US20190013308A1 - Die bonding to a board - Google Patents

Die bonding to a board Download PDF

Info

Publication number
US20190013308A1
US20190013308A1 US16/130,835 US201816130835A US2019013308A1 US 20190013308 A1 US20190013308 A1 US 20190013308A1 US 201816130835 A US201816130835 A US 201816130835A US 2019013308 A1 US2019013308 A1 US 2019013308A1
Authority
US
United States
Prior art keywords
alloy
layer
die
board
reflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/130,835
Inventor
Michael J. Seddon
Francis J. Carney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Components Industries LLC
Original Assignee
Semiconductor Components Industries LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Components Industries LLC filed Critical Semiconductor Components Industries LLC
Priority to US16/130,835 priority Critical patent/US20190013308A1/en
Assigned to SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC reassignment SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARNEY, FRANCIS J., SEDDON, MICHAEL J.
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAIRCHILD SEMICONDUCTOR CORPORATION, SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
Publication of US20190013308A1 publication Critical patent/US20190013308A1/en
Assigned to SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, FAIRCHILD SEMICONDUCTOR CORPORATION reassignment SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 047399, FRAME 0631 Assignors: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4825Connection or disconnection of other leads to or from flat leads, e.g. wires, bumps, other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/27848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/27849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/301Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32501Material at the bonding interface
    • H01L2224/32503Material at the bonding interface comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8321Applying energy for connecting using a reflow oven
    • H01L2224/83211Applying energy for connecting using a reflow oven with a graded temperature profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8334Bonding interfaces of the layer connector
    • H01L2224/83359Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83401Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/83411Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8381Soldering or alloying involving forming an intermetallic compound at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/83825Solid-liquid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/8383Solid-solid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Definitions

  • the present disclosure relates generally to circuit manufacturing, and more particularly to device bonding techniques.
  • Multichip modules are increasingly being used to control operations of machines and systems. For a variety of manufacturing considerations, however, the various devices are not always installed into the multichip modules at the same time. Wire bond applications are often used though not always appropriate for certain applications. For example, a wire bond solution may not be appropriate in situations where footprint requirements necessitate efficient integrated circuit (IC) real estate usage.
  • IC integrated circuit
  • solder alloys and pastes are beneficial for bonding one die to a board, such as a ceramic or substrate board or metal lead frame, in certain circumstances.
  • the solder alloy or paste will flow when the device and board are placed in a reflow oven or furnace and will then cool to bond the die to the board and, if desired, to create an electrical connection between the device and board.
  • this approach is beneficial in that the die may be removed and replaced if faulty with a subsequent reflow in a reflow oven or furnace.
  • solder alloy or paste One issue with using a solder alloy or paste, however, is that the solder will reflow and the bond between the original die and the board will fail when the board and a new die are subsequently placed in the reflow oven to bond the new die to the board. When the bond fails, the original die may even slide off of the board or metal lead frame.
  • One approach to solve this problem has been to use different metal alloys for the original or first die so that the metal alloys bonding the die have a higher melting temperature than what is needed for re-flowing the solder alloys of the second or new die.
  • Two metals that have been used with this approach include lead and gold. Lead, however, is known to cause health issues and is not always desirable. Gold, on the other hand, is expensive and drives up product cost. Accordingly, solder is often used despite its limitations.
  • FIG. 1 is a side view of a circuit board and a first die prior to bonding the first die to the circuit board.
  • FIG. 2 is a side view of a circuit board and a bonded first die and an unbonded second die.
  • FIG. 3 is a side view of a circuit board and a bonded first die and second die.
  • FIG. 4 is a side view of a circuit board and a bonded first die and a second die.
  • FIG. 5 is a temperature-time graph that illustrates a reflow thermal profile for a first die.
  • FIG. 6 is a temperature-time graph that illustrates a reflow thermal profile for a first die and a second reflow for a second die.
  • FIG. 7 is a flow chart illustrating a method for bonding a die.
  • FIG. 8 is a flow chart illustrating a method for bonding a die.
  • FIG. 1 is a side view of a circuit board and a first die prior to bonding the first die to the circuit board according to an embodiment.
  • FIG. 1 illustrates a system that includes a die 10 having metal layers 12 and 14 and a board 16 with metal layer 18 .
  • Board 16 may be constructed in any known manner and may comprise, for example, a ceramic or organic substrate board. Alternatively, a metal lead frame may be used in place of a board.
  • a board, a ceramic board, a substrate board or a metal lead frame it should be understood that any one of the other supporting structural elements (board, substrate board, ceramic board or metal lead frame) could be used alternatively.
  • Metal layer 18 of board 16 comprises at least one of a solderable metal layer such tin, silver or copper.
  • Metal layer 18 may also comprise a plurality of metal or metal alloy layers, for example, copper, nickel, tin or silver or an alloy formed of two or more metals.
  • the metal layers on the die comprise a combination of silver, tin and nickel in one embodiment.
  • the die may include three or more layers. While FIG. 1 shows two layers 12 and 14 on die 10 and one layer 18 on board 16 , the embodiments are not limited and the die and board may include additional layers. Moreover, any one layer may be an alloy and is not required to be a single element or metal. For example, layer 14 also labeled as m 2 may be an alloy in one embodiment.
  • die 10 is to be attached to board 16 (more specifically, to layer 18 of board 16 ).
  • a solder paste or die attach is often used to bond the die to the board.
  • the metals or metal alloys of the plurality of metal layers on the die and at least one layer on the board are selected so that they melt and form an alloy during reflow having a subsequent melting temperature that is higher than the temperature used during reflow of the original metal layers to create the alloy.
  • metals are chosen so that, even if a solder or solder paste is used, the metals will melt and mix with the solder to create an alloy with a melting temperature that is higher than what is required to reflow solder.
  • the board is often placed within a reflow furnace or oven at a specified temperature profile over a specified period.
  • Other technologies for reflowing the metals may also be used in alternative processes. Any reference herein to a furnace or oven should be understood to include alternative technologies for melting or reflowing the metal layers of the die and board.
  • FIG. 2 is a side view of a circuit board and a bonded first die and an unbonded second die according to an embodiment. More specifically, die 10 and board 16 are shown after a reflow wherein metals of at least one of layers 12 and 14 of die 10 melted and mixed with layer 18 of board 16 to create alloy layer 20 to bond die 10 to board 16 . Alloy layer 20 , being formed by the specific combination of metals m 2 and m 3 (and potentially m 1 ) has a higher melting (reflow) temperature than any one of metals m 1 , m 2 and m 3 of layers 12 , 14 and 18 , respectively. In the example of FIG. 2 , all of metal m 2 has mixed with metal m 3 to create alloy m 4 of layer 20 .
  • die 22 having layers 24 and 26 is shown disposed against layer 18 of board 16 but is not yet attached or bonded to board 16 . Accordingly, the board and die 10 and die 22 are reflowed in the reflow oven or furnace to cause metals m 3 and m 6 (and potentially m 5 ) to melt and reflow to create the bond between die 22 and layer 18 of board 16 . If the same reflow temperature is used as before, metals m 6 and m 3 (and possibly m 5 of layer 24 ) will melt to create a new alloy without completely melting alloy m 4 of layer 20 . Depending on operation, alloy m 4 may partially or slightly melt, but will not melt so completely that the bond between the die and the board is compromised to the point that the die may be removed or may even accidentally slide off of the board.
  • FIG. 3 is a side view of a circuit board and a bonded first die and second die according to an embodiment.
  • some metal m 2 of layer 14 remains while some has mixed with metal m 3 of layer 18 to create alloy m 4 of layer 20 .
  • alloy m 4 was created during a first reflow.
  • some of metal m 6 of layer 26 remains while some of metal m 6 has mixed with metal m 3 of layer 18 to create alloy m 7 of layer 28 .
  • Alloy m 7 was created during a second reflow at the first reflow temperature without completely reflowing (melting) metal m 4 of layer 20 during the second reflow to bond or attach die 22 to board 16 . If board 16 was to be reflowed a third time to add another die, either alloy m 4 or m 7 will not completely melt as long as the reflow temperature is the same as before or at least lower than the melting temperature of metals m 4 and m 7 of layers 20 and 28 , respectively.
  • FIG. 4 is a side view of a circuit board and a bonded first die and a second die according to an embodiment.
  • a die 30 is shown bonded to board 36 after a reflow.
  • die 30 included at least three metal layers similar to die 46 that include layers 48 , 50 and 52 .
  • die 30 includes original layers 32 and 34 and new alloy layers 42 and 44 .
  • Board 36 includes layers 38 and 40 that may each be a pure metal or an alloy.
  • the original layer of die 30 included metal m 3 (and potentially a portion of layer 34 comprising m 2 ) that mixed with at least one of metals m 4 and m 5 of layers 38 and 40 of board 36 to create layers 42 and 44 that comprise at least one alloy.
  • a process includes reflowing a die until at least two metals melt and mix to create an alloy.
  • the reflow may be extended in time to a second period to cause at least a third metal, if not a fourth metal, of either a die layer or a board layer to mix to create additional alloys.
  • FIG. 4 illustrates the results of this additional process step wherein two metal alloys shown as layers 42 and 44 were created through re-flowing an extended or additional time to partially or wholly combine metals m 2 , m 3 , m 4 and m 5 .
  • the process may optionally include extending the reflow time to create additional alloys from the various metal layers of the die and board that comprise metals m 1 -m 5 .
  • alloys m 6 and m 7 of die layers 42 and 44 will not completely melt and reflow. Accordingly, board 36 will maintain a bond with die 30 .
  • intermetallic alloy may be more appropriate than the term “alloy” because “alloy” tends to refer to a homogenous or uniform distribution of metal content. References herein to alloy are intended to include intermetallic alloys.
  • FIG. 5 is a temperature-time graph that illustrates a reflow thermal profile for a first die according to one embodiment.
  • a reflow thermal profile graph is shown that identifies five time periods p 1 -p 5 that represent the various thermal stages used in a process according to one embodiment.
  • period p 1 represents a heating ramp to preheat the reflow oven or furnace to a preheat temperature.
  • Period p 2 represents the preheat period that is used in a typical reflow process. Period p 2 may be used to burn off impurities or flux and/or to gradually increase temperature to avoid damaging the board or die.
  • Period p 3 represents a heating ramp to a reflow temperature.
  • Period p 4 represents the duration that a reflow temperature is maintained.
  • a reflow temperature is not maintained for any notable duration given the traditional solder elements that are used to bond leads and devices to each other or to a printed circuit board.
  • the reflow temperature is maintained at least until a time t 1 is reached.
  • Time t 0 is the time at which the reflow temperature is reached while time t 1 is an amount of time that is required to form an alloy and create a bond. Time t 1 may coincident with time t 0 . Time t 1 is a function of what metals are being melted and the relative thickness of the metal layers. Furthermore, as described in relation to previous figures, a plurality of metal layers may be used on at least one of the die or the board. If the reflow temperature is maintained beyond time t 1 to time t 2 , additional alloys may be formed from the additional metal layers disposed either on the die or on the board because maintaining the reflow temperature causes additional melting. Accordingly, shortly after time t 2 , period 5 begins representing a cool down period.
  • the process represented by FIG. 5 is a reflow process for a first die.
  • FIG. 6 is a temperature-time graph that illustrates a reflow thermal profile for a first die and a second reflow for a second die according to one embodiment.
  • the reflow thermal profile illustrated in FIG. 6 is the equivalent of that in FIG. 5 except that the profile is repeated.
  • the left-hand portion of the reflow thermal profile of FIG. 6 represents the reflow process for a first die while the right-hand portion represents the reflow process for a second die to which the first die is subjected.
  • the descriptions for the various periods made in relation to FIG. 5 are the same here and won't be repeated.
  • the reflow process for the second die is performed with the first die being already bonded to the board.
  • the first die and its metal layers do not reflow (completely or fully melt to the point that the bond between the board and die is compromised) while the metal layers for the second die are re-flowing in the reflow oven or furnace during the second reflow cycle illustrated in FIG. 6 .
  • FIG. 7 is a flowchart illustrating a method for bonding a die according to one embodiment.
  • the method of FIG. 7 commences with placing a first die on a solderable board with metal layer ( 102 ).
  • the solderable board may comprise any type of known board including ceramic boards and substrate boards or metal lead frames that are used for securing or connecting electronic devices.
  • the metal layer is a solderable metal layer such as copper.
  • the die in the disclosed embodiment, includes two metal layers formed on one surface while the board includes at least one solderable metal surface.
  • the die is placed on the board so that the outer metal layers of board and first die are in contact with each other. Thereafter, the first die and the board are placed in a reflow furnace or oven ( 104 ).
  • the board and die kept in the heated reflow oven to reflow the first die and the solderable board metal layer according to a first reflow temperature profile to form a first alloy ( 106 ).
  • the temperature profile may include a temperature ramp to a specified temperature with an immediate cool down following or a ramp to a temperature or temperature range that is maintained for a specified period or duration sufficient to allow the metal layers to reflow to create at least one alloy.
  • Reference herein to temperature profiles include any combination of temperature and time that is used to melt the die and board metal layers to create the desired alloys and/or intermetallic alloys.
  • the method optionally includes continuing the reflow according to a second temperature profile (e.g. at the first reflow temperature profile for a second period) to continue to reflow the first die and one or more of the metal layers of the die and the board to form a second alloy or intermetallic alloy ( 108 ).
  • the method includes placing a second die on the solderable board ( 110 ) board with the first and second die in the reflow furnace or oven ( 112 ) to essentially repeat the reflow process. Thereafter, second die and board metal layers are reflowed according to a third reflow temperature profile without completely re-flowing any alloy metals of the first die and board that were created during the first reflow process. The second die and board metal layers are re-flowed to form a third alloy for the second die and board ( 114 ).
  • the method optionally includes continuing to reflow the metal layers of the second die and board according to a fourth temperature profile to form a fourth alloy for the second die ( 116 ).
  • a fourth temperature profile may be similar or may be varied in thickness or composition.
  • the first, second, third and fourth alloys and/or intermetallics that are created are based on the temperature profiles and metal layer compositions and may therefore be similar or different.
  • FIG. 8 is a flowchart illustrating a method for bonding a die according to one embodiment.
  • a first die is placed against a board without a solderable paste.
  • the die has at least two metal layers and the board has at least one metal layer that is solderable in one embodiment ( 120 ).
  • the die and the board are heated to a first temperature to burn off flux and/or impurities ( 122 ).
  • a flux is added to external metal layers to avoid unwanted oxidation that may interfere with reflow processes.
  • the die and board are placed into a reflow oven or furnace to eventually reflow the metal layers to create an alloy or inter-metallic layer (a layer differing metal compositions throughout the metal).
  • the board and die are heated to a second temperature to reflow the board metal layer with at least one metal layer of the die to form a first alloy ( 124 ).
  • the ambient temperature is reduced from the second temperature as soon as the second temperature is reached. For some metal combinations, once the ambient temperature reaches a specified reflow temperature, the metals are sufficiently melted and a cool down process may begin immediately unless other metal layers are also to be melted to form the desired alloy.
  • the board and die are kept at the second temperature for a specified period.
  • the method continues with continuing to maintain heat to continue to reflow the board metal with first and second die metal layers to form a second alloy ( 126 ).
  • This step includes maintaining a specified temperature range (e.g., the second temperature reached in step 124 ) for a specified period.
  • a solder or solder paste was not used.
  • a solder or solder paste may be used in addition to the metal layers of the board and die when the die is placed against the board so long as a metal melts and mixes with the solder or solder paste to create an alloy with a higher melting temperature than the melting temperature of the solder.
  • the method includes placing a second die against the board without solderable paste ( 128 ). Thereafter, the method optionally includes heating the second die and the board with the attached first die to the first temperature to burn off flux and/or impurities ( 130 ). Thereafter, the reflow oven or furnace temperature is increased to heat the board according to a fourth temperature to reflow the board metal layer and the second die first metal layer to form a third alloy ( 132 ). As described in relation to step 124 , the fourth temperature may be the same as the second temperature or it may be modified according to design requirements.
  • the method concludes with maintaining the heat at the fourth temperature or within a temperature range approximately equal to the fourth temperature to reflow the board metal layer with the second die first and second die metal layers to form a fourth alloy ( 134 ).
  • this step may comprise merely maintaining a specified temperature or temperature range for a specified period.
  • the first and second die might have substantially similar metal layers thereby resulting in substantially similar alloys from the reflow processes.
  • the third and fourth alloys may be very similar to the first and second alloys, respectively if the metals and temperature profiles or processes are similar.

Abstract

An apparatus for bonding die to a board includes a circuit board having a solderable layer and a plurality of die bonded to the circuit board using at least three respective layers. Each of the at least three respective layers includes an inner layer, a first alloy of material from an outer layer and the solderable layer of the circuit board, and a second alloy of material from the outer layer and the solderable layer of the circuit board. Melting temperatures of the first alloy and the second alloy are higher than reflow temperatures of the outer layer and the solderable layer of the circuit board.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. patent application Ser. No. 14/812,846, filed Jul. 29, 2015, entitled “Die Bonding to a Board,” invented by Michael J. Seddon et al., and claims priority to U.S. Provisional Application No. 62/194,204, filed Jul. 18, 2015, invented by Michael J. Seddon et al., the contents of which are incorporated herein by reference in their entirety.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates generally to circuit manufacturing, and more particularly to device bonding techniques.
  • BACKGROUND
  • Multichip modules are increasingly being used to control operations of machines and systems. For a variety of manufacturing considerations, however, the various devices are not always installed into the multichip modules at the same time. Wire bond applications are often used though not always appropriate for certain applications. For example, a wire bond solution may not be appropriate in situations where footprint requirements necessitate efficient integrated circuit (IC) real estate usage.
  • An alternative approach is to use solder alloys and pastes. Using solder in either form is beneficial for bonding one die to a board, such as a ceramic or substrate board or metal lead frame, in certain circumstances. Typically, the solder alloy or paste will flow when the device and board are placed in a reflow oven or furnace and will then cool to bond the die to the board and, if desired, to create an electrical connection between the device and board. For the case of a single die, this approach is beneficial in that the die may be removed and replaced if faulty with a subsequent reflow in a reflow oven or furnace.
  • One issue with using a solder alloy or paste, however, is that the solder will reflow and the bond between the original die and the board will fail when the board and a new die are subsequently placed in the reflow oven to bond the new die to the board. When the bond fails, the original die may even slide off of the board or metal lead frame. One approach to solve this problem has been to use different metal alloys for the original or first die so that the metal alloys bonding the die have a higher melting temperature than what is needed for re-flowing the solder alloys of the second or new die. Two metals that have been used with this approach include lead and gold. Lead, however, is known to cause health issues and is not always desirable. Gold, on the other hand, is expensive and drives up product cost. Accordingly, solder is often used despite its limitations.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings according to various embodiments in which:
  • FIG. 1 is a side view of a circuit board and a first die prior to bonding the first die to the circuit board.
  • FIG. 2 is a side view of a circuit board and a bonded first die and an unbonded second die.
  • FIG. 3 is a side view of a circuit board and a bonded first die and second die.
  • FIG. 4 is a side view of a circuit board and a bonded first die and a second die.
  • FIG. 5 is a temperature-time graph that illustrates a reflow thermal profile for a first die.
  • FIG. 6 is a temperature-time graph that illustrates a reflow thermal profile for a first die and a second reflow for a second die.
  • FIG. 7 is a flow chart illustrating a method for bonding a die.
  • FIG. 8 is a flow chart illustrating a method for bonding a die.
  • The use of the same reference symbols in different drawings indicates similar or identical items. Unless otherwise noted, the word “coupled” and its associated verb forms include both direct connection and indirect electrical connection by means known in the art, and unless otherwise noted any description of direct connection implies alternate embodiments using suitable forms of indirect electrical connection as well.
  • DETAILED DESCRIPTION
  • FIG. 1 is a side view of a circuit board and a first die prior to bonding the first die to the circuit board according to an embodiment. FIG. 1 illustrates a system that includes a die 10 having metal layers 12 and 14 and a board 16 with metal layer 18. Board 16 may be constructed in any known manner and may comprise, for example, a ceramic or organic substrate board. Alternatively, a metal lead frame may be used in place of a board. Hereinafter, whenever any reference to a board, a ceramic board, a substrate board or a metal lead frame is used, it should be understood that any one of the other supporting structural elements (board, substrate board, ceramic board or metal lead frame) could be used alternatively.
  • Metal layer 18 of board 16 comprises at least one of a solderable metal layer such tin, silver or copper. Metal layer 18 may also comprise a plurality of metal or metal alloy layers, for example, copper, nickel, tin or silver or an alloy formed of two or more metals. The metal layers on the die comprise a combination of silver, tin and nickel in one embodiment. The die may include three or more layers. While FIG. 1 shows two layers 12 and 14 on die 10 and one layer 18 on board 16, the embodiments are not limited and the die and board may include additional layers. Moreover, any one layer may be an alloy and is not required to be a single element or metal. For example, layer 14 also labeled as m2 may be an alloy in one embodiment.
  • As is suggested in FIG. 1, die 10 is to be attached to board 16 (more specifically, to layer 18 of board 16). In the prior art, a solder paste or die attach is often used to bond the die to the board. Here, however, the metals or metal alloys of the plurality of metal layers on the die and at least one layer on the board are selected so that they melt and form an alloy during reflow having a subsequent melting temperature that is higher than the temperature used during reflow of the original metal layers to create the alloy. In the described embodiment, metals are chosen so that, even if a solder or solder paste is used, the metals will melt and mix with the solder to create an alloy with a melting temperature that is higher than what is required to reflow solder. To “reflow” a board and one or more die, the board is often placed within a reflow furnace or oven at a specified temperature profile over a specified period. Other technologies for reflowing the metals may also be used in alternative processes. Any reference herein to a furnace or oven should be understood to include alternative technologies for melting or reflowing the metal layers of the die and board.
  • FIG. 2 is a side view of a circuit board and a bonded first die and an unbonded second die according to an embodiment. More specifically, die 10 and board 16 are shown after a reflow wherein metals of at least one of layers 12 and 14 of die 10 melted and mixed with layer 18 of board 16 to create alloy layer 20 to bond die 10 to board 16. Alloy layer 20, being formed by the specific combination of metals m2 and m3 (and potentially m1) has a higher melting (reflow) temperature than any one of metals m1, m2 and m3 of layers 12, 14 and 18, respectively. In the example of FIG. 2, all of metal m2 has mixed with metal m3 to create alloy m4 of layer 20.
  • Here, in FIG. 2, die 22 having layers 24 and 26 is shown disposed against layer 18 of board 16 but is not yet attached or bonded to board 16. Accordingly, the board and die 10 and die 22 are reflowed in the reflow oven or furnace to cause metals m3 and m6 (and potentially m5) to melt and reflow to create the bond between die 22 and layer 18 of board 16. If the same reflow temperature is used as before, metals m6 and m3 (and possibly m5 of layer 24) will melt to create a new alloy without completely melting alloy m4 of layer 20. Depending on operation, alloy m4 may partially or slightly melt, but will not melt so completely that the bond between the die and the board is compromised to the point that the die may be removed or may even accidentally slide off of the board.
  • FIG. 3 is a side view of a circuit board and a bonded first die and second die according to an embodiment. In the example of FIG. 3, some metal m2 of layer 14 remains while some has mixed with metal m3 of layer 18 to create alloy m4 of layer 20. This is in contrast to FIG. 2 where all of metal m2 of layer 14 melted and mixed with metal m3 of board layer 18. As before, alloy m4 was created during a first reflow. Additionally, some of metal m6 of layer 26 remains while some of metal m6 has mixed with metal m3 of layer 18 to create alloy m7 of layer 28. Alloy m7 was created during a second reflow at the first reflow temperature without completely reflowing (melting) metal m4 of layer 20 during the second reflow to bond or attach die 22 to board 16. If board 16 was to be reflowed a third time to add another die, either alloy m4 or m7 will not completely melt as long as the reflow temperature is the same as before or at least lower than the melting temperature of metals m4 and m7 of layers 20 and 28, respectively.
  • FIG. 4 is a side view of a circuit board and a bonded first die and a second die according to an embodiment. Referring to FIG. 4, a die 30 is shown bonded to board 36 after a reflow. Prior to the reflow, die 30 included at least three metal layers similar to die 46 that include layers 48, 50 and 52. In the illustrated embodiment of FIG. 4, die 30 includes original layers 32 and 34 and new alloy layers 42 and 44. Board 36 includes layers 38 and 40 that may each be a pure metal or an alloy. During the reflow, the original layer of die 30 included metal m3 (and potentially a portion of layer 34 comprising m2) that mixed with at least one of metals m4 and m5 of layers 38 and 40 of board 36 to create layers 42 and 44 that comprise at least one alloy.
  • In one embodiment of the invention, a process includes reflowing a die until at least two metals melt and mix to create an alloy. As an additional process step, the reflow may be extended in time to a second period to cause at least a third metal, if not a fourth metal, of either a die layer or a board layer to mix to create additional alloys. FIG. 4 illustrates the results of this additional process step wherein two metal alloys shown as layers 42 and 44 were created through re-flowing an extended or additional time to partially or wholly combine metals m2, m3, m4 and m5. Furthermore, the process may optionally include extending the reflow time to create additional alloys from the various metal layers of the die and board that comprise metals m1-m5. As before, when die 46 displaced onto board 36 and re-flowed, alloys m6 and m7 of die layers 42 and 44 will not completely melt and reflow. Accordingly, board 36 will maintain a bond with die 30.
  • It should be understood that distinct layers are shown here to represent alloys with differing combinations of metal. In actual practice, however, the ratios of metal may gradually change depending on original metal layer thicknesses and a total period of the reflow process to create the alloys. Accordingly, it should be understood that the term “intermetallic alloy” or “intermetallics” may be used in place of alloy more appropriately depending on the results of the reflow process. Reflow duration and relative layer thickness and construction affect how much the various metal layers melt and how well they mix to create a uniform distribution of metals within the resulting alloy. For example, if the metal compositions are different in different areas, the term “intermetallic alloy” may be more appropriate than the term “alloy” because “alloy” tends to refer to a homogenous or uniform distribution of metal content. References herein to alloy are intended to include intermetallic alloys.
  • FIG. 5 is a temperature-time graph that illustrates a reflow thermal profile for a first die according to one embodiment. Referring now to FIG. 5, a reflow thermal profile graph is shown that identifies five time periods p1-p5 that represent the various thermal stages used in a process according to one embodiment. As may be seen, period p1 represents a heating ramp to preheat the reflow oven or furnace to a preheat temperature. Period p2 represents the preheat period that is used in a typical reflow process. Period p2 may be used to burn off impurities or flux and/or to gradually increase temperature to avoid damaging the board or die. Period p3 represents a heating ramp to a reflow temperature. Period p4 represents the duration that a reflow temperature is maintained. Typically, in prior art applications, a reflow temperature is not maintained for any notable duration given the traditional solder elements that are used to bond leads and devices to each other or to a printed circuit board. Here, however the reflow temperature is maintained at least until a time t1 is reached.
  • Time t0 is the time at which the reflow temperature is reached while time t1 is an amount of time that is required to form an alloy and create a bond. Time t1 may coincident with time t0. Time t1 is a function of what metals are being melted and the relative thickness of the metal layers. Furthermore, as described in relation to previous figures, a plurality of metal layers may be used on at least one of the die or the board. If the reflow temperature is maintained beyond time t1 to time t2, additional alloys may be formed from the additional metal layers disposed either on the die or on the board because maintaining the reflow temperature causes additional melting. Accordingly, shortly after time t2, period 5 begins representing a cool down period. As described before, the alloys that are formed by the reflow temperature at times t1 and t2 have subsequent melting temperatures that are higher than the reflow temperature of period p4. The process represented by FIG. 5 is a reflow process for a first die.
  • FIG. 6 is a temperature-time graph that illustrates a reflow thermal profile for a first die and a second reflow for a second die according to one embodiment. Essentially, the reflow thermal profile illustrated in FIG. 6 is the equivalent of that in FIG. 5 except that the profile is repeated. The left-hand portion of the reflow thermal profile of FIG. 6 represents the reflow process for a first die while the right-hand portion represents the reflow process for a second die to which the first die is subjected. The descriptions for the various periods made in relation to FIG. 5 are the same here and won't be repeated. The reflow process for the second die is performed with the first die being already bonded to the board. Because of the characteristics and higher melting temperatures for the alloys that are formed during the first reflow, however, the first die and its metal layers do not reflow (completely or fully melt to the point that the bond between the board and die is compromised) while the metal layers for the second die are re-flowing in the reflow oven or furnace during the second reflow cycle illustrated in FIG. 6.
  • FIG. 7 is a flowchart illustrating a method for bonding a die according to one embodiment. The method of FIG. 7 commences with placing a first die on a solderable board with metal layer (102). The solderable board may comprise any type of known board including ceramic boards and substrate boards or metal lead frames that are used for securing or connecting electronic devices. In one embodiment, the metal layer is a solderable metal layer such as copper. The die, in the disclosed embodiment, includes two metal layers formed on one surface while the board includes at least one solderable metal surface. The die is placed on the board so that the outer metal layers of board and first die are in contact with each other. Thereafter, the first die and the board are placed in a reflow furnace or oven (104). The board and die kept in the heated reflow oven to reflow the first die and the solderable board metal layer according to a first reflow temperature profile to form a first alloy (106).
  • The temperature profile may include a temperature ramp to a specified temperature with an immediate cool down following or a ramp to a temperature or temperature range that is maintained for a specified period or duration sufficient to allow the metal layers to reflow to create at least one alloy. Reference herein to temperature profiles include any combination of temperature and time that is used to melt the die and board metal layers to create the desired alloys and/or intermetallic alloys. The method optionally includes continuing the reflow according to a second temperature profile (e.g. at the first reflow temperature profile for a second period) to continue to reflow the first die and one or more of the metal layers of the die and the board to form a second alloy or intermetallic alloy (108).
  • After a first reflow process is concluded and any formed alloys have cooled and hardened, the method includes placing a second die on the solderable board (110) board with the first and second die in the reflow furnace or oven (112) to essentially repeat the reflow process. Thereafter, second die and board metal layers are reflowed according to a third reflow temperature profile without completely re-flowing any alloy metals of the first die and board that were created during the first reflow process. The second die and board metal layers are re-flowed to form a third alloy for the second die and board (114). Finally, the method optionally includes continuing to reflow the metal layers of the second die and board according to a fourth temperature profile to form a fourth alloy for the second die (116). It should be understood that the first, second, third and fourth temperature profiles may be similar or may be varied in thickness or composition. Similarly, the first, second, third and fourth alloys and/or intermetallics that are created are based on the temperature profiles and metal layer compositions and may therefore be similar or different.
  • FIG. 8 is a flowchart illustrating a method for bonding a die according to one embodiment. Initially, a first die is placed against a board without a solderable paste. As described before, the die has at least two metal layers and the board has at least one metal layer that is solderable in one embodiment (120). Thereafter, the die and the board are heated to a first temperature to burn off flux and/or impurities (122). In some processes, a flux is added to external metal layers to avoid unwanted oxidation that may interfere with reflow processes. In one embodiment, the die and board are placed into a reflow oven or furnace to eventually reflow the metal layers to create an alloy or inter-metallic layer (a layer differing metal compositions throughout the metal). Thereafter, the board and die are heated to a second temperature to reflow the board metal layer with at least one metal layer of the die to form a first alloy (124). In one embodiment, the ambient temperature is reduced from the second temperature as soon as the second temperature is reached. For some metal combinations, once the ambient temperature reaches a specified reflow temperature, the metals are sufficiently melted and a cool down process may begin immediately unless other metal layers are also to be melted to form the desired alloy.
  • Optionally, the board and die are kept at the second temperature for a specified period. The method continues with continuing to maintain heat to continue to reflow the board metal with first and second die metal layers to form a second alloy (126). This step includes maintaining a specified temperature range (e.g., the second temperature reached in step 124) for a specified period. In the described embodiment, a solder or solder paste was not used. Alternatively, for the method of FIG. 8, a solder or solder paste may be used in addition to the metal layers of the board and die when the die is placed against the board so long as a metal melts and mixes with the solder or solder paste to create an alloy with a higher melting temperature than the melting temperature of the solder.
  • After the first and second alloys have cooled enough to bond the die to the board, the method includes placing a second die against the board without solderable paste (128). Thereafter, the method optionally includes heating the second die and the board with the attached first die to the first temperature to burn off flux and/or impurities (130). Thereafter, the reflow oven or furnace temperature is increased to heat the board according to a fourth temperature to reflow the board metal layer and the second die first metal layer to form a third alloy (132). As described in relation to step 124, the fourth temperature may be the same as the second temperature or it may be modified according to design requirements. Finally the method concludes with maintaining the heat at the fourth temperature or within a temperature range approximately equal to the fourth temperature to reflow the board metal layer with the second die first and second die metal layers to form a fourth alloy (134). As before, this step may comprise merely maintaining a specified temperature or temperature range for a specified period. It should be understood that the first and second die might have substantially similar metal layers thereby resulting in substantially similar alloys from the reflow processes. In other words, the third and fourth alloys may be very similar to the first and second alloys, respectively if the metals and temperature profiles or processes are similar.
  • The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments that fall within the true scope of the claims
  • Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims (20)

What is claimed is:
1. An apparatus, comprising:
a first solderable layer on a surface of a ceramic or substrate board or a metal lead frame;
first circuitry comprising:
a first solderable die surface on a first die comprising a first plurality of metal layers wherein an outer layer comprises a silver and tin first alloy having a silver composition that is less than 7 percent by weight and wherein an inner layer next to the outer layer comprises one of titanium, nickel or silver; and
a second alloy having a subsequent melting temperature that is higher than a first reflow temperature required to adhere the first die to the first solderable layer of the board, wherein the second alloy bonds the first alloy to the first solderable layer of the surface of the board to hold the first die to the board, and
second circuitry comprising:
a second solderable die surface on a second die comprising a third alloy,
wherein the first and second circuitry are configured to control operations of the apparatus.
2. The apparatus of claim 1, wherein the second alloy has a melting temperature that will not completely melt during subsequent reflow process at the first reflow temperature used to add the second circuitry.
3. The apparatus of claim 1, wherein the first solderable layer of the ceramic or substrate board or metal lead frame comprises at least one of copper, silver and tin.
4. The apparatus of claim 1, wherein the subsequent melting temperature of the second alloy is approximately at least 15 degrees C. higher than the first reflow temperature.
5. The apparatus of claim 1, wherein:
the first reflow temperature is in a range of from 220 degrees C. to 260 degrees C.; and
the subsequent melting temperature of the second alloy is higher than 260 degrees C.
6. An apparatus, comprising:
a circuit board having a solderable layer;
a plurality of die bonded to the circuit board using at least three respective layers, each of the at least three respective layers comprising:
an inner layer;
a first alloy of material from an outer layer and the solderable layer of the circuit board; and
a second alloy of material from the outer layer and the solderable layer of the circuit board,
wherein melting temperatures of the first alloy and the second alloy are higher than reflow temperatures of the outer layer and the solderable layer of the circuit board.
7. The apparatus of claim 6, wherein:
the circuit board comprises a ceramic board.
8. The apparatus of claim 6, wherein:
the circuit board comprises a metal lead frame.
9. The apparatus of claim 6, wherein:
the inner layer of the at least three respective layers comprises silver.
10. The apparatus of claim 9, wherein:
the outer layer comprises tin.
11. The apparatus of claim 10, wherein:
the first alloy comprises an alloy of silver and tin.
12. The apparatus of claim 9, wherein:
the solderable layer of the circuit board comprises at least one of copper, nickel, tin, and silver.
13. The apparatus of claim 12, wherein:
the solderable layer of the circuit board comprises a metallic layer of one of copper, tin, and silver.
14. The apparatus of claim 12, wherein:
the solderable layer of the circuit board comprises an alloy formed of two or more metals.
15. The apparatus of claim 6, wherein:
the melting temperatures of the first alloy and the second alloy are at least 15 degrees C. higher than the reflow temperatures of the inner layer and the outer layer.
16. The apparatus of claim 6, wherein:
the reflow temperatures of the inner layer and the outer layer are in a range of from 220 degrees C. to 260 degrees C.; and
the melting temperatures of the first alloy and the second alloy are higher than 260 degrees C.
17. The apparatus of claim 6, wherein:
the solderable layer of the circuit board comprises copper.
18. The apparatus of claim 6, wherein:
the solderable layer of the circuit board comprises a plurality of layers.
19. The apparatus of claim 18, wherein:
the plurality of layers of the solderable layer of the circuit board comprise at least one metal layer.
20. The apparatus of claim 18, wherein:
the plurality of layers of the solderable layer of the circuit board comprise at least one metal alloy layer.
US16/130,835 2015-07-18 2018-09-13 Die bonding to a board Abandoned US20190013308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/130,835 US20190013308A1 (en) 2015-07-18 2018-09-13 Die bonding to a board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562194204P 2015-07-18 2015-07-18
US14/812,846 US10115716B2 (en) 2015-07-18 2015-07-29 Die bonding to a board
US16/130,835 US20190013308A1 (en) 2015-07-18 2018-09-13 Die bonding to a board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/812,846 Division US10115716B2 (en) 2015-07-18 2015-07-29 Die bonding to a board

Publications (1)

Publication Number Publication Date
US20190013308A1 true US20190013308A1 (en) 2019-01-10

Family

ID=56418450

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/812,846 Active 2035-11-26 US10115716B2 (en) 2015-07-18 2015-07-29 Die bonding to a board
US16/130,835 Abandoned US20190013308A1 (en) 2015-07-18 2018-09-13 Die bonding to a board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/812,846 Active 2035-11-26 US10115716B2 (en) 2015-07-18 2015-07-29 Die bonding to a board

Country Status (3)

Country Link
US (2) US10115716B2 (en)
EP (1) EP3121842A1 (en)
CN (1) CN106356308B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622285B2 (en) * 2016-07-08 2020-04-14 Rohm Co., Ltd. Semiconductor device with solders of different melting points and method of manufacturing
DE102017108422A1 (en) 2017-04-20 2018-10-25 Osram Opto Semiconductors Gmbh Method for attaching a semiconductor chip to a leadframe and electronic component
US11430744B2 (en) * 2017-08-10 2022-08-30 Cree, Inc. Die-attach method to compensate for thermal expansion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070166877A1 (en) * 2006-01-18 2007-07-19 Ralf Otremba Electronic component and method for its assembly
US20110193219A1 (en) * 2010-02-09 2011-08-11 Taiwan Seimconductor Manufacturing Company, Ltd. Semiconductor device and semiconductor assembly with lead-free solder
US20110220704A1 (en) * 2010-03-09 2011-09-15 Weiping Liu Composite solder alloy preform
US20130017681A1 (en) * 2011-07-12 2013-01-17 Globalfoundries Inc. Solder Bump Cleaning Before Reflow
US20150340328A1 (en) * 2014-05-20 2015-11-26 Micron Technology, Inc. Methods of forming semiconductor device assemblies and interconnect structures, and related semiconductor device assemblies and interconnect structures

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186383A (en) 1991-10-02 1993-02-16 Motorola, Inc. Method for forming solder bump interconnections to a solder-plated circuit trace
DE102005055280B3 (en) 2005-11-17 2007-04-12 Infineon Technologies Ag Connecting elements for semiconductor components have mushroom shape with first metal area filling out indentations on top of insulating layer and with second metal area on containing refractory inter-metallic phases of metals of solder
JP4742844B2 (en) 2005-12-15 2011-08-10 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US20070205253A1 (en) 2006-03-06 2007-09-06 Infineon Technologies Ag Method for diffusion soldering
US20090160039A1 (en) 2007-12-20 2009-06-25 National Semiconductor Corporation Method and leadframe for packaging integrated circuits
EP2398046A1 (en) * 2010-06-18 2011-12-21 Nxp B.V. Integrated circuit package with a copper-tin joining layer and manufacturing method thereof
JP5546067B2 (en) * 2010-10-22 2014-07-09 パナソニック株式会社 Semiconductor junction structure and manufacturing method of semiconductor junction structure
US9312240B2 (en) 2011-01-30 2016-04-12 UTAC Headquarters Pte. Ltd. Semiconductor packages and methods of packaging semiconductor devices
US8431445B2 (en) 2011-06-01 2013-04-30 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-component power structures and methods for forming the same
TW201320207A (en) 2011-11-15 2013-05-16 Ableprint Technology Co Ltd Solder reflow method for suppressing solder-splash
WO2013099243A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Junction structure
US9219030B2 (en) 2012-04-16 2015-12-22 Taiwan Semiconductor Manufacturing Co., Ltd. Package on package structures and methods for forming the same
JP6128495B2 (en) 2012-07-04 2017-05-17 パナソニックIpマネジメント株式会社 Electronic component mounting structure, IC card, COF package
EP2883242A1 (en) 2012-08-10 2015-06-17 Gottfried Wilhelm Leibniz Universität Hannover Method for producing a hermetically sealed housing
US9559071B2 (en) 2013-06-26 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming hybrid bonding structures with elongated bumps
US9111793B2 (en) 2013-08-29 2015-08-18 International Business Machines Corporation Joining a chip to a substrate with solder alloys having different reflow temperatures
US9355980B2 (en) 2013-09-03 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional chip stack and method of forming the same
KR101430673B1 (en) 2013-11-05 2014-08-19 주식회사 케이이씨 Semiconductor device and die bonding structure thereof
JP2015122445A (en) 2013-12-24 2015-07-02 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same
US9925612B2 (en) 2014-07-29 2018-03-27 Panasonic Intellectual Property Management Co., Ltd. Semiconductor component, semiconductor-mounted product including the component, and method of producing the product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070166877A1 (en) * 2006-01-18 2007-07-19 Ralf Otremba Electronic component and method for its assembly
US20110193219A1 (en) * 2010-02-09 2011-08-11 Taiwan Seimconductor Manufacturing Company, Ltd. Semiconductor device and semiconductor assembly with lead-free solder
US20110220704A1 (en) * 2010-03-09 2011-09-15 Weiping Liu Composite solder alloy preform
US20130017681A1 (en) * 2011-07-12 2013-01-17 Globalfoundries Inc. Solder Bump Cleaning Before Reflow
US20150340328A1 (en) * 2014-05-20 2015-11-26 Micron Technology, Inc. Methods of forming semiconductor device assemblies and interconnect structures, and related semiconductor device assemblies and interconnect structures

Also Published As

Publication number Publication date
US20170018542A1 (en) 2017-01-19
EP3121842A1 (en) 2017-01-25
US10115716B2 (en) 2018-10-30
CN106356308B (en) 2021-06-29
CN106356308A (en) 2017-01-25

Similar Documents

Publication Publication Date Title
US10322471B2 (en) Low temperature high reliability alloy for solder hierarchy
US11411150B2 (en) Advanced solder alloys for electronic interconnects
US9847310B2 (en) Flip chip bonding alloys
TW201702395A (en) Low temperature high reliability alloy
US20190013308A1 (en) Die bonding to a board
TWI681063B (en) Mixed alloy solder paste
JP5849421B2 (en) Solder, semiconductor device using solder, and soldering method
US7413110B2 (en) Method for reducing stress between substrates of differing materials
WO2014024271A1 (en) High-temperature lead-free solder alloy
WO2006020769A1 (en) Semiconductor attachment method and assembly
JP2015205345A (en) Method for soldering surface-mount component and surface-mount component
JP2015205293A (en) Solder paste, method for manufacturing electronic device, and electronic device
KR101630935B1 (en) Pb FREE SOLDERING MATERIALS FOR MOUNTING ELECTRONIC COMPONENT
JP6455091B2 (en) Electronic device and method of manufacturing electronic device
JP2014146635A (en) Solder joint method and joint structure of solder ball and electrode
KR20230015361A (en) Lead-free solder paste containing mixed solder powders for high-temperature applications
TWI772254B (en) Electrical connection tape
JP6543890B2 (en) High temperature solder alloy
JP2005089559A (en) Method for connecting members using conductive adhesive
JP2016203194A (en) Manufacturing method of solder bonded body
JP2015208765A (en) Unleaded solder material, semiconductor device for electric power, and method of manufacturing semiconductor device for electric power
TW202021717A (en) Method for manufacturing joined structure
CN110741465A (en) Method for manufacturing a device connected to a solder preform
Muhammad et al. Reflow soldering process for Sn3. 5Ag solder on ENIG using rapid thermal processing system
JP2017148862A (en) Solder Paste

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEDDON, MICHAEL J.;CARNEY, FRANCIS J.;REEL/FRAME:046872/0126

Effective date: 20150730

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:047399/0631

Effective date: 20181018

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG

Free format text: SECURITY INTEREST;ASSIGNORS:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:047399/0631

Effective date: 20181018

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, ARIZONA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 047399, FRAME 0631;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064078/0001

Effective date: 20230622

Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 047399, FRAME 0631;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064078/0001

Effective date: 20230622