US20180363107A1 - High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor - Google Patents

High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor Download PDF

Info

Publication number
US20180363107A1
US20180363107A1 US15/780,170 US201615780170A US2018363107A1 US 20180363107 A1 US20180363107 A1 US 20180363107A1 US 201615780170 A US201615780170 A US 201615780170A US 2018363107 A1 US2018363107 A1 US 2018363107A1
Authority
US
United States
Prior art keywords
brittle crack
less
steel
welding
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/780,170
Inventor
Hak-Cheol Lee
Sung-Ho Jang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Assigned to POSCO reassignment POSCO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JANG, SUNG-HO, LEE, HAK-CHEOL
Publication of US20180363107A1 publication Critical patent/US20180363107A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present disclosure relates to a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance, and to a method of manufacturing the same.
  • microstructures of thick steel plates may be coarse, so that low temperature properties on which grain sizes have the most significant effect may be degraded.
  • Such technologies may contribute to refining a structure of a surface portion, but may not solve a problem in which impact toughness is degraded due to coarsening of structures other than that of the surface portion. Thus, such technologies may not be fundamental countermeasures to brittle crack arrestability.
  • the microstructure in a HAZ includes low temperature transformation ferrite having high strength, such as bainite, there is a limitation in which HAZ properties, in detail, toughness, are significantly reduced.
  • brittle crack initiation resistance generally evaluated through a crack tip opening displacement (CTOD) test to evaluate the stability of the structure
  • COD crack tip opening displacement
  • martensite-austenite may be transformed to have a different phase through tempering, or the like, to secure physical properties.
  • HAZ in which an effect of tempering disappears due to thermal history, it is impossible to apply brittle crack initiation resistance.
  • An aspect of the present disclosure may provide a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance.
  • Another aspect of the present disclosure may provide a method of manufacturing a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance.
  • a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises, by wt %, carbon (C): 0.05% to 0.09%, manganese (Mn): 1.5% to 2.0%, nickel (Ni): 0.3% to 0.8%, niobium (Nb): 0.005% to 0.04%, titanium (Ti): 0.005% to 0.04%, copper (Cu): 0.1% to 0.5%, silicon (Si): 0.05% to 0.3%, aluminum (Al): 0.005% to 0.05%, phosphorus (P): 100 ppm or less, sulfur (S): 40 ppm or less, iron (Fe) as a residual component thereof, and inevitable impurities, wherein a microstructure of a central portion includes, by area %, acicular ferrite in an amount of 70% or greater, pearlite in an amount of 10% or less, and one or more selected from a group consisting of
  • a weight ratio of Cu and Ni may be set to be 0.8 or less, and in more detail, 0.6 or less.
  • the high-strength steel material may have yield strength of 390 MPa or greater.
  • the high-strength steel material may have a Charpy fracture transition temperature of ⁇ 40° C. or lower in a 1/2t position in a steel material thickness direction, where t is a steel sheet thickness.
  • a method of manufacturing a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises rough rolling a slab at a temperature of 900° C. to 1100° C. after reheating the slab at 1000° C.
  • a reduction ratio per pass of three final passes during the rough rolling a slab may be 5% or greater, and a total cumulative reduction ratio may be 40% or greater.
  • a strain rate of three final passes during the rough rolling a slab may be 2/sec or lower.
  • a grain size of a central portion in a bar thickness direction before finish rolling after the rough rolling a slab may be 150 ⁇ m or less, in detail, 100 ⁇ m or less, and more specifically, 80 ⁇ m or less.
  • a reduction ratio during the finish rolling may be set such that a ratio of a slab thickness (mm) to a steel sheet thickness (mm) after the finish rolling may be 3.5 or greater, and in more detail, 4 or greater.
  • a cumulative reduction ratio during the finish rolling may be maintained to be 40% or greater, while the reduction ratio per pass, not including skin pass rolling, may be maintained to be 4% or greater.
  • the skin pass rolling is performed to secure a shape of a sheet (to secure a flat sheet) at a relatively low reduction rate, less than 5% in 1 to 2 passes of finish rolling.
  • the cooling the steel sheet may be performed at a cooling rate of the central portion of 1.5° C./s or higher.
  • the cooling the steel sheet may be performed at an average cooling rate of 2° C./s to 300° C./s.
  • a high-strength steel material having a relatively high level of yield strength, as well as excellent brittle crack arrestability and welding zone brittle crack initiation resistance may be provided.
  • FIG. 1 is an image captured using an optical microscope, illustrating a central portion of Inventive Steel 3 in a thickness direction.
  • the inventors of the present disclosure conducted research and experiments to improve yield strength, brittle crack arrestability, and welding zone brittle crack initiation resistance of a thick steel material and proposed the present disclosure based on results thereof.
  • a steel composition, a structure, and manufacturing conditions of a steel material may be controlled, thereby improving yield strength, brittle crack arrestability, and welding zone brittle crack initiation resistance of the thick steel material.
  • a main concept of an exemplary embodiment is as follows.
  • the steel composition is appropriately controlled to improve strength through solid solution strengthening.
  • contents of manganese (Mn), nickel (Ni), copper (Cu), and silicon (Si) are optimized for solid solution strengthening.
  • the steel composition is appropriately controlled to improve strength by increasing hardenability.
  • the contents of Mn, Ni, and Cu, as well as a carbon (C) content are optimized to increase hardenability.
  • a fine structure is secured in a central portion of the thick steel material even at a relatively slow cooling rate.
  • a weight ratio of Cu to Ni may be controlled.
  • a composition is appropriately controlled to control a fraction of martensite-austenite in a heat affected zone (HAZ) formed during welding.
  • HZ heat affected zone
  • contents of C, Si, and niobium (Nb), affecting generation of martensite-austenite, are optimized.
  • the steel composition may be optimized, thereby securing excellent brittle crack initiation resistance even in the HAZ.
  • a structure of the steel material may be controlled to improve strength and brittle crack arrestability.
  • a structure of the central portion and a surface layer region is controlled in a direction of a steel material thickness.
  • a microstructure may be controlled, thereby securing strength required in the steel material, while the microstructure facilitating generation of a crack may be excluded, thereby improving brittle crack arrestability.
  • rough rolling conditions may be controlled to refine the structure of the steel material.
  • fine structure is secured in the central portion by controlling rolling conditions during rough rolling. Using a process described above, the generation of acicular ferrite is also facilitated.
  • Finish rolling conditions may be controlled to further refine the structure of the steel material.
  • the fine structure is secured in the central portion by controlling rolling conditions during rough rolling. As such, the generation of acicular ferrite is also facilitated.
  • a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises, by wt %, carbon (C): 0.05% to 0.09%, manganese (Mn): 1.5% to 2.0%, nickel (Ni): 0.3% to 0.8%, niobium (Nb): 0.005% to 0.04%, titanium (Ti): 0.005% to 0.04%, copper (Cu): 0.1% to 0.5%, silicon (Si): 0.05% to 0.3%, aluminum (Al): 0.005% to 0.05%, phosphorus (P): 100 ppm or less, sulfur (S): 40 ppm or less, iron (Fe) as a residual component thereof, and inevitable impurities, wherein a microstructure of a central portion includes, by area %, acicular ferrite in an amount of 70% or greater, pearlite in an amount of 10% or less, and one or more selected from a group consisting of
  • C Since C is the most significant element used in securing basic strength, C is required to be contained in steel within an appropriate range. In order to obtain an effect of addition, C may be added in an amount of 0.05% or greater.
  • the C content maybe limited to 0.05% to 0.09%.
  • the C content may be limited to 0.061% to 0.085%, and more specifically, to 0.065% to 0.075%.
  • Mn is a useful element improving strength through solid solution strengthening and increasing hardenability to generate low temperature transformation ferrite.
  • Mn since Mn may generate low temperature transformation ferrite even at a relatively low cooling rate due to improved hardenability, Mn is a main element used to secure strength of a central portion of a thick steel plate.
  • Mn may be added in an amount of 1.5% or greater.
  • the Mn content may be limited to 1.5% to 2.0%.
  • the Mn content may be limited to 1.61% to 1.92%, and more specifically, to 1.7% to 1.9%.
  • Ni is a significant element used in improving impact toughness by facilitating a dislocation cross slip at a relatively low temperature and increasing strength by improving hardenability.
  • Ni may be added in an amount of 0.8% or greater.
  • hardenability may be excessively increased to generate low temperature transformation ferrite, thereby degrading toughness, and manufacturing costs may be increased due to a relatively high cost of Ni, as compared with other hardenability elements.
  • an upper limit value of the Ni content may be limited to 0.8%.
  • the Ni content may be limited to 0.37% to 0.71%, and more specifically, to 0.4% to 0.6%.
  • Nb is educed to have a form of NbC or NbCN to improve strength of a base material.
  • Nb solidified when being reheated at a relatively high temperature is significantly finely educed to have the form of NbC during rolling to suppress recrystallization of austenite, thereby having an effect of refining a structure.
  • Nb may be added in an amount of 0.005% or greater.
  • generation of martensite-austenite in the HAZ may be facilitated to degrade brittle crack initiation resistance and cause a brittle crack in an edge of the steel material.
  • an upper limit value of an Nb content maybe limited to 0.04%.
  • the Nb content may be limited to 0.012% to 0.031%, and more specifically, to 0.017% to 0.03%.
  • Ti is a component educed to be TiN when being reheated and inhibiting growth of the base material and a grain in the HAZ to greatly improve low temperature toughness.
  • Ti may be added in an amount of 0.005% or greater.
  • a Ti content maybe limited to 0.005% to 0.04%.
  • the Ti content may be limited to 0.012% to 0.023%, and more specifically, to 0.014% to 0.018%.
  • Si is a substitutional element improving strength of the steel material through solid solution strengthening and having a strong deoxidation effect, so that Si maybe an element essential in manufacturing clean steel.
  • Si may be added in an amount of 0.05% or greater.
  • a coarse martensite-austenite phase may be formed to degrade brittle crack arrestability and welding zone brittle crack initiation resistance.
  • an upper limit value of a Si content may be limited to 0.3%.
  • the Si content may be limited to 0.1% to 0.27%, and more specifically, to 0.19% to 0.25%.
