
US20070248575A1 (en) | 2006-04-19 | 2007-10-25 | Jerome Connor | Bone graft composition |
US7732190B2 (en) | 2006-07-31 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
USD575393S1 (en) | 2006-10-19 | 2008-08-19 | Medical Components, Inc. | Catheter tunneler adapter |
WO2009055610A1 (en) | 2007-10-26 | 2009-04-30 | Cytori Therapeutics, Inc. | Syringe system for controlled delivery or removal of material |
WO2009073724A1 (en) | 2007-12-04 | 2009-06-11 | Ingeneron, Inc. | Apparatus and methods for cell isolation |
US20090181104A1 (en) | 2007-12-14 | 2009-07-16 | Gino Rigotti | Breast reconstruction or augmentation using computer-modeled deposition of processed adipose tissue |
JP5078020B2 (en) | 2008-02-13 | 2012-11-21 | オリンパス株式会社 | Centrifuge container |
DK2257261T3 (en) | 2008-02-21 | 2016-01-18 | Poul Torben Nielsen | Dispenser for local anesthetics and other fluids |
WO2009158145A2 (en) | 2008-05-30 | 2009-12-30 | Allergan, Inc. | Injection device for soft-tissue augmentation fillers, bioactive agents and other biocompatible materials in liquid or gel form |
FR2943355B1 (en) | 2009-03-18 | 2011-04-08 | Sartorius Stedim Biotech Sa | RECIPIENT-MIXER WITH SHAFT BEARING IN SUPERIOR PART |
US8293532B2 (en) | 2009-03-26 | 2012-10-23 | Dow AgroSciences, L.L.C. | Method and apparatus for tissue transfer |
US8333740B2 (en) | 2009-05-01 | 2012-12-18 | Shippert Ronald D | Tissue transfer cannula |
US8100874B1 (en) | 2009-05-22 | 2012-01-24 | Donnell Mark Jordan | Tissue refining device |
US8366694B1 (en) | 2009-05-22 | 2013-02-05 | Donnell Mark Jordan | Tissue refining device |
JP5368189B2 (en) | 2009-06-30 | 2013-12-18 | 株式会社イノアックコーポレーション | Air intake duct |
KR101316573B1 (en) | 2009-10-27 | 2013-10-15 | 도병록 | System and unit for extracting regenerative cells |
KR101679671B1 (en) | 2009-10-27 | 2016-11-28 | 도병록 | System for extracting regenerative cells |
US20110117650A1 (en) | 2009-11-10 | 2011-05-19 | Riordan Neil H | Vessel and method for isolating cells from tissue portions |
US20110198353A1 (en) | 2010-02-12 | 2011-08-18 | Tsao Yu-Yao | Waste liquid guide device with quickly replaceable inner bag |
WO2013106655A1 (en) | 2012-01-11 | 2013-07-18 | The Gid Group, Inc. | Method for processing adipose tissue and processing apparatus |
BR112013000605B1 (en) | 2010-07-09 | 2021-11-09 | The Gid Group, Inc. | USABLE APPARATUS FOR THE COLLECTION OF HUMAN BIOLOGICAL MATERIAL AND POST-COLLECTION PROCESSING OF THE COLLECTED MATERIAL, ASSEMBLY AND METHOD FOR PROCESSING HUMAN BIOLOGICAL MATERIAL |
CN108504539B (en) | 2010-08-06 | 2021-11-02 | 通用医院公司以麻省总医院名义经营 | System and apparatus for cell processing related applications |
JP6040161B2 (en) | 2010-12-23 | 2016-12-07 | クレンスキー, ロバートKRENSKY, Robert | Intraoperative blood collection system |
CA141113S (en) | 2010-12-23 | 2012-01-23 | Profibrix Bv | Dispenser for pharmaceutical powder formulations |
CA2827034C (en) | 2011-02-11 | 2019-02-26 | TauTona Group Research and Development Company, L.L.C. | Devices and methods for tissue transfer |
US8632498B2 (en) | 2011-02-11 | 2014-01-21 | TauTona Group Research and Development Company, L.L.C. | Tissue transfer systems |
US9446189B2 (en) | 2011-02-11 | 2016-09-20 | Lifecell Corporation | Tissue transfer systems |
US8887770B1 (en) | 2011-03-17 | 2014-11-18 | Ronald D. Shippert | Vessel fill control method and apparatus |
WO2012139593A2 (en) | 2011-04-15 | 2012-10-18 | Rigshospitalet Copenhagen University Hospital | System and method for injecting a substance into a human body |
USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
USD679011S1 (en) | 2011-10-31 | 2013-03-26 | Olympus Medical Systems Corp. | Handle of surgical instrument |
CA2859374C (en) | 2011-12-16 | 2020-08-11 | Stryker Corporation | System for retrieving tissue samples from a fluid stream generated during a medical/surgical procedure |
BR302012003126S1 (en) | 2011-12-23 | 2014-10-14 | Karls Storz Gmbh & Co Kg | CONFIGURATION APPLIED IN HANDLE FOR MEDICAL INSTRUMENT |
ES2841112T3 (en) | 2012-05-30 | 2021-07-07 | Lifecell Corp | Device for collecting, processing and transferring adipose tissue |
WO2014033209A1 (en) | 2012-08-29 | 2014-03-06 | Euromi S.A. | Apparatus for extracting and re-injecting adipose tissue |
WO2014070525A1 (en) | 2012-10-31 | 2014-05-08 | TauTona Group Research and Development Company, L.L.C. | Tissue transfer systems |
CA2891229C (en) * | 2013-03-15 | 2022-11-29 | Merit Medical Systems, Inc. | Lockable syringe assemblies and related devices and methods |
-
2016
- 2016-12-21 CA CA3008035A patent/CA3008035A1/en not_active Abandoned
- 2016-12-21 EP EP16825657.6A patent/EP3393390A1/en not_active Withdrawn
- 2016-12-21 US US15/386,450 patent/US10729827B2/en not_active Expired - Fee Related
- 2016-12-21 WO PCT/US2016/067991 patent/WO2017112755A1/en unknown
- 2016-12-21 AU AU2016378566A patent/AU2016378566A1/en not_active Abandoned
-
2020
- 2020-07-13 US US16/927,349 patent/US20200338247A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7011755B2 (en) * | 2001-05-31 | 2006-03-14 | Zuk Jr Peter | Disposable vacuum filtration funnel with integral prefilter |
US20140363891A1 (en) * | 2010-07-09 | 2014-12-11 | The Gid Group, Inc. | Method and apparatus for processing adipose tissue |
US20140291234A1 (en) * | 2013-03-25 | 2014-10-02 | Haitao Chi | Disposable integrated polymeric vacuum filtration funnel |
Also Published As
Publication number | Publication date |
---|---|
WO2017112755A8 (en) | 2017-08-17 |
EP3393390A1 (en) | 2018-10-31 |
CA3008035A1 (en) | 2017-06-29 |
WO2017112755A1 (en) | 2017-06-29 |
US20170173227A1 (en) | 2017-06-22 |
US10729827B2 (en) | 2020-08-04 |
AU2016378566A1 (en) | 2018-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200338247A1 (en) | Syringe filling device for fat transfer | |
US10549018B2 (en) | Device for harvesting, processing and transferring adipose tissue | |
US8622997B2 (en) | Tissue transfer method and apparatus | |
US9581942B1 (en) | Tissue transfer method and apparatus | |
US8062286B2 (en) | Tissue transplantation method and apparatus | |
US7789872B2 (en) | Tissue transplantation method and apparatus | |
US7780649B2 (en) | Tissue transplantation method and apparatus | |
US20060213374A1 (en) | Tissue transplantation method and apparatus | |
EP3010633B1 (en) | Device and method for improving hydration of a biomaterial | |
CN107530490A (en) | Multi-pin injection syringe | |
US20110009837A1 (en) | Device for removing biological material | |
JP2018532555A (en) | Apparatus and method for automatic filling and dispensing of adipose tissue with controlled shear | |
CN204864273U (en) | Inner chamber flusher | |
CN105107047A (en) | Lumen flusher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LIFECELL CORPORATION, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JESSOP, ISRAEL;BARERE, AARON;WANG, KAI-ROY;AND OTHERS;SIGNING DATES FROM 20170106 TO 20170116;REEL/FRAME:053417/0064 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |