US20180242262A1 - Method and apparatus for power autoscaling in a resource-constrained network - Google Patents

Method and apparatus for power autoscaling in a resource-constrained network Download PDF

Info

Publication number
US20180242262A1
US20180242262A1 US15/954,977 US201815954977A US2018242262A1 US 20180242262 A1 US20180242262 A1 US 20180242262A1 US 201815954977 A US201815954977 A US 201815954977A US 2018242262 A1 US2018242262 A1 US 2018242262A1
Authority
US
United States
Prior art keywords
power
electronic device
received frame
based
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/954,977
Inventor
John Peter Norair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blackbird Technology Holdings Inc
Original Assignee
Blackbird Technology Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201161464376P priority Critical
Priority to US13/408,466 priority patent/US9154392B2/en
Priority to US201514874808A priority
Priority to US15/002,427 priority patent/US20160157186A1/en
Priority to US15/162,786 priority patent/US20160270004A1/en
Priority to US15/400,249 priority patent/US20170118723A1/en
Priority to US15/680,660 priority patent/US20170374627A1/en
Application filed by Blackbird Technology Holdings Inc filed Critical Blackbird Technology Holdings Inc
Priority to US15/954,977 priority patent/US20180242262A1/en
Publication of US20180242262A1 publication Critical patent/US20180242262A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • H04L43/0823Errors
    • H04L43/0847Transmission error
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/16Arrangements for monitoring or testing packet switching networks using threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/12Congestion avoidance or recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/70Admission control or resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/822Collecting or measuring resource availability data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/55Error prevention, detection or correction
    • H04L49/555Error detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/22Header parsing or analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/023Limited or focused flooding to selected areas of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0025Synchronization between nodes synchronizing potentially movable access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
    • H04W72/0446Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource the resource being a slot, sub-slot or frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • H04L43/0876Network utilization
    • H04L43/0882Utilization of link capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/142Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Wireless Local Area Networks [WLAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/144Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Bluetooth and Wireless Personal Area Networks [WPAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/16Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks
    • Y02D70/164Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks in Satellite Navigation receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/16Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks
    • Y02D70/166Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks in Radio Frequency Identification [RF-ID] transceivers

Abstract

An electronic device may adaptively manage power consumption associated with transmission and/or reception of signals by the electronic device, wherein the adaptive power management may comprise adjusting transmit power and/or one or more power-related thresholds used during transmission or reception operations in the electronic device. Adjustments to the transmit power and/or the one or more power-related thresholds may be determined based on comparison between power measurement associated with signals received by said electronic device with original transmit power for the signals. The reception power measurement may be determined based on detected received signal strength indication (RSSI). The original transmit power may be determined based on signal transmission information embedded in at least one frame carried via said signals. The original transmission power may be embedded as an equivalent isotropic radiated power (EIRP) value.

Description

    CLAIM OF PRIORITY
  • This patent application is a continuation of U.S. patent application Ser. No. 15/680,660 filed on Aug. 18, 2017, which is a continuation of U.S. patent application Ser. No. 15/400,249 filed on Jan. 6, 2017, which is a continuation of U.S. patent application Ser. No. 15/162,786 filed on May 24, 2016, which is a continuation of U.S. patent application Ser. No. 15/002,427 filed on Jan. 21, 2016, which is a continuation of U.S. patent application Ser. No. 14/874,808 filed on Oct. 5, 2015, which is a continuation of U.S. patent application Ser. No. 13/408,466 which was filed on Feb. 29, 2012 (now U.S. Pat. No. 9,154,392), which in turn claims priority to U.S. Provisional Patent Application Ser. No. 61/464,376 which was filed on Mar. 2, 2011.
  • Each of the above-referenced documents is hereby incorporated herein by reference in its entirety.
  • CROSS-REFERENCE TO RELATED APPLICATIONS/INCORPORATION BY REFERENCE
  • This patent application also makes reference to:
    • U.S. Provisional Patent Application Ser. No. 61/464,376 titled “Advanced Communication System for Wide-Area Low Power Wireless Applications and Active RFID” and filed on Mar. 2, 2011;
    • U.S. Provisional Patent Application Ser. No. 61/572,390 titled “System for Adding Dash7-Based Applications Capability to a Smartphone” and filed on Jul. 15, 2011;
    • U.S. patent application Ser. No. 13/267,640 titled “Method and Apparatus for Adaptive Searching of Distributed Datasets” and filed on Oct. 6, 2011;
    • U.S. patent application Ser. No. 13/267,621 titled “Method and Apparatus for Low-Power, Long-Range Networking” and filed on Oct. 6, 2011;
    • U.S. patent application Ser. No. 13/270,802 titled “Method and Apparatus for a Multi-band, Multi-mode Smartcard” and filed on Oct. 11, 2011;
    • U.S. patent application Ser. No. 13/270,959 titled “Method and Apparatus for an Integrated Antenna” and filed on Oct. 11, 2011;
    • U.S. patent application Ser. No. 13/289,054 titled “Method and Apparatus for Electronic Payment” and filed on Nov. 4, 2011;
    • U.S. patent application Ser. No. 13/289,050 filed on Nov. 4, 2011;
    • U.S. patent application Ser. No. 13/297,348 titled “Method and Apparatus for Interfacing with a Smartcard” and filed on Nov. 16, 2011;
    • U.S. patent application Ser. No. 13/354,513 titled “Method and Apparatus for Memory Management” and filed on Jan. 20, 2012;
    • U.S. patent application Ser. No. 13/354,615 titled “Method and Apparatus for Discovering, People, Products, and/or Services via a Localized Wireless Network” and filed on Jan. 20, 2012;
    • U.S. patent application Ser. No. 13/396,708 titled “Method and apparatus for Plug and Play, Networkable ISO 18000-7 Connectivity” and filed on Feb. 15, 2012;
    • U.S. patent application Ser. No. 13/396,739 titled “Method and Apparatus for Serving Advertisements in a Low-Power Wireless Network” and filed on Feb. 15, 2012;
    • U.S. patent application Ser. No. 13/408,440 (Attorney Docket No. 24665US02) titled “Method and Apparatus for Forward Error Correction (FEC) in a Resource-Constrained Network” and filed on Feb. 29, 2012;
    • U.S. patent application Ser. No. 13/408,447 (Attorney Docket No. 24666US02) titled “Method and Apparatus for Adaptive Traffic Management in a Resource-Constrained Network” and filed on Feb. 29, 2012;
    • U.S. patent application Ser. No. 13/408,453 (Attorney Docket No. 24667US02) titled “Method and Apparatus for Dynamic Media Access Control in a Multiple Access System” and filed on Feb. 29, 2012;
    • U.S. patent application Ser. No. 13/408,457 (Attorney Docket No. 24668US02) titled “Method and Apparatus for Rapid Group Synchronization” and filed on Feb. 29, 2012;
    • U.S. patent application Ser. No. 13/408,461 (Attorney Docket No. 24669US02) titled “Method and Apparatus for Addressing in a Resource-Constrained Network” and filed on Feb. 29, 2012; and U.S. patent application Ser. No. 13/408,464 (Attorney Docket No. 24670US02) titled “Method and Apparatus for Query-Based Congestion Control” and filed on Feb. 29, 2012.
  • Each of the above stated applications is hereby incorporated herein by reference in its entirety.
  • FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • [Not Applicable].
  • MICROFICHE/COPYRIGHT REFERENCE
  • [Not Applicable].
  • FIELD OF THE INVENTION
  • Certain embodiments of the invention relate to communications. More specifically, certain embodiments of the invention relate to a method and an apparatus for power autoscaling in a resource-constrained network.
  • BACKGROUND OF THE INVENTION
  • Existing methods of power management in wireless devices often result in inefficient use of power. Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present invention as set forth in the remainder of the present application with reference to the drawings.
  • BRIEF SUMMARY OF THE INVENTION
  • A system and/or method is provided for power autoscaling in a resource-constrained network, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
  • These and other advantages, aspects and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
  • BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1A is a block diagram illustrating an exemplary communication setup comprising a plurality of spatially-distributed, resource-constrained devices, which may be utilized in accordance with an embodiment of the invention.
  • FIG. 1B is a block diagram illustrating use of adaptive power autoscaling in electronic devices, in accordance with the embodiment of the invention.
  • FIG. 2A is a block diagram illustrating an exemplary electronic device that may support adaptive power autoscaling, in accordance with an embodiment of the invention.
  • FIG. 2B is a diagram of an exemplary transmit front-end (FE) and an exemplary receive front-end (FE) in an electronic device that supports adaptive power autoscaling, in accordance with an embodiment of the invention.
  • FIG. 3A is a block diagram illustrating an exemplary implementation of the OSI model within an electronic device that may support adaptive power autoscaling, in accordance with an embodiment of the invention.
  • FIG. 3B is a block diagram illustrating exemplary structure of physical layer (PHY) packet carrying a data link layer frame, in accordance with an embodiment of the invention.
  • FIG. 3C is block diagram illustrating implementation of various aspects of the invention at different layers of the OSI model, in accordance with an embodiment of the invention
  • FIG. 4A is a flow chart that illustrates exemplary steps for supporting adaptive power autoscaling in an electronic device, in accordance with an embodiment of the invention.
  • FIG. 4B is a flow chart that illustrates exemplary steps for performing clear channel assessment using thresholds configured based on adaptive autoscaling to adjust reception sensitivity, in accordance with an embodiment of the invention.
  • FIG. 4C is a flow chart that illustrates exemplary steps for performing link quality assessment using thresholds configured based on adaptive autoscaling to adjust reception sensitivity, in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Certain embodiments of the invention may be found in a method and apparatus for power autoscaling in a resource-constrained network. In various embodiments of the invention, an electronic device may utilize adaptive power management to adaptively control power consumption associated with communications by the electronic device. In this regard, the adaptive power management may comprise adaptively adjusting transmit power used during transmission of signals by the electronic device. The transmit power used during transmission of signals by the electronic device may be adjusted based on a determination of a desired maximum communication range and/or selection (and locating) a particular target peer device. The adaptive adjusting of transmit power may be based on received signal strength of a received frame and based on a power at which the received frame was transmitted, and power at which the received frame was transmitted is embedded in the received frame. The original transmittal power may be embedded in the received frame as an equivalent isotropic radiated power (EIRP) value. Accordingly, the desired maximum communication range (and/or locating the target peer device) may be determined based on calculation of power loss associated with communication of received frames. In this regard, the power loss associated with communication of the received frames may be determined based on difference between the received signal strength of the received frame and the power at which the received frame was transmitted. The adaptive power management may also comprise adaptively adjusting reception sensitivity applicable during reception of signals by the electronic device. The reception sensitivity may be adjusted based on a determination of a desired maximum communication range and/or selection (and locating) a particular target peer device. The reception sensitivity may control discarding of received frames, and terminating processing thereof. The reception sensitivity of the electronic device may be adjusted by adaptively adjusting one or more power-related thresholds used during reception of signals by the electronic device. The one or more power-related thresholds may comprise a threshold for controlling Carrier Sense Multiple Access (CSMA) based operations in the electronic device, whereby such threshold may be compared to received signal strength indication (RSSI) detected by the electronic device. The one or more power-related thresholds may also comprise a threshold for controlling link quality, whereby the controlling comprise discarding frames carried via received signals based on comparison of link utilization with the link quality threshold. The adaptive power management may be configured and/or applied in accordance with a particular power management algorithm selected from a plurality of available algorithms; comprising standards based algorithms and/or proprietary algorithms. Furthermore, the adaptive power management may be selectively activate or deactivated.
  • FIG. 1A is a block diagram illustrating an exemplary communication setup comprising a plurality of spatially-distributed, resource-constrained devices, which may be utilized in accordance with an embodiment of the invention. Referring to FIG. 1 there is shown a first device 102, second devices 104 1-104 16, and perimeters 106 1-106 3.
  • The first device 102 may comprise suitable logic, circuitry, interfaces, and/or code operable to transmit and receive wireless signals in accordance with one or more wireless protocols. Exemplary protocols which may be supported by the device 102 may include the ISO 18000-7 protocol, and protocols described in the above-incorporated U.S. Provisional Patent Application having Ser. No. 61/464,376 and filed on Mar. 2, 2011. The first device 102 may be less resource-constrained device. In this regard, the first device 102 may be, for example and without limitation, a laptop computer, a desktop computer, a tablet computer, a smart phone, a server, a set-top box, a gateway, a base station, a meter or code reader, or may comprise a combination of one or more such devices.
  • Each of the second devices 104 1-104 16 may comprise suitable logic, circuitry, interfaces, and/or code operable to transmit and receive wireless signals in accordance with one or more wireless protocols, which may include the ISO 18000-7 standard, and protocols described in the above-incorporated U.S. Provisional Patent Application having Ser. No. 61/464,376 and filed on Mar. 2, 2011. Each of the second devices 104 1-104 16 may be operable to store data (e.g., in the form of delimited strings of characters). At least some of the second devices 104 1-104 16 may be more resource-constrained devices. In this regard, one or more of the second devices 104 1-104 16 may have relatively little memory, relatively little processing power, operate on battery power, and/or may otherwise be constrained in terms of one or more resources. The second devices 104 1-104 16 may comprise, for example, RFID tags, smartcards, keyfobs, cellphones, portable media players, appliances, and/or utility meters.
  • The second devices 104 1-104 16 may be located at different distances relative to the first device 102. Accordingly, the perimeters 106 1-106 3 may represent and/or delineate different zones of operations for the first device 102. Perimeters 106 1-106 3 may correspond to, for example, three different transmit powers that may be utilized by device 102. That is, the device 102 may utilize a first transmit power T1 to communicate with devices within the first perimeter 106 1, utilize a second transmit power T2 to communicate with devices within the second perimeter 106 2, and utilize a third transmit power T3 to communicate with devices within the third perimeter 106 3, wherein T3>T2>T1.
  • In operation, the device 102 may communicate one or more of the devices 104 1-104 16. In this regard, communications among the devices 102 and 104 1-104 16 may be based on the ISO 18000-7 protocol, and/or similar protocols such as the protocols described in the above-incorporated U.S. Provisional Patent Application having Ser. No. 61/464,376 and filed on Mar. 2, 2011. Use of such protocols may be used for low-power, long range communication, such as to enable RFID and like exchanges among the devices 102 and 104 1-104 16. For example, at the 433 MHz band, low power communication based on such protocols may be in the range of 1-2000 m.
  • In various embodiments of the invention, the devices 102 and 104 1-104 16 may be operable to support and/or use adaptive power control mechanisms, to enhance power consumption in the network established among these devices. In this regard, such adaptive power control mechanism may incorporate use of adaptive power autoscaling, in which transmission and/or reception operations, and parameter(s) related thereto, in the devices may be continually adjusted in accordance with increases or decreases in transmission and/or reception ranges. For example, the device 102 may selectively communicate with a subset of the devices 104 1-104 16. Such selective communication may enable use of different transmission powers, based on determination of particular target devices for communication therewith. In this regard, the device 102 may initially search for particular one or more of the devices 104 1-104 16. The search may be performed by locating devices having a particular string (e.g., a group of one or more ASCII or UNICODE characters). The device 102 may generate a search request packet and transmit the search request packet. If the search request packet is transmitted at power T1, the search request packet may be received by data-bearing devices 104 1-104 4. If the search request packet is transmitted at power T2, the search request packet may be received by devices 104 1-104 8. If the search request packet is transmitted at power T3, the search request packet may be received by devices 104 1-104 16. Note that the above assumes signal propagation in the absence of interference or physical obstructions that critically impair communications between the device 102 and one or more of the devices 104 1-104 16.
  • FIG. 1B is a block diagram illustrating use of adaptive power autoscaling in electronic devices, in accordance with the embodiment of the invention. Referring to FIG. 1B, there is shown devices 102, 104 2, 104 8, and 104 15 of FIG. 1A.
  • In operation, devices in a resource-constrained network, such as devices 102, 104 2, 104 8, and 104 15 may utilize adaptive power autoscaling to enhance and/or optimize power consumption in these devices during interactions therebetween. In this regard, adaptive power autoscaling may comprise adaptively and/or dynamically adjusting power-related parameters associated with communication operations, to control power consumption and/or requirement. Power scaling is adaptive in that power-related parameters may be set and/or adjusted based on specific communication objectives. These objectives may comprise reaching (or not) particular device(s) when transmitting, and/or being able to receive (or not) signals from particular device(s).
  • For example, during adaptive power autoscaling, transmission power and/or minimum receive power-related thresholds may be adjusted, such as based on selection and/or locating of other devices to engage in communication therewith. The transmit power may be, for example, increased or decreased to ensure that a particular device is (not) reached. In other words, the transmitting device would only apply, at any given point, the maximum transmit power required to reach, at most, the target device. For example, the device 102 may use transmit power (Tx_Pwr) value 1, corresponding to transmission range 150 1, when seeking to only communicate with device 104 2. The device 102 may then increase its transmit power to higher value, Tx_Pwr value 2, corresponding to increased transmission range 150 2, when trying to transmit to device 104 8; and may then increase its transmit power to even higher value, Tx_Pwr value 3, corresponding to increased transmission range 150 3, when trying to transmit to device 104 15.
  • Similarly, the adaptive power autoscaling may be applied by setting and/or adjusting parameters and/or threshold used in and/or relating to signal reception, thus effectively adjusting the reception range. For example, if the device 102 were to transmit at a fixed power T1, reception sensitivity and/or thresholds in the device 104 2 may be initially set such that the device 104 2 may receive the signal transmitted at power T1 over a reception range 152 2. When the device 104 2 no longer desires to receive signals from device 102, reception sensitivity and/or thresholds in the device 104 2 may be set or modified such that the device 104 2 may receive a signal transmitted at T1 over a smaller reception range 152 1, and thus signals transmitted by device 102 would not be received, or would be received but then ignored or discarded.
  • In some instances adjusting one side (e.g. transmission) may be performed adaptively based on monitoring of the other side (e.g. reception). For example, if the device 102 transmits at Tx_Pwr=2 in an attempt to communicate with device 104 8), but the receive sensitivity and/or threshold(s) of device 104 8 is configured such that it receives signals transmitted at Tx_Pwr=2 only over the reception range 154 1, then the device 104 8 may not receive the signals transmitted by device 102. Consequently, the device may abort its attempt to communicate with device 104 8 or may increase its transmit power to Tx_Pwr=3 in an attempt to reach device 104 8. If the device 102 aborts attempting to communicate with device 104 8, it may return (e.g., after a preconfigured interval) to transmitting at Tx_Pwr=1, which requires less transmit power thus reducing unnecessary power consumption.
  • While the invention has been described herein with respect to the device 102, which is previously described as being the less resource-constrained device, the invention is not so limited. In this regard, in various embodiments of the invention, each of the devices, both less resource-constrained devices and more resource-constrained devices, may be operable to implement similar mechanisms for adaptive controlling and/or adjusting transmission and/or reception operations. For example, the device 102 may also be continually adjusting its reception range, by adjusting various parameters that may control reception sensitivity; and each of the devices 104 2, 104 8, and 104 15 may also be operable to adjust their transmission ranges, by adjusting the transmission power for example, based on target devices for communication.
  • FIG. 2A is a block diagram illustrating an exemplary electronic device that may support adaptive power autoscaling, in accordance with an embodiment of the invention. Referring to FIG. 2A there is shown an electronic device 200.
  • The electronic device 200 may be similar to the electronic devices 102 and/or 104 x of FIGS. 1A and 1B, and may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to implement various aspects of the invention. The electronic device 200 may comprise, for example, a host processor 202, a system memory 204, a signal processing module 206, a transmit front-end (FE) 210, a transmission antenna 220, a plurality of receive front-ends (FE) 212 A-212 N, and plurality of reception antennas 222 A-222 N.
  • The host processor 202 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to process data, and/or control and/or manage operations of the electronic device 200, and/or tasks and/or applications performed therein. In this regard, the host processor 202 may be operable to configure and/or control operations of various components and/or subsystems of the electronic device 200, by utilizing, for example, one or more control signals. The host processor 202 may enable execution of applications, programs and/or code, which may be stored in the system memory 204, for example.
  • The system memory 204 may comprise suitable logic, circuitry, interfaces, and/or code that may enable permanent and/or non-permanent storage, buffering, and/or fetching of data, code and/or other information, which may be used, consumed, and/or processed in the electronic device 200. In this regard, the system memory 204 may comprise different memory technologies, including, for example, read-only memory (ROM), random access memory (RAM), Flash memory, solid-state drive (SSD), and/or field-programmable gate array (FPGA). The system memory 204 may store, for example, configuration data, which may comprise parameters and/or code, comprising software and/or firmware.
  • The signal processing module 206 may comprise suitable logic, circuitry, interfaces, and/or code for enabling processing of signals transmitted and/or received by the electronic device 200. The signal processing module 206 may be operable to perform such signal processing operation as filtering, amplification, up-convert/down-convert baseband signals, analog-to-digital conversion and/or digital-to-analog conversion, encoding/decoding, encryption/decryption, and/or modulation/demodulation. The signal processing module 206 may be operable and/or configured to support low-power wireless protocol, such as ISO 18000-7, protocols described in the above-incorporated U.S. Provisional Patent Application having Ser. No. 61/464,376, and/or similarly structured standards.
  • The transmit FE 210 may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to perform wireless transmission, such as over a plurality of supported RF bands. The transmit FE 210 may enable, for example, performing wireless communications of RF signals via the transmission antenna 220. In this regard, the transmission antenna 220 may comprise suitable logic, circuitry, interfaces, and/or code that may enable transmission of wireless signals within certain bandwidths and/or based on certain protocols. For example, one or more of the transmission antenna 220 may enable transmission over the 433 MHz band, which may be suitable for ISM communication based on, for example, ISO 18000-7, protocols described in the above-incorporated U.S. Provisional Patent Application having Ser. No. 61/464,376, and/or similar related protocols.
  • Each of the plurality of receive FEs 212 A-212 N may comprise suitable logic, circuitry, interfaces, and/or code that may be operable to perform wireless reception, such as over a plurality of supported RF bands. Each of the plurality of receive FEs 212 A-212 N may enable, for example, performing wireless communications of RF signals via corresponding one of the plurality of reception antennas 222 A-222 N. Each of the plurality of reception antennas 222 A-222 N may comprise suitable logic, circuitry, interfaces, and/or code that may enable reception of wireless signals within certain bandwidths and/or based on certain protocols. For example, one or more of the plurality of reception antennas 222 A-222 N may enable reception of signals communicated over different channels within the 433 MHz band, which may be suitable for ISM communication based on, for example, ISO 18000-7, protocols described in above-incorporated U.S. Provisional Patent Application having Ser. No. 61/464,376, and/or similar related protocols.
  • In various embodiments of the invention, the electronic device 200 may support and/or implement adaptive power autoscaling. In this regard, power consumption during transmission and/or reception of signals may be adaptively scaled by continually controlling and/or adjusting components, processes, and/or functions relating to and/or affecting (or being affected by) transmission and/or reception of signals. In this regard, the power scaling may be achieved by adjusting transmit and/or reception related parameters in a manner that causes changes to power requirement and/or consumption. This may particularly impact and/or relate to the transmit FE 210 and the receive FEs 212 A-212 N (or their components), and/or operations thereof, as described in more detail with respect to FIG. 2B.
  • FIG. 2B is a diagram of an exemplary transmit front-end (FE) and an exemplary receive front-end (FE) in an electronic device that supports adaptive power autoscaling, in accordance with an embodiment of the invention. Referring to FIG. 2B, there is shown the transmit FE 210 of FIG. 2A, and receive FE 212 x, which corresponds to any of the receive FEs 212 A-212 N of FIG. 2A.
  • The transmit FE 210 may comprise a digital-to-analog converter (DAC) 230, a filter 232, a local oscillator (LO) 234, a mixer 236, and an amplifier 238. The filter 232 may comprise a low pass filter (LPF). The amplifier 238 may be a power amplifier (PA).
  • The receive FE 212 x may comprise amplifiers 260 and 266, a mixer 264, a local oscillator (LO) 262, a filter 268, and an analog-to-digital converter (ADC) 270. The filter 268 may comprise a low pass filter (LPF). The amplifiers 260 and/or 266 may be, for example, low noise amplifiers (LNAs).
  • In operation, the transmit FE 210 may be utilized in handling signals transmitted wirelessly via corresponding antenna 220, to facilitated proper transmission thereby. In this regard, the digital-to-analog converter (DAC) 230 may receive digital signals from, for example, the signal processing module 206. The digital-to-analog converter (DAC) 230 may convert the digital signals to analog signals, and the analog signals may be communicated to the filter 232. The filter 232, which may be low pass filter (LPF), may attenuate frequencies above a determined frequency, while passing frequencies below the determined frequency. The filter 232 may also provide amplification to the filtered signal such that the amplitude of the output signal may have a gain with respect to the amplitude of the input signal. The output of the filter 232 may be communicated to the mixer 236. The mixer 236 may be an amplifying mixer that may up-convert the frequency of the input signal to generate an output signal. The output signal may also have an amplitude gain with respect to the amplitude of the input signal. The frequency of the output signal of the mixer 236 may depend on, for example, a frequency of a signal generated by the local oscillator (LO) 234. The output frequency may be a sum of the frequency of the signal from the filter 232 and the frequency of the signal from the local oscillator (LO) 234. The output of the mixer 236 may be communicated to the amplifier 238, which may generate an output signal that may have an amplitude gain with respect to the amplitude of the input signal. The amplifier 238 may be a power amplifier whose output may be transmitted by the antenna 201, for example.
  • The receive FE 212, may be utilized in handling signals received via corresponding antenna 222 x, to facilitated subsequent processing thereof, such as via the signals processing module 206, to enable extracting data carried thereby. In this regard, the amplifier 260, which may be a low noise amplifier (LNA), may amplify received RF signals from the antenna 222 x. The mixer 264 may be an amplifying mixer that may down-convert the frequency of the input signal to generate an output signal. The output signal may also have an amplitude gain with respect to the amplitude of the input signal. The frequency of the output signal of the mixer 264 may depend on, for example, a frequency of a signal generated by the local oscillator (LO) 262. The output frequency may be a difference of the frequency of the signal from the amplifier 260 and the frequency of the signal from the local oscillator (LO) 262. The output of the mixer 264 may be communicated to the amplifier 266, which may generate an output signal that may have an amplitude gain with respect to the amplitude of the input signal. The output of the amplifier 266 may be communicated to the filter 268. The filter 268 may attenuate frequencies above a determined frequency, while passing frequencies below the determined frequency. The filter 268 may also provide amplification to the filtered signal such that the amplitude of the output signal may have a gain with respect to the amplitude of the input signal. The output of the filter 268 may be communicated to the analog-to-digital converter (ADC) 270. The analog-to-digital converter (ADC) 270 may convert the analog signals to digital signals by periodically sampling the analog signals. The output of the analog-to-digital converter (ADC) 270 may be communicated, for example, to the signal processing module 206 for further processing.
  • In an exemplary aspect of the invention, various components of the transmit FE 210 and/or the receive FE 212 x may be adaptively controlled, and/or their operations may be adjusted. For example, gain of the amplifiers 260 and 266, as well as the mixer 264 and the filter 268 of the receive FE 212 x may be set and/or adjusted up or down, to provide appropriate signal levels at each block, for enabling or blocking handling of particular signals at that block. The frequency of the signal generated by the local oscillator (LO) 262 may also be controlled to enable adjusting and/or controlling the signals outputted by mixer 264—e.g., to generate an output with a constant frequency as the frequency of the signal from the amplifier 260 varies. This may allow the electronic device 200 to tune to different channels, or frequencies. Similarly, gain of the amplifier 238, as well as the mixer 236 and the filter 232 may be set and/or adjusted up or down to provide appropriate signal levels at each block, for enabling or blocking handling of particular signals at that block. Also, the frequency of the signal generated by the local oscillator (LO) 234 may also be controlled so that the mixer 236 may generate a particular desired output frequency for transmission.
  • In an embodiment of the invention, the adaptive control of the transmit FE 210 and/or the receive FE 212 x, and/or their components, and/or the adjustment of operations thereof, may be utilized to enable adaptive power autoscaling operations in the electronic device 200. In this regard, the ability to control various parameters for the receive FE 212 x and/or the transmitter 210 may be useful in instances when different transmit power and/or different reception sensitivities are desired. Accordingly, gain for the various components in the receive FE 212 x and/or the transmit FE 210 may be adjusted to use particular transmit power level, during transmission operations, and/or to be optimized for particular power levels when handling received signals.
  • In an embodiment of the invention, the configuring may be performed by use of control signals (shown in FIG. 3B as Tx_Ctrl_Data and Rx_Ctrl_Data) which may specify particular changes to the receive FE 212 x and/or the transmitter 210, or any components thereof, to achieved optimized transmission and/or reception power consumption. In this regard, the electronic device 200 may maintain a data structure that may specify the particular required adjustment corresponding to particular transmission power level and/or reception sensitivity.
  • FIG. 3A is a block diagram illustrating an exemplary implementation of the OSI model within an electronic device that may support adaptive power autoscaling, in accordance with an embodiment of the invention. Referring to FIG. 3A, there is shown the device 200 of FIG. 2A.
  • The device 200 may be operable and/or configured to incorporate an OSI-mode-based implementation in accordance with, for example, the protocol described in the above-incorporated U.S. Provisional Patent Application having Ser. No. 61/464,376 and filed on Mar. 2, 2011. In this regard, the 7 OSI layers may be implemented via one or more physical components of the device 200. For example, the Physical (PHY) Layer (layer 1 of the OSI model) may be implemented via the transmit FE 210 and the receive FE 212 A-212 N; the Data Link Layer (layer 2 of the OSI model) and the Network Layer (layer 3 of the OSI model) may be implemented via the signal processing module 206; while the remaining layers, comprising the Transport Layer (layer 4 of the OSI model), the Session Layer (layer 5 of the OSI model), the Presentation Layer (layer 6 of the OSI model), and the Patent Application Layer (layer 7 of the OSI model) may be implemented via the main processor 202. In an exemplary embodiment, the main processor 202, the system memory 204, and the signal processing module 206 may be implemented in a first chip (e.g., a microcontroller) and the FEs 210, 212 A-212 N may be implemented in a second chip.
  • During communication from and/or to the device 200, the seven OSI layers may perform different functions and/or processes that may enable such communication, and/or enable controlling various aspects related thereto. In this regard, the OSI module implementation may typically be utilized in facilitating communication of data, which may comprise providing required header/footer encapsulation and/or stripping, with data being internally exchanged between the OSI layers, or the physical components in which they are implemented, via data buses for example. The handling of data (e.g. encapsulation or stripping) may require buffering of data by one or more OSI layers, as demonstrated by use of transmit/receive (Tx/Rx) buffers 310 in the Data Link Layer 304.
  • During control and/or configuration of the OSI model, the OSI layers may exchange information and/or signals enabling configuring and/or adjustment of functions and/or modules in the layers. For example, the Physical Layer 302 may provide to the Data Link Layer 304 various information, shown as PHY_Ctrl_Info, which may in turn enable configuring and controlling the Physical Layer 302 (e.g., via PHY_Config) by the Data Link Layer 304 (and by higher layers operating via the Data Link Layer 304). The PHY_Ctrl_Info may comprise status information relating to the Physical Layer 302, and/or to various functions or modules thereof. The PHY_Ctrl_Info may also comprise information obtained via the Physical Layer 302.
  • Similarly, the Data Link Layer 304 may provide to the higher OSI layers 306 with various information, shown as DL_Ctrl_Info, which enable configuring and controlling the Data Link Layer 304 (e.g., via DL_Config) by the higher OSI layers 306. The DL_Ctrl_Info may comprise status information relating to the Data Link Layer 304 (and Physical Layer 302), and/or to various functions or modules thereof. The DL_Ctrl_Info may also comprise information obtained via the Data Link Layer 304. Dedicated configuration registers, such as configuration registers 312 of the Data Link Layer 304 may be utilized to store and maintain parameters used in effectuating requested configurations and/or adjustments.
  • In an exemplary aspect of the invention, the OSI module implemented by the device 200 may be configured and/or adjusted to enable and/or support power autoscaling operations. In this regard, implementing adaptive power autoscaling in the OSI model may comprise adding new, dedicated functions and/or modules, and/or modifying or adjusting existing functions and/or modules performing operations that may affect power consumption in the device 200 during communication. FIG. 3C describes in more details an exemplary implementation of power autoscaling into the OSI model.
  • FIG. 3B is a block diagram illustrating exemplary structure of physical layer (PHY) packet carrying a data link layer frame, in accordance with an embodiment of the invention. Referring to FIG. 3B, there is shown an exemplary physical layer (PHY) packet carrying a data link layer frame, which may be structured in accordance with wireless protocols utilized by electronic devices that implement various aspects of the invention. Cross-referenced U.S. patent application Ser. No. 13/408,453 (Attorney Docket Number 24667US02), filed on Feb. 29, 2012, provides more details on the structures of exemplary PHY packets and/or data link layer frames.
  • The frame header may comprise a field (TxEIRP 320) indicating equivalent isotropic radiated power (EIRP) the transmitting device uses in transmitting the packet and frame. In other word, the TxEIRP field 320 embedded in the frame header provides the receiving device with information pertaining to the transmit power applied by the transmitting device. The TxEIRP field 320 may be utilized during power autoscaling operations, by enabling a receiving device to precisely determine the original transmit power for received signals being handled by the receiving device.
  • FIG. 3C is block diagram illustrating implementation of various aspect of the invention at different layers of the OSI model, in accordance with an embodiment of the invention. As shown in FIG. 3C, the device 200 may comprise various modules and/or processes that may be run in different layers of the OSI model, and may interact to facilitate performing various functions and/or operations of the device 200. For example, the device 200 may comprise a received signal strength indication (RSSI) module 330, which may operate at the Physical Layer (layer 1 of the OSI model); a link quality assessment module 340, which may operate at the Data Link Layer (layer 2 of the OSI model); and a power autoscaling module 350, which may operate at a higher layer, such as the Session Layer (layer 4 of the OSI model). The device 200 may also comprise a clear channel assessment (CCA) process 360, which may be implemented, accessible and/or executable by various modules and/or processes of one or more layers, such as the Physical Layer (layer 1 of the OSI model) and the Data Link Layer (layer 2 of the OSI model).
  • The RSSI module 330 may implement RSSI measurement operations, in which the strength of received signals may be determined, and reported as a value corresponding to particular relative level between the minimum and maximum values.
  • The link quality assessment module 340 may implement link quality assessment, during which certain checks are perform to determine whether a received frame (extracted from received packet) may be discarded, or processing of the frame is continued. In this regard, during link quality assessment, the TxEIRP field is extracted from the frame's header, and the value of detected RSSI for the frame is subtracted from the TxEIRP field to derive a corresponding link budget utilization value. If link quality filtering is enabled (e.g., by assertion of LQEN), the frame would be discarded and Data Link Layer processing of the received frame terminated when the derived link budget utilization value is greater than a particular link quality threshold (shown as LQthr).
  • The LQthr may be configurable. Setting LQthr to a relatively-high value may reduce power consumption because: the device may process fewer received packets (because they are dropped rather than being processed), the device may transmit fewer packets (because there are fewer successfully-received packets to respond to), and/or the average transmit power is lower (because responses are only being sent to devices which are reachable via a short/low-attenuation path). The value of LQthr may be configured based, for example, on one or more of: location of the device (e.g., determined by GPS and/or other wireless signals), type of device (e.g., whether the device is a laptop, a smartphone, or a battery-powered tag), power source of the device (e.g., plugged-in or running on battery), remaining battery charge, which particular and/or types of the devices are desired to be communicated with, and results of past communications (e.g., number of responses received to previous requests).
  • The clear channel assessment (CCA) process 360 may be run to ensure that a particular channel that may be utilized during communication (transmission or reception) may be clear for use. This determination may be based on particular, predetermined conditions. For example, certain channel classes utilized during communication by the device 200 in accordance with supported protocol may require use of a carrier sense multiple access (CSMA) prior to transmission of data over a channel. In certain instances, upper layers of the OSI module, particularly the Data Link Layer and Transport Layer, may execute processes that utilize CSMA and Collision Avoidance models (CSMA-CA), which may incorporate CCA process 360 to ensure that a particular channel being evaluated is clear for use. The CCA process 360 may determine the status of particular channel based on measure RSSI, obtained from the RSSI module 330, and based on a particular energy threshold, ECCA. In this regard, during CCA, the detected RSSI of the channel may be used to determine if it meets the following requirement in order for CCA to be declared successful: detected channel RSSI≤ECCA. The RSSI detection performed for CCA may have to meet particular precision criteria (e.g. be precise to within 6 dBm). The ECCA parameter may be provided by upper layers or configured as a default within the implementation of the Physical Layer.
  • The power autoscaling module 350 may be utilized to implement adaptive power autoscaling functionality and/or operations. In this regard, adaptive power autoscaling may comprise adaptively and/or dynamically adjusting power consumption associated with, and/or resulting from communication operations and/or processing in the device 200. Modifying power consumption and/or requirement may be, for example, performed by adjusting transmission power and minimum receive power thresholds. The power autoscaling module 350 may specify the transmit power levels, ramp-up/down steps, and/or idle intervals for use (e.g. via the Physical Layer) in controlling signal transmission. Exemplary receive power thresholds that may be set and/or adjusted via the power autoscaling module 350 may comprise the link quality threshold LQthr, which may be utilized in configuring and/or controlling link quality assessment; and the clear channel assessment energy threshold, ECCA, which may be utilized in controlling clear control assessment. In other words, the power autoscaling module 350 may adjust reception related power by configuring and/or modifying reception related thresholds, such as LQthr and ECCA. Modifying at least some of the receive power thresholds may depend on measurements relating to reception of signals (e.g., RSSI) and/or parameters obtained from frames carried by the received signals (e.g., TxEIRP). Use of adaptive power autoscaling may be optional. In this regard, the power autoscaling module 350 may be activated (and thus perform power autoscaling) by assertion of a particular control signal/input, shown here as APEN. Applying changes to transmission and/or reception operations, necessitated by modifications to communication related parameters or threshold (e.g., LQthr and ECCA) may be achieved by means of control signals (e.g. Tx_Ctrl_Data and Rx_Ctrl_Data of FIG. 3B), which may be used in controlling and/or configuring physical components utilized in such transmission and/or reception.
  • FIG. 4A is a flow chart that illustrates exemplary steps for supporting adaptive power autoscaling in an electronic device, in accordance with an embodiment of the invention. Referring to FIG. 4A, there is shown a flow chart 400 comprising a plurality of exemplary steps that may be performed by an electronic device, such as device 200, to enable adaptive power autoscaling in a resource-constrained network during communications therein.
  • In step 402, a determination whether adaptive autoscaling is enabled may be performed. In this regard, adaptive autoscaling may be enabled (or disabled) by asserting (or de-asserting) a control signal or control parameters (e.g. in register), such as PAEN, which may in turn activate corresponding function or module (e.g. power autoscaling module 350) for performing and/or managing power autoscaling operations. In instances where it may be determined that adaptive autoscaling is not enabled, the process may terminate.
  • Returning to step 402, in instances where it may be determined that adaptive autoscaling is enabled, the process may proceed to step 404. In step 404, the applicable power algorithm may be determined. In this regard, a plurality of algorithms for performing adaptive power autoscaling may be available for selection. The algorithms may comprise standard defined algorithms and/or proprietary algorithms. Each of the power autoscaling algorithms may define particular conditions for applying power scaling adjustments, and/or for each of such condition may define corresponding adjustments and/or configuration parameters that may cause modifications in power consumption, such as during transmit and/or receive operations. The electronic device 200 may maintain parameters for defining available algorithms. In this regard, each of available algorithms may be assigned a unique identifier, and a particular parameter may define which algorithm to select and/or particular condition for selecting each one of the available algorithm. This information may be maintained as part of a control database in the electronic device 200. Different algorithms may be selected based, for example, on one or more of: location of the device (e.g., determined by GPS and/or other wireless signals), type of device (e.g., whether the device is a laptop, a smartphone, or a battery-powered tag), power source of the device (e.g., plugged-in or running on battery), remaining charge in a battery of the device, which particular and/or types of the devices are desired to be communicated with, and results of past communications (e.g., number of responses received to previous requests). In step 406, the selected algorithm may be applied.
  • FIG. 4B is a flow chart that illustrates exemplary steps for performing clear channel assessment using thresholds configured based on adaptive autoscaling to adjust reception sensitivity, in accordance with an embodiment of the invention. Referring to FIG. 4B, there is shown a flow chart 430 comprising a plurality of exemplary steps for performing clear channel assessment, which may be performed in an electronic device, such as device 200.
  • In step 432, the received signal strength indication (RSSI) may be determined. In step 434, a determination whether the RSSI is less than or equal to the clear channel energy threshold (ECCA) may be performed. In this regard, the ECCA threshold may be utilized to control transmission and/or reception with respect to particular channel based on specific energy level associated with that particular channel. In instances where it may be determined that the RSSI is less than or equal to ECCA, the process may proceed to step 436. In step 436, transmission and/or reception operations may be configured in accordance with the condition that RSSI≤ECCA. Particularly, on the transmit (Tx) side, under such condition the corresponding channel may be utilized for transmitting signals. The use of the channel may be done after a brief wait and a recheck of the condition (i.e., step 434). On the reception (Rx) side, under such condition packet/frames carried via received signals may be dropped. In other words, when the RSSI is less than or equal to ECCA, the signal is perceived as being too low to be reliable, and packets/frames carried via such signal are discarded.
  • Returning to step 434, in instances where it may be determined that the RSSI is greater than ECCA, the process may proceed to step 438. In step 438, transmission and/or reception operations may be configured in accordance with the condition that RSSI>ECCA. Particularly, on the transmit (Tx) side, under such condition, the corresponding channel may be deemed as not clear, and as such is unsuited for transmitting signals. On the reception (Rx) side, under such condition, handling and/or processing of packet/frames carried via received signals may proceed. In other words, when the RSSI is greater than ECCA, the signal is perceived to be sufficiently reliable, and packets/frames carried via such signal may be processed.
  • In an embodiment of the invention, the value of the ECCA threshold may be adjusted in accordance with applicable power autoscaling operations. In this regard, adjusting the ECCA threshold may modify reception sensitivity—that is setting the ECCA threshold lower would enable handling ‘weak’ signals whereas setting the ECCA threshold to higher value would cause the electronic device to ignore stronger signals. The ECCA threshold may also be adjusted to modify transmission sensitivity—that is setting the ECCA threshold lower may cause the electronic device to determine that a channel is unsuited for transmission whereas setting the ECCA threshold to higher value would allow the electronic device to use that channel. Because ECCA threshold affects both signal reception and transmission, different thresholds for transmission and reception (e.g., Tx_ECCA and Rx_ECCA) may be used to ensure that a particular effect on one side (e.g. reception) would not cause an unintended effect on the other side (e.g. transmission).
  • FIG. 4C is a flow chart that illustrates exemplary steps for performing link quality assessment using thresholds configured based on adaptive autoscaling to adjust reception sensitivity, in accordance with an embodiment of the invention. Referring to FIG. 4C, there is shown a flow chart 460 comprising a plurality of exemplary steps for performing link quality assessment, which may be performed in an electronic device, such as device 200.
  • In step 462, a determination whether link quality assessment is enabled may be performed. In this regard, link quality assessment may be enabled (or disabled) by asserting (or de-asserting) a control signal or control parameters (e.g. in register), such as LQEN, which may in turn activate corresponding function or module (e.g. link quality assessment module 340) for performing and/or managing power autoscaling operations. In instances where it may be determined that link quality assessment is not enabled the process may terminate.
  • Returning to step 462, in instances where it may be determined that link quality assessment is enabled the process may proceed to step 464. In step 464, a determination whether a received (data link) frame comprises a TxEIRP field may be performed. In this regard, the TxEIRP field may indicate the equivalent isotropic radiated power (EIRP)—i.e., power—that the transmitting device originally utilized in transmitting the packet (or frame) which is being handled by the receiving device. In instances where it may be determined that the received frame does not comprise the TxEIRP field the process may terminate.
  • Returning to step 464, in instances where it may be determined that the received frame comprises the TxEIRP field the process may proceed to step 466. In step 466, the TxEIRP field (or value thereof) may be extracted. In step 468, the received signal strength indication (RSSI) may be determined. In this regard, the RSSI may measure the strength of the signal(s) carrying the packet that comprise the frame in question, as determined by the receiving device. In step 470, the link budget utilization value may be determined, by subtracting the measured RSSI value from the extracted TxEIRP. In other words, the link budget utilization value may correspond to the loss of power during communication of the signals carrying the packet (frame) between the transmitting device and the receiving device. In step 472, it may be determined whether the calculated link budget utilization value is less than a particular link quality threshold. In this regard, the link quality threshold LQthr may be configurable value. Specifically, the LQthr parameter may be set and/or adjusted during adaptive power autoscaling, to enable modifying signal reception sensitivity in the device 200. The value of the LQthr threshold, and/or any adjustment thereof, may be dictated by the applicable power autoscaling algorithm. In instances where it may be determined that the link budget utilization value is less than the link quality threshold (LQthr), the process may proceed to step 474, enabling handling and/or processing of the frame to continue. Returning to 472, in instances where it may be determined that the link budget utilization value is not less than the link quality threshold (LQthr), the process may proceed to step 476, where handling and/or processing of the frame may be stopped and the frame may be discard.
  • Adjusting the LQthr threshold may modify reception sensitivity. In this regard, when the LQthr threshold is set to a low value, received signals communicated over links having high link budget value (i.e. large power loss) may be perceived (the signal) as being sufficiently unreliable, and packets/frames carried via such signal may be discarded; whereas when the LQthr threshold is set to a high value, received signals communicated over links having low link budget value (i.e. small power loss) may perceived as being sufficiently reliable, and packets/frames carried via such signals are processed. In an embodiment of the invention, the value of the LQthr threshold may be adjusted in accordance with applicable power autoscaling operations. In this regard, adjusting the LQthr threshold may enable modifying reception sensitivity—that is setting the LQthr threshold to a high value would enable handling and/or processing packets/framed carried via signal communicated over a link having a particular link budget value (power loss) whereas packets/frames, carried via similar signals communicated over link with similar link budget value would be discarded when the LQthr threshold is decreased.
  • Other embodiments of the invention may provide a non-transitory computer readable medium and/or storage medium, and/or a non-transitory machine readable medium and/or storage medium, having stored thereon, a machine code and/or a computer program having at least one code section executable by a machine and/or a computer, thereby causing the machine and/or computer to perform the steps as described herein for power autoscaling in a resource-constrained network.
  • Accordingly, the present invention may be realized in hardware, software, or a combination of hardware and software. The present invention may be realized in a centralized fashion in at least one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
  • The present invention may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which when loaded in a computer system is able to carry out these methods. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.
  • While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.

Claims (20)

What is claimed is:
1. A method, comprising:
adaptively managing power consumption of an electronic device by adaptively adjusting transmit power used during transmission of signals by said electronic device, wherein:
said adaptive adjusting is based on received signal strength of a received frame and based on a power at which said received frame was transmitted; and
said power at which said received frame was transmitted is embedded in said received frame.
2. The method of claim 1, wherein said power at which said received frame was transmitted is embedded in said received frame as an equivalent isotropic radiated power (EIRP) value.
3. The method of claim 1, comprising adjusting said transmit power used during transmission of signals by said electronic device based on a determination of a desired maximum communication range and/or a particular target peer device.
4. The method of claim 3, comprising determining said desired maximum communication based on power loss associated with communication of said received frame.
5. The method of claim 4, comprising determining said power loss associated with communication of said received frame based on difference between said received signal strength of said received frame and said power at which said received frame was transmitted.
6. The method of claim 1, comprising selectively activating or deactivating said adaptive power management.
7. The method of claim 1, comprising applying said adaptive power management in accordance with a particular algorithm selected from a plurality of available algorithms, said plurality of available algorithms comprise standard based algorithms and/or proprietary algorithms.
8. A method, comprising:
adaptively managing power consumption of an electronic device by adaptively adjusting reception sensitivity applicable during reception of signals by said electronic device, wherein:
said adaptive adjusting is based on received signal strength of a received frame and based on a power at which said received frame was transmitted;
said power at which said received frame was transmitted is embedded in said received frame; and
said reception sensitivity adaptively controls terminating processing of or discarding of said received frame.
9. The method of claim 8, wherein said power at which said received frame was transmitted is embedded in said received frame as an equivalent isotropic radiated power (EIRP) value.
10. The method of claim 8, comprising adaptively adjusting said reception sensitivity of said electronic device by adaptively adjusting one or more power-related thresholds used during reception of signals by said electronic device.
11. The method of claim 10, comprising adjusting said one or more power-related thresholds based on a location of said electronic device.
12. The method of claim 10, wherein said one or more power-related thresholds comprise a threshold for controlling Carrier Sense Multiple Access (CSMA) based operations in said electronic device, said threshold being compared to received signal strength indication (RSSI) detected by said electronic device.
13. The method of claim 10, wherein said one or more power-related thresholds comprise a threshold for controlling link quality, said controlling comprising discarding frames carried via received signals based on comparison of link utilization with said link quality threshold.
14. The method of claim 8, comprising selectively activating or deactivating said adaptive power management.
15. The method of claim 8, comprising applying said adaptive power management in accordance with a particular algorithm selected from a plurality of available algorithms, said plurality of available algorithms comprise standard based algorithms and/or proprietary algorithms.
16. A system, comprising:
an electronic device operable to adaptively manage its power consumption by adjusting transmit power used during transmission of signals by said electronic device and/or by adjusting reception sensitivity applicable during reception of signals by said electronic device, wherein:
said adaptive adjusting is based on received signal strength of a received frame and based on a power at which said received frame was transmitted; and
said power at which said received frame was transmitted is embedded in said received frame.
17. The system of claim 16, wherein said power at which said received frame was transmitted is embedded in said received frame as an equivalent isotropic radiated power (EIRP) value.
18. The system of claim 16, wherein said electronic device is operable to adjust said transmit power based on determination of a desired maximum communication range and/or a particular target peer device.
19. The system of claim 18, wherein said electronic device is operable to adjust said transmit power based on a difference between said received signal strength of said received frame and said power at which said received frame was transmitted.
20. The system of claim 16, wherein said electronic device is operable to adaptively adjust said reception sensitivity of said electronic device by adaptively adjusting one or more power-related thresholds used during reception of signals by said electronic device.
US15/954,977 2011-03-02 2018-04-17 Method and apparatus for power autoscaling in a resource-constrained network Abandoned US20180242262A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US201161464376P true 2011-03-02 2011-03-02
US13/408,466 US9154392B2 (en) 2011-03-02 2012-02-29 Method and apparatus for power autoscaling in a resource-constrained network
US201514874808A true 2015-10-05 2015-10-05
US15/002,427 US20160157186A1 (en) 2011-03-02 2016-01-21 Method and apparatus for power autoscaling in a resource-constrained network
US15/162,786 US20160270004A1 (en) 2011-03-02 2016-05-24 Method and apparatus for power autoscaling in a resource-constrained network
US15/400,249 US20170118723A1 (en) 2011-03-02 2017-01-06 Method and apparatus for power autoscaling in a resource-constrained network
US15/680,660 US20170374627A1 (en) 2011-03-02 2017-08-18 Method and apparatus for power autoscaling in a resource-constrained network
US15/954,977 US20180242262A1 (en) 2011-03-02 2018-04-17 Method and apparatus for power autoscaling in a resource-constrained network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/954,977 US20180242262A1 (en) 2011-03-02 2018-04-17 Method and apparatus for power autoscaling in a resource-constrained network
US16/220,194 US20190132811A1 (en) 2011-03-02 2018-12-14 Method and apparatus for power autoscaling in a resource-constrained network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/680,660 Continuation US20170374627A1 (en) 2011-03-02 2017-08-18 Method and apparatus for power autoscaling in a resource-constrained network

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/220,194 Continuation US20190132811A1 (en) 2011-03-02 2018-12-14 Method and apparatus for power autoscaling in a resource-constrained network

Publications (1)

Publication Number Publication Date
US20180242262A1 true US20180242262A1 (en) 2018-08-23

Family

ID=46753245

Family Applications (38)

Application Number Title Priority Date Filing Date
US13/408,464 Active 2032-06-18 US8885586B2 (en) 2011-03-02 2012-02-29 Method and apparatus for query-based congestion control
US13/408,466 Active 2032-10-14 US9154392B2 (en) 2010-11-04 2012-02-29 Method and apparatus for power autoscaling in a resource-constrained network
US13/408,461 Active 2033-04-20 US9497715B2 (en) 2011-03-02 2012-02-29 Method and apparatus for addressing in a resource-constrained network
US13/408,440 Abandoned US20120226955A1 (en) 2011-03-02 2012-02-29 Method and apparatus for forward error correction (fec) in a resource-constrained network
US13/408,447 Active 2032-08-26 US8867370B2 (en) 2011-03-02 2012-02-29 Method and apparatus for adaptive traffic management in a resource-constrained network
US13/408,457 Active 2032-08-29 US8774096B2 (en) 2011-03-02 2012-02-29 Method and apparatus for rapid group synchronization
US13/408,453 Active 2032-09-03 US9191340B2 (en) 2011-03-02 2012-02-29 Method and apparatus for dynamic media access control in a multiple access system
US14/324,411 Active US9166894B2 (en) 2011-03-02 2014-07-07 Method and apparatus for rapid group synchronization
US14/519,381 Active US9325634B2 (en) 2011-03-02 2014-10-21 Method and apparatus for adaptive traffic management in a resource-constrained network
US14/537,178 Active US9414342B2 (en) 2011-03-02 2014-11-10 Method and apparatus for query-based congestion control
US14/886,151 Abandoned US20160044614A1 (en) 2011-03-02 2015-10-19 Method and apparatus for rapid group synchronization
US15/002,427 Abandoned US20160157186A1 (en) 2010-11-04 2016-01-21 Method and apparatus for power autoscaling in a resource-constrained network
US15/012,888 Abandoned US20160150538A1 (en) 2011-03-02 2016-02-02 Method and apparatus for rapid group synchronization
US15/157,445 Abandoned US20160270011A1 (en) 2011-03-02 2016-05-18 Method and apparatus for rapid group synchronization
US15/162,786 Abandoned US20160270004A1 (en) 2010-11-04 2016-05-24 Method and apparatus for power autoscaling in a resource-constrained network
US15/173,790 Abandoned US20160285719A1 (en) 2011-03-02 2016-06-06 Method and apparatus for adaptive traffic management in a resource- constrained network
US15/200,265 Abandoned US20170034852A1 (en) 2011-03-02 2016-07-01 Method and apparatus for dynamic media access control in a multiple access system
US15/231,098 Abandoned US20170034732A1 (en) 2011-03-02 2016-08-08 Method and apparatus for query-based congestion control
US15/350,517 Abandoned US20170064050A1 (en) 2011-03-02 2016-11-14 Method and apparatus for addressing in a resource-constrained network
US15/399,251 Abandoned US20170118732A1 (en) 2011-03-02 2017-01-05 Method and apparatus for rapid group synchronization
US15/400,249 Abandoned US20170118723A1 (en) 2010-11-04 2017-01-06 Method and apparatus for power autoscaling in a resource-constrained network
US15/411,041 Abandoned US20170134252A1 (en) 2011-03-02 2017-01-20 Method and apparatus for adaptive traffic management in a resource- constrained network
US15/630,440 Abandoned US20170289320A1 (en) 2011-03-02 2017-06-22 Method and apparatus for addressing in a resource-constrained network
US15/679,798 Abandoned US20170347330A1 (en) 2011-03-02 2017-08-17 Method and apparatus for rapid group synchronization
US15/680,660 Abandoned US20170374627A1 (en) 2011-03-02 2017-08-18 Method and apparatus for power autoscaling in a resource-constrained network
US15/691,146 Abandoned US20170366431A1 (en) 2011-03-02 2017-08-30 Method and apparatus for adaptive traffic management in a resource- constrained network
US15/880,833 Abandoned US20180152547A1 (en) 2011-03-02 2018-01-26 Method and apparatus for addressing in a resource-constrained network
US15/906,216 Abandoned US20180191875A1 (en) 2011-03-02 2018-02-27 Method and apparatus for query-based congestion control
US15/928,495 Abandoned US20180213496A1 (en) 2011-03-02 2018-03-22 Method and apparatus for rapid group synchronization
US15/949,823 Abandoned US20180234314A1 (en) 2011-03-02 2018-04-10 Method and apparatus for adaptive traffic management in a resource- constrained network
US15/954,977 Abandoned US20180242262A1 (en) 2011-03-02 2018-04-17 Method and apparatus for power autoscaling in a resource-constrained network
US16/038,430 Abandoned US20180324725A1 (en) 2011-03-02 2018-07-18 Method and apparatus for dynamic media access control in a multiple access system
US16/137,755 Abandoned US20190028979A1 (en) 2011-03-02 2018-09-21 Method and apparatus for addressing in a resource-constrained network
US16/171,993 Pending US20190069254A1 (en) 2011-03-02 2018-10-26 Method and apparatus for query-based congestion control
US16/193,546 Pending US20190090211A1 (en) 2011-03-02 2018-11-16 Method and apparatus for rapid group synchronization
US16/213,050 Pending US20190116566A1 (en) 2011-03-02 2018-12-07 Method and apparatus for adaptive traffic management in a resource- constrained network
US16/220,194 Pending US20190132811A1 (en) 2011-03-02 2018-12-14 Method and apparatus for power autoscaling in a resource-constrained network
US16/290,605 Pending US20190200310A1 (en) 2011-03-02 2019-03-01 Method and apparatus for dynamic media access control in a multiple access system

Family Applications Before (30)

Application Number Title Priority Date Filing Date
US13/408,464 Active 2032-06-18 US8885586B2 (en) 2011-03-02 2012-02-29 Method and apparatus for query-based congestion control
US13/408,466 Active 2032-10-14 US9154392B2 (en) 2010-11-04 2012-02-29 Method and apparatus for power autoscaling in a resource-constrained network
US13/408,461 Active 2033-04-20 US9497715B2 (en) 2011-03-02 2012-02-29 Method and apparatus for addressing in a resource-constrained network
US13/408,440 Abandoned US20120226955A1 (en) 2011-03-02 2012-02-29 Method and apparatus for forward error correction (fec) in a resource-constrained network
US13/408,447 Active 2032-08-26 US8867370B2 (en) 2011-03-02 2012-02-29 Method and apparatus for adaptive traffic management in a resource-constrained network
US13/408,457 Active 2032-08-29 US8774096B2 (en) 2011-03-02 2012-02-29 Method and apparatus for rapid group synchronization
US13/408,453 Active 2032-09-03 US9191340B2 (en) 2011-03-02 2012-02-29 Method and apparatus for dynamic media access control in a multiple access system
US14/324,411 Active US9166894B2 (en) 2011-03-02 2014-07-07 Method and apparatus for rapid group synchronization
US14/519,381 Active US9325634B2 (en) 2011-03-02 2014-10-21 Method and apparatus for adaptive traffic management in a resource-constrained network
US14/537,178 Active US9414342B2 (en) 2011-03-02 2014-11-10 Method and apparatus for query-based congestion control
US14/886,151 Abandoned US20160044614A1 (en) 2011-03-02 2015-10-19 Method and apparatus for rapid group synchronization
US15/002,427 Abandoned US20160157186A1 (en) 2010-11-04 2016-01-21 Method and apparatus for power autoscaling in a resource-constrained network
US15/012,888 Abandoned US20160150538A1 (en) 2011-03-02 2016-02-02 Method and apparatus for rapid group synchronization
US15/157,445 Abandoned US20160270011A1 (en) 2011-03-02 2016-05-18 Method and apparatus for rapid group synchronization
US15/162,786 Abandoned US20160270004A1 (en) 2010-11-04 2016-05-24 Method and apparatus for power autoscaling in a resource-constrained network
US15/173,790 Abandoned US20160285719A1 (en) 2011-03-02 2016-06-06 Method and apparatus for adaptive traffic management in a resource- constrained network
US15/200,265 Abandoned US20170034852A1 (en) 2011-03-02 2016-07-01 Method and apparatus for dynamic media access control in a multiple access system
US15/231,098 Abandoned US20170034732A1 (en) 2011-03-02 2016-08-08 Method and apparatus for query-based congestion control
US15/350,517 Abandoned US20170064050A1 (en) 2011-03-02 2016-11-14 Method and apparatus for addressing in a resource-constrained network
US15/399,251 Abandoned US20170118732A1 (en) 2011-03-02 2017-01-05 Method and apparatus for rapid group synchronization
US15/400,249 Abandoned US20170118723A1 (en) 2010-11-04 2017-01-06 Method and apparatus for power autoscaling in a resource-constrained network
US15/411,041 Abandoned US20170134252A1 (en) 2011-03-02 2017-01-20 Method and apparatus for adaptive traffic management in a resource- constrained network
US15/630,440 Abandoned US20170289320A1 (en) 2011-03-02 2017-06-22 Method and apparatus for addressing in a resource-constrained network
US15/679,798 Abandoned US20170347330A1 (en) 2011-03-02 2017-08-17 Method and apparatus for rapid group synchronization
US15/680,660 Abandoned US20170374627A1 (en) 2011-03-02 2017-08-18 Method and apparatus for power autoscaling in a resource-constrained network
US15/691,146 Abandoned US20170366431A1 (en) 2011-03-02 2017-08-30 Method and apparatus for adaptive traffic management in a resource- constrained network
US15/880,833 Abandoned US20180152547A1 (en) 2011-03-02 2018-01-26 Method and apparatus for addressing in a resource-constrained network
US15/906,216 Abandoned US20180191875A1 (en) 2011-03-02 2018-02-27 Method and apparatus for query-based congestion control
US15/928,495 Abandoned US20180213496A1 (en) 2011-03-02 2018-03-22 Method and apparatus for rapid group synchronization
US15/949,823 Abandoned US20180234314A1 (en) 2011-03-02 2018-04-10 Method and apparatus for adaptive traffic management in a resource- constrained network

Family Applications After (7)

Application Number Title Priority Date Filing Date
US16/038,430 Abandoned US20180324725A1 (en) 2011-03-02 2018-07-18 Method and apparatus for dynamic media access control in a multiple access system
US16/137,755 Abandoned US20190028979A1 (en) 2011-03-02 2018-09-21 Method and apparatus for addressing in a resource-constrained network
US16/171,993 Pending US20190069254A1 (en) 2011-03-02 2018-10-26 Method and apparatus for query-based congestion control
US16/193,546 Pending US20190090211A1 (en) 2011-03-02 2018-11-16 Method and apparatus for rapid group synchronization
US16/213,050 Pending US20190116566A1 (en) 2011-03-02 2018-12-07 Method and apparatus for adaptive traffic management in a resource- constrained network
US16/220,194 Pending US20190132811A1 (en) 2011-03-02 2018-12-14 Method and apparatus for power autoscaling in a resource-constrained network
US16/290,605 Pending US20190200310A1 (en) 2011-03-02 2019-03-01 Method and apparatus for dynamic media access control in a multiple access system

Country Status (2)

Country Link
US (38) US8885586B2 (en)
WO (7) WO2012119028A2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9042353B2 (en) 2010-10-06 2015-05-26 Blackbird Technology Holdings, Inc. Method and apparatus for low-power, long-range networking
US8976691B2 (en) 2010-10-06 2015-03-10 Blackbird Technology Holdings, Inc. Method and apparatus for adaptive searching of distributed datasets
US8718551B2 (en) 2010-10-12 2014-05-06 Blackbird Technology Holdings, Inc. Method and apparatus for a multi-band, multi-mode smartcard
US8622312B2 (en) 2010-11-16 2014-01-07 Blackbird Technology Holdings, Inc. Method and apparatus for interfacing with a smartcard
WO2012100145A1 (en) 2011-01-21 2012-07-26 Blackbird Technology Holdings, Inc. Method and apparatus for memory management
US8909865B2 (en) 2011-02-15 2014-12-09 Blackbird Technology Holdings, Inc. Method and apparatus for plug and play, networkable ISO 18000-7 connectivity
US8885586B2 (en) 2011-03-02 2014-11-11 Blackbird Technology Holdings, Inc. Method and apparatus for query-based congestion control
US8929961B2 (en) 2011-07-15 2015-01-06 Blackbird Technology Holdings, Inc. Protective case for adding wireless functionality to a handheld electronic device
US9363707B2 (en) * 2011-12-29 2016-06-07 Qualcomm Incorporated Systems and methods for generating and decoding short control frames in wireless communications
US20130223211A1 (en) 2012-02-29 2013-08-29 Qualcomm Incorporated Apparatus and methods for block acknowledgment compression
US8909267B2 (en) * 2012-04-19 2014-12-09 Telefonaktiebolaget L M Ericsson (Publ) Energy-efficient detection of network connection requests
US20140064169A1 (en) * 2012-09-05 2014-03-06 Qualcomm Incorporated Duty cycled transmissions
US8873691B2 (en) * 2012-09-10 2014-10-28 Broadcom Corporation Generating codes for sync words to avoid cyclic collision
US10039073B2 (en) * 2013-01-03 2018-07-31 Qualcomm Incorporated Method for determining location of wireless devices
US9614935B2 (en) 2013-03-15 2017-04-04 Qualcomm Incorporated Protected control frames
US9781627B2 (en) 2013-04-08 2017-10-03 Qualcomm Incorporated Systems and methods for generating and decoding short control frames in wireless communications
EP2984851B1 (en) * 2013-05-03 2017-04-26 Huawei Technologies Co., Ltd. Burst marker scheme in a communication system
EP3029869A4 (en) * 2013-07-30 2017-03-22 Sony Corporation Information processing device, information processing method, and program
JP6483692B2 (en) * 2014-01-29 2019-03-13 エルジー エレクトロニクス インコーポレイティド Method and apparatus for configuring the mac pdu for D2d communication system
CA2938904A1 (en) * 2014-02-06 2015-08-13 Brett Shellhammer System, methods, and devices for addressed data communications
CN105210349B (en) * 2014-03-27 2017-03-29 三菱电机株式会社 The wireless communication quality information processing apparatus and a communication system
US9743363B2 (en) 2014-06-24 2017-08-22 Qualcomm Incorporated CCA clearance in unlicensed spectrum
US9699795B2 (en) * 2014-07-07 2017-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for primary channel detection
US10182413B2 (en) 2014-07-30 2019-01-15 Qualcomm Incorporated Wireless positioning using scheduled transmissions
US9973319B2 (en) * 2014-11-21 2018-05-15 Mediatek Inc. Network Allocation Vector Improvement for Wireless Networks
US20180054693A1 (en) * 2015-02-26 2018-02-22 Samsung Electronics Co., Ltd. Method for discriminating between unicast device to device(d2d) communication and groupcast d2d communication
US9629109B2 (en) * 2015-04-28 2017-04-18 Landis+Gyr Innovations, Inc. Techniques for optimizing network event timers
US9947196B2 (en) 2015-04-29 2018-04-17 Senaya, Inc. Wireless asset tracking systems with heterogeneous communication
US20160344619A1 (en) * 2015-05-20 2016-11-24 Qualcomm Incorporated Supporting packet query-response transactions at lower layer
US20170018924A1 (en) * 2015-07-13 2017-01-19 Power Over Time, Inc. Systems and methods for reducing an electric utility reserve capacity using instrumented energy consuming devices
US10055500B2 (en) * 2015-10-27 2018-08-21 International Business Machines Corporation Optimizing searches
US9801187B1 (en) * 2015-11-05 2017-10-24 Sprint Spectrum L.P. Method and apparatus for controlling channel occupancy based on energy-level-coded quality of service indicia
JP2017118285A (en) * 2015-12-24 2017-06-29 カシオ計算機株式会社 Communication apparatus, communication system, communication method, and program
US10116377B2 (en) 2016-01-06 2018-10-30 Google Llc Dynamic forward error correction bypass in a digital communications system
US20170222686A1 (en) 2016-02-01 2017-08-03 Qualcomm Incorporated Scalable, high-efficiency, high-speed serialized interconnect
US20170220517A1 (en) * 2016-02-01 2017-08-03 Qualcomm Incorporated Unidirectional clock signaling in a high-speed serial link
US10159053B2 (en) 2016-02-02 2018-12-18 Qualcomm Incorporated Low-latency low-uncertainty timer synchronization mechanism across multiple devices
US10145691B2 (en) * 2016-05-18 2018-12-04 Here Global B.V. Ambiguity map match rating
TWI601387B (en) * 2016-06-22 2017-10-01 Mstar Semiconductor Inc Decoding apparatus and decoding method including error correction process
US9907047B1 (en) 2016-08-30 2018-02-27 Qualcomm Incorporated Passive positioning procedure and use of single burst ASAP FTM sessions

Family Cites Families (246)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714559B1 (en) 1991-12-04 2004-03-30 Broadcom Corporation Redundant radio frequency network having a roaming terminal communication protocol
US6389010B1 (en) 1995-10-05 2002-05-14 Intermec Ip Corp. Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
US5485486A (en) * 1989-11-07 1996-01-16 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
JP2791236B2 (en) * 1991-07-25 1998-08-27 三菱電機株式会社 Protocol parallel processing device
US5338625A (en) 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
US5551018A (en) 1993-02-02 1996-08-27 Borland International, Inc. Method of storing national language support text by presorting followed by insertion sorting
US5465398A (en) * 1993-10-07 1995-11-07 Metricom, Inc. Automatic power level control of a packet communication link
US5959980A (en) 1995-06-05 1999-09-28 Omnipoint Corporation Timing adjustment control for efficient time division duplex communication
US6665308B1 (en) 1995-08-25 2003-12-16 Terayon Communication Systems, Inc. Apparatus and method for equalization in distributed digital data transmission systems
US5729557A (en) 1995-10-12 1998-03-17 Pacific Communication Systems, Inc. Cellular communication system with multiple code rates
US5959281A (en) 1997-02-07 1999-09-28 Lulirama International, Inc. Interactive card reading system
US6115379A (en) 1997-09-11 2000-09-05 3Com Corporation Unicast, multicast, and broadcast method and apparatus
JPH11163947A (en) * 1997-09-22 1999-06-18 Toshiba Corp Gateway device, radio terminal, router device and gateway control method for communication network
US6700881B1 (en) * 1998-03-02 2004-03-02 Samsung Electronics Co., Ltd. Rate control device and method for CDMA communication system
US7466703B1 (en) * 1998-05-01 2008-12-16 Alcatel-Lucent Usa Inc. Scalable high speed router apparatus
US6607136B1 (en) 1998-09-16 2003-08-19 Beepcard Inc. Physical presence digital authentication system
KR100309527B1 (en) * 1998-07-13 2001-11-01 윤종용 Apparatus and method for controlling power of reverse common channel in cdma communication system
US6381243B1 (en) 1998-09-18 2002-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Determining time slot delay for ATM transmission
US6996088B1 (en) 1998-09-18 2006-02-07 Harris Corporation Distributed trunking mechanism for VHF networking
US6408387B1 (en) 1999-01-22 2002-06-18 Intel Corporation Preventing unauthorized updates to a non-volatile memory
US6549959B1 (en) 1999-08-30 2003-04-15 Ati International Srl Detecting modification to computer memory by a DMA device
US6356442B1 (en) 1999-02-04 2002-03-12 Palm, Inc Electronically-enabled encasement for a handheld computer
JP2000353143A (en) 1999-04-08 2000-12-19 Seiko Epson Corp Method and device for retrieving node on network and recording medium recording program for searching node
US6334047B1 (en) * 1999-04-09 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power control in a mobile radio communications system
US6330700B1 (en) 1999-05-18 2001-12-11 Omnipoint Corporation Out-of-band forward error correction
JP4374725B2 (en) * 1999-09-22 2009-12-02 パナソニック株式会社 Communication method and the communication station
US7702831B2 (en) 2000-01-06 2010-04-20 Super Talent Electronics, Inc. Flash memory controller for electronic data flash card
JP2001148650A (en) 1999-11-19 2001-05-29 Sanyo Electric Co Ltd Radio base station
US6307846B1 (en) 2000-02-24 2001-10-23 Motorola, Inc. Method and system in wireless communication system for scheduling messages to reduce the quick paging channel peak power level
US6424301B1 (en) 2000-03-01 2002-07-23 Siemens Vdo Automotive Corporation Combination battery holder and antenna for keyfob
JP3738205B2 (en) * 2000-08-12 2006-01-25 三星電子株式会社Samsung Electronics Co.,Ltd. Transmit power optimization apparatus and method of network
JP3899505B2 (en) 2000-08-30 2007-03-28 オムロン株式会社 The wireless device
US7698463B2 (en) 2000-09-12 2010-04-13 Sri International System and method for disseminating topology and link-state information to routing nodes in a mobile ad hoc network
US6525928B1 (en) 2000-09-20 2003-02-25 3Com Corporation Case with communication module having a latching connector for a handheld computer system
US6748215B1 (en) 2000-09-29 2004-06-08 Qualcomm, Incorporated Method and apparatus for performing a candidate frequency search in a wireless communication system
JP3943824B2 (en) * 2000-10-31 2007-07-11 株式会社東芝 Information management methods and information management device
US20020078045A1 (en) 2000-12-14 2002-06-20 Rabindranath Dutta System, method, and program for ranking search results using user category weighting
US7349712B2 (en) * 2001-01-31 2008-03-25 Mitsubishi Denki Kabushiki Kaisha Communications system with transmitting power control and method for the same
EP1358639A1 (en) 2001-02-08 2003-11-05 Nokia Corporation Smart card reader
US6944188B2 (en) 2001-02-21 2005-09-13 Wi-Lan, Inc. Synchronizing clocks across a communication link
US7006483B2 (en) 2001-02-23 2006-02-28 Ipr Licensing, Inc. Qualifying available reverse link coding rates from access channel power setting
KR100406352B1 (en) 2001-03-29 2003-11-28 삼성전기주식회사 Antenna and method for manufacture thereof
DE10126420A1 (en) 2001-05-31 2002-12-05 Philips Corp Intellectual Pty A method for synchronizing a mobile station with a base station
US6705531B1 (en) 2001-07-02 2004-03-16 Bellsouth Intellectual Property Corp. Smart card system, apparatus and method with alternate placement of contact module
CA2460994A1 (en) * 2001-09-19 2003-03-27 Bay Microsystems, Inc. Vertical instruction, data processing, and differentiated services in a network processor architecture
US7330446B2 (en) 2001-09-21 2008-02-12 Industrial Technology Research Institute Closed-loop power control method for a code-division multiple-access cellular system
EP1430619B1 (en) 2001-09-25 2007-05-02 Meshnetworks, Inc. A system and method employing algorithms and protocols for optimizing carrier sense multiple access (CSMA) protocols in wireless networks
CN100536355C (en) * 2001-10-10 2009-09-02 三星电子株式会社 Method for searching cells at discontinuous reception mode in mobile communication system
US7248604B2 (en) 2001-10-30 2007-07-24 Ipr Licensing, Inc. Throughput in multi-rate wireless networks using variable-length packets and other techniques
US7389294B2 (en) 2001-10-31 2008-06-17 Amazon.Com, Inc. Services for generation of electronic marketplace listings using personal purchase histories or other indicia of product ownership
US7486693B2 (en) 2001-12-14 2009-02-03 General Electric Company Time slot protocol
US20030154243A1 (en) 2002-02-14 2003-08-14 Crockett Douglas M. Method and an apparatus for registering a user in a group communication network
US7411901B1 (en) * 2002-03-12 2008-08-12 Extreme Networks, Inc. Method and apparatus for dynamically selecting timer durations
KR100871219B1 (en) 2002-04-24 2008-12-01 삼성전자주식회사 Cell search apparatus for multi search in mobile communication system and method thereof
US7224679B2 (en) * 2002-05-10 2007-05-29 Texas Instruments Incorporated Dynamic update of quality of service (Qos) parameter set
US6700491B2 (en) 2002-06-14 2004-03-02 Sensormatic Electronics Corporation Radio frequency identification tag with thin-film battery for antenna
KR100891788B1 (en) 2002-07-08 2009-04-07 삼성전자주식회사 Method for making contention of access for real time application and medium access control layer module
US7072431B2 (en) 2002-10-30 2006-07-04 Visteon Global Technologies, Inc. Clock timing recovery using arbitrary sampling frequency
US20040085993A1 (en) * 2002-11-05 2004-05-06 Wentink Maarten Menzo Shared-medium contention algorithm exhibiting fairness
US7962361B2 (en) 2002-11-07 2011-06-14 Novitaz Customer relationship management system for physical locations
US7660998B2 (en) 2002-12-02 2010-02-09 Silverbrook Research Pty Ltd Relatively unique ID in integrated circuit
EP1595347A1 (en) * 2003-02-20 2005-11-16 Zarlink Semiconductor Inc. Method providing distribution means for reference clocks across packetized networks
WO2004089659A1 (en) 2003-04-09 2004-10-21 Continental Teves Ag & Co. Ohg Device and method for monitoring tyre pressures
KR100522948B1 (en) 2003-04-30 2005-10-24 삼성전자주식회사 Method for performing packet flooding at wireless ad hoc network
US7308103B2 (en) 2003-05-08 2007-12-11 Current Technologies, Llc Power line communication device and method of using the same
KR101017005B1 (en) * 2003-05-16 2011-02-23 소니 주식회사 Radio communication system, radio communication apparatus, radio communication method, and computer program
AU2003304318A1 (en) 2003-07-04 2005-01-28 Pirelli Pneumatici S.P.A. Method and system for determining a tyre load during the running of a motor vehicle
US7293088B2 (en) 2003-07-28 2007-11-06 Cisco Technology, Inc. Tag location, client location, and coverage hole location in a wireless network
US7148851B2 (en) 2003-08-08 2006-12-12 Hitachi Metals, Ltd. Antenna device and communications apparatus comprising same
EP1509012A2 (en) 2003-08-20 2005-02-23 Samsung Electronics Co., Ltd. Method and apparatus for scheduling uplink packet transmission in a mobile communication system
US7012835B2 (en) 2003-10-03 2006-03-14 Sandisk Corporation Flash memory data correction and scrub techniques
US8462817B2 (en) 2003-10-15 2013-06-11 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US7369512B1 (en) 2003-11-06 2008-05-06 Bbn Technologies Corp. Systems and methods for efficient packet distribution in an ad hoc network
US7597250B2 (en) 2003-11-17 2009-10-06 Dpd Patent Trust Ltd. RFID reader with multiple interfaces
JP2005151299A (en) 2003-11-18 2005-06-09 Sanyo Electric Co Ltd Radio communication apparatus, error correction method and error correction program
US7554981B2 (en) * 2003-11-26 2009-06-30 Wind River Systems, Inc. System and method for efficient storage and processing of IPv6 addresses
US7259678B2 (en) 2003-12-08 2007-08-21 3M Innovative Properties Company Durable radio frequency identification label and methods of manufacturing the same
US7305237B2 (en) 2003-12-17 2007-12-04 Intel Corporation Hole-filling channel access
US20050138178A1 (en) 2003-12-19 2005-06-23 Shaun Astarabadi Wireless mobility manager
KR100564761B1 (en) 2003-12-22 2006-03-27 한국전자통신연구원 The hybrid inter token Carrier Sensing Multiple Access/Collision Avoidance protocol
US20050139685A1 (en) 2003-12-30 2005-06-30 Douglas Kozlay Design & method for manufacturing low-cost smartcards with embedded fingerprint authentication system modules
US7453903B2 (en) * 2004-01-07 2008-11-18 Proxim Wireless Corporation System and method for determining priorities in a wireless network
US7668126B2 (en) 2004-02-05 2010-02-23 Texas Instruments Incorporated Beacon coordination and medium access
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US7231530B1 (en) * 2004-04-06 2007-06-12 Cisco Technology, Inc. System and method for saving power in a wireless network by reducing power to a wireless station for a time interval if a received packet fails an integrity check
US7529565B2 (en) * 2004-04-08 2009-05-05 Starkey Laboratories, Inc. Wireless communication protocol
FR2869182B1 (en) 2004-04-20 2008-03-28 Thales Sa Routing Method in an ad hoc network
US7266661B2 (en) 2004-05-27 2007-09-04 Silverbrook Research Pty Ltd Method of storing bit-pattern in plural devices
JP2006013594A (en) * 2004-06-22 2006-01-12 Nec Commun Syst Ltd Wireless lan communication system, wireless lan connection method, and wireless lan terminal device
KR20060000342A (en) 2004-06-28 2006-01-06 주식회사 이지브로네트웍스 Device for enabling intra-edge routing-less premises internet protocol communication and communication method using the same
US7097108B2 (en) 2004-10-28 2006-08-29 Bellsouth Intellectual Property Corporation Multiple function electronic cards
JP4578206B2 (en) * 2004-11-02 2010-11-10 パナソニック株式会社 Communication device
KR100590896B1 (en) * 2004-11-26 2006-06-19 삼성전자주식회사 Medium Access Method for contention and contention-free
DE602005007314D1 (en) * 2004-12-10 2008-07-17 Canon Kk Transfer device and method for the transmission timing control
JP4691987B2 (en) 2004-12-28 2011-06-01 株式会社日立製作所 Radio tag and a mobile terminal
JP4873868B2 (en) 2005-02-09 2012-02-08 ルネサスエレクトロニクス株式会社 The semiconductor device for passive rfid, ic tag, control method and a communication method ic tag
JP4573663B2 (en) 2005-02-16 2010-11-04 富士通株式会社 Data relay apparatus, data relay method, data transmission and receiving apparatus and data communication system
US7689195B2 (en) 2005-02-22 2010-03-30 Broadcom Corporation Multi-protocol radio frequency identification transponder tranceiver
EP1859544A2 (en) 2005-03-11 2007-11-28 Andrew Corporation Remotely controllable and reconfigurable wireless repeater
EP1856499B1 (en) 2005-03-11 2013-01-09 Société de Technologie Michelin Flex signature for tire condition
US7375639B2 (en) 2005-03-29 2008-05-20 Emerson & Cuming Microwave Products, Inc. RFID tags having improved read range
US8351409B2 (en) 2005-04-22 2013-01-08 Axiometric, Llc Timing synchronization in wireless mesh networks
US20060238419A1 (en) * 2005-04-25 2006-10-26 Bucknor Brian E Method and apparatus for aiding positioning of a satellite positioning system and receiver
US7315248B2 (en) 2005-05-13 2008-01-01 3M Innovative Properties Company Radio frequency identification tags for use on metal or other conductive objects
JP4684071B2 (en) * 2005-05-20 2011-05-18 株式会社エヌ・ティ・ティ・ドコモ Cell search control method and the method the mobile station using
JP4799054B2 (en) 2005-06-03 2011-10-19 富士通株式会社 Information Access System and active-type contactless information storage device
US8340115B2 (en) 2005-06-29 2012-12-25 Intel Corporation Apparatus and method for combined rate and TX antenna selection mechanism
BRPI0613351B1 (en) 2005-07-01 2019-01-15 Borracci Fabrizio universal smart card
AT415048T (en) 2005-07-28 2008-12-15 Harman Becker Automotive Sys Improved communication for interiors of motor vehicles
EP1911301B1 (en) 2005-07-29 2011-01-12 Telefonaktiebolaget LM Ericsson (publ) Closest user terminal search method for a telecommunication network and service node applying such a method
US8155623B2 (en) 2005-07-29 2012-04-10 Nextel Communications Inc. System and method for obtaining information from a wireless modem
US7551087B2 (en) 2005-08-19 2009-06-23 Adasa, Inc. Handheld and cartridge-fed applicator for commissioning wireless sensors
JP2009507422A (en) 2005-09-01 2009-02-19 オプティマル・イノヴェーションズ・インコーポレイテッド Medium access control architecture
US20080242279A1 (en) 2005-09-14 2008-10-02 Jorey Ramer Behavior-based mobile content placement on a mobile communication facility
US20070083697A1 (en) 2005-10-07 2007-04-12 Microsoft Corporation Flash memory management
US20070083924A1 (en) 2005-10-08 2007-04-12 Lu Hongqian K System and method for multi-stage packet filtering on a networked-enabled device
WO2007053361A2 (en) 2005-11-01 2007-05-10 Rotani, Inc. Method and apparatus for client control of wireless communications
US7222523B1 (en) 2005-11-04 2007-05-29 Silicon Valley Micro C. Corp. Tire pressure sensor system with improved sensitivity and power saving
KR101002978B1 (en) 2005-12-09 2010-12-22 샌디스크 아이엘 엘티디 Method for flash­memory management
US7805129B1 (en) 2005-12-27 2010-09-28 Qurio Holdings, Inc. Using device content information to influence operation of another device
KR100695074B1 (en) * 2006-01-09 2007-03-08 삼성전자주식회사 Time synchronizing method in wireless sensor networks
US20070183415A1 (en) * 2006-02-03 2007-08-09 Utstarcom Incorporated Method and system for internal data loop back in a high data rate switch
KR100782850B1 (en) 2006-02-06 2007-12-06 삼성전자주식회사 Method of performing handover using subnet information and apparatus therefor
US7480848B2 (en) * 2006-02-10 2009-01-20 The Directv Group, Inc. Methods and apparatus to select tornado error correction parameters
US7809009B2 (en) * 2006-02-21 2010-10-05 Cisco Technology, Inc. Pipelined packet switching and queuing architecture
US7545796B2 (en) * 2006-03-15 2009-06-09 Coppergate Communications Ltd. Shared medium CA/CSMA robustness
JP2007251637A (en) 2006-03-16 2007-09-27 Freescale Semiconductor Inc Radio communication apparatus, individual information writer, and individual information setting method
US7663878B2 (en) 2006-03-23 2010-02-16 Harris Kent Swan Modular protective housing with peripherals for a handheld communications device
US7735116B1 (en) 2006-03-24 2010-06-08 Symantec Corporation System and method for unified threat management with a relational rules methodology
US7338923B2 (en) 2006-04-11 2008-03-04 Halliburton Energy Services, Inc. Settable drilling fluids comprising cement kiln dust
US7953457B2 (en) 2006-04-28 2011-05-31 Research In Motion Limited Methods and apparatus for reducing power consumption for mobile devices using broadcast-to-unicast message conversion
WO2007144199A1 (en) 2006-06-16 2007-12-21 Omikron Data Quality Gmbh Method for automatically valuating the similarity of two character strings which are stored in a computer
JP2007331659A (en) 2006-06-16 2007-12-27 Bridgestone Corp Method and device for estimating tire traveling condition and tire with sensor
DE102006028827A1 (en) 2006-06-21 2008-01-10 Dynamic Systems Gmbh Transponder with an electronic memory chip and a magnetic ring antenna
US8228908B2 (en) * 2006-07-11 2012-07-24 Cisco Technology, Inc. Apparatus for hardware-software classification of data packet flows
US20100003680A1 (en) 2006-07-18 2010-01-07 Joern Lewin Method For Determining The Methylation Rate of a Nucleic Acid
KR100883652B1 (en) * 2006-08-03 2009-02-18 노바우리스 테크놀러지스 리미티드 Method and apparatus for speech/silence interval identification using dynamic programming, and speech recognition system thereof
AT418219T (en) * 2006-08-04 2009-01-15 Alcatel Lucent Device, module and method for routing an access network for
US8005101B1 (en) 2006-08-10 2011-08-23 Bivio Networks, Inc. Scalable architecture for deep-packet processing
US8346863B2 (en) 2006-08-15 2013-01-01 International Business Machines Corporation Contact initialization based upon automatic profile sharing between computing devices
US7886962B2 (en) 2006-08-17 2011-02-15 Verizon Patent And Licensing Inc. Multi-function transaction device
JP4259557B2 (en) 2006-09-19 2009-04-30 セイコーエプソン株式会社 Printing device and logical packet processing method
US7961751B2 (en) 2006-09-25 2011-06-14 Futurewei Technologies, Inc. Multiplexed data stream timeslot map
WO2008048060A1 (en) * 2006-10-18 2008-04-24 Electronics And Telecommunications Research Institute Tdm based cell search method for ofdm system
JP4723458B2 (en) 2006-11-07 2011-07-13 富士通株式会社 Relay device, a wireless communication system and a multicast relay method
US8005002B2 (en) * 2006-11-09 2011-08-23 Palo Alto Research Center Incorporated Method and apparatus for performing a query-based convergecast scheduling in a wireless sensor network
US20080121687A1 (en) 2006-11-28 2008-05-29 Motorola, Inc. Method and system for detecting an end of transaction for contactless transactions on a mobile device
AU2007327566B2 (en) 2006-11-28 2012-12-13 National Ict Australia Limited Discovery of multiple inter-node links in wireless multi-hop networks
US7969930B2 (en) 2006-11-30 2011-06-28 Kyocera Corporation Apparatus, system and method for managing wireless local area network service based on a location of a multi-mode portable communication device
US7760689B2 (en) 2006-12-01 2010-07-20 Electronics And Telecommunications Research Institute Method and apparatus for generating link quality indicator information in MB-OFDM UWB system
US8005822B2 (en) 2007-01-17 2011-08-23 Google Inc. Location in search queries
CN103020106B (en) * 2007-01-24 2016-05-18 谷歌公司 Hybrid mobile search results
US20080186997A1 (en) 2007-02-06 2008-08-07 Viasat, Inc. Time multiplexed requests for controlling access to a shared communication medium
US7826389B2 (en) 2007-02-07 2010-11-02 Nokia Corporation Communications method
US7890874B2 (en) 2007-02-23 2011-02-15 Dkcm, Inc. Systems and methods for interactively displaying user images
US7995687B2 (en) * 2007-03-05 2011-08-09 Broadcom Corporation Fast and reliable channel classification algorithms in bluetooth networks to detect and avoid 2.4 GHz interferers
JP2008227642A (en) * 2007-03-09 2008-09-25 Hitachi Ltd Retransmission control method and radio communication system
US8063769B2 (en) 2007-03-30 2011-11-22 Broadcom Corporation Dual band antenna and methods for use therewith
US20080238621A1 (en) 2007-03-30 2008-10-02 Broadcom Corporation Multi-mode rfid reader architecture
US8705549B2 (en) * 2007-04-06 2014-04-22 International Business Machines Corporation Structure and implementation of universal virtual private networks
US7681101B2 (en) 2007-04-16 2010-03-16 Cisco Technology, Inc. Hybrid corrective scheme for dropped packets
US8205080B2 (en) 2007-05-11 2012-06-19 Microsoft Corporation Over the air communication authentication using a device token
US7814107B1 (en) 2007-05-25 2010-10-12 Amazon Technologies, Inc. Generating similarity scores for matching non-identical data strings
US8782178B2 (en) * 2007-06-14 2014-07-15 Cisco Technology, Inc. Distributed bootstrapping mechanism for peer-to-peer networks
US20080320139A1 (en) 2007-06-25 2008-12-25 Yahoo! Inc. Social mobilized content sharing
JP2009010449A (en) 2007-06-26 2009-01-15 Panasonic Corp Radio communications equipment and packet transmission method therefor
US8179915B2 (en) 2007-06-28 2012-05-15 Lantiq Deutschland Gmbh System and method for transmitting and retransmitting data
KR100982892B1 (en) * 2007-06-28 2010-09-16 주식회사 케이티 Method for selecting the operational channel of network coordinator in wireless narrow area network and coordinator using thereof
US8554271B2 (en) 2007-06-30 2013-10-08 Motorola Mobility Llc Method and apparatus for performing neighbor scans on a wide area network in a mobile communication device operating a personal area network
US7876272B2 (en) 2007-07-31 2011-01-25 Palm, Inc. Antenna design for an attached accessory
US8155093B2 (en) 2007-08-01 2012-04-10 Harris Corporation Mobile ad-hoc network providing desired link delay offset without guard times and related methods
US8700083B2 (en) 2007-08-10 2014-04-15 Qualcomm Incorporated Adaptation of transmit power based on maximum received signal strength
US8200681B2 (en) 2007-08-22 2012-06-12 Microsoft Corp. Collaborative media recommendation and sharing technique
US8666525B2 (en) 2007-09-10 2014-03-04 Palo Alto Research Center Incorporated Digital media player and method for facilitating music recommendation
US20090070691A1 (en) 2007-09-12 2009-03-12 Devicefidelity, Inc. Presenting web pages through mobile host devices
GB2455496B (en) 2007-10-31 2012-05-30 Hewlett Packard Development Co Error detection method and apparatus
US8705559B2 (en) * 2007-11-14 2014-04-22 Panasonic Corporation Communication apparatus, communication method, and integrated circuit
CN101919289B (en) * 2007-11-27 2013-07-10 夏普株式会社 Mobile station device, wireless communication system, method for controlling mobile station device
JP4427574B2 (en) 2007-11-30 2010-03-10 国立大学法人広島大学 Associative memory and retrieval system using the same
US7979667B2 (en) 2007-12-10 2011-07-12 Spansion Llc Memory array search engine
US20090171749A1 (en) 2007-12-27 2009-07-02 Frederic Laruelle Method for Dynamic Advertisement Placement Based on Consumer and Response Capability Statistics
US8522271B2 (en) 2008-02-14 2013-08-27 Qualcomm Incorporated Methods and apparatuses for sharing user profiles
JP5102319B2 (en) 2008-02-21 2012-12-19 日本電信電話株式会社 The radio base station search method, a radio base station search device and the radio base station search program
US8229819B2 (en) 2008-03-03 2012-07-24 Wildfire Interactive, Inc. Providing online promotions through social media networks
WO2009111734A2 (en) 2008-03-07 2009-09-11 Savi Technology, Inc. Method and apparatus for tracking and monitoring containers
DE102008015322A1 (en) 2008-03-20 2009-09-24 Mhm Harzbecher Medizintechnik Gmbh Connecting element for connecting a transducer having a sealed fluid system
US7995526B2 (en) 2008-04-23 2011-08-09 Honeywell International Inc. Apparatus and method for medium access control in wireless communication networks
US8725083B2 (en) 2008-05-13 2014-05-13 Qualcomm Incorporated Self calibration of downlink transmit power
US20090292418A1 (en) 2008-05-23 2009-11-26 Kuykendal Robert L Trip logger
US8553548B2 (en) 2008-06-23 2013-10-08 Thomson Licensing Collision mitigation for multicast transmission in wireless local area networks
US8737383B2 (en) 2008-07-07 2014-05-27 Intel Corporation Techniques for enhanced persistent scheduling with efficient link adaptation capability
KR101466585B1 (en) 2008-07-10 2014-11-28 삼성전자주식회사 Memory device and managing method of memory device
CN101639713B (en) 2008-07-31 2012-01-04 英业达股份有限公司 Staggered embedded housing case
US9177068B2 (en) 2008-08-05 2015-11-03 Yellowpages.Com Llc Systems and methods to facilitate search of business entities
US20100075612A1 (en) 2008-09-19 2010-03-25 Oi Emily H Advertising desired range in a wireless network
US20100078471A1 (en) 2008-09-30 2010-04-01 Apple Inc. System and method for processing peer-to-peer financial transactions
US20100097956A1 (en) 2008-10-20 2010-04-22 Toshiba America Research, Inc. Multi-interface management configuration method and graphical user interface for connection manager
US20100097946A1 (en) 2008-10-22 2010-04-22 Nokia Corporation Optimized data transfer between approaching devices
KR101001558B1 (en) * 2008-11-10 2010-12-17 한국전자통신연구원 Method and apparatus for synchronous sensor network construction
KR101117684B1 (en) * 2008-11-18 2012-02-29 나사렛대학교 산학협력단 Method and apparatus for QoS support and multiple link connections in low-rate wireless network
CA2745365C (en) 2008-12-23 2013-01-08 J.J. Mackay Canada Limited Low power wireless parking meter and parking meter network
KR101542520B1 (en) 2009-01-13 2015-08-07 삼성전자주식회사 Information sharing method and apparatus through the presence service in a communications network
US20100179877A1 (en) 2009-01-15 2010-07-15 International Business Machines Corporation Providing promotional data to registered wireless communication devices
TWI380219B (en) 2009-01-20 2012-12-21 Phison Electronics Corp Card reader with near field communication functions and near field communication device thereof
EP2211480B1 (en) 2009-01-26 2013-10-23 Motorola Mobility LLC Wireless communication device for providing at least one near field communication service
US20100197261A1 (en) 2009-01-27 2010-08-05 Sierra Wireless, Inc. Wireless control subsystem for a mobile electronic device
KR101540797B1 (en) 2009-03-12 2015-07-30 삼성전자 주식회사 Connection method and a wireless communication device using the same in a wireless communication device,
WO2010111323A2 (en) 2009-03-24 2010-09-30 Savi Technology, Inc. Method and apparatus for real-time location of assets
CN101867965B (en) * 2009-04-15 2014-01-01 中兴通讯股份有限公司 User terminal pairing method and device in multi-user multi-input multi-output technology
US20100280904A1 (en) 2009-05-01 2010-11-04 Sumit Pradeep Ahuja Social marketing and networking tool with user matching and content broadcasting / receiving capabilities
US9055105B2 (en) 2009-05-29 2015-06-09 Nokia Technologies Oy Method and apparatus for engaging in a service or activity using an ad-hoc mesh network
KR20100131211A (en) * 2009-06-05 2010-12-15 삼성전자주식회사 System and method for authentication in wireless local area network environment
US8472467B2 (en) * 2009-06-25 2013-06-25 Intel Corporation Wireless device and methods for opportunistic scheduling in a contention-based wireless network
US8189584B2 (en) 2009-07-27 2012-05-29 Media Patents, S. L. Multicast traffic management in a network interface
US10304069B2 (en) 2009-07-29 2019-05-28 Shopkick, Inc. Method and system for presentment and redemption of personalized discounts
CN102725779A (en) 2009-09-29 2012-10-10 Savi技术公司 Apparatus and method for advanced communication in low-power wireless applications
US20110099037A1 (en) 2009-10-27 2011-04-28 Useful Networks, Inc. Location-Based, Time Sensitive Wireless Exchange
US20110112892A1 (en) 2009-11-06 2011-05-12 Elia Rocco Tarantino Multi-location based promotion method and apparatus
US8340593B2 (en) * 2009-11-10 2012-12-25 Intel Corporation Techniques to control uplink power
US9832070B2 (en) 2009-11-13 2017-11-28 Comcast Cable Communications, Llc Communication terminal with multiple virtual network interfaces
US8462622B2 (en) 2009-12-08 2013-06-11 Qualcomm Incorporated Detection of co-located interference in a multi-radio coexistence environment
US20110156872A1 (en) 2009-12-31 2011-06-30 Alcatel-Lucent Usa Inc. Smart rfid reader/router
US8675651B2 (en) * 2010-01-18 2014-03-18 Qualcomm Incorporated Coexistence mechanism for non-compatible powerline communication devices
US8516331B2 (en) 2010-01-29 2013-08-20 Broadcom Corporation Systems for high-speed backplane applications using FEC encoding
US8761060B2 (en) * 2010-02-12 2014-06-24 Qualcomm Incorporated Controlling access point transmit power based on received access terminal messages
US8483196B2 (en) 2010-03-12 2013-07-09 Qualcomm Incorporated Methods and apparatus for supporting synchronization between groups of devices
US8259745B2 (en) * 2010-03-29 2012-09-04 Intel Corporation Enhanced carrier sensing for multi-channel operation
RU2678560C2 (en) * 2010-05-04 2019-01-30 Телефонактиеболагет Лм Эрикссон (Пабл) Power headroom message for carrier aggregation
US8717146B2 (en) 2010-06-30 2014-05-06 General Electric Company Methods and systems for integrated interrogation of RFID sensors
US8972577B2 (en) 2010-09-02 2015-03-03 International Business Machines Corporation Masterless slot allocation
US9042353B2 (en) 2010-10-06 2015-05-26 Blackbird Technology Holdings, Inc. Method and apparatus for low-power, long-range networking
US8976691B2 (en) 2010-10-06 2015-03-10 Blackbird Technology Holdings, Inc. Method and apparatus for adaptive searching of distributed datasets
US8718551B2 (en) 2010-10-12 2014-05-06 Blackbird Technology Holdings, Inc. Method and apparatus for a multi-band, multi-mode smartcard
US20120086615A1 (en) 2010-10-12 2012-04-12 John Peter Norair Method and Apparatus for an Integrated Antenna
US20120116694A1 (en) 2010-11-04 2012-05-10 John Peter Norair Method and Apparatus for Tire Pressure Monitoring
WO2012061686A1 (en) 2010-11-04 2012-05-10 Blackbird Technology Holdings, Inc. Method and apparatus for electronic payment and authentication
US9558502B2 (en) 2010-11-04 2017-01-31 Visa International Service Association Systems and methods to reward user interactions
US8622312B2 (en) 2010-11-16 2014-01-07 Blackbird Technology Holdings, Inc. Method and apparatus for interfacing with a smartcard
US8543065B2 (en) * 2010-11-30 2013-09-24 Motorola Solutions, Inc. Methods for using effective radiated transmit power of a base station at a wireless communication device to determine uplink transmission range and/or to adjust transmit power
WO2012100147A1 (en) 2011-01-21 2012-07-26 Blackbird Technology Holdings, Inc. Method and apparatus for discovering people, products, and/or services via a localized wireless network
WO2012100145A1 (en) 2011-01-21 2012-07-26 Blackbird Technology Holdings, Inc. Method and apparatus for memory management
US8909865B2 (en) 2011-02-15 2014-12-09 Blackbird Technology Holdings, Inc. Method and apparatus for plug and play, networkable ISO 18000-7 connectivity
US20120209716A1 (en) 2011-02-15 2012-08-16 Burns Patrick E Method and apparatus for serving promotions in a low-power wireless network
US8885586B2 (en) 2011-03-02 2014-11-11 Blackbird Technology Holdings, Inc. Method and apparatus for query-based congestion control
US8929961B2 (en) 2011-07-15 2015-01-06 Blackbird Technology Holdings, Inc. Protective case for adding wireless functionality to a handheld electronic device
US8831642B2 (en) 2011-08-15 2014-09-09 Connectquest Llc Close proximity notification system

Also Published As

Publication number Publication date
US20190090211A1 (en) 2019-03-21
US20170366431A1 (en) 2017-12-21
US20150146538A1 (en) 2015-05-28
US20120224590A1 (en) 2012-09-06
US20160270004A1 (en) 2016-09-15
US20160270011A1 (en) 2016-09-15
WO2012119022A3 (en) 2014-04-17
WO2012119029A3 (en) 2014-04-24
WO2012119028A3 (en) 2012-12-13
US20180152547A1 (en) 2018-05-31
WO2012119026A3 (en) 2014-05-01
US20160157186A1 (en) 2016-06-02
US20120226955A1 (en) 2012-09-06
US9497715B2 (en) 2016-11-15
US20170034732A1 (en) 2017-02-02
US8774096B2 (en) 2014-07-08
US20190028979A1 (en) 2019-01-24
US20170064050A1 (en) 2017-03-02
WO2012119023A3 (en) 2014-04-10
US20190116566A1 (en) 2019-04-18
US9191340B2 (en) 2015-11-17
US20120224530A1 (en) 2012-09-06
WO2012119029A2 (en) 2012-09-07
US20180213496A1 (en) 2018-07-26
US8885586B2 (en) 2014-11-11
US9325634B2 (en) 2016-04-26
US20120224491A1 (en) 2012-09-06
US20180191875A1 (en) 2018-07-05
US20120225687A1 (en) 2012-09-06
WO2012119023A2 (en) 2012-09-07
US20170374627A1 (en) 2017-12-28
WO2012119022A2 (en) 2012-09-07
US9154392B2 (en) 2015-10-06
US20120226822A1 (en) 2012-09-06
US20190200310A1 (en) 2019-06-27
WO2012119025A1 (en) 2012-09-07
US9414342B2 (en) 2016-08-09
US20150009967A1 (en) 2015-01-08
US20170134252A1 (en) 2017-05-11
WO2012119028A2 (en) 2012-09-07
WO2012119024A1 (en) 2012-09-07
US20180324725A1 (en) 2018-11-08
US20190069254A1 (en) 2019-02-28
US20170347330A1 (en) 2017-11-30
US20180234314A1 (en) 2018-08-16
US20160044614A1 (en) 2016-02-11
US20190132811A1 (en) 2019-05-02
US20160150538A1 (en) 2016-05-26
US20160285719A1 (en) 2016-09-29
US20170118732A1 (en) 2017-04-27
US20170289320A1 (en) 2017-10-05
US8867370B2 (en) 2014-10-21
US20120224543A1 (en) 2012-09-06
US20170118723A1 (en) 2017-04-27
US9166894B2 (en) 2015-10-20
US20170034852A1 (en) 2017-02-02
US20150124628A1 (en) 2015-05-07
WO2012119026A2 (en) 2012-09-07

Similar Documents

Publication Publication Date Title
US7813295B2 (en) Co-location interference avoidance in multiple protocol communication networks
US8774041B2 (en) Proximity-based wireless handshaking for connection establishment
EP1929655B1 (en) Protocol extension for a high density network
US9107172B1 (en) Method and apparatus for managing coexistence interference
JP5420764B2 (en) Control of the plurality of wireless devices that use a database of interference-related information
US20100061278A1 (en) System and method for controlling a wireless device
Chen et al. Energy efficiency metrics for green wireless communications
US20140094122A1 (en) Wireless wide area network (wwan) managed device to device communication using narrowband wi-fi in a licensed band
CN101263732B (en) Method, module, terminal and system for scheduling operation of RFID subsystem and wireless communication subsystem
KR101567392B1 (en) Dynamic electromagnetic radiation emission control in wireless communication devices
EP3011779B1 (en) Low energy wireless proximity pairing
CN101998588B (en) Device, system and method of scanning wireless communication frequency band
US10296064B2 (en) Reduction of power consumption in wireless communication terminals
US20090311961A1 (en) Short-Range Wireless Communication
US6647273B2 (en) Method and apparatus for reducing power consumption in transceivers in wireless communications systems having a power control loop
US8457029B2 (en) Transitioning from MIMO to SISO to save power
US9191340B2 (en) Method and apparatus for dynamic media access control in a multiple access system
US7415262B2 (en) Wireless access point power control
US8046024B2 (en) Multi-radio platform with WiMax and bluetooth radio modules and method
US8248996B2 (en) Methods and apparatus for using a licensed spectrum to transmit a signal when an unlicensed spectrum is congested
US8874034B2 (en) Method and system for quick Bluetooth low energy (BLE) protocol signal presence detection for coexistence
US8520586B1 (en) Discovery and connection coexistence mechanism for wireless devices
CN106063193A (en) System and method for determining a clear channel assessment threshold
KR101285482B1 (en) Dual base stations for wireless communication systems
US20090146791A1 (en) Method, device, and system for "listen-before-talk" measurement to enable identifying of one or more unoccupied RF sub-bands

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- INCOMPLETE APPLICATION (PRE-EXAMINATION)