  • Cu is a main element used in improving hardenability and causing solid solution strengthening to enhance strength of the steel material.
  • Cu is a main element used in increasing yield strength through the generation of an epsilon Cu precipitate when tempering is applied.
  • Cu may be added in an amount of 0.1% or greater.
  • an upper limit value of a Cu content may be limited to 0.5%.
  • the Cu content may be limited to 0.15% to 0.31%, and more specifically, to 0.2% to 0.3%.
  • Contents of Cu and Ni may be set such that the weight ratio of Cu to Ni may be 0.8 or less, and in more detail, 0.6 or less. More specifically, the weight ratio of Cu to Ni may be limited to 0.5 or less.
  • Al is a component functioning as a deoxidizer.
  • an inclusion may be formed to degrade toughness.
  • an Al content may be limited to 0.005% to 0.05%.
  • P and S are elements causing brittleness in a grain boundary or forming a coarse inclusion to cause brittleness.
  • a P content may be limited to 100 ppm or less, while an S content may be limited to 40 ppm or less.
  • a residual component of an exemplary embodiment is Fe.
  • a microstructure of a central portion includes, by area %, acicular ferrite in an amount of 70% or greater, pearlite in an amount of 10% or less, and one or more selected from a group consisting of ferrite, bainite, and martensite-austenite (MA), as residual components; a circle-equivalent diameter of pearlite being 15 ⁇ m or less; a surface portion microstructure in a region at a depth of 2 mm or less, directly below a surface, includes, by area %, ferrite in an amount of 30% or greater and one or more of bainite, martensite, and pearlite as residual components; and a heat affected zone (HAZ) formed during welding includes, by area %, martensite-austenite (MA) in an amount of 5% or less.
  • MA martensite-austenite
  • Ferrite refers to polygonal ferrite
  • bainite refers to granular bainite and upper bainite.
  • the fraction of acicular ferrite may be 75% or greater, and more specifically, may be limited to 80% or greater.
  • a microcrack may be generated in a front end of a crack during brittle crack propagation, thereby degrading brittle crack arrestability.
  • the fraction of pearlite in the central portion may be 10% or less.
  • the fraction of pearlite may be limited to 8% or less, and more specifically, to 5% or less.
  • the circle-equivalent diameter of pearlite in the central portion exceeds 15 ⁇ m, there is a problem in which a crack may be easily generated despite a relatively low fraction of pearlite being present in the central portion.
  • the circle-equivalent diameter of pearlite in the central portion may be 15 ⁇ m or less.
  • the surface portion microstructure in the region at a depth of 2 mm or less, directly below the surface includes ferrite in an amount of 30% or greater, crack propagation may be effectively prevented on the surface at a time of brittle crack propagation, thereby improving brittle crack arrestability.
  • the fraction of ferrite may be limited to 40% or greater, and more specifically, to 50% or greater.
  • the fraction of martensite-austenite in the HAZ may be 5% or less.
  • Welding heat input during welding may be 0.5 kJ/mm to 10 kJ/mm.
  • a welding method during welding is not specifically limited and may include, for example, flux cored arc welding (FCAW), submerged arc welding (SAW), and the like.
  • FCAW flux cored arc welding
  • SAW submerged arc welding
  • the steel material may have yield strength of 390 MPa or greater.
  • the steel material may have a Charpy fracture transition temperature of ⁇ 40° C. or lower in a 1/2t position in a steel material thickness direction, where t is a steel sheet thickness.
  • the steel material have a thickness of 50 mm or greater, in detail, a thickness of 60 mm to 100 mm, and more specifically, 80 mm to 100 mm.
  • the method of manufacturing a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises rough rolling a slab at a temperature of 900° C. to 1100° C. after reheating the slab at 1000° C.
  • a slab is reheated before rough rolling.
  • a reheating temperature of the slab may be 1000° C. or higher so that a carbonitride of Ti and/or Nb, formed during casting, may be solidified.
  • an upper limit value of the reheating temperature maybe 1100° C.
  • a reheated slab is rough rolled.
  • a rough rolling temperature may be a temperature Tnr at which recrystallization of austenite is halted, or higher. Due to rolling, a cast structure, such as a dendrite formed during casting, may be destroyed, and an effect of reducing a size of austenite may also be obtained. In order to obtain the effect, the rough rolling temperature may be limited to 900° C. to 1100° C.
  • the rough rolling temperature may be 950° C. to 1050° C.
  • a reduction ratio per pass of three final passes during rough rolling may be 5% or greater, and a total cumulative reduction ratio may be 40% or greater.
  • the reduction ratio per pass of the three final passes may be limited to 5% or greater.
  • the reduction ratio per pass may be 7% to 20%.
  • the total cumulative reduction ratio during rough rolling may be set to be 40% or greater.
  • the total cumulative reduction ratio may be 45% or greater.
  • a strain rate of the three final passes during rough rolling may be 2/sec or lower.
  • the strain rate may be limited to 2/sec or lower, thereby refining the grain size of the central portion.
  • generation of acicular ferrite may be facilitated.
  • a rough rolled bar may be finish rolled at a temperature of Ar 3 (a ferrite transformation initiation temperature)+60° C. to Ar 3 ° C. to obtain a steel sheet so that a further refined microstructure may be obtained.
  • Ar 3 a ferrite transformation initiation temperature
  • a relatively large amount of strain bands may be generated in austenite to secure a relatively large number of ferrite nucleation sites, thereby obtaining an effect of securing a fine structure in the central portion of a steel material.
  • a cumulative reduction ratio during finish rolling may be maintained to be 40% or greater.
  • the reduction ratio per pass, not including skin pass rolling, may be maintained to be 4% or greater.
  • the cumulative reduction ratio may be 40% to 80%.
  • the reduction ratio per pass may be 4.5% or greater.
  • finish rolling temperature In a case in which a finish rolling temperature is reduced to Ar 3 or lower, coarse ferrite is generated before rolling and is elongated during rolling, thereby reducing impact toughness. In a case in which finish rolling is performed at a temperature of Ar 3 +60° C. or higher, the grain size is not effectively refined, so that the finish rolling temperature during finish rolling may be set to be a temperature of Ar 3 +60 ° C. to Ar 3 ° C.
  • a reduction ratio in an unrecrystallized region maybe limited to 40% to 80% during finish rolling.
  • the grain size of the central portion of the bar in a thickness direction after rough rolling before finish rolling may be 150 ⁇ m or less, in detail, 100 ⁇ m or less, and more specifically, 80 ⁇ m or less.
  • the grain size of the central portion of the bar in a thickness direction after rough rolling before finish rolling may be controlled depending on a rough rolling condition, or the like.
  • the reduction ratio during finish rolling may be set such that a ratio of a slab thickness (mm) to a steel sheet thickness (mm) after finish rolling may be 3.5 or greater, and in detail, 4 or greater.
  • an advantage of improving toughness of the central portion may be added by increasing yield strength/tensile strength, improving low temperature toughness, and decreasing the grain size of the central portion in the thickness direction through refinement of the final microstructure.
  • the steel sheet may have a thickness of 50 mm or greater, in detail, 60 mm to 100 mm, and more specifically, 80 mm to 100 mm.
  • the steel sheet is cooled to a temperature of 700° C., or lower, after finish rolling.
  • a microstructure may not be properly formed, so that sufficient yield strength may be difficult to secure. For example, yield strength of 390 MPa or greater may be difficult to secure.
  • the cooling end temperature may be 300° C. to 600° C.
  • the steel sheet may be cooled at a cooling rate of the central portion of 1.5° C/s or higher.
  • the cooling rate of the central portion of the steel sheet is lower than 1.5° C/s, the microstructure may not be properly formed, so that it maybe difficult to secure sufficient yield strength. For example, yield strength of 390 MPa or greater may be difficult.
  • the steel sheet may be cooled at an average cooling rate of 2° C/s to 300° C/s.
  • a thickness of a bar having been rough rolled was 200 mm, while a grain size of a central portion after rough rolling before finish rolling, as illustrated in Table 2, was 75 ⁇ m to 89 ⁇ m.
  • a reduction ratio of three final passes during rough rolling was within a range of 7.2% to 14.3%.
  • a strain rate during rolling was within a range of 1.29/s to 1.66/s.
  • finish rolling was performed at a temperature equal to a difference between a finish rolling temperature and an Ar3 temperature, illustrated in Table 2 below to obtain a steel sheet having a thickness illustrated in Table 3 below, and then the steel sheet was cooled to a temperature of 412° C. to 496° C. at a cooling rate of 4.5° C./sec.
  • the Kca value in Table 4 is a value derived by performing an ESSO test on the steel sheet.
  • FCAW 0.7 kJ/mm
  • a C content had a value higher than an upper limit value of a C content of an exemplary embodiment. It can be confirmed that a relatively large amount of bainite was generated in the central portion during rough rolling, so an AF fraction of a final microstructure is less than 50%. Therefore, the Kca value measured at a temperature of ⁇ 10° C. was 6000 or less. It can be confirmed that a relatively large amount of a martensite-austenite (MA) structure was also generated in the HAZ, so the CTOD value was 0.25 mm or less.
  • MA martensite-austenite
  • a Sicontent had a value higher than an upper limit value of a Si content of an exemplary embodiment. It can be confirmed that a relatively large amount of Si was added to generate a relatively large amount of a coarse MA structure, so the microstructure in the central portion contains a relatively large amount of AF. However, the Kca value has a relatively low value similar to 6000 at a temperature of ⁇ 10° C. It can be confirmed that a relatively large amount of MA is also generated in the HAZ, so the CTOD value is 0.25 mm or less.
  • a Mn content has a value higher than an upper limit value of a Mn content of an exemplary embodiment. It can be confirmed that due to having a relatively high level of hardenability, a microstructure in a base material is provided as upper bainite, thereby allowing the fraction of AF to be less than 50%. Thus, the Kca value is 6000 or less at a temperature of ⁇ 10° C.
  • an Ni content had a value higher than an upper limit value of an Ni content of an exemplary embodiment. It can be confirmed that due to a relatively high level of hardenability, the microstructure of the base material is provided as granular bainite and upper bainite, and the fraction of acicular ferrite is less than 50%. Thus, the Kca value is 6000 or less at a temperature of ⁇ 10° C.
  • an Nb and Ti content has a value higher than an upper limit value of an Nb and Ti content of an exemplary embodiment. It can be confirmed that an entirety of other conditions satisfies a condition suggested in an exemplary embodiment, but due to a relatively high Nb and Ti content, a relatively large amount of the MA structure is generated in the HAZ, thereby allowing the CTOD value to be 0.25 mm or less.
  • Inventive Example 7 includes a component exceeding a ratio of Cu to Ni suggested in an aspect of the present disclosure. It can be confirmed that despite having other, significantly excellent physical properties, a star crack was generated, thereby causing a defect in surface quality.
  • a C and Mn content has a value lower than a lower limit value of a C and Mn content of an exemplary embodiment. It can be confirmed that due to a relatively low level of hardenability, AF in the central portion is formed in an amount of less than 50%, and most structures have ferrite and a pearlite structure in an amount of 10% or greater. As pearlite has an average grain size of 15 ⁇ m or greater, the Kca value is 6000 or less at a temperature of ⁇ 10° C.
  • the fraction of AF of the microstructure in the central portion is 70% or greater
  • the fraction of pearlite in the central portion is 10% or less
  • a circle-equivalent diameter of pearlite in the central portion is 15 ⁇ m or less
  • a fraction of MA phase in the HAZ is less than 5%.
  • FIG. 1 illustrates an image of a central portion of Inventive Steel 2 in a thickness direction, captured using an optical microscope. As illustrated in FIG. 1 , it can be confirmed that a microstructure in the central portion includes a relatively large amount of acicular ferrite (AF) structures, and pearlite is finely distributed.
  • AF acicular ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention provides a high-strength steel and a production method therefor, the high-strength steel: comprising, in wt %, C: 0.05-0.09%, Mn: 1.5-2.0%, Ni: 0.3-0.8%, Nb: 0.005-0.04%, Ti: 0.005-0.04%, Cu: 0.1-0.5%, Si: 0.05-0.3%, Al: 0.005-0.05%, P: 100 ppm or less, S: 40 ppm or less, and a remainder made up by Fe and other inevitable impurities; having a center part microstructure comprising, in area %, 70% or more of acicular ferrite and 10% or more of pearlite, wherein the equivalent circular diameter of the pearlite is 15 μm(micrometers) or less; having, in a 2 mm or less subsurface region, a microstructure comprising, in area %, 30% or more of one type or more among ferrite and a remainder made up by bainite, martensite, and pearlite; and having a welding heat affected zone, which is formed when welding, that comprises, in area %, 5% or less of a martensite-austenite constituent.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance, and to a method of manufacturing the same.
  • BACKGROUND ART
  • Recently, there has been demand for the development of ultra-thick steel sheets having high strength properties in consideration of the design requirements of structures to be used in the shipping, maritime, architectural, and civil engineering fields, domestically and internationally.
  • In a case in which high-strength steel is included in the design of a structure, economic benefits may be obtained due to reductions in the weight of structures while processing and welding operations may be easily undertaken using a steel sheet having a relatively reduced thickness.
  • In general, in the case of high-strength steel, due to a reduction in a reduction ratio when thick steel plates are manufactured, sufficient deformation may not be performed, as compared with a thin steel sheet. Thus, microstructures of thick steel plates may be coarse, so that low temperature properties on which grain sizes have the most significant effect may be degraded.
  • In detail, in a case in which brittle crack arrestability representing stability of a structure is applied to a main structure, such as a ship's hull, the number of cases of assurances being demanded has increased. However, in a case in which microstructures become coarse, a phenomenon in which brittle crack arrestability is significantly degraded may occur. Thus, it may be difficult to improve brittle crack arrestability of an ultra-thick high-strength steel material.
  • In the meantime, in the case of high-strength steel having yield strength of 390 MPa or greater, various technologies, such as adjustment of grain size, by applying surface cooling during finishing milling and applying bending stress during rolling to refine the grain size of a surface portion, in order to improve brittle crack arrestability, have been introduced.
  • However, such technologies may contribute to refining a structure of a surface portion, but may not solve a problem in which impact toughness is degraded due to coarsening of structures other than that of the surface portion. Thus, such technologies may not be fundamental countermeasures to brittle crack arrestability.
  • In addition, recently, a design concept to improve safety of a ship by controlling brittle crack initiation of a steel material applied to large container ships has been introduced. Thus, in general, the number of cases of guaranteeing brittle crack initiation of a heat affected zone (HAZ), the most vulnerable portion in terms of brittle crack initiation, has increased.
  • In general, since, in the case of high-strength steel, the microstructure in a HAZ includes low temperature transformation ferrite having high strength, such as bainite, there is a limitation in which HAZ properties, in detail, toughness, are significantly reduced.
  • In detail, in the case of brittle crack initiation resistance generally evaluated through a crack tip opening displacement (CTOD) test to evaluate the stability of the structure, martensite-austenite generated from untransformed austenite, when low temperature transformation ferrite is generated, becomes an active nucleation site of brittle crack occurrence. Thus, it maybe difficult to improve brittle crack initiation resistance of a high-strength steel material.
  • In the case of high-strength steel of the related art having a yield strength of 400 MPa or greater, in order to improve welding zone brittle crack initiation resistance, an effort to refine a microstructure in a HAZ using TiN or to form ferrite in a HAZ using oxide metallurgy has been made. However, the effort partially contributes to forming impact toughness through refining a structure, but does not have a great effect on reducing a fraction of martensite-austenite having a significant influence on reducing brittle crack initiation resistance.
  • In addition, in the case of brittle crack initiation resistance of a base material, martensite-austenite may be transformed to have a different phase through tempering, or the like, to secure physical properties. However, in the case of a HAZ, in which an effect of tempering disappears due to thermal history, it is impossible to apply brittle crack initiation resistance.
  • In the meantime, in order to minimize the formation of martensite-austenite, the amount of elements, such as carbon (C) and niobium (Nb), should be reduced. However, in this case, it may be difficult to secure a specific level of strength. To this end, a relatively large amount of high-priced elements, such as molybdenum (Mo) and nickel (Ni), should be added. Thus, there is a limitation in which economic efficiency is deteriorated.
  • DISCLOSURE Technical Problem
  • An aspect of the present disclosure may provide a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance.
  • Another aspect of the present disclosure may provide a method of manufacturing a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance.
  • Technical Solution
  • According to an aspect of the present disclosure, a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises, by wt %, carbon (C): 0.05% to 0.09%, manganese (Mn): 1.5% to 2.0%, nickel (Ni): 0.3% to 0.8%, niobium (Nb): 0.005% to 0.04%, titanium (Ti): 0.005% to 0.04%, copper (Cu): 0.1% to 0.5%, silicon (Si): 0.05% to 0.3%, aluminum (Al): 0.005% to 0.05%, phosphorus (P): 100 ppm or less, sulfur (S): 40 ppm or less, iron (Fe) as a residual component thereof, and inevitable impurities, wherein a microstructure of a central portion includes, by area %, acicular ferrite in an amount of 70% or greater, pearlite in an amount of 10% or less, and one or more selected from a group consisting of ferrite, bainite, and martensite-austenite (MA), as residual components; a circle-equivalent diameter of pearlite being 15 μm or less; a surface portion microstructure in a region at a depth of 2 mm or less, directly below a surface, includes, by area %, ferrite in an amount of 30% or greater and one or more of bainite, martensite, and pearlite as residual components; and a heat affected zone (HAZ) formed during welding includes, by area %, martensite-austenite (MA) in an amount of 5% or less.
  • A weight ratio of Cu and Ni (a Cu/Ni weight ratio) may be set to be 0.8 or less, and in more detail, 0.6 or less.
  • The high-strength steel material may have yield strength of 390 MPa or greater.
  • The high-strength steel material may have a Charpy fracture transition temperature of −40° C. or lower in a 1/2t position in a steel material thickness direction, where t is a steel sheet thickness.
  • According to another aspect of the present disclosure, a method of manufacturing a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises rough rolling a slab at a temperature of 900° C. to 1100° C. after reheating the slab at 1000° C. to 1100° C., including, by wt %, C: 0.05% to 0.09%, Mn: 1.5% to 2.0%, Ni: 0.3% to 0.8%, Nb: 0.005% to 0.04%, titanium (Ti): 0.005% to 0.04%, copper (Cu): 0.1% to 0.5%, silicon (Si): 0.1% to 0.3%, aluminum (Al): 0.005% to 0.05%, phosphorus (P): 100 ppm or less, sulfur (S): 40 ppm or less, iron (Fe) as a residual component thereof, and inevitable impurities; obtaining a steel sheet by finish rolling a bar obtained from the rough rolling a slab, at a temperature in a range of Ar3+60° C. to Ar3° C., based on a temperature of a central portion; and cooling the steel sheet to 700° C. or lower.
  • A reduction ratio per pass of three final passes during the rough rolling a slab may be 5% or greater, and a total cumulative reduction ratio may be 40% or greater.
  • A strain rate of three final passes during the rough rolling a slab may be 2/sec or lower.
  • A grain size of a central portion in a bar thickness direction before finish rolling after the rough rolling a slab may be 150 μm or less, in detail, 100 μm or less, and more specifically, 80 μm or less.
  • A reduction ratio during the finish rolling may be set such that a ratio of a slab thickness (mm) to a steel sheet thickness (mm) after the finish rolling may be 3.5 or greater, and in more detail, 4 or greater.
  • A cumulative reduction ratio during the finish rolling may be maintained to be 40% or greater, while the reduction ratio per pass, not including skin pass rolling, may be maintained to be 4% or greater.
  • The skin pass rolling is performed to secure a shape of a sheet (to secure a flat sheet) at a relatively low reduction rate, less than 5% in 1 to 2 passes of finish rolling.
  • The cooling the steel sheet may be performed at a cooling rate of the central portion of 1.5° C./s or higher.
  • The cooling the steel sheet may be performed at an average cooling rate of 2° C./s to 300° C./s.
  • In addition, the present inventive concept may be exemplified in many different forms and should not be construed as being limited to the specific embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.
  • Advantageous Effects
  • According to an aspect of the present disclosure, a high-strength steel material having a relatively high level of yield strength, as well as excellent brittle crack arrestability and welding zone brittle crack initiation resistance may be provided.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is an image captured using an optical microscope, illustrating a central portion of Inventive Steel 3 in a thickness direction.
  • BEST MODE FOR INVENTION
  • The inventors of the present disclosure conducted research and experiments to improve yield strength, brittle crack arrestability, and welding zone brittle crack initiation resistance of a thick steel material and proposed the present disclosure based on results thereof.
  • In an exemplary embodiment, a steel composition, a structure, and manufacturing conditions of a steel material may be controlled, thereby improving yield strength, brittle crack arrestability, and welding zone brittle crack initiation resistance of the thick steel material.
  • A main concept of an exemplary embodiment is as follows.
  • 1) The steel composition is appropriately controlled to improve strength through solid solution strengthening. In detail, contents of manganese (Mn), nickel (Ni), copper (Cu), and silicon (Si) are optimized for solid solution strengthening.
  • 2) The steel composition is appropriately controlled to improve strength by increasing hardenability. In detail, the contents of Mn, Ni, and Cu, as well as a carbon (C) content are optimized to increase hardenability.
  • A fine structure is secured in a central portion of the thick steel material even at a relatively slow cooling rate.
  • 3) In detail, a weight ratio of Cu to Ni may be controlled.
  • In a case in which the weight ratio of Cu to Ni is controlled as described above, surface quality may be improved.
  • 4) A composition is appropriately controlled to control a fraction of martensite-austenite in a heat affected zone (HAZ) formed during welding. In detail, contents of C, Si, and niobium (Nb), affecting generation of martensite-austenite, are optimized.
  • As such, the steel composition may be optimized, thereby securing excellent brittle crack initiation resistance even in the HAZ.
  • 5) More specifically, a structure of the steel material may be controlled to improve strength and brittle crack arrestability. In detail, a structure of the central portion and a surface layer region is controlled in a direction of a steel material thickness.
  • As such, a microstructure may be controlled, thereby securing strength required in the steel material, while the microstructure facilitating generation of a crack may be excluded, thereby improving brittle crack arrestability.
  • 6) In detail, rough rolling conditions may be controlled to refine the structure of the steel material. In detail, the fine structure is secured in the central portion by controlling rolling conditions during rough rolling. Using a process described above, the generation of acicular ferrite is also facilitated.
  • 7) Finish rolling conditions may be controlled to further refine the structure of the steel material. In detail, the fine structure is secured in the central portion by controlling rolling conditions during rough rolling. As such, the generation of acicular ferrite is also facilitated.
  • Hereinafter, the high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance according to an aspect of the present disclosure will be described in detail.
  • According to an aspect of the present disclosure, a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises, by wt %, carbon (C): 0.05% to 0.09%, manganese (Mn): 1.5% to 2.0%, nickel (Ni): 0.3% to 0.8%, niobium (Nb): 0.005% to 0.04%, titanium (Ti): 0.005% to 0.04%, copper (Cu): 0.1% to 0.5%, silicon (Si): 0.05% to 0.3%, aluminum (Al): 0.005% to 0.05%, phosphorus (P): 100 ppm or less, sulfur (S): 40 ppm or less, iron (Fe) as a residual component thereof, and inevitable impurities, wherein a microstructure of a central portion includes, by area %, acicular ferrite in an amount of 70% or greater, pearlite in an amount of 10% or less, and one or more selected from a group consisting of ferrite, bainite, and martensite-austenite (MA), as residual components; a circle-equivalent diameter of pearlite being 15 μm or less; a surface portion microstructure in a region at a depth of 2 mm or less, directly below a surface, includes, by area %, ferrite in an amount of 30% or greater and one or more of bainite, martensite, and pearlite as residual components; and a heat affected zone (HAZ) formed during welding includes, by area %, martensite-austenite (MA) in an amount of 5% or less.
  • Hereinafter, a steel component and a component range of an exemplary embodiment will be described.
  • Carbon (C): 0.05 wt % to 0.09 wt % (hereinafter, referred to as “%”)
  • Since C is the most significant element used in securing basic strength, C is required to be contained in steel within an appropriate range. In order to obtain an effect of addition, C may be added in an amount of 0.05% or greater.
  • However, in a case in which a C content exceeds 0.09%, a large amount of martensite-austenite is generated in the HAZ to degrade brittle crack initiation resistance. Low temperature toughness is degraded due to a relatively high level of strength of ferrite of a base material and the generation of a relatively large amount of low temperature transformation ferrite. Thus, the C content maybe limited to 0.05% to 0.09%. In detail, the C content may be limited to 0.061% to 0.085%, and more specifically, to 0.065% to 0.075%.
  • Manganese (Mn): 1.5% to 2.0%
  • Mn is a useful element improving strength through solid solution strengthening and increasing hardenability to generate low temperature transformation ferrite. In addition, since Mn may generate low temperature transformation ferrite even at a relatively low cooling rate due to improved hardenability, Mn is a main element used to secure strength of a central portion of a thick steel plate.
  • Therefore, in order to obtain an effect described above, Mn may be added in an amount of 1.5% or greater.
  • However, in a case in which a Mn content exceeds 2.0%, generation of upper bainite and martensite may be facilitated due to an increase in excessive hardenability, thereby degrading impact toughness and brittle crack arrestability and toughness of the HAZ.
  • Therefore, the Mn content may be limited to 1.5% to 2.0%. In detail, the Mn content may be limited to 1.61% to 1.92%, and more specifically, to 1.7% to 1.9%.
  • Nickel (Ni): 0.3% to 0.8%
  • Ni is a significant element used in improving impact toughness by facilitating a dislocation cross slip at a relatively low temperature and increasing strength by improving hardenability. In order to obtain an effect described above, Ni may be added in an amount of 0.8% or greater. However, in a case in which Ni is added in an amount of 1.2% or greater, hardenability may be excessively increased to generate low temperature transformation ferrite, thereby degrading toughness, and manufacturing costs may be increased due to a relatively high cost of Ni, as compared with other hardenability elements. Thus, an upper limit value of the Ni content may be limited to 0.8%.
  • In detail, the Ni content may be limited to 0.37% to 0.71%, and more specifically, to 0.4% to 0.6%.
  • Niobium (Nb): 0.005% to 0.04%
  • Nb is educed to have a form of NbC or NbCN to improve strength of a base material.
  • In addition, Nb solidified when being reheated at a relatively high temperature is significantly finely educed to have the form of NbC during rolling to suppress recrystallization of austenite, thereby having an effect of refining a structure.
  • Therefore, Nb may be added in an amount of 0.005% or greater. However, in a case in which Nb is added excessively, generation of martensite-austenite in the HAZ may be facilitated to degrade brittle crack initiation resistance and cause a brittle crack in an edge of the steel material. Thus, an upper limit value of an Nb content maybe limited to 0.04%.
  • In detail, the Nb content may be limited to 0.012% to 0.031%, and more specifically, to 0.017% to 0.03%.
  • Titanium (Ti): 0.005% to 0.04%
  • Ti is a component educed to be TiN when being reheated and inhibiting growth of the base material and a grain in the HAZ to greatly improve low temperature toughness. In order to obtain an effect of addition, Ti may be added in an amount of 0.005% or greater.
  • However, in a case in which Ti is added excessively, low temperature toughness may be degraded due to clogging of a continuous casting nozzle or crystallization of the central portion. Thus, a Ti content maybe limited to 0.005% to 0.04%.
  • In detail, the Ti content may be limited to 0.012% to 0.023%, and more specifically, to 0.014% to 0.018%.
  • Silicon (Si): 0.05% to 0.3%
  • Si is a substitutional element improving strength of the steel material through solid solution strengthening and having a strong deoxidation effect, so that Si maybe an element essential in manufacturing clean steel. Thus, Si may be added in an amount of 0.05% or greater. However, when a relatively large amount of Si is added, a coarse martensite-austenite phase may be formed to degrade brittle crack arrestability and welding zone brittle crack initiation resistance. Thus, an upper limit value of a Si content may be limited to 0.3%.
  • In detail, the Si content may be limited to 0.1% to 0.27%, and more specifically, to 0.19% to 0.25%.
  • Copper (Cu): 0.1% to 0.5%
  • Cu is a main element used in improving hardenability and causing solid solution strengthening to enhance strength of the steel material. In addition, Cu is a main element used in increasing yield strength through the generation of an epsilon Cu precipitate when tempering is applied. Thus, Cu may be added in an amount of 0.1% or greater. However, when a relatively large amount of Cu is added, a slab crack may be generated by hot shortness in a steelmaking process. Thus, an upper limit value of a Cu content may be limited to 0.5%.
  • In detail, the Cu content may be limited to 0.15% to 0.31%, and more specifically, to 0.2% to 0.3%.
  • Contents of Cu and Ni may be set such that the weight ratio of Cu to Ni may be 0.8 or less, and in more detail, 0.6 or less. More specifically, the weight ratio of Cu to Ni may be limited to 0.5 or less.
  • In a case in which the weight ratio of Cu to Ni is set as described above, surface quality may be improved.
  • Aluminum (Al): 0.005% to 0.05%
  • Al is a component functioning as a deoxidizer. In a case in which an excessive amount of Al is contained, an inclusion may be formed to degrade toughness. Thus, an Al content may be limited to 0.005% to 0.05%.
  • Phosphorus (P): 100 ppm or less, Sulfur (S): 40 ppm or less
  • P and S are elements causing brittleness in a grain boundary or forming a coarse inclusion to cause brittleness. In order to improve brittle crack arrestability, a P content may be limited to 100 ppm or less, while an S content may be limited to 40 ppm or less.
  • A residual component of an exemplary embodiment is Fe.
  • However, since, in a manufacturing process of the related art, unintended impurities maybe inevitably mixed from a raw material or an external source, which may not be excluded.
  • Since the impurities are apparent to those skilled in the art, all the contents thereof are not specifically described in the present disclosure.
  • In the case of a steel material of an exemplary embodiment, a microstructure of a central portion includes, by area %, acicular ferrite in an amount of 70% or greater, pearlite in an amount of 10% or less, and one or more selected from a group consisting of ferrite, bainite, and martensite-austenite (MA), as residual components; a circle-equivalent diameter of pearlite being 15 μm or less; a surface portion microstructure in a region at a depth of 2 mm or less, directly below a surface, includes, by area %, ferrite in an amount of 30% or greater and one or more of bainite, martensite, and pearlite as residual components; and a heat affected zone (HAZ) formed during welding includes, by area %, martensite-austenite (MA) in an amount of 5% or less.
  • Ferrite refers to polygonal ferrite, while bainite refers to granular bainite and upper bainite.
  • In a case in which a fraction of acicular ferrite of the microstructure of the central portion is less than 70%, generation of coarse bainite may cause degradation of toughness.
  • In detail, the fraction of acicular ferrite may be 75% or greater, and more specifically, may be limited to 80% or greater.
  • In a case in which a fraction of pearlite in the central portion exceeds 10%, a microcrack may be generated in a front end of a crack during brittle crack propagation, thereby degrading brittle crack arrestability. Thus, the fraction of pearlite in the central portion may be 10% or less.
  • In detail, the fraction of pearlite may be limited to 8% or less, and more specifically, to 5% or less.
  • In a case in which the circle-equivalent diameter of pearlite in the central portion exceeds 15 μm, there is a problem in which a crack may be easily generated despite a relatively low fraction of pearlite being present in the central portion. Thus, the circle-equivalent diameter of pearlite in the central portion may be 15 μm or less.
  • In a case in which the surface portion microstructure in the region at a depth of 2 mm or less, directly below the surface, includes ferrite in an amount of 30% or greater, crack propagation may be effectively prevented on the surface at a time of brittle crack propagation, thereby improving brittle crack arrestability.
  • In detail, the fraction of ferrite may be limited to 40% or greater, and more specifically, to 50% or greater.
  • In a case in which a fraction of martensite-austenite in the HAZ formed when the steel material is welded exceeds 5%, martensite-austenite functions as a starting point of a crack, thereby degrading brittle crack initiation resistance. Thus, the fraction of martensite-austenite in the HAZ may be 5% or less.
  • Welding heat input during welding may be 0.5 kJ/mm to 10 kJ/mm.
  • A welding method during welding is not specifically limited and may include, for example, flux cored arc welding (FCAW), submerged arc welding (SAW), and the like.
  • The steel material may have yield strength of 390 MPa or greater.
  • The steel material may have a Charpy fracture transition temperature of −40° C. or lower in a 1/2t position in a steel material thickness direction, where t is a steel sheet thickness.
  • The steel material have a thickness of 50 mm or greater, in detail, a thickness of 60 mm to 100 mm, and more specifically, 80 mm to 100 mm.
  • Hereinafter, a method of manufacturing a high-strength steel material having excellent brittle crack arrestability according to another aspect of the present disclosure will be described in detail.
  • According to another aspect of the present disclosure, the method of manufacturing a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises rough rolling a slab at a temperature of 900° C. to 1100° C. after reheating the slab at 1000° C. to 1100° C., including, by wt %, C: 0.05% to 0.09%, Mn: 1.5% to 2.0%, Ni: 0.3% to 0.8%, Nb: 0.005% to 0.04%, Ti: 0.005% to 0.04%, Cu: 0.1% to 0.5%, Si: 0.1% to 0.3%, Al: 0.005% to 0.05%, P: 100 ppm or less, S: 40 ppm or less, Fe as a residual component thereof, and inevitable impurities; obtaining a steel sheet by finish rolling a bar obtained from the rough rolling a slab, at a temperature in a range of Ar3+60° C. to Ar3° C., based on a temperature of a central portion; and cooling the steel sheet to 700° C. or lower.
  • Reheating a Slab
  • A slab is reheated before rough rolling.
  • A reheating temperature of the slab may be 1000° C. or higher so that a carbonitride of Ti and/or Nb, formed during casting, may be solidified.
  • However, in a case in which the slab is reheated at a significantly high temperature, austenite may become coarse. Thus, an upper limit value of the reheating temperature maybe 1100° C.
  • Rough Rolling
  • A reheated slab is rough rolled.
  • A rough rolling temperature may be a temperature Tnr at which recrystallization of austenite is halted, or higher. Due to rolling, a cast structure, such as a dendrite formed during casting, may be destroyed, and an effect of reducing a size of austenite may also be obtained. In order to obtain the effect, the rough rolling temperature may be limited to 900° C. to 1100° C.
  • In more detail, the rough rolling temperature may be 950° C. to 1050° C.
  • In an exemplary embodiment, in order to refine a structure of the central portion during rough rolling, a reduction ratio per pass of three final passes during rough rolling may be 5% or greater, and a total cumulative reduction ratio may be 40% or greater.
  • In the case of a structure recrystallized by initial rolling during rough rolling, grain growth occurs due to a relatively high temperature. However, when three final passes are performed, a bar is air cooled while waiting for a rolling process, so that grain growth speed may be decreased. Thus, during rough rolling, a reduction ratio of the three final passes has the greatest impact on a grain size of a final microstructure.
  • In addition, in a case in which the reduction ratio is reduced per pass of rough rolling, sufficient deformation may not be transmitted to the central portion, so that toughness may be degraded due to coarsening of the central portion. Therefore, the reduction ratio per pass of the three final passes may be limited to 5% or greater.
  • In detail, the reduction ratio per pass may be 7% to 20%.
  • In the meantime, in order to refine a structure of the central portion, the total cumulative reduction ratio during rough rolling may be set to be 40% or greater.
  • In detail, the total cumulative reduction ratio may be 45% or greater.
  • A strain rate of the three final passes during rough rolling may be 2/sec or lower.
  • In general, rolling is difficult at a relatively high reduction ratio due to a relatively great thickness of the bar during rough rolling. Thus, there is a limitation in which it is difficult to transmit a rolling reduction to the central portion of a thick steel plate, thereby allowing an austenite grain size in the central portion to be coarsened. However, as the strain rate is reduced, deformation is transmitted to the central portion even at a relatively low rolling reduction ratio. Thus, the grain size may be refined.
  • Therefore, in terms of the three final passes having the greatest impact on the final grain size during rough rolling, the strain rate may be limited to 2/sec or lower, thereby refining the grain size of the central portion. Thus, generation of acicular ferrite may be facilitated.
  • Finish Rolling
  • A rough rolled bar may be finish rolled at a temperature of Ar3 (a ferrite transformation initiation temperature)+60° C. to Ar3° C. to obtain a steel sheet so that a further refined microstructure may be obtained.
  • In a case in which rolling is performed at a temperature higher than Ar3, a relatively large amount of strain bands may be generated in austenite to secure a relatively large number of ferrite nucleation sites, thereby obtaining an effect of securing a fine structure in the central portion of a steel material.
  • In addition, in order to effectively generate a relatively large amount of strain bands in austenite, a cumulative reduction ratio during finish rolling may be maintained to be 40% or greater. The reduction ratio per pass, not including skin pass rolling, may be maintained to be 4% or greater.
  • In detail, the cumulative reduction ratio may be 40% to 80%.
  • In detail, the reduction ratio per pass may be 4.5% or greater.
  • In a case in which a finish rolling temperature is reduced to Ar3 or lower, coarse ferrite is generated before rolling and is elongated during rolling, thereby reducing impact toughness. In a case in which finish rolling is performed at a temperature of Ar3+60° C. or higher, the grain size is not effectively refined, so that the finish rolling temperature during finish rolling may be set to be a temperature of Ar3+60 ° C. to Ar3° C.
  • In an exemplary embodiment, a reduction ratio in an unrecrystallized region maybe limited to 40% to 80% during finish rolling.
  • As described above, since the reduction ratio in the unrecrystallized region is controlled, thereby increasing a number of nucleation sites of acicular ferrite, generation of structures described above may be facilitated.
  • In a case in which the reduction ratio in the unrecrystallized region is significantly low, acicular ferrite may not be sufficiently secured. In a case in which the reduction ratio in the unrecrystallized region is significantly high, strength may be reduced due to generation of pro-eutectoid ferrite caused by a relatively high reduction ratio.
  • The grain size of the central portion of the bar in a thickness direction after rough rolling before finish rolling may be 150 μm or less, in detail, 100 μm or less, and more specifically, 80 μm or less.
  • The grain size of the central portion of the bar in a thickness direction after rough rolling before finish rolling may be controlled depending on a rough rolling condition, or the like.
  • As described above, in a case in which the grain size of the bar after rough rolling before finish rolling may be controlled, a final microstructure is refined due to refinement of an austenite grain. Thus, an advantage of improving low temperature impact toughness may be added.
  • The reduction ratio during finish rolling may be set such that a ratio of a slab thickness (mm) to a steel sheet thickness (mm) after finish rolling may be 3.5 or greater, and in detail, 4 or greater.
  • As described above, in a case in which the reduction ratio is controlled, as the rolling reduction is increased during rough rolling and finish rolling, an advantage of improving toughness of the central portion may be added by increasing yield strength/tensile strength, improving low temperature toughness, and decreasing the grain size of the central portion in the thickness direction through refinement of the final microstructure.
  • After finish rolling, the steel sheet may have a thickness of 50 mm or greater, in detail, 60 mm to 100 mm, and more specifically, 80 mm to 100 mm.
  • Cooling
  • The steel sheet is cooled to a temperature of 700° C., or lower, after finish rolling.
  • In a case in which a cooling end temperature exceeds 700° C., a microstructure may not be properly formed, so that sufficient yield strength may be difficult to secure. For example, yield strength of 390 MPa or greater may be difficult to secure.
  • The cooling end temperature may be 300° C. to 600° C.
  • In a case in which the cooling end temperature is lower than 300° C., an increase in a generation amount of bainite may degrade toughness.
  • The steel sheet may be cooled at a cooling rate of the central portion of 1.5° C/s or higher. In a case in which the cooling rate of the central portion of the steel sheet is lower than 1.5° C/s, the microstructure may not be properly formed, so that it maybe difficult to secure sufficient yield strength. For example, yield strength of 390 MPa or greater may be difficult.
  • In addition, the steel sheet may be cooled at an average cooling rate of 2° C/s to 300° C/s.
  • INDUSTRIAL APPLICABILITY
  • Hereinafter, the present disclosure will be described in more detail through exemplary embodiments. However, an exemplary embodiment below is intended to describe the present disclosure in more detail through illustration thereof, but not to limit right scope of the present disclosure, as the scope of rights thereof is determined by the contents of the appended claims and those able to be reasonably inferred therefrom.
  • Exemplary Embodiment
  • A steel slab having a composition illustrated in Table 1 below, which is 400 mm in thickness, was reheated to a temperature of 1060° C., and then rough rolling was performed at a temperature of 1025° C., thereby manufacturing a bar. A cumulative reduction ratio of 50% during rough rolling was equally applied to an entirety of steel grades.
  • A thickness of a bar having been rough rolled was 200 mm, while a grain size of a central portion after rough rolling before finish rolling, as illustrated in Table 2, was 75 μm to 89 μm. A reduction ratio of three final passes during rough rolling was within a range of 7.2% to 14.3%. A strain rate during rolling was within a range of 1.29/s to 1.66/s.
  • After rough rolling, finish rolling was performed at a temperature equal to a difference between a finish rolling temperature and an Ar3 temperature, illustrated in Table 2 below to obtain a steel sheet having a thickness illustrated in Table 3 below, and then the steel sheet was cooled to a temperature of 412° C. to 496° C. at a cooling rate of 4.5° C./sec.
  • In terms of the steel sheet manufactured as illustrated above, a microstructure, yield strength, a Kca value (a brittle crack arrestability coefficient), and a crack tip opening displacement (CTOD) value (a brittle crack initiation resistance) were examined, and results thereof are illustrated in Tables 3 and 4 below.
  • The Kca value in Table 4 is a value derived by performing an ESSO test on the steel sheet.
  • A FCAW (0.7 kJ/mm) welding process was performed to carry out structure analysis and a CTOD test on the HAZ, and results thereof were illustrated in Tables 3 and 4 below.
  • Surface properties illustrated in Table 3 below were measured to determine whether a star crack in a surface portion was generated by hot shortness occurring depending on a Cu to N addition ratio.
  • TABLE 1
    Steel Composition (wt %)
    Cu/Ni
    Steel P S Weight
    Grade C Si Mn Ni Cu Ti Nb Al (ppm) (ppm) Ratio
    Inventive 0.061 0.22 1.88 0.63 0.21 0.023 0.018 0.029 55 17 0.33
    Steel 1
    Inventive 0.071 0.18 1.65 0.52 0.3 0.012 0.012 0.035 65 11 0.58
    Steel 2
    Inventive 0.059 0.22 1.92 0.45 0.26 0.017 0.025 0.030 79 23 0.58
    Steel 3
    Inventive 0.077 0.25 1.78 0.62 0.29 0.022 0.023 0.032 81 22 0.47
    Steel 4
    Inventive 0.085 0.16 1.61 0.55 0.31 0.016 0.031 0.025 59 25 0.56
    Steel 5
    Inventive 0.066 0.21 1.82 0.37 0.15 0.018 0.028 0.020 46 24 0.41
    Steel 6
    Inventive 0.068 0.25 1.78 0.71 0.29 0.019 0.026 0.040 57 22 0.41
    Steel 7
    Comparative 0.12 0.16 1.88 0.52 0.21 0.021 0.019 0.021 49 9 0.40
    Steel 1
    Comparative 0.067 0.58 1.79 0.67 0.31 0.011 0.016 0.034 69 19 0.46
    Steel 2
    Comparative 0.071 0.22 2.35 0.71 0.29 0.013 0.021 0.023 78 28 0.41
    Steel 3
    Comparative 0.055 0.25 1.89 1.59 0.41 0.021 0.015 0.037 65 16 0.26
    Steel 4
    Comparative 0.062 0.19 1.69 0.44 0.24 0.042 0.051 0.030 57 12 0.55
    Steel 5
    Inventive 0.062 0.19 1.72 0.42 0.43 0.015 0.014 0.027 72 18 1.02
    Steel 8
    Comparative 0.048 0.22 1.47 0.39 0.18 0.019 0.018 0.025 59 12 0.46
    Steel 6
  • TABLE 2
    Grain Size
    of Central Average Reduction Average Strain
    Portion after Ratio of Three Rate of Three Finish Rolling
    Rough Rolling final passes final passes Temperature
    Exemplary before Finish during Rough during Rough —Ar3 Cooling End
    Embodiment Steel Rolling Rolling Rolling Temperature Temperature
    No. Grade (μm) (%) (/s) (° C.) (° C.)
    Inventive Inventive 78 8.8 1.55 15 453
    Example 1 Steel 1
    Inventive Inventive 85 9.6 1.35 23 432
    Example 2 Steel 2
    Inventive Inventive 83 12.3 1.56 2 488
    Example 3 Steel 3
    Inventive Inventive 82 7.2 1.43 36 496
    Example 4 Steel 4
    Inventive Inventive 88 13.3 1.29 13 412
    Example 5 Steel 5
    Inventive Inventive 77 12.8 1.32 8 423
    Example 6 Steel 6
    Comparative Inventive 75 10.1 1.66 89 456
    Example 1 Steel 7
    Comparative Comparative 89 9.6 1.32 28 439
    Example 2 Steel 1
    Comparative Comparative 82 14.3 1.59 8 440
    Example 3 Steel 2
    Comparative Comparative 77 12.9 1.46 16 472
    Example 4 Steel 3
    Comparative Comparative 86 9.3 1.43 4 465
    Example 5 Steel 4
    Comparative Comparative 82 8.9 1.35 12 452
    Example 6 Steel 5
    Inventive Inventive 83 10.3 1.43 28 444
    Example 7 Steel 8
    Comparative Comparative 81 11.2 1.39 44 477
    Example 7 Steel 6
  • TABLE 3
    Microstructure Phase Fraction
    of Central Portion (area %) Ferrite Phase Martensite-
    Remainder Fraction in Austenite
    Exemplary Steel Sheet Pearlite (One or more Surface Fraction in
    Embodiment Steel Surface Thickness Acicular (Average Grain of pearlite/ Portion HAZ
    No. Grade Properties (mm) Ferrite Size: μm) bainite/MA) (area %) (area %)
    Inventive Inventive None 95 73 5.2 (3.6) 21.8 45 2.3
    Example 1 Steel 1
    Inventive Inventive None 95 78 4.8 (5.1) 17.2 51 1.6
    Example 2 Steel 2
    Inventive Inventive None 90 86 6.2 (4.5) 7.8 68 1.9
    Example 3 Steel 3
    Inventive Inventive None 90 79 3.1 (3.2) 17.9 49 2.8
    Example 4 Steel 4
    Inventive Inventive None 85 82 5.6 (2.9) 12.4 59 3.1
    Example 5 Steel 5
    Inventive Inventive None 100 73 2.8 (4.6) 24.2 72 2.2
    Example 6 Steel 6
    Comparative Inventive None 95 49  7.9 (12.2) 43.1 17 3.5
    Example 1 Steel 7
    Comparative Comparative None 95 36 3.8 (6.5) 60.2 39 6.9
    Example 2 Steel 1
    Comparative Comparative None 100 71 6.6 (7.6) 22.4 68 6.8
    Example 3 Steel 2
    Comparative Comparative None 80 32 2.7 (2.8) 65.3 59 4.7
    Example 4 Steel 3
    Comparative Comparative None 85 42 2.4 (5.3) 55.6 76 2.9
    Example 5 Steel 4
    Comparative Comparative None 100 72 4.9 (4.2) 23.1 51 6.3
    Example 6 Steel 5
    Inventive Inventive Occurrence 95 73 5.6 (5.8) 21.4 50 2.1
    Example 7 Steel 8
    Comparative Comparative None 100 15 11.8 (16.2) 73.2 39 3.6
    Example 7 Steel 6
  • TABLE 4
    CTOD
    Exemplary Yield Value in
    Embodiment Steel Strength Kca HAZ
    No. Grade (Mpa) (N/mm1.5, @−10° C.) (mm)
    Inventive Inventive 506 7943 0.65
    Example 1 Steel 1
    Inventive Inventive 513 7962 0.45
    Example 2 Steel 2
    Inventive Inventive 468 7588 0.78
    Example 3 Steel 3
    Inventive Inventive 459 7951 0.46
    Example 4 Steel 4
    Inventive Inventive 512 9633 0.52
    Example 5 Steel 5
    Inventive Inventive 467 8051 0.67
    Example 6 Steel 6
    Comparative Inventive 467 5761 0.64
    Example 1 Steel 7
    Comparative Comparative 583 5123 0.13
    Example 2 Steel 1
    Comparative Comparative 532 6013 0.21
    Example 3 Steel 2
    Comparative Comparative 568 4687 0.29
    Example 4 Steel 3
    Comparative Comparative 548 5631 0.56
    Example 5 Steel 4
    Comparative Comparative 512 6891 0.11
    Example 6 Steel 5
    Inventive Inventive 499 7012 0.79
    Example 7 Steel 8
    Comparative Comparative 395 4123 0.64
    Example 7 Steel 6
  • As illustrated in Tables 1 to 4, in the case of Comparative Example 1, a steel composition satisfies an exemplary embodiment, but the difference between the finish rolling temperature during finish rolling and the Ara temperature, proposed in an exemplary embodiment, was controlled to be 60° C. or higher. Since sufficient reduction was not applied to the central portion, a fraction of acicular ferrite (AF) in the central portion is less than 50%. In addition, cooling was started in an initial stage, so that ferrite of 30% or greater was not generated in a surface portion. Thus, it can be confirmed that the Kca value measured at a temperature of −10° C. may not exceed 6000 required in a steel material for shipbuilding of the related art.
  • In the case of Comparative Example 2, a C content had a value higher than an upper limit value of a C content of an exemplary embodiment. It can be confirmed that a relatively large amount of bainite was generated in the central portion during rough rolling, so an AF fraction of a final microstructure is less than 50%. Therefore, the Kca value measured at a temperature of −10° C. was 6000 or less. It can be confirmed that a relatively large amount of a martensite-austenite (MA) structure was also generated in the HAZ, so the CTOD value was 0.25 mm or less.
  • In the case of Comparative Example 3, a Sicontent had a value higher than an upper limit value of a Si content of an exemplary embodiment. It can be confirmed that a relatively large amount of Si was added to generate a relatively large amount of a coarse MA structure, so the microstructure in the central portion contains a relatively large amount of AF. However, the Kca value has a relatively low value similar to 6000 at a temperature of −10° C. It can be confirmed that a relatively large amount of MA is also generated in the HAZ, so the CTOD value is 0.25 mm or less.
  • In the case of Comparative Example 4, a Mn content has a value higher than an upper limit value of a Mn content of an exemplary embodiment. It can be confirmed that due to having a relatively high level of hardenability, a microstructure in a base material is provided as upper bainite, thereby allowing the fraction of AF to be less than 50%. Thus, the Kca value is 6000 or less at a temperature of −10° C.
  • In the case of Comparative Example 5, an Ni content had a value higher than an upper limit value of an Ni content of an exemplary embodiment. It can be confirmed that due to a relatively high level of hardenability, the microstructure of the base material is provided as granular bainite and upper bainite, and the fraction of acicular ferrite is less than 50%. Thus, the Kca value is 6000 or less at a temperature of −10° C.
  • In the case of Comparative Example 6, an Nb and Ti content has a value higher than an upper limit value of an Nb and Ti content of an exemplary embodiment. It can be confirmed that an entirety of other conditions satisfies a condition suggested in an exemplary embodiment, but due to a relatively high Nb and Ti content, a relatively large amount of the MA structure is generated in the HAZ, thereby allowing the CTOD value to be 0.25 mm or less.
  • Inventive Example 7 includes a component exceeding a ratio of Cu to Ni suggested in an aspect of the present disclosure. It can be confirmed that despite having other, significantly excellent physical properties, a star crack was generated, thereby causing a defect in surface quality.
  • In the case of Comparative Example 7, a C and Mn content has a value lower than a lower limit value of a C and Mn content of an exemplary embodiment. It can be confirmed that due to a relatively low level of hardenability, AF in the central portion is formed in an amount of less than 50%, and most structures have ferrite and a pearlite structure in an amount of 10% or greater. As pearlite has an average grain size of 15 μm or greater, the Kca value is 6000 or less at a temperature of −10° C.
  • On the other hand, it can be confirmed that, in the case of Inventive Examples 1 to 6, satisfying a composition range, a manufacturing range, and the Cu to Ni ratio of an exemplary embodiment, the fraction of AF of the microstructure in the central portion is 70% or greater, the fraction of pearlite in the central portion is 10% or less, a circle-equivalent diameter of pearlite in the central portion is 15 μm or less, and a fraction of MA phase in the HAZ is less than 5%.
  • It can be confirmed that, in Inventive Examples 1 to 6, yield strength satisfies 390 MPa or greater, the Kca value satisfies a value of 6000 or greater at a temperature of −10° C., and the CTOD value also represents a relatively high value of 0.25 mm or greater.
  • FIG. 1 illustrates an image of a central portion of Inventive Steel 2 in a thickness direction, captured using an optical microscope. As illustrated in FIG. 1, it can be confirmed that a microstructure in the central portion includes a relatively large amount of acicular ferrite (AF) structures, and pearlite is finely distributed.
  • While exemplary embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the present invention as defined by the appended claims.

Claims (17)

1. A high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance, comprising:
by wt %, carbon (C): 0.05% to 0.09%, manganese (Mn): 1.5% to 2.0%, nickel (Ni): 0.3% to 0.8%, niobium (Nb): 0.005% to 0.04%, titanium (Ti): 0.005% to 0.04%, copper (Cu): 0.1% to 0.5%, silicon (Si): 0.05% to 0.3%, aluminum (Al): 0.005% to 0.05%, phosphorus (P): 100 ppm or less, sulfur (S): 40 ppm or less, iron (Fe) as a residual component thereof, and inevitable impurities,
wherein a microstructure of a central portion includes, by area %, acicular ferrite in an amount of 70% or greater, pearlite in an amount of 10% or less, and one or more selected from a group consisting of ferrite, bainite, and martensite-austenite (MA), as residual components; a circle-equivalent diameter of pearlite being 15 μm or less; a surface portion microstructure in a region at a depth of 2 mm or less, directly below a surface, includes, by area %, ferrite in an amount of 30% or greater and one or more of bainite, martensite, and pearlite as residual components; and a heat affected zone (HAZ) formed during welding includes, by area %, martensite-austenite (MA) in an amount of 5% or less.
2. The high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance of claim 1, comprising a thickness of 50 mm or greater.
3. The high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance of claim 1, wherein, a weight ratio of Cu to Ni (a Cu/Ni weight ratio) is 0.8 or less.
4. The high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance of claim 1, wherein welding heat input during welding is 0.5 kJ/mm to 10 kJ/mm.
5. The high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance of claim 4, wherein a welding method during welding includes flux cored arc welding (FCAW) or submerged arc welding (SAW).
6. The high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance of claim 1, comprising yield strength of 390 MPa or greater.
7. The high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance of claim 1, comprising a Kca value measured at a temperature of −10° C. of 6000 or greater.
8. The high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance of claim 1, comprising a Charpy fracture transition temperature of −40° C. or lower in a 1/2t position in a steel material thickness direction, where t is a steel sheet thickness.
9. A method of manufacturing a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance, comprising:
rough rolling a slab at a temperature of 900° C. to 1100° C. after reheating the slab at 1000° C. to 1100° C., including, by wt %, C: 0.05% to 0.09%, Mn: 1.5% to 2.0%, Ni: 0.3% to 0.8%, Nb: 0.005% to 0.04%, Ti: 0.005% to 0.04%, Cu: 0.1% to 0.5%, Si: 0.1% to 0.3%, Al: 0.005% to 0.05%, P: 100 ppm or less, S: 40 ppm or less, Fe as a residual component, and inevitable impurities;
obtaining a steel sheet by finish rolling a bar obtained from the rough rolling a slab, at a temperature in a range of Ar3+60° C. to Ar3° C., based on a temperature of a central portion; and
cooling the steel sheet to 700° C. or lower.
10. The method of claim 9, wherein a thickness of the steel sheet having been finish rolled is 50 mm or greater.
11. The method of claim 9, wherein a reduction ratio per pass of three final passes during the rough rolling a slab is 5% or greater, and a total cumulative reduction ratio is 40% or greater.
12. The method of claim 9, wherein three final passes during the rough rolling a slab are performed at a strain rate of 2/sec or lower.
13. The method of claim 9, wherein a grain size of a central portion of a bar thickness before finish rolling after the rough rolling a slab is 150 μm or less.
14. The method of claim 9, wherein a reduction ratio during the finish rolling is set such that a ratio of a slab thickness (mm) to a steel sheet thickness (mm) after the finish rolling is 3.5 or greater.
15. The method of claim 9, wherein a cumulative reduction ratio during the finish rolling is maintained to be 40% or greater, and a reduction ratio per pass, not including skin pass rolling, is maintained to be 4% or greater.
16. The method of claim 9, wherein the cooling the steel sheet is performed at a cooling rate of the central portion of 1.5° C./s or higher.
17. The method of claim 9, wherein the cooling the steel sheet is performed at an average cooling rate of 2° C./s to 300° C./s.
US15/780,170 2015-12-04 2016-12-02 High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor Abandoned US20180363107A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150172687A KR101736611B1 (en) 2015-12-04 2015-12-04 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
KR10-2015-0172687 2015-12-04
PCT/KR2016/014124 WO2017095190A1 (en) 2015-12-04 2016-12-02 High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor

Publications (1)

Publication Number Publication Date
US20180363107A1 true US20180363107A1 (en) 2018-12-20

Family

ID=58797314

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/780,170 Abandoned US20180363107A1 (en) 2015-12-04 2016-12-02 High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor

Country Status (6)

Country Link
US (1) US20180363107A1 (en)
EP (1) EP3385402B1 (en)
JP (1) JP6648271B2 (en)
KR (1) KR101736611B1 (en)
CN (1) CN108291287B (en)
WO (1) WO2017095190A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026927A (en) * 2017-02-16 2019-02-21 Jfeスチール株式会社 Thick steel sheet and manufacturing method of thick steel sheet
US11505841B2 (en) 2018-12-11 2022-11-22 Ssab Technology Ab High-strength steel product and method of manufacturing the same
CN117004885A (en) * 2023-07-24 2023-11-07 鞍钢股份有限公司 Ultralow-temperature high-strength container steel plate and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102045641B1 (en) * 2017-12-22 2019-11-15 주식회사 포스코 High strength steel for arctic environment having excellent resistance to fracture in low temperature, and method for manufacturing the same
KR102209547B1 (en) * 2018-12-19 2021-01-28 주식회사 포스코 Ultra thick structural steel having superior brittle crack initiation resistance and method of manufacturing the same
CN109628854B (en) * 2019-01-17 2021-01-29 河北敬业中厚板有限公司 Method for producing steel plate by ultra-fast cooling process
KR102355675B1 (en) * 2019-07-12 2022-01-27 주식회사 포스코 High strength steel wire rod and steel wire for spring and manufacturing method same
CN112251592B (en) * 2020-10-23 2022-03-22 攀钢集团攀枝花钢铁研究院有限公司 Construction method for heat treatment of dissimilar steel rail flash welded joint

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003229A (en) * 2001-06-19 2003-01-08 Nippon Steel Corp Thick steel plate having excellent fatigue strength and production method therefor
US20030131914A1 (en) * 2000-11-17 2003-07-17 Hong-Chul Jeong Steel plate to be precipitating tinfor weleded structures, method for manufacturing the same, welding fabric using the same
KR20090006987A (en) * 2007-07-13 2009-01-16 삼성전자주식회사 Ink jet image forming apparatus
KR20090069870A (en) * 2007-12-26 2009-07-01 주식회사 포스코 Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
US20130292011A1 (en) * 2010-12-28 2013-11-07 Posco High-Strength Steel Sheet Having Superior Toughness at Cryogenic Temperatures, and Method for Manufacturing Same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205230A (en) * 1986-03-04 1987-09-09 Kobe Steel Ltd Manufacture of steel plate for low temperature service superior in characteristic for stopping brittle cracking propagation
JPH0674454B2 (en) * 1986-08-19 1994-09-21 新日本製鐵株式会社 Method for producing thick high-strength steel sheet with excellent low temperature toughness and weldability
JP3474661B2 (en) * 1995-01-24 2003-12-08 新日本製鐵株式会社 Sour-resistant steel plate with excellent crack arrestability
JP5348386B2 (en) * 2008-10-24 2013-11-20 Jfeスチール株式会社 Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
KR20100067509A (en) * 2008-12-11 2010-06-21 주식회사 포스코 Method for producing steel plate for offshore structures having excellent ctod properties in heat affected zone
KR101360737B1 (en) * 2009-12-28 2014-02-07 주식회사 포스코 High strength steel plate having excellent resistance to brittle crack initiation and method for manufacturing the same
JP5522084B2 (en) * 2011-02-24 2014-06-18 新日鐵住金株式会社 Thick steel plate manufacturing method
KR20120097160A (en) * 2011-02-24 2012-09-03 현대제철 주식회사 High strength steel plate and method of manufacturing the same
JP5612532B2 (en) * 2011-04-26 2014-10-22 株式会社神戸製鋼所 Steel sheet excellent in low temperature toughness and weld joint fracture toughness and method for producing the same
CN102851591B (en) * 2011-06-28 2016-01-13 鞍钢股份有限公司 High-strength high-toughness low-temperature steel for ships and manufacturing method thereof
BR112014015789B1 (en) * 2011-12-27 2019-10-29 Jfe Steel Corp sheet steel and method for producing it
CN103882320B (en) * 2012-12-21 2016-09-07 鞍钢股份有限公司 High-strength cold-rolled steel sheet having excellent stretch flangeability and spot weldability, and method for producing same
KR101585724B1 (en) * 2013-12-24 2016-01-14 주식회사 포스코 A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same
KR20150112489A (en) * 2014-03-28 2015-10-07 현대제철 주식회사 Steel and method of manufacturing the same
CN104789898A (en) * 2015-05-07 2015-07-22 湖南华菱湘潭钢铁有限公司 Production method of ultrahigh-strength anti-cracking thick steel plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030131914A1 (en) * 2000-11-17 2003-07-17 Hong-Chul Jeong Steel plate to be precipitating tinfor weleded structures, method for manufacturing the same, welding fabric using the same
JP2003003229A (en) * 2001-06-19 2003-01-08 Nippon Steel Corp Thick steel plate having excellent fatigue strength and production method therefor
KR20090006987A (en) * 2007-07-13 2009-01-16 삼성전자주식회사 Ink jet image forming apparatus
KR20090069870A (en) * 2007-12-26 2009-07-01 주식회사 포스코 Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
US20130292011A1 (en) * 2010-12-28 2013-11-07 Posco High-Strength Steel Sheet Having Superior Toughness at Cryogenic Temperatures, and Method for Manufacturing Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026927A (en) * 2017-02-16 2019-02-21 Jfeスチール株式会社 Thick steel sheet and manufacturing method of thick steel sheet
US11505841B2 (en) 2018-12-11 2022-11-22 Ssab Technology Ab High-strength steel product and method of manufacturing the same
CN117004885A (en) * 2023-07-24 2023-11-07 鞍钢股份有限公司 Ultralow-temperature high-strength container steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
EP3385402B1 (en) 2020-04-08
JP2019501281A (en) 2019-01-17
JP6648271B2 (en) 2020-02-14
CN108291287A (en) 2018-07-17
KR101736611B1 (en) 2017-05-17
EP3385402A1 (en) 2018-10-10
WO2017095190A1 (en) 2017-06-08
EP3385402A4 (en) 2018-10-10
CN108291287B (en) 2020-03-03

Similar Documents

Publication Publication Date Title
EP3385401B1 (en) High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor
EP3385402B1 (en) High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor
US10883159B2 (en) High-strength steel having superior brittle crack arrestability, and production method therefor
US10822671B2 (en) High-strength steel having superior brittle crack arrestability, and production method therefor
JP6700400B2 (en) Steel plate for low temperature pressure vessel having excellent PWHT resistance and method for producing the same
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
US20170327922A1 (en) High-strength steel having superior brittle crack arrestability, and production method therefor
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
KR20150112489A (en) Steel and method of manufacturing the same
CN112912527B (en) Steel sheet for pressure vessel having excellent low-temperature toughness and excellent ductility, and method for producing same
KR101467049B1 (en) Steel sheet for line pipe and method of manufacturing the same
CN111542633A (en) Structural high-strength steel material having excellent fatigue crack growth inhibition properties and method for producing same
JP4264296B2 (en) Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
KR101546132B1 (en) Extremely thick steel sheet and method of manufacturing the same
KR101615029B1 (en) Steel sheet and method of manufacturing the same
KR101467030B1 (en) Method for manufacturing high strength steel plate
JP4959401B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2016180171A (en) Non-heat treated low yield ratio high tensile strength thick steel sheet and manufacturing method therefor
KR101586932B1 (en) Hot-rolled steel sheet and method of manufacturing the same
KR101435319B1 (en) Method of manufacturing steel sheet
KR20140141220A (en) Steel sheet for line pipe and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: POSCO, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, HAK-CHEOL;JANG, SUNG-HO;REEL/FRAME:045939/0426

Effective date: 20180426

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION