US20190078564A1 - Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications - Google Patents

Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications Download PDF

Info

Publication number
US20190078564A1
US20190078564A1 US16/184,138 US201816184138A US2019078564A1 US 20190078564 A1 US20190078564 A1 US 20190078564A1 US 201816184138 A US201816184138 A US 201816184138A US 2019078564 A1 US2019078564 A1 US 2019078564A1
Authority
US
United States
Prior art keywords
speed
poppet
valve assembly
poppet valve
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/184,138
Inventor
Gene M. Thompson
Catherine Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COMPRESSOR ENGINEERING Corp
Original Assignee
COMPRESSOR ENGINEERING Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COMPRESSOR ENGINEERING Corp filed Critical COMPRESSOR ENGINEERING Corp
Priority to US16/184,138 priority Critical patent/US20190078564A1/en
Assigned to COMPRESSOR ENGINEERING CORPORATION reassignment COMPRESSOR ENGINEERING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JONES, CATHERINE, THOMPSON, GENE M.
Publication of US20190078564A1 publication Critical patent/US20190078564A1/en
Priority to US17/396,652 priority patent/US20210372389A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1013Adaptations or arrangements of distribution members the members being of the poppet valve type

Definitions

  • the present invention relates to high-speed compressors, and more particularly, to control of gas flow in high-speed compressors utilizing a poppet valve assembly.
  • Gas valve assemblies for conventional compressors namely those operating at between approximately 200 rpm and approximately 600 rpm, often include poppets that have a head diameter ranging from approximately 1 inch to approximately 1 and 1 ⁇ 8 inches.
  • poppets that have a head diameter ranging from approximately 1 inch to approximately 1 and 1 ⁇ 8 inches.
  • Such systems utilize approximately two to four poppets with heads in this size range to control fluid flow within these compressors.
  • the size of such conventional poppets in the valve assemblies of these conventional compressors does not allow for precise control of fluid flow, because a limited number of such conventional poppets may be included within the conventional valve assembly.
  • these conventional flow control systems have been adequate. There is a need, however, for more precise gas control in certain high-speed compressor applications, particularly those operating in the 600-1500 range or higher.
  • the present disclosure relates generally to a valve assembly that includes miniature poppets which may be utilized with high-speed compressor applications.
  • One of the broader forms of invention may provide a poppet valve assembly, the poppet valve assembly including a cage that includes a plurality of counter bores disposed therein.
  • the poppet valve assembly further includes a plurality of poppets, each poppet having a stem and a head.
  • the head of each poppet has a maximum diameter that is less than approximately one inch.
  • the stem of the poppet is disposed in a corresponding one of the said plurality of counter bores.
  • the poppet valve assembly also includes a seat plate overlying said cage, said seat plate including a plurality of through bores axially aligned with the plurality of counter bores of the cage, wherein each of the plurality of through bores is sized to have a smaller diameter than the maximum diameter of the head.
  • a lift spacer is disposed in each of the counter bores.
  • an apparatus that includes a poppet valve assembly, the poppet valve assembly including a cage that includes a plurality of counter bores disposed therein.
  • the poppet valve assembly further includes a plurality of poppets, each poppet having a stem and a head.
  • the head of each poppet has a maximum diameter that is less than approximately one inch.
  • the stem of the poppet is disposed in a corresponding one of the said plurality of counter bores.
  • the poppet valve assembly also includes a seat plate overlying said cage, said seat plate including a plurality of through bores axially aligned with the plurality of counter bores of the cage.
  • Each of the plurality of through bores is sized to have a smaller diameter than the maximum diameter of the head.
  • a lift spacer is disposed in each of the counter bores.
  • a system that includes a compressor that includes a poppet valve assembly, the poppet valve assembly including a cage that includes a plurality of counter bores disposed therein.
  • the poppet valve assembly further includes a plurality of poppets, each poppet having a stem and a head.
  • the head of each poppet has a maximum diameter that is less than approximately one inch.
  • the stem of the poppet is disposed in a corresponding one of the said plurality of counter bores.
  • the poppet valve assembly also includes a seat plate overlying said cage, said seat plate including a plurality of through bores axially aligned with the plurality of counter bores of the cage.
  • Each of the plurality of through bores is sized to have a smaller diameter than the maximum diameter of the head.
  • a lift spacer is disposed in each of the counter bores.
  • FIG. 1 illustrates a top view of an exemplary poppet valve according to one or more aspects of the present disclosure.
  • FIG. 2 illustrates a partial cross-sectional view of an exemplary poppet valve according to one or more aspects of the present disclosure.
  • the present disclosure relates generally to a valve assembly that includes miniature poppets which may be utilized with high-speed compressor applications. It is understood, however, that specific embodiments are provided as examples to teach the broader inventive concept, and one of ordinary skill in the art can easily apply the teaching of the present disclosure to other methods or apparatus. Also, it is understood that the apparatus discussed in the present disclosure includes some conventional structures. Since these structures are well known in the art, they will only be discussed in a general level of detail. Furthermore, reference numbers are repeated throughout the drawings for sake of convenience and example, and such repetition does not indicate any required combination of features or steps throughout the drawings.
  • the poppet valve assembly 102 includes a cage, stop plate or guard 104 in which a plurality of counter bores 108 (shown as 108 a - i in FIG. 1 ) are disposed in one preferred embodiment, cage 104 may be substantially circular in shape although the shape of cage 104 is not a limitation of the invention and those skilled in the art will understand that cage 104 can be of any desirable shape.
  • a plurality of miniature poppets 112 (shown as 112 a - i in FIG. 1 ) with a maximum outer diameter of one inch and preferably 0.9 inches or smaller are disposed in the plurality of counter bores 108 a - i .
  • Each of the plurality of poppets 112 seats in a respective one of the plurality of counter bores 108 provided in the cage 104 .
  • the poppet valve assembly 102 includes nine poppets 112 a - i that are arranged in the cage 104 around two diameters 116 and 120 .
  • a first smaller diameter 116 has three poppets 112 a - c that are substantially equally spaced around the smaller diameter 116
  • a second larger diameter 120 has six poppets 112 d - i that are substantially equally spaced around the larger diameter 120
  • the poppet valve assembly 102 may include a plurality of poppets 112 positioned according to any conventional arrangement. In any event, it is desirable that by utilizing unconventionally small diameter poppets, a greater surface area of cage 104 can be covered by poppets 112 , thereby permitting the same volume of gas to pass therethrough, but in a more controllable manner.
  • the poppet 112 is fabricated from a high performance engineering thermoplastic.
  • the poppet valve assembly 102 may be fabricated from other materials, including without limitation, hardened steel, other metals or metal alloys.
  • poppet 112 a partial cross-sectional view of a portion of the poppet valve assembly 102 that includes a poppet 112 is shown.
  • the plurality of poppets in assembly 102 are substantially similar to one another.
  • the poppets 112 may vary as described with respect to embodiments of the present disclosure.
  • poppet 112 includes a stem 204 and a head 208 , and is substantially mushroom-shaped, because the head 208 is larger than the stem 204 .
  • the head 208 has a maximum diameter 209 that is approximately 0.71 inches, and the stem 204 has a maximum diameter 210 that is approximately 0.446 inches. In another embodiment, the maximum diameter 209 of the head 208 may be less than approximately 0.75 inches, and the maximum diameter 210 of the stem 204 may be less than approximately 0.446 inches. In yet another embodiment, the maximum diameter 209 of the head 208 may be less than approximately 1 inch.
  • the head 208 includes a sealing surface 212 that has a diameter that is larger than the maximum diameter 210 of the stem 204 .
  • the stem 204 of poppet 112 is disposed in a counter bore 108 .
  • the stem 204 is hollow, and is adapted to house or guide a spring 216 .
  • the spring 216 is disposed in the stem 204 so as to seat in the counter bore 108 .
  • a lift spacer 220 having an aperture 224 therethrough, is positioned at the bottom of counter bore 108 .
  • the spring 216 is disposed to urge the poppet 112 toward a seat plate 228 overlying the cage 104 , and thereby place the poppet 112 in a closed position.
  • lift spacer 220 may be fabricated from a high performance engineering thermoplastic. However, in other embodiments, lift spacer 220 may be fabricated from other materials, including without limitation, hardened steel, other metals or metal alloys.
  • the seat plate 228 includes a plurality of through bores 232 , each axially aligned with a counter bore 108 .
  • the through bore 232 is sized to have a smaller diameter than the maximum diameter 209 of the head 208 .
  • An edge 233 of the through bore 232 that interfaces with the sealing surface 212 is disposed to form a seat for receipt of head 208 , preferably forming a metal to metal seal between the seat plate 228 and the head 208 .
  • edge 233 has a 45 degree chamfer to enhance sealing between the head 208 and the seat plate 228 .
  • other shaped edges may be used to create a seal or seat.
  • the angle of edge 233 may be selected to correspond with the angle or shape of the sealing surface 212 that interfaces with the seat plate 228 .
  • Each through bore 232 represents an independent, separately controllable orifice through which fluid may flow.
  • the seat plate 228 is a replaceable seat plate, and includes a hardened steel plate that covers the poppet valve assembly 102 .
  • the seat plate 228 may include a plate that is manufactured using other materials.
  • seat plate 228 is replaceable in the event of debris damage or excessive wear thereto.
  • Conventional poppet valves do not include replaceable seat plates, and therefore the entire valve seat-body of such conventional poppet valve assemblies must be replaced.
  • seat plate 228 is readily detachable from cage 104 .
  • any conventional fastener may be utilized, in the embodiment of FIG. 2 , seat plate 228 is attached to cage 104 with threaded fasteners 235 .
  • the poppet valve assembly 102 may also includes an alignment pin 236 that is positioned between the seat plate 228 and the cage 104 .
  • the alignment pin 236 facilitates proper alignment of components of the poppet valve assembly 102 during manufacture and removal and replacement of seat plate 228 . Again, because conventional assemblies were not replaceable, such alignment pins 236 were not necessary.
  • the cage 104 and the seat plate 228 when joined together, form a flow channel 237 that extends from the through bore 232 through the poppet valve assembly 102 .
  • the cage 104 and lift spacer 220 provide a versatile poppet valve assembly 102 that enables multiple flow area configurations, simplified assembly and manufacturing, and enhanced flow characteristics.
  • the flow area of the poppet valve assembly 102 can be readily adjusted by adjusting the lift spacer 220 underlying the poppet 112 .
  • the amount of axial movement of the poppet 112 is controlled by the lift spacer 220 , which in turn controls the amount of fluid flow through the poppet valve assembly 102 .
  • the through bore 232 and subsequently the open cross-sectional area between the through bore 232 and head 208 , is generally controlled by the lift spacer 220 and the sizing of the poppet itself, as well as the reduced opening in the seating surface.
  • the poppets 112 are smaller than conventional poppets.
  • a conventional poppet may have a head 208 that has a diameter that ranges from approximately 1 inch to approximately 1 and 1 ⁇ 8 inches.
  • the head 208 of each of the poppets 112 has a maximum diameter 209 that is preferably approximately 0.71 inches, although this dimension may range in one preferred embodiment from approximately 0.5 inches to 0.9 inches.
  • valve 102 includes at least 6 poppets 112
  • valve 102 includes at least 9 poppets 112 .
  • the number of poppets 112 depends in part on the size of cage 104 . However, it has been found that approximately 50% to 100% more surface area of cage 104 can be covered with poppet heads 208 as compared to the prior art, thereby enhancing the fluid control through assembly 102 .
  • the poppet valve assembly 102 enables more precise control of fluid flow as compared to conventional poppet valve assemblies by allowing the use of smaller valves with smaller cross-sectional fluid flow openings. Because of the relatively small size of the poppets 112 of the present disclosure as compared to conventional poppets, a larger number of poppets 112 of the present disclosure may be disposed in the same dimensional envelope. As a result, fluid flow may be more precisely controlled.
  • the poppet valve assembly 102 may be used in high-speed compressor applications.
  • the high-speed compressor application may require operation at a speed that is between approximately 600 rpm and approximately 1500 rpm.
  • conventional compressors, using conventional poppet valve assemblies are limited to operating at a much slower relative speed.
  • a conventional compressor using conventional poppet assemblies might be limited to operating at a speed that is between approximately 200 rpm and approximately 600 rpm.
  • the poppets 112 include heads 208 that have a diameter that is larger than the diameter of the respective through bores 232 the sealing surface 212 and flow window of the poppets 112 extend beyond the maximum diameter 210 of the stem 204 .
  • One benefit of the foregoing is that it allows for use of a larger through bore 232 while maintaining a relatively small guiding body. While the same size and shape heads 208 for the plurality of poppets 112 is shown in FIG. 1 , in other embodiments, the size and/or shape of the heads 208 may be varied in a poppet valve assembly 112 to achieve the desired flow characteristics for the particular compressor with which it is used.
  • conventional lift spacers are used as cushions or buffers and are not designed to control movement of the poppets.
  • the lift spacer 220 is designed to control movement of the poppets 112 .
  • the lift spacer 220 under the poppet 112 can be customized to vary the clearance between the sealing surface 112 and the through bore 232 , and thus precisely control fluid flow.
  • the thickness of the lift spacers 220 and the dimensions of the head 208 may be varied depending on the desired fluid flow characteristics across the plurality of poppets 112 for a particular high speed compressor application.
  • the lift spacer 220 that is disposed under the poppet 112 a has substantially the same dimensions as the lift spacers that are disposed under the poppets 112 b - i .
  • each of the lift spacers that are disposed under the poppets 112 a - i has dimensions that are varied depending on the desired fluid flow characteristics across the poppets 112 a - i .
  • the lift spacer 220 that is disposed under the poppet 112 a may be a different height as compared to a second lift spacer that is disposed under one of the poppets 112 b - i.
  • the tight fit of the components of the poppet valve assembly 102 may cause one or more poppets to become “air locked.”
  • the aperture 224 that is disposed in the lift spacer 220 enables back-venting of fluid, thereby preventing the plurality of poppets 112 from becoming “air-locked.”
  • a standard poppet 112 a - i may be utilized for all counter bores 108 a - i , while allowing the flow area through each through bore 232 to be individually adjusted by varying the thickness of the lift spacer 220 .

Abstract

A poppet valve assembly for a high-speed compressor, the poppet valve assembly including a cage that includes a plurality of counter bores disposed therein. The poppet valve assembly further includes a plurality of poppets, each poppet having a stem and a head. The head of each poppet has a maximum diameter that is less than approximately 0.75 inches. The stem of the poppet is disposed in each of said counter bores. The poppet valve assembly also includes a seat plate overlying said cage, said seat plate including a plurality of through bores axially aligned with the counter bores of the cage. Each through bore is sized to have a smaller diameter than the maximum diameter of the head. A lift spacer is disposed in each of the counter bores.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. Nonprovisional patent application Ser. No. 12/572,071, filed Oct. 1, 2009, which claims priority to U.S. provisional patent application No. 61/194,882, filed on Oct. 1, 2008 in the U.S. Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to high-speed compressors, and more particularly, to control of gas flow in high-speed compressors utilizing a poppet valve assembly.
  • 2. Description of the Prior Art
  • Gas valve assemblies for conventional compressors, namely those operating at between approximately 200 rpm and approximately 600 rpm, often include poppets that have a head diameter ranging from approximately 1 inch to approximately 1 and ⅛ inches. Typically, such systems utilize approximately two to four poppets with heads in this size range to control fluid flow within these compressors. The size of such conventional poppets in the valve assemblies of these conventional compressors does not allow for precise control of fluid flow, because a limited number of such conventional poppets may be included within the conventional valve assembly. However, for such conventional operating speeds, these conventional flow control systems have been adequate. There is a need, however, for more precise gas control in certain high-speed compressor applications, particularly those operating in the 600-1500 range or higher.
  • SUMMARY
  • The present disclosure relates generally to a valve assembly that includes miniature poppets which may be utilized with high-speed compressor applications. One of the broader forms of invention may provide a poppet valve assembly, the poppet valve assembly including a cage that includes a plurality of counter bores disposed therein. The poppet valve assembly further includes a plurality of poppets, each poppet having a stem and a head. The head of each poppet has a maximum diameter that is less than approximately one inch. The stem of the poppet is disposed in a corresponding one of the said plurality of counter bores. The poppet valve assembly also includes a seat plate overlying said cage, said seat plate including a plurality of through bores axially aligned with the plurality of counter bores of the cage, wherein each of the plurality of through bores is sized to have a smaller diameter than the maximum diameter of the head. A lift spacer is disposed in each of the counter bores.
  • According to another of the broader forms of the invention may provide an apparatus that includes a poppet valve assembly, the poppet valve assembly including a cage that includes a plurality of counter bores disposed therein. The poppet valve assembly further includes a plurality of poppets, each poppet having a stem and a head. The head of each poppet has a maximum diameter that is less than approximately one inch. The stem of the poppet is disposed in a corresponding one of the said plurality of counter bores. The poppet valve assembly also includes a seat plate overlying said cage, said seat plate including a plurality of through bores axially aligned with the plurality of counter bores of the cage. Each of the plurality of through bores is sized to have a smaller diameter than the maximum diameter of the head. A lift spacer is disposed in each of the counter bores.
  • According to another of the broader forms of the invention may provide a system that includes a compressor that includes a poppet valve assembly, the poppet valve assembly including a cage that includes a plurality of counter bores disposed therein. The poppet valve assembly further includes a plurality of poppets, each poppet having a stem and a head. The head of each poppet has a maximum diameter that is less than approximately one inch. The stem of the poppet is disposed in a corresponding one of the said plurality of counter bores. The poppet valve assembly also includes a seat plate overlying said cage, said seat plate including a plurality of through bores axially aligned with the plurality of counter bores of the cage. Each of the plurality of through bores is sized to have a smaller diameter than the maximum diameter of the head. A lift spacer is disposed in each of the counter bores.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
  • FIG. 1 illustrates a top view of an exemplary poppet valve according to one or more aspects of the present disclosure.
  • FIG. 2 illustrates a partial cross-sectional view of an exemplary poppet valve according to one or more aspects of the present disclosure.
  • DETAILED DESCRIPTION
  • The present disclosure relates generally to a valve assembly that includes miniature poppets which may be utilized with high-speed compressor applications. It is understood, however, that specific embodiments are provided as examples to teach the broader inventive concept, and one of ordinary skill in the art can easily apply the teaching of the present disclosure to other methods or apparatus. Also, it is understood that the apparatus discussed in the present disclosure includes some conventional structures. Since these structures are well known in the art, they will only be discussed in a general level of detail. Furthermore, reference numbers are repeated throughout the drawings for sake of convenience and example, and such repetition does not indicate any required combination of features or steps throughout the drawings.
  • Referring to FIG. 1, a top view of a poppet valve assembly 102 in accordance with an embodiment of the present disclosure is shown. The poppet valve assembly 102 includes a cage, stop plate or guard 104 in which a plurality of counter bores 108 (shown as 108 a-i in FIG. 1) are disposed in one preferred embodiment, cage 104 may be substantially circular in shape although the shape of cage 104 is not a limitation of the invention and those skilled in the art will understand that cage 104 can be of any desirable shape.
  • A plurality of miniature poppets 112 (shown as 112 a-i in FIG. 1) with a maximum outer diameter of one inch and preferably 0.9 inches or smaller are disposed in the plurality of counter bores 108 a-i. Each of the plurality of poppets 112 seats in a respective one of the plurality of counter bores 108 provided in the cage 104. In the embodiment of FIG. 2, the poppet valve assembly 102 includes nine poppets 112 a-i that are arranged in the cage 104 around two diameters 116 and 120. A first smaller diameter 116 has three poppets 112 a-c that are substantially equally spaced around the smaller diameter 116, and a second larger diameter 120 has six poppets 112 d-i that are substantially equally spaced around the larger diameter 120. In other embodiments, the poppet valve assembly 102 may include a plurality of poppets 112 positioned according to any conventional arrangement. In any event, it is desirable that by utilizing unconventionally small diameter poppets, a greater surface area of cage 104 can be covered by poppets 112, thereby permitting the same volume of gas to pass therethrough, but in a more controllable manner.
  • The poppet 112 is fabricated from a high performance engineering thermoplastic. However, in other embodiments, the poppet valve assembly 102 may be fabricated from other materials, including without limitation, hardened steel, other metals or metal alloys.
  • Referring now to FIG. 2, a partial cross-sectional view of a portion of the poppet valve assembly 102 that includes a poppet 112 is shown. The plurality of poppets in assembly 102 are substantially similar to one another. Of course, those skilled in the art will appreciate that in other embodiments, the poppets 112 may vary as described with respect to embodiments of the present disclosure. In any event, poppet 112 includes a stem 204 and a head 208, and is substantially mushroom-shaped, because the head 208 is larger than the stem 204.
  • In one embodiment, the head 208 has a maximum diameter 209 that is approximately 0.71 inches, and the stem 204 has a maximum diameter 210 that is approximately 0.446 inches. In another embodiment, the maximum diameter 209 of the head 208 may be less than approximately 0.75 inches, and the maximum diameter 210 of the stem 204 may be less than approximately 0.446 inches. In yet another embodiment, the maximum diameter 209 of the head 208 may be less than approximately 1 inch. The head 208 includes a sealing surface 212 that has a diameter that is larger than the maximum diameter 210 of the stem 204.
  • The stem 204 of poppet 112 is disposed in a counter bore 108. Preferably, the stem 204 is hollow, and is adapted to house or guide a spring 216. The spring 216 is disposed in the stem 204 so as to seat in the counter bore 108. A lift spacer 220, having an aperture 224 therethrough, is positioned at the bottom of counter bore 108. The spring 216 is disposed to urge the poppet 112 toward a seat plate 228 overlying the cage 104, and thereby place the poppet 112 in a closed position. Like poppet 112, lift spacer 220 may be fabricated from a high performance engineering thermoplastic. However, in other embodiments, lift spacer 220 may be fabricated from other materials, including without limitation, hardened steel, other metals or metal alloys.
  • The seat plate 228 includes a plurality of through bores 232, each axially aligned with a counter bore 108. The through bore 232 is sized to have a smaller diameter than the maximum diameter 209 of the head 208. An edge 233 of the through bore 232 that interfaces with the sealing surface 212 is disposed to form a seat for receipt of head 208, preferably forming a metal to metal seal between the seat plate 228 and the head 208. In one preferred embodiment, edge 233 has a 45 degree chamfer to enhance sealing between the head 208 and the seat plate 228. However, in other embodiments, other shaped edges may be used to create a seal or seat. For example, the angle of edge 233 may be selected to correspond with the angle or shape of the sealing surface 212 that interfaces with the seat plate 228.
  • Each through bore 232 represents an independent, separately controllable orifice through which fluid may flow. By decreasing the size of the orifices, but increasing their number in poppet valve assembly 102, more precise control of fluid flow, namely gas flow into a high speed compressor, can be achieved.
  • Preferably, the seat plate 228 is a replaceable seat plate, and includes a hardened steel plate that covers the poppet valve assembly 102. In other embodiments, the seat plate 228 may include a plate that is manufactured using other materials. Most desirably, seat plate 228 is replaceable in the event of debris damage or excessive wear thereto. Conventional poppet valves do not include replaceable seat plates, and therefore the entire valve seat-body of such conventional poppet valve assemblies must be replaced. Thus, in this regard, seat plate 228 is readily detachable from cage 104. Although any conventional fastener may be utilized, in the embodiment of FIG. 2, seat plate 228 is attached to cage 104 with threaded fasteners 235.
  • The poppet valve assembly 102 may also includes an alignment pin 236 that is positioned between the seat plate 228 and the cage 104. The alignment pin 236 facilitates proper alignment of components of the poppet valve assembly 102 during manufacture and removal and replacement of seat plate 228. Again, because conventional assemblies were not replaceable, such alignment pins 236 were not necessary.
  • The cage 104 and the seat plate 228, when joined together, form a flow channel 237 that extends from the through bore 232 through the poppet valve assembly 102. The cage 104 and lift spacer 220 provide a versatile poppet valve assembly 102 that enables multiple flow area configurations, simplified assembly and manufacturing, and enhanced flow characteristics.
  • The flow area of the poppet valve assembly 102, and specifically, the flow through each through bore 232, can be readily adjusted by adjusting the lift spacer 220 underlying the poppet 112. The amount of axial movement of the poppet 112 is controlled by the lift spacer 220, which in turn controls the amount of fluid flow through the poppet valve assembly 102. The through bore 232, and subsequently the open cross-sectional area between the through bore 232 and head 208, is generally controlled by the lift spacer 220 and the sizing of the poppet itself, as well as the reduced opening in the seating surface.
  • As specified above, the poppets 112 are smaller than conventional poppets. For example, a conventional poppet may have a head 208 that has a diameter that ranges from approximately 1 inch to approximately 1 and ⅛ inches. In contrast, the head 208 of each of the poppets 112 has a maximum diameter 209 that is preferably approximately 0.71 inches, although this dimension may range in one preferred embodiment from approximately 0.5 inches to 0.9 inches. In another preferred embodiment, valve 102 includes at least 6 poppets 112, while in another preferred embodiment, valve 102 includes at least 9 poppets 112. Of course, the number of poppets 112 depends in part on the size of cage 104. However, it has been found that approximately 50% to 100% more surface area of cage 104 can be covered with poppet heads 208 as compared to the prior art, thereby enhancing the fluid control through assembly 102.
  • The poppet valve assembly 102 enables more precise control of fluid flow as compared to conventional poppet valve assemblies by allowing the use of smaller valves with smaller cross-sectional fluid flow openings. Because of the relatively small size of the poppets 112 of the present disclosure as compared to conventional poppets, a larger number of poppets 112 of the present disclosure may be disposed in the same dimensional envelope. As a result, fluid flow may be more precisely controlled.
  • In high-speed compressor applications, precise control of fluid flow is important. The poppet valve assembly 102 may be used in high-speed compressor applications. In an embodiment, the high-speed compressor application may require operation at a speed that is between approximately 600 rpm and approximately 1500 rpm. In contrast, conventional compressors, using conventional poppet valve assemblies, are limited to operating at a much slower relative speed. For example, a conventional compressor using conventional poppet assemblies might be limited to operating at a speed that is between approximately 200 rpm and approximately 600 rpm.
  • Furthermore, because the poppets 112 include heads 208 that have a diameter that is larger than the diameter of the respective through bores 232 the sealing surface 212 and flow window of the poppets 112 extend beyond the maximum diameter 210 of the stem 204. One benefit of the foregoing is that it allows for use of a larger through bore 232 while maintaining a relatively small guiding body. While the same size and shape heads 208 for the plurality of poppets 112 is shown in FIG. 1, in other embodiments, the size and/or shape of the heads 208 may be varied in a poppet valve assembly 112 to achieve the desired flow characteristics for the particular compressor with which it is used.
  • In conventional poppet valve assemblies, conventional lift spacers are used as cushions or buffers and are not designed to control movement of the poppets. In contrast, the lift spacer 220 is designed to control movement of the poppets 112. The lift spacer 220 under the poppet 112 can be customized to vary the clearance between the sealing surface 112 and the through bore 232, and thus precisely control fluid flow. In other embodiments, the thickness of the lift spacers 220 and the dimensions of the head 208 may be varied depending on the desired fluid flow characteristics across the plurality of poppets 112 for a particular high speed compressor application.
  • With respect to the poppet valve assembly 102 specifically shown in FIGS. 1 and 2, the lift spacer 220 that is disposed under the poppet 112 a has substantially the same dimensions as the lift spacers that are disposed under the poppets 112 b-i. However, in another embodiment, each of the lift spacers that are disposed under the poppets 112 a-i has dimensions that are varied depending on the desired fluid flow characteristics across the poppets 112 a-i. For example, the lift spacer 220 that is disposed under the poppet 112 a may be a different height as compared to a second lift spacer that is disposed under one of the poppets 112 b-i.
  • During operation of the poppet valve assembly 102 in a high-speed compressor, the tight fit of the components of the poppet valve assembly 102, as compared to conventional poppet valve assemblies, may cause one or more poppets to become “air locked.” However, the aperture 224 that is disposed in the lift spacer 220 enables back-venting of fluid, thereby preventing the plurality of poppets 112 from becoming “air-locked.”
  • Another advantage of embodiments of the present disclosure is that a standard poppet 112 a-i may be utilized for all counter bores 108 a-i, while allowing the flow area through each through bore 232 to be individually adjusted by varying the thickness of the lift spacer 220.
  • While the system of the invention is best described in the context of a high speed compressor application, those skilled in the art will understand that the invention may also be utilized in other applications where precise control of fluid flow is required.
  • Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this disclosure.

Claims (17)

What is claimed is:
1. A compressor system, the compressor system comprising:
a high-speed gas compressor operable at speeds of at least 600 rpm, said high-speed compressor further comprising a high-speed poppet valve assembly, wherein the high-speed poppet valve assembly comprises:
a high-speed cage plate, said high-speed cage plate including a plurality of counter bores disposed therein wherein each counter bore has an open end and a bottom in the high-speed cage plate;
a plurality of high-speed poppet elements, each high-speed poppet element including a guide stem having an outer stem diameter and a mushroom shaped head with a smooth continuous sealing surface, wherein the head has a maximum diameter that is both less than approximately 0.9 inches and larger than the outer stem diameter, and wherein the guide-stem is disposed proximate to a cage plate wall of one of said counter bores in a guide relationship with said counter bore;
a coil spring disposed in a hollow portion of the guide-stem having bias characteristics suitable for a high-speed poppet-head operation;
a high-speed seat plate overlying said high-speed cage, said high-speed seat plate including a plurality of through bores axially aligned with the plurality of counter bores of the high-speed cage, wherein each of the plurality of through bores is sized to have a smaller diameter than the maximum diameter of the head; and
a lift spacer disposed in at least one of said plurality of counter bores wherein said lift spacer limits axial movement and controls lift of said guide stem to an amount less than the length of said cage plate and an amount suitable for high-speed poppet-head operation.
2. The system of claim 1, wherein said lift spacer includes an aperture therethrough.
3. The system of claim 1, wherein the maximum diameter of the head is less than approximately 0.75 inches.
4. The system of claim 1, wherein a first lift spacer, which controls lift of a first poppet-head and is disposed in a first of said plurality of counter bores, has different dimensions than a second lift spacer, which controls lift of a second poppet-head and is disposed in a second of said plurality counter bores.
5. The system of claim 1, wherein said high-speed compressor is operable at speeds of at least 1000 rpms.
6. A compressor system, the compressor system comprising:
a high-speed gas compressor operable at speeds of between about 600 and about 1500 cycles per minute, said high-speed compressor further comprising a high-speed poppet valve assembly, wherein the high-speed poppet valve assembly comprises:
a high speed cage plate, said cage plate including a plurality of counter bores disposed therein;
a plurality of high-speed poppet elements, each high-speed poppet element including a guide stem having an outer stem diameter and a mushroom shaped head with a smooth continuous sealing surface, each high-speed poppet element composed of a high performance engineering thermoplastic, wherein the head has a diameter between approximately one half and three quarters of an inch, the head diameter being larger than the outer stem diameter, and wherein the guide-stem is disposed proximate to a cage plate wall of one of said plurality of counter bores in a guide relationship with said counter bore;
a coil spring disposed in a hollow portion of the guide-stem having bias characteristics suitable for a high-speed poppet-head operation;
a seat plate overlying said cage, said seat plate having a plurality of through bores axially aligned with the said plurality of counter bores of the cage, said seat plate being composed of steel, wherein each through bore is sized to have a smaller diameter than the diameter of the poppet head; and
a lift spacer disposed in each of the said plurality of counter bores.
7. The poppet valve assembly of claim 6, wherein each said lift spacer includes an aperture therethrough.
8. The poppet valve assembly of claim 6, wherein each guide stem is cylindrical.
9. The poppet valve assembly of claim 6, wherein each poppet has a mushroom shaped cross section.
10. The poppet valve assembly of claim 6, further comprising at least one alignment pin, at least one through hole in the seat, and at least one through hole in the cage, wherein the alignment pin is located within both the at least one through hole in the seat and the at least one through hole in the cage.
11. The poppet valve assembly of claim 6, wherein each cage plate counter bore has a chamfer.
12. The poppet valve assembly of claim 11, wherein each cage plate counter bore chamfer is approximately 45 degrees.
13. The poppet valve assembly of claim 6, wherein the cage is cylindrical.
14. The poppet valve assembly of claim 6, wherein each through bore on the seat plate is chamfered.
15. The poppet valve assembly of claim 14, wherein each seat plate chamfer is approximately 45 degrees.
16. The poppet valve assembly of claim 6, wherein the plurality of poppets and corresponding through bores are arranged in at least two arrays of two different diameters, centered about the center axis of the cage.
17. The poppet valve assembly of claim 6, wherein the diameter of the cage plate counter bores is less than the diameter of the poppet heads.
US16/184,138 2008-10-01 2018-11-08 Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications Abandoned US20190078564A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/184,138 US20190078564A1 (en) 2008-10-01 2018-11-08 Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications
US17/396,652 US20210372389A1 (en) 2008-10-01 2021-08-06 Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19488208P 2008-10-01 2008-10-01
US12/572,071 US20100090149A1 (en) 2008-10-01 2009-10-01 Poppet valve assembly, system, and apparatus for use in high speed compressor applications
US16/184,138 US20190078564A1 (en) 2008-10-01 2018-11-08 Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/572,071 Continuation US20100090149A1 (en) 2008-10-01 2009-10-01 Poppet valve assembly, system, and apparatus for use in high speed compressor applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/396,652 Continuation US20210372389A1 (en) 2008-10-01 2021-08-06 Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications

Publications (1)

Publication Number Publication Date
US20190078564A1 true US20190078564A1 (en) 2019-03-14

Family

ID=42098043

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/572,071 Abandoned US20100090149A1 (en) 2008-10-01 2009-10-01 Poppet valve assembly, system, and apparatus for use in high speed compressor applications
US16/184,138 Abandoned US20190078564A1 (en) 2008-10-01 2018-11-08 Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications
US17/396,652 Abandoned US20210372389A1 (en) 2008-10-01 2021-08-06 Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/572,071 Abandoned US20100090149A1 (en) 2008-10-01 2009-10-01 Poppet valve assembly, system, and apparatus for use in high speed compressor applications

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/396,652 Abandoned US20210372389A1 (en) 2008-10-01 2021-08-06 Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications

Country Status (1)

Country Link
US (3) US20100090149A1 (en)

Families Citing this family (319)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
ES2601840T5 (en) 2009-11-18 2021-06-21 Zahroof Valves Inc Systems and Methods for a Reed Valve Module and Valve Assembly
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US20130251565A1 (en) * 2012-03-23 2013-09-26 Compressor Engineering Corporation Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
EP2703647B1 (en) * 2012-08-31 2017-10-04 Burckhardt Compression AG Poppet valve for a compressor
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US9945207B2 (en) * 2013-02-11 2018-04-17 California Institute Of Technology Multi-path multi-stage erosion-resistant valve for downhole flow control
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9309978B2 (en) * 2013-03-14 2016-04-12 Dresser-Rand Company Low head to stem ratio poppet valve
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US20170023140A1 (en) * 2013-12-03 2017-01-26 Borgwarner Inc. High flow and quick response disk style check valve for hydraulic tensioner
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR102300403B1 (en) 2014-11-19 2021-09-09 에이에스엠 아이피 홀딩 비.브이. Method of depositing thin film
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10859078B2 (en) 2015-10-12 2020-12-08 Burckhardt Compression Ag Poppet valve
JP6872539B2 (en) * 2015-10-12 2021-05-19 ブルクハルト コンプレッション アーゲー Piston compressors including poppet valves and poppet valves
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US9892913B2 (en) 2016-03-24 2018-02-13 Asm Ip Holding B.V. Radial and thickness control via biased multi-port injection settings
US10508513B2 (en) 2016-04-13 2019-12-17 California Institute Of Technology High pressure high flow digital valve with locking poppets and backflow prevention
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
KR102592471B1 (en) 2016-05-17 2023-10-20 에이에스엠 아이피 홀딩 비.브이. Method of forming metal interconnection and method of fabricating semiconductor device using the same
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
EP3330540B1 (en) 2016-12-05 2019-06-19 Burckhardt Compression AG Poppet valve
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
IT201700066770A1 (en) * 2017-06-15 2018-12-15 Nuovo Pignone Tecnologie Srl VARIABLE GEOMETRY VALVE FOR ALTERNATIVE COMPRESSORS
CN109139831A (en) 2017-06-15 2019-01-04 博格华纳公司 Stretcher with rigidity controllable check valve
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10995866B2 (en) 2017-06-30 2021-05-04 Zahroof Valves Inc. Stacked valve assembly
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
JP7214724B2 (en) 2017-11-27 2023-01-30 エーエスエム アイピー ホールディング ビー.ブイ. Storage device for storing wafer cassettes used in batch furnaces
TWI791689B (en) 2017-11-27 2023-02-11 荷蘭商Asm智慧財產控股私人有限公司 Apparatus including a clean mini environment
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (en) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method
WO2019142055A2 (en) 2018-01-19 2019-07-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11448293B2 (en) 2018-02-26 2022-09-20 Borgwarner Inc. Variable force tensioner with internal reservoir technology primary bore
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TWI811348B (en) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
KR20190129718A (en) 2018-05-11 2019-11-20 에이에스엠 아이피 홀딩 비.브이. Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
JP2021529880A (en) 2018-06-27 2021-11-04 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
CN112292478A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (en) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 Method of forming device structure, structure formed by the method and system for performing the method
JP2020101279A (en) 2018-12-21 2020-07-02 ボーグワーナー インコーポレーテッド Tensioner with piston containing internal check valve
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
JP2020136677A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic accumulation method for filing concave part formed inside front surface of base material, and device
JP2020136678A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Method for filing concave part formed inside front surface of base material, and device
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system including a gas detector
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TW202121506A (en) 2019-07-19 2021-06-01 荷蘭商Asm Ip私人控股有限公司 Method of forming topology-controlled amorphous carbon polymer film
TW202113936A (en) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (en) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
JP2021097227A (en) 2019-12-17 2021-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming vanadium nitride layer and structure including vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
KR20210100010A (en) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (en) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer and system of the same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11781664B2 (en) 2020-04-23 2023-10-10 Aci Services, Inc. Valve poppets and valve seats for high-speed reciprocating compressor capacity unloaders
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210132576A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Method of forming vanadium nitride-containing layer and structure comprising the same
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
KR20220053482A (en) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
US11339885B1 (en) * 2021-03-08 2022-05-24 O2 Air-Sea, Llc Oxygen generation check valve device
US11391279B1 (en) * 2021-04-14 2022-07-19 Dresser-Rand Company Compressor valve assembly with removably affixed guide in a reciprocating compressor
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US528360A (en) * 1894-10-30 Check-valve
US2094951A (en) * 1935-12-30 1937-10-05 Kowan Joseph Frank Valve for compressors and the like
US2624587A (en) * 1949-08-30 1953-01-06 Thompson Prod Inc Valve assembly
US4228820A (en) * 1977-12-30 1980-10-21 The Yorde Machine Products Company Seat guided poppet valve having flow and dampening control means
US4478243A (en) * 1978-12-20 1984-10-23 Copeland Corporation Valve assembly
US4398559A (en) * 1980-09-26 1983-08-16 Ball Vavle Company, Inc. Valve member and assembly with inlet and outlet pressure relief grooves
US4489752A (en) * 1982-09-28 1984-12-25 Compressor Valve Services, Inc. Guard guided multiple element flow configured poppet valve
US4872481A (en) * 1985-03-12 1989-10-10 Cooper Industries, Inc. Poppet valve flow seat
US4607660A (en) * 1985-05-13 1986-08-26 Ingersoll-Rand Company Uni-directional-flow, fluid valve assembly
US4815493A (en) * 1987-09-17 1989-03-28 Parker-Hannifin Corporation Cartridge bypass valve
US4790272A (en) * 1987-10-15 1988-12-13 Woolenweber William E Non-circular poppet valves for internal combustion engine cylinder assemblies
US5642753A (en) * 1996-07-01 1997-07-01 Dresser-Rand Company Valve unloader assembly
US6024126A (en) * 1998-05-26 2000-02-15 E. I. Du Pont De Nemours And Company Uniform cross-section and ribbed thermoplastic compressor valve
US6431209B1 (en) * 2000-03-16 2002-08-13 Ross Operating Valve Company Multi-pressure ball-poppet control valve
AT412302B (en) * 2000-03-28 2004-12-27 Hoerbiger Ventilwerke Gmbh AUTOMATIC VALVE
ES2233790T3 (en) * 2001-03-27 2005-06-16 Mt Sealing Technology Inc. SPRING VALVE WITH MULTIPLE SEATS ..
US20020170603A1 (en) * 2001-04-16 2002-11-21 Cerovich Christopher J. Damped valve
DE50104690D1 (en) * 2001-07-09 2005-01-05 Burckhardt Compression Ag Wint piston ring
US20040007824A1 (en) * 2001-07-13 2004-01-15 Durham Kevin Patrick Elastomeric sealing element for gas compressor valve
US6932109B2 (en) * 2002-07-26 2005-08-23 Gene M. Thompson Scavenger valve assembly
JP4329645B2 (en) * 2004-08-18 2009-09-09 株式会社豊田自動織機 Check valve
CA2581508A1 (en) * 2004-10-22 2006-04-27 Burckhardt Compression Ag Dry-running piston rod sealing arrangement, and method for sealing a piston rod using one such arrangement
US7819131B2 (en) * 2005-02-14 2010-10-26 Cameron International Corporation Springless compressor valve
US20070065321A1 (en) * 2005-09-21 2007-03-22 Durham Kevin P Elastomeric reciprocating compressor valve spring
US7762521B2 (en) * 2006-05-23 2010-07-27 Southwest Research Institute Semi-active compressor valve
US20090179170A1 (en) * 2006-10-09 2009-07-16 Bassett H Eugene Semispherical Valve for Reciprocating Compressor and Pumps
JP5380454B2 (en) * 2007-10-18 2014-01-08 ブルクハルト コンプレッション アーゲー Active control valve, method of operating active control valve, compressor and piston type compressor with active control valve
KR101527824B1 (en) * 2008-03-10 2015-06-10 부르크하르트 콤프레션 아게 Device and method for preparing liquefied natural gas(lng) fuel
WO2011009880A1 (en) * 2009-07-23 2011-01-27 Burckhardt Compression Ag Method for controlling delivery quantity and reciprocating compressor having delivery quantity control
US8240330B2 (en) * 2009-08-19 2012-08-14 Southwest Research Institute Squeeze film damper valve for compressor cylinders
EP2423539B1 (en) * 2010-08-31 2014-04-02 Burckhardt Compression AG Seal arrangement

Also Published As

Publication number Publication date
US20210372389A1 (en) 2021-12-02
US20100090149A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US20210372389A1 (en) Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications
US20200173579A1 (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
US6880579B2 (en) Noise reduction device for fluid flow systems
CN107975605B (en) Grid control cage for a regulator
US20150252909A1 (en) Low head to stem ratio poppet valve
JP4755668B2 (en) Valve with fluid pressure reducing device with integral guide
US20170030350A1 (en) Poppet Valve Assembly, System, and Apparatus for Use in High Speed Compressor Applications
JPH0468511B2 (en)
CN109578597B (en) Control valve trim assembly
US20170268697A1 (en) Cage apparatus having fluid passageways to affect flow characteristics of valves
US20120216894A1 (en) Valve Assembly
US10907743B2 (en) Check valve and reciprocating body for check valve
US20110309901A1 (en) Electromagnetic actuating device
KR20200043498A (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
US20170130868A1 (en) Balanced valve trim and method of reducing stem forces on a valve stem
US20050035325A1 (en) Diaphragm valve having adjustable closure means
CN107631524A (en) Electric expansion valve
US8495816B2 (en) Method for adjusting the throttling action of a valve
US20070284553A1 (en) Valve ball guide and seat design
KR20150017818A (en) Structor divice of ball valve
US11598449B2 (en) Compact multi-stage control valve trim
JP7321521B2 (en) on-off valve
JPS6131772A (en) Throttle valve with built-in variable orifice
RU2290558C1 (en) Valve
JP2024046668A (en) electric valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: COMPRESSOR ENGINEERING CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THOMPSON, GENE M.;JONES, CATHERINE;SIGNING DATES FROM 20181210 TO 20181214;REEL/FRAME:047846/0218

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION