US20180099950A1 - Apoptosis signal-regulating kinase inhibitor - Google Patents

Apoptosis signal-regulating kinase inhibitor Download PDF

Info

Publication number
US20180099950A1
US20180099950A1 US15/840,429 US201715840429A US2018099950A1 US 20180099950 A1 US20180099950 A1 US 20180099950A1 US 201715840429 A US201715840429 A US 201715840429A US 2018099950 A1 US2018099950 A1 US 2018099950A1
Authority
US
United States
Prior art keywords
compound
formula
pharmaceutically acceptable
ask1
kinase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/840,429
Inventor
Gregory Notte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Original Assignee
Gilead Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilead Sciences Inc filed Critical Gilead Sciences Inc
Priority to US15/840,429 priority Critical patent/US20180099950A1/en
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOTTE, GREGORY
Publication of US20180099950A1 publication Critical patent/US20180099950A1/en
Priority to US16/246,199 priority patent/US10508100B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4436Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a heterocyclic ring having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/56Amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to a novel compound for use in the treatment of ASK1-mediated diseases.
  • the invention also relates to intermediates for its preparation and to pharmaceutical compositions containing said novel compound.
  • Apoptosis signal-regulating kinase 1 is a member of the mitogen-activated protein kinase kinase kinase (“MAP3K”) family that activates the c-Jun N-terminal protein kinase (“JNK”) and p38 MAP kinase (Ichijo, H., Nishida, E., Irie, K., Dijke, P. T., Saitoh, M.,
  • ASK1 is activated by a variety of stimuli including oxidative stress, reactive oxygen species (ROS), LPS, TNF- ⁇ , FasL, ER stress, and increased intracellular calcium concentrations (Hattori, K., Naguro, I., Runchel, C., and Ichijo, H. (2009) Cell Comm. Signal. 7:1-10; Takeda, K., Noguchi, T., Naguro, I., and Ichijo, H. (2007) Annu. Rev. Pharmacol. Toxicol.
  • ROS reactive oxygen species
  • ASK1 activation and signaling have been reported to play an important role in a broad range of diseases including neurodegenerative, cardiovascular, inflammatory, autoimmune, and metabolic disorders.
  • ASK1 has been implicated in mediating organ damage following ischemia and reperfusion of the heart, brain, and kidney (Watanabe et al. (2005) BBRC 333, 562-567; Zhang et al., (2003) Life Sci 74-37-43; Terada et al. (2007) BBRC 364: 1043-49).
  • ROS are reported be associated with increases of inflammatory cytokine production, fibrosis, apoptosis, and necrosis in the kidney.
  • oxidative stress facilitates the formation of advanced glycation end-products (AGEs) that cause further renal injury and production of ROS.
  • AGEs advanced glycation end-products
  • ROS ROS
  • Tubulointerstitial fibrosis in the kidney is a strong predictor of progression to renal failure in patients with chronic kidney diseases (Schainuck L I, et al. Structural-functional correlations in renal disease. Part II: The correlations. Hum Pathol 1970; 1: 631-641.).
  • Unilateral ureteral obstruction (UUO) in rats is a widely used model of tubulointerstitial fibrosis.
  • UUO causes tubulointerstital inflammation, increased expression of transforming growth factor beta (TGF- ⁇ ), and accumulation of myofibroblasts, which secrete matrix proteins such as collagen and fibronectin.
  • TGF- ⁇ transforming growth factor beta
  • the UUO model can be used to test for a drug's potential to treat chronic kidney disease by inhibiting renal fibrosis (Chevalier et al., Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy, Kidney International (2009) 75, 1145-1152.
  • ASK1 inhibitors have the potential to remedy or improve the lives of patients in need of treatment for diseases or conditions such as neurodegenerative, cardiovascular, inflammatory, autoimmune, and metabolic disorders.
  • ASK1 inhibitors have the potential to treat cardio-renal diseases, including kidney disease, diabetic kidney disease, chronic kidney disease, fibrotic diseases (including lung and kidney fibrosis), respiratory diseases (including chronic obstructive pulmonary disease (COPD) and acute lung injury), acute and chronic liver diseases.
  • COPD chronic obstructive pulmonary disease
  • U.S. Publication No. 2007/0276050 describes methods for identifying ASK1 inhibitors useful for preventing and/or treating cardiovascular disease and methods for preventing and/or treating cardiovascular disease in an animal.
  • WO2009027283 discloses triazolopyridine compounds, methods for preparation thereof and methods for treating autoimmune disorders, inflammatory diseases, cardiovascular diseases and neurodegenerative diseases.
  • U.S. Patent Publication No. 2001/00095410A1 discloses compounds useful as ASK-1 inhibitors.
  • U.S. Patent Publication 2001/00095410A1 relates to compounds of Formula (I):
  • R 1 is alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, all of which are optionally substituted with 1, 2, or 3 substituents selected from halo, oxo, alkyl, cycloalkyl, heterocyclyl, aryl, aryloxy, —NO 2 , R 6 , —C(O)—R 6 , —OC(O)—R 6 —C(O)—O—R 6 , —C(O)—N(R 6 )(R 7 ), —OC(O)—N(R 6 )(R 7 ), —S—R 6 , —S( ⁇ O)—R 6 , —S( ⁇ O) 2 R 6 , —S( ⁇ O) 2 —N(R 6 )(R 7 ), —S( ⁇ O) 2 —O—R 6 , —N(R 6 )(R 7 ), —
  • alkyl, cycloalkyl, heterocyclyl, phenyl, and phenoxy are optionally substituted by 1, 2, or 3 substituents selected from alkyl, cycloalkyl, alkoxy, hydroxyl, and halo;
  • R 6 and R 7 are independently selected from the group consisting of hydrogen, C 1 -C 15 alkyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, all of which are optionally substituted with 1-3 substituents selected from halo, alkyl, mono- or dialkylamino, alkyl or aryl or heteroaryl amide, —CN, lower alkoxy, —CF 3 , aryl, and heteroaryl; or R 6 and R 7 when taken together with the nitrogen to which they are attached form a heterocycle;
  • R 2 is hydrogen, halo, cyano, alkoxy, or alkyl optionally substituted by halo;
  • R 3 is aryl, heteroaryl, or heterocyclyl, all of which are optionally substituted with one or more substituents selected from alkyl, alkoxy, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, oxo, —NO 2 , haloalkyl, haloalkoxy, —CN, —O—R 6 , —O—C(O)—R 6 , —O—C(O)—N(R 6 )(R 7 ), —S—R 6 , —N (R 6 )(R 7 ), —S( ⁇ O)—R 6 , —S( ⁇ O) 2 R 6 , —S( ⁇ O) 2 —N(R 6 )(R 7 ), —S( ⁇ O) 2 —O—R 6 , —N(
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 and X 8 are independently C(R 4 ) or N, in which each R 4 is independently hydrogen, alkyl, alkoxy, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, —NO 2 , haloalkyl, haloalkoxy, —CN, —O—R 6 , —S—R 6 , —N(R 6 )(R 7 ), —S( ⁇ O)—R 6 , —S( ⁇ O) 2 R 6 , —S( ⁇ O) 2 —N(R 6 )(R 7 ), —S( ⁇ O) 2 —O—R 6 , —N(R 6 )—C(O)—R 7 , —N(R 6 )—C(O)—O—R 7 , —N(R 6 )—C(O)
  • X 5 and X 6 or X 6 and X 7 are joined to provide optionally substituted fused aryl or optionally substituted fused heteroaryl;
  • At least one of X 2 , X 3 , and X 4 is C(R 4 ); at least two of X 5 , X 6 , X 7 , and X 8 are C(R 4 ); and at least one of X 2 , X 3 , X 4 , X 5 , X 6 , X 7 and X 8 is N.
  • the present invention relates to a compound of the formula:
  • the invention relates to the use of a compound of formula (I) in the treatment of a disease in a patient in need of treatment with an ASK1 inhibitor.
  • the invention in another embodiment, relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers.
  • the invention is a method of treating diabetic nephropathy, or complications of diabetes, comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, to a patient in need thereof.
  • the invention in another embodiment, relates to a method of treating kidney disease, or diabetic kidney disease comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, to a patient in need thereof.
  • the invention in another embodiment, relates to a method of treating kidney fibrosis, lung fibrosis, or idiopathic pulmonary fibrosis (IPF) comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, to a patient in need thereof.
  • the invention relates to a method of treating diabetic kidney disease, diabetic nephropathy, kidney fibrosis, liver fibrosis, or lung fibrosis comprising administering a therapeutically effective amount of a compound or salt of forumia (I), to a patient in need thereof.
  • a method of treating diabetic kidney disease, diabetic nephropathy, kidney fibrosis, liver fibrosis, or lung fibrosis comprising administering a therapeutically effective amount of a compound or salt of forumia (I), to a patient in need thereof.
  • the invention relates to intermediates useful for the synthesis of the compound of formula (I).
  • the invention relates to the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the treatment of chronic kidney disease.
  • the invention relates to the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the treatment of diabetic kidney disease.
  • the invention relates to the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of chronic kidney disease.
  • the invention relates to the compound of formula (I) for use in therapy.
  • FIG. 1 is a bar graph showing the levels of Collagen IV in the kidney cortex of rats subjected to seven days of unilateral ureteral obstruction and treated with either vehicle, or compound of formula (I) at 1, 3, 10, or 30 mg/kg b.i.d. per day.
  • FIG. 2 shows representative images of kidney cortex sections stained with alpha-smooth muscle actin (a marker of activated myofibroblasts) from rats subjected to seven days of unilateral ureteral obstruction and treated with either vehicle, or compound of formula (I) at 1, 3, 10, or 30 mg/kg b.i.d. per day.
  • alpha-smooth muscle actin a marker of activated myofibroblasts
  • chronic kidney disease refers to progressive loss of kidney function over time typically months or even years.
  • Chronic kidney disease is diagnosed by a competent care giver using appropriate information, tests or markers known to one of skill in the art.
  • Chronic kidney disease includes by implication kidney disease.
  • kidney disease refers to kidney disease caused by diabetes, exacerbated by diabetes, or co-presenting with diabetes. It is a form of chronic kidney disease occurring in approximately 30% of patients with diabetes. It is defined as diabetes with the presence of albuminuria and/or impaired renal function (i.e. decreased glomerular filtration rate (See. de B, I, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 2011 Jun 22; 305(24):2532-2539).
  • pharmaceutically acceptable salt refers to salts of pharmaceutical compounds e.g. compound of formula (I) that retain the biological effectiveness and properties of the underlying compound, and which are not biologically or otherwise undesirable.
  • acid addition salts and base addition salts are acid addition salts and base addition salts.
  • Pharmaceutically acceptable acid addition salts may be prepared from inorganic and organic acids.
  • Acids and bases useful for reaction with an underlying compound to form pharmaceutically acceptable salts are known to one of skill in the art.
  • methods of preparing pharmaceutically acceptable salts from an underlying compound are known to one of skill in the art and are disclosed in for example, Berge, at al. Journal of Pharmaceutical Science, January 1977 vol. 66, No.1, and other sources.
  • Salts derived from inorganic acids include but are not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • Salts derived from organic acids include but are not limited to maleic acid, fumaric acid, tartaric acid, p-toluene-sulfonic acid, and the like. Bases useful for forming base addition salts are known to one of skill in the art.
  • An example of a pharmaceutically acceptable salt of the compound of formula (I) is the hydrochloride salt of the compound of formula (I).
  • “pharmaceutically acceptable carrier” includes excipients or agents such as solvents, diluents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like that are not deleterious to the compound of the invention or use thereof.
  • excipients or agents such as solvents, diluents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like that are not deleterious to the compound of the invention or use thereof.
  • the use of such carriers and agents to prepare compositions of pharmaceutically active substances is well known in the art (see, e.g., Remington's Pharmaceutical Sciences , Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics , Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.)
  • cardiovascular diseases refers to diseases, related to the function of the kidney, that are caused or exacerbated by cardiovascular problems such as, for example, high blood pressure or hypertension. It is believed that hypertension is a major contributor to kidney disease.
  • respiratory diseases refers to diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
  • COPD chronic obstructive pulmonary disease
  • IPF idiopathic pulmonary fibrosis
  • therapeutically effective amount refers to an amount of the compound of formula (I) that is sufficient to effect treatment as defined below, when administered to a patient (particularly a human) in need of such treatment in one or more doses.
  • the therapeutically effective amount will vary, depending upon the patient, the disease being treated, the weight and/or age of the patient, the severity of the disease, or the manner of administration as determined by a qualified prescriber or care giver.
  • treatment means administering a compound or pharmaceutically acceptable salt of formula (I) for the purpose of:
  • the invention relates to the use of the compound of formula (I) in treating chronic kidney disease comprising administering a therapeutically effective amount to a patient in need thereof.
  • the invention relates to the use of the compound of formula (I) in treating diabetic kidney disease comprising administering a therapeutically effective amount to a patient in need thereof.
  • the invention relates to the use of the compound of formula (I) in treating lung or kidney fibrosis comprising administering a therapeutically effective amount to a patient in need thereof.
  • the half maximal inhibitory concentration (IC 50 ) of a therapeutic agent is the concentration of a therapeutic agent necessary to produce 50% of the maximum inhibition against a target enzyme. It is a desirable goal to discover a therapeutic agent, for example a compound that inhibits apoptosis signal-regulating kinase (ASK1) with a low IC 50 . In this manner, undesirable side effects are minimized by the ability to use a lower dose of the therapeutic agent to inhibit the ASK1 enzyme.
  • a therapeutic agent for example a compound that inhibits apoptosis signal-regulating kinase (ASK1) with a low IC 50 . In this manner, undesirable side effects are minimized by the ability to use a lower dose of the therapeutic agent to inhibit the ASK1 enzyme.
  • K d is used to describe the affinity between a ligand (such as a therapeutic agent) and the corresponding kinase or receptor; i.e. a measure of how tightly a therapeutic agent binds to a particular kinase, for example the apoptosis signal-regulating kinase ASK1.
  • a lower K d is generally preferred in drug development.
  • EC 50 is the concentration of a drug that achieves 50% maximal efficacy in the cell.
  • the EC 50 value translates to the concentration of a compound in the assay medium necessary to achieve 50% of the maximum efficacy.
  • a useful unit of measure associated with EC 50 is the protein binding adjusted EC 50 (PB adj .EC 50 as used herein). This value measures the amount of a drug e.g. compound of formula (I) correlated to the fraction of the drug that is unbound to protein which provides 50% maximal efficacy. This value measures the efficacy of the drug corrected for or correlated to the amount of drug that is available at the target site of action.
  • Another desirable property is having a compound with a low cell membrane efflux ratio as determined by CACO cell permeability studies.
  • An efflux ratio ((B/A)/(A/B)) less than 3.0 is preferred.
  • a compound with a ratio greater than 3 is expected to undergo active rapid efflux from the cell and may not have sufficient duration in the cell to achieve maximal efficacy.
  • Another desirable goal is to discover a drug that exhibits minimal off-target inhibition. That is, a drug that minimally inhibits the Cyp450 (cytochrome p450) enzymes. More particularly, a drug that is a weak inhibitor of cyp3A4, the most important of the P450 enzymes, is desired.
  • a weak inhibitor is a compound that causes at least 1.25-fold but less than 2-fold increase in the plasma AUC values, or 20-50% decrease in clearance (wikipedia.org/wiki/cyp3A4, visited 11/12/11). Generally, a compound exhibiting a Cyp3A4 IC 50 of greater than 10uM is considered a weak inhibitor.
  • a measure useful for comparing cyp3A4 inhibition among drug candidates is the ratio of Cyp3A4 inhibition and the protein binding adjusted EC 50 . This value gives an indication of the relative potential for cyp inhibition corrected for the protein binding adjusted EC 50 which is specific to each drug. A higher ratio in this measure is preferred as indicative of lower potential for cyp3A4 inhibition.
  • objects of the present invention include but are not limited to the provision of a compound of formula (I) or pharmaceutically acceptable salt thereof, and methods of using the compound of formula (I) for the treatment of kidney disease, chronic kidney disease, diabetic kidney disease, diabetic nephropathy, kidney fibrosis or lung fibrosis.
  • ACE angiotensin converting enzyme
  • ARB angiontesin II receptor blockers
  • the benefit of combination may be increased efficacy and/or reduced side effects for a component as the dose of that component may be adjusted down to reduce its side effects while benefiting from its efficacy augmented by the efficacy of the compound of formula (I) and/or other active component(s).
  • Patients presenting with chronic kidney disease treatable with ASKI inhibitors such as compound of formula (I), may also exhibit conditions that benefit from co-administration (as directed by a qualified caregiver) of a therapeutic agent or agents that are antibiotic, analgesic, antidepressant and/or anti-anxiety agents in combination with compound of formula (I).
  • Combination treatments may be administered simultaneously or one after the other within intervals as directed by a qualified caregiver or via a fixed dose (all active ingredients are combined into the a single dosage form e.g. tablet) presentation of two or more active agents.
  • the compound of the present invention may be administered in the form of a pharmaceutical composition.
  • the present invention therefore provides pharmaceutical compositions that contain, as the active ingredient, the compound of formula (I), or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable excipients and/or carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
  • the pharmaceutical compositions may be administered alone or in combination with other therapeutic agents.
  • Compositions may be prepared for delivery as solid tablets, capsules, caplets, ointments, skin patches, sustained release, fast disintegrating tablets, inhalation preparations, etc.
  • compositions are prepared and/or administered using methods and/or processes well known in the pharmaceutical art (see, e.g., Remington's Pharmaceutical Sciences , Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics , Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.).
  • Formulations for combination treatments comprising the compound of formula (I) may be presented as fixed dose formulations e.g. tablets, elixirs, liquids, ointments, inhalants, gels, etc., using procedures known to one of skill in the art.
  • compositions of the compound of formula (I) may be administered in either single or multiple doses by routes including, for example, rectal, buccal, intranasal and transdermal routes; by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, as an inhalant, or via an impregnated or coated device such as a stent, for example, or an artery-inserted cylindrical polymer.
  • routes of administration include oral, parental and intravenous administration.
  • each dosage unit preferably contains from 1 mg to 500 mg of the compound of formula (I).
  • a more preferred dose is from 1 mg to 250 mg of the compound of formula (I).
  • Particularly preferred is a dose of the compound of formula (I) ranging from about 20 mg twice a day to about 50 mg twice a day. It will be understood, however, that the amount of the compound actually administered usually will be determined by a physician in light of the relevant circumstances including the condition to be treated, the chosen route of administration, co-administration compound if applicable, the age, weight, response of the individual patient, the severity of the patient's symptoms, and the like. Nomenclature The name of the compound of the present invention as generated using ChemBioDraw
  • 5-(4-cyclopropyl-1H-imidazol-1-yl)—N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)-2-fluoro-4-methylbenzamide also known as 5-((4-cyclopropyl-1H-imdazol-1-yl)-2-fluoro-N-(6-(4-isopropyl-4H-1,2,4-triazole-3-yl) pyridine-2-yl)-4-methylbenzamide.
  • the compound of the invention may be prepared using methods disclosed herein or modifications thereof which will be apparent given the disclosure herein.
  • the synthesis of the compound of the invention may be accomplished as described in the following example. If available, reagents may be purchased commercially, e.g. from Sigma Aldrich or other chemical suppliers. Alternatively, reagents may be prepared using reaction schemes and methods known to one of skill in the art.
  • solvent refers to a solvent inert under the conditions of the reaction being described in conjunction therewith (including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (THF), dimethylformamide (DMF), chloroform, methylene chloride (or dichloromethane), diethyl ether, petroleum ether (PE), methanol, pyridine, ethyl acetate (EA) and the like.
  • the solvents used in the reactions of the present invention are inert organic solvents, and the reactions are carried out under an inert gas, preferably nitrogen.
  • the starting 5-bromo-4-fluoro-2-methylaniline (1) (20 g, 98 mmol) was dissolved in anhydrous 1-methylpyrrolidinone (100 mL), and copper (I) cyanide (17.6 g, 196 mmol) was added. The reaction was heated to 180° C. for 3 hours, cooled to room temperature, and water (300 mL) and concentrated ammonium hydroxide (300 mL) added. The mixture was stirred for 30 minutes and extracted with EA (3 ⁇ 200 mL). The combined extracts were dried over magnesium sulfate, and the solvent was removed under reduced pressure.
  • 6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-amine (1.13 g, 5.58 mmol) (compound C) and 4-dimethylaminopyridine (0.62 g, 5.07 mmol) were rapidly added with stirring under nitrogen.
  • the reaction was stirred for 2 hours at room temperature and aqueous saturated NaHCO 3 (15 mL) was added. The mixture was stirred for 10 minutes, and the layers were separated, and the aqueous layer was washed 1 ⁇ 20 mL dichloromethane. The combined organics were dried (MgSO 4 ), filtered and concentrated. The residue was dissolved in a minimum amount of CH 3 CN and water was slowly added until solids precipitated from the mixture.
  • ASK1 Apoptosis Signal-Regulating Kinase 1 TR-FRET Kinase Assay (Biochemical IC 50 )
  • the ability of compounds to inhibit ASK1 kinase activity was determined using a time resolved fluorescence resonance energy transfer [TR-FRET] assay utilizing biotinylated myelin basic protein [biotin-MBP] as the protein substrate.
  • TR-FRET time resolved fluorescence resonance energy transfer
  • biotin-MBP biotinylated myelin basic protein
  • a Beckman Biomek FX liquid handling robot was utilized to spot 2 ⁇ L/well of compounds in 2.44% aqueous DMSO into low volume 384-well polypropylene plates [Nunc, #267460] to give a final concentration of between 100 ⁇ M and 0.5nM compound in the kinase assay.
  • a Deerac Fluidics Equator was used to dispense 3 ⁇ L/well of 0.667ng/ ⁇ L [Upstate Biotechnologies, #14-606, or the equivalent protein prepared in-house] and 0.1665 ng/mL biotin-MBP [Upstate Biotechnologies, #13-111] in buffer (85 mM MOPS, pH 7.0, 8.5 mM Mg-acetate, 5% glycerol, 0.085% NP-40, 1.7mM DTT and 1.7 mg/mL BSA) into the plates containing the spotted compounds.
  • buffer 85 mM MOPS, pH 7.0, 8.5 mM Mg-acetate, 5% glycerol, 0.085% NP-40, 1.7mM DTT and 1.7 mg/mL BSA
  • the enzyme was allowed to pre-incubate with compound for 20 minutes prior to initiating the kinase reaction with the addition of 5 ⁇ L/well 300 ⁇ M ATP in buffer (50 mM MOPS, pH 7.0, 5 mM Mg-acetate, 1 mM DTT, 5% DMSO) using the Deerac Fluidics Equator.
  • the kinase reactions were allowed to proceed for 20 minutes at ambient temperature and were subsequently stopped with the addition of 5 ⁇ L/well 25 mM EDTA using the Deerac Fluidics Equator.
  • the Biomek FX was then used to transfer 1 ⁇ L/well of each completed kinase reaction to the wells of an OptiPlate-1536 white polystyrene plate [PerkinElmer, #6004299] that contained 5 ⁇ L/well detection reagents (1.11 nM Eu-W1024 labeled anti-phosphothreonine antibody [PerkinElmer, #AD0094] and 55.56 nM streptavidin allophycocyanin [PerkinElmer, #CR130-100] in 1 ⁇ LANCE detection buffer [PerkinElmer, #CR97-100]).
  • the TR-FRET signal was then read on a Perkin Elmer Envision plate reader after incubating the plates at ambient temperature for 2 hours.
  • the 100% inhibition positive control wells were generated by switching the order of addition of the EDTA and ATP solutions described above. These wells and 0% inhibition wells containing spots of 2.44% DMSO at the beginning of the assay were used in calculating the % inhibition for the test compounds.
  • the compound of formula (I) inhibited ASK1 with an IC 50 of 3.0 nM. This data suggests that the compound of formula (I) is a potent inhibitor of ASK1 in the presence of the competitive ligand ATP.
  • the inhibitory activity of compound of the invention against ASK1 was examined using a TR-FRET ASK1 assay which determined the amount of phosphate transferred to a peptide substrate from ATP.
  • Dephosphorylated recombinant human ASK1 kinase was from Gilead Sciences.
  • Small molecule kinase inhibitor staurosporine (Catalogue #S6942) and dithiothreitol (DTT, catalogue #43815-5G) were obtained from Sigma Chemicals (St. Louis, Mo.).
  • ATP catalogue #7724
  • HTRF KinEASETM—STK S3 kit was obtained from Cisbio (Bedford, Mass). All other reagents were of the highest grade commercially available.
  • the assay measures the phosphorylation level of a biotinylated peptide substrate by the ASK1 kinase using HTRF detection (6.1).
  • This is a competitive, time-resolved fluorescence resonance energy transfer (TR-FRET) immunoassay, based on HTRF® KinEASETM—STK manual from Cisbio (6.1).
  • Test compound 1 ⁇ M STK3 peptide substrate, 4 nM of ASK1 kinase are incubated with 10 mM MOP buffer, pH.
  • the fluorescence is measured at 615 nm (Cryptate) and 665 nm (XL665) and a ratio of 665 nm/615 nm is calculated for each well.
  • the resulting TR-FRET level (a ratio of 665 nm/615 nm) is proportional to the phosphorylation level.
  • the degree of phosphorylation of peptide substrate was linear with time and concentration for the enzyme.
  • the assay system yielded consistent results with regard to K m and specific activities for the enzyme. For inhibition experiments (IC 50 values), activities were performed with constant concentrations of ATP, peptide and several fixed concentrations of inhibitors. Staurosporine, the nonselective kinase inhibitor, was used as the positive control. All enzyme activity data are reported as an average of quadruplicate determination.
  • x and y represent the concentration of inhibitors and enzyme activity, respectively.
  • Enzyme activity is expressed as the amount of Phosphate incorporated into substrate peptide from ATP.
  • Range is the maximum y range (no inhibitor, DMSO control) and s is a slope factor (6.2).
  • the compound of formula (I) exhibited an IC50 of 3.2 nM under this test condition.
  • the data demonstrates that the compound of formula (I) is a potent inhibitor of the ASK-1 1 receptor.
  • ASK1 Apoptosis Signal-Regulating Kinase 1 293 Cell-Based Assay (Cellular EC 50 )
  • the cellular potency of compounds was assayed in cells stably expressing an AP-1:luciferase reporter construct (293/AP1-Luc cells - Panomics Inc., 6519 Dumbarton Circle, Fremont, Calif.).
  • Cells were infected with an adenovirus expressing kinase active ASK1 (631-1381 of rat ASK1 cDNA), which will activate the AP-1 transcription factor and increase the expression of luciferase.
  • Inhibitors of ASK1 will decrease the enzyme activity of ASK1 and therefore decrease the activity of AP-1 transcription factor and the expression of luciferase.
  • Flasks (poly-D-Lysine coated, 150 BD Biosciences 356538 cm 2 , vented cap) Plates (poly-D-Lysine coated, 384- Greiner (through 781944 well, white/clear, sterile TCT) VWR Scientific) (82051-354) White Backing Tape PerkinElmer 6005199 Cell Strainers (40 um nylon, blue VWR Scientific 21008-949 ring, fits 50 mL conical vials)
  • Panomics 293/AP1-Luc stable cell-line product insert Promega Steady-Glo Luciferase Assay System product insert.
  • Aspirate media wash gently with ⁇ 12 mL sterile D-PBS, aspirate. Add 5 mL Trypsin-EDTA, tilt gently to coat flask, and incubate ⁇ 5 min at 37° C. Do not tap flask; add 5 mL CGM, wash flask 4X with cell suspension, transfer to 50 mL conical vial, centrifuge 5 min at 1200 rpm. Aspirate media from cell pellet, add 20 to 30 mL CGM, resuspend pellet by pipeting 6 ⁇ , pass through cell strainer to disperse clumps (if necessary), and count cells with hemocytometer.
  • the compound of formula (I) exhibits an EC 50 of 2.0 nM.
  • kinase-tagged T7 phage strains were prepared in an E. coli host derived from the BL21 strain. E. coli were grown to log-phase and infected with T7 phage and incubated with shaking at 32° C. until lysis. The lysates were centrifuged and filtered to remove cell debris. The remaining kinases were produced in HEK-293 cells and subsequently tagged with DNA for qPCR detection. Streptavidin-coated magnetic beads were treated with biotinylated small molecule ligands for 30 minutes at room temperature to generate affinity resins for kinase assays.
  • Binding reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1 ⁇ binding buffer (20% SeaBlock, 0.17 ⁇ PBS, 0.05% Tween 20, 6 mM DTT). All reactions were performed in polystyrene 96-well plates in a final volume of 0.135 mL.
  • the assay plates were incubated at room temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1 ⁇ PBS, 0.05% Tween 20). The beads were then re-suspended in elution buffer (1 ⁇ PBS, 0.05% Tween 20, 0.5 ⁇ M non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The kinase concentration in the eluates was measured by qPCR.
  • Binding constants were calculated with a standard dose-response curve using the Hill equation.
  • the compound of formula (I) exhibited a K d of 0.24 nM. This data suggests that the compound of formula (I) binds potently to ASK1 receptor in the absence of ATP.
  • C f and C t are the post-dialysis buffer and plasma concentrations, respectively.
  • the percent unbound measured in human plasma for the compound of formula (I) is 11.94%
  • Caco-2 cells were maintained in Dulbecco's Modification of Eagle's Medium (DMEM) with sodium pyruvate, Glutmax supplemented with 1% Pen/Strep, 1% NEAA and 10% fetal bovine serum in an incubator set at 37° C., 90% humidity and 5% CO 2 .
  • Caco-2 cells between passage 62 and 72 were seeded at 2100 cells/well and were grown to confluence over at least 21-days on 24 well PET (polyethylene-terephthalate) plates (BD Biosciences).
  • the receiver well contained HBSS buffer (10 mM HEPES, 15 mM Glucose with pH adjusted to pH 6.5) supplemented with 1% BSA pH adjusted to pH 7.4.
  • TEER values were read to test membrane integrity.
  • Buffers containing test compounds were added and 100 ⁇ l of solution was taken at 1 and 2 hrs from the receiver compartment. Removed buffer was replaced with fresh buffer and a correction is applied to all calculations for the removed material. The experiment was carried out in replicate. All samples were immediately collected into 400 ⁇ l 100% acetonitrile acid to precipitate protein and stabilize test compounds.
  • Cells were dosed on the apical or basolateral side to determine forward (A to B) and reverse (B to A) permeability. Permeability through a cell free trans-well is also determined as a measure of cellular permeability through the membrane and non-specific binding. To test for non-specific binding and compound instability percent recovery is determined. Samples were analyzed by LC/MS/MS.
  • dR/dt is the slope of the cumulative concentration in the receiver compartment versus time in ⁇ M/s based on receiver concentrations measured at 60 and 120 minutes.
  • V r and V d is the volume in the receiver and donor compartment in cm 3 , respectively.
  • A is the area of the cell monolayer (0.33 cm 2 ).
  • D 0 and D 120 is the measured donor concentration at the beginning and end of the experiment, respectively.
  • R 120 is the receiver concentration at the end of the experiment (120 minutes).
  • P app (A to B) ⁇ 1.0 ⁇ 10 ⁇ 6 cm/s High 1.0 ⁇ 10 ⁇ 6 cm/s > P app (A to B) ⁇ Medium 0.5 ⁇ 10 ⁇ 6 cm/s P app (A to B) ⁇ 0.5 ⁇ 10 ⁇ 6 cm/s Low P app (B to A)/P app (A to B) ⁇ 3 Significant Efflux % recovery ⁇ 20% May affect measured permeability Cell Free P app ⁇ 15 May affect measured permeability
  • the compound of formula (I) was observed to have a CACO A ⁇ B value of 27; and a CACO B ⁇ A value of 35 resulting in a efflux ratio (B ⁇ A)/(A ⁇ B) of 1.3.
  • Metabolic stability was assessed using cofactors for both oxidative metabolism (NADPH) and conjugation (UDP glucuronic acid (UDPGA)).
  • Duplicate aliquots of the compound of formula (I) (3 ⁇ L of 0.5 mM DMSO stock) or metabolic stability standards (Buspirone) were added to microsome stock diluted with potassium phosphate buffer, pH 7.4, to obtain a protein concentration of 1.0 mg/mL and containing alamethicin as a permeabilizing agent. Metabolic reactions were initiated by the addition of NADPH regenerating system and UDPGA cofactor.
  • each reaction mixture was: 3 ⁇ M test compound, 1 mg microsomal protein/mL, 5 mM UDPGA, 23.4 ⁇ g/mL alamethicin, 1.25 mM NADP, 3.3 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase and 3.3 mM MgCl 2 in 50 mM potassium phosphate buffer, pH 7.4.
  • 25 ⁇ L aliquots of the reaction mixture were transferred to plates containing 250 ⁇ l of IS/Q (quenching solution containing internal standard). After quenching, the plates were centrifuged at 3000 ⁇ g for 30 minutes, and 10 ⁇ L aliquots of the supernatant were analyzed using LC/MS to obtain analyte/internal standard peak area ratios.
  • Metabolic stability in microsomal fractions were determined by measuring the rate of disappearance of the compound of formula (I). Data (% of parent remaining) were plotted on a semi logarithmic scale and fitted using an exponential fit:
  • Predicted hepatic extraction was then calculated by comparison of predicted hepatic clearance to hepatic blood flow.
  • a compound was considered stable if the reduction of substrate concentration was ⁇ 10% over the course of the incubation (corresponding to an extrapolated half-life of >395 min in microsomal fractions and >39.5 hr in hepatocytes).
  • the predicted hepatic clearance in human as determined from in vitro experiments in microsomal fractions is 0.1 L/h/kg.
  • test compound For IV administration the test compound was formulated in 60:40 PEG 400:water with 1 equivalent HCl at 0.5 mg/mL. The formulation was a solution.
  • PO oral administration, the test compound was formulated in 5/75/10/10 ethanol/PG/solutol/water at 2.5 mg/mL. The formulation was a solution.
  • IV and PO dosing groups each consisted of 3 male SD rats. At dosing, the animals generally weighed between 0.317 and 0.355 kg. The animals were fasted overnight prior to dose administration and up to 4 hr after dosing.
  • test compound was administered by intravenous infusion over 30 minutes.
  • the rate of infusion was adjusted according to the body weight of each animal to deliver a dose of 1 mg/kg at 2 mL/kg.
  • test article was administered by oral gavage at 2 mL/kg for a dose of 5.0 mg/kg.
  • Serial venous blood samples (approximately 0.4 mL each) were taken at specified time points after dosing from each animal.
  • the blood samples were collected into VacutainerTM tubes (Becton-Disckinson Corp, N.J., USA) containing EDTA as the anti-coagulant and were immediately placed on wet ice pending centrifugation for plasma.
  • Non-compartmental pharmacokinetic analysis was performed on the plasma concentration-time data.
  • the compound of formula (I) exhibited a CL of 0.09 L/hr/kg; an oral bioavailability of 75%; t 112 of 5.07 hr and a Vss of 0.55 L/kg in rats.
  • CYP1A CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 (2 substrates).
  • Test compound (0.1 ⁇ M-25 ⁇ M) is incubated with human liver microsomes and NADPH in the presence of a cytochrome P450 isoform-specific probe substrate.
  • a cytochrome P450 isoform-specific probe substrate For the CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 specific reactions, the metabolites are monitored by mass spectrometry.
  • CYP1A activity is monitored by measuring the formation of a fluorescent metabolite. A decrease in the formation of the metabolite compared to the vehicle control is used to calculate an IC50 value (test compound concentration which produces 50% inhibition).
  • the selective CYP1A inhibitor, alpha-naphthoflavone, is screened alongside the test compounds as a positive control.
  • the selective CYP2B6 inhibitor, ticlopidine is screened alongside the test compounds as a positive control.
  • the selective CYP2C8 inhibitor, montelukast is screened alongside the test compounds as a positive control.
  • the selective CYP2C9 inhibitor, sulphaphenazole is screened alongside the test compounds as a positive control.
  • the selective CYP2C19 inhibitor, tranylcypromine, is screened alongside the test compounds as a positive control.
  • the selective CYP2D6 inhibitor, quinidine is screened alongside the test compounds as a positive control.
  • the selective CYP3A4 inhibitor, ketoconazole is screened alongside the test compounds as a positive control.
  • the selective CYP3A4 inhibitor, ketoconazole is screened alongside the test compounds as a positive control.
  • the reactions are terminated by methanol. The samples are then centrifuged, and the supernatants are combined, for the simultaneous analysis of 4-hydroxytolbutamide, 4-hydroxymephenytoin, dextrorphan, and 1-hydroxymidazolam by LC-MS/MS.
  • IC50 value test compound concentration which produces 50% inhibition
  • Penicillin G i.m.
  • Rats were allowed to recover in a clean, heated cage before being returned to normal vivarium conditions. Rats were administered compounds at the dose described above twice daily (at 12 hour intervals) for the subsequent 7 days. On day 7 following surgery, rats were anesthetized with isoflurane and serum, plasma, and urine collected. Animals were then euthanized, the kidneys harvested, and renal cortical biopsies collected for morphological, histological, and biochemical analysis. All tissues for biochemical analysis are flash-frozen in liquid nitrogen and stored at ⁇ 80° C., tissues for histological analysis were fixed in 10% neutral buffered formalin
  • Renal fibrosis was evaluated by measuring the amount of collagen IV in the kidney by an ELISA method and by examining the accumulation of alpha-smooth muscle actin positive myofibroblasts in the kidney by immunohistochemistry.
  • a small piece of frozen kidney cortex was transferred homengenized in RIPA buffer then centrifuged at 14000 ⁇ g for 10 minutes at at 4° C. The supernatant was collected into pre-chilled tubes and the protein concentration was determined. Equivalent amount of total protein were subjected to a Col IV ELISA assay (Exocell) according to the manufacturers instructions.
  • the compound of formula (I) was found to significantly reduce kidney Collagen IV induction ( FIG. 1 ) and accumulation of alpha-smooth muscle positive myofibroblasts ( FIG. 2 ) at doses of 3 to 30 mg/kg.
  • the compound of formula (I) has an EC 50 that is comparable to that of Compound A.
  • the compound of formula (I) has a functional IC 50 that is comparable to IC 50s for compounds A and B.
  • the compound of formula (I) has a protein binding adjusted EC 50 that is 4 times lower than that of compound A and 33 times lower than that of compound B.
  • the compound of formula (I) is a weaker Cyp3A4 inhibitor compared to compounds A and B.
  • the compound of Formula (I) has a CYP3A4 IC 50 / PBAdj.EC 50 value that is 43 times higher than that for compound of formula A, and 92 times higher than for the compound of formula B.
  • the compound of formula (I) has a Rat CL value that is 2.7 times lower than that for compound of formula A, and 3.6 times lower than that for the compound of formula B.
  • the compound of formula (I) has a percent bioavailability in rats that is 6.8 times higher than compound A and 1.5 times higher than compound B.
  • the compound of formula (I) has a half life in rats that is 8.6 times longer than that of compound A and 3.9 times longer than that of compound B.

Abstract

The present invention relates to a compound of formula (I):
Figure US20180099950A1-20180412-C00001
The compound has apoptosis signal-regulating kinase (“ASK1”) inhibitory activity, and is thus useful in the treatment of diseases such as kidney disease, diabetic nephropathy and kidney fibrosis.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application Ser. No. 61/591,710, filed Jan. 27, 2012, the entirety of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a novel compound for use in the treatment of ASK1-mediated diseases. The invention also relates to intermediates for its preparation and to pharmaceutical compositions containing said novel compound.
  • BACKGROUND
  • Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase kinase (“MAP3K”) family that activates the c-Jun N-terminal protein kinase (“JNK”) and p38 MAP kinase (Ichijo, H., Nishida, E., Irie, K., Dijke, P. T., Saitoh, M.,
  • Moriguchi, T., Matsumoto, K., Miyazono, K., and Gotoh, Y. (1997) Science, 275, 90-94). ASK1 is activated by a variety of stimuli including oxidative stress, reactive oxygen species (ROS), LPS, TNF-α, FasL, ER stress, and increased intracellular calcium concentrations (Hattori, K., Naguro, I., Runchel, C., and Ichijo, H. (2009) Cell Comm. Signal. 7:1-10; Takeda, K., Noguchi, T., Naguro, I., and Ichijo, H. (2007) Annu. Rev. Pharmacol. Toxicol. 48: 1-8.27; Nagai, H., Noguchi, T., Takeda, K., and Ichijo, I. (2007) J. Biochem. Mol. Biol. 40:1-6). Phosphorylation of ASK1 protein can lead to apoptosis or other cellular responses depending on the cell type. ASK1 activation and signaling have been reported to play an important role in a broad range of diseases including neurodegenerative, cardiovascular, inflammatory, autoimmune, and metabolic disorders. In addition, ASK1 has been implicated in mediating organ damage following ischemia and reperfusion of the heart, brain, and kidney (Watanabe et al. (2005) BBRC 333, 562-567; Zhang et al., (2003) Life Sci 74-37-43; Terada et al. (2007) BBRC 364: 1043-49).
  • ROS are reported be associated with increases of inflammatory cytokine production, fibrosis, apoptosis, and necrosis in the kidney. (Singh DK, Winocour P, Farrington K. Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol 2011 Mar;7(3):176-184; Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 Dec 13; 414(6865):813-820; Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol 2010 Nov; 6(11):667-678).
  • Moreover, oxidative stress facilitates the formation of advanced glycation end-products (AGEs) that cause further renal injury and production of ROS. (Hung K Y, et al. N-acetylcysteine-mediated antioxidation prevents hyperglycemia-induced apoptosis and collagen synthesis in rat mesangial cells. Am J Nephrol 2009;29(3):192-202).
  • Tubulointerstitial fibrosis in the kidney is a strong predictor of progression to renal failure in patients with chronic kidney diseases (Schainuck L I, et al. Structural-functional correlations in renal disease. Part II: The correlations. Hum Pathol 1970; 1: 631-641.). Unilateral ureteral obstruction (UUO) in rats is a widely used model of tubulointerstitial fibrosis. UUO causes tubulointerstital inflammation, increased expression of transforming growth factor beta (TGF-β), and accumulation of myofibroblasts, which secrete matrix proteins such as collagen and fibronectin. The UUO model can be used to test for a drug's potential to treat chronic kidney disease by inhibiting renal fibrosis (Chevalier et al., Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy, Kidney International (2009) 75, 1145-1152.
  • Thus, therapeutic agents that function as inhibitors of ASK1 signaling have the potential to remedy or improve the lives of patients in need of treatment for diseases or conditions such as neurodegenerative, cardiovascular, inflammatory, autoimmune, and metabolic disorders. In particular, ASK1 inhibitors have the potential to treat cardio-renal diseases, including kidney disease, diabetic kidney disease, chronic kidney disease, fibrotic diseases (including lung and kidney fibrosis), respiratory diseases (including chronic obstructive pulmonary disease (COPD) and acute lung injury), acute and chronic liver diseases.
  • U.S. Publication No. 2007/0276050 describes methods for identifying ASK1 inhibitors useful for preventing and/or treating cardiovascular disease and methods for preventing and/or treating cardiovascular disease in an animal.
  • WO2009027283 discloses triazolopyridine compounds, methods for preparation thereof and methods for treating autoimmune disorders, inflammatory diseases, cardiovascular diseases and neurodegenerative diseases.
  • U.S. Patent Publication No. 2001/00095410A1, published Jan. 13,2011, discloses compounds useful as ASK-1 inhibitors. U.S. Patent Publication 2001/00095410A1 relates to compounds of Formula (I):
  • Figure US20180099950A1-20180412-C00002
  • wherein:
  • R1 is alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, all of which are optionally substituted with 1, 2, or 3 substituents selected from halo, oxo, alkyl, cycloalkyl, heterocyclyl, aryl, aryloxy, —NO2, R6, —C(O)—R6, —OC(O)—R6 —C(O)—O—R6, —C(O)—N(R6)(R7), —OC(O)—N(R6)(R7), —S—R6, —S(═O)—R6, —S(═O)2R6, —S(═O)2—N(R6)(R7), —S(═O)2—O—R6, —N(R6)(R7), —N(R6)—C(O)—R7, —N(R6)—C(O)—O—R7, —N(R6)—C(O)—N (R6)(R7), —N(R6)—S(═O)2—R6, —CN, and —O—R6,
  • wherein alkyl, cycloalkyl, heterocyclyl, phenyl, and phenoxy are optionally substituted by 1, 2, or 3 substituents selected from alkyl, cycloalkyl, alkoxy, hydroxyl, and halo; wherein R6 and R7 are independently selected from the group consisting of hydrogen, C1-C15 alkyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, all of which are optionally substituted with 1-3 substituents selected from halo, alkyl, mono- or dialkylamino, alkyl or aryl or heteroaryl amide, —CN, lower alkoxy, —CF3, aryl, and heteroaryl; or R6 and R7 when taken together with the nitrogen to which they are attached form a heterocycle;
  • R2 is hydrogen, halo, cyano, alkoxy, or alkyl optionally substituted by halo;
  • R3 is aryl, heteroaryl, or heterocyclyl, all of which are optionally substituted with one or more substituents selected from alkyl, alkoxy, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, oxo, —NO2, haloalkyl, haloalkoxy, —CN, —O—R6, —O—C(O)—R6, —O—C(O)—N(R6)(R7), —S—R6, —N (R6)(R7), —S(═O)—R6, —S(═O)2R6, —S(═O)2—N(R6)(R7), —S(═O)2—O—R6, —N(R6)—C(O)—R7, —N(R6)—C(O)—O—R7, —N(R6)—C(O)—N(R6)(R7), —C(O)—R6, —C(O)—O—R6, —C(O)—N (R6)(R7), and —N(R6)—S(═O)2—R7, wherein the alkyl, alkoxy, cycloalkyl, aryl, heteroaryl or heterocyclyl is further optionally substituted with one or more substituents selected from halo, oxo, —NO2, alkyl, haloalkyl, haloalkoxy, —N(R6)(R7), —C(O)—R6, —C (O)—O—R6, —C(O)—N(R6)(R7), —CN, —O—R6, cycloalkyl, aryl, heteroaryl and heterocyclyl; with the proviso that the heteroaryl or heterocyclyl moiety includes at least one ring nitrogen atom;
  • X1, X2, X3, X4, X5, X6, X7 and X8 are independently C(R4) or N, in which each R4 is independently hydrogen, alkyl, alkoxy, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, —NO2, haloalkyl, haloalkoxy, —CN, —O—R6, —S—R6, —N(R6)(R7), —S(═O)—R6, —S(═O)2R6, —S(═O)2—N(R6)(R7), —S(═O)2—O—R6, —N(R6)—C(O)—R7, —N(R6)—C(O)—O—R7, —N(R6)—C(O)—N (R6)(R7), —C(O)—R6, —C(O)—O—R6, —C(O)—N(R6)(R7), or —N(R6)—S(═O)2—R7, wherein the alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl is further optionally substituted with one or more substituents selected from halo, oxo, —NO2, —CF3, —O—CF3, —N(R6)(R7), —C(O)—R6, —C(O)—O—R7, —C(O)—N(R6)(R7), —CN, —O—R6; or
  • X5 and X6 or X6 and X7 are joined to provide optionally substituted fused aryl or optionally substituted fused heteroaryl; and
  • with the proviso that at least one of X2, X3, and X4 is C(R4);
    at least two of X5, X6, X7, and X8 are C(R4); and
    at least one of X2, X3, X4, X5, X6, X7 and X8 is N.
  • The above disclosures notwithstanding, there is a need for compounds that are potent and exhibit improved pharmacokinetic and/or pharmacodynamic profiles for the treatment of diseases related to ASK1 activation.
  • Surprisingly, applicants have discovered a novel compound within the scope of U.S. patent publication US2011/0009410A exhibiting good potency, improved pharmacokinetic and/or pharmacodynamic profiles, on aggregate, compared to compounds disclosed therein.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a compound of the formula:
  • Figure US20180099950A1-20180412-C00003
  • or a pharmaceutically acceptable salt thereof.
  • In one embodiment, the invention relates to the use of a compound of formula (I) in the treatment of a disease in a patient in need of treatment with an ASK1 inhibitor.
  • In another embodiment, the invention relates to a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers.
  • In another embodiment, the invention is a method of treating diabetic nephropathy, or complications of diabetes, comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, to a patient in need thereof.
  • In another embodiment, the invention relates to a method of treating kidney disease, or diabetic kidney disease comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, to a patient in need thereof.
  • In another embodiment, the invention relates to a method of treating kidney fibrosis, lung fibrosis, or idiopathic pulmonary fibrosis (IPF) comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, to a patient in need thereof.
  • In another embodiment, the invention relates to a method of treating diabetic kidney disease, diabetic nephropathy, kidney fibrosis, liver fibrosis, or lung fibrosis comprising administering a therapeutically effective amount of a compound or salt of forumia (I), to a patient in need thereof.
  • In another embodiment, the invention relates to intermediates useful for the synthesis of the compound of formula (I).
  • In another embodiment, the invention relates to the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the treatment of chronic kidney disease.
  • In another embodiment, the invention relates to the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the treatment of diabetic kidney disease.
  • In another embodiment, the invention relates to the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of chronic kidney disease.
  • In yet another embodiment, the invention relates to the compound of formula (I) for use in therapy.
  • DETAILED DESCRIPTION OF THE INVENTION FIGURES
  • FIG. 1 is a bar graph showing the levels of Collagen IV in the kidney cortex of rats subjected to seven days of unilateral ureteral obstruction and treated with either vehicle, or compound of formula (I) at 1, 3, 10, or 30 mg/kg b.i.d. per day.
  • FIG. 2 shows representative images of kidney cortex sections stained with alpha-smooth muscle actin (a marker of activated myofibroblasts) from rats subjected to seven days of unilateral ureteral obstruction and treated with either vehicle, or compound of formula (I) at 1, 3, 10, or 30 mg/kg b.i.d. per day.
  • DEFINITIONS AND GENERAL PARAMETERS
  • As used herein, the following words and phrases are intended to have the meanings set forth below, except to the extent that the context in which they are used indicates otherwise. Where no indication or definition is given, the ordinary meaning of the word or phrase as found in a relevant dictionary or in common usage known to one of skill in the art is implied.
  • The term “chronic kidney disease” as used herein refers to progressive loss of kidney function over time typically months or even years. Chronic kidney disease (CKD) is diagnosed by a competent care giver using appropriate information, tests or markers known to one of skill in the art. Chronic kidney disease includes by implication kidney disease.
  • The term “diabetic kidney disease” as used herein refers to kidney disease caused by diabetes, exacerbated by diabetes, or co-presenting with diabetes. It is a form of chronic kidney disease occurring in approximately 30% of patients with diabetes. It is defined as diabetes with the presence of albuminuria and/or impaired renal function (i.e. decreased glomerular filtration rate (See. de B, I, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 2011 Jun 22; 305(24):2532-2539).
  • The term “pharmaceutically acceptable salt” refers to salts of pharmaceutical compounds e.g. compound of formula (I) that retain the biological effectiveness and properties of the underlying compound, and which are not biologically or otherwise undesirable. There are acid addition salts and base addition salts. Pharmaceutically acceptable acid addition salts may be prepared from inorganic and organic acids.
  • Acids and bases useful for reaction with an underlying compound to form pharmaceutically acceptable salts (acid addition or base addition salts respectively) are known to one of skill in the art. Similarly, methods of preparing pharmaceutically acceptable salts from an underlying compound (upon disclosure) are known to one of skill in the art and are disclosed in for example, Berge, at al. Journal of Pharmaceutical Science, January 1977 vol. 66, No.1, and other sources. Salts derived from inorganic acids include but are not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Salts derived from organic acids include but are not limited to maleic acid, fumaric acid, tartaric acid, p-toluene-sulfonic acid, and the like. Bases useful for forming base addition salts are known to one of skill in the art. An example of a pharmaceutically acceptable salt of the compound of formula (I) is the hydrochloride salt of the compound of formula (I).
  • As used herein, “pharmaceutically acceptable carrier” includes excipients or agents such as solvents, diluents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like that are not deleterious to the compound of the invention or use thereof. The use of such carriers and agents to prepare compositions of pharmaceutically active substances is well known in the art (see, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics, Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.)
  • The term “cardio-renal diseases” as used herein refers to diseases, related to the function of the kidney, that are caused or exacerbated by cardiovascular problems such as, for example, high blood pressure or hypertension. It is believed that hypertension is a major contributor to kidney disease.
  • The term “respiratory diseases” as used herein refers to diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
  • The term “therapeutically effective amount” refers to an amount of the compound of formula (I) that is sufficient to effect treatment as defined below, when administered to a patient (particularly a human) in need of such treatment in one or more doses. The therapeutically effective amount will vary, depending upon the patient, the disease being treated, the weight and/or age of the patient, the severity of the disease, or the manner of administration as determined by a qualified prescriber or care giver.
  • The term “treatment” or “treating” means administering a compound or pharmaceutically acceptable salt of formula (I) for the purpose of:
      • (i) delaying the onset of a disease, that is, causing the clinical symptoms of the disease not to develop or delaying the development thereof;
      • (ii) inhibiting the disease, that is, arresting the development of clinical symptoms; and/or
      • (iii) relieving the disease, that is, causing the regression of clinical symptoms or the severity thereof.
  • In a preferred embodiment, the invention relates to the use of the compound of formula (I) in treating chronic kidney disease comprising administering a therapeutically effective amount to a patient in need thereof.
  • In another preferred embodiment the invention relates to the use of the compound of formula (I) in treating diabetic kidney disease comprising administering a therapeutically effective amount to a patient in need thereof.
  • In another preferred embodiment the invention relates to the use of the compound of formula (I) in treating lung or kidney fibrosis comprising administering a therapeutically effective amount to a patient in need thereof.
  • The half maximal inhibitory concentration (IC50) of a therapeutic agent is the concentration of a therapeutic agent necessary to produce 50% of the maximum inhibition against a target enzyme. It is a desirable goal to discover a therapeutic agent, for example a compound that inhibits apoptosis signal-regulating kinase (ASK1) with a low IC50. In this manner, undesirable side effects are minimized by the ability to use a lower dose of the therapeutic agent to inhibit the ASK1 enzyme.
  • Similarly, it is a desirable goal to discover a therapeutic agent that has a low dissociation constant (Kd). Kd is used to describe the affinity between a ligand (such as a therapeutic agent) and the corresponding kinase or receptor; i.e. a measure of how tightly a therapeutic agent binds to a particular kinase, for example the apoptosis signal-regulating kinase ASK1. Thus, a lower Kd is generally preferred in drug development.
  • Similarly, it is a desirable goal to discover a compound having a low EC50. EC50 is the concentration of a drug that achieves 50% maximal efficacy in the cell. The EC50 value translates to the concentration of a compound in the assay medium necessary to achieve 50% of the maximum efficacy. Thus, a lower EC50 is generally preferred for drug development. A useful unit of measure associated with EC50 is the protein binding adjusted EC50 (PBadj.EC50 as used herein). This value measures the amount of a drug e.g. compound of formula (I) correlated to the fraction of the drug that is unbound to protein which provides 50% maximal efficacy. This value measures the efficacy of the drug corrected for or correlated to the amount of drug that is available at the target site of action.
  • Another desirable property is having a compound with a low cell membrane efflux ratio as determined by CACO cell permeability studies. An efflux ratio ((B/A)/(A/B)) less than 3.0 is preferred. A compound with a ratio greater than 3 is expected to undergo active rapid efflux from the cell and may not have sufficient duration in the cell to achieve maximal efficacy.
  • Another desirable goal is to discover a drug that exhibits minimal off-target inhibition. That is, a drug that minimally inhibits the Cyp450 (cytochrome p450) enzymes. More particularly, a drug that is a weak inhibitor of cyp3A4, the most important of the P450 enzymes, is desired. A weak inhibitor is a compound that causes at least 1.25-fold but less than 2-fold increase in the plasma AUC values, or 20-50% decrease in clearance (wikipedia.org/wiki/cyp3A4, visited 11/12/11). Generally, a compound exhibiting a Cyp3A4 IC50 of greater than 10uM is considered a weak inhibitor.
  • A measure useful for comparing cyp3A4 inhibition among drug candidates is the ratio of Cyp3A4 inhibition and the protein binding adjusted EC50. This value gives an indication of the relative potential for cyp inhibition corrected for the protein binding adjusted EC50 which is specific to each drug. A higher ratio in this measure is preferred as indicative of lower potential for cyp3A4 inhibition.
  • Unexpectedly and advantageously, applicants have discovered a compound (of formula (I) herein) within the generic scope of U.S. Patent publication No. 2001/00095410A1 that provides advantages compared to structurally close compounds (herein designated as compounds A and B) disclosed in U.S. Patent publication No. 2001/00095410A1
  • Figure US20180099950A1-20180412-C00004
  • Therefore, objects of the present invention include but are not limited to the provision of a compound of formula (I) or pharmaceutically acceptable salt thereof, and methods of using the compound of formula (I) for the treatment of kidney disease, chronic kidney disease, diabetic kidney disease, diabetic nephropathy, kidney fibrosis or lung fibrosis.
  • Combination Therapy
  • Patients being treated for cardio-renal diseases such as chronic kidney disease may benefit from combination drug treatment. For example the compound of the present invention may be combined with one or more of angiotensin converting enzyme (ACE) inhibitors such as enalapril, captopril, ramipril, lisinopril, and quinapril; or angiontesin II receptor blockers (ARBs) such as losartan, olmesartan, and irbesartan; or antihypertensive agents such as amlodipine, nifedipine, and felodipine. The benefit of combination may be increased efficacy and/or reduced side effects for a component as the dose of that component may be adjusted down to reduce its side effects while benefiting from its efficacy augmented by the efficacy of the compound of formula (I) and/or other active component(s).
  • Patients presenting with chronic kidney disease treatable with ASKI inhibitors such as compound of formula (I), may also exhibit conditions that benefit from co-administration (as directed by a qualified caregiver) of a therapeutic agent or agents that are antibiotic, analgesic, antidepressant and/or anti-anxiety agents in combination with compound of formula (I). Combination treatments may be administered simultaneously or one after the other within intervals as directed by a qualified caregiver or via a fixed dose (all active ingredients are combined into the a single dosage form e.g. tablet) presentation of two or more active agents.
  • Pharmaceutical Compositions and Administration
  • The compound of the present invention may be administered in the form of a pharmaceutical composition. The present invention therefore provides pharmaceutical compositions that contain, as the active ingredient, the compound of formula (I), or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable excipients and/or carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants. The pharmaceutical compositions may be administered alone or in combination with other therapeutic agents. Compositions may be prepared for delivery as solid tablets, capsules, caplets, ointments, skin patches, sustained release, fast disintegrating tablets, inhalation preparations, etc. Typical pharmaceutical compositions are prepared and/or administered using methods and/or processes well known in the pharmaceutical art (see, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics, Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.).
  • Formulations for combination treatments comprising the compound of formula (I) may be presented as fixed dose formulations e.g. tablets, elixirs, liquids, ointments, inhalants, gels, etc., using procedures known to one of skill in the art.
  • Pharmaceutical compositions of the compound of formula (I) may be administered in either single or multiple doses by routes including, for example, rectal, buccal, intranasal and transdermal routes; by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, as an inhalant, or via an impregnated or coated device such as a stent, for example, or an artery-inserted cylindrical polymer. Most preferred routes of administration include oral, parental and intravenous administration.
  • The compound of formula (I) may be administered in a pharmaceutically effective amount. For oral administration, each dosage unit preferably contains from 1 mg to 500 mg of the compound of formula (I). A more preferred dose is from 1 mg to 250 mg of the compound of formula (I). Particularly preferred is a dose of the compound of formula (I) ranging from about 20 mg twice a day to about 50 mg twice a day. It will be understood, however, that the amount of the compound actually administered usually will be determined by a physician in light of the relevant circumstances including the condition to be treated, the chosen route of administration, co-administration compound if applicable, the age, weight, response of the individual patient, the severity of the patient's symptoms, and the like. Nomenclature The name of the compound of the present invention as generated using ChemBioDraw
  • Ultra 11.
  • Figure US20180099950A1-20180412-C00005
  • is 5-(4-cyclopropyl-1H-imidazol-1-yl)—N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)-2-fluoro-4-methylbenzamide also known as 5-((4-cyclopropyl-1H-imdazol-1-yl)-2-fluoro-N-(6-(4-isopropyl-4H-1,2,4-triazole-3-yl) pyridine-2-yl)-4-methylbenzamide.
  • Synthesis of the Compound of Formula (I)
  • The compound of the invention may be prepared using methods disclosed herein or modifications thereof which will be apparent given the disclosure herein. The synthesis of the compound of the invention may be accomplished as described in the following example. If available, reagents may be purchased commercially, e.g. from Sigma Aldrich or other chemical suppliers. Alternatively, reagents may be prepared using reaction schemes and methods known to one of skill in the art.
  • Synthetic Reaction Parameters
  • The terms “solvent,” “inert organic solvent” or “inert solvent” refer to a solvent inert under the conditions of the reaction being described in conjunction therewith (including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (THF), dimethylformamide (DMF), chloroform, methylene chloride (or dichloromethane), diethyl ether, petroleum ether (PE), methanol, pyridine, ethyl acetate (EA) and the like. Unless specified to the contrary, the solvents used in the reactions of the present invention are inert organic solvents, and the reactions are carried out under an inert gas, preferably nitrogen.
  • One method of preparing compounds of formula (I) is shown in Reaction Schemes 1 and 2 below.
  • Figure US20180099950A1-20180412-C00006
  • Preparation of Compound A
  • To a solution of methyl 6-aminopicolinate (432 g, 2.84 mol) in MeOH (5 L) was added NH2NH2.H2O (284 g, 5.68 mol, 2.0 eq.). The reaction mixture was heated under reflux for 3 hr and then cooled to room temperature. The precipitate formed in the mixture was collected by filtration, washed with EA (2 L×2) and then dried in vacuo to give compound A (405 g, 94% yield) as white solid.
  • Preparation of Compound B
  • A mixture of compound A (405 g, 2.66 mol) in dimethylformamide-dimethylacetal (DMF-DMA) (3.54 L) was heated under reflux for 18 hr, cooled to room temperature and then concentrated under reduced pressure. The residue was taken up in EA (700 mL) and heated at 50° C. for 20 min. After being cooled to room temperature, the solid was collected by filtration and dried in vacuo to give compound B (572 g, 82% yield) as white solid.
  • Preparation of C
  • To a solution of compound B (572 g, 2.18 mol) in a mixture of CH3CN-AcOH (3.6 L, 4:1) was added propan-2-amine (646 g, 5.0 eq.). The resulting mixture was heated under reflux for 24 hr and then cooled to room temperature, and the solvent was removed under reduced pressure. The residue was dissolved in water (2.8 L) and 1 N aqueous NaOH was added to a pH of 8.0 H. The precipitate was collected by filtration and the filtrate was extracted with EA (500 mL×3). The combined organic layers were dried over anhydrous Na2SO4, and then concentrated to a volume of 150 mL. To this mixture at 0° C. was slowly added PE (400 mL) and the resulting suspension was filtered. The combined solid was re-crystallized from EA-PE to give compound C (253 g, 57% yield) as off-white solid.
  • 1H-NMR (400 MHz, CDC13): δ 8.24 (s, 1H), 7.52 (m, 2 H), 6.51 (dd, J=1.6, 7.2 Hz, 1H), 5.55 (m, 1H), 4.46 (bs, 2 H), 1.45 (d, J=6.8 Hz, 6 H). MS (ESI+) m/z: 204 (M+1)+. Compound C is a key intermediate for the synthesis of the compound of formula (I). Thus, an object of the present invention is also the provision of the intermediate compound C,
  • Figure US20180099950A1-20180412-C00007
  • its salts or protected forms thereof, for the preparation of the compound of formula (I). An example of a salt of the compound C is the HCl addition salt. An example of a protected form of compound C is the carbamate compound such as obtained with Cbz-Cl. Protective groups, their preparation and uses are taught in Peter G. M. Wuts and Theodora W. Greene, Protective Groups in Organic Chemistry, 2nd edition, 1991, Wiley and Sons, Publishers.
    Preparation of the Compound of formula (I) continued:
  • Figure US20180099950A1-20180412-C00008
  • Compound 6 is a key intermediate for the synthesis of the compound of formula (I). Thus an object of the present invention is also the provision of intermediate compound 6,
  • Figure US20180099950A1-20180412-C00009
  • salts or protected forms thereof, for the preparation of the compound of formula (I). An example of a salt of the compound 6 is the HCl addition salt. An example of a protected form of the compound 6 is an ester (e.g. methyl, ethyl or benzyl esters) or the carbamate compound such as obtained with Cbz-Cl. Protective groups, their preparations and uses are taught in Peter G. M. Wuts and Theodora W. Greene, Protective Groups in Organic Chemistry, 2nd edition, 1991, Wiley and Sons, Publishers.
    Step 1—Preparation of 5-amino-2-fluoro-4-methylbenzonitrile—Compound (2)
  • The starting 5-bromo-4-fluoro-2-methylaniline (1) (20 g, 98 mmol) was dissolved in anhydrous 1-methylpyrrolidinone (100 mL), and copper (I) cyanide (17.6 g, 196 mmol) was added. The reaction was heated to 180° C. for 3 hours, cooled to room temperature, and water (300 mL) and concentrated ammonium hydroxide (300 mL) added. The mixture was stirred for 30 minutes and extracted with EA (3×200 mL). The combined extracts were dried over magnesium sulfate, and the solvent was removed under reduced pressure. The oily residue was washed with hexanes (2×100 mL), and the solid dissolved in dichloromethane and loaded onto a silica gel column. Eluting with 0 to 25% EA in hexanes gradient provided 5-amino-2-fluoro-4-methylbenzonitrile (10.06g, 67.1 mmol). LC/MS (m/z:151 M+1).
  • Step 2—Preparation of 5-(2-cyclopropyl-2-oxoethylamino)-2-fluoro-4-methylbenzonitrile—Compound (3)
  • 5-Amino-2-fluoro-4-methylbenzonitrile (12 g, 80 mmol) was dissolved in anhydrous N,N-dimethylformamide (160 mL) under nitrogen, and potassium carbonate (13.27 g, 96 mmol) and potassium iodide (14.61 g, 88 mmol) were added as solids with stirring. The reaction was stirred for 5 minutes at room temperature and then bromomethyl cyclopropylketone (20.24 mL, 180 mmol) was added. The reaction mixture was heated to 60° C. for 3 hours, and then the solvents removed under reduced pressure. The residue was dissolved in EA (400 mL) and washed with 400 mL of water. The organic layer was dried over magnesium sulfate, and solvent was removed under reduced pressure. The residue was re-dissolved in a minimum amount of EA, and hexanes were added to bring the solution to 3:1 hexanes: EA by volume. The product precipitated out of solution and was collected by filtration to provide 5-(2-cyclopropyl-2-oxoethylamino)-2-fluoro-4-methylbenzonitrile (14.19 g, 61.2 mmol). LC/MS (m/z : 233, M+1)
  • Step 3—Preparation of 5-(4-cyclopropyl-2-mercapto-1H-imidazol-1-yl)-2-fluoro-4-methylbenzonitrile—Compound (4)
  • 5-(2-Cyclopropyl-2-oxoethylamino)-2-fluoro-4-methylbenzonitrile (14.19 g, 61.2 mmol) was dissolved in glacial acetic acid (300 mL). Potassium thiocyanate (11.9 g, 122.4 mmol) was added as a solid with stirring. The reaction mixture was heated to 110° C. for 4 hours at which time the solvent was removed under reduced pressure. The residue was taken up in dichloromethane (200 mL) and washed with 200 mL water. The aqueous extract was extracted with (2×200 mL) additional dichloromethane, the organic extracts combined and dried over magnesium sulfate. The solvent was removed under reduced pressure and the oily residue was re-dissolved in EA (50 mL) and 150 mL hexanes was added. A dark layer formed and a stir bar was added to the flask. Vigorous stirring caused the product to precipitate as a peach colored solid. The product was collected by filtration, to yield 5-(4-cyclopropyl-2-mercapto-1H-imidazol-1-yl)-2-fluoro-4-methylbenzonitrile, (14.26 g, 52.23 mmol). Anal. LC/MS (m/z : 274, M+1)
  • Step 4—Preparation of 5-(4-cyclopropyl-1H-imidazol-1-yl)-2-fluoro-4-methylbenzonitrile—Compound (5)
  • In a 500 mL three neck round bottom flask was placed acetic acid (96 mL), water (19 mL) and hydrogen peroxide (30%, 7.47 mL, 65.88 mmol). The mixture was heated to 45° C. with stirring under nitrogen while monitoring the internal temperature. 5-(4—Cyclopropyl-2-mercapto-1H-imidazol-1-yl)-2-fluoro-4-methylbenzonitrile (6.00 g, 21.96 mmol) was then added as a solid in small portions over 30 minutes while maintaining an internal temperature below 55° C. When addition of the thioimidazole was complete the reaction was stirred for 30 minutes at a temperature of 45° C., and then cooled to room temperature, and a solution of 20% wt/wt sodium sulfite in water (6 mL) was slowly added. The mixture was stirred for 30 minutes and solvents were removed under reduced pressure. The residue was suspended in 250 mL of water and 4N aqueous ammonium hydroxide was added to bring the pH to ˜10. The mixture was extracted with dichloromethane (3×200 ml), the organics combined, dried over magnesium sulfate, and the solvent was removed under reduced pressure. The residue was dissolved in 20 mL EA, and 80 mL of hexanes were added with stirring. The solvents were decanted off and an oily residue was left behind. This process was repeated and the product, 5-(4-cyclopropyl-1H-imidazol-1-yl)-2-fluoro-4-methylbenzonitrile was obtained as a viscous oil (5.14 g, 21.33 mmol) Anal. LC/MS (m/z: 242, M+1)
  • Step 5—Preparation of 5-(4-cyclopropyl-1H-imidazol-1-yl)-2-fluoro-4-methylbenzoic acid hydrochloride (6)
  • 5-(4-Cyclopropyl-1H-imidazol-1-yl)-2-fluoro-4-methylbenzonitrile (11.21 g, 46.50 mmol) was placed in a round bottom flask fitted with a reflux condenser, and suspended in 38% hydrochloric acid (200 mL). The mixture was heated to 100° C. for 4.5 hours, and then cooled to room temperature. Solvent was removed under reduced pressure to give a pink solid, to which was added 100 ml of EA. The solid product was collected by filtration and washed with 3×100 mL EA. To the solid product was added 100 mL 10% methanol in dichloromethane, the mixture stirred, and the filtrate collected. This was repeated with 2 more 100 ml portions of 10% methanol in dichloromethane. The filtrates were combined and solvent was removed under reduced pressure, to provide crude 5-(4-cyclopropyl-1H-imidazol-1-yl)-2-fluoro-4-methylbenzoic acid hydrochloride. No further purification was carried out (11.13 g, 37.54 mmol). Anal. LC/MS (m/z: 261, M+1)
  • Step 6—Preparation of 5-(4-cyclopropyl-1H-imidazol-1-yl)-2-fluoro—N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl) pyridin-2-yl)-4-methylbenzamide—formula (I)
  • 5-(4-Cyclopropyl-1H-imidazol-1-yl)-2-fluoro-4-methylbenzoic acid hydrochloride (1.5 g, 5.07 mmol) was suspended in anhydrous 1,2-dichloromethane (25 mL) at room temperature. Oxalyl chloride (0.575 ml, 6.59 mmol) was added with stirring under nitrogen, followed by N,N-dimethylformamide (0.044 ml, 0.507 mmol). The mixture was stirred for 4 hr at room temperature, and then the solvent was removed under reduced pressure. The residue was dissolved in 25 mL anhydrous dichloromethane. 6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-amine (1.13 g, 5.58 mmol) (compound C) and 4-dimethylaminopyridine (0.62 g, 5.07 mmol) were rapidly added with stirring under nitrogen. The reaction was stirred for 2 hours at room temperature and aqueous saturated NaHCO3 (15 mL) was added. The mixture was stirred for 10 minutes, and the layers were separated, and the aqueous layer was washed 1×20 mL dichloromethane. The combined organics were dried (MgSO4), filtered and concentrated. The residue was dissolved in a minimum amount of CH3CN and water was slowly added until solids precipitated from the mixture. The solid was collected by filtration and dried to give 5-(4-cyclopropyl-1H-imidazol-1-yl)-2-fluoro-N-(6-(4-isopropyl-4H-1,2,4-triazol-3- yl) pyridin-2-yl)-4-methylbenzamide in ˜96% purity (1.28 g, 2.88 mmol). Anal. LC/MS (m/z: 446, M+1). The material was further purified by RP-HPLC (reverse phase HPLC) to obtain an analytically pure sample as the HCl salt.
  • Figure US20180099950A1-20180412-C00010
  • C24H24FN7O—HCl. 446.2 (M+1). 1H-NMR (DMSO): δ 11.12 (s, 1H), 9.41 (s, 1H), 9.32 (s, 1H), 8.20 (d, J=8.4 Hz, 1H), 8.07 (t, J=8.4 Hz, 1H), 7.95 (d, J=6.4 Hz, 1H), 7.92 (d, J=7.6 Hz, 1H), 7.79 (s, 1H), 7.59 (d, J=10.4 Hz, 1H), 5.72 (sept, J=6.8 Hz, 1H), 2.29 (s, 3H), 2.00-2.05 (m, 1H), 1.44 (d, J=6.8 Hz, 6H), 1.01-1.06 (m, 2H), 0.85-0.89 (m, 2H).
  • Biological Assays ASK1 (Apoptosis Signal-Regulating Kinase 1) TR-FRET Kinase Assay (Biochemical IC50)
  • The ability of compounds to inhibit ASK1 kinase activity was determined using a time resolved fluorescence resonance energy transfer [TR-FRET] assay utilizing biotinylated myelin basic protein [biotin-MBP] as the protein substrate. A Beckman Biomek FX liquid handling robot was utilized to spot 2 μL/well of compounds in 2.44% aqueous DMSO into low volume 384-well polypropylene plates [Nunc, #267460] to give a final concentration of between 100 μM and 0.5nM compound in the kinase assay. A Deerac Fluidics Equator was used to dispense 3 μL/well of 0.667ng/μL [Upstate Biotechnologies, #14-606, or the equivalent protein prepared in-house] and 0.1665 ng/mL biotin-MBP [Upstate Biotechnologies, #13-111] in buffer (85 mM MOPS, pH 7.0, 8.5 mM Mg-acetate, 5% glycerol, 0.085% NP-40, 1.7mM DTT and 1.7 mg/mL BSA) into the plates containing the spotted compounds.
  • The enzyme was allowed to pre-incubate with compound for 20 minutes prior to initiating the kinase reaction with the addition of 5 μL/well 300 μM ATP in buffer (50 mM MOPS, pH 7.0, 5 mM Mg-acetate, 1 mM DTT, 5% DMSO) using the Deerac Fluidics Equator. The kinase reactions were allowed to proceed for 20 minutes at ambient temperature and were subsequently stopped with the addition of 5 μL/well 25 mM EDTA using the Deerac Fluidics Equator. The Biomek FX was then used to transfer 1 μL/well of each completed kinase reaction to the wells of an OptiPlate-1536 white polystyrene plate [PerkinElmer, #6004299] that contained 5 μL/well detection reagents (1.11 nM Eu-W1024 labeled anti-phosphothreonine antibody [PerkinElmer, #AD0094] and 55.56 nM streptavidin allophycocyanin [PerkinElmer, #CR130-100] in 1× LANCE detection buffer [PerkinElmer, #CR97-100]). The TR-FRET signal was then read on a Perkin Elmer Envision plate reader after incubating the plates at ambient temperature for 2 hours.
  • The 100% inhibition positive control wells were generated by switching the order of addition of the EDTA and ATP solutions described above. These wells and 0% inhibition wells containing spots of 2.44% DMSO at the beginning of the assay were used in calculating the % inhibition for the test compounds.
  • Result
  • The compound of formula (I) inhibited ASK1 with an IC50 of 3.0 nM. This data suggests that the compound of formula (I) is a potent inhibitor of ASK1 in the presence of the competitive ligand ATP.
  • In an updated version of the assay above, the inhibitory activity of compound of the invention against ASK1 was examined using a TR-FRET ASK1 assay which determined the amount of phosphate transferred to a peptide substrate from ATP.
  • Materials and Methods Reagents
  • Dephosphorylated recombinant human ASK1 kinase was from Gilead Sciences. Small molecule kinase inhibitor staurosporine (Catalogue #S6942) and dithiothreitol (DTT, catalogue #43815-5G) were obtained from Sigma Chemicals (St. Louis, Mo.). ATP (catalogue #7724) was from Affymetrix (Santa Clara, Calif.) and the compound of formula (I) was from Gilead Sciences. HTRF KinEASE™—STK S3 kit was obtained from Cisbio (Bedford, Mass). All other reagents were of the highest grade commercially available.
  • Assays
  • The assay measures the phosphorylation level of a biotinylated peptide substrate by the ASK1 kinase using HTRF detection (6.1). This is a competitive, time-resolved fluorescence resonance energy transfer (TR-FRET) immunoassay, based on HTRF® KinEASE™—STK manual from Cisbio (6.1). Test compound, 1 μM STK3 peptide substrate, 4 nM of ASK1 kinase are incubated with 10 mM MOP buffer, pH. 7.0 containing 10 mM Mg-acetate, 0.025% NP-40, 1 mM DTT, 0.05% BSA and 1.5% glycerol for 30 minutes then 100 □M ATP is added to start the kinase reaction and incubated for 3 hr. Peptide antibody labeled with 1× Eu3+ Cryptate buffer containing 10 mM EDTA and 125 nM Streptavidin XL665 are added to stop the reaction and phosphorylated peptide substrate is detected using Envision 2103 Multilabeled reader from PerkinElmer. The fluorescence is measured at 615 nm (Cryptate) and 665 nm (XL665) and a ratio of 665 nm/615 nm is calculated for each well. The resulting TR-FRET level (a ratio of 665 nm/615 nm) is proportional to the phosphorylation level. Under these assay conditions, the degree of phosphorylation of peptide substrate was linear with time and concentration for the enzyme. The assay system yielded consistent results with regard to Km and specific activities for the enzyme. For inhibition experiments (IC50 values), activities were performed with constant concentrations of ATP, peptide and several fixed concentrations of inhibitors. Staurosporine, the nonselective kinase inhibitor, was used as the positive control. All enzyme activity data are reported as an average of quadruplicate determination.
  • Data Analysis
  • The IC50 values were calculated following equation:

  • y=Range/{1+(x/IC50)s}+Background
  • Where x and y represent the concentration of inhibitors and enzyme activity, respectively. Enzyme activity is expressed as the amount of Phosphate incorporated into substrate peptide from ATP. Range is the maximum y range (no inhibitor, DMSO control) and s is a slope factor (6.2).
  • Results
  • The compound of formula (I) exhibited an IC50 of 3.2 nM under this test condition. The data demonstrates that the compound of formula (I) is a potent inhibitor of the ASK-1 1 receptor.
  • ASK1 (Apoptosis Signal-Regulating Kinase 1) 293 Cell-Based Assay (Cellular EC50)
  • The cellular potency of compounds was assayed in cells stably expressing an AP-1:luciferase reporter construct (293/AP1-Luc cells - Panomics Inc., 6519 Dumbarton Circle, Fremont, Calif.). Cells were infected with an adenovirus expressing kinase active ASK1 (631-1381 of rat ASK1 cDNA), which will activate the AP-1 transcription factor and increase the expression of luciferase. Inhibitors of ASK1 will decrease the enzyme activity of ASK1 and therefore decrease the activity of AP-1 transcription factor and the expression of luciferase.
  • 1. Materials Required for This Protocol
  • Media and Reagents Source Company Catalog No.
    AP-1 Reporter 293 Stable Cell Line Panomics Unknown
    DMEM (w/high glucose, w/o L- MediaTech 15-018-CM
    glutamine, w/pyruvate, w/HEPES
    DMEM (w/high glucose, w/o L- Invitrogen 31053-028
    glutamine, w/o pyruvate, w/o
    HEPES, w/o phenol red
    HEPES, 1M Invitrogen 15630-080
    Sodium Pyruvate, 100 mM Invitrogen 11360-070
    Fetal Bovine Serum, “FBS” Hyclone SH30088.03
    Pen-Strep-Glut., “PSG” Invitrogen 10378-016
    HygromycinB Calbiochem 400052
    Dulbecco's PBS (sterile) MediaTech 21-030-CM
    Trypsin-EDTA (0.25%) Invitrogen 25200-056
    Steady-Glo Luciferase Assay Promega E2550
    System
    Labware Source Catalog No.
    Flasks (poly-D-Lysine coated, 150 BD Biosciences 356538
    cm2, vented cap)
    Plates (poly-D-Lysine coated, 384- Greiner (through 781944
    well, white/clear, sterile TCT) VWR Scientific) (82051-354)
    White Backing Tape PerkinElmer 6005199
    Cell Strainers (40 um nylon, blue VWR Scientific 21008-949
    ring, fits 50 mL conical vials)
  • 2. Reference Materials
  • Panomics 293/AP1-Luc stable cell-line product insert.
    Promega Steady-Glo Luciferase Assay System product insert.
  • 3. Media Required Complete Growth Medium, “CGM” DMEM (MediaTech) 10% FBS 1% PSG
  • 100 ug/mL HygromycinB
  • Assay Medium, “AM” DMEM (Invitrogen) 25 mM HEPES 1 mM Sodium Pyruvate 1% PSG 4. Methods Maintenance:
  • 293/AP1-Luc Maintain 293/Acells per vendor's instructions; harvest cells at ˜80% confluence in T150 flasks as follows:
  • Aspirate media, wash gently with ˜12 mL sterile D-PBS, aspirate.
    Add 5 mL Trypsin-EDTA, tilt gently to coat flask, and incubate ˜5 min at 37° C.
    Do not tap flask; add 5 mL CGM, wash flask 4X with cell suspension, transfer to 50 mL conical vial, centrifuge 5 min at 1200 rpm.
    Aspirate media from cell pellet, add 20 to 30 mL CGM, resuspend pellet by pipeting 6×, pass through cell strainer to disperse clumps (if necessary), and count cells with hemocytometer.
  • Assay Day 1:
  • Harvest cells as above, except resuspend cell pellet.
  • Count cells and dilute to 1.5×105 cells per mL; add adenovirus such that there are 5 infectious forming units per cell.
  • Prime (20 to 30 mL) and plate cells in Greiner poly-D-Lysine coated 384-well plates at 1.2×104 cells per well using BioTek uFill (80 uL per well).
    Immediately dose plates with 0.4 uL of compound dose series (in 100% DMSO) incubate 24 hours in humidified incubator (37° C., 5% CO2).
  • Assay Day 2:
  • Process plates (per manufacturer's instructions) as follows:
  • Set plates in laminar flow hood & uncover for 30 minutes at room temperature to cool.
    Remove 60 uL of AM from assay wells
    Add 20 uL per well Steady-Glo Firefly substrate, let sit for 10-20 minutes at room temperature
    Cover bottom of assay plates with white backing tape.
    Acquire data on a fluorescence plate reader
    The 100% inhibition positive control wells were generated by infecting cells with an adenovirus expressing catalytically inactive ASK1 mutant with lysine to argine mutation at residue 709.
  • Result
  • The compound of formula (I) exhibits an EC50 of 2.0 nM.
  • Determination of Kd Kinase Assays
  • Kinase-tagged T7 phage strains were prepared in an E. coli host derived from the BL21 strain. E. coli were grown to log-phase and infected with T7 phage and incubated with shaking at 32° C. until lysis. The lysates were centrifuged and filtered to remove cell debris. The remaining kinases were produced in HEK-293 cells and subsequently tagged with DNA for qPCR detection. Streptavidin-coated magnetic beads were treated with biotinylated small molecule ligands for 30 minutes at room temperature to generate affinity resins for kinase assays.
  • The liganded beads were blocked with excess biotin and washed with blocking buffer (SeaBlock (Pierce), 1% (bovine serum albumin), 0.05% Tween 20, 1 mM DTT(dithiothreitol)) to remove unbound ligand and to reduce non-specific binding. Binding reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1× binding buffer (20% SeaBlock, 0.17×PBS, 0.05% Tween 20, 6 mM DTT). All reactions were performed in polystyrene 96-well plates in a final volume of 0.135 mL. The assay plates were incubated at room temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1×PBS, 0.05% Tween 20). The beads were then re-suspended in elution buffer (1×PBS, 0.05% Tween 20, 0.5 μM non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The kinase concentration in the eluates was measured by qPCR.
  • Binding constants (Kds) were calculated with a standard dose-response curve using the Hill equation.
  • Result
  • The compound of formula (I) exhibited a Kd of 0.24 nM. This data suggests that the compound of formula (I) binds potently to ASK1 receptor in the absence of ATP.
  • Determination of Percent of Compound Bound to Plasma Experimental Design:
  • 1 mL Teflon dialysis cells from Harvard Apparatus (Holliston, Mass., USA) were used in these experiments. Prior to the study, dialysis membrane was soaked for approximately one hour in 0.133 M phosphate buffer, pH 7.4. A nominal concentration of 2 μM of compound was spiked into 1 mL of plasma or 1 mL of cell culture media. The total volume of liquid on each side of the cell was 1 mL. After 3 hours equilibration in a 37° C. water bath, samples from each side of the cell were aliquoted into the appropriate vials containing either 1 mL of human plasma (cell culture media), or buffer. Sample vials were weighed and recorded. A 100 μL aliquot was removed and added to 400 μL quenching solution (50% methanol, 25% acetonitrile, 25% water and internal standard). Samples were vortexed and centrifuged for 15 minutes at 12000 G. 200 pL of the supernatant was removed and placed into a new 96 well plate. An additional 200 μL of 1:1 ACN:water was added. The plate was then vortexed and subjected to LC-MS analysis. The percent unbound for an analyte in plasma was calculated using the following equations

  • % Unbound=100(C f /C t)
  • where Cf and Ct are the post-dialysis buffer and plasma concentrations, respectively.
  • Results
  • The percent unbound measured in human plasma for the compound of formula (I) is 11.94%
  • Determination of CACO-2 Efflux Ratio Experimental:
  • Caco-2 cells were maintained in Dulbecco's Modification of Eagle's Medium (DMEM) with sodium pyruvate, Glutmax supplemented with 1% Pen/Strep, 1% NEAA and 10% fetal bovine serum in an incubator set at 37° C., 90% humidity and 5% CO2. Caco-2 cells between passage 62 and 72 were seeded at 2100 cells/well and were grown to confluence over at least 21-days on 24 well PET (polyethylene-terephthalate) plates (BD Biosciences). The receiver well contained HBSS buffer (10 mM HEPES, 15 mM Glucose with pH adjusted to pH 6.5) supplemented with 1% BSA pH adjusted to pH 7.4. After an initial equilibration with transport buffer, TEER values were read to test membrane integrity. Buffers containing test compounds were added and 100 μl of solution was taken at 1 and 2 hrs from the receiver compartment. Removed buffer was replaced with fresh buffer and a correction is applied to all calculations for the removed material. The experiment was carried out in replicate. All samples were immediately collected into 400 μl 100% acetonitrile acid to precipitate protein and stabilize test compounds. Cells were dosed on the apical or basolateral side to determine forward (A to B) and reverse (B to A) permeability. Permeability through a cell free trans-well is also determined as a measure of cellular permeability through the membrane and non-specific binding. To test for non-specific binding and compound instability percent recovery is determined. Samples were analyzed by LC/MS/MS.
  • The apparent permeability, Papp, and % recovery were calculated as follows:

  • P app=(dR/dtV r/(A×D 0)

  • % Recovery=100×((V r ×R 120)+(V d ×D 120))/(V d ×D 0)
  • where,
    dR/dt is the slope of the cumulative concentration in the receiver compartment versus time in
    μM/s based on receiver concentrations measured at 60 and 120 minutes.
    Vr and Vd is the volume in the receiver and donor compartment in cm3, respectively.
    A is the area of the cell monolayer (0.33 cm2).
    D0 and D120 is the measured donor concentration at the beginning and end of the experiment, respectively.
    R120 is the receiver concentration at the end of the experiment (120 minutes).
  • Absorption and Efflux Classification:
  • Papp (A to B) ≥ 1.0 × 10−6 cm/s High
    1.0 × 10−6 cm/s > Papp (A to B) ≥ Medium
    0.5 × 10−6 cm/s
    Papp (A to B) < 0.5 × 10−6 cm/s Low
    Papp (B to A)/Papp (A to B) ≥ 3 Significant Efflux
    % recovery < 20% May affect measured permeability
    Cell Free Papp < 15 May affect measured permeability
  • Result
  • The compound of formula (I) was observed to have a CACO A→B value of 27; and a CACO B→A value of 35 resulting in a efflux ratio (B→A)/(A→B) of 1.3.
  • Determination of Metabolic Stability in Hepatic Microsomal Fraction: Experimental:
  • Metabolic stability was assessed using cofactors for both oxidative metabolism (NADPH) and conjugation (UDP glucuronic acid (UDPGA)). Duplicate aliquots of the compound of formula (I) (3 μL of 0.5 mM DMSO stock) or metabolic stability standards (Buspirone) were added to microsome stock diluted with potassium phosphate buffer, pH 7.4, to obtain a protein concentration of 1.0 mg/mL and containing alamethicin as a permeabilizing agent. Metabolic reactions were initiated by the addition of NADPH regenerating system and UDPGA cofactor. The final composition of each reaction mixture was: 3 μM test compound, 1 mg microsomal protein/mL, 5 mM UDPGA, 23.4 μg/mL alamethicin, 1.25 mM NADP, 3.3 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase and 3.3 mM MgCl2 in 50 mM potassium phosphate buffer, pH 7.4. At 0, 2, 5, 10, 15, 30, 45, and 60 min, 25 μL aliquots of the reaction mixture were transferred to plates containing 250 μl of IS/Q (quenching solution containing internal standard). After quenching, the plates were centrifuged at 3000×g for 30 minutes, and 10 μL aliquots of the supernatant were analyzed using LC/MS to obtain analyte/internal standard peak area ratios.
  • Metabolic stability in microsomal fractions were determined by measuring the rate of disappearance of the compound of formula (I). Data (% of parent remaining) were plotted on a semi logarithmic scale and fitted using an exponential fit:

  • C t =C 0 ·e −K·t and T 1/2=ln2/K where
  • Ct % of parent remaining at time=t
    C0 % of parent remaining at time=0
    t time (hr)
    K First order elimination rate constant (hr−1)
    T½ In vitro half-life (hr)
    The predicted hepatic clearance was calculated as follows {reference 1}:

  • CL int =K·V·Y P /P or CL int =K·V·Y H /H

  • CL h=(CL int ·Q h)/(CL int +Q h), where
  • CLh Predicted hepatic clearance (L/hr/kg body weight)
    CLint Intrinsic hepatic clearance (L/hr/kg body weight)
    V Incubation volume (L)
    YP Microsome protein yield (mg protein/kg body weight)
    YH Hepatocyte yield (millions of cells/kg body weight)
    P Mass of protein in the incubation (mg)
    H Number of hepatocytes in the incubation (million)
    Qh Hepatic blood flow (L/hr/kg body weight)
  • Predicted hepatic extraction was then calculated by comparison of predicted hepatic clearance to hepatic blood flow. A compound was considered stable if the reduction of substrate concentration was <10% over the course of the incubation (corresponding to an extrapolated half-life of >395 min in microsomal fractions and >39.5 hr in hepatocytes).
  • Values used for calculation of the predicted hepatic clearance are shown in the tables below:
  • TABLE 1
    Values Used for Calculation of the Predicted
    Hepatic Clearance from Microsomal Stability
    Hepatic Microsomes
    V P Y Qh
    Species (L) (mg) (mg/kg) (L/kg)
    Rat 0.001 1.0 1520 4.2
    Cynomolgus Monkey 0.001 1.0 684 1.6
    Rhesus Monkey 0.001 1.0 1170 2.3
    Dog 0.001 1.0 1216 1.8
    Human 0.001 1.0 977 1.3
  • Result:
  • The predicted hepatic clearance in human as determined from in vitro experiments in microsomal fractions is 0.1 L/h/kg.
  • Determination of Rat CL and Vss for Test Compounds
  • Pharmacokinetics of Test Compounds following a 1 mg/kg IV infusion and 5.0 mg/kg PO dose in rats
  • Test Article and Formulation
  • For IV administration the test compound was formulated in 60:40 PEG 400:water with 1 equivalent HCl at 0.5 mg/mL. The formulation was a solution. For PO (oral) administration, the test compound was formulated in 5/75/10/10 ethanol/PG/solutol/water at 2.5 mg/mL. The formulation was a solution.
  • Animals Used
  • IV and PO dosing groups each consisted of 3 male SD rats. At dosing, the animals generally weighed between 0.317 and 0.355 kg. The animals were fasted overnight prior to dose administration and up to 4 hr after dosing.
  • Dosing
  • For the IV infusion group, the test compound was administered by intravenous infusion over 30 minutes. The rate of infusion was adjusted according to the body weight of each animal to deliver a dose of 1 mg/kg at 2 mL/kg. For the oral dosing group, the test article was administered by oral gavage at 2 mL/kg for a dose of 5.0 mg/kg.
  • Sample Collection
  • Serial venous blood samples (approximately 0.4 mL each) were taken at specified time points after dosing from each animal. The blood samples were collected into Vacutainer™ tubes (Becton-Disckinson Corp, N.J., USA) containing EDTA as the anti-coagulant and were immediately placed on wet ice pending centrifugation for plasma.
  • Determination of the Concentrations of the Compound of Formula (I) in Plasma
  • An LC/MS/MS method was used to measure the concentration of test compound in plasma.
  • Calculations
  • Non-compartmental pharmacokinetic analysis was performed on the plasma concentration-time data.
  • Results
  • The compound of formula (I) exhibited a CL of 0.09 L/hr/kg; an oral bioavailability of 75%; t112 of 5.07 hr and a Vss of 0.55 L/kg in rats.
  • Cyp Inhibition Assay Objective
  • To assess the potential of the test compound to inhibit the main cytochrome P450 isoforms, CYP1A, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 (2 substrates).
  • Cytochrome P450 Inhibition IC50 Determination (8 Isoform, 9 Substrates) Protocol Summary
  • Test compound (0.1 μM-25 μM) is incubated with human liver microsomes and NADPH in the presence of a cytochrome P450 isoform-specific probe substrate. For the CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 specific reactions, the metabolites are monitored by mass spectrometry. CYP1A activity is monitored by measuring the formation of a fluorescent metabolite. A decrease in the formation of the metabolite compared to the vehicle control is used to calculate an IC50 value (test compound concentration which produces 50% inhibition).
  • Assay Requirements
  • 500 μL of a 10 mM test compound solution in DMSO.
  • Experimental Procedure CYP1A Inhibition
  • Six test compound concentrations (0.1, 0.25, 1, 2.5, 10, 25 μM in DMSO; final DMSO concentration=0.3%) are incubated with human liver microsomes (0.25 mg/mL) and NADPH (1 mM) in the presence of the probe substrate ethoxyresorufin (0.5 μM) for 5 min at 37° C. The selective CYP1A inhibitor, alpha-naphthoflavone, is screened alongside the test compounds as a positive control.
  • CYP2B6 Inhibition
  • Six test compound concentrations (0.1, 0.25, 1, 2.5, 10, 25 μM in DMSO; final DMSO concentration=0.3%) are incubated with human liver microsomes (0.1 mg/mL) and NADPH (1 mM) in the presence of the probe substrate bupropion (110 μM) for 5 min at 37° C. The selective CYP2B6 inhibitor, ticlopidine, is screened alongside the test compounds as a positive control.
  • CYP2C8 Inhibition
  • Six test compound concentrations (0.1, 0.25, 1, 2.5, 10, 25 μM in DMSO; final DMSO concentration=0.3%) are incubated with human liver microsomes (0.25 mg/mL) and NADPH (1 mM) in the presence of the probe substrate paclitaxel (7.5 μM) for 30 min at 37° C. The selective CYP2C8 inhibitor, montelukast, is screened alongside the test compounds as a positive control.
  • CYP2C9 Inhibition
  • Six test compound concentrations (0.1, 0.25, 1, 2.5, 10, 25 μM in DMSO; final DMSO concentration=0.25%) are incubated with human liver microsomes (1 mg/mL) and NADPH (1 mM) in the presence of the probe substrate tolbutamide (120 μM) for 60 min at 37° C. The selective CYP2C9 inhibitor, sulphaphenazole, is screened alongside the test compounds as a positive control.
  • CYP2C19 Inhibition
  • Six test compound concentrations (0.1, 0.25, 1, 2.5, 10, 25 μM in DMSO; final DMSO concentration=0.25%) are incubated with human liver microsomes (0.5 mg/mL) and NADPH (1 mM) in the presence of the probe substrate mephenytoin (25 μM) for 60 min at 37° C. The selective CYP2C19 inhibitor, tranylcypromine, is screened alongside the test compounds as a positive control.
  • CYP2D6 Inhibition
  • Six test compound concentrations (0.1, 0.25, 1, 2.5, 10, 25 μM in DMSO; final DMSO concentration=0.25%) are incubated with human liver microsomes (0.5 mg/mL) and NADPH (1 mM) in the presence of the probe substrate dextromethorphan (5 μM) for 5 min at 37° C. The selective CYP2D6 inhibitor, quinidine, is screened alongside the test compounds as a positive control.
  • CYP3A4 Inhibition (Midazolam)
  • Six test compound concentrations (0.1, 0.25, 1, 2.5, 10, 25 μM in DMSO; final DMSO concentration=0.26%) are incubated with human liver microsomes (0.1 mg/mL) and NADPH (1 mM) in the presence of the probe substrate midazolam (2.5 μM) for 5 min at 37° C. The selective CYP3A4 inhibitor, ketoconazole, is screened alongside the test compounds as a positive control.
  • CYP3A4 Inhibition (Testosterone)
  • Six test compound concentrations (0.1, 0.25, 1, 2.5, 10, 25 μM in DMSO; final DMSO concentration=0.275%) are incubated with human liver microsomes (0.5 mg/mL) and NADPH (1 mM) in the presence of the probe substrate testosterone (50 μM) for 5 min at 37° C. The selective CYP3A4 inhibitor, ketoconazole, is screened alongside the test compounds as a positive control.
  • For the CYP1A incubations, the reactions are terminated by methanol, and the formation of the metabolite, resorufin, is monitored by fluorescence (excitation wavelength=535 nm, emission wavelength=595 nm). For the CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 incubations, the reactions are terminated by methanol. The samples are then centrifuged, and the supernatants are combined, for the simultaneous analysis of 4-hydroxytolbutamide, 4-hydroxymephenytoin, dextrorphan, and 1-hydroxymidazolam by LC-MS/MS. Hydroxybupropion, 6a-hydroxypaclitaxel and 6β-hydroxytestosterone are analysed separately by LC-MS/MS. Formic acid in deionised water (final concentration=0.1%) containing internal standard is added to the final sample prior to analysis. A decrease in the formation of the metabolites compared to vehicle control is used to calculate an IC50 value (test compound concentration which produces 50% inhibition).
  • Results
  • CYP450 Calculated
    Isoform Substrate Metabolite IC50 (μM)
    1A Ethoxyresorufin Resorufin >25 μM
    1A2 Phenacetin Acetaminophen >25 μM
    2B6 Bupropion Hydroxybupropion 19.2 μM
    2C8 Paclitaxel 6α-Hydroxypaclitaxel 21.6 μM
    2C9 Tolbutamide 4-Hydroxytolbutamide >25 μM
    2C19 S-mephenytoin 4-Hydroxymephenytoin >25 μM
    2D6 Dextromethorphan Dextrorphan 17.7 μM
    3A4 Midazolam Hydroxymidazolam 2.7 μM
    3A4 Testosterone 6 β Hydroxytestosterone 10.5 μM.
  • General Study Design for the Rat Unilateral Ureter Obstruction (UUO) Model of Kidney Fibrosis.
  • Male Sprague-Dawley rats were fed normal chow, housed under standard conditions, and allowed to acclimate for at least 7 days before surgery. At the inception of study, rats were placed into weight-matched groups, and administered (2 ml/kg p.o. bid) via oral gavage vehicle, one of four dose levels of compounds (1, 3, 10, or 30 mg/kg). Rats were anesthetized with isoflurane anesthesia on a nosecone, and laparotomy was performed. Rats underwent complete obstruction of the right ureter (UUO) using heat sterilized instruments and aseptic surgical technique. Rats were administered 50 μl Penicillin G (i.m.) immediately post-operatively. Rats were allowed to recover in a clean, heated cage before being returned to normal vivarium conditions. Rats were administered compounds at the dose described above twice daily (at 12 hour intervals) for the subsequent 7 days. On day 7 following surgery, rats were anesthetized with isoflurane and serum, plasma, and urine collected. Animals were then euthanized, the kidneys harvested, and renal cortical biopsies collected for morphological, histological, and biochemical analysis. All tissues for biochemical analysis are flash-frozen in liquid nitrogen and stored at −80° C., tissues for histological analysis were fixed in 10% neutral buffered formalin
  • Renal fibrosis was evaluated by measuring the amount of collagen IV in the kidney by an ELISA method and by examining the accumulation of alpha-smooth muscle actin positive myofibroblasts in the kidney by immunohistochemistry. For the former, a small piece of frozen kidney cortex was transferred homengenized in RIPA buffer then centrifuged at 14000×g for 10 minutes at at 4° C. The supernatant was collected into pre-chilled tubes and the protein concentration was determined. Equivalent amount of total protein were subjected to a Col IV ELISA assay (Exocell) according to the manufacturers instructions.
  • Formalin fixed and paraffin embedded kidney tissue was stained with an alpha-smooth muscle actin as previously described (Stambe et al., The Role of p38 Mitogen-Activated Protein Kinase Activation in Renal Fibrosis J Am Soc Nephrol 15: 370-379, 2004).
  • Results:
  • The compound of formula (I) was found to significantly reduce kidney Collagen IV induction (FIG. 1) and accumulation of alpha-smooth muscle positive myofibroblasts (FIG. 2) at doses of 3 to 30 mg/kg.
  • Comparative Data for Compound of Formula (I) and Reference Compounds
  • The following table provides comparative results for the compound of formula (I) and the reference compounds A and B disclosed in U.S. Patent publication No. 2001/00095410A1, published Jan. 13, 2011. Applicants note that experiments for which results are compared below were performed under similar conditions but not necessarily simultaneously.
  • TABLE
    Compound of
    formula (I) Compound A Compound B
    IC50 (nM) 3 5 6.5
    EC50 (nM) 2 3.4 18 (9X)
    PBadj EC50 (nM) 17 71 (4X) 563 (33X)
    CACO (A/B, B/A) 27/35 3.1/18.5 0.26/4
    Efflux ratio (B/A)/ 1.3 6.0 15.4
    (A/B)
    fu 12 4.8 3.2
    Cyp3A4 IC50 11 1.1 (10X) 4 (2.8X)
    Testesterone
    (TST)) (uM)
    Cyp3A4 IC50/ 647 15 (43X) 7 (92X)
    PBAdj.EC50
    Vss (L/Kg) in rats 0.55 0.17 (3.2X) 0.54
    CL (L/hr/kg) in rats 0.11 0.30 (2.7X) 0.39 (3.6X)
    % F in rats 75 11 (6.8X) 50 (1.5X)
    t½ in rats (hr) 5.07 0.59 (8.6X) 1.3 (3.9X)
    ( ) values in parenthesis represent the number of times the compound of formula (I) shows an improvement over the indicated compound for the indicated parameter.
  • The following can be deduced from the above comparative data: The compound of formula (I) has an EC50 that is comparable to that of Compound A. The compound of formula (I) has a functional IC50 that is comparable to IC50s for compounds A and B.
  • The compound of formula (I) has a protein binding adjusted EC50 that is 4 times lower than that of compound A and 33 times lower than that of compound B.
  • The compound of formula (I) is a weaker Cyp3A4 inhibitor compared to compounds A and B.
  • The compound of Formula (I) has a CYP3A4 IC50/ PBAdj.EC50 value that is 43 times higher than that for compound of formula A, and 92 times higher than for the compound of formula B.
  • The compound of formula (I) has a Rat CL value that is 2.7 times lower than that for compound of formula A, and 3.6 times lower than that for the compound of formula B. The compound of formula (I) has a percent bioavailability in rats that is 6.8 times higher than compound A and 1.5 times higher than compound B.
  • The compound of formula (I) has a half life in rats that is 8.6 times longer than that of compound A and 3.9 times longer than that of compound B.
  • The above data fairly suggest that the compound of formula (I) has unexpected and advantageous properties compared to compounds of formula A and B; and that the compound of formula (I) is likely a better candidate for further development for the treatment of chronic kidney disease, lung and/or kidney fibrosis, and/or cardio-renal diseases.

Claims (4)

What is claimed is:
1. A compound of formula (I)
Figure US20180099950A1-20180412-C00011
Namely, 5-(4-cyclopropyl-1H-imidazol-1-yl)—N-(6-(4-isopropyl-4H-1,2,4-triazol-3-yl)pyridin-2-yl)-2-fluoro-4-methylbenzamide, or a pharmaceutically acceptable salt thereof.
2. A pharmaceutical composition comprising a therapeutically effective amount of a compound or pharmaceutically acceptable salt of claim 1 and a pharmaceutically acceptable carrier.
3. A method of treating chronic kidney disease comprising administering a therapeutically effective amount of a compound of claim 1, or pharmaceutically acceptable salt thereof, to a patient in need thereof.
4. A method of treating diabetic kidney disease, diabetic nephropathy, kidney fibrosis, liver fibrosis, or lung fibrosis comprising administering a therapeutically effective amount of a compound or pharmaceutically acceptable salt of claim 1, to a patient in need thereof.
US15/840,429 2012-01-27 2017-12-13 Apoptosis signal-regulating kinase inhibitor Abandoned US20180099950A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/840,429 US20180099950A1 (en) 2012-01-27 2017-12-13 Apoptosis signal-regulating kinase inhibitor
US16/246,199 US10508100B2 (en) 2012-01-27 2019-01-11 Apoptosis signal-regulating kinase inhibitor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261591710P 2012-01-27 2012-01-27
US13/748,901 US8742126B2 (en) 2012-01-27 2013-01-24 Apoptosis signal-regulating kinase inhibitor
US14/254,359 US9333197B2 (en) 2012-01-27 2014-04-16 Apoptosis signal-regulating kinase inhibitor
US15/140,204 US9750730B2 (en) 2012-01-27 2016-04-27 Apoptosis signal-regulating kinase inhibitor
US15/491,689 US9873682B2 (en) 2012-01-27 2017-04-19 Apoptosis signal-regulating kinase inhibitor
US15/840,429 US20180099950A1 (en) 2012-01-27 2017-12-13 Apoptosis signal-regulating kinase inhibitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/491,689 Continuation US9873682B2 (en) 2012-01-27 2017-04-19 Apoptosis signal-regulating kinase inhibitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/246,199 Continuation US10508100B2 (en) 2012-01-27 2019-01-11 Apoptosis signal-regulating kinase inhibitor

Publications (1)

Publication Number Publication Date
US20180099950A1 true US20180099950A1 (en) 2018-04-12

Family

ID=47684038

Family Applications (7)

Application Number Title Priority Date Filing Date
US13/748,901 Active US8742126B2 (en) 2012-01-27 2013-01-24 Apoptosis signal-regulating kinase inhibitor
US14/254,359 Active US9333197B2 (en) 2012-01-27 2014-04-16 Apoptosis signal-regulating kinase inhibitor
US14/254,342 Active US9254284B2 (en) 2012-01-27 2014-04-16 Apoptosis signal-regulating kinase inhibitor
US15/140,204 Active US9750730B2 (en) 2012-01-27 2016-04-27 Apoptosis signal-regulating kinase inhibitor
US15/491,689 Active US9873682B2 (en) 2012-01-27 2017-04-19 Apoptosis signal-regulating kinase inhibitor
US15/840,429 Abandoned US20180099950A1 (en) 2012-01-27 2017-12-13 Apoptosis signal-regulating kinase inhibitor
US16/246,199 Active US10508100B2 (en) 2012-01-27 2019-01-11 Apoptosis signal-regulating kinase inhibitor

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US13/748,901 Active US8742126B2 (en) 2012-01-27 2013-01-24 Apoptosis signal-regulating kinase inhibitor
US14/254,359 Active US9333197B2 (en) 2012-01-27 2014-04-16 Apoptosis signal-regulating kinase inhibitor
US14/254,342 Active US9254284B2 (en) 2012-01-27 2014-04-16 Apoptosis signal-regulating kinase inhibitor
US15/140,204 Active US9750730B2 (en) 2012-01-27 2016-04-27 Apoptosis signal-regulating kinase inhibitor
US15/491,689 Active US9873682B2 (en) 2012-01-27 2017-04-19 Apoptosis signal-regulating kinase inhibitor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/246,199 Active US10508100B2 (en) 2012-01-27 2019-01-11 Apoptosis signal-regulating kinase inhibitor

Country Status (39)

Country Link
US (7) US8742126B2 (en)
EP (1) EP2807151B1 (en)
JP (1) JP5770950B2 (en)
KR (5) KR20170128622A (en)
CN (2) CN104080771B (en)
AP (1) AP2014007836A0 (en)
AR (2) AR089818A1 (en)
AU (1) AU2013201586C1 (en)
CA (3) CA3026700C (en)
CL (1) CL2014001988A1 (en)
CO (1) CO7061073A2 (en)
CR (1) CR20140405A (en)
CY (1) CY1117201T1 (en)
DK (1) DK2807151T3 (en)
EA (1) EA024746B1 (en)
ES (1) ES2558203T3 (en)
HK (1) HK1204324A1 (en)
HR (1) HRP20151399T1 (en)
HU (1) HUE028641T2 (en)
IL (3) IL233598A (en)
IN (1) IN2014DN06174A (en)
MA (1) MA35861B1 (en)
MD (1) MD4601B1 (en)
ME (1) ME02322B (en)
MX (3) MX2014009075A (en)
NZ (1) NZ739339A (en)
PE (1) PE20141822A1 (en)
PH (1) PH12014501697A1 (en)
PL (1) PL2807151T3 (en)
PT (1) PT2807151E (en)
RS (1) RS54492B1 (en)
SG (1) SG11201404348UA (en)
SI (1) SI2807151T1 (en)
SM (1) SMT201600047B (en)
TW (4) TWI634890B (en)
UA (1) UA112098C2 (en)
UY (1) UY34573A (en)
WO (1) WO2013112741A1 (en)
ZA (1) ZA201405260B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10238636B2 (en) 2014-09-24 2019-03-26 Gilead Sciences, Inc. Methods of treating liver disease
US10508100B2 (en) 2012-01-27 2019-12-17 Gilead Sciences, Inc. Apoptosis signal-regulating kinase inhibitor
US10604490B2 (en) 2014-12-23 2020-03-31 Gilead Sciences, Inc. Processes for preparing ASK1 inhibitors
US10946004B2 (en) 2014-12-23 2021-03-16 Gilead Sciences, Inc. Solid forms of an ASK1 inhibitor
USRE48711E1 (en) 2009-07-13 2021-08-31 Gilead Sciences, Inc. Apoptosis signal-regulating kinase inhibitors

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2617339T3 (en) 2010-12-16 2017-06-16 Calchan Limited ASK1 inhibitor pyrrolopyrimidine derivatives
US20150148345A1 (en) 2013-11-26 2015-05-28 Gilead Sciences, Inc. Therapies for treating myeloproliferative disorders
CA2937320A1 (en) 2014-01-20 2015-07-23 Gilead Sciences, Inc. Therapies for treating cancers
US20150342943A1 (en) * 2014-06-03 2015-12-03 Gilead Sciences, Inc. Methods of treating liver disease
TW201618781A (en) * 2014-08-13 2016-06-01 吉李德科學股份有限公司 Methods of treating pulmonary hypertension
TW201639573A (en) 2015-02-03 2016-11-16 吉李德科學股份有限公司 Combination therapies for treating cancers
KR102335970B1 (en) 2015-03-04 2021-12-07 길리애드 사이언시즈, 인코포레이티드 Toll like receptor modulator compounds
KR20240008398A (en) 2015-07-06 2024-01-18 길리애드 사이언시즈, 인코포레이티드 Cot modulators and methods of use thereof
US20190054090A1 (en) 2015-10-01 2019-02-21 Gilead Sciences, Inc. Combination of a btk inhibitor and a checkpoint inhibitor for treating cancers
KR20180094976A (en) 2015-12-17 2018-08-24 길리애드 사이언시즈, 인코포레이티드 TANK-conjugated kinase inhibitor compound
JP2019510752A (en) 2016-03-04 2019-04-18 ギリアード サイエンシーズ, インコーポレイテッド Compositions and combinations of autotaxin inhibitors
JP2019513737A (en) 2016-04-08 2019-05-30 ギリアード サイエンシーズ, インコーポレイテッド Compositions and methods for treating cancer, inflammatory diseases and autoimmune diseases
PH12018502623A1 (en) 2016-06-13 2019-10-07 I Mab Anti-pd-l1 antibodies and uses thereof
CA3032813A1 (en) 2016-08-04 2018-02-08 Gilead Sciences, Inc. Cobicistat for use in cancer treatments
EP3507276B1 (en) 2016-09-02 2021-11-03 Gilead Sciences, Inc. Toll like receptor modulator compounds
WO2018045150A1 (en) 2016-09-02 2018-03-08 Gilead Sciences, Inc. 4,6-diamino-pyrido[3,2-d]pyrimidine derivaties as toll like receptor modulators
US20180133212A1 (en) 2016-11-03 2018-05-17 Gilead Sciences, Inc. Combination of a bcl-2 inhibitor and a bromodomain inhibitor for treating cancer
US20180133203A1 (en) 2016-11-11 2018-05-17 Gilead Sciences, Inc. Methods of treating liver disease
WO2018097977A1 (en) 2016-11-22 2018-05-31 Gilead Sciences, Inc. Crystalline forms of a phosphate complex of a bet inhibitor
AR110252A1 (en) 2016-11-30 2019-03-13 Gilead Sciences Inc FUSIONED HETEROCYCLIC COMPOUNDS AS INHIBITORS OF THE QUINASA CAM
EP3572412B1 (en) 2017-01-22 2021-03-03 Fujian Cosunter Pharmaceutical Co., Ltd. Pyridine derivative as ask1 inhibitor and preparation method and use thereof
AU2018209573B2 (en) * 2017-01-22 2020-08-13 Fujian Akeylink Biotechnology Co., Ltd. ASK1 inhibitor and preparation method and use thereof
PE20191208A1 (en) 2017-01-24 2019-09-10 I Mab ANTI-CD73 ANTIBODIES AND USES OF THEM
AU2018224136B2 (en) 2017-02-24 2021-10-21 Gilead Sciences, Inc. Inhibitors of Bruton's Tyrosine Kinase
WO2018156901A1 (en) 2017-02-24 2018-08-30 Gilead Sciences, Inc. Inhibitors of bruton's tyrosine kinase
WO2018157277A1 (en) 2017-02-28 2018-09-07 Eli Lilly And Company Isoquinolin and naphthydrin compounds
JP7211959B2 (en) * 2017-03-03 2023-01-24 江▲蘇▼豪森▲薬▼▲業▼集▲団▼有限公司 Amide derivative inhibitor and its production method and use
JOP20180017A1 (en) 2017-03-14 2019-01-30 Gilead Sciences Inc Apoptosis signal-regulating kinase inhibitor
JP2020512342A (en) 2017-03-28 2020-04-23 ギリアード サイエンシーズ, インコーポレイテッド How to treat liver disease
KR20190132515A (en) 2017-04-12 2019-11-27 길리애드 사이언시즈, 인코포레이티드 How to treat liver disease
JOP20180040A1 (en) 2017-04-20 2019-01-30 Gilead Sciences Inc Pd-1/pd-l1 inhibitors
BR112019023449A2 (en) 2017-05-12 2020-06-16 Enanta Pharmaceuticals, Inc. APOPTOSIS 1 SIGNAL REGULATION KINASE INHIBITORS AND METHODS OF USE OF THE SAME
WO2018218044A2 (en) * 2017-05-25 2018-11-29 Enanta Pharmaceuticals Inc Apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof
WO2018218042A1 (en) * 2017-05-25 2018-11-29 Enanta Pharmaceuticals, Inc. Apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof
WO2018218051A1 (en) * 2017-05-25 2018-11-29 Enanta Pharmaceuticals, Inc. Apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof
WO2018231851A1 (en) 2017-06-13 2018-12-20 Gilead Sciences, Inc. Methods of treating liver fibrosis
TW201908306A (en) * 2017-07-18 2019-03-01 大陸商南京聖和藥業股份有限公司 Heterocyclic compound acting as ask inhibitor and use thereof
WO2019046186A1 (en) 2017-08-28 2019-03-07 Enanta Pharmaceuticals, Inc. Tetrazole containing apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof
CN109456308B (en) * 2017-09-06 2022-11-29 南京圣和药业股份有限公司 Heterocyclic compounds as ASK inhibitors and their use
US10370352B2 (en) 2017-09-07 2019-08-06 Eli Lilly And Company Cyclobutyl-imidazolidinone compounds
WO2019047094A1 (en) * 2017-09-07 2019-03-14 Eli Lilly And Company Cyclobutyl-imidazolidinone compounds
WO2019047161A1 (en) * 2017-09-08 2019-03-14 Eli Lilly And Company Imidazolidine compounds
JP2020533335A (en) 2017-09-08 2020-11-19 フロンセラ ユー.エス. ファーマシューティカルズ エルエルシー Apoptosis Signal Regulator Kinase Inhibitors and Their Use
CN111518080A (en) * 2017-10-12 2020-08-11 深圳市塔吉瑞生物医药有限公司 1,2, 4-triazole compound
CN107793400B (en) * 2017-10-31 2020-01-31 武汉九州钰民医药科技有限公司 Pyridine compound and application thereof in preparation of drugs for treating liver diseases
EP3710599A1 (en) 2017-11-13 2020-09-23 Gilead Sciences, Inc. Compositions and methods for identifying and treating liver diseases and monitoring treatment outcomes
JP7037667B2 (en) 2017-12-20 2022-03-16 インスティチュート オブ オーガニック ケミストリー アンド バイオケミストリー エーエスシーアール,ヴイ.ヴイ.アイ. 3'3'cyclic dinucleotide with phosphonate binding that activates the STING adapter protein
AU2018392212B9 (en) 2017-12-20 2021-03-18 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3' cyclic dinucleotides with phosphonate bond activating the STING adaptor protein
EP3735404B1 (en) 2018-01-02 2023-11-29 Seal Rock Therapeutics, Inc. Ask1 inhibitor compounds and uses thereof
WO2019160882A1 (en) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
CN110294742B (en) * 2018-03-21 2023-01-31 山东轩竹医药科技有限公司 Fused ring ASK1 inhibitor and application thereof
JP7296398B2 (en) 2018-04-06 2023-06-22 インスティチュート オブ オーガニック ケミストリー アンド バイオケミストリー エーエスシーアール,ヴイ.ヴイ.アイ. 3'3'-cyclic dinucleotide
TW202005654A (en) 2018-04-06 2020-02-01 捷克科學院有機化學與生物化學研究所 2'2'-cyclic dinucleotides
TWI818007B (en) 2018-04-06 2023-10-11 捷克科學院有機化學與生物化學研究所 2'3'-cyclic dinucleotides
WO2019200267A1 (en) 2018-04-12 2019-10-17 Terns, Inc. Tricyclic ask1 inhibitors
US10899735B2 (en) 2018-04-19 2021-01-26 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
CN110407806B (en) * 2018-04-28 2021-08-17 深圳微芯生物科技股份有限公司 Carboxamide compounds, preparation method and application thereof
WO2019213244A1 (en) 2018-05-02 2019-11-07 Enanta Pharmaceuticals, Inc. Tetrazole containing apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof
US10683289B2 (en) 2018-05-02 2020-06-16 Enanta Pharmaceuticals, Inc. Apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof
TW202014193A (en) 2018-05-03 2020-04-16 捷克科學院有機化學與生物化學研究所 2’3’-cyclic dinucleotides comprising carbocyclic nucleotide
JP2021523151A (en) 2018-05-11 2021-09-02 ホスホレックス、インコーポレイテッド Microparticles and nanoparticles with negative surface charge
CN112118845B (en) 2018-05-14 2023-06-13 吉利德科学公司 MCL-1 inhibitors
WO2020006429A1 (en) * 2018-06-28 2020-01-02 Hepatikos Therapeutics, Llc Ask1 isoindolin-1-one inhibitors and methods of use thereof
ES2962674T3 (en) 2018-07-13 2024-03-20 Gilead Sciences Inc PD-1/PD-L1 inhibitors
TWI710561B (en) * 2018-07-20 2020-11-21 大陸商福建廣生堂藥業股份有限公司 Crystal form as ask1 inhibitor and preparation method and application thereof
WO2020041417A1 (en) 2018-08-22 2020-02-27 Enanta Pharmaceuticals, Inc. Cycloalkyl-containing apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof
EP3860717A1 (en) 2018-10-03 2021-08-11 Gilead Sciences, Inc. Imidozopyrimidine derivatives
KR102298546B1 (en) 2018-10-18 2021-09-08 에이치케이이노엔 주식회사 Novel N-(isopropyl-triazolyl)pyridinyl)-heteroaryl-carboxamide derivatives and use thereof
WO2020086556A1 (en) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
BR112021008255A2 (en) 2018-10-31 2021-08-03 Gilead Sciences, Inc. substituted 6-azabenzimidazole compounds as hpk1 inhibitors
AU2019373221B2 (en) 2018-10-31 2022-05-26 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds having HPK1 inhibitory activity
CN111170995A (en) * 2018-11-09 2020-05-19 山东轩竹医药科技有限公司 ASK1 inhibitor and application thereof
WO2020106707A1 (en) 2018-11-19 2020-05-28 Enanta Pharmaceuticals, Inc. Apoptosis signal-regulating kinase 1 inhibitors and methods of use thereof
CN109608441A (en) * 2018-12-26 2019-04-12 都创(上海)医药科技有限公司 A kind of synthesis technology of ASK1 inhibitor
KR20210114457A (en) 2019-01-15 2021-09-23 길리애드 사이언시즈, 인코포레이티드 FXR (NR1H4) modulating compound
CN109813915A (en) * 2019-02-15 2019-05-28 浠思(上海)生物技术有限公司 Utilize the method for HTRF one-step method screening kinase inhibitor
CA3233305A1 (en) 2019-02-19 2020-08-27 Gilead Sciences, Inc. Solid forms of fxr agonists
US11766447B2 (en) 2019-03-07 2023-09-26 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
CN113543851A (en) 2019-03-07 2021-10-22 捷克共和国有机化学与生物化学研究所 2'3' -cyclic dinucleotides and their prodrugs
EP3935066A1 (en) 2019-03-07 2022-01-12 Institute of Organic Chemistry and Biochemistry ASCR, V.V.I. 3'3'-cyclic dinucleotides and prodrugs thereof
US20200315972A1 (en) 2019-03-11 2020-10-08 Gilead Sciences, Inc. Formulations of a compound and uses thereof
US11466033B2 (en) 2019-03-25 2022-10-11 Enanta Pharmaceuticals, Inc. Substituted pyridines as apoptosis signal-regulating kinase 1 inhibitors
TWI751516B (en) 2019-04-17 2022-01-01 美商基利科學股份有限公司 Solid forms of a toll-like receptor modulator
TW202212339A (en) 2019-04-17 2022-04-01 美商基利科學股份有限公司 Solid forms of a toll-like receptor modulator
EP3972695A1 (en) 2019-05-23 2022-03-30 Gilead Sciences, Inc. Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors
TW202235416A (en) 2019-06-14 2022-09-16 美商基利科學股份有限公司 Cot modulators and methods of use thereof
CA3140708A1 (en) 2019-06-18 2020-12-24 Helen Horton Combination of hepatitis b virus (hbv) vaccines and pyridopyrimidine derivatives
PE20220231A1 (en) 2019-06-25 2022-02-07 Gilead Sciences Inc FLT3L-FC FUSION PROTEINS AND METHODS OF USE
WO2020261294A1 (en) * 2019-06-26 2020-12-30 Mankind Pharma Ltd. Novel apoptosis signal-regulating kinase 1 inhibitors
AR119594A1 (en) 2019-08-09 2021-12-29 Gilead Sciences Inc THIENOPYRIMIDINE DERIVATIVES AS ACC INHIBITORS AND USES THEREOF
CA3153501A1 (en) 2019-10-18 2021-04-22 Forty Seven, Inc. Combination therapies for treating myelodysplastic syndromes and acute myeloid leukemia
KR20220091576A (en) 2019-10-31 2022-06-30 포티 세븐, 인코포레이티드 Anti-CD47 and Anti-CD20 Based Treatment of Hematological Cancers
TWI778443B (en) 2019-11-12 2022-09-21 美商基利科學股份有限公司 Mcl1 inhibitors
EP4058144A1 (en) 2019-11-15 2022-09-21 Gilead Sciences, Inc. Triazole carbamate pyridyl sulfonamides as lpa receptor antagonists and uses thereof
CN111018831B (en) * 2019-11-21 2022-05-31 中国药科大学 Apoptosis signal-regulating kinase inhibitor and application thereof
WO2021133948A1 (en) 2019-12-23 2021-07-01 Axcella Health Inc. Compositions and methods for the treatment of liver diseases and disorders
PE20230376A1 (en) 2019-12-24 2023-03-06 Carna Biosciences Inc DIACYL GLYCEROL KINASE MODULATING COMPOUNDS
CA3169451A1 (en) 2020-02-14 2021-08-19 Jounce Therapeutics, Inc. Antibodies and fusion proteins that bind to ccr8 and uses thereof
EP4126231A1 (en) 2020-03-30 2023-02-08 Gilead Sciences, Inc. Solid forms of (s)-6-(((1-(bicyclo[1.1.1]pentan-1-yl)-1h-1,2,3-triazol-4-yl)2-methyl-1-oxo-1,2- dihydroisoquinolin-5-yl)methyl)))amino)8-chloro-(neopentylamino)quinoline-3-carb onitrile a cot inhibitor compound
US11845737B2 (en) 2020-04-02 2023-12-19 Gilead Sciences, Inc. Process for preparing a Cot inhibitor compound
CN115698009A (en) 2020-05-01 2023-02-03 吉利德科学公司 CD73 inhibiting 2,4-dioxopyrimidine compounds
JP2023529369A (en) 2020-06-03 2023-07-10 ギリアード サイエンシーズ, インコーポレイテッド LPA receptor antagonists and their uses
CN111808079A (en) * 2020-08-05 2020-10-23 中国药科大学 Indole ASK1 small molecule inhibitor and preparation method and application thereof
CN114470217B (en) * 2020-11-24 2023-06-20 深圳微芯生物科技股份有限公司 Pharmaceutical composition for preventing and treating tissue injury caused by metabolic abnormality or inflammation
WO2022192428A1 (en) 2021-03-11 2022-09-15 Gilead Sciences, Inc. Glp-1r modulating compounds
WO2022212194A1 (en) 2021-03-29 2022-10-06 Gilead Sciences, Inc. Khk inhibitors
TW202302145A (en) 2021-04-14 2023-01-16 美商基利科學股份有限公司 Co-inhibition of cd47/sirpα binding and nedd8-activating enzyme e1 regulatory subunit for the treatment of cancer
CN114246866B (en) * 2021-04-28 2023-09-12 深圳微芯生物科技股份有限公司 Medicine for treating chronic kidney disease and application thereof
CN117295717A (en) 2021-05-11 2023-12-26 吉利德科学公司 LPA receptor antagonists and uses thereof
KR20240007233A (en) 2021-05-13 2024-01-16 길리애드 사이언시즈, 인코포레이티드 LPA receptor antagonists and uses thereof
WO2022245671A1 (en) 2021-05-18 2022-11-24 Gilead Sciences, Inc. Methods of using flt3l-fc fusion proteins
TW202304435A (en) 2021-06-04 2023-02-01 美商基利科學股份有限公司 Methods of treating nash
TW202311256A (en) 2021-06-18 2023-03-16 美商基利科學股份有限公司 Il-31 modulators for treating fxr-induced pruritis
CA3220923A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
US20230060354A1 (en) 2021-06-23 2023-03-02 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
CN117377671A (en) 2021-06-23 2024-01-09 吉利德科学公司 Diacylglycerol kinase modulating compounds
KR20240005901A (en) 2021-06-23 2024-01-12 길리애드 사이언시즈, 인코포레이티드 Diacylglycerol Kinase Modulating Compounds
US20230183216A1 (en) 2021-10-28 2023-06-15 Gilead Sciences, Inc. Pyridizin-3(2h)-one derivatives
WO2023077030A1 (en) 2021-10-29 2023-05-04 Gilead Sciences, Inc. Cd73 compounds
WO2023107956A1 (en) 2021-12-08 2023-06-15 Dragonfly Therapeutics, Inc. Proteins binding nkg2d, cd16 and 5t4
US11939318B2 (en) 2021-12-08 2024-03-26 Gilead Sciences, Inc. LPA receptor antagonists and uses thereof
WO2023107954A1 (en) 2021-12-08 2023-06-15 Dragonfly Therapeutics, Inc. Antibodies targeting 5t4 and uses thereof
WO2023122615A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023122581A2 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
TW202340168A (en) 2022-01-28 2023-10-16 美商基利科學股份有限公司 Parp7 inhibitors
WO2023178181A1 (en) 2022-03-17 2023-09-21 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
US20230355796A1 (en) 2022-03-24 2023-11-09 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
TW202345901A (en) 2022-04-05 2023-12-01 美商基利科學股份有限公司 Combination therapy for treating colorectal cancer
US20230374036A1 (en) 2022-04-21 2023-11-23 Gilead Sciences, Inc. Kras g12d modulating compounds
US20240116928A1 (en) 2022-07-01 2024-04-11 Gilead Sciences, Inc. Cd73 compounds
US20240091351A1 (en) 2022-09-21 2024-03-21 Gilead Sciences, Inc. FOCAL IONIZING RADIATION AND CD47/SIRPa DISRUPTION ANTICANCER COMBINATION THERAPY
CN115844887B (en) * 2022-12-28 2023-09-08 中国人民解放军空军军医大学 Use of Selonsertib in preparation of medicines for treating cancers

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159731A (en) 1997-02-12 2000-12-12 Massachusetts Institute Of Technology Daxx, a Fas-binding protein that activates JNK and apoptosis
PT1144600E (en) 1999-03-19 2008-10-10 Aventis Pharma Inc Akt-3 nucleic acids, polypeptides, and uses thereof
US6881555B2 (en) 1999-03-19 2005-04-19 Aventis Pharmaceuticals Inc. AKT nucleic acids, polypeptides, and uses thereof
AU2001275330A1 (en) * 2000-06-07 2001-12-17 Marc D. Andelman Fluid and electrical connected flow-through electrochemical cells, system and method
US20070237770A1 (en) 2001-11-30 2007-10-11 Albert Lai Novel compositions and methods in cancer
WO2005009470A1 (en) 2003-07-28 2005-02-03 Osaka Industrial Promotion Organization Remedy for cardiac failure comprising ask1 inhibitor as the active ingredient and method of screening the same
JP2008514635A (en) 2004-09-27 2008-05-08 コーザン バイオサイエンシス インコーポレイテッド Specific kinase inhibitor
EP1819341A4 (en) 2004-11-10 2011-06-29 Synta Pharmaceuticals Corp Il-12 modulatory compounds
EP1677113A1 (en) 2004-12-29 2006-07-05 Max-Delbrück-Centrum für Molekulare Medizin (MDC) Method for the identification of protein-protein interactions in disease related protein networks
US20070276050A1 (en) * 2006-02-27 2007-11-29 Gilead Sciences, Inc. Methods for identifying ASK1 inhibitors useful for preventing and/or treating cardiovascular diseases
US20100029619A1 (en) 2006-08-04 2010-02-04 Takeda Pharmaceutical Company Limted Fused heterocyclic compound
WO2008042867A2 (en) 2006-09-29 2008-04-10 Emiliem Inc. Modulators of multiple kinases
WO2008073919A2 (en) 2006-12-08 2008-06-19 Asuragen, Inc. Mir-20 regulated genes and pathways as targets for therapeutic intervention
EP1942104A1 (en) * 2006-12-20 2008-07-09 sanofi-aventis Heteroarylcyclopropanecarboxamides and their use as pharmaceuticals
US8104727B2 (en) 2007-03-12 2012-01-31 Denis Joanisse Adjustable article support
WO2009011850A2 (en) 2007-07-16 2009-01-22 Abbott Laboratories Novel therapeutic compounds
WO2009027283A1 (en) * 2007-08-31 2009-03-05 Merck Serono S.A. Triazolopyridine compounds and their use as ask inhibitors
US8461163B2 (en) 2008-03-31 2013-06-11 Takeda Pharmaceutical Company Limited Substituted N-(pyrazolo[1,5-a]pyrimidin-5-yl)amides as inhibitors of apoptosis signal-regulating kinase 1
WO2010008843A1 (en) 2008-06-24 2010-01-21 Takeda Pharmaceutical Company Limited Apoptosis signal-regulating kinase 1 inhibitors
WO2010045470A2 (en) 2008-10-15 2010-04-22 Dana-Farber Cancer Institute, Inc. Compositions, kits, and methods for identification, assessment, prevention, and therapy of hepatic disorders
WO2010056982A2 (en) 2008-11-17 2010-05-20 The George Washington University Compositions and methods for identifying autism spectrum disorders
JP2012521760A (en) 2009-03-27 2012-09-20 メルク・シャープ・エンド・ドーム・コーポレイション RNA interference-mediated inhibition of apoptosis signal-regulated kinase 1 (ASK1) gene expression using small interfering nucleic acids (siNA)
TWI598347B (en) 2009-07-13 2017-09-11 基利科學股份有限公司 Apoptosis signal-regulating kinase inhibitors
WO2011041293A1 (en) 2009-09-30 2011-04-07 Takeda Pharmaceutical Company Limited Pyrazolo [1, 5-a] pyrimidine derivatives as apoptosis signal-regulating kinase 1 inhibitors
WO2011097079A1 (en) 2010-02-03 2011-08-11 Takeda Pharmaceutical Company Limited Apoptosis signal-regulating kinase 1 inhibitors
JP2013518909A (en) 2010-02-08 2013-05-23 キナゲン,インク. Therapeutic methods and compositions involving allosteric kinase inhibition
AU2011232372B2 (en) 2010-03-24 2016-06-30 Amitech Therapeutic Solutions, Inc. Heterocyclic compounds useful for kinase inhibition
BR112012033715A2 (en) * 2010-07-02 2016-11-22 Gilead Sciences Inc apoptosis signal regulation kinase inhibitors.
WO2012068464A2 (en) 2010-11-18 2012-05-24 University Of Delaware Methods of treating and preventing thrombotic diseases using ask1 inhibitors
ES2617339T3 (en) 2010-12-16 2017-06-16 Calchan Limited ASK1 inhibitor pyrrolopyrimidine derivatives
CA2827894A1 (en) 2011-02-22 2012-08-30 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Circulating biomarkers
EP2718721A4 (en) 2011-06-07 2014-10-01 Caris Life Sciences Luxembourg Holdings S A R L Circulating biomarkers for cancer
TW201837023A (en) 2011-07-01 2018-10-16 美商基利科學股份有限公司 Fused heterocyclic compounds as ion channel modulators
US8924765B2 (en) 2011-07-03 2014-12-30 Ambiq Micro, Inc. Method and apparatus for low jitter distributed clock calibration
UY34573A (en) 2012-01-27 2013-06-28 Gilead Sciences Inc QUINASE INHIBITOR REGULATING THE APOPTOSIS SIGNAL
WO2016106384A1 (en) 2014-12-23 2016-06-30 Gilead Sciences, Inc. Processes for preparing ask1 inhibitors
MA41252A (en) 2014-12-23 2017-10-31 Gilead Sciences Inc SOLID FORMS OF AN ASK 1 INHIBITOR

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48711E1 (en) 2009-07-13 2021-08-31 Gilead Sciences, Inc. Apoptosis signal-regulating kinase inhibitors
US10508100B2 (en) 2012-01-27 2019-12-17 Gilead Sciences, Inc. Apoptosis signal-regulating kinase inhibitor
US10238636B2 (en) 2014-09-24 2019-03-26 Gilead Sciences, Inc. Methods of treating liver disease
US10604490B2 (en) 2014-12-23 2020-03-31 Gilead Sciences, Inc. Processes for preparing ASK1 inhibitors
US10946004B2 (en) 2014-12-23 2021-03-16 Gilead Sciences, Inc. Solid forms of an ASK1 inhibitor
US11261161B2 (en) 2014-12-23 2022-03-01 Gilead Sciences, Inc. Processes for preparing ASK1 inhibitors

Also Published As

Publication number Publication date
JP5770950B2 (en) 2015-08-26
TW201916877A (en) 2019-05-01
PH12014501697B1 (en) 2014-10-20
CA3026700C (en) 2020-12-15
CY1117201T1 (en) 2017-04-05
MX2019007348A (en) 2019-09-05
UY34573A (en) 2013-06-28
US20140228411A1 (en) 2014-08-14
MD20140082A2 (en) 2015-01-31
US10508100B2 (en) 2019-12-17
US8742126B2 (en) 2014-06-03
IL239311A0 (en) 2015-07-30
CN104080771B (en) 2018-11-09
UA112098C2 (en) 2016-07-25
MX2014009075A (en) 2014-09-01
ZA201405260B (en) 2016-05-25
KR101707764B1 (en) 2017-02-16
JP2015508749A (en) 2015-03-23
ES2558203T3 (en) 2016-02-02
CA2862030A1 (en) 2013-08-01
US20130197037A1 (en) 2013-08-01
DK2807151T3 (en) 2016-02-22
AP2014007836A0 (en) 2014-07-31
EP2807151B1 (en) 2015-11-18
TW201711684A (en) 2017-04-01
US9873682B2 (en) 2018-01-23
CN109438418B (en) 2021-04-13
MA35861B1 (en) 2014-12-01
BR112014018355A8 (en) 2017-07-11
IL239311B (en) 2018-03-29
HRP20151399T1 (en) 2016-01-29
RS54492B1 (en) 2016-06-30
US20160235728A1 (en) 2016-08-18
CR20140405A (en) 2014-11-27
CN104080771A (en) 2014-10-01
CA2862030C (en) 2019-10-29
CA3026738C (en) 2020-12-15
US9333197B2 (en) 2016-05-10
AR117113A2 (en) 2021-07-14
MD4601B1 (en) 2018-11-30
TWI561514B (en) 2016-12-11
AR089818A1 (en) 2014-09-17
IL233598A0 (en) 2014-08-31
NZ754169A (en) 2021-01-29
KR101582065B1 (en) 2015-12-31
IL233598A (en) 2015-06-30
US20170217933A1 (en) 2017-08-03
TW201441213A (en) 2014-11-01
PT2807151E (en) 2016-01-28
US9254284B2 (en) 2016-02-09
CN109438418A (en) 2019-03-08
KR20190000898A (en) 2019-01-03
EA201491283A1 (en) 2014-12-30
ME02322B (en) 2016-06-20
EP2807151A1 (en) 2014-12-03
KR20160004401A (en) 2016-01-12
PE20141822A1 (en) 2014-11-27
KR20140117609A (en) 2014-10-07
KR101799739B1 (en) 2017-11-20
AU2013201586B2 (en) 2015-01-22
CA3026738A1 (en) 2013-08-01
PH12014501697A1 (en) 2014-10-20
HK1204324A1 (en) 2015-11-13
AU2013201586A1 (en) 2013-08-15
NZ739339A (en) 2019-07-26
IL257965A (en) 2018-05-31
MX365954B (en) 2019-06-20
WO2013112741A1 (en) 2013-08-01
CL2014001988A1 (en) 2014-11-03
IN2014DN06174A (en) 2015-08-21
US9750730B2 (en) 2017-09-05
HUE028641T2 (en) 2016-12-28
BR112014018355A2 (en) 2017-06-20
SMT201600047B (en) 2016-02-25
TW201334782A (en) 2013-09-01
US20140228412A1 (en) 2014-08-14
US20190248762A1 (en) 2019-08-15
SG11201404348UA (en) 2014-08-28
TWI487523B (en) 2015-06-11
TWI634890B (en) 2018-09-11
SI2807151T1 (en) 2016-08-31
AU2013201586C1 (en) 2015-06-18
EA024746B1 (en) 2016-10-31
KR20170018474A (en) 2017-02-17
PL2807151T3 (en) 2016-05-31
CA3026700A1 (en) 2013-08-01
CO7061073A2 (en) 2014-09-19
KR20170128622A (en) 2017-11-22

Similar Documents

Publication Publication Date Title
US10508100B2 (en) Apoptosis signal-regulating kinase inhibitor
AU2017201650B2 (en) Apoptosis signal-regulating kinase inhibitor
OA19542A (en) Apoptosis Signal-Regulating Kinase Inhibitor.
NZ754169B2 (en) Apoptosis signal-regulating kinase inhibitor

Legal Events

Date Code Title Description
AS Assignment

Owner name: GILEAD SCIENCES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOTTE, GREGORY;REEL/FRAME:044407/0728

Effective date: 20130305

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION