US20190248415A1 - Sixteen-cornered strengthening member for vehicles - Google Patents

Sixteen-cornered strengthening member for vehicles Download PDF

Info

Publication number
US20190248415A1
US20190248415A1 US16/391,652 US201916391652A US2019248415A1 US 20190248415 A1 US20190248415 A1 US 20190248415A1 US 201916391652 A US201916391652 A US 201916391652A US 2019248415 A1 US2019248415 A1 US 2019248415A1
Authority
US
United States
Prior art keywords
strengthening member
strengthening
cross
angles
sixteen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/391,652
Inventor
Tau Tyan
Yu-Kan Hu
Leonard Anthony Shaner
Dana SUN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to US16/391,652 priority Critical patent/US20190248415A1/en
Publication of US20190248415A1 publication Critical patent/US20190248415A1/en
Assigned to FORD GLOBAL TECHNOLOGIES, LLC reassignment FORD GLOBAL TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HU, YU-KAN, SUN, DANA, TYAN, TAU, SHANER, LEONARD ANTHONY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/02Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members

Definitions

  • the present disclosure relates generally to a strengthening member for a vehicle body or other structures.
  • the present disclosure relates more specifically to a strengthening member having a sixteen-cornered cross section and to motor vehicles including a strengthening member having a sixteen-cornered cross section.
  • Impact energy absorption may be maximized, for example, by assuring that the strengthening member compacts substantially along a longitudinal axis of the strengthening member upon experiencing an impact along this axis.
  • Such longitudinal compaction may be referred to as a stable axial crush of the strengthening member.
  • the strengthening member When a compressive force is exerted on a strengthening member, for example, by a force due to a front impact load on a vehicle's front rail or other strengthening member in the engine compartment, the strengthening member can crush in a longitudinal direction to absorb the energy of the collision.
  • a bending force is exerted on a strengthening member, for example, by a force due to a side impact load on a vehicle's front side sill, B-pillar or other strengthening member, the strengthening member can bend to absorb the energy of the collision.
  • a strengthening member for a motor vehicle has a sixteen-cornered cross section comprising sixteen corners and including sides and corners creating eight internal angles and eight external angles. Each internal angle ranges between about 90° and about 145°. Each external angle ranges between about 95° and about 175°.
  • a strengthening member for a motor vehicle comprises a cross section comprising sixteen corners and including sides and corners creating eight internal angles and eight external angles.
  • the strengthening member has a longitudinal axis, and the strengthening member tapers along the longitudinal axis.
  • a vehicle comprises a strengthening member.
  • the strengthening member comprises a sixteen-cornered cross section including sixteen corners and including sides and corners creating eight internal angle corners and eight external angle corners.
  • FIG. 1 illustrates an exemplary embodiment of a sixteen-cornered cross section of a strengthening member, with the strengthening member having eight internal angles and eight external angles in accordance with the present teachings;
  • FIGS. 2A-2B illustrate top and perspective views of a first exemplary embodiment of a strengthening member having a sixteen-cornered cross section, with eight internal angles and eight external angles, as shown in FIG. 1 ;
  • FIGS. 3A-3B illustrate top and perspective views of a second exemplary embodiment of a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles in accordance with the present teachings;
  • FIGS. 4A-4B illustrate top and perspective views of a third exemplary embodiment of a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles in accordance with the present teachings;
  • FIGS. 5A-5B illustrate top and perspective views of a fourth exemplary embodiment of a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles in accordance with the present teachings;
  • FIGS. 6A-6B illustrate top and perspective views of a fifth exemplary embodiment of a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles in accordance with the present teachings;
  • FIG. 7 illustrates strengthening members of various cross sections having substantially the same thickness, substantially the longitudinal length, and cross-sectional dimensions along perpendicularly oriented transverse axes with substantially the same lengths;
  • FIG. 8 illustrates an exemplary quasi-static axial collapse of the strengthening members shown in FIG. 7 ;
  • FIG. 9 illustrates an exemplary dynamic crush of the strengthening members shown in FIG. 7 ;
  • FIG. 10 is a graph of the dynamic crush force and associated crush distance for the exemplary strengthening members shown in FIG. 7 ;
  • FIG. 11 is a graph of the dynamic axial crush energy and associated axial crush distance for the exemplary strengthening members shown in FIG. 7 ;
  • FIG. 12 illustrates sixteen-cornered strengthening members of varying cross-sectional shapes, each cross-section having sides with substantially the same thickness, substantially the same longitudinal length, and cross-sectional dimensions along perpendicularly oriented transverse axes with substantially the same lengths;
  • FIG. 13 illustrates an exemplary quasi-static axial collapse of the strengthening members shown in FIG. 12 ;
  • FIG. 14 illustrates an exemplary dynamic crush of the strengthening members shown in FIG. 12 ;
  • FIG. 15 is a graph of the dynamic crush force and associated axial crush distance for exemplary strengthening members having the cross sections shown in FIG. 12 ;
  • FIG. 16 is a graph of the dynamic axial crush energy and associated axial crush distance for exemplary strengthening members having the cross sections shown in FIG. 12 ;
  • FIG. 17 illustrates an exemplary embodiment of a vehicle frame with several components for which a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles can be used;
  • FIG. 18 illustrates an exemplary embodiment of a vehicle upper body with several components for which a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles can be used.
  • the present teachings contemplate strengthening members with sixteen-cornered cross sections having substantially increased stiffness throughout the sides and corners without increasing thickness within the corners as done in conventional strengthening members.
  • the strengthening members of the present disclosure are designed based in part on, for example, a variety of tunable parameters configured to achieve strength increases (i.e., load carrying and energy absorption) over basic polygonal designs (e.g., polygonal strengthening member cross sections having less or the same number of sides), while also allowing design flexibility to meet a range of vehicle applications.
  • the shape of the strengthening members disclosed herein provides the strengthening member with stabilized folding, reduced crush distance, and increased energy absorption in response to an axially applied crash force.
  • the shape also improves moisture shedding abilities of the strengthening member and permits a more customized fit with other vehicle components.
  • the strengthening members in accordance with the present teachings can achieve increased energy absorption and a more stable axial collapse when forces such as front and side impact forces are exerted on the strengthening member.
  • the side lengths and configurations, and/or degrees of the internal and external angles, of the strengthening members in accordance with the present teachings can achieve a similar, if not greater, strength increase as thickened corners, while minimizing mass per unit length of the member and maintaining a high manufacturing feasibility because the member can be formed by stamping, bending, press forming, hydro-forming, molding, casting, extrusion, uniform or non-uniform roll forming, machining, forging, and/or other known manufacturing processes.
  • Thus-formed sections can be joined via welding, brazing, soldering, adhesive bonding, fastening, press fitting or other known joining technologies.
  • Strengthening members in accordance with the present teachings can comprise, for example, traditional steels, advanced high strength steels (AHSS), ultra high strength steels (UHSS), new/next generation high strength steels (NGHSS), titanium alloys, aluminum alloys, magnesium alloys, nylons, plastics, composites, hybrid materials or any other suitable materials.
  • AHSS advanced high strength steels
  • UHSS ultra high strength steels
  • NHSS new/next generation high strength steels
  • titanium alloys aluminum alloys, magnesium alloys, nylons, plastics, composites, hybrid materials or any other suitable materials.
  • the material used for a strengthening member may be chosen based at least in part on intended application, strength/weight considerations, cost, packaging space, and/or other design factors.
  • FIG. 1 An exemplary embodiment of a sixteen-cornered cross section of a strengthening member 100 in accordance with the present teachings is illustrated in FIG. 1 .
  • the strengthening member 100 has sixteen sides.
  • the illustrated cross section of the strengthening member 100 comprises sixteen sides having lengths S 1 -S 16 and thicknesses T 1 -T 16 , eight internal corners with angles and eight external corners with angles ⁇ e1 - ⁇ e8 .
  • the perimeter of the sixteen-sided cross section generally forms a polygon comprising a plurality of internal and external corners.
  • the polygon may be formed of alternating internal and external angles, and in particular, may be formed by alternating two consecutive internal corners/angles with two consecutive external corners/angles. This repeating pattern, which alternates between two consecutive internal corners/angles and two consecutive external corners/angles (i.e., an alternating two-in-two-out configuration), results in a cross section with up to four bisecting planes of symmetry.
  • strengthening members with symmetrical, polygonal cross sections may have better load carrying capabilities and energy absorbing capabilities than those with asymmetrical, polygonal cross sections with an equivalent number of corners and sides.
  • strengthening members with symmetrical, polygonal cross sections with more than two bisecting planes of symmetry e.g., three bisecting planes of symmetry, or four-or-more bisecting planes of symmetry
  • asymmetrical cross-sections may offer other benefits that provide advantages that cannot be realized using a symmetrical cross-section.
  • the present disclosure contemplates that a sixteen-sided, sixteen-cornered cross-section, in accordance with the present teachings, may be either symmetrical or asymmetrical.
  • the lengths of the sides and the thicknesses of the sides of the sixteen-sided, sixteen-cornered strengthening member as well as the internal and external corner angles of the strengthening member can be varied (i.e., can be tuned) to achieve improved strength and other performance features (e.g., stability of folding pattern) compared to conventional strengthening member cross sections. Varying these features of the sixteen-sided, sixteen-cornered strengthening member may obviate the need for increased side and/or corner thickness.
  • the lengths of sides S 1 -S 16 , the thicknesses T 1 -T 16 of the sides as well as the internal angles ⁇ i1 - ⁇ i8 and external angles ⁇ e1 - ⁇ e8 of the corner angles can be varied to a certain degree, as would be understood by one skilled in the art, for example in accordance with available packaging space within a vehicle.
  • each internal corner angle ⁇ i1 - ⁇ i8 of the strengthening member can range from about 90° to about 145°, and each external corner angle ⁇ e1 - ⁇ e8 of the strengthening member can range from about 95° to about 175°.
  • the internal angles ⁇ i1 - ⁇ i8 of the strengthening member may all be substantially the same, and similarly, the external angles ⁇ e1 - ⁇ e8 of the strengthening member may all be substantially the same.
  • the present teachings contemplate embodiments for which one, some, or all of the internal angle(s) ⁇ i1 - ⁇ i8 are right angles.
  • FIG. 1 illustrates an exemplary embodiment in which all of the internal angles ⁇ i1 - ⁇ i8 are about 90°, all of the external corner angles ⁇ e1 - ⁇ e8 are about 135°, and the aspect ratio is 1:1.
  • a length of each side S 1 -S 16 of the strengthening member can range from about 10 mm to about 250 mm. In other exemplary embodiments, such as in an aircraft, spacecraft, watercraft, or building application, for example, a length of each side S 1 -S 16 of the strengthening member may be larger.
  • a thickness T 1 -T 16 of the sides of the strengthening member can range from about 0.6 mm to about 6.0 mm. In other exemplary embodiments of the strengthening member, such as in an aircraft, spacecraft, watercraft, or building application, for example, a thickness T 1 -T 16 of the sides of the strengthening member may be larger. In one exemplary embodiment, a thickness T 1 -T 16 of each of the sides of the strengthening member may be about 3.3 mm. In another exemplary embodiment, a thickness T 1 -T 16 of each of the sides may be about 2.3 mm. In another exemplary embodiment, a thickness T 1 -T 16 of each of the sides may be about 2.2 mm.
  • the thickness T 1 -T 16 of the sides is substantially the same as the thickness of the corners for each side.
  • the thickness T 1 -T 16 of each side wall (e.g., side walls 202 A- 202 P (see FIG. 2A )), can vary with respect to each other side wall.
  • the thickness T 1 -T 16 can vary within each length of the sides S 1 -S 16 .
  • FIGS. 2A-2B Top and perspective views of a first exemplary embodiment of a strengthening member 200 having a sixteen-cornered cross section, with eight internal angles and eight external angles are illustrated in FIGS. 2A-2B .
  • Strengthening member 200 has sixteen corners 204 A-H and 206 A-H and sixteen side walls 202 A- 202 P. Eight of the corners are internal angle corners 204 A- 204 H and eight of the corners are external angle corners 206 A- 206 H.
  • Strengthening member 200 also has a first transverse axis 208 , a second transverse axis 210 , and a longitudinal axis 212 .
  • the longitudinal axis 212 of the strengthening member may be oriented substantially horizontally.
  • the shape of strengthening member 200 facilitates reducing or preventing moisture collecting or pooling along portions of the walls of the strengthening member.
  • certain conventional strengthening members whose walls form adjacent external angles of 90 degrees or form rectangular, square, or u-shaped recesses or depressions may collect moisture or permit moisture to pool in the recesses, increasing the possibility of weakening of the strengthening member via rusting, stripping, cracking, etc. (i.e., any form of oxidation or other chemical or physical distortion which the material of manufacture of the strengthening member may be more susceptible to due to the presence of moisture).
  • a strengthening member formed in accordance with the present teachings does not include a recessed portion in which liquids or moisture remain for a long period of time.
  • the walls of the strengthening member are angled relative to one another to promote shedding of any moisture or fluid that falls within any recessed portion of the strengthening member.
  • strengthening member 200 includes a first recessed portion 214 between side walls 202 A and 202 C.
  • side walls 202 A and 202 C are connected by a sloped/angled side wall 202 B in such a manner that fluid impinging or collecting on side wall 202 B will run off side wall 202 B and toward the ends of side wall 202 A or 202 C.
  • strengthening member 200 includes second recessed portion 215 between side walls 202 E and 202 G, third recessed portion 216 between side walls 2021 and 202 K, and fourth recessed portion 217 between side walls 202 M and 2020 .
  • the strengthening member 200 of FIGS. 2A-2B also has a uniform cross section along a length of the strengthening member 200 , from a first end 218 to a second end 220 of the strengthening member 200 . Additionally, the length of each side S 1 -S 16 is approximately the same as illustrated in FIGS. 2A-2B . As also illustrated, each of the internal angles is substantially the same and each of the external angles is substantially the same. In particular, each internal angle is about 90° and each external angle is about 135°. The thicknesses of each sidewall 202 A- 202 P are also substantially the same.
  • FIGS. 3A-3B Top and perspective views of an alternative exemplary embodiment of a strengthening member 300 having a sixteen-cornered cross section, with eight internal angles and eight external angles, are illustrated in FIGS. 3A-3B .
  • Strengthening member 300 differs from strengthening member 200 in several aspects.
  • one or more of the side walls of the strengthening member may be angled with respect to the longitudinal axis 312 of the strengthening member to provide a taper to at least a portion of the shape of the strengthening member 300 .
  • strengthening member 300 is tapered along its length, from a first end 318 of the strengthening member 300 to a second end 320 of the strengthening member.
  • the strengthening member 300 tapers along its length at an angle ⁇ , which can range from about 1° to about 65°.
  • the degree of taper of each side wall may be substantially the same, or different side walls may exhibit differing degrees of taper. Tapering may be required due to component packaging constraints and/or to effectively couple, attach or otherwise bond other components to a strengthening member.
  • strengthening member 300 includes recessed areas 314 , 315 , 316 and 317 . Each recessed area 314 , 315 , 316 and 317 extends along the length of the strengthening member 300 from first end 318 to second end 320 . In the disclosed exemplary embodiment of FIGS. 3A-3B , the lengths of the sides S 1 -S 16 are each approximately the same as the other sides when taken at any cross section along the longitudinal length of the strengthening member 300 .
  • each side gradually/incrementally increases along the longitudinal axis 312 of the strengthening member 300 from first end 318 to second end 320 to provide the tapered shape.
  • FIGS. 3A-3B is exemplary, and therefore all of the contemplated embodiments with variations to the lengths and thicknesses of the sides and to the angles of the internal and external corner angles of the sixteen-cornered cross sections, with eight internal angles and eight external angles, of the strengthening members in accordance with the present teachings are not shown in the figures, but based on the teachings herein, will be apparent to those of skill in the art.
  • FIGS. 4A-4B Top and perspective views of an alternative exemplary embodiment of a strengthening member 400 having the sixteen-cornered cross section, with eight internal angles and eight external angles, are illustrated in FIGS. 4A-4B . Similar to the strengthening member 300 , strengthening member 400 tapers along its longitudinal axis 412 from a first end 418 of the strengthening member to a second end 420 of the strengthening member. However, as shown in FIGS. 4A-4B , strengthening member 400 differs from strengthening members 200 and 300 in that the dimension-to-dimension ratio of the cross section of the strengthening member, taken along transverse axes 408 , 410 is not 1:1; rather, the aspect ratio is about 6.5:10.0. FIGS.
  • FIGS. 4A-4B illustrate a strengthening member that has a first length 422 along a first (minor) transverse axis 408 and a second length 424 along a second (major) transverse axis 410 , where the second transverse axis is perpendicular to the first transverse axis.
  • the aspect ratio of a strengthening member may be defined as [first length 422 ]:[second length 424 ].
  • all of the internal corner angles are about the same, e.g., about 90°.
  • the external angles are not all same.
  • external angles each of the external angles ⁇ e1 , ⁇ e4 , ⁇ e5 , and ⁇ e8 have a first measurement, for example, about 123.5°, while external angles ⁇ e2 , ⁇ e3 , ⁇ e6 , and ⁇ e7 have a second measurement, for example, about 145.5°.
  • the sides of the strengthening member 400 have differing lengths. Also, the strengthening member 400 of the exemplary embodiment shown in FIGS.
  • FIGS. 4A-4B includes recessed areas 414 , 415 , 416 and 417 spaced around the perimeter of the strengthening member and extending along the length of the strengthening member 400 , each recessed area 414 - 417 extending from first end 418 to second end 420 of strengthening member 400 .
  • FIGS. 4A-4B is exemplary, and therefore all of the contemplated embodiments with variations to the lengths of the sides, thicknesses of the sides, the angles of the internal and external corner angles, and the aspect ratio of the of the sixteen-cornered cross sections, with eight internal angles and eight external angles, of the strengthening members in accordance with the present teachings are not shown in the figures.
  • FIGS. 5A-5B Top and perspective views of an alternative exemplary embodiment of a strengthening member 500 having the sixteen-cornered cross section, with eight internal angles and eight external angles, are illustrated in FIGS. 5A-5B .
  • each of the internal angles is about 90° and each of the external angles is about 135°.
  • the lengths of side walls 502 B, 502 F, 502 J, and 502 N are greater in comparison to the lengths of side walls 502 A, 502 C-E, 502 G-I, 502 K-M, 502 O and 502 P.
  • This difference in the lengths of the sides provides recessed areas 514 , 515 , 516 and 517 , each of which extends along the length of the strengthening member 500 from first end 518 to second end 520 of the strengthening member.
  • These recessed areas 514 - 517 each have a depth ⁇ 514 - ⁇ 517 , which is reduced (and may be considered relatively shallow) in comparison to the recessed areas shown in the strengthening members illustrated in FIGS. 2A-4B .
  • This type of parameter tuning i.e., changing the lengths of the sides to reduce the depth of the recess areas 514 - 517 , can further improve the moisture shedding ability of the strengthening member 500 .
  • the combination of the decreased depth of the recessed area and the increased length of the sloped wall (floor) of the recessed area work together to direct moisture out of the recessed areas 514 - 517 .
  • FIGS. 6A-6B Top and perspective views of an alternative exemplary embodiment of a strengthening member 600 having the sixteen-cornered cross section, with eight internal angles and eight external angles, are illustrated in FIGS. 6A-6B .
  • the strengthening member 600 of FIGS. 2A-2B has a uniform cross section along a longitudinal axis 612 of the strengthening member 600 , from a first end 618 to a second end 620 of the strengthening member 200 .
  • the thickness of each sidewall 602 A- 602 P is also substantially the same to each other side wall 602 A- 602 P and throughout the longitudinal length of each side wall 602 A- 602 P.
  • the lengths of each side S 1 -S 16 of each side wall 602 A- 602 P are not all the same. For example, as shown in FIG.
  • the cross-sectional lengths S j of side walls 602 A, 602 C, 602 E, 602 G, 602 I, 602 K, 602 M and 602 O are all substantially the same, however, they are different than the cross-sectional lengths S j of side walls 602 B, 602 F, 602 J and 602 N. Further, 602 B, 602 F, 602 J and 602 N are all substantially the same cross sectional length S j , however the cross sectional lengths S; are different than those of 602 D, 602 H, 602 L and 602 P.
  • the strengthening member 600 includes eight internal angles ⁇ i1 - ⁇ i8 and eight external angles ⁇ e1 - ⁇ e8 . As shown in FIGS.
  • each of the internal angles is about 105° and each of the external angles is about 150°.
  • the lengths of side walls 602 B, 602 F, 602 J, and 602 N are shorter in comparison to the lengths of side walls 602 A, 602 C-E, 602 G-I, 602 K-M, 602 O and 602 P. This difference in the lengths of the sides provides recessed areas 614 - 617 , each of which extends along the length of the strengthening member 600 from first end 618 to second end 620 of the strengthening member 600 .
  • These recessed areas 614 - 617 have a depth ⁇ 614 - ⁇ 617 , respectively, which is increased (and may be considered relatively deep) in comparison to the recessed areas shown in the strengthening members illustrated in FIGS. 5A-5B .
  • the increased depth of the recessed areas 614 - 617 may be compensated for by varying the internal and external angles of the strengthening member cross section. For example, as shown in FIGS. 6A-6B , increasing the internal angles to larger than 90 degrees results in a recessed area 614 in which all walls of the recessed portion are sloped. This configuration increases the ability of the recessed areas 614 - 617 of the strengthening member to shed moisture.
  • the various exemplary embodiments of the present teachings contemplate, for example, strengthening members with corners having different bend radii, with non-uniform cross sections, having non-symmetrical shapes, with sides having variable thicknesses, and/or having variable tapered sides.
  • Various additional exemplary embodiments contemplate strengthening members that are bent and/or curved.
  • various additional exemplary embodiments also contemplate strengthening members having trigger holes, flanges, and/or convolutions as would be understood by those of ordinary skill in the art. Combinations of one or more of the above described variations are also contemplated.
  • the lengths S 1 -S 16 and thicknesses T 1 -T 16 of the sides of the strengthening member are tunable parameters of the strengthening member.
  • the lengths S 1 -S 16 and thicknesses T 1 -T 16 of the sides may be tuned to provide desired characteristics in the strengthening member. For example, in the embodiment of FIGS. 3A-3B , these parameters are tuned to provide a strengthening member 300 with side walls and corners that are tapered along the longitudinal length of the strengthening member 300 .
  • the aspect ratio of a cross section of the strengthening member is a tunable parameter in accordance with the present teachings.
  • the aspect ratio of a cross section of a strengthening member may be tuned to provide desired characteristics in the strengthening member. For example, in the embodiment of FIGS. 4A-4B , these parameters are tuned to provide a strengthening member 400 having two cross-sectional dimensions along perpendicularly oriented transverse axes that are substantially different in length the longitudinal length of the strengthening member 400 .
  • the lengths of the sides S 1 -S 16 of the cross section is a tunable parameter in accordance with the present teachings.
  • the lengths of the sides S 1 -S 16 of a strengthening member may be tuned to provide desired characteristics in the strengthening member. For example, in the embodiment of FIGS. 5A-5B this parameter is tuned to provide a strengthening member 500 with recess areas 514 - 517 having particular depths ⁇ 514 - ⁇ 517 that extend along the longitudinal length of the strengthening member 500 .
  • the eight internal angles ⁇ i1 - ⁇ i8 and eight external angles ⁇ e1 ⁇ e8 are tunable parameters of the strengthening member.
  • the internal angles ⁇ i1 - ⁇ i8 and external angles ⁇ e1 - ⁇ e8 may be tuned to provide desired characteristics in the strengthening member. For example, in the embodiment of FIGS. 6A-6B , these parameters are tuned to provide a strengthening member 600 with sloped recessed areas 614 - 617 having a particular depths ⁇ 614 - ⁇ 617 that extend along the longitudinal length of the strengthening member 600 .
  • multiple tunable parameters including but not limited to the lengths S 1 -S 16 and thicknesses T 1 -T 16 of the sides of the strengthening member, the aspect ratio of a cross section of the strengthening member, the internal angles ⁇ i1 - ⁇ i8 and external angles ⁇ e1 ⁇ e8 of the corners, and the depths ⁇ j14-j17 of the recess areas—may all be tuned within the same strengthening member. These parameters all may be tuned within the same strengthening member to provide desired characteristics in the strengthening member.
  • the strengthening members may have a one-piece construction.
  • the one-piece constructions shown in FIGS. 2A through 6B are exemplary only and the present teachings contemplate strengthening members of other constructions such as two-piece construction or even three-or-more piece construction.
  • Strengthening members of varying shapes having the same mass, thickness, longitudinal length and the same cross-sectional lengths along perpendicular transverse axes were modeled as illustrated in FIG. 7 . Crash simulations were then run for each member to simulate an impact with the same rigid mass (e.g., an impactor), impact speed, and initial kinetic energy.
  • rigid mass e.g., an impactor
  • FIG. 8 shows cross members which have undergone a simulated quasi-static crush.
  • the impact speed is slow (e.g., 1 in/min).
  • An impactor compresses the members with a controlled displacement. Therefore, all members reach the same crush distance with the same crush time.
  • subjecting multiple strengthening members to a quasi-static crush provides a comparison of the folding length and the crush stability of the strengthening members.
  • the sixteen-cornered cross section in accordance with the present teachings demonstrated the most stable axial collapse and the smallest folding length.
  • FIG. 9 shows cross members which have undergone a simulated dynamic crush.
  • the impactor is propelled by a gas gun with a designated mass and initial impact velocity which creates a designated initial kinetic energy.
  • the initial kinetic energy crushes the members.
  • Performance of each strengthening member can be compared by measuring the crush distance and specific energy absorption of each strengthening member.
  • the sixteen-cornered cross section in accordance with the present teachings also demonstrated the shortest crush distance.
  • FIG. 10 illustrates the dynamic crush force (in kN) and associated axial crush distance (in mm) for the simulated dynamic crush, exerted axially on the exemplary strengthening members having the cross sections shown in FIG. 7 .
  • the strengthening member having a sixteen-cornered cross section could sustain a much higher crushing force for a given resulting crushing distance as compared with the square, hexagonal, circular, octagonal, and twelve-cornered cross sections.
  • the sixteen-cornered cross section in accordance with the present teachings achieved about a 65% increase in averaged crush force and/or crash energy absorption as compared with the octagon.
  • FIG. 11 illustrates the dynamic axial crush energy (in kN-mm) and associated axial crush distance (in mm) for a simulated dynamic crush exerted on the exemplary strengthening members having the cross sections shown in FIG. 7 .
  • the strengthening member having a sixteen-cornered cross section could absorb the same total kinetic energy of the impact over a much shorter distance as compared with the square, hexagonal, circular and octagonal cross sections.
  • a sixteen-cornered cross section in accordance with the present teachings absorbed the full axial crush energy in about 60% of the axial crush distance as the basic octagonal cross section.
  • Strengthening members of varying shapes i.e., sixteen-sided cross sections having the same thickness, longitudinal length and the same cross-sectional lengths along perpendicular transverse axes were modeled as illustrated in FIG. 12 .
  • tests were then run for each member to simulate a quasi-static collapse and a dynamic crush with the same rigid mass (e.g. an impactor), impact speed, and initial kinetic energy.
  • the sixteen-cornered cross section in accordance with the present teachings demonstrated the most stable axial collapse and smallest folding length.
  • FIG. 14 for the dynamic crush the sixteen-cornered cross section in accordance with the present teachings also demonstrated the shortest crush distance.
  • FIG. 15 illustrates the dynamic crush force (in kN) and associated axial crush distance (in mm) for the simulated dynamic crush, exerted axially on the exemplary strengthening members having the cross sections shown in FIG. 12 .
  • the strengthening member having a sixteen-cornered cross section in accordance with the present teachings could sustain a much higher crushing force for a given resulting crushing distance as compared with the other sixteen-sided cross sections (i.e., the basic sixteen-sided polygon (hexadecagon) and sixteen-sided corrugated polygon).
  • the sixteen-cornered cross section in accordance with the present teachings achieved about a 75% increase in averaged crush force and/or crash energy absorption as compared with the hexadecagon.
  • FIG. 16 illustrates the axial crush energy (in kN-mm) and associated axial crush distance (in mm) for a simulated dynamic crush exerted on the exemplary strengthening members having the cross sections shown in FIG. 12 .
  • the strengthening member having a sixteen-cornered cross section in accordance with the present teachings could absorb the same total kinetic energy of the impact over a much shorter crush distance as compared with the other sixteen-sided cross sections.
  • the sixteen-cornered cross section in accordance with the present teachings absorbed the full axial crush energy in about 57% of the axial crush distance as the hexadecagon.
  • Sixteen-cornered cross sections in accordance with the present teachings may, therefore, allow improved impact energy management over, for example, basic polygonal strengthening member cross sections, including basic sixteen-sided polygonal cross sections, while minimizing mass per unit length, provides mass saving solutions that reduce vehicle weight and meet new CAFE and emission standards.
  • strengthening members in accordance with the present teachings may provide additional advantages or benefits such as improved moisture shedding abilities (as noted above), increased bending energy absorption capacity, improved manufacturing feasibility, and better fitting of the shape amongst the other components of the complete device (e.g., vehicle).
  • a sixteen-cornered strengthening member in accordance with the present teachings also may be tuned to accommodate unique packaging requirements for use in various vehicles.
  • Other device components can include, but are not limited to, engine mounts or transmission mounts.
  • a strengthening member as disclosed herein may be used, for example, as one or more of crush cans, front rails, mid-rails, rear rails, side rails, shotguns, cross members, roof structures, beltline tubes, door beams, pillars, internal reinforcements, and other components that can benefit from increased crash energy absorption or the other advantages described herein.
  • the present teachings can be applied to both body-on-frame and unitized vehicles, or other types of structures.
  • FIGS. 17 and 18 sixteen-cornered strengthening members with eight internal angles and eight external angles in accordance with the present disclosure can be used to form part of or within a vehicle frame and/or a vehicle upper body.
  • FIG. 17 illustrates an exemplary embodiment of a vehicle frame 1700 with several components for which the strengthening can be used.
  • the strengthening members in accordance with the present invention may form or be used as a part of a front horn 1702 , a front rail 1704 , a front side rail 1706 , a rear side rail 1708 , a rear rail 1710 , and/or as one or more cross members 1712 .
  • FIG. 17 illustrates an exemplary embodiment of a vehicle frame 1700 with several components for which the strengthening can be used.
  • the strengthening members in accordance with the present invention may form or be used as a part of a front horn 1702 , a front rail 1704 , a front side rail 1706 , a rear side rail 1708 , a rear rail 1710 , and/or as
  • the strengthening members in accordance with the present disclosure may be formed or be used as a part of a shotgun 1802 , a hinge-pillar 1804 , an A-pillar 1806 , a B-pillar 1808 , a C-pillar 1810 , one or more door beams 1812 , a cross car beam 1814 , a front header 1816 , a rear header 1818 , a cow top 1820 , a roof rail 1822 , a lateral roof bow 1824 , longitudinal roof bow 1826 , one or more body cross members 1828 , and/or a body cross member 1830 .
  • the strengthening members in accordance with the present disclosure may be used as or form a part of vehicle underbody components, for example, as a rocker and/or one or more underbody cross members. Also, the strengthening members in accordance with the present disclosure may be used as or form a part of vehicle engine compartment components, for example, as one or more engine compartment cross members.
  • embodiments of the present teachings will have varied shapes (i.e. various cross sections) to accommodate specific member space constraints.
  • shape i.e. various cross sections
  • the lengths and thicknesses of the sides and/or angles of the corners can all be adjusted (tuned) to provide optimal strength, size and shape to meet engine compartment constraints.
  • a strengthening member may include more than one longitudinal section or portion, with each section or portion having one or more of the variations taught in accordance with the present disclosure. Said variation(s) can be made continuously or intermittently along the length of each longitudinal section.
  • strengthening members that embody combinations of one or more of the above variations to the disclosed tunable parameters, which have not been illustrated or explicitly described, are also contemplated.

Abstract

A strengthening member for a motor vehicle, the strengthening member has a cross section that comprises sixteen corners and includes sides and corners creating eight internal angles and eight external angles. Each internal angle ranges between about 90° and about 145° and each external angle ranges between about 95° and about 175°. One or more tunable parameters of a cross section can vary along a longitudinal axis of the strengthening member.

Description

    RELATED APPLICATION
  • This application is a Divisional of U.S. patent application Ser. No. 14/749,426, filed on Jun. 24, 2015 (currently pending), the entire contents of which is incorporated by reference herein.
  • TECHNICAL FIELD
  • The present disclosure relates generally to a strengthening member for a vehicle body or other structures. The present disclosure relates more specifically to a strengthening member having a sixteen-cornered cross section and to motor vehicles including a strengthening member having a sixteen-cornered cross section.
  • BACKGROUND
  • It is desirable, for vehicle strengthening members, to maximize impact energy absorption and bending resistance while minimizing mass per unit length of the strengthening member. Impact energy absorption may be maximized, for example, by assuring that the strengthening member compacts substantially along a longitudinal axis of the strengthening member upon experiencing an impact along this axis. Such longitudinal compaction may be referred to as a stable axial crush of the strengthening member.
  • When a compressive force is exerted on a strengthening member, for example, by a force due to a front impact load on a vehicle's front rail or other strengthening member in the engine compartment, the strengthening member can crush in a longitudinal direction to absorb the energy of the collision. In addition, when a bending force is exerted on a strengthening member, for example, by a force due to a side impact load on a vehicle's front side sill, B-pillar or other strengthening member, the strengthening member can bend to absorb the energy of the collision.
  • Conventional strengthening members rely on increasing the thickness and hardness of side and/or corner portions to improve crush strength. However, such increased thickness and hardness increases weight of the strengthening member and reduces manufacturing feasibility. It may be desirable to provide a strengthening assembly configured to achieve the same or similar strength increase as provided by the thickened sides and/or corners, while minimizing mass per unit length of the member, and maintaining a high manufacturing feasibility.
  • It may further be desirable to provide a strengthening member that can achieve increased energy absorption and a more stable axial collapse when forces such as front and side impact forces are exerted on the strengthening member, while also conserving mass to reduce vehicle weights and meet emission requirements. Also, it may be desirable to provide a strengthening member that can achieve improved energy absorption and bend when a bending force is exerted on the strengthening member. Additionally, it may be desirable to provide a strengthening member that possesses improved noise-vibration-harshness performance due to work hardening on its corners. In addition, it may be desirable, to provide a tunable strengthening member cross section configured to achieve strength increases (i.e., load carrying and energy absorption) over basic polygonal designs, while also allowing flexibility in design to meet a range of vehicle applications.
  • SUMMARY
  • In accordance with various exemplary embodiments of the present disclosure, a strengthening member for a motor vehicle is provided. The strengthening member has a sixteen-cornered cross section comprising sixteen corners and including sides and corners creating eight internal angles and eight external angles. Each internal angle ranges between about 90° and about 145°. Each external angle ranges between about 95° and about 175°.
  • In accordance with another aspect of the present disclosure, a strengthening member for a motor vehicle comprises a cross section comprising sixteen corners and including sides and corners creating eight internal angles and eight external angles. The strengthening member has a longitudinal axis, and the strengthening member tapers along the longitudinal axis.
  • In accordance with a further aspect of the present disclosure, a vehicle comprises a strengthening member. The strengthening member comprises a sixteen-cornered cross section including sixteen corners and including sides and corners creating eight internal angle corners and eight external angle corners.
  • Additional objects and advantages will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the present teachings. The objects and advantages of the present disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claimed subject matter. The accompanying drawings, which are incorporated in and constitute part of this specification, illustrate exemplary embodiments of the present disclosure and together with the description, serve to explain principles of the present teachings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • At least some features and advantages of the present teachings will be apparent from the following detailed description of exemplary embodiments consistent therewith, which description should be considered with reference to the accompanying drawings, wherein:
  • FIG. 1 illustrates an exemplary embodiment of a sixteen-cornered cross section of a strengthening member, with the strengthening member having eight internal angles and eight external angles in accordance with the present teachings;
  • FIGS. 2A-2B illustrate top and perspective views of a first exemplary embodiment of a strengthening member having a sixteen-cornered cross section, with eight internal angles and eight external angles, as shown in FIG. 1;
  • FIGS. 3A-3B illustrate top and perspective views of a second exemplary embodiment of a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles in accordance with the present teachings;
  • FIGS. 4A-4B illustrate top and perspective views of a third exemplary embodiment of a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles in accordance with the present teachings;
  • FIGS. 5A-5B illustrate top and perspective views of a fourth exemplary embodiment of a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles in accordance with the present teachings;
  • FIGS. 6A-6B illustrate top and perspective views of a fifth exemplary embodiment of a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles in accordance with the present teachings;
  • FIG. 7 illustrates strengthening members of various cross sections having substantially the same thickness, substantially the longitudinal length, and cross-sectional dimensions along perpendicularly oriented transverse axes with substantially the same lengths;
  • FIG. 8 illustrates an exemplary quasi-static axial collapse of the strengthening members shown in FIG. 7;
  • FIG. 9 illustrates an exemplary dynamic crush of the strengthening members shown in FIG. 7;
  • FIG. 10 is a graph of the dynamic crush force and associated crush distance for the exemplary strengthening members shown in FIG. 7;
  • FIG. 11 is a graph of the dynamic axial crush energy and associated axial crush distance for the exemplary strengthening members shown in FIG. 7;
  • FIG. 12 illustrates sixteen-cornered strengthening members of varying cross-sectional shapes, each cross-section having sides with substantially the same thickness, substantially the same longitudinal length, and cross-sectional dimensions along perpendicularly oriented transverse axes with substantially the same lengths;
  • FIG. 13 illustrates an exemplary quasi-static axial collapse of the strengthening members shown in FIG. 12;
  • FIG. 14 illustrates an exemplary dynamic crush of the strengthening members shown in FIG. 12;
  • FIG. 15 is a graph of the dynamic crush force and associated axial crush distance for exemplary strengthening members having the cross sections shown in FIG. 12;
  • FIG. 16 is a graph of the dynamic axial crush energy and associated axial crush distance for exemplary strengthening members having the cross sections shown in FIG. 12;
  • FIG. 17 illustrates an exemplary embodiment of a vehicle frame with several components for which a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles can be used; and
  • FIG. 18 illustrates an exemplary embodiment of a vehicle upper body with several components for which a strengthening member having sixteen-cornered cross sections, with eight internal angles and eight external angles can be used.
  • Although the following detailed description makes reference to exemplary illustrative embodiments, many alternatives, modifications, and variations thereof will be apparent to those skilled in the art. Accordingly, it is intended that the claimed subject matter be viewed broadly.
  • DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • Reference will now be made in detail to various exemplary embodiments, examples of which are illustrated in the accompanying drawings. The various exemplary embodiments are not intended to limit the disclosure. To the contrary, the disclosure is intended to cover alternatives, modifications, and equivalents of the exemplary embodiments. In the drawings and the description, similar elements are provided with similar reference numerals. It is to be noted that the features explained individually in the description can be mutually combined in any technically expedient manner and disclose additional embodiments of the present disclosure.
  • The present teachings contemplate strengthening members with sixteen-cornered cross sections having substantially increased stiffness throughout the sides and corners without increasing thickness within the corners as done in conventional strengthening members. The strengthening members of the present disclosure are designed based in part on, for example, a variety of tunable parameters configured to achieve strength increases (i.e., load carrying and energy absorption) over basic polygonal designs (e.g., polygonal strengthening member cross sections having less or the same number of sides), while also allowing design flexibility to meet a range of vehicle applications.
  • In accordance with the present teachings, the shape of the strengthening members disclosed herein provides the strengthening member with stabilized folding, reduced crush distance, and increased energy absorption in response to an axially applied crash force. The shape also improves moisture shedding abilities of the strengthening member and permits a more customized fit with other vehicle components.
  • The strengthening members in accordance with the present teachings can achieve increased energy absorption and a more stable axial collapse when forces such as front and side impact forces are exerted on the strengthening member. Furthermore, the side lengths and configurations, and/or degrees of the internal and external angles, of the strengthening members in accordance with the present teachings can achieve a similar, if not greater, strength increase as thickened corners, while minimizing mass per unit length of the member and maintaining a high manufacturing feasibility because the member can be formed by stamping, bending, press forming, hydro-forming, molding, casting, extrusion, uniform or non-uniform roll forming, machining, forging, and/or other known manufacturing processes. Thus-formed sections can be joined via welding, brazing, soldering, adhesive bonding, fastening, press fitting or other known joining technologies.
  • Strengthening members in accordance with the present teachings can comprise, for example, traditional steels, advanced high strength steels (AHSS), ultra high strength steels (UHSS), new/next generation high strength steels (NGHSS), titanium alloys, aluminum alloys, magnesium alloys, nylons, plastics, composites, hybrid materials or any other suitable materials. Those of ordinary skill in the art would understand, for example, that the material used for a strengthening member may be chosen based at least in part on intended application, strength/weight considerations, cost, packaging space, and/or other design factors.
  • An exemplary embodiment of a sixteen-cornered cross section of a strengthening member 100 in accordance with the present teachings is illustrated in FIG. 1. The strengthening member 100 has sixteen sides. The illustrated cross section of the strengthening member 100 comprises sixteen sides having lengths S1-S16 and thicknesses T1-T16, eight internal corners with angles and eight external corners with angles ϑe1e8.
  • The perimeter of the sixteen-sided cross section generally forms a polygon comprising a plurality of internal and external corners. As embodied herein and shown in FIG. 1, the polygon may be formed of alternating internal and external angles, and in particular, may be formed by alternating two consecutive internal corners/angles with two consecutive external corners/angles. This repeating pattern, which alternates between two consecutive internal corners/angles and two consecutive external corners/angles (i.e., an alternating two-in-two-out configuration), results in a cross section with up to four bisecting planes of symmetry. Under an axial and symmetric loading condition, strengthening members with symmetrical, polygonal cross sections, including the various embodiments of the present teachings, may have better load carrying capabilities and energy absorbing capabilities than those with asymmetrical, polygonal cross sections with an equivalent number of corners and sides. Furthermore, strengthening members with symmetrical, polygonal cross sections with more than two bisecting planes of symmetry (e.g., three bisecting planes of symmetry, or four-or-more bisecting planes of symmetry), including the various embodiments of the present teachings, may have better load carrying capabilities and energy absorbing capabilities than those with symmetrical, polygonal cross sections with two or fewer bisecting planes of symmetry and an equivalent number of corners and sides. However, as those of skill in the art will understand, use of asymmetrical cross-sections may offer other benefits that provide advantages that cannot be realized using a symmetrical cross-section. The present disclosure contemplates that a sixteen-sided, sixteen-cornered cross-section, in accordance with the present teachings, may be either symmetrical or asymmetrical.
  • Depending upon the particular application and/or the desired features of the strengthening member, the lengths of the sides and the thicknesses of the sides of the sixteen-sided, sixteen-cornered strengthening member as well as the internal and external corner angles of the strengthening member can be varied (i.e., can be tuned) to achieve improved strength and other performance features (e.g., stability of folding pattern) compared to conventional strengthening member cross sections. Varying these features of the sixteen-sided, sixteen-cornered strengthening member may obviate the need for increased side and/or corner thickness. In accordance with various exemplary embodiments of the present teachings, the lengths of sides S1-S16, the thicknesses T1-T16 of the sides as well as the internal angles ϑi1i8 and external angles ϑe1e8 of the corner angles can be varied to a certain degree, as would be understood by one skilled in the art, for example in accordance with available packaging space within a vehicle.
  • In addition, in a strengthening member in accordance with the present teachings, each internal corner angle ϑi1i8 of the strengthening member can range from about 90° to about 145°, and each external corner angle ϑe1e8 of the strengthening member can range from about 95° to about 175°. In accordance with the present teachings, the internal angles ϑi1i8 of the strengthening member may all be substantially the same, and similarly, the external angles ϑe1e8 of the strengthening member may all be substantially the same. Additionally, the present teachings contemplate embodiments for which one, some, or all of the internal angle(s) ϑi1i8 are right angles. Additionally or alternatively, the present disclosure contemplates embodiments in which at least some of the internal angles ϑi1i8 of the strengthening member differ from one another, and similarly, at least some of the external angles ϑe1e8 of the strengthening member differ from one another. FIG. 1 illustrates an exemplary embodiment in which all of the internal angles ϑi1i8 are about 90°, all of the external corner angles ϑe1e8 are about 135°, and the aspect ratio is 1:1.
  • In certain exemplary embodiments of the present disclosure, such as in an automotive application, for example, a length of each side S1-S16 of the strengthening member can range from about 10 mm to about 250 mm. In other exemplary embodiments, such as in an aircraft, spacecraft, watercraft, or building application, for example, a length of each side S1-S16 of the strengthening member may be larger.
  • In certain exemplary embodiments of the present disclosure, such as in an automotive application, for example, a thickness T1-T16 of the sides of the strengthening member can range from about 0.6 mm to about 6.0 mm. In other exemplary embodiments of the strengthening member, such as in an aircraft, spacecraft, watercraft, or building application, for example, a thickness T1-T16 of the sides of the strengthening member may be larger. In one exemplary embodiment, a thickness T1-T16 of each of the sides of the strengthening member may be about 3.3 mm. In another exemplary embodiment, a thickness T1-T16 of each of the sides may be about 2.3 mm. In another exemplary embodiment, a thickness T1-T16 of each of the sides may be about 2.2 mm. In some exemplary embodiments, the thickness T1-T16 of the sides is substantially the same as the thickness of the corners for each side. In some exemplary embodiments the thickness T1-T16 of each side wall, (e.g., side walls 202A-202P (see FIG. 2A)), can vary with respect to each other side wall. Alternatively or concurrently, the thickness T1-T16 can vary within each length of the sides S1-S16.
  • Top and perspective views of a first exemplary embodiment of a strengthening member 200 having a sixteen-cornered cross section, with eight internal angles and eight external angles are illustrated in FIGS. 2A-2B. Strengthening member 200 has sixteen corners 204A-H and 206A-H and sixteen side walls 202A-202P. Eight of the corners are internal angle corners 204A-204H and eight of the corners are external angle corners 206A-206H. Strengthening member 200 also has a first transverse axis 208, a second transverse axis 210, and a longitudinal axis 212. Although shown with its longitudinal axis 212 positioned substantially vertically, when strengthening member 200 (as well as all of the other various embodiments in accordance with the present teachings) is installed within a vehicle, the longitudinal axis 212 of the strengthening member may be oriented substantially horizontally. When installed in such a position, the shape of strengthening member 200 facilitates reducing or preventing moisture collecting or pooling along portions of the walls of the strengthening member. For example, certain conventional strengthening members whose walls form adjacent external angles of 90 degrees or form rectangular, square, or u-shaped recesses or depressions may collect moisture or permit moisture to pool in the recesses, increasing the possibility of weakening of the strengthening member via rusting, stripping, cracking, etc. (i.e., any form of oxidation or other chemical or physical distortion which the material of manufacture of the strengthening member may be more susceptible to due to the presence of moisture).
  • In contrast, a strengthening member formed in accordance with the present teachings does not include a recessed portion in which liquids or moisture remain for a long period of time. In particular, the walls of the strengthening member are angled relative to one another to promote shedding of any moisture or fluid that falls within any recessed portion of the strengthening member. For example, as shown in FIGS. 2A and 2B, strengthening member 200 includes a first recessed portion 214 between side walls 202A and 202C. However, side walls 202A and 202C are connected by a sloped/angled side wall 202B in such a manner that fluid impinging or collecting on side wall 202B will run off side wall 202B and toward the ends of side wall 202A or 202C. Similarly, for example, as shown in FIGS. 2A and 2B, strengthening member 200 includes second recessed portion 215 between side walls 202E and 202G, third recessed portion 216 between side walls 2021 and 202K, and fourth recessed portion 217 between side walls 202M and 2020.
  • The strengthening member 200 of FIGS. 2A-2B also has a uniform cross section along a length of the strengthening member 200, from a first end 218 to a second end 220 of the strengthening member 200. Additionally, the length of each side S1-S16 is approximately the same as illustrated in FIGS. 2A-2B. As also illustrated, each of the internal angles is substantially the same and each of the external angles is substantially the same. In particular, each internal angle is about 90° and each external angle is about 135°. The thicknesses of each sidewall 202A-202P are also substantially the same.
  • Top and perspective views of an alternative exemplary embodiment of a strengthening member 300 having a sixteen-cornered cross section, with eight internal angles and eight external angles, are illustrated in FIGS. 3A-3B. Strengthening member 300 differs from strengthening member 200 in several aspects. For example, as shown in FIGS. 3A and 3B, one or more of the side walls of the strengthening member may be angled with respect to the longitudinal axis 312 of the strengthening member to provide a taper to at least a portion of the shape of the strengthening member 300. As shown in FIGS. 3A-3B, strengthening member 300 is tapered along its length, from a first end 318 of the strengthening member 300 to a second end 320 of the strengthening member. The strengthening member 300 tapers along its length at an angle α, which can range from about 1° to about 65°. The degree of taper of each side wall may be substantially the same, or different side walls may exhibit differing degrees of taper. Tapering may be required due to component packaging constraints and/or to effectively couple, attach or otherwise bond other components to a strengthening member.
  • In the exemplary embodiment of FIGS. 3A-3B, all of the internal angles ϑi are about 90° and all of the external angles ϑe are about 135°. Also, as shown in FIGS. 3A-3B, strengthening member 300 includes recessed areas 314, 315, 316 and 317. Each recessed area 314, 315, 316 and 317 extends along the length of the strengthening member 300 from first end 318 to second end 320. In the disclosed exemplary embodiment of FIGS. 3A-3B, the lengths of the sides S1-S16 are each approximately the same as the other sides when taken at any cross section along the longitudinal length of the strengthening member 300. However, the length of each side gradually/incrementally increases along the longitudinal axis 312 of the strengthening member 300 from first end 318 to second end 320 to provide the tapered shape. As noted above, the embodiment of FIGS. 3A-3B is exemplary, and therefore all of the contemplated embodiments with variations to the lengths and thicknesses of the sides and to the angles of the internal and external corner angles of the sixteen-cornered cross sections, with eight internal angles and eight external angles, of the strengthening members in accordance with the present teachings are not shown in the figures, but based on the teachings herein, will be apparent to those of skill in the art.
  • Top and perspective views of an alternative exemplary embodiment of a strengthening member 400 having the sixteen-cornered cross section, with eight internal angles and eight external angles, are illustrated in FIGS. 4A-4B. Similar to the strengthening member 300, strengthening member 400 tapers along its longitudinal axis 412 from a first end 418 of the strengthening member to a second end 420 of the strengthening member. However, as shown in FIGS. 4A-4B, strengthening member 400 differs from strengthening members 200 and 300 in that the dimension-to-dimension ratio of the cross section of the strengthening member, taken along transverse axes 408, 410 is not 1:1; rather, the aspect ratio is about 6.5:10.0. FIGS. 4A-4B illustrate a strengthening member that has a first length 422 along a first (minor) transverse axis 408 and a second length 424 along a second (major) transverse axis 410, where the second transverse axis is perpendicular to the first transverse axis. The aspect ratio of a strengthening member may be defined as [first length 422]:[second length 424]. In the exemplary embodiment of FIGS. 4A-4B, all of the internal corner angles are about the same, e.g., about 90°. In contrast, the external angles are not all same. In particular, as shown in FIG. 4A, external angles each of the external angles ϑe1, ϑe4, ϑe5, and ϑe8 have a first measurement, for example, about 123.5°, while external angles ϑe2, ϑe3, ϑe6, and ϑe7 have a second measurement, for example, about 145.5°. As also shown, the sides of the strengthening member 400 have differing lengths. Also, the strengthening member 400 of the exemplary embodiment shown in FIGS. 4A-4B includes recessed areas 414, 415, 416 and 417 spaced around the perimeter of the strengthening member and extending along the length of the strengthening member 400, each recessed area 414-417 extending from first end 418 to second end 420 of strengthening member 400. As noted above, the embodiment of FIGS. 4A-4B is exemplary, and therefore all of the contemplated embodiments with variations to the lengths of the sides, thicknesses of the sides, the angles of the internal and external corner angles, and the aspect ratio of the of the sixteen-cornered cross sections, with eight internal angles and eight external angles, of the strengthening members in accordance with the present teachings are not shown in the figures.
  • Top and perspective views of an alternative exemplary embodiment of a strengthening member 500 having the sixteen-cornered cross section, with eight internal angles and eight external angles, are illustrated in FIGS. 5A-5B. In the exemplary embodiment of FIGS. 5A-5B, each of the internal angles is about 90° and each of the external angles is about 135°. As illustrated in FIG. 5A, the lengths of side walls 502B, 502F, 502J, and 502N are greater in comparison to the lengths of side walls 502A, 502C-E, 502G-I, 502K-M, 502O and 502P. This difference in the lengths of the sides provides recessed areas 514, 515, 516 and 517, each of which extends along the length of the strengthening member 500 from first end 518 to second end 520 of the strengthening member. These recessed areas 514-517 each have a depth δ514517, which is reduced (and may be considered relatively shallow) in comparison to the recessed areas shown in the strengthening members illustrated in FIGS. 2A-4B. This type of parameter tuning, i.e., changing the lengths of the sides to reduce the depth of the recess areas 514-517, can further improve the moisture shedding ability of the strengthening member 500. In particular, the combination of the decreased depth of the recessed area and the increased length of the sloped wall (floor) of the recessed area work together to direct moisture out of the recessed areas 514-517.
  • Top and perspective views of an alternative exemplary embodiment of a strengthening member 600 having the sixteen-cornered cross section, with eight internal angles and eight external angles, are illustrated in FIGS. 6A-6B. The strengthening member 600 of FIGS. 2A-2B has a uniform cross section along a longitudinal axis 612 of the strengthening member 600, from a first end 618 to a second end 620 of the strengthening member 200. The thickness of each sidewall 602A-602P is also substantially the same to each other side wall 602A-602P and throughout the longitudinal length of each side wall 602A-602P. However, the lengths of each side S1-S16 of each side wall 602A-602P are not all the same. For example, as shown in FIG. 6A, the cross-sectional lengths Sj of side walls 602A, 602C, 602E, 602G, 602I, 602K, 602M and 602O are all substantially the same, however, they are different than the cross-sectional lengths Sj of side walls 602B, 602F, 602J and 602N. Further, 602B, 602F, 602J and 602N are all substantially the same cross sectional length Sj, however the cross sectional lengths S; are different than those of 602D, 602H, 602L and 602P. The strengthening member 600 includes eight internal angles ϑi1i8 and eight external angles ϑe1e8. As shown in FIGS. 6A-6B, each of the internal angles is about 105° and each of the external angles is about 150°. In addition, and in contrast to the strengthening member 500 shown in FIGS. 5A-5B, the lengths of side walls 602B, 602F, 602J, and 602N are shorter in comparison to the lengths of side walls 602A, 602C-E, 602G-I, 602K-M, 602O and 602P. This difference in the lengths of the sides provides recessed areas 614-617, each of which extends along the length of the strengthening member 600 from first end 618 to second end 620 of the strengthening member 600. These recessed areas 614-617 have a depth δ614617, respectively, which is increased (and may be considered relatively deep) in comparison to the recessed areas shown in the strengthening members illustrated in FIGS. 5A-5B. However, the increased depth of the recessed areas 614-617 may be compensated for by varying the internal and external angles of the strengthening member cross section. For example, as shown in FIGS. 6A-6B, increasing the internal angles to larger than 90 degrees results in a recessed area 614 in which all walls of the recessed portion are sloped. This configuration increases the ability of the recessed areas 614-617 of the strengthening member to shed moisture.
  • More generally, the various exemplary embodiments of the present teachings contemplate, for example, strengthening members with corners having different bend radii, with non-uniform cross sections, having non-symmetrical shapes, with sides having variable thicknesses, and/or having variable tapered sides. Various additional exemplary embodiments contemplate strengthening members that are bent and/or curved. Moreover, to further adjust a member's folding pattern and/or peak load capacity, various additional exemplary embodiments also contemplate strengthening members having trigger holes, flanges, and/or convolutions as would be understood by those of ordinary skill in the art. Combinations of one or more of the above described variations are also contemplated.
  • As discussed and embodied herein, the lengths S1-S16 and thicknesses T1-T16 of the sides of the strengthening member are tunable parameters of the strengthening member. The lengths S1-S16 and thicknesses T1-T16 of the sides may be tuned to provide desired characteristics in the strengthening member. For example, in the embodiment of FIGS. 3A-3B, these parameters are tuned to provide a strengthening member 300 with side walls and corners that are tapered along the longitudinal length of the strengthening member 300.
  • As discussed and embodied herein, the aspect ratio of a cross section of the strengthening member is a tunable parameter in accordance with the present teachings. The aspect ratio of a cross section of a strengthening member may be tuned to provide desired characteristics in the strengthening member. For example, in the embodiment of FIGS. 4A-4B, these parameters are tuned to provide a strengthening member 400 having two cross-sectional dimensions along perpendicularly oriented transverse axes that are substantially different in length the longitudinal length of the strengthening member 400.
  • As discussed and embodied herein, the lengths of the sides S1-S16 of the cross section is a tunable parameter in accordance with the present teachings. The lengths of the sides S1-S16 of a strengthening member may be tuned to provide desired characteristics in the strengthening member. For example, in the embodiment of FIGS. 5A-5B this parameter is tuned to provide a strengthening member 500 with recess areas 514-517 having particular depths δ514517 that extend along the longitudinal length of the strengthening member 500.
  • As discussed and embodied herein, the eight internal angles ϑi1i8 and eight external angles ϑe1ϑe8 are tunable parameters of the strengthening member. The internal angles ϑi1i8 and external angles ϑe1e8 may be tuned to provide desired characteristics in the strengthening member. For example, in the embodiment of FIGS. 6A-6B, these parameters are tuned to provide a strengthening member 600 with sloped recessed areas 614-617 having a particular depths δ614617 that extend along the longitudinal length of the strengthening member 600.
  • As discussed and embodied herein, multiple tunable parameters—including but not limited to the lengths S1-S16 and thicknesses T1-T16 of the sides of the strengthening member, the aspect ratio of a cross section of the strengthening member, the internal angles ϑi1i8 and external angles ϑe1ϑe8 of the corners, and the depths δj14-j17 of the recess areas—may all be tuned within the same strengthening member. These parameters all may be tuned within the same strengthening member to provide desired characteristics in the strengthening member.
  • In the illustrated embodiments of FIGS. 2A-6B, the strengthening members may have a one-piece construction. As stated above, the one-piece constructions shown in FIGS. 2A through 6B are exemplary only and the present teachings contemplate strengthening members of other constructions such as two-piece construction or even three-or-more piece construction.
  • To demonstrate the improved strength and performance features of a sixteen-cornered cross section having eight internal angles and eight external angles in accordance with the present teachings, the inventors compared various existing and conventional strengthening member cross section designs to cross sections based on the designs disclosed herein. Exemplary strengthening members were modeled and crash simulation runs were conducted, as shown and described below with reference to FIGS. 7-11.
  • Strengthening members of varying shapes (i.e., cross sections) having the same mass, thickness, longitudinal length and the same cross-sectional lengths along perpendicular transverse axes were modeled as illustrated in FIG. 7. Crash simulations were then run for each member to simulate an impact with the same rigid mass (e.g., an impactor), impact speed, and initial kinetic energy.
  • FIG. 8 shows cross members which have undergone a simulated quasi-static crush. During each quasi-static crush the impact speed is slow (e.g., 1 in/min). An impactor compresses the members with a controlled displacement. Therefore, all members reach the same crush distance with the same crush time. Thus, subjecting multiple strengthening members to a quasi-static crush provides a comparison of the folding length and the crush stability of the strengthening members. As shown in FIG. 8, the sixteen-cornered cross section in accordance with the present teachings demonstrated the most stable axial collapse and the smallest folding length.
  • FIG. 9 shows cross members which have undergone a simulated dynamic crush. During each dynamic crush, the impactor is propelled by a gas gun with a designated mass and initial impact velocity which creates a designated initial kinetic energy. The initial kinetic energy crushes the members. Performance of each strengthening member can be compared by measuring the crush distance and specific energy absorption of each strengthening member. As shown in FIG. 9, the sixteen-cornered cross section in accordance with the present teachings also demonstrated the shortest crush distance.
  • FIG. 10 illustrates the dynamic crush force (in kN) and associated axial crush distance (in mm) for the simulated dynamic crush, exerted axially on the exemplary strengthening members having the cross sections shown in FIG. 7. As shown in FIG. 10, the strengthening member having a sixteen-cornered cross section could sustain a much higher crushing force for a given resulting crushing distance as compared with the square, hexagonal, circular, octagonal, and twelve-cornered cross sections. Specifically, the sixteen-cornered cross section in accordance with the present teachings achieved about a 65% increase in averaged crush force and/or crash energy absorption as compared with the octagon.
  • FIG. 11 illustrates the dynamic axial crush energy (in kN-mm) and associated axial crush distance (in mm) for a simulated dynamic crush exerted on the exemplary strengthening members having the cross sections shown in FIG. 7. As shown in FIG. 11, the strengthening member having a sixteen-cornered cross section could absorb the same total kinetic energy of the impact over a much shorter distance as compared with the square, hexagonal, circular and octagonal cross sections. In particular, a sixteen-cornered cross section in accordance with the present teachings absorbed the full axial crush energy in about 60% of the axial crush distance as the basic octagonal cross section.
  • To further demonstrate the improved strength and performance features of a sixteen-cornered cross section in accordance with the present teachings compared to basic sixteen-sided cross section designs, exemplary strengthening members were modeled and crash simulation runs were conducted, as shown and described below with reference to FIGS. 12-16.
  • Strengthening members of varying shapes (i.e., sixteen-sided cross sections) having the same thickness, longitudinal length and the same cross-sectional lengths along perpendicular transverse axes were modeled as illustrated in FIG. 12. As above, tests were then run for each member to simulate a quasi-static collapse and a dynamic crush with the same rigid mass (e.g. an impactor), impact speed, and initial kinetic energy. As shown in FIG. 13 for the quasi-static collapse, the sixteen-cornered cross section in accordance with the present teachings demonstrated the most stable axial collapse and smallest folding length. Furthermore, as shown in FIG. 14 for the dynamic crush, the sixteen-cornered cross section in accordance with the present teachings also demonstrated the shortest crush distance.
  • FIG. 15 illustrates the dynamic crush force (in kN) and associated axial crush distance (in mm) for the simulated dynamic crush, exerted axially on the exemplary strengthening members having the cross sections shown in FIG. 12. As shown in FIG. 15, once again, the strengthening member having a sixteen-cornered cross section in accordance with the present teachings could sustain a much higher crushing force for a given resulting crushing distance as compared with the other sixteen-sided cross sections (i.e., the basic sixteen-sided polygon (hexadecagon) and sixteen-sided corrugated polygon). In fact, the sixteen-cornered cross section in accordance with the present teachings achieved about a 75% increase in averaged crush force and/or crash energy absorption as compared with the hexadecagon.
  • FIG. 16 illustrates the axial crush energy (in kN-mm) and associated axial crush distance (in mm) for a simulated dynamic crush exerted on the exemplary strengthening members having the cross sections shown in FIG. 12. As shown in FIG. 16, once again, the strengthening member having a sixteen-cornered cross section in accordance with the present teachings could absorb the same total kinetic energy of the impact over a much shorter crush distance as compared with the other sixteen-sided cross sections. In fact, the sixteen-cornered cross section in accordance with the present teachings absorbed the full axial crush energy in about 57% of the axial crush distance as the hexadecagon.
  • Sixteen-cornered cross sections in accordance with the present teachings may, therefore, allow improved impact energy management over, for example, basic polygonal strengthening member cross sections, including basic sixteen-sided polygonal cross sections, while minimizing mass per unit length, provides mass saving solutions that reduce vehicle weight and meet new CAFE and emission standards.
  • Beyond the increased load carrying and energy absorption capabilities, strengthening members in accordance with the present teachings may provide additional advantages or benefits such as improved moisture shedding abilities (as noted above), increased bending energy absorption capacity, improved manufacturing feasibility, and better fitting of the shape amongst the other components of the complete device (e.g., vehicle).
  • In addition, a sixteen-cornered strengthening member in accordance with the present teachings also may be tuned to accommodate unique packaging requirements for use in various vehicles. By virtue of the particular shape of the cross section of at least some of the sixteen cornered cross members, it may be easier to couple, bond, attach, or otherwise affix other device components to the strengthening member. Other device components can include, but are not limited to, engine mounts or transmission mounts.
  • Sixteen-cornered strengthening members in accordance with the present teachings are contemplated for use as structural members in a number of environments. For example, in a motor vehicle, a strengthening member as disclosed herein may be used, for example, as one or more of crush cans, front rails, mid-rails, rear rails, side rails, shotguns, cross members, roof structures, beltline tubes, door beams, pillars, internal reinforcements, and other components that can benefit from increased crash energy absorption or the other advantages described herein. In addition, the present teachings can be applied to both body-on-frame and unitized vehicles, or other types of structures.
  • For example, as shown in FIGS. 17 and 18, sixteen-cornered strengthening members with eight internal angles and eight external angles in accordance with the present disclosure can be used to form part of or within a vehicle frame and/or a vehicle upper body. FIG. 17 illustrates an exemplary embodiment of a vehicle frame 1700 with several components for which the strengthening can be used. For example, the strengthening members in accordance with the present invention may form or be used as a part of a front horn 1702, a front rail 1704, a front side rail 1706, a rear side rail 1708, a rear rail 1710, and/or as one or more cross members 1712. Likewise, FIG. 18 illustrates an exemplary embodiment of a vehicle upper body 1800 with several components for which the strengthening can be used. For example, the strengthening members in accordance with the present disclosure may be formed or be used as a part of a shotgun 1802, a hinge-pillar 1804, an A-pillar 1806, a B-pillar 1808, a C-pillar 1810, one or more door beams 1812, a cross car beam 1814, a front header 1816, a rear header 1818, a cow top 1820, a roof rail 1822, a lateral roof bow 1824, longitudinal roof bow 1826, one or more body cross members 1828, and/or a body cross member 1830.
  • Moreover, the strengthening members in accordance with the present disclosure may be used as or form a part of vehicle underbody components, for example, as a rocker and/or one or more underbody cross members. Also, the strengthening members in accordance with the present disclosure may be used as or form a part of vehicle engine compartment components, for example, as one or more engine compartment cross members.
  • Depending on the application, embodiments of the present teachings will have varied shapes (i.e. various cross sections) to accommodate specific member space constraints. When used as a vehicle front rail, for example, to achieve optimized axial crush performance, the lengths and thicknesses of the sides and/or angles of the corners can all be adjusted (tuned) to provide optimal strength, size and shape to meet engine compartment constraints.
  • Although various exemplary embodiments described herein have been described as configured to be used with automotive vehicles, it is envisioned that the various strengthening members in accordance with the present teachings may be configured for use with other types of vehicles (e.g. aircrafts, spacecrafts and watercrafts) and/or structures, for which it may be desirable to provide increased crash energy absorption. Thus, it will be appreciated by those of ordinary skill in the art having the benefit of this disclosure that the present teachings provide strengthening members for various applications. Further modifications and alternative embodiments of various aspects of the present teachings will be apparent to those skilled in the art in view of this description.
  • It is to be understood that the particular examples and embodiments set forth herein are non-limiting, and modifications to structure, dimensions, materials, and methodologies may be made without departing from the scope of the present teachings.
  • For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the written description and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the present teachings are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein.
  • It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural referents unless expressly and unequivocally limited to one referent. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the devices and methods of the present disclosure without departing from the scope of its teachings. Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the teachings disclosed herein. It is intended that the specification and embodiment described herein be considered as exemplary only.
  • In particular, those skilled in the art will appreciate that a strengthening member may include more than one longitudinal section or portion, with each section or portion having one or more of the variations taught in accordance with the present disclosure. Said variation(s) can be made continuously or intermittently along the length of each longitudinal section. In other words, strengthening members that embody combinations of one or more of the above variations to the disclosed tunable parameters, which have not been illustrated or explicitly described, are also contemplated.

Claims (23)

What is claimed is:
1. A strengthening member for a motor vehicle, the strengthening member comprising a sixteen-cornered cross section including sixteen corners and including sides and corners creating eight internal angles and eight external angles,
wherein each internal angle ranges between about 90° and about 145°, and
wherein each external angle ranges between about 95° and about 175°.
2. The strengthening member of claim 1, wherein each of the eight internal angles is substantially the same.
3. The strengthening member of claim 1, wherein each of the eight external angles is substantially the same.
4. The strengthening member of claim 1, wherein at least one internal angle is a right angle.
5. The strengthening member of claim 4, wherein each of the internal angles is a right angle.
6. The strengthening member of claim 1, further comprising at least one recessed portion.
7. The strengthening member of claim 6, wherein the at least one recessed portion is defined by two internal angles and two external angles of the strengthening member.
8. The strengthening member of claim 7, wherein the two external angles defining the recessed portion are adjacent to one another.
9. The strengthening member of claim 8, wherein the two external angles defining the recessed portion are the same.
10. The strengthening member of claim 8, wherein the two internal angles are each greater than 90 degrees.
11. The strengthening member of claim 6, wherein the at least one recessed portion is defined by three sides of the strengthening member.
12. The strengthening member of claim 11, wherein the three sides of the strengthening member defining the at least one recessed portion have the same length.
13. The strengthening member of claim 11, wherein two of the three sides of the strengthening member defining the at least one recessed portion have the same length and the other of the three sides has a different length.
14. The strengthening member of claim 6, wherein the at least one recessed portion comprises four recessed areas, wherein each recessed area extends along a length of the strengthening member from a first end of the strengthening member to a second end of the strengthening member.
15. The strengthening member of claim 1, wherein the corners of the cross section have substantially the same thickness as the sides of the cross section.
16. A strengthening member for a motor vehicle, the strengthening member comprising:
a cross section comprising sixteen corners and including sides and corners creating eight internal angles and eight external angles; and
a longitudinal axis, wherein the strengthening member tapers along the longitudinal axis.
17. The strengthening member of claim 16, wherein each internal angle is adjacent to another internal angle and an external angle.
18. The strengthening member of claim 17, wherein the cross section has more than two bisecting planes of symmetry.
19. The strengthening member of claim 18, wherein the cross section has four bisecting planes of symmetry.
20. The strengthening member of claim 16, wherein at least one internal angle of the cross section varies along at least a portion of a length of the strengthening member.
21. The strengthening member of claim 16, wherein a thickness of at least one side of the strengthening member varies along at least a portion of a length of the strengthening member.
22. A vehicle comprising:
a strengthening member comprising a sixteen-cornered cross section including sixteen corners and including sides and corners creating eight internal angle corners and eight external angle corners.
23. The vehicle of claim 22, wherein the strengthening member is, or is within, at least one vehicle structural member selected from the group consisting of:
a crush can, a front horn, a front rail, a front side rail, a rear side rail, a rear rail, a frame cross member, a shotgun, a hinge-pillar, an A-pillar, a B-pillar, a C-pillar, a door beam, a cross car beam, a front header, a rear header, a cow top, a roof rail, a lateral roof bow, longitudinal roof bow, a body cross member, a back panel cross member, a rocker, an underbody cross member, and an engine compartment cross member.
US16/391,652 2015-06-24 2019-04-23 Sixteen-cornered strengthening member for vehicles Abandoned US20190248415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/391,652 US20190248415A1 (en) 2015-06-24 2019-04-23 Sixteen-cornered strengthening member for vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/749,426 US10315698B2 (en) 2015-06-24 2015-06-24 Sixteen-cornered strengthening member for vehicles
US16/391,652 US20190248415A1 (en) 2015-06-24 2019-04-23 Sixteen-cornered strengthening member for vehicles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/749,426 Division US10315698B2 (en) 2015-06-24 2015-06-24 Sixteen-cornered strengthening member for vehicles

Publications (1)

Publication Number Publication Date
US20190248415A1 true US20190248415A1 (en) 2019-08-15

Family

ID=57135462

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/749,426 Active 2035-11-17 US10315698B2 (en) 2015-06-24 2015-06-24 Sixteen-cornered strengthening member for vehicles
US16/391,652 Abandoned US20190248415A1 (en) 2015-06-24 2019-04-23 Sixteen-cornered strengthening member for vehicles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/749,426 Active 2035-11-17 US10315698B2 (en) 2015-06-24 2015-06-24 Sixteen-cornered strengthening member for vehicles

Country Status (4)

Country Link
US (2) US10315698B2 (en)
CN (1) CN205819337U (en)
DE (1) DE202016103279U1 (en)
MX (1) MX2016008336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292522B2 (en) 2019-12-04 2022-04-05 Ford Global Technologies, Llc Splayed front horns for vehicle frames

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8539737B2 (en) 2008-09-19 2013-09-24 Ford Global Technologies, Llc Twelve-cornered strengthening member
US10315698B2 (en) 2015-06-24 2019-06-11 Ford Global Technologies, Llc Sixteen-cornered strengthening member for vehicles
US9944323B2 (en) * 2015-10-27 2018-04-17 Ford Global Technologies, Llc Twenty-four-cornered strengthening member for vehicles
JP6913029B2 (en) * 2015-12-24 2021-08-04 株式会社Uacj Energy absorbing member
US9889887B2 (en) 2016-01-20 2018-02-13 Ford Global Technologies, Llc Twelve-cornered strengthening member for a vehicle with straight and curved sides and an optimized straight side length to curved side radius ratio
US9789906B1 (en) * 2016-03-23 2017-10-17 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
JP6681761B2 (en) * 2016-03-25 2020-04-15 アイシン精機株式会社 Crash box
US10704638B2 (en) 2016-04-26 2020-07-07 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10393315B2 (en) 2016-04-26 2019-08-27 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10473177B2 (en) 2016-08-23 2019-11-12 Ford Global Technologies, Llc Cellular structures with sixteen-cornered cells
US10220881B2 (en) 2016-08-26 2019-03-05 Ford Global Technologies, Llc Cellular structures with fourteen-cornered cells
US10300947B2 (en) 2016-08-30 2019-05-28 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
US10279842B2 (en) 2016-08-30 2019-05-07 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
US10429006B2 (en) 2016-10-12 2019-10-01 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10065682B1 (en) * 2017-04-24 2018-09-04 Ford Global Technologies, Llc Thirty-two-cornered strengthening member
IT201700103763A1 (en) * 2017-09-15 2019-03-15 Srt S R L Polymeric impact absorption element for a vehicle and bumper structure
SE541218C2 (en) * 2017-09-20 2019-05-07 Gestamp Hardtech Ab A vehicle side structure
US10562478B2 (en) 2018-02-23 2020-02-18 Ford Global Technologies, Llc Strengthening structure of a vehicle
US10829070B2 (en) * 2018-02-23 2020-11-10 Ford Global Technologies, Llc Strengthening structure of a vehicle
US11034315B2 (en) * 2018-04-17 2021-06-15 Tesla, Inc. Advanced thin-walled structures for enhanced crash performance
US11104283B2 (en) * 2018-11-16 2021-08-31 Aisin Seiki Kabushiki Kaisha Vehicular energy absorbing member and manufacturing method thereof
US11167797B2 (en) * 2019-10-21 2021-11-09 Ford Global Technologies, Llc Multi-cell energy absorbing structures
DE102020120245B4 (en) * 2020-07-31 2022-05-12 Bayerische Motoren Werke Aktiengesellschaft Carrier for a motor vehicle
JP7413298B2 (en) * 2021-02-24 2024-01-15 豊田鉄工株式会社 Vehicle side member structure

Family Cites Families (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1951292A (en) 1929-04-18 1934-03-13 James E Cahill Assembled pile
US2205893A (en) 1937-09-03 1940-06-25 Gen Electric Method of corrugating a heatradiating tube
US2340003A (en) * 1940-02-03 1944-01-25 William J Mcdermott Building column
US2837347A (en) 1948-12-06 1958-06-03 Barenyi Bela Frame for motor vehicles
US2856226A (en) 1955-01-19 1958-10-14 Gen Motors Corp Vehicle frame assembly
US3092222A (en) 1958-02-26 1963-06-04 William B Jaspert Cruciform structural steel columns
US3209432A (en) 1963-12-23 1965-10-05 Ford Motor Co Method for fabricating a structural member
US3366530A (en) 1964-03-25 1968-01-30 Hexcel Corp Color tinted plastic cellular honeycomb type structures
GB1123337A (en) 1965-11-20 1968-08-14 Holzinger Franz Improvements in structural bars
DE1303268B (en) 1966-07-14 Gain W
US3964527A (en) 1971-12-02 1976-06-22 Mcdonnell Douglas Corporation Method and apparatus for filling spacing core
BE821235R (en) 1973-10-26 1975-02-17 STEEL BOXES AND THEIR USE FOR THE EXECUTION OF MIXED STEEL-CONCRETE POSTS OR PILES.
US3930658A (en) 1973-10-29 1976-01-06 Amf Incorporated Plastic ski and method of making the same
FR2288648A1 (en) 1974-03-05 1976-05-21 Peugeot & Renault ENERGY ABSORBING COMPOSITE BUMPER
US4056878A (en) 1974-09-17 1977-11-08 Ciba-Geigy Ag Method of fixing a sandwich panel to a support
FR2375496A2 (en) 1976-12-22 1978-07-21 Paulstra Sa Energy absorbing bumper for road vehicles - has hexagonal cells with curved walls or indentations to initiate buckling upon impact (SW 22.8.77)
US4021983A (en) 1976-02-09 1977-05-10 Kirk Jr James D Honeycomb building wall construction
US4227593A (en) 1976-10-04 1980-10-14 H. H. Robertson Company Kinetic energy absorbing pad
US4249976A (en) 1979-04-04 1981-02-10 Grumman Aerospace Corporation Manufacture of honeycomb sandwich
SE8000483L (en) 1979-11-17 1981-05-18 Ernst Koller PROFILE STANDARD BUILDING ELEMENT
US4352484A (en) 1980-09-05 1982-10-05 Energy Absorption Systems, Inc. Shear action and compression energy absorber
JPS61287871A (en) 1985-06-17 1986-12-18 Toyota Motor Corp Side member for automobile
AT384405B (en) 1985-07-22 1987-11-10 Supervis Ets LENGTH-CHANGEABLE STEERING SPINDLE FOR STEERING DEVICES IN MOTOR VEHICLES
US5100730A (en) 1989-11-16 1992-03-31 Lambers Thomas J Structural reinforcement apparatus and method of making same
US5069318A (en) 1989-12-26 1991-12-03 Mcdonnell Douglas Corporation Self-stabilized stepped crashworthy stiffeners
WO1992009766A1 (en) 1990-11-23 1992-06-11 Colin Mark Richard Ellis Structural member and method of manufacture
JPH04371059A (en) 1991-06-19 1992-12-24 Oki Electric Ind Co Ltd Line state detecting device for communication equipment
US5242735A (en) 1991-10-17 1993-09-07 Karl Blankenburg Structural module
US5271204A (en) 1992-01-21 1993-12-21 Wolf Morris A Lightweight display post and method of making same
US5618633A (en) 1994-07-12 1997-04-08 Precision Castparts Corporation Honeycomb casting
US5480189A (en) 1994-08-12 1996-01-02 Ford Motor Company Automotive vehicle frame
US5431445A (en) 1994-11-28 1995-07-11 Ford Motor Company Asymmetrical beam structure for a vehicle
JPH08337183A (en) 1995-06-13 1996-12-24 Nissan Motor Co Ltd Structure of strength member
US5729463A (en) 1995-09-01 1998-03-17 Ulsab Trust Designing and producing lightweight automobile bodies
US5913565A (en) 1995-09-22 1999-06-22 Nissan Motor Vehicle member
BE1010869A3 (en) 1997-01-20 1999-02-02 Cockerill Rech & Dev DEVICE energy absorption.
US6068330A (en) 1998-01-22 2000-05-30 Honda Giken Kogyo Kabushiki Kaisha Framework of an automobile body
EP1123184B1 (en) 1998-10-23 2002-12-18 Vantico AG Method for filling and reinforcing honeycomb sandwich panels
US6179355B1 (en) 1998-12-18 2001-01-30 Ford Global Technologies, Inc. Automotive vehicle bumper assembly
FR2796021B1 (en) 1999-07-05 2001-10-19 Peugeot Citroen Automobiles Sa BUMPER BEAM FOR MOTOR VEHICLES
JP2001165383A (en) 1999-12-13 2001-06-22 Toyoda Gosei Co Ltd Fuel hose and manufacturing method
WO2002018189A1 (en) 2000-08-28 2002-03-07 Mitsubishi Heavy Industries, Ltd. Body structure
US7904318B2 (en) 2000-10-02 2011-03-08 Computer Sciences Corporation Computerized method and system of determining right of way and liability for an accident
JP2002155981A (en) 2000-11-21 2002-05-31 Aisin Seiki Co Ltd Impact absorbing member and bumper
JP3854812B2 (en) 2001-03-27 2006-12-06 新日本製鐵株式会社 Strength members for automobiles
JP3512753B2 (en) 2001-04-20 2004-03-31 川崎重工業株式会社 Railcar collision energy absorption structure
JP3897542B2 (en) 2001-05-29 2007-03-28 株式会社神戸製鋼所 Energy absorbing member
EP2284045A1 (en) 2001-09-12 2011-02-16 General Electric Company Bumper beam with crush cans
US7407219B2 (en) 2004-03-24 2008-08-05 Shape Corporation Energy management beam
US20030085592A1 (en) 2001-10-16 2003-05-08 Seksaria Dinesh C Front end apron assembly for a motor vehicle
US6893065B2 (en) 2001-10-16 2005-05-17 Alcoa Inc. Crash energy absorption assembly for a motor vehicle
US6588830B1 (en) 2002-07-01 2003-07-08 Daimlerchrysler Corporation Energy absorbing frame rail tip
US6923035B2 (en) 2002-09-18 2005-08-02 Packless Metal Hose, Inc. Method and apparatus for forming a modified conduit
JP3888630B2 (en) 2002-12-04 2007-03-07 川崎重工業株式会社 Energy absorbing member and helicopter impact resistant structure using the same
RU2246646C2 (en) 2003-02-18 2005-02-20 Федеральное государственное унитарное предприятие "Центральное конструкторское бюро морской техники "Рубин" Impact energy absorber
US7068025B2 (en) 2003-05-12 2006-06-27 Nesa A/S Compensation of simple fibre optic Faraday effect sensors
FR2855805B1 (en) 2003-06-06 2005-08-05 Vallourec Vitry STRUCTURE ELEMENT FOR VEHICLE CAPABLE OF IMPROVED SHOCK BEHAVIOR
CN100504105C (en) 2003-07-28 2009-06-24 住友金属工业株式会社 Impact absorption member
DE602004027049D1 (en) 2003-07-28 2010-06-17 Sumitomo Metal Ind IMPACT RECORD LINK
CN100476233C (en) 2003-07-28 2009-04-08 住友金属工业株式会社 Cash energy absorption member
US7325500B2 (en) 2003-08-08 2008-02-05 Gary Carpenter Packaging system, apparatus, and method with articulable corner support members
SE0401460L (en) 2004-06-09 2005-07-26 Gestamp Hardtech Ab Crash box for vehicles
US7160621B2 (en) 2004-06-28 2007-01-09 General Electric Company Energy absorbing articles
US8266856B2 (en) 2004-08-02 2012-09-18 Tac Technologies, Llc Reinforced structural member and frame structures
DE102004039592C5 (en) 2004-08-13 2008-05-21 Benteler Automobiltechnik Gmbh crash box
US7988809B2 (en) 2004-09-01 2011-08-02 Hexcel Corporation Aircraft floor and interior panels using edge coated honeycomb
US7303219B2 (en) 2004-12-09 2007-12-04 Freightliner, Llc Interlocking bumper mounting system
US7350851B2 (en) 2005-03-08 2008-04-01 Gm Global Technology Operations, Inc. Reversibly expandable energy absorbing assembly and methods for operating the same
US7264274B2 (en) 2005-06-22 2007-09-04 Delphi Technologies, Inc. Tuneable energy absorbing mounting structure for steering column
DE102005029738B4 (en) 2005-06-24 2018-10-04 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Energy absorber element and this vehicle body using
JP4707487B2 (en) 2005-07-19 2011-06-22 武敏 野島 Panel and panel creation method
DE102005037055A1 (en) 2005-08-05 2007-02-08 Christian Thomas Core structure for sandwich panels is made up of honeycomb of Y-shaped, twelve-sided pieces, allowing panels to curve around one axis or two axes simultaneously
DE102005041021B4 (en) 2005-08-29 2007-09-20 Benteler Automobiltechnik Gmbh Crash-relevant component of a vehicle structure or chassis of a motor vehicle
WO2007029362A1 (en) 2005-09-09 2007-03-15 Toyoda Iron Works Co., Ltd Impact absorption member for vehicle
US7678440B1 (en) 2006-03-01 2010-03-16 Mcknight Geoffrey P Deformable variable-stiffness cellular structures
US20080014809A1 (en) 2006-05-30 2008-01-17 Brown Eric E Hexagonal-cell inflated watercraft
JP4350731B2 (en) 2006-07-11 2009-10-21 豊田鉄工株式会社 Shock absorbing member for vehicle
US7963378B2 (en) 2006-08-10 2011-06-21 O-Flex Group, Inc. Corrugated tubular energy absorbing structure
US20110223372A1 (en) 2006-10-16 2011-09-15 Csp Systems, Inc. Non-Planar Composite Structural Panel
US20080098601A1 (en) 2006-10-30 2008-05-01 Shape Corporation Tubular tapered crushable structures and manufacturing methods
US7651155B2 (en) 2006-11-03 2010-01-26 Gm Global Technology Operations, Inc. Progressive energy absorber
JP4909092B2 (en) 2007-01-10 2012-04-04 本田技研工業株式会社 Light alloy extrusion frame
US7708323B2 (en) 2007-02-05 2010-05-04 Honda Motor Co., Ltd. Crushable body strength adjusting device for a vehicle
US20100064946A1 (en) 2007-03-01 2010-03-18 Cas Holdings Australia Pty Ltd Material handling platform, components and methods of production thereof
JP5348910B2 (en) 2007-03-01 2013-11-20 新日鐵住金株式会社 Shock absorbing member and arrangement structure thereof
JP2008261493A (en) 2007-03-19 2008-10-30 Sumitomo Metal Ind Ltd Shock absorbing member and its manufacturing method
DE102007035483B4 (en) 2007-07-28 2013-11-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft crash facility
JP5040568B2 (en) 2007-10-01 2012-10-03 マツダ株式会社 Auto body structure
US20090092820A1 (en) 2007-10-04 2009-04-09 Cell Core, Llc Reinforced structures and method of manufacture thereof
US7617916B2 (en) 2007-10-17 2009-11-17 Shape Corp. Tapered crushable polygonal structure
JP5330674B2 (en) 2007-11-05 2013-10-30 豊田鉄工株式会社 Crash box
US8287013B2 (en) 2007-11-05 2012-10-16 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
ITRM20070644A1 (en) 2007-12-14 2009-06-15 Pasquale Impero METALLIC PANEL WITH CELL STRUCTURE, ITS PRODUCTION PROCEDURE, AND ITS USE IN AN IMPACT ABSORBER.
US20090174219A1 (en) 2008-01-04 2009-07-09 Foreman Grant G Vehicle energy absorber structure and method
JP5126503B2 (en) 2008-02-04 2013-01-23 新日鐵住金株式会社 Crash box and its mounting structure
JP2009227104A (en) 2008-03-24 2009-10-08 Mazda Motor Corp Frame structure of automobile
WO2010010618A1 (en) 2008-07-23 2010-01-28 豊臣機工株式会社 Impact absorption member
US20110226312A1 (en) 2008-08-12 2011-09-22 Webasto Ag Vehicle surface component having a solar cell arrangement
US8210601B2 (en) 2008-09-18 2012-07-03 Mazda Motor Corporation Vehicle body structure
US9533710B2 (en) 2008-09-19 2017-01-03 Ford Global Technologies, Llc Twelve-cornered strengthening member
US8641129B2 (en) 2008-09-19 2014-02-04 Ford Global Technologies, Llc Twelve-cornered strengthening member
US9187127B2 (en) 2008-09-19 2015-11-17 Ford Global Technologies, Llc Twelve-cornered strengthening member, assemblies including a twelve-cornered strengthening member, and methods of manufacturing and joining the same
US8539737B2 (en) 2008-09-19 2013-09-24 Ford Global Technologies, Llc Twelve-cornered strengthening member
JP4738474B2 (en) 2008-12-26 2011-08-03 豊田鉄工株式会社 Shock absorbing member for vehicle
JP5272950B2 (en) 2009-07-29 2013-08-28 豊田合成株式会社 Shock absorbing member
DE102009035782A1 (en) * 2009-08-01 2010-03-25 Daimler Ag Energy absorption element i.e. crash-box, for car, has supporting regions facing longitudinal beam and bend cross beam, and elongate region extending between supporting regions, where elongate region is tapered in extending direction
JP5488069B2 (en) * 2009-08-05 2014-05-14 新日鐵住金株式会社 Crash box and car body
FR2952264B1 (en) 2009-10-30 2012-03-23 Valeo Vision SYSTEM FOR CALIBRATING A CAMERA SUITABLE TO EQUIP A VEHICLE.
CN106963741A (en) * 2010-03-29 2017-07-21 Ea制药株式会社 Pharmaceutical preparation containing Phenylalamine derivatives
US8573571B2 (en) 2010-06-03 2013-11-05 Battelle Energy Alliance, Llc Dissipative structures and related methods
JP5587696B2 (en) 2010-07-28 2014-09-10 アイシン精機株式会社 Vehicle shock absorber and vehicle bumper device
WO2012040826A1 (en) 2010-09-28 2012-04-05 Magna International Inc. Scalable crush can for vehicle
IT1401982B1 (en) 2010-09-28 2013-08-28 Tres Srl POLYMERIC IMPACT ABSORPTION ELEMENT FOR A VEHICLE AND BUMPER STRUCTURE.
US8336933B2 (en) 2010-11-04 2012-12-25 Sabic Innovative Plastics Ip B.V. Energy absorbing device and methods of making and using the same
JP2012107660A (en) 2010-11-16 2012-06-07 Hitachi Ltd Energy absorber, collision energy absorbing structure having the same, and railroad vehicle having the collision energy absorbing structure
JP5741041B2 (en) 2011-02-14 2015-07-01 マツダ株式会社 Crush can made of die-cast aluminum alloy
KR101494120B1 (en) 2011-03-30 2015-02-16 신닛테츠스미킨 카부시키카이샤 Metallic hollow column-like member
US8459726B2 (en) 2011-04-15 2013-06-11 Ford Global Technologies, Llc. Multi-cornered strengthening members
DE102011100967A1 (en) 2011-05-09 2013-01-03 Peter Küppers Hollow body assembly and method of making the same
US9126628B2 (en) 2011-12-01 2015-09-08 Ford Global Technologies, Llc Lightweight vehicle beam
CN104094011B (en) 2012-02-01 2016-08-24 株式会社神户制钢所 The electromagnetism expansion tube method of energy-absorbing member and manufacture method and rectangular section component and polygonal cross-section component
JP5929256B2 (en) 2012-02-01 2016-06-01 トヨタ自動車株式会社 Body structure
US8827352B2 (en) 2012-02-29 2014-09-09 GM Global Technology Operations LLC Bumper retention system
GB201206025D0 (en) 2012-04-04 2012-05-16 Rolls Royce Plc Vibration damping
JP2014004973A (en) 2012-06-27 2014-01-16 Kojima Press Industry Co Ltd Crash box for vehicle and bumper device for vehicle and impact absorption structure for vehicle
CA2882393C (en) 2012-08-21 2016-06-28 Nippon Steel & Sumitomo Metal Corporation Crash box and automobile chassis
JP5920486B2 (en) 2012-12-18 2016-05-25 トヨタ自動車株式会社 Vehicle end structure
US9067550B2 (en) 2013-01-18 2015-06-30 Sabic Global Technologies B.V. Polymer, energy absorber rail extension, methods of making and vehicles using the same
DE102013202607A1 (en) 2013-02-19 2014-08-21 Magna International Inc. Impact absorbing member
JP5988893B2 (en) 2013-02-25 2016-09-07 豊田鉄工株式会社 Shock absorbing member for vehicle
US20140261949A1 (en) 2013-03-15 2014-09-18 Bridgestone Americas Tire Operations, Llc Tire having a split body ply construction
JP5926875B2 (en) 2013-06-06 2016-05-25 豊田鉄工株式会社 Crash box
JP2015009739A (en) * 2013-07-01 2015-01-19 小島プレス工業株式会社 Shock absorber for vehicle, and shock absorbing structure of vehicle
CA2926774C (en) 2013-10-09 2018-06-26 Nippon Steel & Sumitomo Metal Corporation Crash box and method for producing the same
US9365245B2 (en) 2013-11-08 2016-06-14 Ford Global Technologies, Llc Load management device
JP2015124784A (en) 2013-12-25 2015-07-06 ダイハツ工業株式会社 Impact energy absorption member
MX2016011389A (en) 2014-03-03 2016-12-07 Eng Arresting Systems Corp Macro-patterned materials and structures for vehicle arresting systems.
CN104443039B (en) 2014-11-19 2016-04-20 湖南大学 A kind of electric automobile shelf structure for the distributed installation of power brick
US9731671B2 (en) 2015-03-10 2017-08-15 Honda Motor Co., Ltd. Energy absorber and bumper structural body
CN104763772B (en) 2015-03-31 2017-03-08 华南理工大学 A kind of buffering energy-absorbing structure
CN104890308A (en) 2015-06-23 2015-09-09 湖南大学 Sandwich structure and honeycomb structure core
US10315698B2 (en) 2015-06-24 2019-06-11 Ford Global Technologies, Llc Sixteen-cornered strengthening member for vehicles
US9944323B2 (en) 2015-10-27 2018-04-17 Ford Global Technologies, Llc Twenty-four-cornered strengthening member for vehicles
CN105235616B (en) 2015-11-02 2017-06-23 湖南大学 A kind of many born of the same parents' thin-shell absorption structures and its application structure
US9889887B2 (en) 2016-01-20 2018-02-13 Ford Global Technologies, Llc Twelve-cornered strengthening member for a vehicle with straight and curved sides and an optimized straight side length to curved side radius ratio
US9789906B1 (en) * 2016-03-23 2017-10-17 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
US10704638B2 (en) 2016-04-26 2020-07-07 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10393315B2 (en) 2016-04-26 2019-08-27 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10473177B2 (en) 2016-08-23 2019-11-12 Ford Global Technologies, Llc Cellular structures with sixteen-cornered cells
US10220881B2 (en) 2016-08-26 2019-03-05 Ford Global Technologies, Llc Cellular structures with fourteen-cornered cells
US10300947B2 (en) 2016-08-30 2019-05-28 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
US10279842B2 (en) 2016-08-30 2019-05-07 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
US10429006B2 (en) 2016-10-12 2019-10-01 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US20180099475A1 (en) 2016-10-12 2018-04-12 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292522B2 (en) 2019-12-04 2022-04-05 Ford Global Technologies, Llc Splayed front horns for vehicle frames
US11807303B2 (en) 2019-12-04 2023-11-07 Ford Global Technologies, Llc Splayed front horns for vehicle frames

Also Published As

Publication number Publication date
US20160375935A1 (en) 2016-12-29
MX2016008336A (en) 2016-12-23
DE202016103279U1 (en) 2016-09-23
US10315698B2 (en) 2019-06-11
CN205819337U (en) 2016-12-21

Similar Documents

Publication Publication Date Title
US20190248415A1 (en) Sixteen-cornered strengthening member for vehicles
US10538271B2 (en) Twenty-eight-cornered strengthening member for vehicles
US9944323B2 (en) Twenty-four-cornered strengthening member for vehicles
US9889887B2 (en) Twelve-cornered strengthening member for a vehicle with straight and curved sides and an optimized straight side length to curved side radius ratio
US9789906B1 (en) Twenty-eight-cornered strengthening member for vehicles
US10300947B2 (en) Twenty-eight-cornered strengthening member for vehicles
US9073582B2 (en) Multi-cornered strengthening members
US9840281B2 (en) Twelve-cornered strengthening member
US8641129B2 (en) Twelve-cornered strengthening member
US9845112B2 (en) Twelve-cornered strengthening member, assemblies including a twelve-cornered strengthening member, and methods of manufacturing and joining the same
EP3684677B1 (en) A vehicle side structure
CN111051187B (en) Hollow component
KR20210107682A (en) Vehicle locker structure and method for obtaining the same
US9828034B2 (en) Vehicle bodywork structure device
CN105073559A (en) Rocker panel for a vehicle body
US20180319441A1 (en) Bi-hexagonal vehicle beam with cellular structure
US10695817B2 (en) Thirty-six-cornered strengthening member
US10065682B1 (en) Thirty-two-cornered strengthening member
US10144454B1 (en) Thirty-six cornered vehicle beam
US20200269924A1 (en) Structure for vehicle
EP3031674B1 (en) A twelve-cornered strengthening member, assemblies including a twelve-cornered strengthening member, and methods of manufacturing and joining the same

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TYAN, TAU;HU, YU-KAN;SHANER, LEONARD ANTHONY;AND OTHERS;SIGNING DATES FROM 20150609 TO 20150610;REEL/FRAME:050139/0247

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION