US20190110562A1 - Brazed Joint for Attachment of Gemstones to Each Other and/or a Metallic Mount - Google Patents

Brazed Joint for Attachment of Gemstones to Each Other and/or a Metallic Mount Download PDF

Info

Publication number
US20190110562A1
US20190110562A1 US16/217,603 US201816217603A US2019110562A1 US 20190110562 A1 US20190110562 A1 US 20190110562A1 US 201816217603 A US201816217603 A US 201816217603A US 2019110562 A1 US2019110562 A1 US 2019110562A1
Authority
US
United States
Prior art keywords
gemstone
braze
alloy
setting
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/217,603
Inventor
Wayne L. Sunne
Jim Hicks
Rick Pierini
Ed Liguori
Quent Duden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forever Mount LLC
Original Assignee
Forever Mount LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201261691245P priority Critical
Priority to US13/971,440 priority patent/US9204693B2/en
Priority to PCT/IB2013/002350 priority patent/WO2014030068A2/en
Priority to US201615021422A priority
Application filed by Forever Mount LLC filed Critical Forever Mount LLC
Priority to US16/217,603 priority patent/US20190110562A1/en
Assigned to Forever Mount, LLC reassignment Forever Mount, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUDEN, QUENT, HICKS, JIM, LIGUORI, ED, PIERINI, RICK, SUNNE, WAYNE L.
Publication of US20190110562A1 publication Critical patent/US20190110562A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C17/00Gems or the like
    • A44C17/02Settings for holding gems or the like, e.g. for ornaments or decorations
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C17/00Gems or the like
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C17/00Gems or the like
    • A44C17/04Setting gems in jewellery; Setting-tools
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/002Metallic materials
    • A44C27/003Metallic alloys

Abstract

The specification relates to a gemstone setting. The gemstone setting includes a gemstone, a mounting surface and a braze joint. The braze joint is formed from a reactive metallic alloy with the reactive metallic alloy adhering the gemstone to the mounting surface. The braze joint is substantially concealed from a direct line of sight from a top portion of the gemstone by preventing excessive alloy from getting outside a desired braze area.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 15/021,422, filed Mar. 11, 2016, now pending, which is a 371 National Stage Entry of PCT/IB2013/002350, filed Aug. 20, 2013, which was based on U.S. patent application Ser. No. 13/971,440, filed Aug. 20, 2013, now U.S. Pat. No. 9,204,693, issued Dec. 8, 2015, which claims benefit of U.S. Provisional Patent No. 61/692,245, filed Aug. 20, 2012. The patent applications identified above are incorporated here by reference in its entirety to provide continuity of disclosure.
  • BACKGROUND
  • The disclosed technology relates generally to a brazed attachment of gemstones to themselves and/or a metallic mount.
  • Currently, gemstones are held in place by one or more mechanical methods. Prongs and channel set are two examples that are commonly used. Gemstones are clamped or retained to maintain position within the setting. Rings, tiaras, bracelets, broaches, earrings, studs and necklaces all employ a retention mechanism to keep gemstones attached. Bonding may also be used but due to the properties associated with bonding the reliability makes this method less desirable. Soldering is typically done as a metal to metal joint. Other methods exist that employ wire wrapping or other forms of containment but not direct chemical bond to the gemstone. Compression is also employed in a tension mount which contains the gemstone without a bond.
  • SUMMARY
  • The disclosed technology relates generally to a gemstone setting comprising: a gemstone; at least one mounting surface; and at least one braze joint, the at least one braze joint being formed from a reactive metallic braze alloy, the braze joint adhering the gemstone to the mounting surface, the braze joint being substantially concealed from a direct line of sight from a top portion of the gemstone by preventing excessive alloy from extending beyond a desired braze area near the girdle region, whereby a vastly more secure mount is provided where each individual joint fully retains the stone.
  • In some implementations, the mounting surface is a surface of a hollow mounting rod and excess alloy is prevented from extending beyond the desired braze area by delivering the reactive metallic alloy to the desired braze area through the hollow mounting rod or excess alloy is prevented from extending beyond the desired braze area by inserting the reactive metallic alloy inside the hollow mounting rod, constraining the reactive metallic braze alloy within a controlled volume inside the hollow mounting rod, and thermal brazing a delivered amount of the reactive metallic alloy. The brazed hollow mounting tube can be attached to the gemstone setting.
  • In some implementations, the mounting surface is a surface of a second gemstone and excess alloy is prevented from extending beyond the desired braze area by positioning a foil containing the reactive metallic alloy, such as, Incusil ABA by Wesgo Metals, on the desired braze area. The gemstone can be retained via pressure against a table of the gemstone and the desired braze area with the reactive metallic alloy being placed between the desired braze area and the mounting surface.
  • In some implementations, the mounting surface is a surface of the gemstone setting and excess alloy is prevented from extending beyond the desired braze area by positioning a foil, a rod, a wire, a paste or a powder containing the reactive metallic alloy on the desired braze area or excess alloy is prevented from extending beyond the desired braze area by positioning a rod containing the reactive metallic braze alloy on the desired braze area or excess alloy is prevented from extending beyond the desired braze area by surrounding the desired braze area with a braze stopoff material, such as, “STOPYT”™ Morgan Advanced Ceramics.
  • In some implementations, the braze joint can be substantially concealed from a direct line of sight from a top portion of the gemstone by positioning the braze joint on or near a girdle or a surface of the gemstone or the braze joint is substantially concealed from a direct line of sight from a top portion of the gemstone by inherent internal reflection and surface refraction of the gemstone.
  • Other advantages of brazing include a jewelry setting that is less prone to catching on clothing, having fewer small voids for collecting dirt and are easier to maintain in general.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 and 2 shows a side view of brilliant cut gemstone;
  • FIG. 3a-b shows a side view of an implementation of a universal mount as disclosed in the specification;
  • FIG. 4 shows a side view of an implementation of a direct mount as disclosed in the specification;
  • FIG. 5 shows a side view of an implementation of a heated mount for press fit as disclosed in the specification;
  • FIG. 6 shows a side view of an implementation of a secondary mount as disclosed in the specification;
  • FIG. 7a-c shows prospective views of an implementation of a direct mount as disclosed in the specification;
  • FIG. 8a-b shows prospective views of an implementation of a direct mount as disclosed in the specification;
  • FIG. 9a-b shows prospective views of an implementation of a direct mount as disclosed in the specification;
  • FIG. 10a-c shows prospective views of an implementation of a secondary mount as disclosed in the specification;
  • FIG. 11a-f shows prospective views of an implementation of a single point mount as disclosed in the specification;
  • FIG. 12 shows a prospective view of an implementation of coil-shaped ring with gemstones using a braze joint as described in the specification;
  • FIG. 13 shows a prospective view of an implementation of pendant with a gemstone using a braze joint as described in the specification;
  • FIG. 14 shows a prospective view of an implementation of a pendant with gemstones using braze joints as described in the specification;
  • FIG. 15 shows a prospective view of an implementation of a ring with gemstones using braze joints as described in the specification; and
  • FIG. 16a-d shows prospective views of an implementation of a bracelet with gemstones using braze joints as described in the specification.
  • DETAILED DESCRIPTION
  • This specification describes technologies relating to a brazed joint for attachment of gemstones to each other and/or a metallic mount. More specifically, using a controlled atmosphere of inert gas or a vacuum, a braze joint can be formed to join diamonds, sapphires and/or other gemstones to each other or a mounting feature or a jewelry mounting. This attachment forms a durable foundation that doesn't conceal the stone but allows for a unique design that relies on contact away from the crown region. Contact may also be made anywhere desired for all types of configurations or cuts depending on desired geometry.
  • Brazing is used to attach diamond material to oil well bits and industrial saw blades. In these applications, a paste or matrix with alloy encapsulates the diamond material and obscures most of the diamond material allowing some edges of the stone to be on a surface of the matrix for cutting purposes.
  • Traditional jewelry settings for gemstones have mounting means fixedly positioning the gemstone to the setting. As shown in FIG. 1, the gemstone 30 can have a crown 31, a table 32, a girdle 38, and a pavilion 40. Table 32 can have a center 33 that in combination with a center 43 of pavilion 40, defines a first longitudinal axis. The table 32 can be flat and may define a first plane. The pavilion 40 has a plurality of lower girdle facets 42 and pavilion facets 44. A pavil angle-A is defined between a first plane defined by girdle 38 and an external wall 46 of pavilion 40. Pavilion 40 defines a culet 41. The size of the table affects the gemstone appearance. For example, the larger the size of the table, the greater the brilliance or sparkle of the diamond, but this produces a corresponding reduction in the fire of the diamond. Preferred table dimensions for brilliant stones are between 53% and 57.5% of the width of the gem.
  • The brilliance of the diamond results from its very bright and smooth surface for reflection in combination with its high refractive index. Diamonds are cut in a manner such that when a viewer is looking at the crown/table, the light entering the diamond through the table/crown is reflected within the diamond by the pavilion's facets and exits through facets on the crown or the table for the benefit of the viewer. Fire describes the ability of the diamond to act as a prism and disperse white light into its colors. Fire is evaluated by the intensity and variety of color.
  • Referring now to FIG. 2, light 70 is shown as idealized parallel rays, generally aligned with the first longitudinal axis, entering brilliant cut gem 30 through crown 31. In this one example light 70 reflects through the interior of gem 30 before exiting out through crown 31. When cut within preferred guidelines, the brilliant cut diamond has aligned crown and pavilion facets, an overall symmetry, and a fine highly reflective finish configured to return the maximum amount of reflected light 70 from within the gem. Natural white light can enter crown 31, for example, at any angle either as direct or reflected light 70. Similarly, natural light can enter the pavilion facets and pass through the table either directly or by reflected light. It is therefore especially important that the facets have as little contact as possible with the support or holding means. Diamonds come in a wide variety of shapes, such as round, oval, marquise, triangle and rectangular and a wide variety of cuts including brilliant, modified brilliant, emerald, square, cushion modified cushion, aasher, and many others each having unique and differing optical properties which are vulnerable to unplanned leakages of light or losses 74. Losses 74 occur due to the non-uniformity or randomness of natural light 70, type of diamond, manufacturing of the diamond outside of the preferred guidelines, imperfections within the diamond, and flaws in the surface finish, for example. Therefore, it is very important to have the most light possible entering the diamond.
  • Other losses occur based on how the gemstone is mounted on a jewelry setting, e.g., gemstones held in place by prongs block light from entering and leaving the gemstone or gemstones held in place in an invisible setting where grooves are cut into the pavilion create permanent and irreparable imperfections in the gemstone. Losses occur because these mounting techniques block or alter the surface of the diamond from natural light thereby lowering the brilliance and fire of the gemstone and also altering a gemstone's color.
  • This specification describes technologies relating to a brazed joint for attachment of gemstones to themselves and/or a metallic mount. Brazing occurs above 450 C, soldering is below 450 C Brazing is a metal-joining process whereby a filler metal is heated above melting point and distributed between two or more close-fitting parts by direct contact and capillary action. The filler metal is brought slightly above its melting (liquidus) temperature while protected by a suitable atmosphere. It then flows over the base metal (known as wetting) and is then cooled to join the workpieces together.
  • In order for a brazing technique to be applied in a jewelry setting for gemstones, a limited amount of alloy is used in regions of the gemstone which minimize alloy needed and lowers obscurations. That is, instead of merely capturing the gemstone, the braze technique of the disclosed technology provides directly attaching the gemstone to, e.g., another gemstone, a jewelry setting or an attachment rod in a manner that is aesthetically pleasing and adds to the brilliance, fire and scintillation of the gemstone while minimizing color change. The attachment point on the gemstone can be anywhere on the diamond, for example, in some implementations the attachment point can be on the girdle, on the pavilion near the girdle or, or on the crown near the girdle.
  • Other important factors to consider when using a braze joint in a jewelry setting is to (1) have tight temperature control during brazing, (2) have a coefficient of thermal expansion compatibility of materials, (3) good mechanical joint fit at the proper location on the gemstone, and (4) a proper metal alloy to promote active braze alloys (ABA) joint formation. In order to obtain high-quality brazed joints, the gemstones and the attachment point must be closely fitted. In most cases, joint clearances of 0.02 to 0.06 mm are recommended for the best capillary action and joint strength and direct contact is preferred.
  • The braze used in the disclosed technology creates an interface layer that reacts with both gemstone and metal attachment or another gemstone. It is important to control, limit and/or restrict the braze alloy in a butt joint to prevent excessive alloy from getting outside the desired braze area. The desired braze area size depends on the application. In one implementation, using an 18 gauge or 1 mm diameter joint gives a load carrying capability of between approximately 10 to 25 lbs. It is worthy to note that the joint size is a function of the area so strength drops off as the square of the radius, meaning that smaller joints may be possible if strength is adequate for the application. Also, larger stones do not require much larger joints than smaller carat stones. A properly placed braze joint creates a desired braze area that is concealed from view from the front of the gem by surface refraction and internal reflection, and hence does not materially affect its brilliance, fire, scintillation or color. The optical efficiency loss for a round brilliant cut in a four-prong mount is more than four times greater than for the brazed joint design. This translates into increased brilliance and prevents color loss with the single point brazed joint design.
  • The techniques described in the disclosed technology can control the amount of alloy in a braze joint by utilizing, e.g., a tube delivery system, a rod with a braze foil attached, placement of a stop material around a desired joint area and/or using an alloy foil or wire in a controlled manner (e.g., an array of small dots), to name a few. The amount of braze must be restricted otherwise, the braze can be seen through a top portion (crown/table) of the diamond thereby effecting its brilliance, fire and scintillation. Another issue with excess alloy is that a large amount of excess may cause fracturing of the gemstone where excess droplets form.
  • In one implementation, as shown in FIGS. 3a-b , a tube 100 is used as a delivery method. For example, a long tube configuration, such as, a hollow tube or intermediate post 100 can be used with wire alloy 102 placed within a hollow section of the tube to feed the joint. The wire alloy is then inserted into the tube until the wire alloy is near flush or extended about 0.25 mm from a surface of the mounting surface. Once the wire alloy is in place, the tube is crimped thereby controlling the amount of wire alloy delivered to the mounting surface. The hollow tube or intermediate post 100 may then be brazed in a vacuum furnace directly to the gemstone. Once attached, the combination gemstone and tube may be positioned and attached to a jewelry mount mounting, as shown in FIG. 3b . Size of the intermediate post may vary depending on the setting and desired interface with the jewelry. In some cases, if the desired braze area extends beyond the outer area of the mounting tube, the excess braze may be completely concealed by a mounting sleeve. The mounting sleeve can be made of a precious metal that is part of or positioned near the jewelry setting. In another implementation, the tube may be made of a dissolvable material and once the braze is set, the tube may be dissolved and the braze joint itself may be mounted to a jewelry setting.
  • This delivery method provides improved flow and increased braze alloy volume without excessive joint growth. In use, the tube 100 may be stainless steel but other tube materials can be used, e.g., Niobium, Titanium, Platinum, Stainless Steel and non-zinc gold alloy (as zinc in 14 k gold is not compatible with vacuum braze). The use of Niobium and Titanium has a more favorable chemistry for brazing and are also much less expensive than using platinum or gold.
  • The alloy 102 can be a silver based ABA braze alloy because the ABA braze alloy has the proper chemistry to braze to both the gemstone and the metallic member. The composition percentages of one of the braze alloys can be, e.g. 63.0% Ag 35.25% Cu, 1.75% Ti. Also, the reaction layer and braze joint of ABA alloys is much thinner than other adhesives and is easily concealed while providing an extremely strong attachment. Other active braze alloys, such as, 68.8% Ag, 26.7% Cu, 4.5% Ti can also be used as well as any alloy for effectively brazing gemstones.
  • In another implementation, as shown in FIG. 4, a foil 112 is used in a controlled amount to prevent excessive alloy from getting outside the desired braze area. The foil is sandwiched between the gemstone 110 and the jewelry setting 114. The foil can have a thickness of about 0.002″ with an external perimeter that is equal to or less than the perimeter of the mounting surface.
  • In another implementation, as shown in FIGS. 5 and 6, a rod 124, 134 may be adhered to a jewelry setting 126, 136 and then brazed to a gemstone 120, 130. The rod can be 1 mm and the step is not necessary for all implementations.
  • FIGS. 7a-c shows a method for attaching the gemstone 204 to a setting 200. First, a gemstone setting 200 is formed, FIG. 7a . The alloy 202 in the form of foil is placed on the setting 202. The gemstone 204 is then placed on the setting 200. Once placed, the gemstone 204 and the setting 200 are pressed against each other in a vacuum furnace and the alloy 202 is brazed. In some implementations, the positions of the prongs are deliberately not visible from the top of the stone. However, it would be possible to use this type of setting in a matrix with close spacing, like pave or an invisible setting. The apparatus for pressing the gemstone to the setting may include a recess for the setting to be restrained to prevent tipping and a dead weight placed on top of the table.
  • FIGS. 8a-b shows a method for attaching the gemstone 224 to a setting 220. First, a gemstone setting 220 is formed with mounting protrusions 222, FIG. 8a . The alloy 226 in the form of a foil is placed on the mounting protrusions 222. The gemstone 224 is then placed on the setting 220. Once placed, the gemstone 224 and the setting 220 are pressed against each other in a vacuum furnace and the alloy 226 is brazed. In another implementation, the mount can have a slot that could be used for a wire instead of foil. Once brazed this mount could be machined away to make a non-continuous ring if desired.
  • FIGS. 9a-b shows a method for attaching the gemstone 244 to a setting 240. First, a gemstone 244 setting is formed, FIG. 9a . The alloy 242 in the form of rod is placed on the setting 202 with a void 246. The gemstone 244 is then placed on the setting 240. Once placed, the gemstone 244 and the setting 240 are pressed against each other in a vacuum furnace and the alloy 242 is brazed. In some implementations, prongs could be used to provide compression during brazing. The prongs may be left in place to provide a traditional look while providing the durability of brazing or the top of the prongs could be removed.
  • In some implementations, a face bond “butt joint” geometry is used to enable mounting to any face desired. As shown in FIGS. 10a-c , attaching directly to the gemstone away from the crown and near or on the girdle allows for a clear presentation of the gemstone without prongs or other retaining features blocking desirable brilliance. Light refracted and reflected will more easily reach the wearers eye and unleash the gemstones entire potential beauty without mounting features blocking its full display. Another advantage is the strength inherent in the braze process.
  • In FIGS. 11a-d , a single point mount is shown. In FIGS. 11a-b , gemstone 300 is brazed to rod 304 with braze joint 302. The use of rod 304 as an intermediate material acts as a universal mounting that could be inserted into a sleeve 306 or any jewelry “receiver” within a larger setting which may completely conceal the braze. This single point mount allows any gemstone to have a small attachment adhered to any surface that could then be integrated into any jewelry setting having a marrying receiver. The single point mount is different from the prior art because it is not a capability achievable for prongs. In FIGS. 11c-d , gemstone 320 is brazed to tube 326 with braze joint 322. The braze joint can be formed by two braze wires 324, 325 or by using 1 wire, as shown in FIGS. 11e-f . In FIG. 11e , the hollow tube 402 contains a single wire 404 and is brazed to gemstone 400 with braze joint 406. The use of the tube 306 as an intermediate material acts as a universal mounting that could be inserted into a sleeve 328 or any jewelry “receiver” within a larger setting. In some implementations, as shown in FIG. 11f , instead of a hollow tube, a solid rod 422 with a void 426 on the end may be used to control the braze joint 428. That is, a desired amount of braze alloy 424 may be feed into the void 426 and then brazed as described throughout the specification.
  • FIG. 12 shows a coil-shaped ring 500 with gemstones 502 being brazed between coil elements 506 with braze joint 504. FIG. 13 shows a pendant 510 with a single gemstone 512 being brazed to a rod 516 of the pendant 510 with a single point braze joint 514. FIG. 14 shows a pendant 520 with three gemstones 522 with each gemstone 522 being mounted on a rod 526 of the pendant 520 with a single point braze joint 524. FIG. 15 shows a ring 530 with multiple gemstones 534 being mounted on a setting 532 with braze joints 536. FIGS. 16a-d show a tennis bracelet 600 having multiple princess-cut gemstones 602 with each gemstone 602 being mounted on an interlock setting 604 with braze joints 606 and 608. The interlock settings 604 being interlocked together to form the bracelet 600.
  • The brazing process can be performed in a vacuum furnace. A vacuum furnace is a type of furnace that can heat materials, typically metals, to very high temperatures, such as, 600 to over 1500° C. to carry out processes such as brazing, sintering and heat treatment with high consistency and low contamination. In a vacuum furnace the product in the furnace is surrounded by a vacuum. The absence of air or other gases prevents heat transfer with the product through convection and removes a source of contamination. Some of the benefits of a vacuum furnace are: uniform temperatures in the range around 700 to 1000° C., temperature can be controlled within a small area, low contamination of the product by carbon, oxygen and other gases, quick cooling (quenching) of product. The process can be computer controlled to ensure metallurgical repeatability. Other brazing techniques are contemplated, e.g., induction brazing, laser brazing or any other method that may work in an inert environment.
  • One example of the brazing process is as follows. (1) Prepare a gemstone by rinsing with acetone. (2) Inspect the surface of gemstone where braze joint is desired to ensure cleanliness. (3) Prepare a metallic setting rod/tube by rinsing with the rod/tube with acetone. (4) Inspect a brazing surface of the mount to ensure cleanliness. (5) Check proper joint geometry with respect to gemstone mounting location. (6) Clean, cut and apply braze alloy foil to rod braze face, or clean cut and load braze alloy wire into tube, flush (or near flush) with braze face. (7) Load alloyed rod/tube into brazing fixture and secure in place. (8) Load gemstone into brazing fixture (9) Position and secure gemstone such that the braze alloy and joint interface are positioned per the prescribed location on the gemstone. (10) Adjust rod/tube to match braze face angles and tighten securely. (11) Place assembled brazing tool in Vacuum furnace and attach thermocouples to assembly or tool, and (12) Program and braze the assembly per the desired thermal parameters as described below.
  • In some implementations, the steps or parameters of the brazing procedure in a vacuum furnace are as follows: (1) the assembled brazing tool is placed into an all Moly Vacuum Furnace, (2) pump furnace down to 5×10-5 Torr or better, (3) heat to 500 F+/−100 F at 1500 F/hr for 15-20 minutes, (4) heat to 1000 F+/−50 F at 1500 F/hr for 15-20 minutes, (5) heat to 1390 F+/−15 F at 1500 F/hr for 20-30 minutes, (6) heat to 1530 F-1550 F at 1800 F/hr for 12-18 minutes, (7) vacuum Cool to below 1200 F, (8) argon cool to below 250 F, (9) remove and dissemble the brazing tool. Please note that these parameters apply to Cusil ABA (Wesgo Metals TM) chemistry being 63% Ag, 35.25% Cu, and 1.75% Ti.
  • In some implementations, the braze alloy can contain titanium. This titanium which reacts with the ceramic to form a reaction layer. In use, the more the titanium used, the higher the braze temperature needed. In other implementations, a low temperature alloy is used. In either case, the chemical bonding that occurs provides a resilient mounting which can be attached to either a universal mount or directly to jewelry mounting. Joints made using braze techniques are strong and durable.
  • It is contemplated to use dissolvable ceramic fixtures for pave settings. For example, one may use dissolvable tooling to make pave settings with attachment of stones to each other. In other words, a complex matrix can be made out of a dissolvable mold that makes the finished jewelry look unsupported. These molds can be made with a 3 d printer in almost any conceivable shape, inserting the braze alloy and gemstones during the printing process.
  • It is also contemplated to process multiple stones in a single furnace braze operation to reduce cost.
  • While this specification contains many specific implementation details, these should not be construed as limitations on the scope of the disclosed technology or of what can be claimed, but rather as descriptions of features specific to particular implementations of the disclosed technology. Certain features that are described in this specification in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features can be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination can be directed to a subcombination or variation of a subcombination.
  • The foregoing Detailed Description is to be understood as being in every respect illustrative, but not restrictive, and the scope of the disclosed technology disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the implementations shown and described herein are only Illustrative of the principles of the disclosed technology and that various modifications can be implemented without departing from the scope and spirit of the disclosed technology.

Claims (16)

1. A gemstone setting comprising:
a gemstone;
at least one mounting surface; and
at least one braze joint, the at least one braze joint being formed from a reactive metallic alloy, the braze joint adhering the gemstone to the mounting surface, the braze joint being substantially concealed from a direct line of sight from a top portion of the gemstone by preventing excessive alloy from getting outside a desired braze area.
2. The gemstone setting of claim 1 wherein the mounting surface is a surface of a hollow mounting rod.
3. The gemstone setting of claim 2 wherein excess alloy is prevented from extending beyond the desired braze area by delivering the reactive metallic alloy to the desired braze area through the hollow mounting rod.
4. The gemstone setting of claim 2 wherein excess alloy is prevented from extending beyond the desired braze area by inserting the reactive metallic alloy inside the hollow mounting rod restricting the hollow mounting rod and the reactive metallic alloy in a controlled manner, and thermal brazing a delivered amount of the reactive metallic alloy.
5. The gemstone setting of claim 2 wherein the brazed hollow mounting rod is adhered to the gemstone setting.
6. The gemstone setting of claim 1 wherein the mounting surface is a surface of a solid rod having a void on an end.
7. The gemstone setting of claim 6 wherein excess alloy is prevented from extending beyond the desired braze area by positioning the reactive metallic alloy into the void and in contact with the desired braze area.
8. The gemstone setting of claim 1 wherein the mounting surface is a surface of a second gemstone.
9. The gemstone setting of claim 8 wherein excess alloy is prevented from extending beyond the desired braze area by positioning a foil containing the reactive metallic alloy on the desired braze area.
10. The gemstone setting of claim 8 wherein the gemstone is retained via pressure against a surface of the gemstone and the desired braze area with the reactive metallic alloy being placed between the desired braze area and the mounting surface.
11. The gemstone setting of claim 1 wherein the mounting surface is a surface of the gemstone setting.
12. The gemstone setting of claim 11 wherein excess alloy is prevented from extending beyond the desired braze area by positioning a foil containing the reactive metallic alloy on the desired braze area.
13. The gemstone setting of claim 11 wherein excess alloy is prevented from extending beyond the desired braze area by positioning a rod containing the reactive metallic alloy on the desired braze area.
14. The gemstone setting of claim 11 wherein excess alloy is prevented from extending beyond the desired braze area by surrounding the desired braze area with a stopping material.
15. The gemstone setting of claim 1 wherein the braze joint is substantially concealed from a direct line of sight from a top portion of the gemstone by positioning the braze joint on or near a girdle of the gemstone.
16. The gemstone setting of claim 1 wherein the braze joint is substantially concealed from a direct line of sight from a top portion of the gemstone by inherent internal reflection and surface refraction of the gemstone.
US16/217,603 2012-08-20 2018-12-12 Brazed Joint for Attachment of Gemstones to Each Other and/or a Metallic Mount Abandoned US20190110562A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US201261691245P true 2012-08-20 2012-08-20
US13/971,440 US9204693B2 (en) 2012-08-20 2013-08-20 Brazed joint for attachment of gemstones to each other and/or a metallic mount
PCT/IB2013/002350 WO2014030068A2 (en) 2012-08-20 2013-08-20 A brazed joint for attachment of gemstones to each other and/or a metallic mount
US201615021422A true 2016-03-11 2016-03-11
US16/217,603 US20190110562A1 (en) 2012-08-20 2018-12-12 Brazed Joint for Attachment of Gemstones to Each Other and/or a Metallic Mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/217,603 US20190110562A1 (en) 2012-08-20 2018-12-12 Brazed Joint for Attachment of Gemstones to Each Other and/or a Metallic Mount

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2013/002350 Continuation WO2014030068A2 (en) 2012-08-20 2013-08-20 A brazed joint for attachment of gemstones to each other and/or a metallic mount
US201615021422A Continuation 2016-03-11 2016-03-11

Publications (1)

Publication Number Publication Date
US20190110562A1 true US20190110562A1 (en) 2019-04-18

Family

ID=50099103

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/021,422 Active 2035-10-06 US10165835B2 (en) 2012-08-20 2013-08-20 Brazed joint for attachment of gemstones to each other and/or a metallic mount
US13/971,440 Active 2034-03-13 US9204693B2 (en) 2012-08-20 2013-08-20 Brazed joint for attachment of gemstones to each other and/or a metallic mount
US16/217,603 Abandoned US20190110562A1 (en) 2012-08-20 2018-12-12 Brazed Joint for Attachment of Gemstones to Each Other and/or a Metallic Mount

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/021,422 Active 2035-10-06 US10165835B2 (en) 2012-08-20 2013-08-20 Brazed joint for attachment of gemstones to each other and/or a metallic mount
US13/971,440 Active 2034-03-13 US9204693B2 (en) 2012-08-20 2013-08-20 Brazed joint for attachment of gemstones to each other and/or a metallic mount

Country Status (3)

Country Link
US (3) US10165835B2 (en)
EP (2) EP3326485A1 (en)
WO (1) WO2014030068A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086323A1 (en) 2014-12-02 2016-06-09 Cartier International Ag Jewellery stone, in particular facetted diamond and method for mounting same on a mount
CN105595551B (en) * 2016-03-02 2017-12-01 深圳市缘与美实业有限公司 A kind of single brill inlaying device and its implementation
EP3560141A4 (en) 2016-12-22 2020-06-10 Level 8 IOT, LLC Systems and methods for electronic ticketing, monitoring, and indicating permissive use of facilities
CN107507816A (en) * 2017-08-08 2017-12-22 中国电子科技集团公司第五十八研究所 Fan-out-type wafer scale multilayer wiring encapsulating structure
EP3479720B1 (en) * 2017-11-07 2020-03-25 The Swatch Group Research and Development Ltd Method for crimping a stone
EP3479721B1 (en) * 2017-11-07 2020-05-13 The Swatch Group Research and Development Ltd Method for crimping a stone

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339659A (en) * 1943-03-13 1944-01-18 Steig Arthur Apparatus and method for mechanical brazing of diamonds
US3031996A (en) * 1958-02-03 1962-05-01 George B Botvin Reinforced brazed joint and method and means for making the same
FR2473921A2 (en) * 1974-02-20 1981-07-24 Flamor Sa Hollow jewellery, esp. thin chains made from flat twisted braid - where laminate obtd. by brazing gold, silver and iron sheets together is used to make chain, and then iron is dissolved
US4009027A (en) 1974-11-21 1977-02-22 Jury Vladimirovich Naidich Alloy for metallization and brazing of abrasive materials
US3949263A (en) 1974-12-20 1976-04-06 Raytheon Company Diamond brazing method for slow wave energy propagating structures
DE2620907C3 (en) 1976-05-12 1984-09-20 Battelle-Institut E.V., 6000 Frankfurt, De
US4278914A (en) 1979-10-18 1981-07-14 The United States Of America As Represented By The Secretary Of The Navy Diamond supported helix assembly and method
US4540304A (en) 1983-03-08 1985-09-10 The United States Of America As Represented By The United States Department Of Energy Metal-to-ceramic attachment device
NL8302757A (en) 1983-08-04 1985-03-01 Drukker D & Zn Nv Diamond chisel.
NL8400939A (en) 1984-03-23 1985-10-16 Drukker D & Zn Nv Method for attaching a diamond part on metal
US4622433A (en) 1984-03-30 1986-11-11 Diacon, Inc. Ceramic package system using low temperature sealing glasses
US4871108A (en) 1985-01-17 1989-10-03 Stemcor Corporation Silicon carbide-to-metal joint and method of making same
US4610934A (en) 1985-01-17 1986-09-09 Kennecott Corporation Silicon carbide-to-metal joint and method of making same
FR2578400B1 (en) * 1985-03-07 1987-07-03 Richards Camille Process for setting jewelry stones
US4776862A (en) 1987-12-08 1988-10-11 Wiand Ronald C Brazing of diamond
JPH0482185B2 (en) 1988-06-24 1992-12-25 Asahi Diamond Ind
JPH02106210A (en) 1988-10-14 1990-04-18 Sumitomo Electric Ind Ltd Helical tooth polycrystalline diamond tool and manufacture thereof
US5058268A (en) 1989-07-20 1991-10-22 Smagner John D Method of making and repairing a furnace crown
US5062249A (en) 1989-07-20 1991-11-05 Smagner John D Furnace crown means and method
US4968326A (en) * 1989-10-10 1990-11-06 Wiand Ronald C Method of brazing of diamond to substrate
US5122067A (en) 1991-05-23 1992-06-16 Hughes Aircraft Company Umbilical release mechanism
US5289715A (en) 1991-11-12 1994-03-01 Amerasia Technology Inc. Vapor detection apparatus and method using an acoustic interferometer
EP0577066B1 (en) 1992-06-30 2002-09-04 Sumitomo Electric Industries, Ltd. Cutting tool employing vapor-deposited polycrystalline diamond for cutting edge and method of manufacturing the same
US5271547A (en) 1992-09-15 1993-12-21 Tunco Manufacturing, Inc. Method for brazing tungsten carbide particles and diamond crystals to a substrate and products made therefrom
JPH06253911A (en) * 1993-03-04 1994-09-13 Yamanashi Pref Gov Method of joining jewelry stone with precious metal
WO1994026425A1 (en) 1993-05-17 1994-11-24 Mcdonnell Douglas Corporation Laser absorption wave deposition process
US5368881A (en) 1993-06-10 1994-11-29 Depuy, Inc. Prosthesis with highly convoluted surface
US5804321A (en) 1993-07-30 1998-09-08 The United States Of America As Represented By The Secretary Of The Navy Diamond brazed to a metal
JP3176493B2 (en) 1993-09-17 2001-06-18 株式会社神戸製鋼所 Method of forming highly oriented diamond thin film
JPH08241942A (en) 1994-12-28 1996-09-17 Aichi Steel Works Ltd Thin-film laminate
US5691736A (en) 1995-03-28 1997-11-25 Loral Vought Systems Corporation Radome with secondary heat shield
US6650761B1 (en) 1999-05-19 2003-11-18 Digimarc Corporation Watermarked business cards and methods
JPH09173115A (en) * 1995-12-27 1997-07-08 Kyocera Corp Fixing method of gem
US5941479A (en) 1996-09-09 1999-08-24 Raytheon Company Vehicle having a ceramic radome affixed thereto by a complaint metallic "T"-flexure element
US5758845A (en) 1996-09-09 1998-06-02 Raytheon Company Vehicle having a ceramic radome with a compliant, disengageable attachment
US5884864A (en) 1996-09-10 1999-03-23 Raytheon Company Vehicle having a ceramic radome affixed thereto by a compliant metallic transition element
US6241184B1 (en) 1996-09-10 2001-06-05 Raytheon Company Vehicle having a ceramic radome joined thereto by an actively brazed compliant metallic transition element
US6054693A (en) 1997-01-17 2000-04-25 California Institute Of Technology Microwave technique for brazing materials
US6031338A (en) 1997-03-17 2000-02-29 Lumatronix Manufacturing, Inc. Ballast method and apparatus and coupling therefor
US6679243B2 (en) 1997-04-04 2004-01-20 Chien-Min Sung Brazed diamond tools and methods for making
US6132175A (en) 1997-05-29 2000-10-17 Alliedsignal, Inc. Compliant sleeve for ceramic turbine blades
US6323746B1 (en) 1997-08-25 2001-11-27 Control Devices, Inc. Dielectric mounting system
US6068070A (en) 1997-09-03 2000-05-30 Baker Hughes Incorporated Diamond enhanced bearing for earth-boring bit
US5901923A (en) 1997-09-05 1999-05-11 Hughes Electronics Corporation Rolling gimbal harness
US6145380A (en) 1997-12-18 2000-11-14 Alliedsignal Silicon micro-machined accelerometer using integrated electrical and mechanical packaging
US6123612A (en) 1998-04-15 2000-09-26 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
US6105694A (en) 1998-06-29 2000-08-22 Baker Hughes Incorporated Diamond enhanced insert for rolling cutter bit
JP2000106353A (en) 1998-07-31 2000-04-11 Nippon Steel Corp Dresser for polishing cloth for semiconductor substrate
US6145470A (en) 1998-12-11 2000-11-14 General Electric Company Apparatus for electron beam physical vapor deposition
US7441504B2 (en) 1999-01-15 2008-10-28 Development Capital Management Company Base for a cartridge casing body for an ammunition article, a cartridge casing body and an ammunition article having such base, wherein the base is made from plastic, ceramic, or a composite material
US6477901B1 (en) 1999-12-21 2002-11-12 Integrated Sensing Systems, Inc. Micromachined fluidic apparatus
US7445550B2 (en) 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
KR100552391B1 (en) 2000-12-21 2006-02-20 니폰 스틸 코포레이션 Cmp conditioner, method for arranging hard abrasive grains for use in cmp conditioner, and process for producing cmp conditioner
US6474594B1 (en) 2001-05-11 2002-11-05 Raytheon Company Output shaft assembly for a missile control actuation unit
US6692586B2 (en) * 2001-05-23 2004-02-17 Rolls-Royce Corporation High temperature melting braze materials for bonding niobium based alloys
JP3795786B2 (en) 2001-10-09 2006-07-12 敬久 山崎 Brazed diamond and diamond brazing method
US6670021B2 (en) 2001-11-14 2003-12-30 General Electric Company Monolithic ceramic attachment bushing incorporated into a ceramic matrix composite component and related method
US6874732B2 (en) 2002-12-04 2005-04-05 Raytheon Company Form factored compliant metallic transition element for attaching a ceramic element to a metallic element
EP2335944B1 (en) 2003-11-21 2018-07-11 Visual Physics, LLC Micro-optic security and image presentation system
US7225167B2 (en) 2003-11-21 2007-05-29 International Business Machines Corporation Merchandise-integral transaction receipt and auditable product ownership trail
US7545784B2 (en) 2004-02-11 2009-06-09 Yahoo! Inc. System and method for wireless communication between previously known and unknown users
US20060098900A1 (en) 2004-09-27 2006-05-11 King Martin T Secure data gathering from rendered documents
US20050188721A1 (en) * 2004-02-27 2005-09-01 William Roehrborn Combined pearl and precious gem jewelry
US7992776B1 (en) 2004-03-31 2011-08-09 Diebold Self-Service Systems Division Of Diebold, Incorporated Automated banking machine with nonconctact reading of card data
US8254674B2 (en) 2004-10-28 2012-08-28 DigitalOptics Corporation Europe Limited Analyzing partial face regions for red-eye detection in acquired digital images
US7237389B2 (en) 2004-11-18 2007-07-03 Siemens Power Generation, Inc. Attachment system for ceramic combustor liner
KR100611794B1 (en) 2004-12-08 2006-08-11 이화다이아몬드공업 주식회사 A Cutting Tool and Method for Manufacturing the Cutting Tool
US8257868B2 (en) 2005-03-23 2012-09-04 Kyoto University Molten salt composition and use thereof
WO2006124682A2 (en) 2005-05-16 2006-11-23 Donnelly Corporation Vehicle mirror assembly with indicia at reflective element
US7487849B2 (en) 2005-05-16 2009-02-10 Radtke Robert P Thermally stable diamond brazing
JP4791121B2 (en) 2005-09-22 2011-10-12 新日鉄マテリアルズ株式会社 Polishing cloth dresser
US7304296B2 (en) 2005-10-05 2007-12-04 Raytheon Company Optical fiber assembly wrapped across gimbal axes
US8249917B1 (en) 2005-12-07 2012-08-21 Amazon Technologies, Inc. Load balancing for a fulfillment network
MXPA05014182A (en) 2005-12-21 2007-06-20 Rodriguez Francisco Javier Marichi Programmable apparatus for measuring and welding adjustable brackets.
US7739225B2 (en) 2006-02-09 2010-06-15 Ebay Inc. Method and system to analyze aspect rules based on domain coverage of an aspect-value pair
EP1979890A1 (en) 2006-02-10 2008-10-15 Qualcomm Mems Technologies, Inc. Method and system for updating of displays showing deterministic content
US8249350B2 (en) 2006-06-30 2012-08-21 University Of Geneva Brand protection and product autentication using portable devices
US7910945B2 (en) 2006-06-30 2011-03-22 Cree, Inc. Nickel tin bonding system with barrier layer for semiconductor wafers and devices
US8248214B2 (en) 2006-07-12 2012-08-21 Wal-Mart Stores, Inc. Adjustable lighting for displaying products
US20110179825A1 (en) 2006-08-14 2011-07-28 Shelly Avneri Katzir Ring and method for wearing
US7644786B2 (en) 2006-08-29 2010-01-12 Smith International, Inc. Diamond bit steel body cutter pocket protection
BRPI0718453A2 (en) 2006-09-19 2013-11-26 Koninkl Philips Electronics Nv Lighting system, luminary and display device
US8255289B2 (en) 2006-11-06 2012-08-28 Columbia Gem House, Inc. System and method for in-store sales of customized jewelry items
US7873234B2 (en) 2006-11-09 2011-01-18 The Invention Science Fund I, Llc Input compensating for imaging distortion
AU2007319603B2 (en) 2006-11-14 2013-07-04 Igt Dynamic gaming library
US7833274B2 (en) 2007-05-16 2010-11-16 Zimmer, Inc. Knee system and method of making same
US8260266B1 (en) 2007-06-26 2012-09-04 Qurio Holdings, Inc. Method and system for third-party discovery of proximity-based services
US8103551B2 (en) 2007-07-31 2012-01-24 Style Du Jour, Inc. Fashion matching algorithm solution
US8245378B2 (en) 2007-09-13 2012-08-21 Nike, Inc. Method and apparatus for manufacturing components used for the manufacture of articles
US8257139B2 (en) 2007-09-13 2012-09-04 De Sousa Michelle E Garment and brassiere accessory
US8087852B2 (en) * 2007-10-05 2012-01-03 Osg Corporation Diamond cutting member and method of making the same
US8250677B2 (en) 2007-11-06 2012-08-28 Synhergy Holding Llc Penis covering
JP2009142455A (en) * 2007-12-14 2009-07-02 Juho:Kk Diamond, diamond-shaped jewelry, and its cutting method
US8244590B2 (en) 2007-12-21 2012-08-14 Glyde Corporation Software system for decentralizing ecommerce with single page buy
US8115471B2 (en) 2008-02-11 2012-02-14 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US8251290B1 (en) 2008-03-06 2012-08-28 Sprint Communications Company L.P. Bar code validation using a wireless communication device
US8254785B1 (en) 2008-05-15 2012-08-28 Sprint Communications Company L.P. Optical image processing to wirelessly transfer a voice message
US8247747B2 (en) 2008-10-30 2012-08-21 Xaloy, Inc. Plasticating barrel with integrated exterior heater layer
US8073657B2 (en) 2009-03-03 2011-12-06 Igt 3-D casino gaming floor visualization utilizing real-time and batch data
US8248358B2 (en) 2009-03-27 2012-08-21 Qualcomm Mems Technologies, Inc. Altering frame rates in a MEMS display by selective line skipping
USD665292S1 (en) 2009-04-17 2012-08-14 Marilyn Jackson Jewelry
US8252412B2 (en) 2009-06-16 2012-08-28 Ppg Industries Ohio, Inc Angle switchable crystalline colloidal array films
US8251294B2 (en) 2009-07-02 2012-08-28 Mastercard International, Inc. Payment device having appeal for status consumers
US8258722B2 (en) 2009-09-24 2012-09-04 Cree, Inc. Lighting device with defined spectral power distribution
US8258663B2 (en) 2009-09-28 2012-09-04 Disney Enterprises, Inc. Magnetic levitation novelty device
EP2327323A1 (en) * 2009-11-25 2011-06-01 Dress your body AG Decorative article with invisible setting
US8256070B2 (en) 2010-01-15 2012-09-04 Sleeve Clips, Llc Split arm clip
US8250796B2 (en) 2010-03-01 2012-08-28 Disney Enterprises, LLC Wearable bands with interchangeable RFID modules allowing user sizing and personalization
US8250797B2 (en) 2010-03-01 2012-08-28 Disney Enterprises, LLC Two-piece wristband with slidable extension for user-selectable sizing
USD665554S1 (en) 2010-04-30 2012-08-14 Okhotsk Design Limited Co. Jewelry in the shape of a cross
US8445822B2 (en) 2010-06-23 2013-05-21 Raytheon Company One-piece Nano/Nano class Nanocomposite Optical Ceramic (NNOC) extended dome having seamless non-complementary geometries for electro-optic sensors
US8256618B2 (en) 2010-08-11 2012-09-04 All About Packaging, Inc. Magnetic storage device and a method of assembling the device
USD665197S1 (en) 2010-10-05 2012-08-14 Soraya Allameh Jewelry display and case
USD666521S1 (en) 2011-05-09 2012-09-04 Brilliant Jewelers/Mjj Inc. Cluster head with gemstones
US8331960B1 (en) 2011-06-08 2012-12-11 Critical Alert Systems Llc Systems and methods for communicating with a paging network operations center through wireless cellular devices
USD665697S1 (en) 2012-01-06 2012-08-21 Virginia Ann Cooley Equine jewelry
USD665299S1 (en) 2012-01-19 2012-08-14 Rosy Blue Jewelry Multiple facet gemstone

Also Published As

Publication number Publication date
EP2884865A2 (en) 2015-06-24
EP2884865B1 (en) 2017-12-27
WO2014030068A2 (en) 2014-02-27
US9204693B2 (en) 2015-12-08
EP2884865A4 (en) 2016-01-20
US10165835B2 (en) 2019-01-01
EP3326485A1 (en) 2018-05-30
US20160219991A1 (en) 2016-08-04
WO2014030068A3 (en) 2014-05-15
US20140047867A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP4410243B2 (en) Method for encapsulating substances from humans or animals in natural precious stones and products thereof
US2739375A (en) Joining of non-metallic materials and brazing filler rods therefor
US6698239B2 (en) Brilliant cut diamond
RU2156330C2 (en) Silicon carbide jewels
US20130022836A1 (en) Brazed coated diamond-containing materials
US8813519B2 (en) Modified princess cut diamond having hearts and arrows pattern and method
US7992410B2 (en) Modified princess cut diamond having hearts and arrows pattern and method
KR20040010399A (en) Bonding structure and bonding method for cemented carbide and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
US6681599B2 (en) Jewelry pendant
ES2624290T3 (en) Saw pearl
US7410546B2 (en) Platinum alloy and method of production thereof
US6615611B1 (en) High yield diamond
US6484536B1 (en) Interlocking rings
US5323300A (en) Jewelry lighting device
US6293129B1 (en) Multi-stone center setting for diamonds and gemstones
US7546749B1 (en) Jewelry article utilizing a linear stone setting
US7140200B2 (en) Article of jewelry
US20130219962A1 (en) Setting for gemstones, particularly diamonds
RU2742683C2 (en) Light emitting jewelry
US5533364A (en) Facing marquis halves to form a marquis stone
EP2934221B1 (en) Decorative part made by crimping
EP1216784A3 (en) Method of diffusion bonding superalloy components
EP3039984B1 (en) System and methods for assembling chain elements using a coupling mechanism
JP2001087889A (en) Cadmium-free hard birazing filler alloy
US6094939A (en) Jewelry item

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOREVER MOUNT, LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUNNE, WAYNE L.;HICKS, JIM;PIERINI, RICK;AND OTHERS;REEL/FRAME:047765/0411

Effective date: 20130817

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION