US20180216039A1 - Cleaning compositions comprising amylase variants - Google Patents

Cleaning compositions comprising amylase variants Download PDF

Info

Publication number
US20180216039A1
US20180216039A1 US15/883,113 US201815883113A US2018216039A1 US 20180216039 A1 US20180216039 A1 US 20180216039A1 US 201815883113 A US201815883113 A US 201815883113A US 2018216039 A1 US2018216039 A1 US 2018216039A1
Authority
US
United States
Prior art keywords
x1
h1
e391a
g109a
n280s
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US15/883,113
Inventor
Carsten Andersen
Chakshusmathi Ghadiyaram
Padma Venkatachalam Iyer
Rajendra Kulothungan Sainathan
Iben Damager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to IN201711003745 priority Critical
Priority to IN201711003745 priority
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Assigned to THE PROCTER AND GAMBLE COMPANY reassignment THE PROCTER AND GAMBLE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOVOZYMES A.S., GHADIYARAM, CHAKSHUSMATHI, IYER, PADMA VENKATACHALAM, SAINATHAN, RAJENDRA KULOTHUNGAN, ANDERSEN, CARSTEN, DAMAGER, Iben
Publication of US20180216039A1 publication Critical patent/US20180216039A1/en
Application status is Pending legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease, amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease, amylase
    • C11D3/38618Protease or amylase in liquid compositions only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease, amylase
    • C11D3/38681Chemically modified or immobilised enzymes

Abstract

The present invention relates to cleaning compositions including variants of an alpha-amylase and methods of treating surfaces such as textiles with aqueous liquor including such compositions, especially at low temperatures.

Description

    FIELD OF THE INVENTION
  • The present invention relates to cleaning compositions comprising variants of an alpha-amylase having improved cleaning performance relative to its parent amylase in cold water surface treatment processes.
  • REFERENCE TO A SEQUENCE LISTING
  • This application contains a Sequence Listing in computer readable form. The computer readable form is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Alpha-amylases (alpha-1,4-glucan-4-glucanohydrolases, E.C. 3.2.1.1) constitute a group of enzymes, which catalyse hydrolysis of starch and other linear and branched 1,4-glucosidic oligo- and polysaccharides.
  • Among the first bacterial alpha-amylases to be used were an alpha-amylase from B. licheniformis, also known as Termamyl which has been extensively characterized and the crystal structure has been determined for this enzyme. Alkaline amylases, such as AA560 form a particular group of alpha-amylases that have found use in detergents. Many of these known bacterial amylases have been modified in order to improve their functionality in a particular application. Bacillus amylases, such as Termamyl, AA560 (WO 2000/060060) and SP707 (described by Tsukamoto et al., 1988, Biochem. Biophys. Res. Comm 151: 25-31) form a particular group of alpha-amylases that have found use in detergents. These amylases have been modified to improve the stability in detergents. WO 96/23873 e.g. disclose to delete the amino acids 181+182 or the amino acids 183+184 of SP707 (SEQ ID NO: 7 of WO 96/23873) to improve the stability of this amylase. WO 96/23873 further discloses to modify the SP707 amylase by substituting M202 with e.g. a leucine to stabilize the molecule towards oxidation. Thus, it is known to modify amylases to improve certain properties.
  • For environmental reasons, it has been increasingly important to lower the temperature in washing, dishwashing and/or cleaning processes. However, most enzymes including amylases have a temperature optimum which is above the temperature usually used in low temperature washing. Alpha-amylase is a key enzyme for use in detergent compositions and its use has become increasingly important for removal of starchy stains during laundry washing or dishwashing. Therefore, it is important to find alpha-amylase variants, which retain their wash performance, stain removal effect and/or activity when the temperature is lowered. However, despite the efficiency of current detergent enzyme compositions, there are many stains that are difficult to completely remove. These problems are compounded by the increased use of low (e.g., cold water) wash temperatures and shorter washing cycles. Thus, it is desirable to have amylolytic enzymes that can function under low temperature and at the same time preserve or increase other desirable properties such as specific activity (amylolytic activity), stability and/or wash performance to enable good cleaning in shorter washing cycles.
  • Thus, it is an object of the present invention to provide cleaning compositions comprising alpha-amylases variants which can be used in washing, dishwashing and/or cleaning processes at low temperature. It is a further object of the present invention to provide a cleaning composition comprising alpha-amylase variants which have improved wash performance at low temperature compared to the parent alpha-amylase or compared to cleaning compositions comprising the alpha-amylase of any of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7 or 8.
  • SUMMARY OF THE INVENTION
  • The present invention provides a cleaning composition comprising:
      • (a) a variant of a parent alpha-amylase, wherein the variant comprises (i) a modification at one or more positions corresponding to positions selected from the group consisting of 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence set forth in SEQ ID NO: 1, and optionally in one or more positions corresponding to positions selected from the group consisting of 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476 of the amino acid sequence as set forth in SEQ ID NO. 1, (ii) the variant has at least 80, such as at least 90%, such as at least 95%, such as at least 97%, but less than 100% sequence identity with the amino acid sequence set forth in SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8, and (iii) the variant has alpha-amylase activity;
      • (b) and a cleaning adjunct, preferably in an amount from 0.01 to 99.9 wt %.
  • The invention also provides a method of treating a surface, preferably a textile, comprising
      • (i) forming an aqueous wash liquor comprising water and such a cleaning composition,
      • (ii) treating the surface with the aqueous wash liquor preferably at a temperature of 5 or 10 to 40° C., or preferably 35° C. or less, more preferably at a temperature of 30° C. or less, or at a temperature of 20° C. or less; and
      • (iii) rinsing the surface.
    DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a cleaning composition comprising:
      • (a) a variant of a parent alpha-amylase, wherein the variant comprises (i) a modification at one or more positions corresponding to 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence set forth in SEQ ID NO: 1, and optionally in one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476 of the amino acid sequence as set forth in SEQ ID NO. 1, (ii) the variant has at least 80, such as at least 90%, such as at least 95%, such as at least 97%, but less than 100% sequence identity with the amino acid sequence set forth in SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8, and (iii) the variant has alpha-amylase activity; and
      • (b) a cleaning adjunct, preferably in an amount from 0.01 to 99.9 wt %.
    Definitions
  • Allelic variant: The term “allelic variant” means any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.
  • Alpha-amylase: The term “alpha-amylase” (alpha-1,4-glucan-4-glucanohydrolases, E.C. 3.2.1.1), constitutes a group of enzymes, which catalyze hydrolysis of starch and other linear and branched 1,4-glucosidic oligo- and polysaccharides. For purposes of the present invention, alpha-amylase activity is determined according to the procedure described in Example section. In one aspect, the variants of the present invention have at least 20%, e.g., at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 100% of the alpha-amylase activity of the mature polypeptide of SEQ ID NO: 1.
  • Amino Acid: The term “amino acid” as used herein includes the standard twenty genetically-encoded amino acids and their corresponding stereoisomers in the ‘d’ form (as compared to the natural ‘1’ form), omega-amino acids other naturally-occurring amino acids, unconventional amino acids (e.g. α,α-disubstituted amino acids, N-alkyl amino acids, etc.) and chemically derivatised amino acids. Chemical derivatives of one or more amino acids may be achieved by reaction with a functional side group. Such derivatised molecules include, for example, those molecules in which free amino groups have been derivatised to form amine hydrochlorides, p-toluene sulphonyl groups, carboxybenzoxy groups, t-butyloxycarbonyl groups, chloroacetyl groups or formyl groups. Free carboxyl groups may be derivatised to form salts, methyl and ethyl esters or other types of esters and hydrazides. Free hydroxyl groups may be derivatised to form O-acyl or O-alkyl derivatives. Also included as chemical derivatives are those peptides which contain naturally occurring amino acid derivatives of the twenty standard amino acids. For example: 4-hydroxyproline may be substituted for proline; 5-hydroxylysine may be substituted for lysine; 3-methylhistidine may be substituted for histidine; homoserine may be substituted for serine and ornithine for lysine. Derivatives also include peptides containing one or more additions or deletions as long as the requisite activity is maintained. Other included modifications are amidation, amino terminal acylation (e.g. acetylation or thioglycolic acid amidation), terminal carboxylamidation (e.g. with ammonia or methylamine), and the like terminal modifications.
  • When an amino acid is being specifically enumerated, such as ‘alanine’ or ‘Ala’ or ‘A’, the term refers to both 1-alanine and d-alanine unless explicitly stated otherwise. Other unconventional amino acids may also be suitable components for polypeptides of the present invention, as long as the desired functional property is retained by the polypeptide. For the peptides shown, each encoded amino acid residue, where appropriate, is represented by a single letter designation, corresponding to the trivial name of the conventional amino acid. In one embodiment, the polypeptides of the invention comprise or consist of 1-amino acids.
  • cDNA: The term “cDNA” means a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic cell. cDNA lacks intron sequences that may be present in the corresponding genomic DNA. The initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.
  • Coding sequence: The term “coding sequence” means a polynucleotide, which directly specifies the amino acid sequence of a variant. The boundaries of the coding sequence are generally determined by an open reading frame, which usually begins with a start codon such as ATG, GTG or TTG and ends with a stop codon such as TAA, TAG, or TGA. The coding sequence may be a DNA, cDNA, synthetic, or recombinant polynucleotide.
  • Control sequences: The term “control sequences” means nucleic acid sequences necessary for the expression of a polynucleotide encoding a variant of the present invention. Each control sequence may be native (i.e., from the same gene) or foreign (i.e., from a different gene) to the polynucleotide encoding the variant or native or foreign to each other. Such control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator. At a minimum, the control sequences include a promoter, and transcriptional and translational stop signals. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding a variant.
  • Delta Intensity: The terms “delta intensity” or “delta intensity value” are defined herein as the result of an intensity measurement of a test material, e.g. a swatch CS-28 (Center For Testmaterials BV, P.O. Box 120, 3133 KT Vlaardingen, the Netherlands) or a hard surface. The swatch is measured with a portion of the swatch, washed under identical conditions, as background. The delta intensity is the intensity value of the test material washed with amylase subtracting the intensity value of the test material washed without amylase.
  • Enzyme Detergency Benefit: The term “enzyme detergency benefit” used herein, refers to the advantageous effect an enzyme may add to a detergent compared to the same detergent without the enzyme. Important detergency benefits which can be provided by enzymes are stain removal with no or very little visible soils after washing and/or cleaning, prevention or reduction of re-deposition of soils released in the washing process (an effect that also is termed anti-redeposition), restoring fully or partly the whiteness of textiles which originally were white but after repeated use and wash have obtained a greyish or yellowish appearance (an effect that also is termed whitening). Textile care benefits, which are not directly related to catalytic stain removal or prevention of re-deposition of soils, may also be important for enzyme detergency benefits. Examples of such textile care benefits are prevention or reduction of dye transfer from one fabric to another fabric or another part of the same fabric (an effect that is also termed dye transfer inhibition or anti-backstaining), removal of protruding or broken fibers from a fabric surface to decrease pilling tendencies or remove already existing pills or fuzz (an effect that also is termed anti-pilling), improvement of the fabric-softness, colour clarification of the fabric and removal of particulate soils which are trapped in the fibers of the fabric or garment. Enzymatic bleaching is a further enzyme detergency benefit where the catalytic activity generally is used to catalyze the formation of bleaching component such as hydrogen peroxide or other peroxides.
  • Expression: The term “expression” includes any step involved in the production of the variant including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.
  • Expression vector: The term “expression vector” means a linear or circular DNA molecule that comprises a polynucleotide encoding a variant and is operably linked to additional nucleotides that provide for its expression.
  • Fragment: The term “fragment” means a polypeptide having one or more (e.g. several) amino acids absent from the amino and/or carboxyl terminus of the polypeptide of SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, or 8; wherein the fragment has alpha-amylase activity. In one aspect, a fragment contains at least 200 contiguous amino acid residues of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8, for example at least 300 contiguous amino acid residues, or at least 350 contiguous amino acid residues, or at least 400 contiguous amino acid residues, or at least 450 contiguous amino acid residues of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 8.
  • Host cell: The term “host cell” means any cell type that is susceptible to transformation, transfection, transduction, and the like with a nucleic acid construct or expression vector comprising a polynucleotide described herein. The term “host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.
  • Intensity Value: The term “intensity value” as used herein, refers to the wash performance measurement. It is measured as the brightness expressed as the intensity of the light reflected from the sample when illuminated with white light. When the sample is stained the intensity of the reflected light is lower, than that of a clean sample. Therefore, the intensity of the reflected light can be used to measure wash performance, where a higher intensity value correlates with higher wash performance. Color measurements are made with a professional flatbed scanner (Kodak iQsmart, Kodak) used to capture an image of the washed textile. To extract a value for the light intensity from the scanned images, 24-bit pixel values from the image are converted into values for red, green and blue (RGB). The intensity value (Int) is calculated by adding the RGB values together as vectors and then taking the length of the resulting vector:

  • Int=√{square root over (r 2 +g 2 +b 2)}
  • Improved property: The term “improved property” means a characteristic associated with a variant that is improved compared to the parent. Such improved properties include, but are not limited to, wash performance, thermal activity, thermostability, stability under storage conditions, and chemical stability.
  • Improved wash performance: The terms “improved wash performance” or “enhanced wash performance” mean the ability of the variant enzyme to provide a cleaning effect (e.g. stain removal) in a wash process, such as laundry or dishwashing, that is improved compared to that of the parent amylase or relative to the activity of an alpha-amylase having the amino acid sequence shown in SEQ ID NO: 2 or 1, e.g. by increased stain removal. Wash performance may be determined using methods well known in the art, such as using an automatic mechanical stress assay (AMSA). It will be appreciated by persons skilled in the art that the enhanced wash performance may be achieved under only some or perhaps all wash conditions, for example at wash temperatures of 20° C. or higher (such as at 40° C.). Improved wash performance may be indicated by an Improvement Factor (IF) above 1.0, preferably above 1.05 in one or more of the conditions listed in example 1 for example in model detergent A at 20° C. where the alpha-amylase variant concentration is 0.2 mg/L, or in model detergent A at 40° C. where the alpha-amylase variant concentration is 0.05 mg/L, or in model detergent J at 20° C. where the alpha-amylase variant concentration is 0.2 mg/L, or in model detergent J at 30° C. where the alpha-amylase variant concentration is 0.05 mg/L or in Detergent K at 20° C. where the alpha-amylase variant concentration is 0.2 mg/L. The wash conditions are described in the Example section.
  • Isolated: The term “isolated” means a substance in a form or environment which does not occur in nature. Non-limiting examples of isolated substances include (1) any non-naturally occurring substance, (2) any substance including, but not limited to, any enzyme, variant, nucleic acid, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; (3) any substance modified by the hand of man relative to that substance found in nature; or (4) any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated (e.g., multiple copies of a gene encoding the substance; use of a stronger promoter than the promoter naturally associated with the gene encoding the substance). An isolated substance may be present in a fermentation broth sample. In one aspect, the present invention relates to an isolated alpha-amylase variant.
  • Isolated polynucleotide: The term “isolated polynucleotide” means a polynucleotide that is modified by the hand of man. In one aspect, the isolated polynucleotide is at least 1% pure, e.g., at least 5% pure, at least 10% pure, at least 20% pure, at least 40% pure, at least 60% pure, at least 80% pure, at least 90% pure, and at least 95% pure, as determined by agarose electrophoresis. The polynucleotides may be of genomic, cDNA, RNA, semisynthetic, synthetic origin, or any combinations thereof.
  • Isolated variant: The term “isolated variant” means a variant that is modified by the hand of man. In one aspect, the variant is at least 1% pure, e.g., at least 5% pure, at least 10% pure, at least 20% pure, at least 40% pure, at least 60% pure, at least 80% pure, and at least 90% pure, as determined by SDS-PAGE.
  • Low temperature: “Low temperature” is a temperature of 5-40° C., preferably 5-35° C., preferably 5-30° C., more preferably 5-25° C., more preferably 5-20° C., most preferably 5-15° C., and in particular 5-10° C. In a preferred embodiment, “Low temperature” is a temperature of 10-35° C., preferably 10-30° C., or 10-25° C., or 10-20° C., or 10-15° C.
  • Mature polypeptide: The term “mature polypeptide” means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc. It is known in the art that a host cell may produce a mixture of two of more different mature polypeptides (i.e., with a different C-terminal and/or N-terminal amino acid) expressed by the same polynucleotide.
  • Mature polypeptide coding sequence: The term “mature polypeptide coding sequence” means a polynucleotide that encodes a mature polypeptide having alpha-amylase activity.
  • Mutant: The term “mutant” means a polynucleotide encoding a variant.
  • Nucleic acid construct: The term “nucleic acid construct” means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or is modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature or which is synthetic, which comprises one or more control sequences. The term nucleic acid construct is synonymous with the term “expression cassette” when the nucleic acid construct contains the control sequences required for expression of a coding sequence of the present invention.
  • Operably linked: The term “operably linked” means a configuration in which a control sequence is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs the expression of the coding sequence.
  • Parent or Parent alpha-amylase: The term “parent” or “parent alpha-amylase” means an alpha-amylase to which an alteration is made to produce the enzyme variants of the present invention. The parent may be a naturally occurring (wild-type) polypeptide or a variant thereof. For example, the parent may be the alpha-amylase of SEQ ID NO:1 (known as SP722). Alternatively, it may mean the alpha-amylase of SEQ ID NO: 2 or any suitable alpha-amylase, such as those listed herein as SEQ ID Nos.: 3, 4, 5, 6, 7, and 8.
  • Sequence Identity: The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter “sequence identity”.
  • For purposes of the present invention, the degree of sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277), preferably version 3.0.0 or later. The optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labeled “longest identity” (obtained using the −nobrief option) is used as the percent identity and is calculated as follows:

  • (Identical Residues×100)/(Length of Alignment−Total Number of Gaps in Alignment)
  • Alternatively, the parameters used may be gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix. The output of Needle labeled “longest identity” (obtained using the −nobrief option) is used as the percent identity and is calculated as follows:

  • (Identical Deoxyribonucleotides×100)/(Length of Alignment−Total Number of Gaps in Alignment)
  • Starch removing process: The expression “starch removing process” relates to any kind of process whereby starch is removed (or converted) such as in washing processes where starch is removed from textile e.g. textile cleaning such as laundry. A starch removing process could also be hard surface cleaning such as dish wash or it could be cleaning processes in general such as industrial or institutional cleaning. The expression also comprises other starch removing processes or starch conversion, ethanol production, starch liquefaction, textile desizing, paper and pulp production, beer making and detergents in general.
  • Subsequence: The term “subsequence” means a polynucleotide having one or more (e.g. several) nucleotides deleted from the 5′- and/or 3′-end of a mature polypeptide coding sequence; wherein the subsequence encodes a fragment having alpha-amylase activity.
  • Substantially pure polynucleotide: The term “substantially pure polynucleotide” means a polynucleotide preparation free of other extraneous or unwanted nucleotides and in a form suitable for use within genetically engineered polypeptide production systems. Thus, a substantially pure polynucleotide contains at most 10%, at most 8%, at most 6%, at most 5%, at most 4%, at most 3%, at most 2%, at most 1%, and at most 0.5% by weight of other polynucleotide material with which it is natively or recombinantly associated. A substantially pure polynucleotide may, however, include naturally occurring 5′- and 3′-untranslated regions, such as promoters and terminators. It is preferred that the substantially pure polynucleotide is at least 90% pure, e.g., at least 92% pure, at least 94% pure, at least 95% pure, at least 96% pure, at least 97% pure, at least 98% pure, at least 99% pure, and at least 99.5% pure by weight. The polynucleotides of the present invention are preferably in a substantially pure form.
  • Substantially pure variant: The term “substantially pure variant” means a preparation that contains at most 10%, at most 8%, at most 6%, at most 5%, at most 4%, at most 3%, at most 2%, at most 1%, and at most 0.5% by weight of other polypeptide material with which it is natively or recombinantly associated. Preferably, the variant is at least 92% pure, e.g., at least 94% pure, at least 95% pure, at least 96% pure, at least 97% pure, at least 98% pure, at least 99%, at least 99.5% pure, and 100% pure by weight of the total polypeptide material present in the preparation. The variants of the present invention are preferably in a substantially pure form. This can be accomplished, for example, by preparing the variant by well known recombinant methods or by classical purification methods.
  • Textile Care Benefits: The term “textile care benefits”, as used herein, is defined as not being directly related to catalytic stain removal or prevention of re-deposition of soils, are also important for enzyme detergency benefits. Examples of such textile care benefits are prevention or reduction of dye transfer from one textile to another textile or another part of the same textile (an effect that is also termed dye transfer inhibition or anti-backstaining), removal of protruding or broken fibers from a textile surface to decrease pilling tendencies or remove already existing pills or fuzz (an effect that also is termed anti-pilling), improvement of the textile-softness, color clarification of the textile and removal of particulate soils which are trapped in the fibers of the textile. Enzymatic bleaching is a further enzyme detergency benefit where the catalytic activity generally is used to catalyze the formation of bleaching component such as hydrogen peroxide or other peroxides or other bleaching species.”
  • Variant: The term “variant” means a polypeptide having alpha-amylase activity comprising an alteration/mutation, i.e., a substitution, insertion, and/or deletion, at one or more (e.g. several) positions relative to the parent alpha-amylase. A substitution means a replacement of an amino acid occupying a position with a different amino acid; a deletion means removal of an amino acid occupying a position; and an insertion means adding 1-3 amino acids adjacent to and immediately following an amino acid occupying a position.
  • Wash performance In the present context the term “wash performance” is used as an enzyme's ability to remove starch or starch-containing stains present on the object to be cleaned during e.g. laundry or hard surface cleaning, such as dish washing. The wash performance may be quantified by calculating the so-called intensity value (Int) defined in the description of AMSA or in the beaker wash performance test in the Methods section below.
  • Wild-Type Enzyme: The term “wild-type” alpha-amylase means an alpha-amylase expressed by a naturally occurring microorganism, such as a bacterium, yeast, or filamentous fungus found in nature.
  • The term “wash performance” includes cleaning in general e.g. hard surface cleaning as in dish wash, but also wash performance on textiles such as laundry, and also industrial and institutional cleaning. Improved wash performance may be measured by comparing the delta intensities as described in the definition herein
  • The term “wash performance” includes cleaning in general e.g. hard surface cleaning as in dish wash, but also wash performance on textiles such as laundry, and also industrial and institutional cleaning.
  • Conventions for Designation of Variants
  • The polypeptides of the invention having alpha-amylase activity correspond to variants of an alpha-amylase derived from Bacillus, as shown in SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8.
  • SEO ID NO: 1
    HHNGTNGTMMQYFEWHLPNDGNHWNRLRDDASNLRNRGITAIWIPPAWKG
    TSQNDVGYGAYDLYDLGEFNQKGTVRTKYGTRSQLESAIHALKNNGVQVY
    GDVVMNHKGGADATENVLAVEVNPNNRNQEISGDYTIEAWTKFDFPGRGN
    TYSDFKWRWYHFDGVDWDQSRQFQNRIYKFRGDGKAWDWEVDSENGNYDY
    LMYADVDMDHPEVVNELRRWGEWYTNTLNLDGFRIDAVKHIKYSFTRDWL
    THVRNATGKEMFAVAEFWKNDLGALENYLNKTNWNHSVFDVPLHYNLYNA
    SNSGGNYDMAKLLNGTVVQKHPMHAVTFVDNHDSQPGESLESFVQEWFKP
    LAYALILTREQGYPSVFYGDYYGIPTHSVPAMKAKIDPILEARQNFAYGT
    QHDYFDHHNIIGWTREGNTTHPNSGLATIMSDGPGGEKWMYVGQNKAGQV
    WHDITGNKPGTVTINADGWANFSVNGGSVSIWVKR
  • For the purposes of the present invention, the mature polypeptide disclosed in SEQ ID NO: 1 is used to determine the corresponding amino acid residue in another alpha-amylase polypeptide. However, the skilled person would recognize that the sequence of SEQ ID NO: 2 may also be used to determine the corresponding amino acid residue in another alpha-amylase polypeptide. The amino acid sequence of another alpha-amylase is aligned with the mature polypeptide disclosed in SEQ ID NO: 1, and based on the alignment, the amino acid position number corresponding the any amino acid residue in the mature polypeptide disclosed in SEQ IDN O: 1 is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.
  • Identification of the corresponding amino acid residue in another alpha-amylase can be determined by an alignment of multiple polypeptide sequences using several computer programs including, but not limited to, MUSCLE (multiple sequence comparison by log-expectation; version 3.5 or later; Edgar, 2004, Nucleic Acids Research 32: 1792-1797), MAFFT (version 6.857 or later; Katoh and Kuma, 2002, Nucleic Acids Research 30: 3059-3066; Katoh et al., 2005, Nucleic Acids Research 33: 511-518; Katoh and Toh, 2007, Bioinformatics 23: 372-374; Katoh et al., 2009, Methods in Molecular Biology 537: 39-64; Katoh and Toh, 2010, Bioinformatics 26: 1899-1900), and EMBOSS EMMA employing ClustalW (1.83 or later; Thompson et al., 1994, Nucleic Acids Research 22: 4673-4680), using their respective default parameters.
  • When the other alpha-amylase has diverged from the mature polypeptide of SEQ ID NO: 1 such that traditional sequence-based comparison fails to detect their relationship (Lindahl and Elofsson, 2000, J. Mol. Biol. 295: 613-615), other pairwise sequence comparison algorithms can be used. Greater sensitivity in sequence-based searching can be attained using search programs that utilize probabilistic representations of polypeptide families (profiles) to search databases. For example, the PSI-BLAST program generates profiles through an iterative database search process and is capable of detecting remote homologs (Atschul et al., 1997, Nucleic Acids Res. 25: 3389-3402). Even greater sensitivity can be achieved if the family or superfamily for the polypeptide has one or more representatives in the protein structure databases. Programs such as GenTHREADER (Jones, 1999, J. Mol. Biol. 287: 797-815; McGuffin and Jones, 2003, Bioinformatics 19: 874-881) utilize information from a variety of sources (PSI-BLAST, secondary structure prediction, structural alignment profiles, and solvation potentials) as input to a neural network that predicts the structural fold for a query sequence. Similarly, the method of Gough et al., 2000, J. Mol. Biol. 313: 903-919, can be used to align a sequence of unknown structure with the superfamily models present in the SCOP database. These alignments can in turn be used to generate homology models for the polypeptide, and such models can be assessed for accuracy using a variety of tools developed for that purpose.
  • For proteins of known structure, several tools and resources are available for retrieving and generating structural alignments. E.g. the SCOP superfamilies of proteins have been structurally aligned, and those alignments are accessible and downloadable. Two or more protein structures can be aligned using a variety of algorithms such as the distance alignment matrix (Holm and Sander, 1998, Proteins 33: 88-96) or combinatorial extension (Shindyalov and Bourne, 1998, Protein Engineering 11: 739-747), and implementation of these algorithms can additionally be utilized to query structure databases with a structure of interest in order to discover possible structural homologs (e.g., Holm and Park, 2000, Bioinformatics 16: 566-567).
  • In describing the alpha-amylase variants of the present invention, the nomenclature described below is adapted for ease of reference. The accepted IUPAC single letter or three letter amino acid abbreviation is employed.
  • Substitutions. For an amino acid substitution, the following nomenclature is used: Original amino acid, position, substituted amino acid. Accordingly, the substitution of e.g. threonine at position 226 with alanine is designated as “Thr226Ala” or “T226A”. Multiple mutations are separated by addition marks (“+”), e.g., “Gly205Arg+Ser411Phe” or “G205R+S411F”, representing substitutions at positions 205 and 411 of glycine (G) with arginine (R) and serine (S) with phenylalanine (F), respectively.
  • Deletions. For an amino acid deletion, the following nomenclature is used: Original amino acid, position, *. Accordingly, the deletion of glycine at position 181 is designated as “Ser181*” or “S181*”. Multiple deletions are separated by addition marks (“+”), e.g., “Ser181*+Thr182*” or “S181*+T182*”.
  • Insertions. For an amino acid insertion, the following nomenclature is used: Original amino acid, position, original amino acid, inserted amino acid. Accordingly, the insertion of lysine after e.g. glycine at position 195 is designated “Gly195GlyLys” or “G195GK”. An insertion of multiple amino acids is designated [Original amino acid, position, original amino acid, inserted amino acid #1, inserted amino acid #2; etc.]. For example, the insertion of lysine and alanine after glycine at position 195 is indicated as “Gly195GlyLysAla” or “G195GKA”.
  • In such cases the inserted amino acid residue(s) are numbered by the addition of lower case letters to the position number of the amino acid residue preceding the inserted amino acid residue(s). In the above example, the sequence would thus be:
  • Parent: Variant:
    195 195 195a 195b
    G G-K-A
  • Multiple modifications. Variants comprising multiple modifications are separated by addition marks (“+”), e.g., “Arg170Tyr+Gly195Glu” or “R170Y+G195E” representing a substitution of arginine and glycine at positions 170 and 195 with tyrosine and glutamic acid, respectively.
  • Different modifications. Where different alterations can be introduced at a position, the different alterations are separated by a comma, e.g., “Arg170Tyr,Glu” represents a substitution of arginine at position 170 with tyrosine or glutamic acid. Thus, “Tyr167Gly,Ala+Arg170Gly,Ala” designates the following variants:
  • “Tyr167Gly+Arg170Gly”, “Tyr167Gly+Arg170Ala”, “Tyr167Ala+Arg170Gly”, and “Tyr167Ala+Arg170Ala”.
  • Parent Alpha-Amylases
  • The parent alpha-amylase may be a polypeptide with at least 80% sequence identity with the polypeptide set forth in SEQ ID NO: 1.
  • In one aspect, the parent alpha-amylase has a sequence identity to the polypeptide of SEQ ID NO: 1 of at least 80%, such as at least 85%, at least 90%, e.g. at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99, or 100%, which has alpha-amylase activity. In one aspect, the amino acid sequence of the parent alpha-amylase differs by no more than ten amino acids, e.g. by five amino acids, by four amino acids, by three amino acids, by two amino acids, and by one amino acid from the polypeptide of SEQ ID NO: 1.
  • The parent alpha-amylase preferably comprises or consists of the amino acid sequence of SEQ ID NO: 1. In another embodiment, the parent alpha-amylase is an allelic variant of the polypeptide of SEQ ID NO: 1.
  • The parent alpha-amylase may also be a polypeptide with at least 80% sequence identity with the polypeptide set forth in SEQ ID NO: 2.
  • In one aspect, the parent alpha-amylase has a sequence identity to the polypeptide of SEQ ID NO: 2 of at least 80%, such as at least 85%, at least 90%, e.g. at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99, or 100%, which has alpha-amylase activity. In one aspect, the amino acid sequence of the parent alpha-amylase differs by no more than ten amino acids, e.g. by five amino acids, by four amino acids, by three amino acids, by two amino acids, and by one amino acid from the polypeptide of SEQ ID NO: 2.
  • The parent alpha-amylase preferably comprises or consists of the amino acid sequence of SEQ ID NO: 2. In another embodiment, the parent alpha-amylase is an allelic variant of the polypeptide of SEQ ID NO: 2.
  • The parent alpha-amylase may also be a polypeptide with at least 80% sequence identity with the polypeptide set forth in SEQ ID NO: 3.
  • In one aspect, the parent alpha-amylase has a sequence identity to the polypeptide of SEQ ID NO: 3 of at least 80%, such as at least 85%, at least 90%, e.g. at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99, or 100%, which has alpha-amylase activity. In one aspect, the amino acid sequence of the parent alpha-amylase differs by no more than ten amino acids, e.g. by five amino acids, by four amino acids, by three amino acids, by two amino acids, and by one amino acid from the polypeptide of SEQ ID NO: 3.
  • The parent alpha-amylase preferably comprises or consists of the amino acid sequence of SEQ ID NO: 3. In another embodiment, the parent alpha-amylase is an allelic variant of the polypeptide of SEQ ID NO: 3.
  • The parent alpha-amylase may also be a polypeptide with at least 80% sequence identity with the polypeptide set forth in SEQ ID NO: 4.
  • In one aspect, the parent alpha-amylase has a sequence identity to the polypeptide of SEQ ID NO: 4 of at least 80%, such as at least 85%, at least 90%, e.g. at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99, or 100%, which has alpha-amylase activity. In one aspect, the amino acid sequence of the parent alpha-amylase differs by no more than ten amino acids, e.g. by five amino acids, by four amino acids, by three amino acids, by two amino acids, and by one amino acid from the polypeptide of SEQ ID NO: 4.
  • The parent alpha-amylase preferably comprises or consists of the amino acid sequence of SEQ ID NO: 4. In another embodiment, the parent alpha-amylase is an allelic variant of the polypeptide of SEQ ID NO: 4.
  • The parent alpha-amylase may also be a polypeptide with at least 80% sequence identity with the polypeptide set forth in SEQ ID NO: 5.
  • In one aspect, the parent alpha-amylase has a sequence identity to the polypeptide of SEQ ID NO: 5 of at least 80%, such as at least 85%, at least 90%, e.g. at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99, or 100%, which has alpha-amylase activity. In one aspect, the amino acid sequence of the parent alpha-amylase differs by no more than ten amino acids, e.g. by five amino acids, by four amino acids, by three amino acids, by two amino acids, and by one amino acid from the polypeptide of SEQ ID NO: 5.
  • The parent alpha-amylase preferably comprises or consists of the amino acid sequence of SEQ ID NO: 5. In another embodiment, the parent alpha-amylase is an allelic variant of the polypeptide of SEQ ID NO: 5.
  • The parent alpha-amylase may also be a polypeptide with at least 80% sequence identity with the polypeptide set forth in SEQ ID NO: 6.
  • In one aspect, the parent alpha-amylase has a sequence identity to the polypeptide of SEQ ID NO: 6 of at least 80%, such as at least 85%, at least 90%, e.g. at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99, or 100%, which has alpha-amylase activity. In one aspect, the amino acid sequence of the parent alpha-amylase differs by no more than ten amino acids, e.g. by five amino acids, by four amino acids, by three amino acids, by two amino acids, and by one amino acid from the polypeptide of SEQ ID NO: 6.
  • The parent alpha-amylase preferably comprises or consists of the amino acid sequence of SEQ ID NO: 6. In another embodiment, the parent alpha-amylase is an allelic variant of the polypeptide of SEQ ID NO: 6.
  • The parent alpha-amylase may also be a polypeptide with at least 80% sequence identity with the polypeptide set forth in SEQ ID NO: 7.
  • In one aspect, the parent alpha-amylase has a sequence identity to the polypeptide of SEQ ID NO: 7 of at least 80%, such as at least 85%, at least 90%, e.g. at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99, or 100%, which has alpha-amylase activity. In one aspect, the amino acid sequence of the parent alpha-amylase differs by no more than ten amino acids, e.g. by five amino acids, by four amino acids, by three amino acids, by two amino acids, and by one amino acid from the polypeptide of SEQ ID NO: 7.
  • The parent alpha-amylase preferably comprises or consists of the amino acid sequence of SEQ ID NO: 7. In another embodiment, the parent alpha-amylase is an allelic variant of the polypeptide of SEQ ID NO: 7.
  • The parent alpha-amylase may also be a polypeptide with at least 80% sequence identity with the polypeptide set forth in SEQ ID NO: 8.
  • In one aspect, the parent alpha-amylase has a sequence identity to the polypeptide of SEQ ID NO: 8 of at least 80%, such as at least 85%, at least 90%, e.g. at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99, or 100%, which has alpha-amylase activity. In one aspect, the amino acid sequence of the parent alpha-amylase differs by no more than ten amino acids, e.g. by five amino acids, by four amino acids, by three amino acids, by two amino acids, and by one amino acid from the polypeptide of SEQ ID NO: 8.
  • The parent alpha-amylase preferably comprises or consists of the amino acid sequence of SEQ ID NO: 8. In another embodiment, the parent alpha-amylase is an allelic variant of the polypeptide of SEQ ID NO: 8.
  • The amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or a fragment thereof, may be used to design nucleic acid probes to identify and clone DNA encoding a parent from strains of different genera or species according to methods well known in the art. In particular, such probes can be used for hybridization with the genomic or cDNA of the genus or species of interest, following standard Southern blotting procedures, in order to identify and isolate the corresponding gene therein. Such probes can be considerably shorter than the entire sequence, but should be at least 14, e.g., at least 25, at least 35, or at least 70 nucleotides in length. Preferably, the nucleic acid probe is at least 100 nucleotides in length, e.g., at least 200 nucleotides, at least 300 nucleotides, at least 400 nucleotides, at least 500 nucleotides, at least 600 nucleotides, at least 700 nucleotides, at least 800 nucleotides, or at least 900 nucleotides in length. Both DNA and RNA probes can be used. The probes are typically labeled for detecting the corresponding gene (for example, with 32P, 3H, 35S, biotin, or avidin). Such probes are encompassed by the present invention.
  • A genomic DNA or cDNA library prepared from such other organisms may be screened for DNA that hybridizes with the probes described above and encodes a parent. Genomic or other DNA from such other organisms may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques. DNA from the libraries or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material, which is used in a Southern blot.
  • For purposes of the present invention, hybridization indicates that the polynucleotide hybridizes to a labeled nucleotide probe corresponding to a polynucleotide encoding SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or a subsequence thereof, under low to very high stringency conditions. Molecules to which the probe hybridizes can be detected using, for example, X-ray film or any other detection means known in the art.
  • In one aspect, the nucleic acid probe is a polynucleotide that encodes the polypeptide of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or a fragment thereof.
  • For long probes of at least 100 nucleotides in length, very low to very high stringency conditions are defined as prehybridization and hybridization at 42° C. in 5×SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and either 25% formamide for very low and low stringencies, 35% formamide for medium and medium-high stringencies, or 50% formamide for high and very high stringencies, following standard Southern blotting procedures for 12 to 24 hours optimally. The carrier material is finally washed three times each for 15 minutes using 2×SSC, 0.2% SDS at 45° C. (very low stringency), 50° C. (low stringency), 55° C. (medium stringency), 60° C. (medium-high stringency), 65° C. (high stringency), or 70° C. (very high stringency).
  • For short probes that are about 15 nucleotides to about 70 nucleotides in length, stringency conditions are defined as prehybridization and hybridization at about 5° C. to about 10° C. below the calculated Tm using the calculation according to Bolton and McCarthy (1962, Proc. Natl. Acad. Sci. USA 48: 1390) in 0.9 M NaCl, 0.09 M Tris-HCl pH 7.6, 6 mM EDTA, 0.5% NP-40, 1×Denhardt's solution, 1 mM sodium pyrophosphate, 1 mM sodium monobasic phosphate, 0.1 mM ATP, and 0.2 mg of yeast RNA per ml following standard Southern blotting procedures for 12 to 24 hours optimally. The carrier material is finally washed once in 6×SCC plus 0.1% SDS for 15 minutes and twice each for 15 minutes using 6×SSC at 5° C. to 10° C. below the calculated Tm.
  • The parent may be obtained from microorganisms of any genus. For purposes of the present invention, the term “obtained from” as used herein in connection with a given source shall mean that the parent encoded by a polynucleotide is produced by the source or by a cell in which the polynucleotide from the source has been inserted. In one aspect, the parent is secreted extracellularly.
  • The parent may be a bacterial alpha-amylase. For example, the parent may be a gram-positive bacterial polypeptide such as a Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, or Streptomyces alpha-amylase, or a gram-negative bacterial polypeptide such as a Campylobacter, E. coli, Flavobacterium, Fusobacterium, Helicobacter, Ilyobacter, Neisseria, Pseudomonas, Salmonella, or Ureaplasma alpha-amylase.
  • In one aspect, the parent is a Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis, or Bacillus thuringiensis alpha-amylase.
  • In another aspect, the parent is a Streptococcus equisimilis, Streptococcus pyogenes, Streptococcus uberis, or Streptococcus equi subsp. Zooepidemicus alpha-amylase.
  • In another aspect, the parent is a Streptomyces achromogenes, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces griseus, or Streptomyces lividans alpha-amylase.
  • In another aspect, the parent is a Bacillus sp. alpha-amylase, e.g., the alpha-amylase of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, or SEQ ID NO: 8.
  • It will be understood that for the aforementioned species, the invention encompasses both the perfect and imperfect states, and other taxonomic equivalents, e.g., anamorphs, regardless of the species name by which they are known. Those skilled in the art will readily recognize the identity of appropriate equivalents.
  • Strains of these species are readily accessible to the public in a number of culture collections, such as the American Type Culture Collection (ATCC), Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSM), Centraalbureau Voor Schimmelcultures (CBS), and Agricultural Research Service Patent Culture Collection, Northern Regional Research Center (NRRL).
  • The parent may be identified and obtained from other sources including microorganisms isolated from nature (e.g., soil, composts, water, etc.) or DNA samples obtained directly from natural materials (e.g., soil, composts, water, etc,) using the above-mentioned probes. Techniques for isolating microorganisms and DNA directly from natural habitats are well known in the art. The polynucleotide encoding a parent may then be derived by similarly screening a genomic or cDNA library of another microorganism or mixed DNA sample. Once a polynucleotide encoding a parent has been detected with a probe(s), the polynucleotide may be isolated or cloned by utilizing techniques that are known to those of ordinary skill in the art (see, e.g., Sambrook et al., 1989, supra).
  • The parent may be a hybrid polypeptide in which a portion of one polypeptide is fused at the N-terminus or the C-terminus of a portion of another polypeptide.
  • The parent may also be a fused polypeptide or cleavable fusion polypeptide in which one polypeptide is fused at the N-terminus or the C-terminus of another polypeptide. A fused polypeptide is produced by fusing a polynucleotide encoding one polypeptide to a polynucleotide encoding another polypeptide. Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fused polypeptide is under control of the same promoter(s) and terminator. Fusion proteins may also be constructed using intein technology in which fusions are created post-translationally (Cooper et al., 1993, EMBO J. 12: 2575-2583; Dawson et al., 1994, Science 266: 776-779).
  • A fusion polypeptide can further comprise a cleavage site between the two polypeptides. Upon secretion of the fusion protein, the site is cleaved releasing the two polypeptides. Examples of cleavage sites include, but are not limited to, the sites disclosed in Martin et al., 2003, J. Ind. Microbiol. Biotechnol. 3: 568-576; Svetina et al., 2000, J. Biotechnol. 76: 245-251; Rasmussen-Wilson et al., 1997, Appl. Environ. Microbiol. 63: 3488-3493; Ward et al., 1995, Biotechnology 13: 498-503; and Contreras et al., 1991, Biotechnology 9: 378-381; Eaton et al., 1986, Biochemistry 25: 505-512; Collins-Racie et al., 1995, Biotechnology 13: 982-987; Carter et al., 1989, Proteins: Structure, Function, and Genetics 6: 240-248; and Stevens, 2003, Drug Discovery World 4: 35-48.
  • Preparation of Variants
  • A suitable method for obtaining a variant essential to the present invention having alpha-amylase activity, comprises (a) introducing into a parent alpha-amylase a modification at one or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence set forth in SEQ ID NO: 1, and optionally in one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476 of the amino acid sequence as set forth in SEQ ID NO: 1, wherein each modification is independently a substitution or deletion, and said variant has alpha-amylase activity; and (b) recovering said variant.
  • In one aspect, the a method for obtaining a variant having alpha-amylase activity, comprises (a) introducing into a parent alpha-amylase a modification at one or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence set forth in SEQ ID NO: 1, and optionally in one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476 of the amino acid sequence as set forth in SEQ ID NOs: 2, 3, 4, 5, 6, 7, of 8, wherein the numbering is according to SEQ ID NO: 1, and wherein each modification is independently a substitution or deletion, and said variant has alpha-amylase activity; and (b) recovering said variant.
  • In one embodiment, the modification is a substitution. In one embodiment, the modification is a deletion.
  • In another embodiment, the method for obtaining a variant having alpha-amylase activity, comprises (a) introducing into a parent alpha-amylase a substitution at one or more positions, wherein the substitution is selected from H1A, G7A, G109A, N280S, W284H, K320A, M323N, and E391A of the polypeptide of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8, wherein numbering is according to SEQ ID NO: 1 and (b) recovering the variant.
  • The method may further comprise introducing to the parent alpha-amylase a deletion in one or more positions, wherein the deletion is selected from: H1*, R181*, G182*, D183*, and G184* of the polypeptide of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8, wherein numbering is according to SEQ ID NO: 1, and recovering the variant.
  • The method may further comprise introducing to the parent alpha-amylase a substitution in one or more positions, wherein the substitution is selected from: W140Y, N195F, V206Y, Y243F, E260G, G304R, and G476K of the polypeptide of SEQ ID Nos.: 1, 3, 4, 5, 6, 7, or 8, and recovering the variant.
  • The variants may be prepared using any mutagenesis procedure known in the art, such as site-directed mutagenesis, synthetic gene construction, semi-synthetic gene construction, random mutagenesis, shuffling, etc.
  • Site-directed mutagenesis is a technique in which one or more (several) mutations are created at one or more defined sites in a polynucleotide encoding the parent.
  • Site-directed mutagenesis can be accomplished in vitro by PCR involving the use of oligonucleotide primers containing the desired mutation. Site-directed mutagenesis can also be performed in vitro by cassette mutagenesis involving the cleavage by a restriction enzyme at a site in the plasmid comprising a polynucleotide encoding the parent and subsequent ligation of an oligonucleotide containing the mutation in the polynucleotide. Usually the restriction enzyme that digests at the plasmid and the oligonucleotide is the same, permitting sticky ends of the plasmid and insert to ligate to one another. See, e.g., Scherer and Davis, 1979, Proc. Natl. Acad. Sci. USA 76: 4949-4955; and Barton et al., 1990, Nucleic Acids Res. 18: 7349-4966.
  • Site-directed mutagenesis can also be accomplished in vivo by methods known in the art. See, e.g., U.S. Patent Application Publication No. 2004/0171154; Storici et al., 2001, Nature Biotechnol. 19: 773-776; Kren et al., 1998, Nat. Med. 4: 285-290; and Calissano and Macino, 1996, Fungal Genet. Newslett. 43: 15-16.
  • Any site-directed mutagenesis procedure can be used in the present invention. There are many commercial kits available that can be used to prepare variants.
  • Synthetic gene construction entails in vitro synthesis of a designed polynucleotide molecule to encode a polypeptide of interest. Gene synthesis can be performed utilizing a number of techniques, such as the multiplex microchip-based technology described by Tian et al. (2004, Nature 432: 1050-1054) and similar technologies wherein oligonucleotides are synthesized and assembled upon photo-programmable microfluidic chips.
  • Single or multiple amino acid substitutions, deletions, and/or insertions can be made and tested using known methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, Science 241: 53-57; Bowie and Sauer, 1989, Proc. Natl. Acad. Sci. USA 86: 2152-2156; WO 95/17413; or WO 95/22625. Other methods that can be used include error-prone PCR, phage display (e.g., Lowman et al., 1991, Biochemistry 30: 10832-10837; U.S. Pat. No. 5,223,409; WO 92/06204) and region-directed mutagenesis (Derbyshire et al., 1986, Gene 46: 145; Ner et al., 1988, DNA 7: 127).
  • Mutagenesis/shuffling methods can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness et al., 1999, Nature Biotechnology 17: 893-896). Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide.
  • Semi-synthetic gene construction is accomplished by combining aspects of synthetic gene construction, and/or site-directed mutagenesis, and/or random mutagenesis, and/or shuffling. Semi-synthetic construction is typified by a process utilizing polynucleotide fragments that are synthesized, in combination with PCR techniques. Defined regions of genes may thus be synthesized de novo, while other regions may be amplified using site-specific mutagenic primers, while yet other regions may be subjected to error-prone PCR or non-error prone PCR amplification. Polynucleotide subsequences may then be shuffled.
  • Variants
  • The variants of a parent alpha-amylase essential to the present invention may comprise (i) a modification at one or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence set forth in SEQ ID NO: 1, and optionally in one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476 of the amino acid sequence as set forth in SEQ ID NO: 1, (ii) the variant has at least 80, such as at least 90%, such as at least 95%, such as at least 97%, but less than 100% sequence identity with the amino acid sequence set forth in SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8, and (iii) the variant has alpha-amylase activity. Hereby, variants are provided which have improved washing performance at low temperature, compared to the parent alpha-amylase or compared to the alpha-amylase of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 8.
  • Suitable variants may have a sequence identity of at least 80%, such as at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, to the amino acid sequence of the parent alpha-amylase.
  • The isolated variants of a parent alpha-amylase suitable herein may comprise (i) a modification at one or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence set forth in SEQ ID NO: 1, and optionally in one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476 of the amino acid sequence as set forth in SEQ ID NO: 1, (ii) the variant has at least 80, such as at least 90%, such as at least 95%, such as at least 97%, but less than 100% sequence identity with the amino acid sequence set forth in SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8, and (iii) the variant has alpha-amylase activity.
  • Suitable variants may have at least 80%, such as at least 85%, at least 90%, at least 95%, such as at least 96%, at least 97%, at least 98%, and at least 99%, but less than 100%, sequence identity with the mature polypeptide of SEQ ID NO: 1.
  • In another embodiment, a suitable variant has at least 80%, such as at least 85%, at least 90%, at least 95%, such as at least 96%, at least 97%, at least 98%, and at least 99%, but less than 100%, sequence identity with the mature polypeptide of SEQ ID NO: 2.
  • In another embodiment, a suitable variant has at least 80%, such as at least 85%, at least 90%, at least 95%, such as at least 96%, at least 97%, at least 98%, and at least 99%, but less than 100%, sequence identity with the mature polypeptide of SEQ ID NO: 3.
  • In another embodiment, a suitable variant has at least 80%, such as at least 85%, at least 90%, at least 95%, such as at least 96%, at least 97%, at least 98%, and at least 99%, but less than 100%, sequence identity with the mature polypeptide of SEQ ID NO: 4.
  • In another embodiment, a suitable variant has at least 80%, such as at least 85%, at least 90%, at least 95%, such as at least 96%, at least 97%, at least 98%, and at least 99%, but less than 100%, sequence identity with the mature polypeptide of SEQ ID NO: 5.
  • In another embodiment, a suitable variant has at least 80%, such as at least 85%, at least 90%, at least 95%, such as at least 96%, at least 97%, at least 98%, and at least 99%, but less than 100%, sequence identity with the mature polypeptide of SEQ ID NO: 6.
  • In another embodiment, a suitable variant has at least 80%, such as at least 85%, at least 90%, at least 95%, such as at least 96%, at least 97%, at least 98%, and at least 99%, but less than 100%, sequence identity with the mature polypeptide of SEQ ID NO: 7.
  • In another embodiment, a suitable variant has at least 80%, such as at least 85%, at least 90%, at least 95%, such as at least 96%, at least 97%, at least 98%, and at least 99%, but less than 100%, sequence identity with the mature polypeptide of SEQ ID NO: 8.
  • In one embodiment, the number of modifications in a suitable variant for use in the present invention is 1 to 20, e.g., 1 to 10 and 1 to 5, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 modifications.
  • In one embodiment, a suitable variant comprises a modification, such as a substitution, at one or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and optionally a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at two or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and optionally a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at three or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and optionally a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at four or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and optionally a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at five or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and optionally a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at six or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and optionally a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at seven or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and optionally a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at eight positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and optionally a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In one embodiment, a suitable variant comprises a modification, such as a substitution, at one or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at two or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at three or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at four or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at five or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at six or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at seven or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In another embodiment, a suitable variant comprises a modification, such as a substitution, at eight positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391, and a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 203, 243, 260, 304, and 476, wherein numbering is according to SEQ ID NO: 1.
  • In a preferred embodiment, the variant comprises a modification in one, two, three, four, or five positions selected from the group consisting of 1, 7, 109, 280, and 391. In one embodiment, the variant comprises at least one deletion and at least one substitution in two, three, four or five positions selected from the group consisting of 1, 7, 109, 280, and 391.
  • In one embodiment, a suitable variant comprises a substitution at one, two, three, or four positions selected from 7, 109, 280, and 391.
  • In one embodiment, a suitable variant comprises modifications in the positions selected from the group of positions consisting of: X1+X7; X1+X109; X1+X280; X1+X284; X1+X320; X1+X323; X1+X391; X109+X280; X109+X284; X109+X320; X109+X323; X109+X391; X7+X109; X7+X280; X7+X284; X7+X320; X7+X323; X7+X391; X280+X284; X280+X320; X280+X323; X280+X391; X284+X320; X284+X323; X284+X391; X320+X323; X320+X391; and X323+X391, wherein numbering is according to SEQ ID NO: 1.
  • In one embodiment, a suitable variant comprises modifications in the positions selected from the group of positions consisting of: X109+X7+X1; X109+X7+X391; X109+X7+X280; X109+X7+X284; X109+X7+X320; X109+X7+X323; X109+X1+X391; X109+X1+X280; X109+X1+X284; X109+X1+X320; X109+X1+X323; X109+X391+X280; X109+X391+X284; X109+X391+X320; X109+X391+X323; X109+X280+X284; X109+X280+X320; X109+X280+X323; X109+X284+X320; X109+X284+X323; X109+X320+X323; X7+X1+X391; X7+X1+X280; X7+X1+X284; X7+X1+X320; X7+X1+X323; X7+X391+X280; X7+X391+X284; X7+X391+X320; X7+X391+X323; X7+X280+X284; X7+X280+X320; X7+X280+X323; X7+X284+X320; X7+X284+X323; X7+X320+X323; X1+X391+X280; X1+X391+X284; X1+X391+X320; X1+X391+X323; X1+X280+X284; X1+X280+X320; X1+X280+X323; X1+X284+X320; X1+X284+X323; X1+X320+X323; X391+X280+X284; X391+X280+X320; X391+X280+X323; X391+X284+X320; X391+X284+X323; X391+X320+X323; X280+X284+X320; X280+X284+X323; X280+X320+X323; and X284+X320+X323, wherein numbering is according to SEQ ID NO: 1.
  • In one embodiment, a suitable variant comprises modifications in the positions selected from the group of positions consisting of: X109+X7+X1+X391; X109+X7+X1+X280; X109+X7+X1+X284; X109+X7+X1+X320; X109+X7+X1+X323; X109+X7+X391+X280; X109+X7+X391+X284; X109+X7+X391+X320; X109+X7+X391+X323; X109+X7+X280+X284; X109+X7+X280+X320; X109+X7+X280+X323; X109+X7+X284+X320; X109+X7+X284+X323; X109+X7+X320+X323; X109+X1+X391+X280; X109+X1+X391+X284; X109+X1+X391+X320; X109+X1+X391+X323; X109+X1+X280+X284; X109+X1+X280+X320; X109+X1+X280+X323; X109+X1+X284+X320; X109+X1+X284+X323; X109+X1+X320+X323; X109+X391+X280+X284; X109+X391+X280+X320; X109+X391+X280+X323; X109+X391+X284+X320; X109+X391+X284+X323; X109+X391+X320+X323; X109+X280+X284+X320; X109+X280+X284+X323; X109+X280+X320+X323; X109+X284+X320+X323; X7+X1+X391+X280; X7+X1+X391+X284; X7+X1+X391+X320; X7+X1+X391+X323; X7+X1+X280+X284; X7+X1+X280+X320; X7+X1+X280+X323; X7+X1+X284+X320; X7+X1+X284+X323; X7+X1+X320+X323; X7+X391+X280+X284; X7+X391+X280+X320; X7+X391+X280+X323; X7+X391+X284+X320; X7+X391+X284+X323; X7+X391+X320+X323; X7+X280+X284+X320; X7+X280+X284+X323; X7+X280+X320+X323; X7+X284+X320+X323; X1+X391+X280+X284; X1+X391+X280+X320; X1+X391+X280+X323; X1+X391+X284+X320; X1+X391+X284+X323; X1+X391+X320+X323; X1+X280+X284+X320; X1+X280+X284+X323; X1+X280+X320+X323; X1+X284+X320+X323; X391+X280+X284+X320; X391+X280+X284+X323; X391+X280+X320+X323; X391+X284+X320+X323; and X280+X284+X320+X323, wherein numbering is according to SEQ ID NO: 1.
  • In one embodiment, a suitable variant comprises one or more modifications selected from the group consisting of X1*, X1A, X7A, X7K, X7E, X7N. X7Q, X7L, X7D, X109A, X109S, X140Y, X181*, X182*, X183*, X184*, X195F, X206Y, X243F, X260G, X280S, X284H, X284R, X284F, X304R, X320A, X320M, X320T, X320V, X320S, X323N, X323R, X323S, X323K, X391A, X391V, and X476K, wherein numbering is according to SEQ ID NO: 1.
  • In one particular embodiment, a suitable variant comprises the modifications selected from the group consisting of: X1*+X1A; X1*+X7A; X1*+X109A; X1*±X280S; X1*+X284H; X1*+X320A; X1*+X323N; X1*+X391A; X1A+X7A; X1A+X109A; X1A+X280S; X1A+X284H; X1A+X320A; X1A+X323N; X1A+X391A; X7A+X109A; X7A+X280S; X7A+X284H; X7A+X320A; X7A+X323N; X7A+X391A; X109A+X280S; X109A+X284H; X109A+X320A; X109A+X323N; X109A+X391A; X280S+X284H; X280S+X320A; X280S+X323N; X280S+X391A; X284H+X320A; X284H+X323N; X284H+X391A; X320A+X323N; X320A+X391A; and X323N+X391A, wherein numbering is according to SEQ ID NO: 1.
  • In one embodiment, a suitable variant comprises the modifications selected from the group consisting of: X1*+X7A+X109A; X1*+X7A+X280S; X1*+X7A+X284H; X1*+X7A+X320A; X1*+X7A+X323N; X1*+X7A+X391A; X1*+X109A+X280S; X1*+X109A+X284H; X1*+X109A+X320A; X1*+X109A+X323N; X1*+X109A+X391A; X1*+X280S+X284H; X1*+X280S+X320A; X1*+X280S+X323N; X1*+X280S+X391A; X1*+X284H+X320A; X1*+X284H+X323N; X1*+X284H+X391A; X1*+X320A+X323N; X1*+X320A+X391A; X1*+X323N+X391A; X1A+X7A+X109A; X1A+X7A+X280S; X1A+X7A+X284H; X1A+X7A+X320A; X1A+X7A+X323N; X1A+X7A+X391A; X1A+X109A+X280S; X1A+X109A+X284H; X1A+X109A+X320A; X1A+X109A+X323N; X1A+X109A+X391A; X1A+X280S+X284H; X1A+X280S+X320A; X1A+X280S+X323N; X1A+X280S+X391A; X1A+X284H+X320A; X1A+X284H+X323N; X1A+X284H+X391A; X1A+X320A+X323N; X1A+X320A+X391A; X1A+X323N+X391A; X7A+X109A+X280S; X7A+X109A+X284H; X7A+X109A+X320A; X7A+X109A+X323N; X7A+X109A+X391A; X7A+X280S+X284H; X7A+X280S+X320A; X7A+X280S+X323N; X7A+X280S+X391A; X7A+X284H+X320A; X7A+X284H+X323N; X7A+X284H+X391A; X7A+X320A+X323N; X7A+X320A+X391A; X7A+X323N+X391A; X109A+X280S+X284H; X109A+X280S+X320A; X109A+X280S+X323N; X109A+X280S+X391A; X109A+X284H+X320A; X109A+X284H+X323N; X109A+X284H+X391A; X109A+X320A+X323N; X109A+X320A+X391A; X109A+X323N+X391A; X280S+X284H+X320A; X280S+X284H+X323N; X280S+X284H+X391A; X280S+X320A+X323N; X280S+X320A+X391A; X280S+X323N+X391A; X284H+X320A+X323N; X284H+X320A+X391A; X284H+X323N+X391A; and X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1.
  • A preferred variant comprises modifications in the positions corresponding to the positions selected from the group consisting of:
  • X1*+X109A+X280S+X391A; X1*+X7K+X109A+X280S+X391A; X1*+X7E+X109A+X280S+X391A; X1*+X7N+X109A+X280S+X391A; X1*+X7Q+X109A+X280S+X391A; X1*+X7L+X109A+X280S+X391A; X1*+X7D+X109A+X280S+X391A; X1*+X109A+X280S+X320A+X391A; X1*+X109A+X280S+X320M+X391A; X1*+X109A+X280S+X320T+X391A; X1*+X109A+X280S+X320V+X391A; X1*+X109A+X280S+X323R+X391A; X1*+X109A+X280S+X320S+X391A; X1*+X109A+X280S+X391V; X1*+X109A+X284R+X391A; X1*+X109A+X284F+X391A; X1*+X109A+X280S+X320A+X323S+X391A; X1*+X109A+X280S+X284F+X391A; X1*+X109A+X280S+X323N+X391A; X1*+X109A+X280S+X323K+X391A; X1*+X109S+X280S+X391A; X1*+X109A+X284H+X391A; X1*+X109A+X280S+X320A+X323N+X391A; X1*+X7A+X109A+X280S+X391A; X1*+X7A+X109A+X280S+X284H+X320A+X323N+X391A; X7A+X284H+X320A+X323N; X7A+X320A+X323N; X320A; X7A+X320A; X1*+X7A+X109A+X280S+X391A; X1*+X109A+X280S+X284H+X391A; X1*+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X320A+X391A; X1*+X7A+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X323N+X391A; X1*+X7A+X109A+X280S+X284F+X391A; X1*+X7A+X109A+X280S+X284R+X391A; X1*+X7A+X109A+X280S+X320A+X323S+X391A; X1*+X7A+X109A+X284R+X391A; and
  • X1*+X7A+X109A+X280S+X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1 and the variant has at least 80% sequence identity to any one of the amylases set forth in SEQ ID Nos: 1, 2, 3, 4, 5, 6, 7, or 8.
  • A suitable variant may comprise modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 1, selected from the group consisting of:
  • X1*+X109A+X280S+X391A; X1*+X7K+X109A+X280S+X391A; X1*+X7E+X109A+X280S+X391A; X1*+X7N+X109A+X280S+X391A; X1*+X7Q+X109A+X280S+X391A; X1*+X7L+X109A+X280S+X391A; X1*+X7D+X109A+X280S+X391A; X1*+X109A+X280S+X320A+X391A; X1*+X109A+X280S+X320M+X391A; X1*+X109A+X280S+X320T+X391A; X1*+X109A+X280S+X320V+X391A; X1*+X109A+X280S+X323R+X391A; X1*+X109A+X280S+X320S+X391A; X1*+X109A+X280S+X391V; X1*+X109A+X284R+X391A; X1*+X109A+X284F+X391A; X1*+X109A+X280S+X320A+X323S+X391A; X1*+X109A+X280S+X284F+X391A; X1*+X109A+X280S+X323N+X391A; X1*+X109A+X280S+X323K+X391A; X1*+X109S+X280S+X391A; X1*+X109A+X284H+X391A; X1*+X109A+X280S+X320A+X323N+X391A; X1*+X7A+X109A+X280S+X391A; X1*+X7A+X109A+X280S+X284H+X320A+X323N+X391A; X7A+X284H+X320A+X323N; X7A+X320A+X323N; X320A; X7A+X320A; X1*+X7A+X109A+X280S+X391A; X1*+X109A+X280S+X284H+X391A; X1*+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X320A+X391A; X1*+X7A+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X323N+X391A; X1*+X7A+X109A+X280S+X284F+X391A; X1*+X7A+X109A+X280S+X284R+X391A; X1*+X7A+X109A+X280S+X320A+X323S+X391A; X1*+X7A+X109A+X284R+X391A; and
  • X1*+X7A+X109A+X280S+X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1 and the variant has at least 80% sequence identity to the amylases set forth in SEQ ID NO: 1.
  • A suitable variant may comprise modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 2, selected from the group consisting of:
  • X1*+X109A+X280S+X391A; X1*+X7K+X109A+X280S+X391A; X1*+X7E+X109A+X280S+X391A; X1*+X7N+X109A+X280S+X391A; X1*+X7Q+X109A+X280S+X391A; X1*+X7L+X109A+X280S+X391A; X1*+X7D+X109A+X280S+X391A; X1*+X109A+X280S+X320A+X391A; X1*+X109A+X280S+X320M+X391A; X1*+X109A+X280S+X320T+X391A; X1*+X109A+X280S+X320V+X391A; X1*+X109A+X280S+X323R+X391A; X1*+X109A+X280S+X320S+X391A; X1*+X109A+X280S+X391V; X1*+X109A+X284R+X391A; X1*+X109A+X284F+X391A; X1*+X109A+X280S+X320A+X323S+X391A; X1*+X109A+X280S+X284F+X391A; X1*+X109A+X280S+X323N+X391A; X1*+X109A+X280S+X323K+X391A; X1*+X109S+X280S+X391A; X1*+X109A+X284H+X391A; X1*+X109A+X280S+X320A+X323N+X391A; X1*+X7A+X109A+X280S+X391A; X1*+X7A+X109A+X280S+X284H+X320A+X323N+X391A; X7A+X284H+X320A+X323N; X7A+X320A+X323N; X320A; X7A+X320A; X1*+X7A+X109A+X280S+X391A; X1*+X109A+X280S+X284H+X391A; X1*+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X320A+X391A; X1*+X7A+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X323N+X391A; X1*+X7A+X109A+X280S+X284F+X391A; X1*+X7A+X109A+X280S+X284R+X391A; X1*+X7A+X109A+X280S+X320A+X323S+X391A; X1*+X7A+X109A+X284R+X391A; and
  • X1*+X7A+X109A+X280S+X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1 and the variant has at least 80% sequence identity to the amylases set forth in SEQ ID NO: 2.
  • A preferred variant may comprise modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 2, selected from the group consisting of:
  • H1*+G109A+N280S+E391A; H1*+G7K+G109A+N280S+E391A; H1*+G7E+G109A+N280S+E391A; H1*+G7N+G109A+N280S+E391A; H1*+G7Q+G109A+N280S+E391A; H1*+G7L+G109A+N280S+E391A; H1*+G7D+G109A+N280S+E391A; H1*+G109A+N280S+K320A+E391A; H1*+G109A+N280S+K320M+E391A; H1*+G109A+N280S+K320T+E391A; H1*+G109A+N280S+K320V+E391A; H1*+G109A+N280S+M323R+E391A; H1*+G109A+N280S+K320S+E391A; H1*+G109A+N280S+E391V; H1*+G109A+W284R+E391A; H1*+G109A+W284F+E391A; H1*+G109A+N280S+K320A+M323S+E391A; H1*+G109A+N280S+W284F+E391A; H1*+G109A+N280S+M323N+E391A; H1*+G109A+N280S+M323K+E391A; H1*+G109S+N280S+E391A; H1*+G109A+W284H+E391A; H1*+G109A+N280S+K320A+M323N+E391A; H1*+G7A+G109A+N280S+E391A; H1*+G7A+G109A+N280S+W284H+K320A+M323N+E391A; G7A+W284H+K320A+M323N; G7A+K320A+M323N; K320A; G7A+K320A; H1*+G7A+G109A+N280S+E391A; H1*+G109A+N280S+W284H+E391A; H1*+G109A+N280S+M323S+E391A; H1*+G7A+G109A+N280S+K320A+E391A; H1*+G7A+G109A+N280S+M323S+E391A; H1*+G7A+G109A+N280S+M323N+E391A; H1*+G7A+G109A+N280S+W284F+E391A; H1*+G7A+G109A+N280S+W284R+E391A; H1*+G7A+G109A+N280S+K320A+M323S+E391A; H1*+G7A+G109A+W284R+E391A; and H1*+G7A+G109A+N280S+K320A+M323N+E391A.
  • A suitable variant may comprise modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 3, selected from the group consisting of:
  • X1*+X109A+X280S+X391A; X1*+X7K+X109A+X280S+X391A; X1*+X7E+X109A+X280S+X391A; X1*+X7N+X109A+X280S+X391A; X1*+X7Q+X109A+X280S+X391A; X1*+X7L+X109A+X280S+X391A; X1*+X7D+X109A+X280S+X391A; X1*+X109A+X280S+X320A+X391A; X1*+X109A+X280S+X320M+X391A; X1*+X109A+X280S+X320T+X391A; X1*+X109A+X280S+X320V+X391A; X1*+X109A+X280S+X323R+X391A; X1*+X109A+X280S+X320S+X391A; X1*+X109A+X280S+X391V; X1*+X109A+X284R+X391A; X1*+X109A+X284F+X391A; X1*+X109A+X280S+X320A+X323S+X391A; X1*+X109A+X280S+X284F+X391A; X1*+X109A+X280S+X323N+X391A; X1*+X109A+X280S+X323K+X391A; X1*+X109S+X280S+X391A; X1*+X109A+X284H+X391A; X1*+X109A+X280S+X320A+X323N+X391A; X1*+X7A+X109A+X280S+X391A; X1*+X7A+X109A+X280S+X284H+X320A+X323N+X391A; X7A+X284H+X320A+X323N; X7A+X320A+X323N; X320A; X7A+X320A; X1*+X7A+X109A+X280S+X391A; X1*+X109A+X280S+X284H+X391A; X1*+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X320A+X391A; X1*+X7A+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X323N+X391A; X1*+X7A+X109A+X280S+X284F+X391A; X1*+X7A+X109A+X280S+X284R+X391A; X1*+X7A+X109A+X280S+X320A+X323S+X391A; X1*+X7A+X109A+X284R+X391A; and
  • X1*+X7A+X109A+X280S+X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1 and the variant has at least 80% sequence identity to the amylases set forth in SEQ ID NO: 3.
  • A suitable variant may comprise modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 4, selected from the group consisting of:
  • X1*+X109A+X280S+X391A; X1*+X7K+X109A+X280S+X391A; X1*+X7E+X109A+X280S+X391A; X1*+X7N+X109A+X280S+X391A; X1*+X7Q+X109A+X280S+X391A; X1*+X7L+X109A+X280S+X391A; X1*+X7D+X109A+X280S+X391A; X1*+X109A+X280S+X320A+X391A; X1*+X109A+X280S+X320M+X391A; X1*+X109A+X280S+X320T+X391A; X1*+X109A+X280S+X320V+X391A; X1*+X109A+X280S+X323R+X391A; X1*+X109A+X280S+X320S+X391A; X1*+X109A+X280S+X391V; X1*+X109A+X284R+X391A; X1*+X109A+X284F+X391A; X1*+X109A+X280S+X320A+X323S+X391A; X1*+X109A+X280S+X284F+X391A; X1*+X109A+X280S+X323N+X391A; X1*+X109A+X280S+X323K+X391A; X1*+X109S+X280S+X391A; X1*+X109A+X284H+X391A; X1*+X109A+X280S+X320A+X323N+X391A; X1*+X7A+X109A+X280S+X391A; X1*+X7A+X109A+X280S+X284H+X320A+X323N+X391A; X7A+X284H+X320A+X323N; X7A+X320A+X323N; X320A; X7A+X320A; X1*+X7A+X109A+X280S+X391A; X1*+X109A+X280S+X284H+X391A; X1*+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X320A+X391A; X1*+X7A+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X323N+X391A; X1*+X7A+X109A+X280S+X284F+X391A; X1*+X7A+X109A+X280S+X284R+X391A; X1*+X7A+X109A+X280S+X320A+X323S+X391A; X1*+X7A+X109A+X284R+X391A; and
  • X1*+X7A+X109A+X280S+X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1 and the variant has at least 80% sequence identity to the amylases set forth in SEQ ID NO: 4.
  • A suitable variant may comprise modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 5, selected from the group consisting of:
  • X1*+X109A+X280S+X391A; X1*+X7K+X109A+X280S+X391A; X1*+X7E+X109A+X280S+X391A; X1*+X7N+X109A+X280S+X391A; X1*+X7Q+X109A+X280S+X391A; X1*+X7L+X109A+X280S+X391A; X1*+X7D+X109A+X280S+X391A; X1*+X109A+X280S+X320A+X391A; X1*+X109A+X280S+X320M+X391A; X1*+X109A+X280S+X320T+X391A; X1*+X109A+X280S+X320V+X391A; X1*+X109A+X280S+X323R+X391A; X1*+X109A+X280S+X320S+X391A; X1*+X109A+X280S+X391V; X1*+X109A+X284R+X391A; X1*+X109A+X284F+X391A; X1*+X109A+X280S+X320A+X323S+X391A; X1*+X109A+X280S+X284F+X391A; X1*+X109A+X280S+X323N+X391A; X1*+X109A+X280S+X323K+X391A; X1*+X109S+X280S+X391A; X1*+X109A+X284H+X391A; X1*+X109A+X280S+X320A+X323N+X391A; X1*+X7A+X109A+X280S+X391A; X1*+X7A+X109A+X280S+X284H+X320A+X323N+X391A; X7A+X284H+X320A+X323N; X7A+X320A+X323N; X320A; X7A+X320A; X1*+X7A+X109A+X280S+X391A; X1*+X109A+X280S+X284H+X391A; X1*+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X320A+X391A; X1*+X7A+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X323N+X391A; X1*+X7A+X109A+X280S+X284F+X391A; X1*+X7A+X109A+X280S+X284R+X391A; X1*+X7A+X109A+X280S+X320A+X323S+X391A; X1*+X7A+X109A+X284R+X391A; and
  • X1*+X7A+X109A+X280S+X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1 and the variant has at least 80% sequence identity to the amylases set forth in SEQ ID NO: 5.
  • A suitable variant may comprise modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 6, selected from the group consisting of:
  • X1*+X109A+X280S+X391A; X1*+X7K+X109A+X280S+X391A; X1*+X7E+X109A+X280S+X391A; X1*+X7N+X109A+X280S+X391A; X1*+X7Q+X109A+X280S+X391A; X1*+X7L+X109A+X280S+X391A; X1*+X7D+X109A+X280S+X391A; X1*+X109A+X280S+X320A+X391A; X1*+X109A+X280S+X320M+X391A; X1*+X109A+X280S+X320T+X391A; X1*+X109A+X280S+X320V+X391A; X1*+X109A+X280S+X323R+X391A; X1*+X109A+X280S+X320S+X391A; X1*+X109A+X280S+X391V; X1*+X109A+X284R+X391A; X1*+X109A+X284F+X391A; X1*+X109A+X280S+X320A+X323S+X391A; X1*+X109A+X280S+X284F+X391A; X1*+X109A+X280S+X323N+X391A; X1*+X109A+X280S+X323K+X391A; X1*+X109S+X280S+X391A; X1*+X109A+X284H+X391A; X1*+X109A+X280S+X320A+X323N+X391A; X1*+X7A+X109A+X280S+X391A; X1*+X7A+X109A+X280S+X284H+X320A+X323N+X391A; X7A+X284H+X320A+X323N; X7A+X320A+X323N; X320A; X7A+X320A; X1*+X7A+X109A+X280S+X391A; X1*+X109A+X280S+X284H+X391A; X1*+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X320A+X391A; X1*+X7A+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X323N+X391A; X1*+X7A+X109A+X280S+X284F+X391A; X1*+X7A+X109A+X280S+X284R+X391A; X1*+X7A+X109A+X280S+X320A+X323S+X391A; X1*+X7A+X109A+X284R+X391A; and
  • X1*+X7A+X109A+X280S+X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1 and the variant has at least 80% sequence identity to the amylases set forth in SEQ ID NO: 6.
  • A suitable variant may comprise modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 7, selected from the group consisting of:
  • X1*+X109A+X280S+X391A; X1*+X7K+X109A+X280S+X391A; X1*+X7E+X109A+X280S+X391A; X1*+X7N+X109A+X280S+X391A; X1*+X7Q+X109A+X280S+X391A; X1*+X7L+X109A+X280S+X391A; X1*+X7D+X109A+X280S+X391A; X1*+X109A+X280S+X320A+X391A; X1*+X109A+X280S+X320M+X391A; X1*+X109A+X280S+X320T+X391A; X1*+X109A+X280S+X320V+X391A; X1*+X109A+X280S+X323R+X391A; X1*+X109A+X280S+X320S+X391A; X1*+X109A+X280S+X391V; X1*+X109A+X284R+X391A; X1*+X109A+X284F+X391A; X1*+X109A+X280S+X320A+X323S+X391A; X1*+X109A+X280S+X284F+X391A; X1*+X109A+X280S+X323N+X391A; X1*+X109A+X280S+X323K+X391A; X1*+X109S+X280S+X391A; X1*+X109A+X284H+X391A; X1*+X109A+X280S+X320A+X323N+X391A; X1*+X7A+X109A+X280S+X391A; X1*+X7A+X109A+X280S+X284H+X320A+X323N+X391A; X7A+X284H+X320A+X323N; X7A+X320A+X323N; X320A; X7A+X320A; X1*+X7A+X109A+X280S+X391A; X1*+X109A+X280S+X284H+X391A; X1*+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X320A+X391A; X1*+X7A+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X323N+X391A; X1*+X7A+X109A+X280S+X284F+X391A; X1*+X7A+X109A+X280S+X284R+X391A; X1*+X7A+X109A+X280S+X320A+X323S+X391A; X1*+X7A+X109A+X284R+X391A; and
  • X1*+X7A+X109A+X280S+X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1 and the variant has at least 80% sequence identity to the amylases set forth in SEQ ID NO: 7.
  • A suitable variant may comprise modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 8, selected from the group consisting of:
  • X1*+X109A+X280S+X391A; X1*+X7K+X109A+X280S+X391A; X1*+X7E+X109A+X280S+X391A; X1*+X7N+X109A+X280S+X391A; X1*+X7Q+X109A+X280S+X391A; X1*+X7L+X109A+X280S+X391A; X1*+X7D+X109A+X280S+X391A; X1*+X109A+X280S+X320A+X391A; X1*+X109A+X280S+X320M+X391A; X1*+X109A+X280S+X320T+X391A; X1*+X109A+X280S+X320V+X391A; X1*+X109A+X280S+X323R+X391A; X1*+X109A+X280S+X320S+X391A; X1*+X109A+X280S+X391V; X1*+X109A+X284R+X391A; X1*+X109A+X284F+X391A; X1*+X109A+X280S+X320A+X323S+X391A; X1*+X109A+X280S+X284F+X391A; X1*+X109A+X280S+X323N+X391A; X1*+X109A+X280S+X323K+X391A; X1*+X109S+X280S+X391A; X1*+X109A+X284H+X391A; X1*+X109A+X280S+X320A+X323N+X391A; X1*+X7A+X109A+X280S+X391A; X1*+X7A+X109A+X280S+X284H+X320A+X323N+X391A; X7A+X284H+X320A+X323N; X7A+X320A+X323N; X320A; X7A+X320A; X1*+X7A+X109A+X280S+X391A; X1*+X109A+X280S+X284H+X391A; X1*+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X320A+X391A; X1*+X7A+X109A+X280S+X323S+X391A; X1*+X7A+X109A+X280S+X323N+X391A; X1*+X7A+X109A+X280S+X284F+X391A; X1*+X7A+X109A+X280S+X284R+X391A; X1*+X7A+X109A+X280S+X320A+X323S+X391A; X1*+X7A+X109A+X284R+X391A; and
  • X1*+X7A+X109A+X280S+X320A+X323N+X391A, wherein numbering is according to SEQ ID NO: 1 and the variant has at least 80% sequence identity to the amylases set forth in SEQ ID NO: 8.
  • It is preferred that the variant comprises a modification at one, two, three, four or five positions selected from the group of X1*, X1A, X7A, X109A, X280S, and X391A. In a more preferred embodiment, the modifications at one, two, three, four or five positions are selected from X1*, X7A, X109A, X280S, and X391A.
  • In one aspect, a suitable variant may comprise modifications in the positions corresponding to
  • X1*+X109A+X280S+X391A, X1*+X109A+X284H+X391A, X1*+X109A+X280S+X320A+X323N+X391A, X1*+X7A+X109A+X280S+X391A, and X1*+X7A+X109A+X280S+X284H+X323N+X391A,
  • wherein numbering is according to SEQ ID NO: 1, and wherein the variant has at least 80% sequence identity to SEQ ID NO:1, 2, 3, 4, 5, 6, 7, or 8.
  • A suitable variant may comprise variants of SEQ ID NO: 1 comprising modifications in the positions corresponding to H1*+G109A+N280S+E391A; H1*+G109A+W284H+E391A; H1*+G109A+N280S+K320A+M323N+E391A; H1*+G7A+G109A+N280S+E391A; and H1*+G7A+G109A+N280S+W284H+M323N+E391A,
  • wherein numbering is according to SEQ ID NO: 1, and wherein the variant has at least 80% sequence identity to SEQ ID NO:1.
  • A suitable variant may comprise a variant of SEQ ID NO: 2 comprising modifications corresponding to H1*+G109A+N280S+E391A; H1*+G109A+W284H+E391A; H1*+G109A+N280S+K320A+M323N+E391A; H1*+G7A+G109A+N280S+E391A; and H1*+G7A+G109A+N280S+W284H+M323N+E391A, wherein numbering is according to SEQ ID NO: 1, and wherein the variant has at least 80% sequence identity to SEQ ID NO: 2.
  • In one embodiment, the invention relates to variants of SEQ ID NO: 3 comprising modifications corresponding to H1*+G109A+N280S+E391A; H1*+G109A+W284H+E391A; H1*+G109A+N280S+K320A+M323N+E391A; H1*+G7A+G109A+N280S+E391A; and H1*+G7A+G109A+N280S+W284H+M323N+E391A, wherein numbering is according to SEQ ID NO: 1, and wherein the variant has at least 80% sequence identity to SEQ ID NO: 3.
  • In one embodiment, the invention relates to variants of SEQ ID NO: 4 comprising modifications corresponding to H1*+G109A+N280S+E391A; H1*+G109A+W284H+E391A; H1*+G109A+N280S+K320A+M323N+E391A; H1*+G7A+G109A+N280S+E391A; and H1*+G7A+G109A+N280S+W284H+M323N+E391A, wherein numbering is according to SEQ ID NO: 1, and wherein the variant has at least 80% sequence identity to SEQ ID NO: 4.
  • In one embodiment, the invention relates to variants of SEQ ID NO: 5 comprising modifications corresponding to H1*+G109A+N280S+E391A; H1*+G109A+W284H+E391A; H1*+G109A+N280S+K320A+M323N+E391A; H1*+G7A+G109A+N280S+E391A; and H1*+G7A+G109A+N280S+W284H+M323N+E391A, wherein numbering is according to SEQ ID NO: 1, and wherein the variant has at least 80% sequence identity to SEQ ID NO: 5.
  • In one embodiment, the invention relates to variants of SEQ ID NO: 6 comprising modifications corresponding to H1*+G109A+N280S+E391A; H1*+G109A+W284H+E391A; H1*+G109A+N280S+K320A+M323N+E391A; H1*+G7A+G109A+N280S+E391A; and H1*+G7A+G109A+N280S+W284H+M323N+E391A, wherein numbering is according to SEQ ID NO: 1, and wherein the variant has at least 80% sequence identity to SEQ ID NO: 6.
  • In one embodiment, the invention relates to variants of SEQ ID NO: 7 comprising modifications corresponding to H1*+G109A+N280S+E391A; H1*+G109A+W284H+E391A; H1*+G109A+N280S+K320A+M323N+E391A; H1*+G7A+G109A+N280S+E391A; and H1*+G7A+G109A+N280S+W284H+M323N+E391A, wherein numbering is according to SEQ ID NO: 1, and wherein the variant has at least 80% sequence identity to SEQ ID NO: 7.
  • In one embodiment, the variants may comprise variants of SEQ ID NO: 8 comprising modifications corresponding to H1*+G109A+N280S+E391A; H1*+G109A+W284H+E391A; H1*+G109A+N280S+K320A+M323N+E391A; H1*+G7A+G109A+N280S+E391A; and H1*+G7A+G109A+N280S+W284H+M323N+E391A, wherein numbering is according to SEQ ID NO: 1, and wherein the variant has at least 80% sequence identity to SEQ ID NO: 8.
  • In one embodiment, the variant for the invention further comprises a modification in one or more positions selected from the group of 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476. In a particular embodiment, the variant for the invention comprises one or more further modifications selected from the group of W140Y/F, R181*, G182*, D183*, G184*, N195F/Y, I206Y/F, Y243F, E260A/D/C/Q/L/M/F/P/S/W/V/G/H/I/K/N/R/T/Y, G304R/K/E/Q, and G476E/Q/R/K. The variant for the invention may further comprise substitutions at two, three or four positions selected from the group consisting of G304R, W140YF, E260GHIKNPRTY and G476EQRK. In a more preferred embodiment, the substitutions at the two, three or four positions are selected from the group consisting of G304R, W140Y, E260G and G476K.
  • The variant for the invention may comprise the modifications corresponding to
  • H1*+G109A+W140Y+D183*+G184*+N195F+I206Y+Y243F+E260G+N280S+G304R+E391A+G476K, H1*+G109A+W140Y+D183*+G184*+N195F+I206Y+Y243F+E260G+W284H+G304R+E391A+G476K, H1*+G109A+W140Y+D183*+G184*+N195F+I206Y+Y243F+E260G+N280S+G304R+K320A+M323N+E391A+G476K, H1*+G7A+G109A+W140Y+D183*+G184*+N195F+I206Y+Y243F+E260G+N280S+G304R+E391A+G476K, and H1*+G7A+G109A+W140Y+D183*+G184*+N195F+I206Y+Y243F+E260G+N280S+W284H+G304R+M323N+E391A+G476K,
  • wherein numbering is according to SEQ ID NO: 1, the variant has at least 80% sequence identity to SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 8, and is a variant of SEQ ID NO: 1
  • Essential amino acids in a parent can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, 1989, Science 244: 1081-1085). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for alpha-amylase activity to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., 1996, J. Biol. Chem. 271: 4699-4708. The active site of the alpha-amylase or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., 1992, Science 255: 306-312; Smith et al., 1992, J. Mol. Biol. 224: 899-904; Wlodaver et al., 1992, FEBS Lett. 309: 59-64. The identities of essential amino acids can also be inferred from analysis of identities with polypeptides that are related to the parent.
  • Nucleic Acid Constructs
  • The nucleic acid constructs may comprise a polynucleotide encoding a variant essential to the present invention operably linked to one or more (several) control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences. A polynucleotide may be manipulated in a variety of ways to provide for expression of a variant. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.
  • The control sequence may be a promoter sequence, which is recognized by a host cell for expression of the polynucleotide. The promoter sequence contains transcriptional control sequences that mediate the expression of the variant. The promoter may be any nucleic acid sequence that shows transcriptional activity in the host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.
  • Examples of suitable promoters for directing the transcription of the nucleic acid constructs of the present invention in a bacterial host cell are the promoters obtained from the Bacillus amyloliquefaciens alpha-amylase gene (amyQ), Bacillus licheniformis alpha-amylase gene (amyL), Bacillus licheniformis penicillinase gene (penP), Bacillus stearothermophilus maltogenic amylase gene (amyM), Bacillus subtilis levansucrase gene (sacB), Bacillus subtilis xylA and xylB genes, E. coli lac operon, Streptomyces coelicolor agarase gene (dagA), and prokaryotic beta-lactamase gene (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. USA 75: 3727-3731), as well as the tac promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. USA 80: 21-25). Further promoters are described in “Useful proteins from recombinant bacteria” in Gilbert et al., 1980, Scientific American 242: 74-94; and in Sambrook et al., 1989, supra.
  • Examples of suitable promoters for directing the transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are the promoters obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Aspergillus oryzae TAKA amylase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Fusarium oxysporum trypsin-like protease (WO 96/00787), Fusarium venenatum amyloglucosidase (WO 00/56900), Fusarium venenatum Daria (WO 00/56900), Fusarium venenatum Quinn (WO 00/56900), Rhizomucor miehei lipase, Rhizomucor miehei aspartic proteinase, Trichoderma reesei beta-glucosidase, Trichoderma reesei cellobiohydrolase I, Trichoderma reesei cellobiohydrolase II, Trichoderma reesei endoglucanase I, Trichoderma reesei endoglucanase II, Trichoderma reesei endoglucanase III, Trichoderma reesei endoglucanase IV, Trichoderma reesei endoglucanase V, Trichoderma reesei xylanase I, Trichoderma reesei xylanase II, Trichoderma reesei beta-xylosidase, as well as the NA2-tpi promoter (a modified promoter including a gene encoding a neutral alpha-amylase in Aspergilli in which the untranslated leader has been replaced by an untranslated leader from a gene encoding triose phosphate isomerase in Aspergilli; non-limiting examples include modified promoters including the gene encoding neutral alpha-amylase in Aspergillus niger in which the untranslated leader has been replaced by an untranslated leader from the gene encoding triose phosphate isomerase in Aspergillus nidulans or Aspergillus oryzae); and mutant, truncated, and hybrid promoters thereof.
  • In a yeast host, useful promoters are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1), Saccharomyces cerevisiae galactokinase (GAL1), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH1, ADH2/GAP), Saccharomyces cerevisiae triose phosphate isomerase (TPI), Saccharomyces cerevisiae metallothionein (CUP1), and Saccharomyces cerevisiae 3-phosphoglycerate kinase. Other useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8: 423-488.
  • The control sequence may also be a suitable transcription terminator sequence, which is recognized by a host cell to terminate transcription. The terminator sequence is operably linked to the 3′-terminus of the polynucleotide encoding the variant. Any terminator that is functional in the host cell may be used.
  • Preferred terminators for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger alpha-glucosidase, Aspergillus niger glucoamylase, Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease.
  • Preferred terminators for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1), and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase. Other useful terminators for yeast host cells are described by Romanos et al., 1992, supra.
  • The control sequence may also be a suitable leader sequence, a nontranslated region of an mRNA that is important for translation by the host cell. The leader sequence is operably linked to the 5′-terminus of the polynucleotide encoding the variant. Any leader sequence that is functional in the host cell may be used.
  • Preferred leaders for filamentous fungal host cells are obtained from the genes for Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase.
  • Suitable leaders for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1), Saccharomyces cerevisiae 3-phosphoglycerate kinase, Saccharomyces cerevisiae alpha-factor, and Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).
  • The control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3′-terminus of the variant-encoding sequence and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.
  • Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase, Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease.
  • Useful polyadenylation sequences for yeast host cells are described by Guo and Sherman, 1995, Mol. Cellular Biol. 15: 5983-5990.
  • The control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a variant and directs the variant into the cell's secretory pathway. The 5′-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding region naturally linked in translation reading frame with the segment of the coding region that encodes the variant. Alternatively, the 5′-end of the coding sequence may contain a signal peptide coding region that is foreign to the coding sequence. The foreign signal peptide coding region may be required where the coding sequence does not naturally contain a signal peptide coding region. Alternatively, the foreign signal peptide coding region may simply replace the natural signal peptide coding region in order to enhance secretion of the variant. However, any signal peptide coding region that directs the expressed variant into the secretory pathway of a host cell may be used.
  • Effective signal peptide coding sequences for bacterial host cells are the signal peptide coding sequences obtained from the genes for Bacillus NCIB 11837 maltogenic amylase, Bacillus licheniformis subtilisin, Bacillus licheniformis beta-lactamase, Bacillus stearothermophilus alpha-amylase, Bacillus stearothermophilus neutral proteases (nprT, nprS, nprM), and Bacillus subtilis prsA. Further signal peptides are described by Simonen and Palva, 1993, Microbiological Reviews 57: 109-137.
  • Effective signal peptide coding sequences for filamentous fungal host cells are the signal peptide coding sequences obtained from the genes for Aspergillus niger neutral amylase, Aspergillus niger glucoamylase, Aspergillus oryzae TAKA amylase, Humicola insolens cellulase, Humicola insolens endoglucanase V, Humicola lanuginosa lipase, and Rhizomucor miehei aspartic proteinase.
  • Useful signal peptides for yeast host cells are obtained from the genes for Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase. Other useful signal peptide coding sequences are described by Romanos et al., 1992, supra.
  • The control sequence may also be a propeptide coding region that encodes a propeptide positioned at the N-terminus of a variant. The resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases). A propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding region may be obtained from the genes for Bacillus subtilis alkaline protease (aprE), Bacillus subtilis neutral protease (nprT), Myceliophthora thermophila laccase (WO 95/33836), Rhizomucor miehei aspartic proteinase, and Saccharomyces cerevisiae alpha-factor.
  • Where both signal peptide and propeptide regions are present at the N-terminus of a variant, the propeptide region is positioned next to the N-terminus of the variant and the signal peptide region is positioned next to the N-terminus of the propeptide region.
  • It may also be desirable to add regulatory sequences that allow the regulation of the expression of the variant relative to the growth of the host cell. Examples of regulatory systems are those that cause the expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory systems in prokaryotic systems include the lac, tac, and trp operator systems. In yeast, the ADH2 system or GAL1 system may be used. In filamentous fungi, the Aspergillus niger glucoamylase promoter, Aspergillus oryzae TAKA alpha-amylase promoter, and Aspergillus oryzae glucoamylase promoter may be used. Other examples of regulatory sequences are those that allow for gene amplification. In eukaryotic systems, these regulatory sequences include the dihydrofolate reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals. In these cases, the polynucleotide encoding the variant would be operably linked with the regulatory sequence.
  • Expression Vectors
  • The recombinant expression vectors may comprise a polynucleotide essential to the present invention, a promoter, and transcriptional and translational stop signals. The various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more (several) convenient restriction sites to allow for insertion or substitution of the polynucleotide encoding the variant at such sites. Alternatively, the polynucleotide may be expressed by inserting the polynucleotide or a nucleic acid construct comprising the polynucleotide into an appropriate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.
  • The recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about the expression of the polynucleotide. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. The vector may be a linear or closed circular plasmid.
  • The vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon, may be used.
  • The vector preferably comprises one or more (several) selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.
  • Examples of bacterial selectable markers are the dal genes from Bacillus licheniformis or Bacillus subtilis, or markers that confer antibiotic resistance such as ampicillin, chloramphenicol, kanamycin, or tetracycline resistance. Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3.
  • The vector preferably comprises an element(s) that permits integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.
  • For integration into the host cell genome, the vector may rely on the polynucleotide's sequence encoding the variant or any other element of the vector for integration into the genome by homologous or nonhomologous recombination. Alternatively, the vector may comprise additional nucleotide sequences for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of identity to the corresponding target sequence to enhance the probability of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding nucleotide sequences. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.
  • For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. The origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell. The term “origin of replication” or “plasmid replicator” means a nucleotide sequence that enables a plasmid or vector to replicate in vivo.
  • More than one copy of a polynucleotide of the present invention may be inserted into the host cell to increase production of a variant. An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.
  • The procedures used to ligate the elements described above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see, e.g., Sambrook et al., 1989, supra) to obtain substantially pure variants.
  • Host Cells
  • Recombinant host cells, may comprise a polynucleotide essential to the present invention operably linked to one or more (several) control sequences that direct the production of a variant for the present invention. A construct or vector comprising a polynucleotide is introduced into a host cell so that the construct or vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier. The term “host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the variant and its source.
  • The host cell may be any cell useful in the recombinant production of a variant, e.g., a prokaryote or a eukaryote.
  • The prokaryotic host cell may be any gram-positive or gram-negative bacterium. Gram-positive bacteria include, but are not limited to, Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, and Streptomyces. Gram-negative bacteria include, but are not limited to, Campylobacter, E. coli, Flavobacterium, Fusobacterium, Helicobacter, Ilyobacter, Neisseria, Pseudomonas, Salmonella, and Ureaplasma.
  • The bacterial host cell may be any Bacillus cell, including, but not limited to, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus thuringiensis cells.
  • The bacterial host cell may also be any Streptococcus cell, including, but not limited to, Streptococcus equisimilis, Streptococcus pyogenes, Streptococcus uberis, and Streptococcus equi subsp. Zooepidemicus cells.
  • The bacterial host cell may also be any Streptomyces cell, including, but not limited to, Streptomyces achromogenes, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces griseus, and Streptomyces lividans cells.
  • The introduction of DNA into a Bacillus cell may, for instance, be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, Mol. Gen. Genet. 168: 111-115), by using competent cells (see, e.g., Young and Spizizen, 1961, J. Bacteriol. 81: 823-829, or Dubnau and Davidoff-Abelson, 1971, J. Mol. Biol. 56: 209-221), by electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques 6: 742-751), or by conjugation (see, e.g., Koehler and Thorne, 1987, J. Bacteria 169: 5271-5278). The introduction of DNA into an E. coli cell may, for instance, be effected by protoplast transformation (see, e.g., Hanahan, 1983, J. Mol. Biol. 166: 557-580) or electroporation (see, e.g., Dower et al., 1988, Nucleic Acids Res. 16: 6127-6145). The introduction of DNA into a Streptomyces cell may, for instance, be effected by protoplast transformation and electroporation (see, e.g., Gong et al., 2004, Folia Microbiol. (Praha) 49: 399-405), by conjugation (see, e.g., Mazodier et al., 1989, J. Bacteria 171: 3583-3585), or by transduction (see, e.g., Burke et al., 2001, Proc. Natl. Acad. Sci. USA 98: 6289-6294). The introduction of DNA into a Pseudomonas cell may, for instance, be effected by electroporation (see, e.g., Choi et al., 2006, J. Microbiol. Methods 64: 391-397) or by conjugation (see, e.g., Pinedo and Smets, 2005, Appl. Environ. Microbiol. 71: 51-57). The introduction of DNA into a Streptococcus cell may, for instance, be effected by natural competence (see, e.g., Perry and Kuramitsu, 1981, Infect. Immun. 32: 1295-1297), by protoplast transformation (see, e.g., Catt and Jollick, 1991, Microbios 68: 189-2070, by electroporation (see, e.g., Buckley et al., 1999, Appl. Environ. Microbiol. 65: 3800-3804) or by conjugation (see, e.g., Clewell, 1981, Microbiol. Rev. 45: 409-436). However, any method known in the art for introducing DNA into a host cell can be used.
  • The host cell may also be a eukaryote, such as a mammalian, insect, plant, or fungal cell.
  • Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se. Suitable procedures for transformation of Aspergillus and Trichoderma host cells are described in EP 238023 and Yelton et al., 1984, Proc. Natl. Acad. Sci. USA 81: 1470-1474. Suitable methods for transforming Fusarium species are described by Malardier et al., 1989, Gene 78: 147-156, and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J. N. and Simon, M. I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al., 1983, J. Bacteriol. 153: 163; and Hinnen et al., 1978, Proc. Natl. Acad. Sci. USA 75: 1920.
  • Methods of Production
  • The method of producing a variant, may comprise: (a) cultivating a host cell of the present invention under conditions suitable for the expression of the variant; and (b) recovering the variant. Accordingly, the present invention relates to methods of producing a variant, comprising (a) cultivating a host cell comprising an expression vector or a polynucleotide encoding variant comprising a modification at one or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence set forth in SEQ ID NO: 1, and optionally in one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476 of the amino acid sequence as set forth in SEQ ID NO: 1, under conditions suitable for the expression of the variant; and (b) recovering the variant.
  • The host cells are cultivated in a nutrient medium suitable for production of the variant using methods known in the art. For example, the cell may be cultivated by shake flask cultivation, or small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the polypeptide to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection). If the variant is secreted into the nutrient medium, the variant can be recovered directly from the medium. If the variant is not secreted, it can be recovered from cell lysates.
  • The variant may be detected using methods known in the art that are specific for the variants. These detection methods may include use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine the activity of the variant.
  • The variant may be recovered by methods known in the art. For example, the variant may be recovered from the nutrient medium by conventional procedures including, but not limited to, collection, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.
  • The variant may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing), differential solubility (e g, ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, J.-C. Janson and Lars Ryden, editors, VCH Publishers, New York, 1989) to obtain substantially pure variants.
  • In an alternative aspect, the variant is not recovered, but rather a host cell of the present invention expressing a variant is used as a source of the variant.
  • The compositions may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition. For instance, the composition may be in the form of a granulate or a microgranulate. The variant may be stabilized in accordance with methods known in the art.
  • Cleaning Compositions
  • The present invention preferably relates to products for and/or methods relating to and/or use of the claimed compositions that are for air care, car care, dishwashing, fabric conditioning (including softening), laundry detergency, laundry and rinse additive and/or care, hard surface cleaning and/or treatment, and other cleaning for consumer or institutional use. According to the invention, the above alpha-amylase variants may typically be a component in a cleaning composition, such as a solid, liquid, gel and/or unit dose detergent composition, e.g., a laundry detergent composition or a dishwashing detergent composition. Especially preferred is a liquid laundry detergent composition.
  • Such cleaning compositions comprise a cleaning/detergent adjunct, preferably a mixture of components. Typically the cleaning adjunct will be present in the composition in an amount from 0.001 to 99.9 wt %, more typically from 0.01 to 80 wt % cleaning adjunct. Suitable cleaning adjuncts comprise: surfactants, builders, bleaches, bleach catalysts, colorants, bleach boosters, chelating agents, dye transfer agents, deposition aids, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, optical brighteners, photoactivators, fluorescers, fabric hueing agents, fabric conditioners, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, filler salts, hydrotropes, brighteners, suds suppressors, structure elasticizing agents, fabric softeners, hydrolyzable surfactants, preservatives, anti-oxidants, anti-shrinkage agents, germicides, fungicides, anti-tarnish, anti-corrosion agents, alkalinity sources, solubilizing agents, carriers, processing aids, pigments, dyes, perfumes and pH control agents, encapsulates, polymers. For example, these may include: bleach ingredients such as imine bleach boosters; sources of hydrogen peroxide such as percarbonate and/or perborate, especially percarbonate coated with material such as carbonate and/or sulphate salt, silicate salt, borosilicate, and any mixture thereof; pre-formed peracid, including pre-formed peracid in encapsulated form; transition metal catalysts; suds suppressors or suppressor systems such as silicone based suds suppressors and/or fatty acid based suds suppressors; fabric-softeners such as clay, silicone and/or quaternary ammonium compounds; flocculants such as polyethylene oxide; dye transfer inhibitors such as polyvinylpyrrolidone, poly 4-vinylpyridine N-oxide and/or co-polymer of vinylpyrrolidone and vinylimidazole; fabric integrity components such as oligomers produced by the condensation of imidazole and epichlorhydrin; soil dispersants and soil anti-redeposition aids such as alkoxylated polyamines and ethoxylated ethyleneimine polymers; anti-redeposition components such as polyesters; carboxylate polymers such as maleic acid polymers or co-polymers of maleic and acrylic acid; perfumes such as perfume microcapsules, starch encapsulated accords, perfume spray-on; soap rings; aesthetic particles; dyes; fillers such as sodium sulphate, although it is preferred for the composition to be substantially free of fillers; silicate salt such as sodium silicate, including 1.6R and 2.0R sodium silicate, or sodium metasilicate; co-polyesters of di-carboxylic acids and diols; cellulosic polymers such as methyl cellulose, carboxymethyl cellulose, hydroxyethoxycellulose, or other alkyl or alkylalkoxy cellulose; solvents such as 1,2 propanediol, monoethanolamine; diethylene glycol, ethanol, and any mixture thereof; hydrotropes such as sodium cumene sulphonate, sodium xylene sulphonate, sodium toluene sulphonate, and any mixtures; organic acids such as citric acid; and any combination thereof. The composition may be such that the cleaning adjunct comprises one or more selected from the group consisting of (i) perfume microcapsule; (ii) fabric hueing agent; (iii) protease; (iv) amphiphilic cleaning polymer; (v) lipase, or (vi) mixtures thereof.
  • In another preferred aspect the composition comprises one or more surfactants, which may be non-ionic including semi-polar and/or anionic and/or cationic and/or zwitterionic and/or ampholytic and/or semi-polar nonionic and/or mixtures thereof. The surfactants are typically present at a level of from 0.1% to 60% by weight or from 0.5 to 50 wt % or 1 to 40 wt % of the composition.
  • When included therein the cleaning composition will usually contain from about 1% to about 40% of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap.
  • When included therein the cleaning agent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonyl-phenol ethoxylate, alkylpolyglycoside, alkyldimethylamine-oxide, ethoxylated fatty acid monoethanol-amide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”).
  • The cleaning composition may comprise one or more other enzymes. Therefore a preferred composition comprises (a) a variant of a parent alpha-amylase, wherein said variant comprises (i) a modification at one or more positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence set forth in SEQ ID NO: 1, and optionally in one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476 of the amino acid sequence as set forth in SEQ ID NO: 1, (ii) said variant has at least 80, such as at least 90%, such as at least 95%, such as at least 97%, but less than 100% sequence identity with the amino acid sequence set forth in SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8, and (iii) said variant has alpha-amylase activity; and (b) one or more additional enzymes preferably selected from the group consisting of aminopeptidase, amylase, carbohydrase, carboxypeptidase, catalase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, esterase, alpha-galactosidase, beta-galactosidase, glucoamylase, alpha-glucosidase, beta-glucosidase, haloperoxidase, invertase, laccase, lipase, mannosidase, oxidase, pectinolytic enzyme, peptidoglutaminase, peroxidase, phytase, polyphenoloxidase, proteolytic enzyme, ribonuclease, transglutaminase, or xylanase. The additional enzyme(s) may be produced, for example, by a microorganism belonging to the genus Aspergillus, e.g., Aspergillus aculeatus, Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, or Aspergillus oryzae; Fusarium, e.g., Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sulphureum, Fusarium toruloseum, Fusarium trichothecioides, or Fusarium venenatum; Humicola, e.g., Humicola insolens or Humicola lanuginosa; or Trichoderma, e.g., Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, or Trichoderma viride.
  • Preferably the composition comprises a protease or mixtures of more than one protease, a lipase or mixtures of more than one lipase, a peroxidase or mixtures of more than one peroxidase, one or more additional amylolytic enzymes, e.g., an additional alpha-amylase, glucoamylase, maltogenic amylase, preferably an additional alpha amylase, one or mixtures of more than one CGTase and/or a cellulase or mixtures of more than one cellulase, mannanase (such as MANNAWAY™ from Novozymes, Denmark) or mixtures of more than one mannanase, pectinase, pectate lyase, cutinase, and/or laccase or mixtures of more than one of one or more of these.
  • In general the properties of the chosen enzyme(s) should be compatible with the selected detergent, (i.e., pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts. Preferably, the product of the invention comprises at least 0.01 mg, preferably from about 0.05 to about 10, more preferably from about 0.1 to about 6, especially from about 0.2 to about 5 mg of active further enzyme/g of composition.
  • Proteases: Suitable proteases include metalloproteases and/or serine proteases, including neutral or alkaline microbial serine proteases, such as subtilisins (EC 3.4.21.62). Suitable proteases include those of animal, vegetable or microbial origin. In one aspect, such suitable protease may be of microbial origin. The suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases. In one aspect, the suitable protease may be a serine protease, such as an alkaline microbial protease or/and a trypsin-type protease. Examples of suitable neutral or alkaline proteases include:
  • (a) subtilisins (EC 3.4.21.62), including those derived from Bacillus, such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in U.S. Pat. No. 6,312,936 B1, U.S. Pat. No. 5,679,630, U.S. Pat. No. 4,760,025, U.S. Pat. No. 7,262,042 and WO09/021867.
  • (b) trypsin-type or chymotrypsin-type proteases, such as trypsin (e.g., of porcine or bovine origin), including the Fusarium protease described in WO 89/06270 and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146.
  • (c) metalloproteases, including those derived from Bacillus amyloliquefaciens described in WO 07/044993A2.
  • Preferred proteases include those derived from Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Liquanase Ultra®, Savinase Ultra®, Ovozyme®, Neutrase®, Everlase® and Esperase® by Novozymes A/S (Denmark), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3®, FN4®, Excellase® and Purafect OXP® by Genencor International, those sold under the tradename Opticlean® and Optimase® by Solvay Enzymes, those available from Henkel/Kemira, namely BLAP (sequence shown in FIG. 29 of U.S. Pat. No. 5,352,604 with the following mutations S99D+S101 R+S103A+V104I+G159S, hereinafter referred to as BLAP), BLAP R (BLAP with S3T+V4I+V199M+V205I+L217D), BLAP X (BLAP with S3T+V4I+V205I) and BLAP F49 (BLAP with S3T+V4I+A194P+V199M+V205I+L217D)—all from Henkel/Kemira; and KAP (Bacillus alkalophilus subtilisin with mutations A230V+S256G+S259N) from Kao. Further suitable proteases are described in WO2011/03623, WO2011/140316, WO2011/140364 and WO2012/05778.
  • Lipases: Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g., from H. lanuginosa (T. lanuginosus) or from H. insolens, a Pseudomonas lipase, e.g., from P. alcaligenes or P. pseudoalcaligenes, P. cepacia P. stutzeri, P. fluorescens, Pseudomonas sp. strain SD 705, P. wisconsinensis, a Bacillus lipase, e.g., from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360), B. stearothermophilus or B. pumilus.
  • The lipase may be a “first cycle lipase” such as those described in U.S. Pat. No. 6,939,702 B1 and US PA 2009/0217464. In one aspect, the lipase is a first-wash lipase, preferably a variant of the wild-type lipase from Thermomyces lanuginosus comprising T231R and N233R mutations. The wild-type sequence is the 269 amino acids (amino acids 23 291) of the Swissprot accession number Swiss-Prot 059952 (derived from Thermomyces lanuginosus (Humicola lanuginosa)). Preferred lipases would include those sold under the tradenames Lipex®, Lipolex® and Lipoclean®.
  • Cellulases: Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum.
  • In one aspect, preferred enzymes include microbial-derived endoglucanases exhibiting endo-beta-1,4-glucanase activity (E.C. 3.2.1.4), preferably selected from the group comprising:
      • (a) a bacterial polypeptide endogenous to a member of the genus Bacillus which has a sequence of at least 90%, 94%, 97% and even 99% identity to the amino acid sequence SEQ ID NO:2 in U.S. Pat. No. 7,141,403B2;
      • (b) a glycosyl hydrolase having enzymatic activity towards both xyloglucan and amorphous cellulose substrates, wherein the glycosyl hydrolase is selected from GH families 5, 12, 44 or 74;
      • (c) a glycosyl hydrolase having a sequence of at least 90%, 94%, 97% and even 99% identity to the amino acid sequence SEQ ID NO:3 in WO09/148983;
      • (d) and mixtures thereof.
  • Suitable endoglucanases are sold under the tradenames Celluclean® and Whitezyme® (Novozymes A/S, Bagsvaerd, Denmark).
  • Other commercially available cellulases include CELLUZYME®, and CAREZYME® (Novozymes A/S), CLAZINASE®, and PURADAX HA® (Genencor International Inc.), and KAC-500(B)® (Kao Corporation).
  • Other amylases: Preferably the composition comprises a further amylase. Suitable further amylases include alpha-amylases including those of bacterial or fungal origin. Chemically or genetically modified mutants (variants) are included. A preferred alkaline alpha-amylase is derived from a strain of Bacillus, such as Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus stearothermophilus, Bacillus subtilis, or other Bacillus sp., such as Bacillus sp. NCBI 12289, NCBI 12512, NCBI 12513, DSM 9375 (U.S. Pat. No. 7,153,818) DSM 12368, DSMZ no. 12649, KSM AP1378 (WO 97/00324), KSM K36 or KSM K38 (EP 1,022,334). Preferred further amylases may be selected from: (a) variants described in WO 94/02597, WO 94/18314, WO96/23874 and WO 97/43424, especially the variants with substitutions in one or more of the following positions versus the enzyme listed as SEQ ID No. 2 in WO 96/23874: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444; (b) variants described in WO 96/23873, WO00/60060, WO06/002643 and WO2017/192657, especially the variants with one or more substitutions in the following positions versus the AA560 enzyme listed as SEQ ID No. 12 in WO 06/002643: 26, 30, 33, 82, 37, 106, 118, 128, 133, 149, 150, 160, 178, 182, 186, 193, 203, 214, 231, 246, 256, 257, 258, 269, 270, 272, 283, 295, 296, 298, 299, 303, 304, 305, 311, 314, 315, 318, 319, 339, 345, 361, 378, 383, 419, 421, 437, 441, 444, 445, 446, 447, 450, 461, 471, 482, 484, preferably that also contain the deletions of D183* and G184*; (c) variants exhibiting at least 90% identity with SEQ ID No. 4 in WO06/002643, the wild-type enzyme from Bacillus SP722, especially variants with deletions in the 183 and 184 positions and variants described in WO 00/60060, which is incorporated herein by reference; (d) variants exhibiting at least 95% identity with the wild-type enzyme from Bacillus sp. 707 (SEQ ID NO:7 in U.S. Pat. No. 6,093,562), especially those comprising one or more of the following mutations M202, M208, S255, R172, and/or M261. Preferably said amylase comprises one or more of M202L, M202V, M202S, M202T, M202I, M202Q, M202W, S255N and/or R172Q. Particularly preferred are those comprising the M202L or M202T mutations; (e) variants described in WO 09/149130, preferably those exhibiting at least 90% identity with SEQ ID NO: 1 or SEQ ID NO:2 in WO 09/149130, the wild-type enzyme from Geobacillus Stearophermophilus or a truncated version thereof; (f) variants exhibiting at least 89% identity with SEQ ID NO:1 in WO2016091688, especially those comprising deletions at positions H183+G184 and additionally one or more mutations at positions 405, 421, 422 and/or 428; (g) variants exhibiting at least 60% amino acid sequence identity with the “PcuAmyl α-amylase” from Paenibacillus curdlanolyticus YK9 (SEQ ID NO:3 in WO2014099523); (h) variants exhibiting at least 60% amino acid sequence identity with the “CspAmy2 amylase” from Cytophaga sp. (SEQ ID NO:1 in WO2014164777); (i) variants exhibiting at least 85% identity with AmyE from Bacillus subtilis (SEQ ID NO:1 in WO2009149271); (j) variants exhibiting at least 90% identity with the wild-type amylase from Bacillus sp. KSM-K38 with accession number AB051102; (k) variants exhibiting at least 80% identity with the mature amino acid sequence of AAI10 from Bacillus sp (SEQ ID NO:7 in WO2016180748); (l) variants exhibiting at least 80% identity with the mature amino acid sequence of Alicyclobacillus sp. amylase (SEQ ID NO:8 in WO2016180748); or mixtures thereof. Where present, the composition of the invention preferably comprises from at least 0.01 mg, preferably from about 0.05 to about 10, more preferably from about 0.1 to about 6, especially from about 0.2 to about 5 mg of active further amylase/g of composition.
  • Suitable commercially available alpha-amylases include DURAMYL®, LIQUEZYME®, TERMAMYL®, TERMAMYL ULTRA®, NATALASE®, SUPRAMYL®, STAINZYME®, STAINZYME PLUS®, FUNGAMYL®, ATLANTIC®, INTENSA® and BAN® (Novozymes A/S, Bagsvaerd, Denmark), KEMZYM® AT 9000 Biozym Biotech Trading GmbH Wehlistrasse 27b A-1200 Wien Austria, RAPIDASE®, PURASTAR®, ENZYSIZE®, OPTISIZE HT PLUS®, POWERASE®, PREFERENZ S® series (including PREFERENZ S10000 and PREFERENZ S2000® and PURASTAR OXAM® (DuPont., Palo Alto, Calif.) and KAM® (Kao, 14-10 Nihonbashi Kayabacho, 1-chome, Chuo-ku Tokyo 103-8210, Japan). In one aspect, suitable amylases include ATLANTIC®, STAINZYME®, POWERASE®, INTENSA® and STAINZYME PLUS® and mixtures thereof.
  • Peroxidases/Oxidases: Suitable peroxidases/oxidases include those of plant, bac-terial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g., from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
  • Commercially available peroxidases include GUARDZYME® (Novozymes A/S).
  • Other enzymes: Other preferred enzymes include pectate lyases sold under the tradenames Pectawash®, Pectaway® and mannanases sold under the tradenames Mannaway® (all from Novozymes A/S, Bagsvaerd, Denmark), and Purabrite® (Genencor International Inc., Palo Alto, Calif.).
  • The detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes. A detergent additive of the invention, i.e., a separate additive or a combined additive, can be formulated, e.g., granulate, a liquid, a slurry, etc. Preferred detergent additive formulations are granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids, or slurries.
  • Non-dusting granulates may be produced and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1000 to 20000; ethoxylated nonyl-phenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Film-forming coating materials may be applied for example by fluid bed techniques. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods.
  • The composition may comprise a fabric hueing agent (sometimes referred to as shading, bluing or whitening agents). Typically the hueing agent provides a blue or violet shade to fabric. Hueing agents can be used either alone or in combination to create a specific shade of hueing and/or to shade different fabric types. This may be provided for example by mixing a red and green-blue dye to yield a blue or violet shade. Hueing agents may be selected from any known chemical class of dye, including but not limited to acridine, anthraquinone (including polycyclic quinones), azine, azo (e.g., monoazo, disazo, trisazo, tetrakisazo, polyazo), including premetallized azo, benzodifurane and benzodifuranone, carotenoid, coumarin, cyanine, diazahemicyanine, diphenylmethane, formazan, hemicyanine, indigoids, methane, naphthalimides, naphthoquinone, nitro and nitroso, oxazine, phthalocyanine, pyrazoles, stilbene, styryl, triarylmethane, triphenylmethane, xanthenes and mixtures thereof.
  • Suitable fabric hueing agents include dyes, dye-clay conjugates, and organic and inorganic pigments. Suitable dyes include small molecule dyes and polymeric dyes. Suitable small molecule dyes include small molecule dyes selected from the group consisting of dyes falling into the Colour Index (C.I.) classifications of Direct, Basic, Reactive or hydrolysed Reactive, Solvent or Disperse dyes for example that are classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination. In another aspect, suitable small molecule dyes include small molecule dyes selected from the group consisting of Colour Index (Society of Dyers and Colourists, Bradford, UK) numbers Direct Violet dyes such as 9, 35, 48, 51, 66, and 99, Direct Blue dyes such as 1, 71, 80 and 279, Acid Red dyes such as 17, 73, 52, 88 and 150, Acid Violet dyes such as 15, 17, 24, 43, 49 and 50, Acid Blue dyes such as 15, 17, 25, 29, 40, 45, 75, 80, 83, 90 and 113, Acid Black dyes such as 1, Basic Violet dyes such as 1, 3, 4, 10 and 35, Basic Blue dyes such as 3, 16, 22, 47, 66, 75 and 159, Disperse or Solvent dyes such as those described in EP1794275 or EP1794276, or dyes as disclosed in U.S. Pat. No. 7,208,459 B2,and mixtures thereof. In another aspect, suitable small molecule dyes include small molecule dyes selected from the group consisting of Colour Index numbers Acid Violet 17, Direct Blue 71, Direct Violet 51, Direct Blue 1, Acid Red 88, Acid Red 150, Acid Blue 29, Acid Blue 113 or mixtures thereof.
  • Suitable polymeric dyes include polymeric dyes selected from the group consisting of polymers containing covalently bound (sometimes referred to as conjugated) chromogens, (dye-polymer conjugates), for example polymers with chromogens co-polymerized into the backbone of the polymer and mixtures thereof. Polymeric dyes include those described in WO2011/98355, WO2011/47987, US2012/090102, WO2010/145887, WO2006/055787 and WO2010/142503.
  • In another aspect, suitable polymeric dyes include polymeric dyes selected from the group consisting of fabric-substantive colorants sold under the name of Liquitint® (Milliken, Spartanburg, S.C., USA), dye-polymer conjugates formed from at least one reactive dye and a polymer selected from the group consisting of polymers comprising a moiety selected from the group consisting of a hydroxyl moiety, a primary amine moiety, a secondary amine moiety, a thiol moiety and mixtures thereof. In still another aspect, suitable polymeric dyes include polymeric dyes selected from the group consisting of Liquitint® Violet CT, carboxymethyl cellulose (CMC) covalently bound to a reactive blue, reactive violet or reactive red dye such as CMC conjugated with C.I. Reactive Blue 19, sold by Megazyme, Wicklow, Ireland under the product name AZO-CM-CELLULOSE, product code S-ACMC, alkoxylated triphenyl-methane polymeric colourants, alkoxylated thiophene polymeric colourants, and mixtures thereof.
  • Preferred hueing dyes include the alkoxylated thiophene azo whitening agents found in US2008/0177090 which may be optionally anionic, such as those selected from Examples 1-42 in Table 5 of WO2011/011799. Other preferred dyes are disclosed in U.S. Pat. No. 8,138,222.
  • Suitable dye clay conjugates include dye clay conjugates selected from the group comprising at least one cationic/basic dye and a smectite clay, and mixtures thereof. In another aspect, suitable dye clay conjugates include dye clay conjugates selected from the group consisting of one cationic/basic dye selected from the group consisting of C.I. Basic Yellow 1 through 108, C.I. Basic Orange 1 through 69, C.I. Basic Red 1 through 118, C.I. Basic Violet 1 through 51, C.I. Basic Blue 1 through 164, C.I. Basic Green 1 through 14, C.I. Basic Brown 1 through 23, CI Basic Black 1 through 11, and a clay selected from the group consisting of Montmorillonite clay, Hectorite clay, Saponite clay and mixtures thereof. In still another aspect, suitable dye clay conjugates include dye clay conjugates selected from the group consisting of: Montmorillonite Basic Blue B7 C.I. 42595 conjugate, Montmorillonite Basic Blue B9 C.I. 52015 conjugate, Montmorillonite Basic Violet V3 C.I. 42555 conjugate, Montmorillonite Basic Green G1 C.I. 42040 conjugate, Montmorillonite Basic Red R1 C.I. 45160 conjugate, Montmorillonite C.I. Basic Black 2 conjugate, Hectorite Basic Blue B7 C.I. 42595 conjugate, Hectorite Basic Blue B9 C.I. 52015 conjugate, Hectorite Basic Violet V3 C.I. 42555 conjugate, Hectorite Basic Green G1 C.I. 42040 conjugate, Hectorite Basic Red R1 C.I. 45160 conjugate, Hectorite C.I. Basic Black 2 conjugate, Saponite Basic Blue B7 C.I. 42595 conjugate, Saponite Basic Blue B9 C.I. 52015 conjugate, Saponite Basic Violet V3 C.I. 42555 conjugate, Saponite Basic Green G1 C.I. 42040 conjugate, Saponite Basic Red R1 C.I. 45160 conjugate, Saponite C.I. Basic Black 2 conjugate and mixtures thereof.
  • Suitable pigments include pigments selected from the group consisting of flavanthrone, indanthrone, chlorinated indanthrone containing from 1 to 4 chlorine atoms, pyranthrone, dichloropyranthrone, monobromodichloropyranthrone, dibromodichloropyranthrone, tetrabromopyranthrone, perylene-3,4,9,10-tetracarboxylic acid diimide, wherein the imide groups may be unsubstituted or substituted by C1-C3-alkyl or a phenyl or heterocyclic radical, and wherein the phenyl and heterocyclic radicals may additionally carry substituents which do not confer solubility in water, anthrapyrimidinecarboxylic acid amides, violanthrone, isoviolanthrone, dioxazine pigments, copper phthalocyanine which may contain up to 2 chlorine atoms per molecule, polychloro-copper phthalocyanine or polybromochloro-copper phthalocyanine containing up to 14 bromine atoms per molecule and mixtures thereof.
  • In another aspect, suitable pigments include pigments selected from the group consisting of Ultramarine Blue (C.I. Pigment Blue 29), Ultramarine Violet (C.I. Pigment Violet 15) and mixtures thereof. Builders—The cleaning composition may further contain builders, such as builders based on carbonate, bicarbonate or silicates which may be Zeolites, such as Zeolite A, Zeolite MAP (Maximum Aluminium type P). Zeolites, useable in laundry preferably has the formula Na12(AlO2)12(SiO2)12.27H2O and the particle size is usually between 1-10 μm for zeolite A and 0.7-2 μm for zeolite MAP. Other builders are Sodium metasilicate (Na2SiO3.nH2O or Na2Si2O5.n H2O) strong alkaline and preferably used in dish wash. In preferred embodiments, the amount of a detergent builder may be above 5%, above 10%, above 20%, above 30%, above 40% or above 50%, and may be below 80%, 65%. In a dishwash detergent, the level of builder is typically 40-65%, particularly 50-65% or even 75-90%.
  • Encapsulates—The composition may comprise an encapsulate. In one aspect, an encapsulate comprising a core, a shell having an inner and outer surface, said shell encapsulating said core.
  • In one aspect of said encapsulate, said core may comprise a material selected from the group consisting of perfumes; brighteners; dyes; insect repellants; silicones; waxes; flavors; vitamins; fabric softening agents; skin care agents in one aspect, paraffins; enzymes; anti-bacterial agents; bleaches; sensates; and mixtures thereof; and said shell may comprise a material selected from the group consisting of polyethylenes; polyamides; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; aminoplasts, in one aspect said aminoplast may comprise a polyureas, polyurethane, and/or polyureaurethane, in one aspect said polyurea may comprise polyoxymethyleneurea and/or melamine formaldehyde; polyolefins; polysaccharides, in one aspect said polysaccharide may comprise alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; and mixtures thereof.
  • In one aspect of said encapsulate, said core may comprise perfume. Such encapsulates are perfume microcapsules.
  • In one aspect of said encapsulate, said shell may comprise melamine formaldehyde and/or cross linked melamine formaldehyde.
  • In a one aspect, suitable encapsulates may comprise a core material and a shell, said shell at least partially surrounding said core material, is disclosed. At least 75%, 85% or even 90% of said encapsulates may have a fracture strength of from about 0.2 MPa to about 10 MPa, from about 0.4 MPa to about 5 MPa, from about 0.6 MPa to about 3.5 MPa, or even from about 0.7 MPa to about 3 MPa; and a benefit agent leakage of from 0% to about 30%, from 0% to about 20%, or even from 0% to about 5%.
  • In one aspect, at least 75%, 85% or even 90% of said encapsulates may have a particle size of from about 1 microns to about 80 microns, about 5 microns to 60 microns, from about 10 microns to about 50 microns, or even from about 15 microns to about 40 microns.
  • In one aspect, at least 75%, 85% or even 90% of said encapsulates may have a particle wall thickness of from about 30 nm to about 250 nm, from about 80 nm to about 180 nm, or even from about 100 nm to about 160 nm.
  • In one aspect, said encapsulates' core material may comprise a material selected from the group consisting of a perfume raw material and/or optionally a material selected from the group consisting of vegetable oil, including neat and/or blended vegetable oils including caster oil, coconut oil, cottonseed oil, grape oil, rapeseed, soybean oil, corn oil, palm oil, linseed oil, safflower oil, olive oil, peanut oil, coconut oil, palm kernel oil, castor oil, lemon oil and mixtures thereof; esters of vegetable oils, esters, including dibutyl adipate, dibutyl phthalate, butyl benzyl adipate, benzyl octyl adipate, tricresyl phosphate, trioctyl phosphate and mixtures thereof; straight or branched chain hydrocarbons, including those straight or branched chain hydrocarbons having a boiling point of greater than about 80° C.; partially hydrogenated terphenyls, dialkyl phthalates, alkyl biphenyls, including monoisopropylbiphenyl, alkylated naphthalene, including dipropylnaphthalene, petroleum spirits, including kerosene, mineral oil and mixtures thereof; aromatic solvents, including benzene, toluene and mixtures thereof; silicone oils; and mixtures thereof.
  • In one aspect, said encapsulates' wall material may comprise a suitable resin including the reaction product of an aldehyde and an amine, suitable aldehydes include, formaldehyde. Suitable amines include melamine, urea, benzoguanamine, glycoluril, and mixtures thereof. Suitable melamines include, methylol melamine, methylated methylol melamine, imino melamine and mixtures thereof. Suitable ureas include, dimethylol urea, methylated dimethylol urea, urea-resorcinol, and mixtures thereof.
  • In one aspect, suitable formaldehyde scavengers may be employed with the encapsulates, for example, in a capsule slurry and/or added to a consumer product before, during or after the encapsulates are added to such consumer product.
  • Suitable capsules can be purchased from Appleton Papers Inc. of Appleton, Wis. USA.
  • In addition, the materials for making the aforementioned encapsulates can be obtained from Solutia Inc. (St Louis, Mo. U.S.A.), Cytec Industries (West Paterson, New Jersey U.S.A.), sigma-Aldrich (St. Louis, Mo. U.S.A.), CP Kelco Corp. of San Diego, Calif., USA; BASF AG of Ludwigshafen, Germany; Rhodia Corp. of Cranbury, N.J., USA; Hercules Corp. of Wilmington, Del., USA; Agrium Inc. of Calgary, Alberta, Canada, ISP of New Jersey U.S.A., Akzo Nobel of Chicago, Ill., USA; Stroever Shellac Bremen of Bremen, Germany; Dow Chemical Company of Midland, Mich., USA; Bayer AG of Leverkusen, Germany; Sigma-Aldrich Corp., St. Louis, Mo., USA.
  • In one aspect, the composition may comprise an enzyme stabilizer selected from the group consisting of (a) inorganic salts selected from the group consisting of calcium salts, magnesium salts and mixtures thereof; (b) carbohydrates selected from the group consisting of oligosaccharides, polysaccharides and mixtures thereof; (c) mass efficient reversible protease inhibitors selected from the group consisting of phenyl boronic acid and derivatives thereof; and (d) mixtures thereof.
  • In another embodiment, the composition comprises: (1) reversible protease inhibitors such as a boron containing compound; (2) 1-2 propane diol; (3) calcium formate and/or sodium formate; and (4) any combination thereof.
  • In one aspect, the composition may comprise a structurant selected from the group consisting of diglycerides and triglycerides, ethylene glycol distearate microcrystalline cellulose, cellulose-based materials, microfiber cellulose, biopolymers, xanthan gum, gellan gum, and mixtures thereof.
  • Polymers
  • The consumer product may comprise one or more polymers. Examples are carboxymethylcellulose, poly(vinyl-pyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid co-polymers and amphiphilic polymers.
  • Amphiphilic Cleaning Polymers
  • Preferably, the amphiphilic cleaning polymer is a compound having the following general structure: bis((C2H5O)(C2H4O)n)(CH3)—N+—CxH2x—N+—(CH3)-bis((C2H5O)(C2H4O)n), wherein n=from 20 to 30, and x=from 3 to 8, or sulphated or sulphonated variants thereof.
  • Amphiphilic alkoxylated grease cleaning polymers of the present invention refer to any alkoxylated polymer having balanced hydrophilic and hydrophobic properties such that they remove grease particles from fabrics and surfaces. Specific embodiments of the amphiphilic alkoxylated grease cleaning polymers of the present invention comprise a core structure and a plurality of alkoxylate groups attached to that core structure. These may comprise alkoxylated polyalkylenimines, preferably having an inner polyethylene oxide block and an outer polypropylene oxide block.
  • The core structure may comprise a polyalkylenimine structure comprising, in condensed form, repeating units of formulae (I), (II), (III) and (IV):
  • Figure US20180216039A1-20180802-C00001
  • wherein # in each case denotes one-half of a bond between a nitrogen atom and the free binding position of a group A1 of two adjacent repeating units of formulae (I), (II), (III) or (IV); * in each case denotes one-half of a bond to one of the alkoxylate groups; and A1 is independently selected from linear or branched C2-C6-alkylene; wherein the polyalkylenimine structure consists of 1 repeating unit of formula (I), x repeating units of formula (II), y repeating units of formula (III) and y+1 repeating units of formula (IV), wherein x and y in each case have a value in the range of from 0 to about 150; where the average weight average molecular weight, Mw, of the polyalkylenimine core structure is a value in the range of from about 60 to about 10,000 g/mol.
  • The core structure may alternatively comprise a polyalkanolamine structure of the condensation products of at least one compound selected from N-(hydroxyalkyl)amines of formulae (I.a) and/or (I.b),
  • Figure US20180216039A1-20180802-C00002
  • wherein A are independently selected from C1-C6-alkylene; R1, R1*, R2, R2*, R3, R3*, R4, R4*, R5 and R5* are independently selected from hydrogen, alkyl, cycloalkyl or aryl, wherein the last three mentioned radicals may be optionally substituted; and R6 is selected from hydrogen, alkyl, cycloalkyl or aryl, wherein the last three mentioned radicals may be optionally substituted.
  • The plurality of alkylenoxy groups attached to the core structure are independently selected from alkylenoxy units of the formula (V)

  • *A2-OmCH2—CH2—OnA3-Op—R   (V)
  • wherein * in each case denotes one-half of a bond to the nitrogen atom of the repeating unit of formula (I), (II) or (IV); A2 is in each case independently selected from 1,2-propylene, 1,2-butylene and 1,2-isobutylene; A3 is 1,2-propylene; R is in each case independently selected from hydrogen and C1-C4-alkyl; m has an average value in the range of from 0 to about 2; n has an average value in the range of from about 20 to about 50; and p has an average value in the range of from about 10 to about 50.
  • Specific embodiments of the amphiphilic alkoxylated grease cleaning polymers may be selected from alkoxylated polyalkylenimines having an inner polyethylene oxide block and an outer polypropylene oxide block, the degree of ethoxylation and the degree of propoxylation not going above or below specific limiting values. Specific embodiments of the alkoxylated polyalkylenimines according to the present invention have a minimum ratio of polyethylene blocks to polypropylene blocks (n/p) of about 0.6 and a maximum of about 1.5(x+2y+1)1/2. Alkoxykated polyalkyenimines having an n/p ratio of from about 0.8 to about 1.2(x+2y+1)1/2 have been found to have especially beneficial properties.
  • The alkoxylated polyalkylenimines according to the present invention have a backbone which consists of primary, secondary and tertiary amine nitrogen atoms which are attached to one another by alkylene radicals A and are randomly arranged. Primary amino moieties which start or terminate the main chain and the side chains of the polyalkylenimine backbone and whose remaining hydrogen atoms are subsequently replaced by alkylenoxy units are referred to as repeating units of formulae (I) or (IV), respectively. Secondary amino moieties whose remaining hydrogen atom is subsequently replaced by alkylenoxy units are referred to as repeating units of formula (II). Tertiary amino moieties which branch the main chain and the side chains are referred to as repeating units of formula (III).
  • Since cyclization can occur in the formation of the polyalkylenimine backbone, it is also possible for cyclic amino moieties to be present to a small extent in the backbone. Such polyalkylenimines containing cyclic amino moieties are of course alkoxylated in the same way as those consisting of the noncyclic primary and secondary amino moieties.
  • The polyalkylenimine backbone consisting of the nitrogen atoms and the groups A′, has an average molecular weight Mw of from about 60 to about 10,000 g/mole, preferably from about 100 to about 8,000 g/mole and more preferably from about 500 to about 6,000 g/mole.
  • The sum (x+2y+1) corresponds to the total number of alkylenimine units present in one individual polyalkylenimine backbone and thus is directly related to the molecular weight of the polyalkylenimine backbone. The values given in the specification however relate to the number average of all polyalkylenimines present in the mixture. The sum (x+2y+2) corresponds to the total number amino groups present in one individual polyalkylenimine backbone.
  • The radicals A1 connecting the amino nitrogen atoms may be identical or different, linear or branched C2-C6-alkylene radicals, such as 1,2-ethylene, 1,2-propylene, 1,2-butylene, 1,2-isobutylene, 1,2-pentanediyl, 1,2-hexanediyl or hexamethylen. A preferred branched alkylene is 1,2-propylene. Preferred linear alkylene are ethylene and hexamethylene. A more preferred alkylene is 1,2-ethylene.
  • The hydrogen atoms of the primary and secondary amino groups of the polyalkylenimine backbone are replaced by alkylenoxy units of the formula (V).

  • *A2-OmCH2—CH2—OnA3-Op—R   (V)
  • In this formula, the variables preferably have one of the meanings given below:
  • A2 in each case is selected from 1,2-propylene, 1,2-butylene and 1,2-isobutylene; preferably A2 is 1,2-propylene. A3 is 1,2-propylene; R in each case is selected from hydrogen and C1-C4-alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and tert.-butyl; preferably R is hydrogen. The index m in each case has a value of 0 to about 2; preferably m is 0 or approximately 1; more preferably m is 0. The index n has an average value in the range of from about 20 to about 50, preferably in the range of from about 22 to about 40, and more preferably in the range of from about 24 to about 30. The index p has an average value in the range of from about 10 to about 50, preferably in the range of from about 11 to about 40, and more preferably in the range of from about 12 to about 30.
  • Preferably the alkylenoxy unit of formula (V) is a non-random sequence of alkoxylate blocks. By non-random sequence it is meant that the [-A2-O—]m is added first (i.e., closest to the bond to the nitrogen atom of the repeating unit of formula (I), (II), or (III)), the [—CH2—CH2—O—]n is added second, and the [-A3-O—]p is added third. This orientation provides the alkoxylated polyalkylenimine with an inner polyethylene oxide block and an outer polypropylene oxide block.
  • The substantial part of these alkylenoxy units of formula (V) is formed by the ethylenoxy units —[CH2—CH2—O)]n— and the propylenoxy units —[CH2—CH2(CH3)—O]p—. The alkylenoxy units may additionally also have a small proportion of propylenoxy or butylenoxy units -[A2-O]m—, i.e. the polyalkylenimine backbone saturated with hydrogen atoms may be reacted initially with small amounts of up to about 2 mol, especially from about 0.5 to about 1.5 mol, in particular from about 0.8 to about 1.2 mol, of propylene oxide or butylene oxide per mole of NH— moieties present, i.e. incipiently alkoxylated.
  • This initial modification of the polyalkylenimine backbone allows, if necessary, the viscosity of the reaction mixture in the alkoxylation to be lowered. However, the modification generally does not influence the performance properties of the alkoxylated polyalkylenimine and therefore does not constitute a preferred measure.
  • The amphiphilic alkoxylated grease cleaning polymers are present in the fabric and home care products, including but not limited to detergents, of the present invention at levels ranging from about 0.05% to 10% by weight of the fabric and home care product. Embodiments of the fabric and home care products may comprise from about 0.1% to about 5% by weight. More specifically, the embodiments may comprise from about 0.25 to about 2.5% of the grease cleaning polymer.
  • Carboxylate polymer—The consumer products of the present invention may also include one or more carboxylate polymers such as a maleate/acrylate random copolymer or polyacrylate homopolymer. In one aspect, the carboxylate polymer is a polyacrylate homopolymer having a molecular weight of from 4,000 Da to 9,000 Da, or from 6,000 Da to 9,000 Da.
  • Soil release polymer—The consumer products of the present invention may also include one or more soil release polymers having a structure as defined by one of the following structures (I), (II) or (III):

  • —[(OCHR1—CHR2)a—O—OC—Ar—CO—]d  (I)

  • —[(OCHR3—CHR4)b—O—OC-sAr—CO—]e  (II)

  • —[(OCHR5—CHR6)c—OR7]f  (III)
  • wherein:
  • a, b and c are from 1 to 200;
  • d, e and f are from 1 to 50;
  • Ar is a 1,4-substituted phenylene;
  • sAr is 1,3-substituted phenylene substituted in position 5 with SO3Me;
  • Me is Li, K, Mg/2, Ca/2, Al/3, ammonium, mono-, di-, tri-, or tetraalkylammonium wherein the alkyl groups are C1-C18 alkyl or C2-C10 hydroxyalkyl, or mixtures thereof;
  • R1, R2, R3, R4, R5 and R6 are independently selected from H or C1-C18 n- or iso-alkyl; and
  • R7 is a linear or branched C1-C18 alkyl, or a linear or branched C2-C30 alkenyl, or a cycloalkyl group with 5 to 9 carbon atoms, or a C8-C30 aryl group, or a C6-C30 arylalkyl group.
  • Suitable soil release polymers are polyester soil release polymers such as Repel-o-tex polymers, including Repel-o-tex SF, SF-2 and SRP6 supplied by Rhodia. Other suitable soil release polymers include Texcare polymers, including Texcare SRA100, SRA300, SRN100, SRN170, SRN240, SRN300 and SRN325 supplied by Clariant. Other suitable soil release polymers are Marloquest polymers, such as Marloquest SL supplied by Sasol.
  • Cellulosic polymer—The consumer products of the present invention may also include one or more cellulosic polymers including those selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose. In one aspect, the cellulosic polymers are selected from the group comprising carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, and mixtures thereof. In one aspect, the carboxymethyl cellulose has a degree of carboxymethyl substitution from 0.5 to 0.9 and a molecular weight from 100,000 Da to 300,000 Da.
  • The detergent may contain a bleaching system, which may comprise a H2O2 source such as perborate or percarbonate which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine or nonanoyloxybenzenesulfonate. Alternatively, the bleaching system may comprise peroxyacids of, e.g., the amide, imide, or sulfone type. In general, when a bleaching agent is used, the compositions of the present invention may comprise from about 0.1% to about 50% or even from about 0.1% to about 25% bleaching agent by weight of the subject cleaning composition.
  • Chelating Agents—The consumer products herein may contain a chelating agent. Suitable chelating agents include copper, iron and/or manganese chelating agents and mixtures thereof. When a chelating agent is used, the subject consumer product may comprise from about 0.005% to about 15% or even from about 3.0% to about 10% chelating agent by weight of the subject consumer product. Suitable chelants include DTPA (Diethylene triamine pentaacetic acid), HEDP (Hydroxyethane diphosphonic acid), DTPMP (Diethylene triamine penta(methylene phosphonic acid)), 1,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt hydrate, ethylenediamine, diethylene triamine, ethylenediaminedisuccinic acid (EDDS), N-hydroxyethylethylenediaminetriacetic acid (HEDTA), triethylenetetraaminehexaacetic acid (TTHA), N-hydroxyethyliminodiacetic acid (HEIDA), dihydroxyethylglycine (DHEG), ethylenediaminetetrapropionic acid (EDTP) and derivatives thereof.
  • The enzyme variants of the invention may be stabilized using conventional stabilizing agents, and/or protease inhibitors e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, salts such as sodium chloride and potassium chloride, lactic acid, formic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, or a peptide aldehyde such as di-, tri- or tetrapeptide aldehydes or aldehyde analogues (either of the form B1-B0-R wherein, R is H, CH3, CX3, CHX2, or CH2X (X=halogen), B0 is a single amino acid residue (preferably with an optionally substituted aliphatic or aromatic side chain); and B1 consists of one or more amino acid residues (preferably one, two or three), optionally comprising an N-terminal protection group, or as described in WO09118375, WO98/13459) or a protease inhibitor of the protein type such as RASI, BASI, WASI (bifunctional alpha-amylase/subtilisin inhibitors of rice, barley and wheat) or CI2 or SSI. In some embodiments, the enzymes employed herein are stabilized by the presence of water-soluble sources of zinc (II), calcium (II) and/or magnesium (II) ions in the finished compositions that provide such ions to the enzymes, as well as other metal ions (e.g., barium (II), scandium (II), iron (II), manganese (II), aluminum (III), Tin (II), cobalt (II), copper (II), Nickel (II), and oxovanadium (IV)).
  • The composition may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil re-deposition agents, dyes, bactericides, optical brighteners, hydrotropes, tarnish inhibitors, organic solvents such as ethanol or perfumes. Furthermore, the detergent could contain a pre-spotter or a booster, which is added to the wash to increase the general cleaning level, some of these additives may also be used as a pre-treatment agent applied to the textile before the washing step.
  • It is at present contemplated that in the detergent compositions any enzyme, in particular the enzyme essential to the present invention, may be added in an amount corresponding to 0.001-100 mg of enzyme protein per liter of wash liquor, preferably 0.005-5 mg of enzyme protein per liter of wash liquor, more preferably 0.01-1 mg of enzyme protein per liter of wash liquor and in particular 0.1-1 mg of enzyme protein per liter of wash liquor. However, the compositions of the present invention comprise at least 0.0001 to about 0.1% weight percent of pure enzyme protein, such as from about 0.0001% to about 0.01%, from about 0.001% to about 0.01% or from about 0.001% to about 0.01%. However, when using a formulated enzyme the detergent composition comprises from about 0.02% to about 20% weight percent, such as or from about 0.05% to about 15% weight, or from about 0.05 to about 20%, or from about 0.05% to about 5%, or from about 0.05% to about 3%.
  • The alpha-amylase variants useful in the present invention may additionally be incorporated in the detergent formulations disclosed in WO 97/07202, which is hereby incorporated by reference.
  • The detergent composition of the invention may be in any convenient form, e.g., a bar, a tablet, a powder, a granule, a paste, a gel or a liquid. The composition may be a powder-form all-purpose “heavy-duty” washing agent, a paste-form all-purpose, a heavy-duty liquid type, a liquid fine-fabric, a hand dishwashing agent, a light duty dishwashing agent, a high-foaming type. a machine dishwashing agent, a various tablet, a dishwash granular, a dish wash liquid, a rinse-aid type. The composition can also be in unit dose packages, including those known in the art and those that are water soluble, water insoluble and/or water permeable. A liquid detergent may be aqueous, typically containing up to 70% water and 0-30% organic solvent, or non-aqueous or a solution containing more than 0.5 g/L of the detergent composition.
  • The composition of the invention may for example be formulated as a hand or machine laundry detergent composition including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for hand or machine dishwashing operations. The detergent may be a powder, or granulated form, or it may be in the form of a liquid, gel or paste or in the form of a unit dose product such as a tablet or pouch, including multi-compartment pouches, or the detergent can be in the form of a sheet.
  • EXAMPLES
  • pNP-G7 Assay for Determination of Alpha-Amylase Activity
  • The alpha-amylase activity may be determined by a method employing the G7-pNP substrate. G7-pNP which is an abbreviation for 4,6-ethylidene(G7)-p-nitrophenyl(G1)-α,D-maltoheptaoside, a blocked oligosaccharide which can be cleaved by an endo-amylase, such as an alpha-amylase. Following the cleavage, the alpha-Glucosidase included in the kit digest the hydrolysed substrate further to liberate a free PNP molecule which has a yellow color and thus can be measured by visible spectophometry at λ=405 nm (400-420 nm.). Kits containing G7-pNP substrate and alpha-Glucosidase is manufactured by Roche/Hitachi (cat. No. 11876473).
  • Reagents:
  • The G7-pNP substrate from this kit contains 22 mM 4,6-ethylidene-G7-pNP and 52.4 mM HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid), pH 7.0).
  • The alpha-Glucosidase reagent contains 52.4 mM HEPES, 87 mM NaCl, 12.6 mM MgCl2, 0.075 mM CaCl2, ≥4 kU/L alpha-glucosidase).
  • The substrate working solution is made by mixing 1 mL of the alpha-Glucosidase reagent with 0.2 mL of the G7-pNP substrate. This substrate working solution is made immediately before use.
  • Dilution buffer: 50 mM MOPS, 0.05% (w/v) Triton X100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether (C14H22O(C2H4O)n (n=9-10))), 1 mM CaCl2, pH8.0.
  • Procedure:
  • The amylase sample to be analyzed was diluted in dilution buffer to ensure the pH in the diluted sample is 7. The assay was performed by transferring 20 μl diluted enzyme samples to 96 well microtiter plate and adding 80 μl substrate working solution. The solution was mixed and pre-incubated 1 minute at room temperature and absorption is measured every 20 sec. over 5 minutes at OD 405 nm.
  • The slope (absorbance per minute) of the time dependent absorption-curve is directly proportional to the specific activity (activity per mg enzyme) of the alpha-amylase in question under the given set of conditions. The amylase sample should be diluted to a level where the slope is below 0.4 absorbance units per minute.
  • Automatic Mechanical Stress Assay (AMSA) for Laundry
  • In order to assess the wash performance in laundry washing experiments are performed, using the Automatic Mechanical Stress Assay (AMSA). With the AMSA, the wash performance of a large quantity of small volume enzyme-detergent solutions can be examined. The AMSA plate has a number of slots for test solutions and a lid firmly squeezing the laundry sample, the textile to be washed against all the slot openings. During the washing time, the plate, test solutions, textile and lid are vigorously shaken to bring the test solution in contact with the textile and apply mechanical stress in a regular, periodic oscillating manner For further description see WO02/42740 especially the paragraph “Special method embodiments” at page 23-24.
  • General Wash Performance Description
  • A test solution comprising water (10° dH), detergent, e.g. 5.1 g/L European liquid detergent as described below and the enzyme of the invention, e.g. at concentration of 0, 0.8 and/or 1.2 mg enzyme protein/L, is prepared. Fabrics stained with starch (e.g. CS-28 from Center For Testmaterials BV, P.O. Box 120, 3133 KT, Vlaardingen, The Netherlands) is added and washed for 20 minutes at 20° C. After thorough rinse under running tap water and drying in the dark, the light intensity or reflectance values of the stained fabrics are subsequently measured as a measure for wash performance. The test with 0 mg enzyme protein/L is used as a blank to obtain a delta remission value. Preferably mechanical action is applied during the wash step, e.g. in the form of shaking, rotating or stirring the wash solution with the fabrics.
  • The AMSA wash performance experiments were conducted under the experimental conditions specified below:
  • TABLE 1
    AMSA experimental conditions
    Laundry liquid detergent dosage 5.7 g/L European (EU) liquid
    detergent (cf. Example 1A), or
    0.8 g/L Northern America (US) liquid
    detergent (cf. Example 1B)
    Test solution volume 160 micro L
    pH as is
    Wash time 20 minutes
    Temperature 20° C.
    Water hardness 10°dH, Ca2+:Mg2+:HCO3 = 3:1:6
    Enzyme concentration in test 0.8 and 1.2 Mg/L
    solution
    Test material CS-28 (Rice starch on cotton)
  • Amylase dilution buffer: Amylase was diluted in ultrapure water (MilliQ water) with a small concentration of calcium (0.1 mM) to stabilize the amylase during storage and 0.01% Triton X-100 to reduce risk of adsorption of enzyme protein to containers and pipettes.
  • Water hardness was adjusted to 10° dH by addition of CaCl2, MgCl2, and NaHCO3 (Ca2+:Mg2+:HCO3 =3:1:4.5) to the test system. After washing the textiles were flushed in tap water and dried.
  • The wash performance is measured as the brightness of the color of the textile washed. Brightness can also be expressed as the intensity of the light reflected from the sample when illuminated with white light. When the sample is stained the intensity of the reflected light is lower, than that of a clean sample. Therefore, the intensity of the reflected light can be used to measure wash performance.
  • Color measurements are made with a professional flatbed scanner (Kodak iQsmart, Kodak, Midtager 29, DK-2605 Brondby, Denmark), which is used to capture an image of the washed textile.
  • To extract a value for the light intensity from the scanned images, 24-bit pixel values from the image are converted into values for red, green and blue (RGB). The intensity value (Int) is calculated by adding the RGB values together as vectors and then taking the length of the resulting vector:

  • Int=√{square root over (r 2 +g 2 +b 2)}.
  • Results of the AMSA laundry test of different variants are shown in Table 1 and 2. In the result the index is 100. The performance result of the parent alpha-amylase is assigned the value of 100 and the results of the variants are compared to this value.
  • TOM Wash Performance
  • Water hardness was adjusted to the strength described below by addition of CaCl2, MgCl2 and NAHCO3. Wash solutions were prepared with desired amount of detergent, temperature and water hardness in a bucket as described below. Detergent was dissolved during magnet stirring for 10 minutes (wash solution was used within 30 to 60 min after preparation).
  • Temperature and rotation (rpm) in the water bath in the Terg-O-toMeter were set according to the settings below in Table 2. When temperature was adjusted according to settings (tolerance is +/−0.5° C.) wash solution was added to TOM beaker according to the amount described below.
  • Agitation in the beaker was at 200 rpm. 2 handmade rice starch swatches (HM CS-28), 2 handmade tapioca starch swatches (HM CS-29) and ballast were added to each of the beakers and wash carried out according to time stated below. Swatches were rinsed in cold tap water for 5 minutes and placed in a washing bag and rinsed in washing machine (AEG ÕKO LAVAMAT 86820) on “STIVN” program. The swatches were sorted and let to dry between filter paper in a drying cupboard without heat overnight.
  • Textile sample HM CS-28 (rice starch on cotton, 5×5 cm, starch applied in 2.5 cm in diameter circle) and HM CS-29 (tapioca starch on cotton, 5×5 cm, starch applied in 2.5 cm in diameter circle) and HM CS-26 (corn starch on cotton, 5×5 cm, starch applied in 2.5 cm in diameter circle) were obtained from Center for Test Materials BV, P.O. Box 120, 3133 KT Vlaardingen, the Netherlands.
  • White knitted cotton was used as ballast and was obtained from Warwick Equest Ltd, Unit 55, Consett Business Park, Consett, County Durham, DH8 6BN UK.
  • TABLE 2
    Experimental conditions
    European conditions European conditions
    using WE SUD model using WE HDL
    detergent model detergent
    Detergent dosage 1.87 g/L 5.30 g/L
    Enzyme concentration 0.065 mg enzyme 0.2 mg enzyme protein/L
    in wash solution protein/L
    Water hardness 20.6°dH
    (Ca2+:Mg2+:HCO3− = 4:1:7.5)
    Test solution volume 1000 ml
    Wash time 5 minutes
    Rotation 200 rpm
    pH as is
    Temperature 15° C.

    Detergents and Test Materials were as Follows:
  • Laundry Detergent K
    liquid
    deter-
    gent
    Test HM CS-28 (Rice starch on cotton, 5 × 5 cm swatch with starch
    material applied in 2.5 cm in diameter circle), HM CS-29 (tapioca starch
    on cotton, 5 × 5 cm swatch with starch applied in 2.5 cm in
    diameter circle).
    Ballast White knitted cotton in size 5 × 5 cm added to a total weight of
    40 g (40 g including all swatches i.e. ballast and test material).
  • The wash performance was measured as the brightness of the color of the textile washed expressed in remission values (REM). Remission measurements were made using a Macbeth 7000 Color Eye spectrophotometer. Each of the dry swatches was measured. As there is a risk of interference from the back-ground, the swatches were placed on top of 2 layers of fabric during the measurement of the remission. The remission was measured at 460 nm. The UV filter was not included. An average result for remission for the swatches was calculated.
  • The wash performance of different variants is shown in Table 5 as Improvement Factor (IF) and is calculated as shown below:
  • IF = REM Variant - REM Blank REM Reference enzyme - REM Blank
  • Example 1 Wash Performance of Alpha-Amylases Using Automatic Mechanical Stress Assay
  • In order to assess the wash performance of the alpha-amylases in a detergent base composition, washing experiments may be performed using Automatic Mechanical Stress Assay (AMSA). With the AMSA test the wash performance of a large quantity of small volume enzyme-detergent solutions can be examined. The AMSA plate has a number of slots for test solutions and a lid firmly squeezing the textile swatch to be washed against all the slot openings. During the washing time, the plate, test solutions, textile and lid are vigorously shaken to bring the test solution in contact with the textile and apply mechanical stress in a regular, periodic oscillating manner For further description see WO 02/42740, especially the paragraph “Special method embodiments” at page 23-24.
  • General Wash Performance Description
  • A test solution comprising water (6° dH or 15° dH), 0.79 g/L detergent, e.g., model detergent J as described below, and the enzyme of the invention at concentration of 0 or 0.2 mg enzyme protein/L, is prepared. Fabrics stained with starch (CS-28 from Center For Test materials BV, P.O. Box 120, 3133 KT, Vlaardingen, The Netherlands) is added and washed for 10 minutes at 20° C. and 40° C., or alternatively 10 minutes at 20° C. and 30° C. as specified in the examples. After thorough rinse under running tap water and drying in the dark, the light intensity values of the stained fabrics are subsequently measured as a measure for wash performance. The test with 0 mg enzyme protein/L is used as a blank and corresponds to the contribution from the detergent. Preferably mechanical action is applied during the wash step, e.g. in the form of shaking, rotating or stirring the wash solution with the fabrics. The AMSA wash performance experiments may be conducted under the experimental conditions specified below:
  • TABLE A
    Experimental condition
    Detergent Liquid Model detergent J (see Table B)
    Detergent dosage 0.79 g/L
    Test solution volume 160 micro L
    pH As is
    Wash time 10 minutes
    Temperature 20° C. or 30° C.
    Water hardness 6°dH
    Enzyme concentration in test 0.2 mg enzyme protein/L and 0.05 mg
    enzyme protein/L
    Test material CS-28 (Rice starch cotton)
  • TABLE B
    Model detergent J
    Content of % active
    Compound compound (% w/w) component (% w/w)
    LAS 5.15 5.00
    AS 5.00 4.50
    AEOS 14.18 10.00
    Coco fatty acid 1.00 1.00
    AEO 5.00 5.00
    MEA 0.30 0.30
    MPG 3.00 3.00
    Ethanol 1.50 1.35
    DTPA (as Na5 salt) 0.25 0.10
    Sodium citrate 4.00 4.00
    Sodium formate 1.00 1.00
    Sodium hydroxide 0.66 0.66
    H2O, ion exchanged 58.95 58.95

    Water hardness was adjusted to 6° dH by addition of CaCl2, MgCl2, and NaHCO3 (Ca2+:Mg2+:HCO3−=2:1:4.5) to the test system. After washing the textiles were flushed in tap water and dried.
  • TABLE C
    Experimental condition
    Detergent Liquid Model detergent A (see Table D)
    Detergent dosage 3.33 g/L
    Test solution volume 160 micro L
    pH As is
    Wash time 10 minutes
    Temperature 20° C. or 40° C.
    Water hardness 15°dH
    Enzyme concentration in test 0.2 mg enzyme protein/L, 0.05 mg
    enzyme protein/L
    Test material CS-28 (Rice starch cotton)
  • TABLE D
    Model detergent A
    Content of % active
    Compound compound (% w/w) component (% w/w)
    LAS 12.00 11.60
    AEOS, SLES 17.63 4.90
    Soy fatty acid 2.75 2.48
    Coco fatty acid 2.75 2.80
    AEO 11.00 11.00
    Sodium hydroxide 1.75 1.80
    Ethanol/Propan-2-ol 3.00 2.70/0.30
    MPG 6.00 6.00
    Glycerol 1.71 1.70
    TEA 3.33 3.30
    Sodium formate 1.00 1.00
    Sodium citrate 2.00 2.00
    DTMPA 0.48 0.20
    PCA 0.46 0.18
    Phenoxy ethanol 0.50 0.50
    H2O, ion exchanged 33.64 33.64

    Water hardness was adjusted to 15° dH by addition of CaCl2, MgCl2, and NaHCO3 (Ca2+:Mg2+:HCO3−=4:1:7.5) to the test system. After washing the textiles were flushed in tap water and dried.
  • TABLE E
    Experimental condition
    Detergent Detergent Composition K
    Detergent dosage 5.3 g/L
    Test solution volume 160 micro L
    pH As is
    Wash time 10 minutes
    Temperature 20° C. or 40° C.
    Water hardness 15°dH
    Enzyme concentration in test 0.2 mg enzyme protein/L,
    0.05 mg enzyme protein/L
    Test material CS-28 (Rice starch cotton)
  • TABLE F
    Detergent K
    Content of compound (wt %
    Compound active)
    Sodium alkylbenzene 8.7
    sulfonate
    Sodium alkyl ethoxy 3 1.0
    sulfate
    C12-18 alkyl 1.5-7- 5.3
    ethoxylate
    Citric Acid 3.1
    Optical Brightener 0.05
    Polypropylene Glycol 1.1
    Phosphonated chelant 0.5
    Minors (dyes perfumes, to 100%
    enzymes, enzyme
    stabilisers, solvents,
    structurants, polymers)
    and water

    Water hardness was adjusted to 15° dH by addition of CaCl2, MgCl2, and NaHCO3 (Ca2+:Mg2+:HCO3−=4:1:7.5) to the test system. After washing the textiles were flushed in tap water and dried.
  • The wash performance is measured as the brightness expressed as the intensity of the light reflected from the sample when illuminated with white light. When the sample is stained the intensity of the reflected light is lower, than that of a clean sample. Therefore, the intensity of the reflected light can be used to measure wash performance.
  • Color measurements are made with a professional flatbed scanner (EPSON Expression 10000XL, EPSON) used to capture an image of the washed textile.
  • To extract a value for the light intensity from the scanned images, 48→24 Bit Color pixel values from the image are converted into values for red, green and blue (RGB). The intensity value (Int) is calculated by adding the RGB values together as vectors and then taking the length of the resulting vector:

  • Int=√{square root over (r 2 +g 2 +b 2)}.
  • The wash performance of the variants according to the invention are shown in the tables below. Table 3 shows the results obtained from the experiment accessing the wash performance in model detergents A (Table D) and J (Table B) in different concentrations (0.05 mg enzyme/L detergent and 0.2 mg enzyme/L detergent), and at different temperatures (20° C. and 40° C.). Table 4 shows the results obtained from the experiment accessing the wash performance in detergent K (Table F) in different concentrations (0.05 mg enzyme/L detergent and 0.2 mg enzyme/L detergent) and at different temperatures (20° C. and 40° C.).
  • TABLE 3
    Results of wash performance in Model detergents
    0.05 mg/ 0.2 mg/ 0.05 mg/ 0.2 mg/ 0.05 mg/ 0.2 mg/ 0.05 mg/ 0.2 mg/
    L-A- L-A- L-A- L-A- L-J- L-J- L-J- L-J-
    Mutations 20 C. 20 C. 40 C. 40 C. 20 C. 20 C. 30 C. 30 C.
    Reference—SEQ ID NO: 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + 4.7 1.5 2.3 1.1 2.7 1.1 3.5 1.5
    W284H + K320A + M323N + E391A
    SEQ ID NO: 2 + G7A + W284H + K320A + M323N 4.7 1.4 1.8 1.0 3.0 1.1 2.0 1.2
    SEQ ID NO: 2 + G7A + K320A + M323N 4.3 1.6 2.0 1.0 2.0 1.1 2.0 1.2
    SEQ ID NO: 2 + K320A 4.7 1.3 2.3 1.0 3.7 1.0 4.5 1.5
    SEQ ID NO: 2 + G7A + K320A 4.3 1.4 2.3 1.1 3.3 1.1 2.5 1.3
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + 1.7 1.2 1.3 1.3 1.5 1.3 1.1 1.4
    E391A
    SEQ ID NO: 2 + H1* + G109A + N280S + 2.3 1.7 2.8 1.4 5.0 2.0 5.5 1.8
    W284H + E391A
    SEQ ID NO: 2 + H1* + G109A + N280S + E391A 0.8 1.0 1.0 1.1 1.0 1.1 1.3 1.1
    SEQ ID NO: 2 + H1* + G109A + N280S + 1.3 1.9 1.5 1.3 1.5 1.5 1.6 1.6
    M323S + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + 1.5 1.2 1.3 1.2 1.2 1.1 1.7 1.1
    K320A + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + 1.3 1.3 1.5 1.1 1.0 1.0 1.2 1.1
    M323S + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + 1.4 1.3 1.3 1.2 1.0 1.2 1.6 1.1
    M323N + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + 1.3 1.4 1.3 1.2 0.9 1.2 1.6 1.0
    W284F + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + 1.1 1.3 1.0 1.0 0.7 1.2 1.4 0.9
    W284R + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + 1.1 1.3 0.9 1.1 0.5 1.2 0.8 1.0
    K320A + M323S + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + W284R + 1.0 1.2 0.9 1.1 0.6 1.1 1.1 1.0
    E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + 1.0 1.2 0.8 1.0 0.8 1.2 0.9 1.0
    K320A + M323N + E391A
  • TABLE 4
    Results of wash performance in detergent K
    Mutations 0.05 mg/L-K −20 C. 0.2 mg/L-K −20 C. 0.05 mg/L-K −40 C. 0.2 mg/L-K −40 C.
    Reference - SEQ ID NO: 2 1.0 1.0 1.0 1.0
    SEQ ID NO: 2 + H1* + G109A + N280S + E391A 1.1 1.0 2.0 1.1
    SEQ ID NO: 2 + H1* + G7K + G109A + N280S + E391A 1.2 1.6 0.9 1.1
    SEQ ID NO: 2 + H1* + G7E + G109A + N280S + E391A 1.2 1.6 0.6 1.0
    SEQ ID NO: 2 + H1* + G7N + G109A + N280S + E391A 0.9 1.6 1.0 1.1
    SEQ ID NO: 2 + H1* + G7Q + G109A + N280S + E391A 1.6 1.6 1.1 1.1
    SEQ ID NO: 2 + H1* + G7L + G109A + N280S + E391A 1.6 1.6 1.4 1.3
    SEQ ID NO: 2 + H1* + G7D + G109A + N280S + E391A 1.9 1.6 1.5 1.3
    SEQ ID NO: 2 + H1* + G109A + N280S + K320A + E391A 0.4 0.9 1.0 1.3
    SEQ ID NO: 2 + H1* + G109A + N280S + K320M + E391A 1.5 1.1 1.8 1.3
    SEQ ID NO: 2 + H1* + G109A + N280S + K320T + E391A 1.3 1.1 1.5 1.1
    SEQ ID NO: 2 + H1* + G109A + N280S + K320V + E391A 1.0 0.9 1.7 1.1
    SEQ ID NO: 2 + H1* + G109A + N280S + M323R + E391A 0.7 0.9 1.3 1.0
    SEQ ID NO: 2 + H1* + G109A + N280S + K320S + E391A 1.8 1.3 1.8 1.3
    SEQ ID NO: 2 + H1* + G109A + N280S + E391V 1.3 1.1 2.0 1.3
    SEQ ID NO: 2 + H1* + G109A + W284R + E391A 1.2 1.3 1.2 1.2
    SEQ ID NO: 2 + H1* + G109A + W284F + E391A 1.7 1.3 1.8 1.2
    SEQ ID NO: 2 + H1* + G109A + N280S + K320A + M323S + 2.0 1.4 1.4 1.2
    E391A
    SEQ ID NO: 2 + H1* + G109A + N280S + W284F + E391A 0.9 0.9 1.3 1.0
    SEQ ID NO: 2 + H1* + G109A + N280S + M323N + E391A 2.0 1.6 2.0 1.3
    SEQ ID NO: 2 + H1* + G109A + N280S + M323K + E391A 2.3 1.6 2.0 1.6
    SEQ ID NO: 2 + H1* + G109S + N280S + E391A 2.5 1.3 2.3 1.1
    SEQ ID NO: 2 + H1* + G109A + W284H + E391A 1.5 1.2 1.3 1.1
    SEQ ID NO: 2 + H1* + G109A + N280S + K320A + M323N + 1.6 1.1 1.2 1.1
    E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + N280S + E391A 1.5 1.4 1.2 1.2
  • As can be seen from Table 1 and Table 2, all the tested variants have an improved wash performance compared to the reference (SEQ ID NO: 2) in at least one of the tested conditions.
  • Example 2—Wash Performance of Alpha-Amylases in Liquid Detergent K
  • The wash performance of the tested variant and corresponding parent alpha-amylase (SEQ ID NO: 2) were tested as described above. The results are given as (performance of variant minus performance of blank) divided by (performance of parent minus performance of blank).
  • TABLE 5
    Wash performance in TOM scale
    WE HDL Model Detergent
    IF IF
    HM CS-28 HM CS-29
    Reference SEQ ID NO: 2 1.00 1.00
    SEQ ID NO: 2 + H1* + G109A + 1.28 1.58
    W284H + E391A
    SEQ ID NO: 2 + H1* + G109A + N280S + 1.13 1.61
    K320A + M323N + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + 1.22 2.02
    N280S + E391A
  • TABLE 6
    Wash performance in TOM scale
    WE SUD Model
    Detergent
    1 L, 5 min wash IF IF
    0.13 mg enzyme protein/L HM CS-29 HM CS-26
    Reference SEQ ID NO: 2 1.00 1.00
    SEQ ID NO: 2 + H1* + G109A + 1.00 1.00
    W284H + E391A
    SEQ ID NO: 2 + H1* + G109A + 1.08 1.11
    N280S + K320A + M323N + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + 1.10 1.13
    N280S + E391A
  • TABLE 7
    Wash Performance in Full Scale Washing Machine Test
    NA HDL Model
    Detergent
    Full scale, IF IF
    0.072 mg enzyme protein/L HM CS-29 HM CS-26
    Reference SEQ ID NO: 2 1.00 1.00
    SEQ ID NO: 2 + H1* + G109A + 1.07 1.02
    W284H + E391A
    SEQ ID NO: 2 + H1* + G109A + N280S + 1.22 1.32
    K320A + M323N + E391A
    SEQ ID NO: 2 + H1* + G7A + G109A + 1.32 1.41
    N280S + E391A

    The invention described and claimed herein is not to be limited in scope by the specific aspects herein disclosed, since these aspects are intended as illustrations of several aspects of the invention. Any equivalent aspects are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. In the case of conflict, the present disclosure including definitions will control.
  • Method of Use
  • The present invention includes a method for cleaning and/or treating a situs inter alia a surface or fabric. In one aspect, such method comprises the steps of optionally washing and/or rinsing said surface or fabric, contacting said surface or fabric with any consumer product disclosed in this specification then optionally washing and/or rinsing said surface or fabric is disclosed.
  • As used herein, washing includes but is not limited to, scrubbing, and mechanical agitation. Drying of such surfaces or fabrics may be accomplished by any one of the common means employed either in domestic or industrial settings. Such means include but are not limited to forced air or still air drying at ambient or elevated temperatures at pressures between 5 and 0.01 atmospheres in the presence or absence of electromagnetic radiation, including sunlight, infrared, ultraviolet and microwave irradiation. In one aspect, said drying may be accomplished at temperatures above ambient by employing an iron wherein, for example, said fabric may be in direct contact with said iron for relatively short or even extended periods of time and wherein pressure may be exerted beyond that otherwise normally present due to gravitational force. In another aspect, said drying may be accomplished at temperatures above ambient by employing a dryer. Apparatus for drying fabric is well known and it is frequently referred to as a clothes dryer. In addition to clothes such appliances are used to dry many other items including towels, sheets, pillowcases, diapers and so forth and such equipment has been accepted as a standard convenience in many nations of the world substantially replacing the use of clothes lines for drying of fabric. Most dryers in use today use heated air which is passed over and or through the fabric as it is tumbled within the dryer. The air may be heated, for example, either electronically, via gas flame, or even with microwave radiation. Such air may be heated from about 15° C. to about 400° C., from about 25° C. to about 200° C., from about 35° C. to about 100° C., or even from about 40° C. to about 85° C. and used in the dryer to dry a surface and/or a fabric. As will be appreciated by one skilled in the art, the cleaning compositions of the present invention are ideally suited for use in laundry applications. Accordingly, the present invention includes a method for laundering a fabric. The method comprises the steps of contacting a fabric to be laundered with a said cleaning laundry solution comprising at least one embodiment of Applicants' cleaning composition, cleaning additive or mixture thereof. The fabric may comprise most any fabric capable of being laundered in normal consumer or institutional use conditions. The solution preferably has a pH of from about 8 to about 10.5. The compositions may be employed at concentrations of from about 500 ppm to about 15,000 ppm in solution. The water temperatures typically range from about 5° C. to about 90° C. The water to fabric ratio is typically from about 1:1 to about 30:1.
  • DETERGENT EXAMPLES Examples 1-6
  • Granular laundry detergent compositions designed for hand washing or top-loading washing machines.
  • 1 2 3 4 5 6
    (wt %) (wt %) (wt %) (wt %) (wt %) (wt %)
    Linear alkylbenzenesulfonate 20 22 20 15 20 20
    C12-14 Dimethylhydroxyethyl 0.7 0.2 1 0.6 0.0 0
    ammonium chloride
    AE3S 0.9 1 0.9 0.0 0.5 0.9
    AE7 0.0 0.0 0.0 1 0.0 3
    Sodium tripolyphosphate 5 0.0 4 9 2 0.0
    Zeolite A 0.0 1 0.0 1 4 1
    1.6R Silicate (SiO2:Na2O at 7 5 2 3 3 5
    ratio 1.6:1)
    Sodium carbonate 25 20 25 17 18 19
    Polyacrylate MW 4500 1 0.6 1 1 1.5 1
    Random graft copolymer1 0.1 0.2 0.0 0.0 0.0 0.0
    Carboxymethyl cellulose 1 0.3 1 1 1 1
    Protease (Savinase ®, 0.1 0.1 0.1 0.1 0.1
    32.89 mg active/g)
    Lipase—Lipex ® 0.03 0.07 0.3 0.1 0.07 0.4
    (18 mg active/g)
    *Amylase of the present 0.63 1.0 2.0 0.44 0.88 0.3
    invention (mg active)
    Fluorescent Brightener 1 0.06 0.0 0.06 0.18 0.06 0.06
    Fluorescent Brightener 2 0.1 0.06 0.1 0.0 0.1 0.1
    DTPA 0.6 0.8 0.6 0.25 0.6 0.6
    MgSO4 1 1 1 0.5 1 1
    Sodium Percarbonate 0.0 5.2 0.1 0.0 0.0 0.0
    Sodium Perborate 4.4 0.0 3.85 2.09 0.78 3.63
    Monohydrate
    NOBS 1.9 0.0 1.66 0.0 0.33 0.75
    TAED 0.58 1.2 0.51 0.0 0.015 0.28
    Sulphonated zinc 0.0030 0.0 0.0012 0.0030 0.0021 0.0
    phthalocyanine
    S-ACMC 0.1 0.0 0.0 0.0 0.06 0.0
    Direct Violet 9 0.0 0.0 0.0003 0.0005 0.0003 0.0
    Acid Blue 29 0.0 0.0 0.0 0.0 0.0 0.0003
    Sulfate/Moisture Balance
    *Amylase of the present invention is shown as mgs of active enzyme per 100 g of detergent.
  • Examples 7-12
  • Granular laundry detergent compositions designed for front-loading automatic washing machines.
  • 7 8 9 10 11 12
    (wt %) (wt %) (wt %) (wt %) (wt %) (wt %)
    Linear alkylbenzenesulfonate 8 7.1 7 6.5 7.5 7.5
    AE3S 0 4.8 0 5.2 4 4
    C12-14 Alkylsulfate 1 0 1 0 0 0
    AE7 2.2 0 3.2 0 0 0
    C10-12 Dimethyl 0.75 0.94 0.98 0.98 0 0
    hydroxyethylammonium
    chloride
    Crystalline layered silicate 4.1 0 4.8 0 0 0
    (δ-Na2Si2O5)
    Zeolite A 5 0 5 0 2 2
    Citric Acid 3 5 3 4 2.5 3
    Sodium Carbonate 15 20 14 20 23 23
    Silicate 2R (SiO2:Na2O at 0.08 0 0.11 0 0 0
    ratio 2:1)
    Soil release agent 0.75 0.72 0.71 0.72 0 0
    Acrylic Acid/Maleic Acid 1.1 3.7 1.0 3.7 2.6 3.8
    Copolymer
    Carboxymethylcellulose 0.15 1.4 0.2 1.4 1 0.5
    Protease—Purafect ® 0.2 0.2 0.3 0.15 0.12 0.13
    (84 mg active/g)
    Lipase—Lipex ® 0.05 0.15 0.1 0 0 0
    (18.00 mg active/g)
    Cellulase—Celluclean ™ 0 0 0 0 0.1 0.1
    (15.6 mg active/g)
    *Amylase of the present 4.0 2.0 1.0 0.7 6.0 3.0
    invention (mg active)
    Amylase4 0.15 0.04 0.03 0.01 0.16
    TAED 3.6 4.0 3.6 4.0 2.2 1.4
    Percarbonate 13 13.2 13 13.2 16 14
    Na salt of Ethylenediamine- 0.2 0.2 0.2 0.2 0.2 0.2
    N,N′-disuccinic acid, (S,S)
    isomer (EDDS)
    Hydroxyethane di 0.2 0.2 0.2 0.2 0.2 0.2
    phosphonate (HEDP)
    MgSO4 0.42 0.42 0.42 0.42 0.4 0.4
    Perfume 0.5 0.6 0.5 0.6 0.6 0.6
    Suds suppressor agglomerate 0.05 0.1 0.05 0.1 0.06 0.05
    Soap 0.45 0.45 0.45 0.45 0 0
    Sulphonated zinc 0.0007 0.0012 0.0007 0 0 0
    phthalocyanine (active)
    S-ACMC 0.01 0.01 0 0.01 0 0
    Direct Violet 9 (active) 0 0 0.0001 0.0001 0 0
    Sulfate/Water & Balance
    Miscellaneous
    *Amylase of the present invention is shown as mgs of active enzyme per 100 g of detergent.
  • Examples 13-18 Heavy Duty Liquid Laundry Detergent Compositions
  • 13 14 15 16 17 18
    (wt %) (wt %) (wt %) (wt %) (wt %) (wt %)
    C12-15 Alkylethoxy(1.8)sulfate 14.7 11.6 16.31 17.29
    C11.8 Alkylbenzene sulfonate 4.3 11.6 8.3 7.73 11.7 7.73
    C16-17 Branched alkyl sulfate 1.7 1.29 3.09 3.3
    C12-14 Alkyl-9-ethoxylate 0.9 1.07 1.31 1.31
    C12 dimethylamine oxide 0.6 0.64 1.03 1.03
    Citric acid 3.5 0.65 3 0.66 2.27 0.67
    C12-18 fatty acid 1.5 2.32 3.6 1.52 0.82 1.52
    Sodium Borate (Borax) 2.5 2.46 1.2 2.53 2.53
    Sodium C12-14 alkyl ethoxy 3 sulfate 2.9 3.9
    C14-15 alkyl 7-ethoxylate 4.2 1.9
    C12-14 Alkyl-7-ethoxylate 1.7 0.5
    Ca chloride dihydrate 0.045
    Ca formate 0.09 0.09 0.09 0.09
    A compound: 1.2 0.66
    bis((C2H5O)(C2H4O)n)(CH3)—N+
    CxH2x—N+—(CH3)—
    bis((C2H5O)(C2H4O)n); n is 20 to 30;
    x is 3 to 8, optionally sulphated or
    sulphonated
    Random graft co-polymer1 1.46 0.5 0.83
    Ethoxylated Polyethylenimine2 1.5 1.29 1.44 1.44
    Diethylene triamine pentaacetic acid 0.34 0.64 0.34 0.34
    Diethylene triamine penta 0.3 0.3
    (methylene phosphonic acid)
    1-hydroxyethyidene-1,1-diphosphonic 0.18
    acid
    Dihydroxybenzene-3,5-disulfonic acid 0.19
    disodium salt hydrate
    Tinopal AMS-GX 0.06 0.29
    Tinopal CBS-X 0.2 0.17 0.29
    Tinopal TAS-X B36 0.091
    Amphiphilic alkoxylated grease 1.28 1 0.4 1.93 1.93
    cleaning polymer3
    CHEC 0.2
    Ethanol 2 1.58 1.6 5.4 1.2 3.57
    Propylene Glycol 3.9 3.59 1.3 4.3 3.8
    Diethylene glycol 1.05 1.54 1.15 1.15
    Polyethylene glycol 0.06 0.04 0.1 0.1
    *Amylase of the present invention 15.0 10.0 5.0 8.0 4.25 11.7
    (mg active)
    Amylase4 0.01 0.1 0.15 0.12 0.05
    Monoethanolamine 3.05 2.41 0.4 1.26 0.31 1.13
    NaOH 2.44 1.8 3.01 3.84 0.24
    Sodium Cumene Sulphonate 1 0.95
    Sodium Formate 0.11 0.09 0.2 0.12
    Water, Aesthetics (Dyes, perfumes) balance
    and Minors (Enzymes including
    lipase, protease, additional amylase
    each at 0.2% active protein, solvents,
    structurants)
    1Random graft copolymer is a polyvinyl acetate grafted polyethylene oxide copolymer having a polyethylene oxide backbone and multiple polyvinyl acetate side chains. The molecular weight of the polyethylene oxide backbone is about 6000 and the weight ratio of the polyethylene oxide to polyvinyl acetate is about 40 to 60 and no more than 1 grafting point per 50 ethylene oxide units.
    2Polyethylenimine (MW = 600) with 20 ethoxylate groups per —NH.
    3Amphiphilic alkoxylated grease cleaning polymer is a polyethylenimine (MW = 600) with 24 ethoxylate groups per —NH and 16 propoxylate groups per —NH
    *Amylase of the present invention is shown as mgs of active enzyme per 100 g of detergent.
  • Examples 19-21 Heavy Duty Liquid Laundry Detergent Composition
  • 19 20 21
    (wt %) (wt %) (wt %)
    Sodium Alkylbenzene sulfonate 21.0 10.2 3.53
    C124-18 Alkyl 1.5-9-ethoxylate 18.0 6.32 0.88
    Branched Alkyl Sulfate 2.44
    Sodium Alkyl ethoxy 1-3 sulfate 1.17 14.81
    Citric Acid 3.14 2.05
    C12 Dimethylamine oxide 0.56
    C12-18 Fatty acid 15.0 2.59 1.48
    Protease (Purafect Prime ®, 40.6 mg active/g) 1.5 0.52 1.64
    Mannanase (Mannaway ®, 11 mg active/g) 0.1 0.06
    Xyloglucanase (Whitezyme ®, 20 mg active/g) 0.2 0.06
    Lipase (lLipex) 0.1 0.2 0.05
    *Amylase of the present invention (mg active) 5.9 2.3 12.8
    bis((C2H5O)(C2H4O)n)(CH3)—N+—CxH2x—N+—(CH3)— 2.0 0.63
    bis((C2H5O)(C2H4O)n), wherein n = from 20 to 30,
    and x = from 3 to 8, optionally sulphated or
    sulphonated
    Random graft co-polymer1 1.07
    Ethoxylated Polyethylenimine2 0.8 1.51
    Amphiphilic alkoxylated polymer3
    Amylase4
    Phosphonated chelant 0.8 0.41 0.53
    Hydrotrope 0.93
    Brightener 0.2 0.09 0.19
    Ethoxylated thiophene Hueing Dye 0.004
    Minors: dyes, perfume, perfume micro capsules, Balance Balance Balance
    enzymes, enzyme stabilizers, solvents,
    structurants, pH modifying agents
    *Amylase of the present invention is shown as mgs of active enzyme per 100 g of detergent.
    **Based on total cleaning and/or treatment composition weight, a total of no more than 7% water.
  • Raw Materials and Notes For Composition Examples 1-21
  • Linear alkylbenzenesulfonate having an average aliphatic carbon chain length C11-C18
    C12-18 Dimethylhydroxyethyl ammonium chloride
    AE3S is C12-15 alkyl ethoxy (3) sulfate
    AE7 is C12-15 alcohol ethoxylate, with an average degree of ethoxylation of 7
    AE9 is C12-16 alcohol ethoxylate, with an average degree of ethoxylation of 9
    HSAS is a mid-branched primary alkyl sulfate with carbon chain length of about 16-17 as disclosed in U.S. Pat. No. 6,020,303 and U.S. Pat. No. 6,060,443
    Polyacrylate MW 4500 is supplied by BASF
    Carboxymethyl cellulose is Finnfix® V supplied by CP Kelco, Arnhem, Netherlands
    CHEC is a cationically modified hydroxyethyl cellulose polymer.
    Phosphonate chelants are, for example, diethylenetetraamine pentaacetic acid (DTPA)
    Hydroxyethane di phosphonate (HEDP)
    Savinase®, Natalase®, Stainzyme®, Lipex®, Celluclean™, Mannaway® and Whitezyme® are all products of Novozymes, Bagsvaerd, Denmark.
    Purafect®, Purafect Prime® are products of Genencor International, Palo Alto, Calif., USA Fluorescent Brightener 1 is Tinopal® AMS, Fluorescent Brightener 2 is Tinopal® CBS-X, Direct Violet 9 is Pergasol® Violet BN-Z NOBS is sodium nonanoyloxybenzenesulfonate
    TAED is tetraacetylethylenediamine
    S-ACMC is carboxymethylcellulose conjugated with C.I. Reactive Blue 19 product name AZO-CM-CELLULOSE
    Soil release agent is Repel-o-tex® PF
    Acrylic Acid/Maleic Acid Copolymer is molecular weight 70,000 and acrylate:maleate ratio 70:30
    EDDS is a sodium salt of ethylenediamine-N,N′-disuccinic acid, (S,S) isomer Suds suppressor agglomerate is supplied by Dow Corning, Midland, Mich., USA
    HSAS is mid-branched alkyl sulfate
    Liquitint® Violet CT is supplied by Milliken, Spartanburg, S.C., USA
  • Examples 22-26 Unit Dose Laundry Detergent Compositions
  • Such unit dose formulations can comprise one or multiple compartments.
  • 22 23 24 25 26
    (wt %) (wt %) (wt %) (wt %) (wt %)
    Alkylbenzene sulfonic acid 14.5 14.5 14.5 14.5 14.5
    C12-18 alkyl ethoxy 3 sulfate 7.5 7.5 7.5 7.5 7.5
    C12-18 alkyl 7-ethoxylate 13.0 13.0 13.0 13.0 13.0
    Citric Acid 0.6 0.6 0.6 0.6 0.6
    Fatty Acid 14.8 14.8 14.8 14.8 14.8
    *Amylase of this invention (mg active) 6 12 8 2 10
    Ethoxylated Polyethylenimine1 4.0 4.0 4.0 4.0 4.0
    Protease (Purafect Prime ®, 40.6 mg 1.4 2.0 0.9 1.2 0
    active/g)
    Cellulase (Celluclean, active protein) 0.1 0.2 0.1
    Amylase4 (active protein) a) to k) herein 0.1 0.05 0.1 0.2 0.1
    Hydroxyethane diphosphonic acid 1.2 1.2 1.2 1.2 1.2
    Brightener 0.3 0.3 0.3 0.3 0.3
    P-diol 15.8 13.8 13.8 13.8 13.8
    Glycerol 6.1 6.1 6.1 6.1 6.1
    MEA 8.0 8.0 8.0 8.0 8.0
    TIPA 2.0
    TEA 2.0
    Cumene sulphonate 2.0
    cyclohexyl dimethanol 2.0
    Water 10 10 10 10 10
    Structurant 0.14 0.14 0.14 0.14 0.14
    Perfume 1.9 1.9 1.9 1.9 1.9
    Buffers (monoethanolamine) To pH 8.0
    Solvents (1,2 propanediol, ethanol) To 100%
    *Amylase of the present invention is shown as mgs of active enzyme per 100 g of detergent.
    1Polyethylenimine (MW = 600) with 20 ethoxylate groups per —NH.
  • Example 27 Multiple Compartment Unit Dose Composition
  • Multiple compartment unit dose laundry detergent formulations of the present invention are provided below. In these examples, the unit dose has three compartments, but similar compositions can be made with two, four or five compartments. The film used to encapsulate the compartments is polyvinyl alcohol.
  • 27
    Base composition 1 (wt %)
    Glycerol (min 99) 5.3
    1,2-propanediol 10.0
    Citric Acid 0.5
    Monoethanolamine 10.0
    Caustic soda
    Dequest 2010 1.1
    Potassium sulfite 0.2
    *Amylase of this invention (mg active) 8.0
    Nonionic Marlipal C24EO7 20.1
    HLAS 24.6
    Optical brightener FWA49 0.2
    C12-15 Fatty acid 16.4
    Polymer Lutensit Z96 2.9
    Polyethyleneimine ethoxylate PEI600 E20 1.1
    MgCl2 0.2
    Solvents (1,2 propanediol, ethanol) To 100%
  • Multi-Compartment Formulations
  • Composition 1 2
    Compartment A B C A B C
    Volume of each 40 ml 5 ml 5 ml 40 ml 5 ml 5 ml
    compartment
    Active material in Wt. %
    Perfume 1.6 1.6 1.6 1.6 1.6 1.6
    Dyes <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
    TiO2 0.1 0.1
    Sodium Sulfite 0.4 0.4 0.4 0.3 0.3 0.3
    Acusol 305 1.2 2
    Hydrogenated castor oil 0.14 0.14 0.14 0.14 0.14 0.14
    Base Composition 1 Add to Add to Add to Add to Add to Add to
    100% 100% 100% 100% 100% 100%
    *Amylase of the present invention is shown as mgs of active enzyme per 100 g of detergent.
  • The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”.
  • Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
  • While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims (14)

What is claimed is:
1. A cleaning composition comprising:
a) a variant of a parent alpha-amylase, wherein the variant
(i) has at least about 80%, but less than 100% sequence identity with the amino acid sequence set forth in any of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8,
(ii) comprises a modification at one or more positions corresponding to 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence set forth in SEQ ID NO: 1, and
(iii) has alpha-amylase activity; and
b) from about 0.01 to about 99.9 wt % of a cleaning adjunct.
2. A cleaning composition according to claim 1 wherein said variant of a parent alpha-amylase comprises a modification at one or more positions corresponding to positions 140, 181, 182, 183, 184, 195, 206, 243, 260, 304, and 476 of the amino acid sequence as set forth in SEQ ID NO: 1.
3. A cleaning composition according to claim 1 wherein said variant of a parent alpha-amylase has at least about 80% but less than 100% sequence identity with the amino acid sequence set forth in SEQ ID NO: 1.
4. A composition according to claim 1 wherein said variant comprises a modification in at least two positions corresponding to positions 109, 1, 7, 280, 284, 320, 323 and 391 of the amino acid sequence as set forth in SEQ ID NO: 1.
5. A composition according to claim 1, wherein said variant comprises a modification in at least two positions selected from the group consisting of 1, 109 and 391.
6. A composition according to claim 1 wherein in the variant said modification(s) is/are selected from the group consisting of: X1*, X1A, X7A, X7K, X7E, X7N. X7Q, X7L, X7D, X109A, X109S, X140Y, X181*, X182*, X183*, X184*, X195F, X206Y, X243F, X260G, X280S, X284H, X284R, X284F, X304R, X320A, X320M, X320T, X320V, X320S, X323N, X323R, X323S, X323K, X391A, X391V, and X476K.
7. A composition according to claim 1 wherein said variant has an improved wash performance.
8. A composition according to claim 1 wherein said variant has at least about 90%, but less than 100%, sequence identity to the amino acid sequence of the parent alpha-amylase.
9. A composition according to claim 1 wherein in the variant the number of modifications is 1 to 30.
10. A composition according to claim 1 wherein the variant comprises modifications in the positions selected from the group of positions consisting of: X1+X7; X1+X109; X1+X280; X1+X284; X1+X320; X1+X323; X1+X391; X109+X280; X109+X284; X109+X320; X109+X323; X109+X391; X7+X109; X7+X280; X7+X284; X7+X320; X7+X323; X7+X391; X280+X284; X280+X320; X280+X323; X280+X391; X284+X320; X284+X323; X284+X391; X320+X323; X320+X391; and X323+X391, wherein numbering is according to SEQ ID NO: 1.
11. A composition according to claim 1 wherein the variant comprises modifications in the positions corresponding to the positions of the amino acid sequence set forth in SEQ ID NO: 2, selected from the group consisting of:
H1*+G109A+N280S+E391A;
H1*+G7K+G109A+N280S+E391A;
H1*+G7E+G109A+N280S+E391A;
H1*+G7N+G109A+N280S+E391A;
H1*+G7Q+G109A+N280S+E391A;
H1*+G7L+G109A+N280S+E391A;
H1*+G7D+G109A+N280S+E391A;
H1*+G109A+N280S+K320A+E391A;
H1*+G109A+N280S+K320M+E391A;
H1*+G109A+N280S+K320T+E391A;
H1*+G109A+N280S+K320V+E391A;
H1*+G109A+N280S+M323R+E391A;
H1*+G109A+N280S+K320S+E391A;
H1*+G109A+N280S+E391V;
H1*+G109A+W284R+E391A;
H1*+G109A+W284F+E391A;
H1*+G109A+N280S+K320A+M323S+E391A;
H1*+G109A+N280S+W284F+E391A;
H1*+G109A+N280S+M323N+E391A;
H1*+G109A+N280S+M323K+E391A;
H1*+G109S+N280S+E391A;
H1*+G109A+W284H+E391A;
H1*+G109A+N280S+K320A+M323N+E391A;
H1*+G7A+G109A+N280S+E391A;
H1*+G7A+G109A+N280S+W284H+K320A+M323N+E391A;
G7A+W284H+K320A+M323N;
G7A+K320A+M323N;
K320A;
G7A+K320A;
H1*+G7A+G109A+N280S+E391A;
H1*+G109A+N280S+W284H+E391A;
H1*+G109A+N280S+M323S+E391A;
H1*+G7A+G109A+N280S+K320A+E391A;
H1*+G7A+G109A+N280S+M323S+E391A;
H1*+G7A+G109A+N280S+M323N+E391A;
H1*+G7A+G109A+N280S+W284F+E391A;
H1*+G7A+G109A+N280S+W284R+E391A;
H1*+G7A+G109A+N280S+K320A+M323S+E391A;
H1*+G7A+G109A+W284R+E391A; and
H1*+G7A+G109A+N280S+K320A+M323N+E391A.
12. A composition according to claim 1 wherein the parent alpha-amylase for the variant is selected from the group consisting of alpha-amylases having at least about 90%, identity to any of the amino acid sequences set forth in SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, and 8.
13. A composition according to claim 12 wherein the parent alpha-amylase for the variant is selected from the group consisting of alpha-amylases having at least about 90% identity to any of the amino acid sequences set forth in SEQ ID NOs: 1 or 2.
14. A composition according to claim 1, wherein the composition is a liquid laundry detergent composition or unit dose detergent composition.
US15/883,113 2017-02-01 2018-01-30 Cleaning compositions comprising amylase variants Pending US20180216039A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IN201711003745 2017-02-01
IN201711003745 2017-02-01

Publications (1)

Publication Number Publication Date
US20180216039A1 true US20180216039A1 (en) 2018-08-02

Family

ID=61094358

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/883,113 Pending US20180216039A1 (en) 2017-02-01 2018-01-30 Cleaning compositions comprising amylase variants

Country Status (3)

Country Link
US (1) US20180216039A1 (en)
EP (1) EP3357994A1 (en)
WO (1) WO2018144399A1 (en)

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
DK122686D0 (en) 1986-03-17 1986-03-17 Novo Industri As Production of proteins
EP0394352B1 (en) 1988-01-07 1992-03-11 Novo Nordisk A/S Enzymatic detergent
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
DK0493398T3 (en) 1989-08-25 2000-05-22 Henkel Research Corp Alkaline proteolytic enzyme and process for production thereof
IL99552D0 (en) 1990-09-28 1992-08-18 Ixsys Inc Compositions containing procaryotic cells,a kit for the preparation of vectors useful for the coexpression of two or more dna sequences and methods for the use thereof
DK72992D0 (en) 1992-06-01 1992-06-01 Novo Nordisk As enzyme
DE69334295D1 (en) 1992-07-23 2009-11-12 Novo Nordisk As MUTANT -g (a) amylase, WASH AND DISHES DETERGENT
PT867504E (en) 1993-02-11 2003-08-29 Genencor Int Alpha-amylase stable to oxidation
CN1133062A (en) 1993-10-13 1996-10-09 诺沃挪第克公司 H2O2-stable peroxidase variants
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
DE4343591A1 (en) 1993-12-21 1995-06-22 Evotec Biosystems Gmbh A method for evolutionary design and synthesis of functional polymers on the basis of mold elements and shape codes
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
CA2191718A1 (en) 1994-06-03 1995-12-14 Randy M. Berka Phosphonyldipeptides useful in the treatment of cardiovascular diseases
AT294871T (en) 1994-06-30 2005-05-15 Novozymes Biotech Inc Non-toxic, non-toxigenic, non-pathogenic fusarium expression system to be used and it promoters and terminators
AT432342T (en) 1995-02-03 2009-06-15 Novozymes As A method for the design of alpha-amylase mutant having predetermined characteristics
AR000862A1 (en) 1995-02-03 1997-08-06 Novozymes As Variants of an O-amylase, a method for producing the same, a DNA and an expression vector, a cell transformed by dichaestructura DNA and vector, a detergent additive, detergent composition, a composition for laundry and a composition for the removal of
US6093562A (en) 1996-02-05 2000-07-25 Novo Nordisk A/S Amylase variants
JP3025627B2 (en) 1995-06-14 2000-03-27 花王株式会社 Alkaline liquefying α- amylase gene
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
PH11997056158B1 (en) 1996-04-16 2001-10-15 Procter & Gamble Mid-chain branched primary alkyl sulphates as surfactants
EG21623A (en) 1996-04-16 2001-12-31 Procter & Gamble Mid-chain branced surfactants
WO1997041213A1 (en) * 1996-04-30 1997-11-06 Novo Nordisk A/S α-AMYLASE MUTANTS
US5763385A (en) 1996-05-14 1998-06-09 Genencor International, Inc. Modified α-amylases having altered calcium binding properties
DE69717133T2 (en) 1996-09-24 2003-07-10 Procter & Gamble containing liquid detergent, the proteolytic enzymes, peptide aldehyde and calcium ions
CN1232384A (en) 1996-10-08 1999-10-20 诺沃挪第克公司 Diaminobenzoic acid derivs. as dye precursors
EP2011864B1 (en) 1999-03-31 2014-12-31 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
AR015977A1 (en) 1997-10-23 2001-05-30 Genencor Int Multiply-substituted protease variants with altered net charge for use in detergents
US6403355B1 (en) 1998-12-21 2002-06-11 Kao Corporation Amylases
AU4025700A (en) 1999-03-22 2000-10-09 Novo Nordisk Biotech, Inc. Promoters for expressing genes in a fungal cell
US6939702B1 (en) 1999-03-31 2005-09-06 Novozymes A/S Lipase variant
WO2002010356A2 (en) 2000-07-28 2002-02-07 Henkel Kommanditgesellschaft Auf Aktien Novel amylolytic enzyme extracted from bacillus sp. a 7-7 (dsm 12368) and washing and cleaning agents containing this novel amylolytic enzyme
AU2302002A (en) 2000-11-27 2002-06-03 Novozymes As Automated mechanical stress assay for screening cleaning ingredients
US7041488B2 (en) 2001-06-06 2006-05-09 Novozymes A/S Endo-beta-1,4-glucanase from bacillus
US7314712B2 (en) 2001-07-27 2008-01-01 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Systems for in vivo site-directed mutagenesis using oligonucleotides
DE10162728A1 (en) 2001-12-20 2003-07-10 Henkel Kgaa New alkaline protease from Bacillus gibsonii (DSM 14393) and detergents and cleaning compositions comprising these novel alkaline protease
AU2004293826B2 (en) 2003-11-19 2009-09-17 Danisco Us Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
US7208459B2 (en) 2004-06-29 2007-04-24 The Procter & Gamble Company Laundry detergent compositions with efficient hueing dye
AU2005259686B2 (en) 2004-07-05 2010-12-23 Novozymes A/S Alpha-amylase variants with altered properties
EP1794276B1 (en) 2004-09-23 2009-04-29 Unilever PLC Laundry treatment compositions
DE602005019640D1 (en) 2004-09-23 2010-04-08 Unilever Nv Compositions for treating laundry
US7686892B2 (en) 2004-11-19 2010-03-30 The Procter & Gamble Company Whiteness perception compositions
KR20080066921A (en) 2005-10-12 2008-07-17 더 프록터 앤드 갬블 캄파니 Use and production of storage-stable neutral metalloprotease
US7642282B2 (en) 2007-01-19 2010-01-05 Milliken & Company Whitening agents for cellulosic substrates
DE102007038031A1 (en) 2007-08-10 2009-06-04 Henkel Ag & Co. Kgaa Compositions comprising proteases
US20090217464A1 (en) 2008-02-29 2009-09-03 Philip Frank Souter Detergent composition comprising lipase
RU2510662C2 (en) 2008-03-26 2014-04-10 Новозимс А/С Stabilised liquid enzyme compositions
JP5738756B2 (en) 2008-06-06 2015-06-24 ザ プロクター アンド ギャンブルカンパニー Detergent compositions comprising a variant xyloglucanase is a family 44
CN105483099A (en) 2008-06-06 2016-04-13 丹尼斯科美国公司 Geobacillus stearothermophilus [alpha]-amylase (AMYS) variants with improved properties
JP5560266B2 (en) 2008-06-06 2014-07-23 ダニスコ・ユーエス・インク Bashir soot butyrate squirrel (B. subtilis) from alpha - Production of glucose amylase from starch using
CN102803459B (en) 2009-06-12 2016-04-06 荷兰联合利华有限公司 Cationic dye polymer
CN102482622A (en) 2009-06-15 2012-05-30 荷兰联合利华有限公司 Anionic dye polymers
WO2011003623A2 (en) 2009-07-09 2011-01-13 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and marker for the individual prognosis and/or the individual detection of neuropathy
MX311859B (en) 2009-10-23 2013-07-31 Unilever Nv Dye polymers.
WO2011076897A1 (en) * 2009-12-22 2011-06-30 Novozymes A/S Use of amylase variants at low temperature
EP2534206B1 (en) 2010-02-09 2014-04-02 Unilever PLC Dye polymers
EP2357220A1 (en) * 2010-02-10 2011-08-17 The Procter and Gamble Company Cleaning composition comprising amylase variants with high stability in the presence of a chelating agent
EP3095861B1 (en) 2010-05-06 2019-06-26 The Procter and Gamble Company Consumer products with protease variants
US9156124B2 (en) 2010-07-08 2015-10-13 Nexplanar Corporation Soft polishing pad for polishing a semiconductor substrate
EP2638142B1 (en) 2010-11-12 2017-05-10 The Procter and Gamble Company Thiophene azo dyes and laundry care compositions containing the same
AU2012277729B2 (en) * 2011-06-30 2016-12-08 Novozymes A/S Method for screening alpha-amylases
EP2540824A1 (en) * 2011-06-30 2013-01-02 The Procter and Gamble Company Cleaning compositions comprising amylase variants reference to a sequence listing
EP2726607B1 (en) * 2011-06-30 2018-08-08 Novozymes A/S Alpha-amylase variants
WO2014099523A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Alpha-amylase variants
WO2014164777A1 (en) 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants
US20160083703A1 (en) * 2013-05-17 2016-03-24 Novozymes A/S Polypeptides having alpha amylase activity
US20160083704A1 (en) * 2013-05-17 2016-03-24 Novozymes A/S Polypeptides having alpha amylase activity
WO2015091959A2 (en) * 2013-12-20 2015-06-25 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
CN106459944A (en) * 2014-06-12 2017-02-22 诺维信公司 Alpha-amylase variants
WO2015189371A1 (en) * 2014-06-12 2015-12-17 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
US20170121696A1 (en) * 2014-06-12 2017-05-04 Novozymes A/S Oxidation stable alpha-amylase variants
WO2016079305A1 (en) * 2014-11-20 2016-05-26 Novozymes A/S Alicyclobacillus variants and polynucleotides encoding same
DE102014225472A1 (en) 2014-12-10 2016-06-16 Henkel Ag & Co. Kgaa Hand dishwashing detergents with improved activity against strength
AR104783A1 (en) 2015-05-08 2017-08-16 Novozymes As VARIATIONS OF a-amylase and polynucleotides encoding
EP3241890B1 (en) 2016-05-03 2019-06-26 The Procter and Gamble Company Automatic dishwashing detergent composition

Also Published As

Publication number Publication date
EP3357994A1 (en) 2018-08-08
WO2018144399A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
CN102057030B (en) A detergent composition comprising the family 44 xyloglucanase variants
US8785171B2 (en) Fabric and home care products comprising cold water proteases
EP2705146B1 (en) Compositions and methods comprising serine protease variants
CN102869759B (en) Variants and compositions comprising variants with high stability in presence of a chelating agent
ES2322426T3 (en) Polypeptides with alpha-amylase and nucleic acids encoding the same activity.
EP3140399B1 (en) Subtilase variants and polynucleotides encoding same
DK2011864T3 (en) Polypeptides with alkaline alpha-amylase activity and nucleic acids encoding them
US6361989B1 (en) α-amylase and α-amylase variants
CA2787825C (en) Cleaning composition comprising amylase variants with high stability in the presence of a chelating agent
RU2612215C2 (en) Compositions containing lipases, and methods for surface treatment
AU2012277721B2 (en) Alpha-amylase variants
US6309871B1 (en) Polypeptides having alkaline α-amylase activity
WO2001064852A1 (en) Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
JP6339499B2 (en) The screening method of α- amylase
US8309338B2 (en) Polypeptides having endoglucanase activity and polynucleotides encoding same
JP5933710B2 (en) Cleaning composition comprising a-amylase variant to see sequence listing
ES2643216T3 (en) Polypeptides with degradation of xanthan and polynucleotides encoding the same
WO2015024739A2 (en) Detergent composition comprising protease variants
WO2012151480A2 (en) Compositions and methods comprising serine protease variants
EP3083954B1 (en) Polypeptides having protease activity and polynucleotides encoding same
WO2016066757A2 (en) Protease variants and polynucleotides encoding same
WO2016066756A2 (en) Protease variants and polynucleotides encoding same
US20170121695A1 (en) Alpha-amylase variants and polynucleotides encoding same
US20120220513A1 (en) Polypeptides Having Detergency Enhancing Effect
EP3368647A2 (en) Detergent composition comprising protease and amylase variants

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE PROCTER AND GAMBLE COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDERSEN, CARSTEN;GHADIYARAM, CHAKSHUSMATHI;IYER, PADMA VENKATACHALAM;AND OTHERS;SIGNING DATES FROM 20180213 TO 20180227;REEL/FRAME:045058/0074

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED