US20180047269A1 - Doorbell communities - Google Patents

Doorbell communities Download PDF

Info

Publication number
US20180047269A1
US20180047269A1 US15/793,720 US201715793720A US2018047269A1 US 20180047269 A1 US20180047269 A1 US 20180047269A1 US 201715793720 A US201715793720 A US 201715793720A US 2018047269 A1 US2018047269 A1 US 2018047269A1
Authority
US
United States
Prior art keywords
doorbell
computing device
remote computing
visitor
user group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/793,720
Inventor
Andrew Paul Thomas
Joseph Frank Scalisi
Gregory Saul Harrison
Desiree Mejia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Skybell Technologies IP LLC
Original Assignee
SkyBell Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/748,054 external-priority patent/US9230424B1/en
Priority claimed from US14/861,613 external-priority patent/US10044519B2/en
Priority claimed from US15/789,121 external-priority patent/US11004312B2/en
Application filed by SkyBell Technologies Inc filed Critical SkyBell Technologies Inc
Priority to US15/793,720 priority Critical patent/US20180047269A1/en
Assigned to SKYBELL TECHNOLOGIES, INC reassignment SKYBELL TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARRISON, GREGORY SAUL, MEJIA, DESIREE, SCALISI, JOSEPH FRANK, THOMAS, ANDREW PAUL
Publication of US20180047269A1 publication Critical patent/US20180047269A1/en
Assigned to ARROW ELECTRONICS, INC. reassignment ARROW ELECTRONICS, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SkyBell Technologies, Inc.
Priority to US16/054,961 priority patent/US20180343141A1/en
Assigned to ALARM.COM INCORPORATED reassignment ALARM.COM INCORPORATED SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SkyBell Technologies, Inc.
Assigned to SB LOAN SERIES I, LLC, C/O HUTTON VENTURES LLC reassignment SB LOAN SERIES I, LLC, C/O HUTTON VENTURES LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SkyBell Technologies, Inc.
Assigned to ALARM.COM INCORPORATED reassignment ALARM.COM INCORPORATED SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARROW ELECTRONICS, INC.
Assigned to SkyBell Technologies, Inc. reassignment SkyBell Technologies, Inc. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ALARM.COM INCORPORATED
Assigned to SkyBell Technologies, Inc. reassignment SkyBell Technologies, Inc. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ALARM.COM INCORPORATED
Assigned to SKYBELL TECHNOLOGIES IP, LLC reassignment SKYBELL TECHNOLOGIES IP, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SkyBell Technologies, Inc.
Assigned to SkyBell Technologies, Inc. reassignment SkyBell Technologies, Inc. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SB LOAN SERIES I, LLC, C/O HUTTON VENTURES LLC
Assigned to STAR MOUNTAIN DIVERSIFIED CREDIT INCOME FUND III, LP reassignment STAR MOUNTAIN DIVERSIFIED CREDIT INCOME FUND III, LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SB IP HOLDINGS LLC, SKYBELL TECHNOLOGIES IP, LLC, SkyBell Technologies, Inc.
Priority to US16/926,531 priority patent/US11651668B2/en
Priority to US18/136,231 priority patent/US20230252868A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19695Arrangements wherein non-video detectors start video recording or forwarding but do not generate an alarm themselves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/955Retrieval from the web using information identifiers, e.g. uniform resource locators [URL]
    • G06F17/30876
    • G06K9/00771
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/94Hardware or software architectures specially adapted for image or video understanding
    • G06V10/95Hardware or software architectures specially adapted for image or video understanding structured as a network, e.g. client-server architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19678User interface
    • G08B13/19684Portable terminal, e.g. mobile phone, used for viewing video remotely
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B27/00Alarm systems in which the alarm condition is signalled from a central station to a plurality of substations
    • G08B27/003Signalling to neighbouring houses
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2816Controlling appliance services of a home automation network by calling their functionalities
    • H04L12/2818Controlling appliance services of a home automation network by calling their functionalities from a device located outside both the home and the home network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2816Controlling appliance services of a home automation network by calling their functionalities
    • H04L12/282Controlling appliance services of a home automation network by calling their functionalities based on user interaction within the home
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2823Reporting information sensed by appliance or service execution status of appliance services in a home automation network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2823Reporting information sensed by appliance or service execution status of appliance services in a home automation network
    • H04L12/2825Reporting to a device located outside the home and the home network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/02Telephonic communication systems specially adapted for combination with other electrical systems with bell or annunciator systems
    • H04M11/025Door telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/186Video door telephones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04817Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/22Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder
    • G07C9/25Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder using biometric data, e.g. fingerprints, iris scans or voice recognition
    • G07C9/253Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder using biometric data, e.g. fingerprints, iris scans or voice recognition visually
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B15/00Identifying, scaring or incapacitating burglars, thieves or intruders, e.g. by explosives
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • G08B7/064Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources indicating houses needing emergency help, e.g. with a flashing light or sound
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/284Home automation networks characterised by the type of medium used
    • H04L2012/2841Wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/2847Home automation networks characterised by the type of home appliance used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/2847Home automation networks characterised by the type of home appliance used
    • H04L2012/2849Audio/video appliances

Definitions

  • Various embodiments disclosed herein relate to doorbells. Certain embodiments relate to doorbell communities.
  • Doorbells can enable a person located outside of an entry point, such as a door, to alert a person inside of an entry point that someone outside would like to talk to someone inside.
  • Doorbells sometimes include a button located near a door, such as a front door, side door, or back door of a home, office, dwelling, warehouse, building, or structure.
  • Doorbells are sometimes used near a gate or some other entrance to a partially enclosed area. Pushing the doorbell sometimes causes a chime or other alerting sound to be emitted.
  • Data from multiple doorbells can be shared among a doorbell user group.
  • Information regarding a visitor to a first building can be shared with other members of the doorbell user group.
  • a homeowner can share information from her doorbell with neighbors' remote computing devices via the doorbell user group even though the neighbors' remote computing devices are not configured to receive visitor alerts from the homeowner's doorbell each time the homeowner's doorbell detects a visitor (e.g., via motion detection or button press detection).
  • Some embodiments include the homeowner (e.g., a user) choosing to send a first visit information (regarding a first visitor) to neighbor's remote computing devices and choosing not to send a second visit information (regarding a second visitor) to neighbor's remote computing devices.
  • the system enables a user to selectively decide what visit information to share with members of the doorbell user group.
  • the doorbell system can comprise a first remote computing device communicatively coupled to a first doorbell having a first camera.
  • the method for using the doorbell system can comprise sending a first picture, taken by the first doorbell, of a first visitor to the first remote computing device.
  • a doorbell user group can be created and can comprise a first user, of the first remote computing device, and a second user, of a second remote computing device.
  • a second remote computing device can be communicatively coupled to a second doorbell, but may not necessarily be communicatively coupled to the first doorbell.
  • the method for using the doorbell system can comprise sharing the first picture of the first visitor with the doorbell user group, such that the second remote computing device can receive the first picture.
  • the first remote computing device may not be communicatively coupled to the second doorbell.
  • the method can comprise receiving, by the first remote computing device, a second picture taken by the second doorbell.
  • the second picture can be taken in response to the second doorbell sending the second picture to a database.
  • the database can be configured to provide visitor information to the doorbell user group.
  • the method for using the doorbell system can comprise the indication of a first trait of the first visitor via the first remote computing device.
  • the method can comprise sharing the first picture of the first visitor with the doorbell user group in response to the first trait of the first visitor.
  • the method can comprise the indication of a first trait of the first visitor via the first remote computing device.
  • the method can send the first trait and the first picture of the first visitor to a database.
  • the database can be configured to provide information regarding the first visitor to the doorbell user group.
  • the method can provide a time, at which the first visitor visited the first doorbell, to the database.
  • the first remote computing device cannot be communicatively coupled to the second doorbell.
  • the method for using the doorbell system can comprise receiving, by the first remote computing device, data from the doorbell user group regarding the second doorbell.
  • the second doorbell can comprise a second camera.
  • a third doorbell can comprise a third camera.
  • the second doorbell can be coupled to a second building, and the third doorbell can be coupled to a third building.
  • the doorbell system can comprise a database configured to share visitor information with the doorbell user group.
  • the method can comprise selecting, via the first remote computing device, to receive the visitor information from at least one of the second doorbell and the third doorbell.
  • the first doorbell can be coupled to a first building.
  • the first building, the second building, and the third building can be located apart from each other.
  • Receiving the data can comprise receiving the visitor information from a different location than a first location of the first building.
  • the first picture can comprise a first video.
  • the first picture can also be a still image (although many users prefer pictures that are videos).
  • creating the doorbell user group can comprise adding a first email address and a second email address to a database.
  • the first email address can be associated with the first doorbell
  • the second email address can be associated with the second doorbell.
  • the method for using the doorbell system can comprise displaying a map on the first remote computing device.
  • the map can display a second location of the second doorbell and a third location of a third doorbell.
  • the method can comprise displaying information, regarding the second doorbell, in response to selecting a map icon, representing the second doorbell, while the map icon is displayed on the first remote computing device. Selecting the map icon can be used to add the second user of the second doorbell to the doorbell user group.
  • Methods can include sending an invitation (to join the user group) to the second user in response to selecting the second doorbell on the map.
  • the method can comprise selecting a first button on the first remote computing device to alert law enforcement and/or to alert the doorbell user group.
  • the first doorbell can be coupled to a first building.
  • the second doorbell can be coupled to a second building.
  • a third doorbell can be coupled to a third building.
  • the buildings can be located remotely relative to each other.
  • the method can comprise analyzing information collected from the first, second, and third doorbells, and then sending an alert in response to analytics based on the information.
  • Analytics can include visitor identity, visit frequency (e.g., during a timeframe), time of visits, and facial recognition of visitors.
  • a method of using a doorbell system can comprise coupling a first doorbell having a first camera to a first building, configuring the first doorbell to wirelessly communicate with a first remote computing device, and joining, by the first remote computing device, a doorbell user group.
  • the doorbell user group can comprise a second user and a third user.
  • the second user can comprise a second doorbell having a second camera coupled to a second building.
  • a third user can comprise a third doorbell having a third camera coupled to a third building.
  • the second doorbell can be configured to wirelessly communicate with a second remote computing device.
  • the method of using the doorbell system can comprise receiving, by the first remote computing device, a first visitor picture.
  • the second doorbell or the third doorbell can take the first visitor picture.
  • the method can comprise receiving, from the doorbell user group by the first remote computing device, a first visitor picture taken by the second doorbell.
  • the first remote computing device may not be communicatively coupled to the second doorbell.
  • the method can comprise receiving, by the first remote computing device, a first trait.
  • the first trait can be regarding a first visitor in response to the second user inputting the first trait into the second remote computing device.
  • the method of using the doorbell system can comprise taking a second visitor picture, by the first doorbell, and sending the second visitor picture to the doorbell user group.
  • the second remote computing device can display the second visitor picture, even though the second remote computing device may not be communicatively coupled to the first doorbell.
  • the doorbell user group can comprise a database having a first visitor picture taken by the second doorbell of the second building.
  • the method can comprise taking, by the first doorbell of the first building, a second visitor picture.
  • the method can comprise determining, by a portion of the doorbell system, that the first visitor picture and the second visitor picture show a visitor.
  • the method can comprise labeling the visitor with solicitor information.
  • the members of the doorbell user group can then see the first visitor picture associated with the solicitor information.
  • the method can comprise alerting the members regarding at least a portion of the solicitor information.
  • the method can comprise receiving a solicitor alert.
  • the alert can be in response to the second doorbell, of the second building, and the third doorbell, of the third building, detecting a visitor.
  • the method can comprise adding solicitation information regarding the visitor to the doorbell user group.
  • the method can comprise sending an alert to members of the doorbell user group in response to detecting, by a remote burglar detection system, a burglary of the first building.
  • a doorbell system can comprise a first doorbell that can have a first camera that can be coupled to a first building.
  • the first doorbell can be communicatively coupled to a first remote computing device.
  • a second doorbell can have a second camera that can be coupled to a second building.
  • the second doorbell can be communicatively coupled to a second remote computing device.
  • the doorbell system can have a doorbell user group that can comprise a database that can have images taken by the first camera and the second camera.
  • the doorbell user group can be communicatively coupled to the first remote computing device and the second remote computing device.
  • the first doorbell may not be communicatively coupled to the second remote computing device.
  • the second doorbell may not be communicatively coupled to the first remote computing device.
  • the system can be configured such that the first remote computing device can receive a first visitor picture taken by the second doorbell via the doorbell user group.
  • the doorbell system can comprise a second visitor picture taken by the first doorbell.
  • the picture can be displayed by the second remote computing device.
  • the doorbell system can comprise a remote sensor.
  • the remote sensor can be configured to monitor the first building and can detect an unauthorized building intrusion.
  • An alert can be sent to the doorbell user group in response to the remote sensor detecting the unauthorized building intrusion.
  • the system can comprise a solicitor alert.
  • a solicitor alert can be sent to the doorbell user group in response to a visitor being detected by the first doorbell, at the first building, and by the second doorbell, at the second building.
  • FIG. 1 illustrates a front view of a doorbell system, according to some embodiments.
  • FIG. 2 illustrates a front view of a computing device running software to communicate with the doorbell from FIG. 1 , according to some embodiments.
  • FIG. 3 illustrates a diagrammatic view of an embodiment in which the doorbell from FIG. 1 is connected to a building, according to some embodiments.
  • FIG. 4 illustrates a back view of the doorbell from FIG. 1 without a mounting bracket, according to some embodiments.
  • FIG. 5 illustrates a diagrammatic view of a group of doorbells, according to some embodiments.
  • FIG. 6 illustrates a front view of a remote computing device displaying a map, according to some embodiments.
  • FIG. 7 illustrates a diagrammatic view of picture being communicated, according to some embodiments.
  • FIG. 8 illustrates a diagrammatic view of a doorbell that is communicatively coupled to multiple remote computing devices, according to some embodiments.
  • FIG. 9 illustrates a diagrammatic view of a remote computing device that is communicatively coupled to multiple doorbells, according to some embodiments.
  • FIGS. 10 and 11 illustrate diagrammatic views of doorbell user groups, according to some embodiments.
  • Communication systems can provide a secure and convenient way for a remotely located individual to communicate with a person who is approaching a sensor, such as a proximity sensor or motion sensor, or with a person who rings a doorbell, which can be located in a doorway, near an entrance, or within 15 feet of a door.
  • Some communication systems allow an individual to hear, see, and talk with visitors who approach at least a portion of the communication system and/or press a button, such as a doorbell's button.
  • communication systems can use a computing device to enable a remotely located person to see, hear, and/or talk with visitors.
  • Computing devices can include computers, laptops, tablets, mobile devices, smartphones, cellular phones, and wireless devices (e.g., cars with wireless communication).
  • Example computing devices include the iPhone, iPad, iMac, MacBook Air, and MacBook Pro made by Apple Inc. Communication between a remotely located person and a visitor can occur via the Internet, cellular networks, telecommunication networks, and wireless networks.
  • doorbell systems can be a portion of a smart home hub.
  • the doorbell system 200 forms the core of the smart home hub.
  • the various systems described herein enable complete home automation.
  • the doorbell 202 controls various electrical items in a home (e.g., lights, air conditioners, heaters, motion sensors, garage door openers, locks, televisions, computers, entertainment systems, pool monitors, elderly monitors).
  • the computing device 204 controls the doorbell 202 and other electrical items in a home (e.g., lights, air conditioners, heaters, motion sensors, garage door openers, locks, televisions, computers, entertainment systems, pool monitors, elderly monitors).
  • FIG. 1 illustrates a front view of a communication system embodiment.
  • the doorbell system 200 can include a doorbell 202 (e.g., a security system) and a computing device 204 .
  • a doorbell 202 e.g., a security system
  • the doorbell 202 can include a camera assembly 208 and a doorbell button 212 .
  • the camera assembly 208 can include a video camera, which in some embodiments is a webcam.
  • the doorbell 202 can include a diagnostic light 216 and a power indicator light 220 .
  • the diagnostic light 216 is a first color (e.g., blue) if the doorbell 202 and/or the doorbell system 200 is connected to a wireless Internet network and is a second color (e.g., red) if the doorbell 202 and/or the doorbell system 200 is not connected to a wireless Internet network.
  • the power indicator 220 is a first color if the doorbell 202 is connected to a power source. The power source can be supplied by the building to which the doorbell 202 is attached. In some embodiments, the power indicator 220 is a second color or does not emit light if the doorbell 202 is not connected to the power source.
  • the doorbell 202 can include an outer housing 224 , which can be water resistant and/or waterproof.
  • the outer housing can be made from metal or plastic, such as molded plastic with a hardness of 60 Shore D.
  • the outer housing 224 is made from brushed nickel or aluminum.
  • the doorbell 202 can be electrically coupled to a power source, such as wires electrically connected to a building's electrical power system.
  • the doorbell 202 includes a battery for backup and/or primary power.
  • Wireless communication 230 can enable the doorbell 202 to communicate with the computing device 204 . Some embodiments enable communication via cellular and/or WiFi networks. Some embodiments enable communication via the Internet. Several embodiments enable wired communication between the doorbell 202 and the computing device 204 .
  • the wireless communication 230 can include the following communication means: radio, WiFi (e.g., wireless local area network), cellular, Internet, Bluetooth, telecommunication, electromagnetic, infrared, light, sonic, and microwave. Other communication means are used by some embodiments.
  • the doorbell 202 can initiate voice calls or send text messages to a computing device 204 (e.g., a smartphone, a desktop computer, a tablet computer, a laptop computer).
  • a computing device 204 e.g., a smartphone, a desktop computer, a tablet computer, a laptop computer.
  • NFC near field communication
  • the doorbell 202 and/or the computing device 204 can include a NFC tag.
  • Some NFC technologies include Bluetooth, radio-frequency identification, and QR codes.
  • Some embodiments include computer software (e.g., application software), which can be a mobile application designed to run on smartphones, tablet computers, and other mobile devices. Software of this nature is sometimes referred to as “app” software. Some embodiments include software designed to run on desktop computers and laptop computers.
  • the computing device 204 can run software with a graphical user interface.
  • the user interface can include icons or buttons.
  • the software is configured for use with a touch-screen computing device such as a smartphone or tablet.
  • FIG. 2 illustrates a computing device 204 running software.
  • the software includes a user interface 240 displayed on a display screen 242 .
  • the user interface 240 can include a doorbell indicator 244 , which can indicate the location of the doorbell that the user interface is displaying.
  • a person can use one computing device 204 to control and/or interact with multiple doorbells, such as one doorbell located at a front door and another doorbell located at a back door. Selecting the doorbell indicator 244 can allow the user to choose another doorbell (e.g., the back door's doorbell rather than the front door's doorbell).
  • the user interface 240 can include a connectivity indicator 248 .
  • the connectivity indicator can indicate whether the computing device is in communication with a doorbell, the Internet, and/or a cellular network.
  • the connectivity indicator 248 can alert the user if the computing device 204 has lost its connection with the doorbell 202 ; the doorbell 202 has been damaged; the doorbell 202 has been stolen; the doorbell 202 has been removed from its mounting location; the doorbell 202 has lost electrical power; and/or if the computing device 204 cannot communicate with the doorbell 202 .
  • the connectivity indicator 248 alerts the user of the computing device 204 by flashing, emitting a sound, displaying a message, and/or displaying a symbol.
  • a remote server 206 sends an alert (e.g., phone call, text message, image on the user interface 240 ) regarding the power and/or connectivity issue.
  • the remote server 206 can manage communication between the doorbell 202 and the computing device.
  • information from the doorbell 202 is stored by the remote server 206 .
  • information from the doorbell 202 is stored by the remote server 206 until the information can be sent to the computing device 204 , uploaded to the computing device 204 , and/or displayed to the remotely located person via the computing device 204 .
  • the remote server 206 can be a computing device that stores information from the doorbell 202 and/or from the computing device 204 .
  • the remote server 206 is located in a data center.
  • the computing device 204 and/or the remote server 206 attempts to communicate with the doorbell 202 . If the computing device 204 and/or the remote server 206 is unable to communicate with the doorbell 202 , the computing device 204 and/or the remote server 206 alerts the remotely located person via the software, phone, text, a displayed message, and/or a website. In some embodiments, the computing device 204 and/or the remote server 206 attempts to communicate with the doorbell 202 periodically; at least every five hours and/or less than every 10 minutes; at least every 24 hours and/or less than every 60 minutes; or at least every hour and/or less than every second.
  • the server 206 can initiate communication with the computing device 204 and/or with the doorbell 202 . In several embodiments, the server 206 can initiate, control, and/or block communication between the computing device 204 and the doorbell 202 .
  • a user can log in to an “app,” website, and/or software on a computing device (e.g., mobile computing device, smartphone, tablet, desktop computer) to adjust the doorbell settings discussed herein.
  • a computing device e.g., mobile computing device, smartphone, tablet, desktop computer
  • a computing device can enable a user to watch live video and/or hear live audio from a doorbell due to the user's request rather than due to actions of a visitor.
  • Some embodiments include a computing device initiating a live video feed (or a video feed that is less than five minutes old).
  • the user interface 240 displays an image 252 such as a still image or a video of an area near and/or in front of the doorbell 202 .
  • the image 252 can be taken by the camera assembly 208 and stored by the doorbell 202 , server 206 , and/or computing device 204 .
  • the user interface 240 can include a recording button 256 to enable a user to record images, videos, and/or sound from the camera assembly 208 , microphone of the doorbell 202 , and/or microphone of the computing device 204 .
  • the user interface 240 includes a picture button 260 to allow the user to take still pictures and/or videos of the area near and/or in front of the doorbell 202 .
  • the user interface 240 can also include a sound adjustment button 264 and a mute button 268 .
  • the user interface 240 can include camera manipulation buttons such as zoom, pan, and light adjustment buttons.
  • the camera assembly 208 automatically adjusts between Day Mode and Night Mode.
  • Some embodiments include an infrared camera and/or infrared lights to illuminate an area near the doorbell 202 to enable the camera assembly 208 to provide sufficient visibility (even at night).
  • buttons include diverse means of selecting various options, features, and functions. Buttons can be selected by mouse clicks, keyboard commands, or touching a touch screen. Many embodiments include buttons that can be selected without touch screens.
  • the user interface 240 includes a quality selection button, which can allow a user to select the quality and/or amount of the data transmitted from the doorbell 202 to the computing device 204 and/or from the computing device 204 to the doorbell 202 .
  • video can be sent to and/or received from the computing device 204 using video chat protocols such as FaceTime (by Apple Inc.) or Skype (by Microsoft Corporation).
  • videochat protocols such as FaceTime (by Apple Inc.) or Skype (by Microsoft Corporation).
  • these videos are played by videoconferencing apps on the computing device 204 instead of being played by the user interface 240 .
  • the user interface 240 can include a termination button 276 to end communication between the doorbell 202 and the computing device 204 .
  • the termination button 276 ends the ability of the person located near the doorbell 202 (i.e., the visitor) to hear and/or see the user of the computing device 204 , but does not end the ability of the user of the computing device 204 to hear and/or see the person located near the doorbell 202 .
  • a button 276 is both an answer button (to accept a communication request from a visitor) and a termination button (to end communication between the doorbell 202 and the computing device 204 ).
  • the button 276 can include the word “Answer” when the system is attempting to establish two-way communication between the visitor and the user. Selecting the button 276 when the system is attempting to establish two-way communication between the visitor and the user can start two-way communication.
  • the button 276 can include the words “End Call” during two-way communication between the visitor and the user. Selecting the button 276 during two-way communication between the visitor and the user can terminate two-way communication. In some embodiments, terminating two-way communication still enables the user to see and hear the visitor. In some embodiments, terminating two-way communication causes the computing device 204 to stop showing video from the doorbell and to stop emitting sounds recorded by the doorbell.
  • the user interface 240 opens as soon as the doorbell detects a visitor (e.g., senses indications of a visitor). Once the user interface 240 opens, the user can see and/or hear the visitor even before “answering” or otherwise accepting two-way communication, in several embodiments.
  • Some method embodiments include detecting a visitor with a doorbell.
  • the methods can include causing the user interface to display on a remote computing device 204 due to the detection of the visitor (e.g., with or without user interaction).
  • the methods can include displaying video from the doorbell and/or audio from the doorbell before the user accepts two-way communication with the visitor.
  • the methods can include displaying video from the doorbell and/or audio from the doorbell before the user accepts the visitor's communication request.
  • the methods can include the computing device simultaneously asking the user if the user wants to accept (e.g., answer) the communication request and displaying audio and/or video of the visitor. For example, in some embodiments, the user can see and hear the visitor via the doorbell before opening a means of two-way communication with the visitor.
  • the software includes means to start the video feed on demand.
  • a user of the computing device might wonder what is happening near the doorbell 202 .
  • the user can open the software application on the computing device 204 and instruct the application to show live video and/or audio from the security device 202 even if no event near the doorbell 202 has triggered the communication.
  • the security device 202 can be configured to record when the security device 202 detects movement and/or the presence of a person.
  • the user of the computing device 204 can later review all video and/or audio records from when the security device 202 detected movement and/or the presence of a person.
  • the server 206 controls communication between the computing device 204 and the doorbell 202 , which can be a doorbell with a camera, a microphone, and a speaker. In several embodiments, the server 206 does not control communication between the computing device 204 and the doorbell 202 .
  • data captured by the doorbell and/or the computing device 204 is stored by another remote device such as the server 206 .
  • Cloud storage, enterprise storage, and/or networked enterprise storage can be used to store video, pictures, and/or audio from the doorbell system 200 or from any part of the doorbell system 200 .
  • the user can download and/or stream stored data and/or storage video, pictures, and/or audio. For example, a user can record visitors for a year and then later can review conversations with visitors from the last year.
  • remote storage, the server 206 , the computing device 204 , and/or the doorbell 202 can store information and statistics regarding visitors and usage.
  • FIG. 3 illustrates an embodiment in which a doorbell 202 is connected to a building 300 , which can include an entryway 310 that has a door 254 .
  • Electrical wires 304 can electrically couple the doorbell 202 to the electrical system of the building 300 such that the doorbell 202 can receive electrical power from the building 300 .
  • the building can include a door lock 250 to lock the door 254 .
  • a wireless network 308 can allow devices to wirelessly access the Internet.
  • the doorbell 202 can access the Internet via the wireless network 308 .
  • the wireless network 308 can transmit data from the doorbell 202 to the Internet, which can transmit the data to remotely located computing devices 204 .
  • the Internet and wireless networks can transmit data from remotely located computing devices 204 to the doorbell 202 .
  • a doorbell 202 connects to a home's WiFi.
  • one computing device 204 can communicate with multiple doorbells 202 .
  • multiple computing devices 204 can communicate with one doorbell 202 .
  • the doorbell 202 can communicate (e.g., wirelessly 230 ) with a television 306 , which can be a smart television. Users can view the television 306 to see a visitor and/or talk with the visitor.
  • FIG. 4 illustrates an internal view of the doorbell 202 .
  • Doorbells 202 can include a chip 480 (e.g., integrated circuits, microprocessor, computer) and a memory 492 .
  • Doorbells 202 can also include a microphone 484 and a speaker 488 .
  • the speaker 488 can comprise a flat speaker and a sound chamber 460 configured to amplify an emitted sound.
  • the flat speaker can be located in the sound chamber.
  • Some doorbell embodiments include a proximity sensor 500 .
  • doorbells 202 include a wireless communication module 504 , such as a WiFi module.
  • the communication module 504 can have an integrated antenna.
  • an antenna is contained within the outer housing 224 .
  • the doorbell 202 can include one or more heating elements 508 configured to regulate the temperature of the doorbell 202 .
  • doorbells 202 can be used in very cold environments, such as in Alaska.
  • the heating element 508 can be used in various methods to protect temperature sensitive portions of the doorbell 202 from cold weather.
  • the doorbell 202 can include a thermometer 512 to enable the system to determine the temperature inside a portion of the doorbell 202 and/or outside the doorbell 202 .
  • Several embodiments can be configured for 9 to 40 volts alternating current (“VAC”) and/or 9 to 40 volts direct current (“VDC”). Some embodiments convert input electricity into direct current (DC), such as 12 VDC.
  • DC direct current
  • Several embodiments include a converter 494 for power conversion (e.g., converting electrical energy from one form to another).
  • the converter 494 can convert input power (e.g., from wiring in a building) to a suitable power form for the doorbell 202 .
  • the power conversion can convert between AC and DC, change the voltage, and/or change the frequency.
  • the converter 494 can include a transformer and/or a voltage regulator.
  • the converter 494 can include an AC to DC converter, a DC to DC converter, a voltage stabilizer, a linear regulator, a surge protector, a rectifier, a power supply unit, a switch, an inverter, and/or a voltage converter. In some embodiments, the converter 494 converts 50 Hertz (“Hz”) power into 60 Hz power.
  • Hz Hertz
  • the electrical components of the doorbell 202 can be electrically coupled to a printed circuit board (“PCB”) 516 and can receive electrical power from the PCB 516 .
  • PCB printed circuit board
  • the PCB 516 and the electrical components of the doorbell 202 can be the electrical system 456 of the doorbell 202 . Additional details regarding the PCB 516 and the electrical components of the doorbell 202 are described in U.S. Nonprovisional patent application Ser. No. 14/612,376; filed Feb. 3, 2015; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS. The entire contents of patent application Ser. No. 14/612,376 are incorporated by reference herein.
  • Multiple doorbells can share data to “watch” over a neighborhood by letting people connect with neighbors and share information regarding suspicious visitors.
  • the shared information can include pictures of visitors and the time of suspicious activity.
  • sharing data between multiple doorbell users can help reduce crime and theft in neighborhoods around the world.
  • Suspicious activity can be “tagged” and shared with members of a user group (e.g., a group of neighbors).
  • the shared data can include photos and information regarding suspicious visitors.
  • the information can include written descriptions, recorded descriptions, and videos.
  • a first doorbell can take a picture of a visitor.
  • the doorbell can send the picture to a remote computing device.
  • a user of the remote computing device can see the visitor.
  • the user can enter information regarding the suspicious visitor into the remote computing device.
  • the doorbell system can then share the information and the picture of the visitor with a user group, which can include other doorbell users.
  • An administrator of the user group can be a “master user” who has the ability to add other users to the user group.
  • One way of adding users to a user group is to enter email addresses of prospective users into a remote computing device (e.g., into an “app” running on the remote computing device).
  • This app can be the same app used by the administrator to configure her doorbell.
  • a user can see who else is in her neighborhood.
  • the home locations of prospective or current users are displayed on a map. Selecting prospective users can enable the administrator to add new users to the user group.
  • the user can report the visitor and the nature of the suspicious activity to the user group.
  • the user can enter the visitor into an activity log such that the event has a “suspicious” tag.
  • the event can then be shared with the other users via email, text message, a push notifications, or any suitable means.
  • the event can be recorded in a user group activity list, which in some embodiments, is only visible to members of the user group (or at least is not visible to the general public).
  • the event can also be listed in a history of events reported by a specific individual. Thus, users can see events they reported, and users can see events reported by all members of a user group.
  • Each event can include an icon. Selecting the icon can cause the event to be shared with the user group.
  • icons are shown on a map that is displayed on a remote computing device. In this manner, users can see where suspicious visitors have been reported by members of the user group, and in some embodiments, by members of other user groups.
  • a user group is limited to a particular neighborhood. In other embodiments, user groups are not limited to a particular neighborhood.
  • Visitor data from a user can be shared with law enforcement (e.g., police officers) or other safety personnel to help keep neighborhoods safe.
  • law enforcement e.g., police officers
  • a suspicious event reported by a first user can be shared with a second user. The second user can then share the event with law enforcement.
  • the user who reports the event to the user group also reports the event to law enforcement (e.g., by selecting a button in the app).
  • the app can include a “distress button” configured to enable a user to alert law enforcement and user group members that something is wrong. Pressing the button on a remote computing device can cause a doorbell system to send a push notification to other users to notify them that help is needed. The push notification can also communicate the nature of the event and can enable users to see a picture of the visitor causing the trouble.
  • FIG. 5 illustrates a neighborhood, which can include many buildings 300 a , 300 b , 300 c .
  • the buildings 300 a , 300 b , 300 c can be individual homes or individual buildings (e.g., multiple single-family homes, multiple apartments coupled together, offices).
  • the buildings 300 a , 300 b , 300 c can be located next to each other or they can be separated by other homes or buildings.
  • Embodiments can include diverse ways of using a doorbell system 386 , which can include multiple doorbells 202 a , 202 b , 202 c and multiple remote computing devices 204 a , 204 b , 204 c .
  • Each doorbell 202 a , 202 b , 202 c can be coupled to an exterior wall of a different building 300 a , 300 b , 300 c .
  • a different remote computing device 204 a , 204 b , 204 c can configure each doorbell 202 a , 202 b , 202 c .
  • Each building 300 a , 300 b , 300 c can have its own wireless network 308 a , 308 b , 308 c .
  • Another network 308 d e.g., a cellular network, the Internet
  • a first doorbell 202 a can send a visitor notification (e.g., an alert as shown in FIG. 1 ) to a first computing device 204 a via a first wireless network 308 a .
  • a doorbell 202 a or a remote computing device 204 a associated with a first building 300 a it is advantageous for a doorbell 202 a or a remote computing device 204 a associated with a first building 300 a to send information regarding a visitor 388 a to a doorbell 202 b or a remote computing device 204 b associated with a second building 300 b .
  • a doorbell 202 a or a remote computing device 204 a associated with a first building 300 a it is advantageous for a doorbell 202 a or a remote computing device 204 a associated with a first building 300 a to receive information regarding a visitor 388 b from a doorbell 202 b or a remote computing device 204 b associated with a second building 300 b .
  • An external network 308 d can facilitate this sending and receiving of information regarding visitors 388 a , 388 b .
  • the doorbell system 386 can enable notifying a second remote computing device 204 b regarding a visitor detected by a first doorbell 202 a even though the second remote computing device 204 b is not configured to control the first doorbell 202 a.
  • Each of the doorbells 202 a , 202 b , 202 c illustrated in FIG. 5 can include a camera assembly 208 (as labeled in FIG. 1 ).
  • Some embodiments of using the doorbell system 386 include taking a first picture of a first visitor 388 a with the first doorbell 202 a ; sending the first picture to the first remote computing device 204 a ; and indicating a first trait (e.g., identity, suspicious behavior, bodily characteristics) of the first visitor 388 a via the first remote computing device 204 a.
  • a first trait e.g., identity, suspicious behavior, bodily characteristics
  • the first remote computing device 204 a can be used to categorize the visitor. For example, the user of the first remote computing device can indicate whether the first visitor 388 a is a salesperson, a fundraiser, or a potential criminal. The first remote computing device 204 a can share this categorization with other members of the user group, which can include users of the remote computing devices 204 a , 204 b , 204 c.
  • a first user of the first remote computing device 204 a (e.g., the owner of the first doorbell 202 a ) can create a user group.
  • the user group can include the first user of the first remote computing device 204 a and a second user of a second remote computing device 204 b .
  • the first remote computing device 204 a is located remotely relative to the first doorbell 202 a because the first remote computing device is not electrically or mechanically coupled to the first doorbell 202 a (even though the first remote computing device 204 a and the first doorbell 202 a are located in the same building 300 a ).
  • Embodiments can also include sharing the first picture of the first visitor 388 a with the user group.
  • the sharing of the first picture of the first visitor 388 a with the user group can be in response to the first trait of the first visitor 388 a .
  • the first trait can be that the first visitor 388 a is acting suspiciously by peaking over fences or looking through windows.
  • Several embodiments include sending the first trait and the first picture of the first visitor 388 a to a database 390 configured to provide information regarding the first visitor 388 a to the user group.
  • the first doorbell 202 a can also determine a time at which the first visitor 388 a visited the first doorbell 202 a . A portion of the doorbell system 386 can provide this time to the database 390 .
  • Some embodiments include receiving data with the first remote computing device 204 a regarding a second doorbell 202 b that comprises a second camera and regarding a third doorbell 202 c that comprises a third camera.
  • the first doorbell 202 a is coupled to a first building 300 a .
  • the second doorbell 202 b is coupled to a second building 300 b .
  • the third doorbell 202 c is coupled to a third building 300 c .
  • Doorbells can be mounted near a door in an entryway.
  • the buildings 300 a , 300 b , and 300 c can be located apart from each other such that each building is a separate residential dwelling or a separate office space.
  • the database 390 can be configured to share visitor information with the user group.
  • Embodiments can include selecting (via the first remote computing device 204 a ) to receive the visitor information from at least one of the second doorbell 202 b and the third doorbell 202 c .
  • Receiving the data can comprise receiving the visitor information from a different location than a first location of the first building 300 a.
  • Each doorbell 202 a , 202 b , and 202 c can include a camera assembly 208 (labeled in FIG. 1 ).
  • a camera assembly 208 can take videos or stationary images.
  • a “picture” taken by a camera of a doorbell can actually be a video.
  • the “picture” is a stationary image (rather than a video).
  • creating a user group comprises adding a first email address and a second email address to a database.
  • the first email address can be associated with the first doorbell 202 a .
  • the second email address can be associated with a second doorbell 202 b .
  • a first user of a first doorbell 202 a sends an invitation to join a doorbell user group to a second user of a second doorbell 202 b .
  • the first user can send the invitation via a first remote computing device 204 a (that is authorized to configure the first doorbell 202 a ) to a second remote computing device 204 b (that is authorized to configure the second doorbell 202 b ).
  • the second user can then accept or decline the invitation via the second remote computing device 204 b .
  • the second user accepts or declines the invitation to join the doorbell user group at least partially in response to seeing the location of the first doorbell 202 a on the display of the second computing device 204 b . For example, if the first and second users are neighbors, then the second user could be more likely to accept the invitation than if the first and second users live much farther away from each other.
  • FIG. 6 illustrates a map 392 that is displayed by the first remote computing device 204 a .
  • the map 392 displays a first location of the first doorbell 202 a , a second location of the second doorbell 202 b , and a third location of the third doorbell 202 c .
  • the map 392 can also include other items such as street names.
  • Several embodiments include displaying information regarding the second doorbell 202 b in response to a person using the first computing device 204 a to select a second icon representing the second doorbell 202 b while the second icon is displayed on the first remote computing device 204 a . (In FIG.
  • doorbells 202 a , 202 b , 202 c are represented by icons that look like doorbells.
  • This information can include an address of the second doorbell 202 b , contact information (e.g., a name, a phone number, an email) of a user of the second doorbell 202 b , and/or a picture of the user of the second doorbell 202 b . Selecting the second icon can add a second user of the second doorbell 202 b to the doorbell user group.
  • Members of the user group who have not yet purchased a doorbell with a camera can still receive visitor information, including visitor pictures, on their remote computing devices. For example, a picture taken by the first doorbell 202 a can be sent to the remote computing devices of people who have not purchased a doorbell with a camera.
  • Several embodiments include selecting a first button 394 on the display of the first remote computing device 204 a to alert law enforcement and/or to alert the user group.
  • the button 394 can be a portion of the graphical user interface of an app.
  • a first user can also join a user group that was previously created by another user.
  • This first user can couple a first doorbell having a first camera to a first building; configure the first doorbell to wirelessly communicate with a first remote computing device; and/or join a user group via the first remote computing device.
  • This user group can comprise a second user of a second doorbell having a second camera and a third user of a third doorbell having a third camera.
  • the second doorbell can be configured to wirelessly communicate with a second remote computing device.
  • This first user can receive a first picture and a first trait of a first visitor with the first remote computing device. This first picture could have been taken previously by the second doorbell or the third doorbell.
  • This first user can take a second picture of a second visitor with the first doorbell; and/or send the second picture of the second visitor to the user group such that the second remote computing device can display the second picture.
  • This first user can detect a second visitor with the first doorbell.
  • This first user can determine that the second visitor is the first visitor by a portion of the doorbell system analyzing the first picture from the second doorbell or the third doorbell. This analysis can include the doorbell system comparing the first picture to the second picture.
  • Embodiments can also include alerting a first user of the first doorbell that the second visitor is the first visitor (i.e., the first visitor is the same person as the second visitor).
  • FIG. 7 illustrates that a first doorbell 202 a can take a picture 398 .
  • the first doorbell 202 a can send the picture 398 to a first remote computing device 204 a .
  • the doorbell 202 a can send the picture 398 directly to the first remote computing device 204 a or indirectly to the first remote computing device 204 a via an intermediary device such as a router, server, network, and/or the Internet.
  • the first remote computing device 204 a can send the picture 398 to a second remote computing device 204 b .
  • This approach enables the second remote computing device 204 b to receive the picture 398 even though the second remote computing device is not communicatively coupled to the doorbell 202 a.
  • FIG. 8 illustrates an embodiment in which multiple remote computing devices 204 a , 204 b , 204 c are communicatively coupled with one doorbell 202 a .
  • the doorbell 202 a can send a picture that it takes to all of the remote computing devices 204 a , 204 b , 204 c .
  • a first user might not want her doorbell to be communicatively coupled with a neighbor's remote computing device (e.g., because communicatively coupling her doorbell with her neighbor's remote computing device could enable the neighbor to see visitors and/or talk with visitors to the home of the first user without the first user's permission).
  • the first user might want to be able to share a visitor picture and/or visitor information with a neighbor without the neighbor's remote computing device being communicatively coupled with the first user's doorbell.
  • the first user's remote computing device, a user group, a server and/or a database can act as a gatekeeper that enables the first user to control what visitor information she shares with other members of a user group (e.g., with neighbors or members of other households).
  • a homeowner can share information from her doorbell with neighbors' remote computing devices via the doorbell user group 400 (shown in FIG. 10 ) even though the neighbors' remote computing devices are not configured to receive visitor alerts from the homeowner's doorbell each time the homeowner's doorbell detects a visitor (e.g., via motion detection or button press detection).
  • Some embodiments include the homeowner (e.g., a user) choosing to send a first visit information (regarding a first visitor) to neighbor's remote computing devices and choosing not to send a second visit information (regarding a second visitor) to neighbor's remote computing devices. This choosing step can be after and in response to seeing (e.g., displaying) the visitors on a remote computing device.
  • the system 408 shown in FIG. 10 ) enables a user to selectively decide what visit information to share with members of the doorbell user group.
  • the configuration illustrated in FIG. 8 does not enable selectively deciding what visit information to share. Instead, all the remote computing devices 204 a , 204 b , 204 c receive the visit information. While the configuration illustrated in FIG. 8 may work well for one household, it typically does not work well with multiple households (e.g., an entire neighborhood) due to privacy concerns and due to the fact that most neighbors would not want to receive a notification every time a person approaches any home in the neighborhood. The number of unhelpful notifications would be very bothersome. Imagine how many uneventful notifications a user would receive each day after school as dozens of children come home. Thus, the system 408 illustrated in FIG. 10 works much better than the system illustrated in FIG. 8 when multiple households, homes, and/or buildings are involved in the visitor information sharing.
  • the remote computing device 204 b and/or the user group 400 can act as a gatekeeper system to enable a user to select which visitor information is shared other remote computing devices 204 a , 204 c after the user's remote computing device 204 b receives the visitor information.
  • This approach allows a user to share (e.g., by selecting a button on the device 204 b ) information regarding some visitors (e.g., suspicious visitors) with other remote computing devices 204 a , 204 c after seeing (or displaying) the visitors on the computing device 204 b .
  • This approach also allows the user to not share information regarding other visitors (e.g., trusted friends) with other remote computing devices 204 a , 204 c after seeing (or displaying) the other visitors on the computing device 204 b .
  • the “share decision” can be in response to the user seeing (e.g., analyzing) the visitors on her remote computing device 204 b.
  • the system shown in FIG. 8 does not include a visitor by visitor “share decision.” Instead, a user simply adds several computing devices 204 a , 204 b , 204 c to a system such that the computing devices 204 a , 204 b , 204 c receive a visitor notification (e.g., an alert) each time the doorbell 202 a detects a visitor in response to the computing devices 204 a , 204 b , 204 c being communicatively coupled with the doorbell 202 a.
  • a visitor notification e.g., an alert
  • FIG. 9 illustrates an embodiment in which a remote computing device 204 a is communicatively coupled (e.g., wirelessly) with multiple doorbells 202 a , 202 b , 202 c .
  • a first user could be able to see and/or talk with visitors detected by her own doorbell 202 a or detected by neighbors' doorbells 202 b , 202 c . This approach raises privacy concerns.
  • FIG. 10 illustrates a diagrammatic view of an embodiment that includes a user group 400 .
  • the user group 400 can include a database 390 , a server 404 , and user information 406 such as email addresses, user profiles, and user doorbell locations.
  • many embodiments enable members of a user group to share visitor information with each other without granting doorbell control to members of the user group.
  • a first user can alter at least one setting (e.g., a chime tone, a greeting, a silent mode, on-demand video modes) of her doorbell but typically cannot alter settings of neighbors' doorbells (e.g., of other doorbells in the user group).
  • These embodiments enable a first user to determine what visitor pictures and information her doorbell shares with a user group.
  • the doorbell system 408 can include a first remote computing device 204 a communicatively coupled to a first doorbell 202 a that has a first camera 208 (labeled in FIG. 1 ). Some embodiments include sending a first picture 410 , taken by the first doorbell 202 a , of a first visitor 402 a to the first remote computing device 204 a . An arrow indicates the first doorbell 202 a is communicatively coupled with the first remote computing device 204 a . This communicatively coupling can be wireless and can include two-way communication to enable the first remote computing device 204 a to send data and doorbell setting parameters to the first doorbell 202 a.
  • the first doorbell 202 a is not communicatively coupled to the second remote computing device 204 b even though the second remote computing device 204 b can receive a picture taken by the first doorbell 202 a from at least a portion of the user group 400 .
  • the second remote computing device 204 b can receive information regarding a visitor detected by the first doorbell 202 a , but the second remote computing device 204 b cannot alter settings of the first doorbell 202 a , initiate on-demand videos from the first doorbell 202 a , or talk with the first visitor 402 a via the first doorbell 202 a.
  • Embodiments can include creating a doorbell user group 400 comprising a first user of the first remote computing device 204 a and a second user of the second remote computing device 204 b , which is communicatively coupled to a second doorbell 202 b (as shown by the arrow) but is not communicatively coupled to the first doorbell 202 a .
  • the remote computing devices 204 a , 204 b , 204 c can be communicatively coupled with the user group 400 to enable sharing visitor information (e.g., pictures, audio files, visitor descriptions) detected by one of the doorbells 202 a , 202 b , 202 c (and/or recorded by one of the remote computing devices 204 a , 204 b , 204 c ) with all of the remote computing devices 204 a , 204 b , 204 c communicatively coupled with the user group 400 .
  • visitor information can be shared with members of the user group 400 without users being concerned that other members of the user group 400 might hear private visitor conversations and/or see confidential visitors.
  • Embodiments can enable a user to control what visitor information members of the user group receive from the user's doorbell.
  • Embodiments can include sharing the first picture 410 of the first visitor 402 a with the doorbell user group 400 such that the second remote computing device 204 b receives the first picture 410 taken by the first doorbell 202 a .
  • Sharing the first picture 410 with the doorbell user group 400 can require the user of the first remote computing device 204 a to authorize sharing the first picture (and/or other information regarding the first visitor 402 a ) with the user group 400 .
  • the first remote computing device 204 a is not communicatively coupled to the second doorbell 202 b .
  • Embodiments can include receiving, by the first remote computing device 204 a , a second picture 412 taken by the second doorbell 202 b in response to the second doorbell 202 b sending the second picture 412 to a database 390 configured to provide visitor information 406 to the doorbell user group 400 .
  • the visitors 402 a , 402 b , 402 c can be the same person.
  • a solicitor knocking on doors of buildings 300 a , 300 b , 300 c in a neighborhood can be detected by motion sensors of many doorbells 202 a , 202 b , 202 c .
  • visitors 402 b , 402 c can be different people.
  • FIG. 11 illustrates a diagrammatic view of an embodiment that includes a user group 400 .
  • Using a doorbell system 408 can include coupling a first doorbell 202 a having a first camera 208 (labeled in FIG. 1 ) to a first building 300 a .
  • the first building 300 a can include a first wireless network 308 a that communicatively couples the first doorbell 202 a to the first remote computing device 204 a , but does not communicatively couple the first doorbell 202 a to a second remote computing device 204 b.
  • the doorbell 202 a is connected to the first wireless 308 a , which connects to the Internet and/or to a cellular network to enable the first doorbell 202 a to be communicatively coupled to the first remote computing device 204 a even when the first remote computing device 204 a is many miles away from the first building 300 a .
  • the first wireless network 308 a can directly communicatively couple the first doorbell 202 a to the first remote computing device 204 b .
  • the second building 300 b can include a second wireless network 308 b , which can communicatively couple the second doorbell 202 b to the second remote computing device 204 b .
  • the third building 300 c to which the third doorbell 202 c can be mechanically coupled, can include a third wireless network 308 c.
  • Several embodiments include configuring the first doorbell 202 a to wirelessly communicate with the first remote computing device 204 a . Some embodiments include joining, by the first remote computing device 204 a , a doorbell user group 400 that comprises a second user of the second doorbell 202 b having a second camera coupled to the second building 300 b .
  • the doorbell user group 400 can also include a third user of a third doorbell 202 c having a third camera coupled to the third building 300 c .
  • the second doorbell 202 b can be configured to wirelessly communicate with the second remote computing device 204 b.
  • Some embodiments include receiving, by the first remote computing device 204 a , a first visitor picture 410 that was taken by the second doorbell 202 b or the third doorbell 202 c .
  • arrow 416 shows how the first visitor picture 410 from the second doorbell 202 b can be sent to the second remote computing device 204 b and/or to the user group 400 (in some cases without passing through the second remote computing device 204 b ).
  • Arrow 418 represents that the second remote computing device 204 b can send the first picture 410 to the user group 400 and/or can send permission for members of the user group 400 to view the first picture 410 to the user group 400 .
  • Arrow 420 represents how the user group 400 can send the first picture 410 to the first remote computing device 204 a and/or to the third remote computing device 204 c.
  • a neighborhood association may decide to purchase doorbells 202 a , 202 b , 202 c .
  • Creating a doorbell user group can include communicatively coupling the doorbells 202 a , 202 b , 202 c and the remote computing devices 204 a , 204 b , 204 c as shown in FIG. 10 .
  • members of the neighborhood association can share visitor information.
  • a doorbell user group can include the doorbells 202 a , 202 b , 202 c and/or the remote computing devices 204 a , 204 b , 204 c .
  • User groups 400 can include databases 390 , servers 404 , and information 406 regarding the owners of the doorbells 202 a , 202 b , 202 c and the remote computing devices 204 a , 204 b , 204 c .
  • User groups 400 can include the locations of each doorbell in the user group 400 .
  • User groups 400 can store visitor pictures and visitor information for future reference by members of the user groups 400 .
  • embodiments can include receiving from the doorbell user group 400 , by the first remote computing device 204 a , the first visitor picture 410 taken by the second doorbell 202 b even though the first remote computing device 204 a is not communicatively coupled to the second doorbell 202 b .
  • Embodiments can also include receiving, by the first remote computing device 204 a , a first trait regarding a first visitor 402 a in response to a second user of the second remote computing device 204 b inputting the first trait into the second remote computing device 204 b .
  • the second user can label the first visitor 402 as “suspicious” and/or can record a description of the first visitor 402 a.
  • Several embodiments include taking a second visitor picture 412 , by the first doorbell 202 a , and sending the second visitor picture 412 to the doorbell user group 400 such that the second remote computing device 204 b and the third remote computing device 204 c can display the second visitor picture 412 even though the second remote computing device 204 b and the third remote computing device 204 c are not communicatively coupled to the first doorbell 202 a
  • the doorbell user group 400 can comprise a database 390 that includes many visitor pictures taken by more doorbells that are communicatively coupled to the doorbell user group 400 .
  • the database 390 can include a first visitor picture 410 taken by the second doorbell 202 b of the second building 300 b .
  • the first doorbell 202 a of the first building 300 a can take a second visitor picture 412 .
  • At least a portion of the doorbell system 408 can determine that the first visitor picture 410 and the second visitor 412 picture show a visitor (i.e., show the same person).
  • Embodiments can include labeling the visitor with solicitor information such that members of the doorbell user group 400 can see the first visitor picture 410 associated with the solicitor information.
  • the remote computing devices 204 a , 204 b , 204 c can download the first visitor picture 410 (or another visitor picture) and information regarding the visitor's solicitation behavior.
  • the remote computing devices 204 a , 204 b , 204 c can display the solicitor information along with the picture of the solicitor.
  • Users can type information regarding visitors into their remote computing devices 204 a , 204 b , 204 c .
  • the user group 400 can then share this information with members of the user group 400 .
  • Some embodiments include alerting the members regarding at least a portion of the solicitor information.
  • This alert 422 can include a picture of the solicitor and other information regarding the solicitor.
  • Several embodiments include receiving a solicitor alert 422 in response to the second doorbell 202 b of the second building 300 b and the third doorbell 202 c of the third building 300 c detecting a visitor (e.g., detecting the same person within a predetermined time, which can be within 24 hours).
  • the alerts 422 shown in FIG. 11 can also be burglary alerts. Some embodiments include sending an alert 422 to members of the doorbell user group 400 in response to detecting a burglary of the first building 300 a .
  • a remote burglar detection system e.g., a remote sensor 242 of an alarm system
  • the remote sensor 424 can also be a fire alarm or smoke alarm.
  • Some embodiments include sending an alert 422 to members of the doorbell user group 400 in response to a remote sensor 424 detecting fire and/or smoke.
  • a doorbell system 408 can comprise a first doorbell 202 a having a first camera coupled to a first building 300 a , wherein the first doorbell 202 a is communicatively coupled to a first remote computing device 204 a ; a second doorbell 202 b having a second camera coupled to a second building 300 b , wherein the second doorbell 202 b is communicatively coupled to a second remote computing device 204 b ; and a doorbell user group 400 comprising a database 390 having images 410 , 412 taken by the first camera and the second camera.
  • the doorbell user group 400 can be communicatively coupled to the first remote computing device 204 a and the second remote computing device 204 b.
  • the first doorbell 202 a is not communicatively coupled to the second remote computing device 204 b
  • the second doorbell 202 b is not communicatively coupled to the first remote computing device 204 a while the system 408 is configured such that the first remote computing device 204 a receives a first visitor picture 410 taken by the second doorbell 202 b via the doorbell user group 400 .
  • a second visitor picture 412 can be taken by the first doorbell 202 a and displayed by the second remote computing device 204 b.
  • the doorbell system 408 can also include a remote sensor 424 configured to monitor the first building 300 a and detect an unauthorized building intrusion.
  • the doorbell system 408 can include at least one alert 422 sent to the doorbell user group 400 in response to the remote sensor 424 detecting the unauthorized building intrusion.
  • Several embodiments include a solicitor alert sent to the doorbell user group 400 in response to a visitor being detected by the first doorbell 202 a at the first building 300 a and by the second doorbell 202 b at the second building 300 b.
  • Information collected from the doorbells 202 a , 202 b , 202 c can be analyzed (e.g., by the system).
  • An alert 422 can be send to remote computing devices 204 a , 204 c in response to analytics based on the collected information.
  • Aggregated doorbell information can be analyzed to look for trends and abnormal behaviors that might be correlated with crime or other unwanted behavior.
  • Analytics can include the number of visits or visitors to a particular building, group of buildings, or area. For example, a high number of unique visitors could suggest an illegal business is being operated out of a home (e.g., drug dealing).
  • Analytics can also evaluate how long visitors wait at a door before leaving.
  • analytics include determining whether a person with a criminal history or arrest warrant is contacting more than one building in an area within a predetermined time.
  • Several embodiments include taking, by the second doorbell 202 b , a first visitor picture 410 ; sending, by the second doorbell 202 b , the first visitor picture to the user group; and comparing, by the user group 400 , the first visitor picture 410 to criminal pictures of a database 390 .
  • a moderator e.g., a person who acts as an administrator of the user group 400
  • Some embodiments use computer image recognition to compare images.
  • the first building 300 a can include an alarm 434 that can be located remotely relative to the first doorbell 202 a .
  • the doorbell 202 a is communicatively coupled to the alarm 434 .
  • the alarm 434 can include a speaker and electronics configured to enable the speaker to emit an alarm sound.
  • a button on the user interface of the first remote computing device 204 a can enable a user to active the alarm 434 .
  • the system 408 can enter an Alarm State, which can include recording, by the first doorbell 202 a , a video; blinking a light 216 , 220 (shown in FIG. 1 ) of the first doorbell 202 a ; and emitting an alarm sound from a speaker 488 (shown in FIG. 4 ) of the first doorbell 202 a .
  • Other members of the user group 400 can receive an alert 422 regarding the Alarm State. Other members can also see a flashing light and hear the alarm sound from the first doorbell 202 a .
  • the first doorbell 202 a can serve as a beacon to first responders, which can include neighbors, medical personnel, and law enforcement officers.
  • Each member of the user group 400 can choose which members receive alerts, visitor pictures, and visitor information from the choosing member. This approach enables sub-groups within a larger user group.
  • Some embodiments enable the ability for a user to trigger an alert button (e.g., on an app that is run on a computing device), which causes the system to send images (e.g., a video) to remote computing devices (e.g., smartphones) of other users in the doorbell user group.
  • an alert button e.g., on an app that is run on a computing device
  • the commands can cause other doorbells to emit sounds, emit lights, and/or record videos. For example, a user might see a person acting suspiciously (e.g., peering into windows).
  • the user can press a button on a doorbell app on her smartphone. Pressing the button can cause the user's doorbell to emit an alarm sound or light.
  • Pressing the button can cause the user's doorbell to start recording a video (e.g., to try to record a video of the person acting suspiciously).
  • the video might not capture the person acting suspiciously, so the system can also tell neighbors' doorbells to record video. Having multiple doorbells recording videos simultaneously can increase the odds of recording a video of the person acting suspiciously.
  • all the doorbells in the user group can emit a sound or light (e.g., a strobe light). The sound emitted can be a verbal message to the person.
  • the videos recorded in response to the user triggering the alert button can be flagged (e.g., labeled) as videos related to the alert event (e.g., recorded in response to the user pressing the alert button).
  • the videos can be saved in such a way that there is an identifier regarding the videos to indicate the videos are related to an emergency event.
  • the videos can be shared and saved in a way that makes them accessible to members of the doorbell user group.
  • Members of the doorbell user group can comment regarding the person acting suspiciously and/or regarding the videos.
  • the comments can be associated with the videos such that other members of the doorbell user group can read the comments and reply to the comments. For example, a member can reply that the person acting suspiciously was actually just the person he hired to babysit his children.
  • the videos can be saved in the cloud for easy access from diverse locations.
  • Alerts and videos can be sent to members of the doorbell user group via texts, push notifications, emails, and/or any suitable means. Members can choose the means by which they are notified.
  • the videos are monitored by a central monitoring service.
  • the central monitoring service can see an emergency in the videos and can decide what action is appropriate.
  • the central monitoring service can call the police, an ambulance, and/or the fire department.
  • a member of the doorbell user group presses a button on the doorbell app, which sends an alert to a third-party monitoring facility.
  • the doorbell system uses doorbell cameras to take pictures, which are then analyzed using facial recognition to detect when the same person has visited multiple homes in a neighborhood.
  • the system can use machine learning to optimize its ability to detect when the same person visits multiple houses (e.g., within a brief period of time).
  • the system can proactively alert a doorbell user group to be cautious and attentive regarding the person. Even if the system does not know the identity of the visitor (e.g., due to being a friend of a member of the doorbell user group), the system can still identify that the person is a solicitor due to determining that the visitor has visited multiple doorbells in the neighborhood.
  • Users can automatically post videos from alerts to allow user groups to discuss the videos in a section of the app.
  • the system can encourage communication among members of the group.
  • the system is configured to predict future issues such as home burglaries.
  • Machine learning can be used to identify traits and behaviors indicative of burglaries. These traits and behaviors can include peeking in windows, looking around outside a house, staring at the house for a suspicious amount of time, and/or exhibiting traits that were exhibited by past burglars.
  • Data from the doorbells and/or future predictions can be sent to a third party such as a real estate service like Zillow.
  • the system can analyze historical data to predict future events. For example, if crime typically increases in a neighborhood a week before Christmas, then the system can send an alert regarding the heightened risk to members of the doorbell user group.
  • the system can use machine learning to analyze alert data and determine the time of day, which days of the week, and the frequency of alerts to anticipate future crime risk and send alerts ahead of time.
  • the system can also use machine learning and data analysis to plot all alerts by location (e.g., by zip code) to produce a safety score that represents a crime risk for the location.
  • the safety score can be given to third parties like Zillow. Zillow can then show the safety score to potential real estate buyers to help the buyers understand the estimated crime risk of a location.
  • the safety score can be based on many factors including the number of user submitted alerts and crime data from police databases. Data from doorbells can be combined with data from other sources (e.g., police reports, sex offender databases) to determine the safety score.
  • Safety data e.g., the safety score
  • social networks e.g., Facebook
  • websites e.g., Airbnb
  • the safety score can be a number on any suitable scale (e.g., 1 to 10). A higher number can indicate a safer neighborhood.
  • the safety score can be a number of stars (e.g., a 4.4 star rating out of 5 stars).
  • Information from several neighborhoods can be analyzed to extrapolate the data to other neighborhoods (such as adjoining neighborhoods). If a criminal or solicitor is identified in one neighborhood, users of doorbell user groups in nearby neighborhoods can also receive a warning via their remote computing devices.
  • the system can also use videos from non-doorbell cameras (e.g., outdoor security cameras) and data from locks. Data can be shared between many homes.
  • the system can also include information regarding a “home” or “away” state of the occupants of each home. For example, the system can enter a heightened security state if the occupants of a home are away from the home when the system detects suspicious indicators and/or visitors.
  • section headings and subheadings provided herein are nonlimiting.
  • the section headings and subheadings do not represent or limit the full scope of the embodiments described in the sections to which the headings and subheadings pertain.
  • a section titled “Topic 1 ” may include embodiments that do not pertain to Topic 1 and embodiments described in other sections may apply to and be combined with embodiments described within the “Topic 1 ” section.
  • routines, processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computers, computer processors, or machines configured to execute computer instructions.
  • the code modules may be stored on any type of non-transitory computer-readable storage medium or tangible computer storage device, such as hard drives, solid state memory, flash memory, optical disc, and/or the like.
  • the processes and algorithms may be implemented partially or wholly in application-specific circuitry.
  • the results of the disclosed processes and process steps may be stored, persistently or otherwise, in any type of non-transitory computer storage such as, e.g., volatile or non-volatile storage.
  • A, B, and/or C can be replaced with A, B, and C written in one sentence and A, B, or C written in another sentence.
  • A, B, and/or C means that some embodiments can include A and B, some embodiments can include A and C, some embodiments can include B and C, some embodiments can only include A, some embodiments can include only B, some embodiments can include only C, and some embodiments can include A, B, and C.
  • the term “and/or” is used to avoid unnecessary redundancy.

Abstract

Doorbells can send data to each other to enable a first doorbell user to warn a second doorbell user regarding a suspicious visitor. A first user can indicate a first trait of a visitor via a first remote computing device. The first user can create a user group to enable the members of the user group to use their doorbells to take pictures of suspicious visitors and to send the pictures of the suspicious visitors to other members of the user group.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of and is a continuation-in-part of U.S. Non-Provisional patent application Ser. No. 15/789,121; filed Oct. 20, 2017; entitled DOORBELL COMMUNITIES; and having an attorney docket number SKYBELL.047A.C1. U.S. Non-Provisional patent application Ser. No. 15/789,121 claims the benefit of and is a continuation-in-part of U.S. Non-Provisional patent application Ser. No. 14/861,613; filed Sep. 22, 2015; entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; and having an attorney docket number SKYBELL.063A. The entire contents of U.S. patent application Ser. No. 14/861,613 are incorporated by reference herein. U.S. Non-Provisional patent application Ser. No. 14/861,613 claims the benefit of and is a continuation-in-part of U.S. Non-Provisional patent application Ser. No. 14/748,054 (issued as U.S. Pat. No. 9,230,424); filed Jun. 23, 2015; entitled DOORBELL COMMUNITIES; and having an attorney docket number SKYBELL.047A. The entire contents of U.S. patent application Ser. No. 14/748,054 are incorporated by reference herein.
  • The entire contents of the following application are incorporated by reference herein: U.S. Nonprovisional patent application Ser. No. 14/748,054; filed Jun. 23, 2015; and entitled DOORBELL COMMUNITIES.
  • The entire contents of the following application are incorporated by reference herein: U.S. Provisional Patent Application No. 62/143,032; filed Apr. 4, 2015; and entitled DOORBELL COMMUNITIES.
  • The entire contents of the following applications are incorporated by reference herein: U.S. Nonprovisional patent application Ser. No. 14/612,376; filed Feb. 3, 2015; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/502,601; filed Sep. 30, 2014; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/492,809; filed Sep. 22, 2014; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/275,811; filed May 12, 2014; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/142,839; filed Dec. 28, 2013; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/099,888; filed Dec. 6, 2013; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; and U.S. Nonprovisional patent application Ser. No. 14/098,772; filed Dec. 6, 2013; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS.
  • The entire contents of the following application are incorporated by reference herein: International Application No. PCT/US14/47622; filed Jul. 22, 2014 with the U.S. Patent and Trademark Office; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS.
  • The entire contents of the following application are incorporated by reference herein: International Application No. PCT/US14/53506; filed Aug. 29, 2014 with the U.S. Patent and Trademark Office; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS.
  • BACKGROUND Field
  • Various embodiments disclosed herein relate to doorbells. Certain embodiments relate to doorbell communities.
  • Description of Related Art
  • Doorbells can enable a person located outside of an entry point, such as a door, to alert a person inside of an entry point that someone outside would like to talk to someone inside. Doorbells sometimes include a button located near a door, such as a front door, side door, or back door of a home, office, dwelling, warehouse, building, or structure. Doorbells are sometimes used near a gate or some other entrance to a partially enclosed area. Pushing the doorbell sometimes causes a chime or other alerting sound to be emitted.
  • SUMMARY
  • Data from multiple doorbells can be shared among a doorbell user group. Information regarding a visitor to a first building can be shared with other members of the doorbell user group. For example, a homeowner can share information from her doorbell with neighbors' remote computing devices via the doorbell user group even though the neighbors' remote computing devices are not configured to receive visitor alerts from the homeowner's doorbell each time the homeowner's doorbell detects a visitor (e.g., via motion detection or button press detection). Some embodiments include the homeowner (e.g., a user) choosing to send a first visit information (regarding a first visitor) to neighbor's remote computing devices and choosing not to send a second visit information (regarding a second visitor) to neighbor's remote computing devices. Thus, the system enables a user to selectively decide what visit information to share with members of the doorbell user group.
  • In some embodiments, the doorbell system can comprise a first remote computing device communicatively coupled to a first doorbell having a first camera. The method for using the doorbell system can comprise sending a first picture, taken by the first doorbell, of a first visitor to the first remote computing device. A doorbell user group can be created and can comprise a first user, of the first remote computing device, and a second user, of a second remote computing device. A second remote computing device can be communicatively coupled to a second doorbell, but may not necessarily be communicatively coupled to the first doorbell. The method for using the doorbell system can comprise sharing the first picture of the first visitor with the doorbell user group, such that the second remote computing device can receive the first picture.
  • In several embodiments, the first remote computing device may not be communicatively coupled to the second doorbell. The method can comprise receiving, by the first remote computing device, a second picture taken by the second doorbell. The second picture can be taken in response to the second doorbell sending the second picture to a database. The database can be configured to provide visitor information to the doorbell user group.
  • In some embodiments, the method for using the doorbell system can comprise the indication of a first trait of the first visitor via the first remote computing device. The method can comprise sharing the first picture of the first visitor with the doorbell user group in response to the first trait of the first visitor.
  • In several embodiments, the method can comprise the indication of a first trait of the first visitor via the first remote computing device. The method can send the first trait and the first picture of the first visitor to a database. The database can be configured to provide information regarding the first visitor to the doorbell user group. The method can provide a time, at which the first visitor visited the first doorbell, to the database.
  • In some embodiments, the first remote computing device cannot be communicatively coupled to the second doorbell. The method for using the doorbell system can comprise receiving, by the first remote computing device, data from the doorbell user group regarding the second doorbell. The second doorbell can comprise a second camera. In some cases, a third doorbell can comprise a third camera. The second doorbell can be coupled to a second building, and the third doorbell can be coupled to a third building.
  • In several embodiments, the doorbell system can comprise a database configured to share visitor information with the doorbell user group. The method can comprise selecting, via the first remote computing device, to receive the visitor information from at least one of the second doorbell and the third doorbell.
  • In some embodiments, the first doorbell can be coupled to a first building. The first building, the second building, and the third building can be located apart from each other. Receiving the data can comprise receiving the visitor information from a different location than a first location of the first building.
  • In several embodiments, the first picture can comprise a first video. The first picture can also be a still image (although many users prefer pictures that are videos).
  • In some embodiments, creating the doorbell user group can comprise adding a first email address and a second email address to a database. The first email address can be associated with the first doorbell, and the second email address can be associated with the second doorbell.
  • In several embodiments, the method for using the doorbell system can comprise displaying a map on the first remote computing device. The map can display a second location of the second doorbell and a third location of a third doorbell. The method can comprise displaying information, regarding the second doorbell, in response to selecting a map icon, representing the second doorbell, while the map icon is displayed on the first remote computing device. Selecting the map icon can be used to add the second user of the second doorbell to the doorbell user group. Methods can include sending an invitation (to join the user group) to the second user in response to selecting the second doorbell on the map.
  • In some embodiments, the method can comprise selecting a first button on the first remote computing device to alert law enforcement and/or to alert the doorbell user group.
  • In several embodiments, the first doorbell can be coupled to a first building. The second doorbell can be coupled to a second building. A third doorbell can be coupled to a third building. The buildings can be located remotely relative to each other. The method can comprise analyzing information collected from the first, second, and third doorbells, and then sending an alert in response to analytics based on the information. Analytics can include visitor identity, visit frequency (e.g., during a timeframe), time of visits, and facial recognition of visitors.
  • In some embodiments, a method of using a doorbell system can comprise coupling a first doorbell having a first camera to a first building, configuring the first doorbell to wirelessly communicate with a first remote computing device, and joining, by the first remote computing device, a doorbell user group. The doorbell user group can comprise a second user and a third user. The second user can comprise a second doorbell having a second camera coupled to a second building. A third user can comprise a third doorbell having a third camera coupled to a third building. The second doorbell can be configured to wirelessly communicate with a second remote computing device.
  • In several embodiments, the method of using the doorbell system can comprise receiving, by the first remote computing device, a first visitor picture. The second doorbell or the third doorbell can take the first visitor picture. The method can comprise receiving, from the doorbell user group by the first remote computing device, a first visitor picture taken by the second doorbell. The first remote computing device may not be communicatively coupled to the second doorbell.
  • In some embodiments, the method can comprise receiving, by the first remote computing device, a first trait. The first trait can be regarding a first visitor in response to the second user inputting the first trait into the second remote computing device.
  • In several embodiments, the method of using the doorbell system can comprise taking a second visitor picture, by the first doorbell, and sending the second visitor picture to the doorbell user group. The second remote computing device can display the second visitor picture, even though the second remote computing device may not be communicatively coupled to the first doorbell.
  • In some embodiments, the doorbell user group can comprise a database having a first visitor picture taken by the second doorbell of the second building. The method can comprise taking, by the first doorbell of the first building, a second visitor picture. The method can comprise determining, by a portion of the doorbell system, that the first visitor picture and the second visitor picture show a visitor.
  • In several embodiments, the method can comprise labeling the visitor with solicitor information. The members of the doorbell user group can then see the first visitor picture associated with the solicitor information. The method can comprise alerting the members regarding at least a portion of the solicitor information.
  • In some embodiments, the method can comprise receiving a solicitor alert. The alert can be in response to the second doorbell, of the second building, and the third doorbell, of the third building, detecting a visitor.
  • In several embodiments, the method can comprise adding solicitation information regarding the visitor to the doorbell user group.
  • In some embodiments, the method can comprise sending an alert to members of the doorbell user group in response to detecting, by a remote burglar detection system, a burglary of the first building.
  • In several embodiments, a doorbell system can comprise a first doorbell that can have a first camera that can be coupled to a first building. The first doorbell can be communicatively coupled to a first remote computing device. A second doorbell can have a second camera that can be coupled to a second building. The second doorbell can be communicatively coupled to a second remote computing device. The doorbell system can have a doorbell user group that can comprise a database that can have images taken by the first camera and the second camera. The doorbell user group can be communicatively coupled to the first remote computing device and the second remote computing device.
  • In some embodiments of the doorbell system, the first doorbell may not be communicatively coupled to the second remote computing device. The second doorbell may not be communicatively coupled to the first remote computing device. The system can be configured such that the first remote computing device can receive a first visitor picture taken by the second doorbell via the doorbell user group.
  • In several embodiments, the doorbell system can comprise a second visitor picture taken by the first doorbell. The picture can be displayed by the second remote computing device.
  • In some embodiments, the doorbell system can comprise a remote sensor. The remote sensor can be configured to monitor the first building and can detect an unauthorized building intrusion. An alert can be sent to the doorbell user group in response to the remote sensor detecting the unauthorized building intrusion.
  • In several embodiments, the system can comprise a solicitor alert. A solicitor alert can be sent to the doorbell user group in response to a visitor being detected by the first doorbell, at the first building, and by the second doorbell, at the second building.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects, and advantages are described below with reference to the drawings, which are intended to illustrate, but not to limit, the invention. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments.
  • FIG. 1 illustrates a front view of a doorbell system, according to some embodiments.
  • FIG. 2 illustrates a front view of a computing device running software to communicate with the doorbell from FIG. 1, according to some embodiments.
  • FIG. 3 illustrates a diagrammatic view of an embodiment in which the doorbell from FIG. 1 is connected to a building, according to some embodiments.
  • FIG. 4 illustrates a back view of the doorbell from FIG. 1 without a mounting bracket, according to some embodiments.
  • FIG. 5 illustrates a diagrammatic view of a group of doorbells, according to some embodiments.
  • FIG. 6 illustrates a front view of a remote computing device displaying a map, according to some embodiments.
  • FIG. 7 illustrates a diagrammatic view of picture being communicated, according to some embodiments.
  • FIG. 8 illustrates a diagrammatic view of a doorbell that is communicatively coupled to multiple remote computing devices, according to some embodiments.
  • FIG. 9 illustrates a diagrammatic view of a remote computing device that is communicatively coupled to multiple doorbells, according to some embodiments.
  • FIGS. 10 and 11 illustrate diagrammatic views of doorbell user groups, according to some embodiments.
  • DETAILED DESCRIPTION
  • Although certain embodiments and examples are disclosed below, inventive subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components.
  • For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.
  • System Embodiments
  • Communication systems can provide a secure and convenient way for a remotely located individual to communicate with a person who is approaching a sensor, such as a proximity sensor or motion sensor, or with a person who rings a doorbell, which can be located in a doorway, near an entrance, or within 15 feet of a door. Some communication systems allow an individual to hear, see, and talk with visitors who approach at least a portion of the communication system and/or press a button, such as a doorbell's button. For example, communication systems can use a computing device to enable a remotely located person to see, hear, and/or talk with visitors. Computing devices can include computers, laptops, tablets, mobile devices, smartphones, cellular phones, and wireless devices (e.g., cars with wireless communication). Example computing devices include the iPhone, iPad, iMac, MacBook Air, and MacBook Pro made by Apple Inc. Communication between a remotely located person and a visitor can occur via the Internet, cellular networks, telecommunication networks, and wireless networks.
  • Referring now to FIG. 1, doorbell systems can be a portion of a smart home hub. In some embodiments, the doorbell system 200 forms the core of the smart home hub. For example, the various systems described herein enable complete home automation. In some embodiments, the doorbell 202 controls various electrical items in a home (e.g., lights, air conditioners, heaters, motion sensors, garage door openers, locks, televisions, computers, entertainment systems, pool monitors, elderly monitors). In some embodiments, the computing device 204 controls the doorbell 202 and other electrical items in a home (e.g., lights, air conditioners, heaters, motion sensors, garage door openers, locks, televisions, computers, entertainment systems, pool monitors, elderly monitors).
  • FIG. 1 illustrates a front view of a communication system embodiment. The doorbell system 200 can include a doorbell 202 (e.g., a security system) and a computing device 204. Although the illustrated doorbell 202 includes many components in one housing, several doorbell embodiments include components in separate housings. The doorbell 202 can include a camera assembly 208 and a doorbell button 212. The camera assembly 208 can include a video camera, which in some embodiments is a webcam. The doorbell 202 can include a diagnostic light 216 and a power indicator light 220. In some embodiments, the diagnostic light 216 is a first color (e.g., blue) if the doorbell 202 and/or the doorbell system 200 is connected to a wireless Internet network and is a second color (e.g., red) if the doorbell 202 and/or the doorbell system 200 is not connected to a wireless Internet network. In some embodiments, the power indicator 220 is a first color if the doorbell 202 is connected to a power source. The power source can be supplied by the building to which the doorbell 202 is attached. In some embodiments, the power indicator 220 is a second color or does not emit light if the doorbell 202 is not connected to the power source.
  • The doorbell 202 can include an outer housing 224, which can be water resistant and/or waterproof. The outer housing can be made from metal or plastic, such as molded plastic with a hardness of 60 Shore D. In some embodiments, the outer housing 224 is made from brushed nickel or aluminum.
  • Rubber seals can be used to make the outer housing 224 water resistant or waterproof. The doorbell 202 can be electrically coupled to a power source, such as wires electrically connected to a building's electrical power system. In some embodiments, the doorbell 202 includes a battery for backup and/or primary power.
  • Wireless communication 230 can enable the doorbell 202 to communicate with the computing device 204. Some embodiments enable communication via cellular and/or WiFi networks. Some embodiments enable communication via the Internet. Several embodiments enable wired communication between the doorbell 202 and the computing device 204. The wireless communication 230 can include the following communication means: radio, WiFi (e.g., wireless local area network), cellular, Internet, Bluetooth, telecommunication, electromagnetic, infrared, light, sonic, and microwave. Other communication means are used by some embodiments. In some embodiments, such as embodiments that include telecommunication or cellular communication means, the doorbell 202 can initiate voice calls or send text messages to a computing device 204 (e.g., a smartphone, a desktop computer, a tablet computer, a laptop computer).
  • Several embodiments use near field communication (NFC) to communicate between the computing device 204 and the doorbell 202. The doorbell 202 and/or the computing device 204 can include a NFC tag. Some NFC technologies include Bluetooth, radio-frequency identification, and QR codes.
  • Some embodiments include computer software (e.g., application software), which can be a mobile application designed to run on smartphones, tablet computers, and other mobile devices. Software of this nature is sometimes referred to as “app” software. Some embodiments include software designed to run on desktop computers and laptop computers.
  • The computing device 204 can run software with a graphical user interface. The user interface can include icons or buttons. In some embodiments, the software is configured for use with a touch-screen computing device such as a smartphone or tablet.
  • FIG. 2 illustrates a computing device 204 running software. The software includes a user interface 240 displayed on a display screen 242. The user interface 240 can include a doorbell indicator 244, which can indicate the location of the doorbell that the user interface is displaying. For example, a person can use one computing device 204 to control and/or interact with multiple doorbells, such as one doorbell located at a front door and another doorbell located at a back door. Selecting the doorbell indicator 244 can allow the user to choose another doorbell (e.g., the back door's doorbell rather than the front door's doorbell).
  • The user interface 240 can include a connectivity indicator 248. In some embodiments, the connectivity indicator can indicate whether the computing device is in communication with a doorbell, the Internet, and/or a cellular network. The connectivity indicator 248 can alert the user if the computing device 204 has lost its connection with the doorbell 202; the doorbell 202 has been damaged; the doorbell 202 has been stolen; the doorbell 202 has been removed from its mounting location; the doorbell 202 has lost electrical power; and/or if the computing device 204 cannot communicate with the doorbell 202. In some embodiments, the connectivity indicator 248 alerts the user of the computing device 204 by flashing, emitting a sound, displaying a message, and/or displaying a symbol.
  • In some embodiments, if the doorbell 202 loses power, loses connectivity to the computing device 204, loses connectivity to the Internet, and/or loses connectivity to a remote server, a remote server 206 sends an alert (e.g., phone call, text message, image on the user interface 240) regarding the power and/or connectivity issue. In several embodiments, the remote server 206 can manage communication between the doorbell 202 and the computing device. In some embodiments, information from the doorbell 202 is stored by the remote server 206. In several embodiments, information from the doorbell 202 is stored by the remote server 206 until the information can be sent to the computing device 204, uploaded to the computing device 204, and/or displayed to the remotely located person via the computing device 204. The remote server 206 can be a computing device that stores information from the doorbell 202 and/or from the computing device 204. In some embodiments, the remote server 206 is located in a data center.
  • In some embodiments, the computing device 204 and/or the remote server 206 attempts to communicate with the doorbell 202. If the computing device 204 and/or the remote server 206 is unable to communicate with the doorbell 202, the computing device 204 and/or the remote server 206 alerts the remotely located person via the software, phone, text, a displayed message, and/or a website. In some embodiments, the computing device 204 and/or the remote server 206 attempts to communicate with the doorbell 202 periodically; at least every five hours and/or less than every 10 minutes; at least every 24 hours and/or less than every 60 minutes; or at least every hour and/or less than every second.
  • In some embodiments, the server 206 can initiate communication with the computing device 204 and/or with the doorbell 202. In several embodiments, the server 206 can initiate, control, and/or block communication between the computing device 204 and the doorbell 202.
  • In several embodiments, a user can log in to an “app,” website, and/or software on a computing device (e.g., mobile computing device, smartphone, tablet, desktop computer) to adjust the doorbell settings discussed herein.
  • In some embodiments, a computing device can enable a user to watch live video and/or hear live audio from a doorbell due to the user's request rather than due to actions of a visitor. Some embodiments include a computing device initiating a live video feed (or a video feed that is less than five minutes old).
  • In some embodiments, the user interface 240 displays an image 252 such as a still image or a video of an area near and/or in front of the doorbell 202. The image 252 can be taken by the camera assembly 208 and stored by the doorbell 202, server 206, and/or computing device 204. The user interface 240 can include a recording button 256 to enable a user to record images, videos, and/or sound from the camera assembly 208, microphone of the doorbell 202, and/or microphone of the computing device 204.
  • In several embodiments, the user interface 240 includes a picture button 260 to allow the user to take still pictures and/or videos of the area near and/or in front of the doorbell 202. The user interface 240 can also include a sound adjustment button 264 and a mute button 268. The user interface 240 can include camera manipulation buttons such as zoom, pan, and light adjustment buttons. In some embodiments, the camera assembly 208 automatically adjusts between Day Mode and Night Mode. Some embodiments include an infrared camera and/or infrared lights to illuminate an area near the doorbell 202 to enable the camera assembly 208 to provide sufficient visibility (even at night).
  • In some embodiments, buttons include diverse means of selecting various options, features, and functions. Buttons can be selected by mouse clicks, keyboard commands, or touching a touch screen. Many embodiments include buttons that can be selected without touch screens.
  • In some embodiments, the user interface 240 includes a quality selection button, which can allow a user to select the quality and/or amount of the data transmitted from the doorbell 202 to the computing device 204 and/or from the computing device 204 to the doorbell 202.
  • In some embodiments, video can be sent to and/or received from the computing device 204 using video chat protocols such as FaceTime (by Apple Inc.) or Skype (by Microsoft Corporation). In some embodiments, these videos are played by videoconferencing apps on the computing device 204 instead of being played by the user interface 240.
  • The user interface 240 can include a termination button 276 to end communication between the doorbell 202 and the computing device 204. In some embodiments, the termination button 276 ends the ability of the person located near the doorbell 202 (i.e., the visitor) to hear and/or see the user of the computing device 204, but does not end the ability of the user of the computing device 204 to hear and/or see the person located near the doorbell 202.
  • In some embodiments, a button 276 is both an answer button (to accept a communication request from a visitor) and a termination button (to end communication between the doorbell 202 and the computing device 204). The button 276 can include the word “Answer” when the system is attempting to establish two-way communication between the visitor and the user. Selecting the button 276 when the system is attempting to establish two-way communication between the visitor and the user can start two-way communication. The button 276 can include the words “End Call” during two-way communication between the visitor and the user. Selecting the button 276 during two-way communication between the visitor and the user can terminate two-way communication. In some embodiments, terminating two-way communication still enables the user to see and hear the visitor. In some embodiments, terminating two-way communication causes the computing device 204 to stop showing video from the doorbell and to stop emitting sounds recorded by the doorbell.
  • In some embodiments, the user interface 240 opens as soon as the doorbell detects a visitor (e.g., senses indications of a visitor). Once the user interface 240 opens, the user can see and/or hear the visitor even before “answering” or otherwise accepting two-way communication, in several embodiments.
  • Some method embodiments include detecting a visitor with a doorbell. The methods can include causing the user interface to display on a remote computing device 204 due to the detection of the visitor (e.g., with or without user interaction). The methods can include displaying video from the doorbell and/or audio from the doorbell before the user accepts two-way communication with the visitor. The methods can include displaying video from the doorbell and/or audio from the doorbell before the user accepts the visitor's communication request. The methods can include the computing device simultaneously asking the user if the user wants to accept (e.g., answer) the communication request and displaying audio and/or video of the visitor. For example, in some embodiments, the user can see and hear the visitor via the doorbell before opening a means of two-way communication with the visitor.
  • In some embodiments, the software includes means to start the video feed on demand. For example, a user of the computing device might wonder what is happening near the doorbell 202. The user can open the software application on the computing device 204 and instruct the application to show live video and/or audio from the security device 202 even if no event near the doorbell 202 has triggered the communication.
  • In several embodiments, the security device 202 can be configured to record when the security device 202 detects movement and/or the presence of a person. The user of the computing device 204 can later review all video and/or audio records from when the security device 202 detected movement and/or the presence of a person.
  • Referring now to FIG. 1, in some embodiments, the server 206 controls communication between the computing device 204 and the doorbell 202, which can be a doorbell with a camera, a microphone, and a speaker. In several embodiments, the server 206 does not control communication between the computing device 204 and the doorbell 202.
  • In some embodiments, data captured by the doorbell and/or the computing device 204 (such as videos, pictures, and audio) is stored by another remote device such as the server 206. Cloud storage, enterprise storage, and/or networked enterprise storage can be used to store video, pictures, and/or audio from the doorbell system 200 or from any part of the doorbell system 200. The user can download and/or stream stored data and/or storage video, pictures, and/or audio. For example, a user can record visitors for a year and then later can review conversations with visitors from the last year. In some embodiments, remote storage, the server 206, the computing device 204, and/or the doorbell 202 can store information and statistics regarding visitors and usage.
  • FIG. 3 illustrates an embodiment in which a doorbell 202 is connected to a building 300, which can include an entryway 310 that has a door 254. Electrical wires 304 can electrically couple the doorbell 202 to the electrical system of the building 300 such that the doorbell 202 can receive electrical power from the building 300. The building can include a door lock 250 to lock the door 254.
  • A wireless network 308 can allow devices to wirelessly access the Internet. The doorbell 202 can access the Internet via the wireless network 308. The wireless network 308 can transmit data from the doorbell 202 to the Internet, which can transmit the data to remotely located computing devices 204. The Internet and wireless networks can transmit data from remotely located computing devices 204 to the doorbell 202. In some embodiments, a doorbell 202 connects to a home's WiFi.
  • As illustrated in FIG. 3, one computing device 204 (e.g., a laptop, a smartphone, a mobile computing device, a television) can communicate with multiple doorbells 202. In some embodiments, multiple computing devices 204 can communicate with one doorbell 202.
  • In some embodiments, the doorbell 202 can communicate (e.g., wirelessly 230) with a television 306, which can be a smart television. Users can view the television 306 to see a visitor and/or talk with the visitor.
  • FIG. 4 illustrates an internal view of the doorbell 202. Doorbells 202 can include a chip 480 (e.g., integrated circuits, microprocessor, computer) and a memory 492. Doorbells 202 can also include a microphone 484 and a speaker 488. The speaker 488 can comprise a flat speaker and a sound chamber 460 configured to amplify an emitted sound. The flat speaker can be located in the sound chamber. Some doorbell embodiments include a proximity sensor 500. In several embodiments, doorbells 202 include a wireless communication module 504, such as a WiFi module. The communication module 504 can have an integrated antenna. In some embodiments, an antenna is contained within the outer housing 224.
  • The doorbell 202 can include one or more heating elements 508 configured to regulate the temperature of the doorbell 202. For example, doorbells 202 can be used in very cold environments, such as in Alaska. The heating element 508 can be used in various methods to protect temperature sensitive portions of the doorbell 202 from cold weather.
  • While protecting the doorbell 202 from cold weather can be important in some embodiments, protecting visitors from excessive heat can also be important in some embodiments. Excessive heat could burn visitors as they “ring” the doorbell (e.g., press the doorbell button 212 shown in FIG. 10). The doorbell 202 can include a thermometer 512 to enable the system to determine the temperature inside a portion of the doorbell 202 and/or outside the doorbell 202.
  • Several embodiments can be configured for 9 to 40 volts alternating current (“VAC”) and/or 9 to 40 volts direct current (“VDC”). Some embodiments convert input electricity into direct current (DC), such as 12 VDC. Several embodiments include a converter 494 for power conversion (e.g., converting electrical energy from one form to another). The converter 494 can convert input power (e.g., from wiring in a building) to a suitable power form for the doorbell 202. The power conversion can convert between AC and DC, change the voltage, and/or change the frequency. The converter 494 can include a transformer and/or a voltage regulator. In several embodiments, the converter 494 can include an AC to DC converter, a DC to DC converter, a voltage stabilizer, a linear regulator, a surge protector, a rectifier, a power supply unit, a switch, an inverter, and/or a voltage converter. In some embodiments, the converter 494 converts 50 Hertz (“Hz”) power into 60 Hz power.
  • The electrical components of the doorbell 202 (e.g., the camera assembly 208, the memory 492, the chip 480, the speaker 488, the converter 494, the microphone 484, the lights 458, the rectifier 524, the proximity sensor 500, the communication module 504, the heating element 508, the electrical connectors 510, the thermometer 512, the image analysis system 520, and the battery 642) can be electrically coupled to a printed circuit board (“PCB”) 516 and can receive electrical power from the PCB 516.
  • The PCB 516 and the electrical components of the doorbell 202 can be the electrical system 456 of the doorbell 202. Additional details regarding the PCB 516 and the electrical components of the doorbell 202 are described in U.S. Nonprovisional patent application Ser. No. 14/612,376; filed Feb. 3, 2015; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS. The entire contents of patent application Ser. No. 14/612,376 are incorporated by reference herein.
  • Although some embodiments are described in the context of methods, the method embodiments can also be formulated as devices and systems. Methods described herein can be applied to the devices and systems incorporated by references herein.
  • Systems with Multiple Doorbells
  • Multiple doorbells can share data to “watch” over a neighborhood by letting people connect with neighbors and share information regarding suspicious visitors. The shared information can include pictures of visitors and the time of suspicious activity. As a result, sharing data between multiple doorbell users can help reduce crime and theft in neighborhoods around the world.
  • Suspicious activity can be “tagged” and shared with members of a user group (e.g., a group of neighbors). The shared data can include photos and information regarding suspicious visitors. The information can include written descriptions, recorded descriptions, and videos. For example, a first doorbell can take a picture of a visitor. The doorbell can send the picture to a remote computing device. A user of the remote computing device can see the visitor. Then, the user can enter information regarding the suspicious visitor into the remote computing device. The doorbell system can then share the information and the picture of the visitor with a user group, which can include other doorbell users.
  • An administrator of the user group can be a “master user” who has the ability to add other users to the user group. One way of adding users to a user group is to enter email addresses of prospective users into a remote computing device (e.g., into an “app” running on the remote computing device). This app can be the same app used by the administrator to configure her doorbell.
  • In a user group section (e.g., a “neighborhood section”) of the app, a user can see who else is in her neighborhood. In some embodiments, the home locations of prospective or current users are displayed on a map. Selecting prospective users can enable the administrator to add new users to the user group.
  • When a user thinks a visitor is suspicious, the user can report the visitor and the nature of the suspicious activity to the user group. Thus, the user can enter the visitor into an activity log such that the event has a “suspicious” tag. The event can then be shared with the other users via email, text message, a push notifications, or any suitable means. The event can be recorded in a user group activity list, which in some embodiments, is only visible to members of the user group (or at least is not visible to the general public). The event can also be listed in a history of events reported by a specific individual. Thus, users can see events they reported, and users can see events reported by all members of a user group.
  • Each event can include an icon. Selecting the icon can cause the event to be shared with the user group. In some embodiments, icons are shown on a map that is displayed on a remote computing device. In this manner, users can see where suspicious visitors have been reported by members of the user group, and in some embodiments, by members of other user groups.
  • In some embodiments, a user group is limited to a particular neighborhood. In other embodiments, user groups are not limited to a particular neighborhood.
  • Visitor data from a user (or from a user group) can be shared with law enforcement (e.g., police officers) or other safety personnel to help keep neighborhoods safe. A suspicious event reported by a first user can be shared with a second user. The second user can then share the event with law enforcement. In some embodiments, the user who reports the event to the user group also reports the event to law enforcement (e.g., by selecting a button in the app).
  • The app can include a “distress button” configured to enable a user to alert law enforcement and user group members that something is wrong. Pressing the button on a remote computing device can cause a doorbell system to send a push notification to other users to notify them that help is needed. The push notification can also communicate the nature of the event and can enable users to see a picture of the visitor causing the trouble.
  • FIG. 5 illustrates a neighborhood, which can include many buildings 300 a, 300 b, 300 c. The buildings 300 a, 300 b, 300 c can be individual homes or individual buildings (e.g., multiple single-family homes, multiple apartments coupled together, offices). The buildings 300 a, 300 b, 300 c can be located next to each other or they can be separated by other homes or buildings.
  • Embodiments can include diverse ways of using a doorbell system 386, which can include multiple doorbells 202 a, 202 b, 202 c and multiple remote computing devices 204 a, 204 b, 204 c. Each doorbell 202 a, 202 b, 202 c can be coupled to an exterior wall of a different building 300 a, 300 b, 300 c. A different remote computing device 204 a, 204 b, 204 c can configure each doorbell 202 a, 202 b, 202 c. Each building 300 a, 300 b, 300 c can have its own wireless network 308 a, 308 b, 308 c. Another network 308 d (e.g., a cellular network, the Internet) can enable a first doorbell 202 a to send a picture of a visitor 388 a to a second doorbell 202 b and/or to a second remote computing device 204 b.
  • A first doorbell 202 a can send a visitor notification (e.g., an alert as shown in FIG. 1) to a first computing device 204 a via a first wireless network 308 a. In some embodiments, however, it is advantageous for a doorbell 202 a or a remote computing device 204 a associated with a first building 300 a to send information regarding a visitor 388 a to a doorbell 202 b or a remote computing device 204 b associated with a second building 300 b. In several embodiments, it is advantageous for a doorbell 202 a or a remote computing device 204 a associated with a first building 300 a to receive information regarding a visitor 388 b from a doorbell 202 b or a remote computing device 204 b associated with a second building 300 b. An external network 308 d can facilitate this sending and receiving of information regarding visitors 388 a, 388 b. This way, the doorbell system 386 can enable notifying a second remote computing device 204 b regarding a visitor detected by a first doorbell 202 a even though the second remote computing device 204 b is not configured to control the first doorbell 202 a.
  • Each of the doorbells 202 a, 202 b, 202 c illustrated in FIG. 5 can include a camera assembly 208 (as labeled in FIG. 1). Some embodiments of using the doorbell system 386 include taking a first picture of a first visitor 388 a with the first doorbell 202 a; sending the first picture to the first remote computing device 204 a; and indicating a first trait (e.g., identity, suspicious behavior, bodily characteristics) of the first visitor 388 a via the first remote computing device 204 a.
  • The first remote computing device 204 a can be used to categorize the visitor. For example, the user of the first remote computing device can indicate whether the first visitor 388 a is a salesperson, a fundraiser, or a potential criminal. The first remote computing device 204 a can share this categorization with other members of the user group, which can include users of the remote computing devices 204 a, 204 b, 204 c.
  • A first user of the first remote computing device 204 a (e.g., the owner of the first doorbell 202 a) can create a user group. The user group can include the first user of the first remote computing device 204 a and a second user of a second remote computing device 204 b. Note that in FIG. 5, the first remote computing device 204 a is located remotely relative to the first doorbell 202 a because the first remote computing device is not electrically or mechanically coupled to the first doorbell 202 a (even though the first remote computing device 204 a and the first doorbell 202 a are located in the same building 300 a).
  • Embodiments can also include sharing the first picture of the first visitor 388 a with the user group. The sharing of the first picture of the first visitor 388 a with the user group can be in response to the first trait of the first visitor 388 a. For example, the first trait can be that the first visitor 388 a is acting suspiciously by peaking over fences or looking through windows.
  • Several embodiments include sending the first trait and the first picture of the first visitor 388 a to a database 390 configured to provide information regarding the first visitor 388 a to the user group. The first doorbell 202 a can also determine a time at which the first visitor 388 a visited the first doorbell 202 a. A portion of the doorbell system 386 can provide this time to the database 390.
  • Some embodiments include receiving data with the first remote computing device 204 a regarding a second doorbell 202 b that comprises a second camera and regarding a third doorbell 202 c that comprises a third camera. As illustrated in FIG. 5, the first doorbell 202 a is coupled to a first building 300 a. The second doorbell 202 b is coupled to a second building 300 b. The third doorbell 202 c is coupled to a third building 300 c. Doorbells can be mounted near a door in an entryway. The buildings 300 a, 300 b, and 300 c can be located apart from each other such that each building is a separate residential dwelling or a separate office space. The database 390 can be configured to share visitor information with the user group. Embodiments can include selecting (via the first remote computing device 204 a) to receive the visitor information from at least one of the second doorbell 202 b and the third doorbell 202 c. Receiving the data can comprise receiving the visitor information from a different location than a first location of the first building 300 a.
  • Each doorbell 202 a, 202 b, and 202 c can include a camera assembly 208 (labeled in FIG. 1). In several embodiments, a camera assembly 208 can take videos or stationary images. Thus, a “picture” taken by a camera of a doorbell can actually be a video. In some embodiments, the “picture” is a stationary image (rather than a video).
  • There are many ways to create user groups. In some embodiments, creating a user group comprises adding a first email address and a second email address to a database. The first email address can be associated with the first doorbell 202 a. The second email address can be associated with a second doorbell 202 b. In some embodiments, a first user of a first doorbell 202 a sends an invitation to join a doorbell user group to a second user of a second doorbell 202 b. The first user can send the invitation via a first remote computing device 204 a (that is authorized to configure the first doorbell 202 a) to a second remote computing device 204 b (that is authorized to configure the second doorbell 202 b). The second user can then accept or decline the invitation via the second remote computing device 204 b. In some embodiments, the second user accepts or declines the invitation to join the doorbell user group at least partially in response to seeing the location of the first doorbell 202 a on the display of the second computing device 204 b. For example, if the first and second users are neighbors, then the second user could be more likely to accept the invitation than if the first and second users live much farther away from each other.
  • FIG. 6 illustrates a map 392 that is displayed by the first remote computing device 204 a. The map 392 displays a first location of the first doorbell 202 a, a second location of the second doorbell 202 b, and a third location of the third doorbell 202 c. The map 392 can also include other items such as street names. Several embodiments include displaying information regarding the second doorbell 202 b in response to a person using the first computing device 204 a to select a second icon representing the second doorbell 202 b while the second icon is displayed on the first remote computing device 204 a. (In FIG. 6, doorbells 202 a, 202 b, 202 c are represented by icons that look like doorbells.) This information can include an address of the second doorbell 202 b, contact information (e.g., a name, a phone number, an email) of a user of the second doorbell 202 b, and/or a picture of the user of the second doorbell 202 b. Selecting the second icon can add a second user of the second doorbell 202 b to the doorbell user group.
  • Not all members of a doorbell user group necessarily have a doorbell. Members of the user group who have not yet purchased a doorbell with a camera can still receive visitor information, including visitor pictures, on their remote computing devices. For example, a picture taken by the first doorbell 202 a can be sent to the remote computing devices of people who have not purchased a doorbell with a camera.
  • Several embodiments include selecting a first button 394 on the display of the first remote computing device 204 a to alert law enforcement and/or to alert the user group. The button 394 can be a portion of the graphical user interface of an app.
  • A first user can also join a user group that was previously created by another user. This first user can couple a first doorbell having a first camera to a first building; configure the first doorbell to wirelessly communicate with a first remote computing device; and/or join a user group via the first remote computing device. This user group can comprise a second user of a second doorbell having a second camera and a third user of a third doorbell having a third camera. The second doorbell can be configured to wirelessly communicate with a second remote computing device. This first user can receive a first picture and a first trait of a first visitor with the first remote computing device. This first picture could have been taken previously by the second doorbell or the third doorbell. This first user can take a second picture of a second visitor with the first doorbell; and/or send the second picture of the second visitor to the user group such that the second remote computing device can display the second picture. This first user can detect a second visitor with the first doorbell. This first user can determine that the second visitor is the first visitor by a portion of the doorbell system analyzing the first picture from the second doorbell or the third doorbell. This analysis can include the doorbell system comparing the first picture to the second picture. Embodiments can also include alerting a first user of the first doorbell that the second visitor is the first visitor (i.e., the first visitor is the same person as the second visitor).
  • FIG. 7 illustrates that a first doorbell 202 a can take a picture 398. Then, the first doorbell 202 a can send the picture 398 to a first remote computing device 204 a. (The doorbell 202 a can send the picture 398 directly to the first remote computing device 204 a or indirectly to the first remote computing device 204 a via an intermediary device such as a router, server, network, and/or the Internet.) Then, the first remote computing device 204 a can send the picture 398 to a second remote computing device 204 b. This approach enables the second remote computing device 204 b to receive the picture 398 even though the second remote computing device is not communicatively coupled to the doorbell 202 a.
  • In contrast, FIG. 8 illustrates an embodiment in which multiple remote computing devices 204 a, 204 b, 204 c are communicatively coupled with one doorbell 202 a. Thus, the doorbell 202 a can send a picture that it takes to all of the remote computing devices 204 a, 204 b, 204 c. In some cases, a first user might not want her doorbell to be communicatively coupled with a neighbor's remote computing device (e.g., because communicatively coupling her doorbell with her neighbor's remote computing device could enable the neighbor to see visitors and/or talk with visitors to the home of the first user without the first user's permission). As a result, the first user might want to be able to share a visitor picture and/or visitor information with a neighbor without the neighbor's remote computing device being communicatively coupled with the first user's doorbell. The first user's remote computing device, a user group, a server and/or a database can act as a gatekeeper that enables the first user to control what visitor information she shares with other members of a user group (e.g., with neighbors or members of other households).
  • In some embodiments, a homeowner can share information from her doorbell with neighbors' remote computing devices via the doorbell user group 400 (shown in FIG. 10) even though the neighbors' remote computing devices are not configured to receive visitor alerts from the homeowner's doorbell each time the homeowner's doorbell detects a visitor (e.g., via motion detection or button press detection). Some embodiments include the homeowner (e.g., a user) choosing to send a first visit information (regarding a first visitor) to neighbor's remote computing devices and choosing not to send a second visit information (regarding a second visitor) to neighbor's remote computing devices. This choosing step can be after and in response to seeing (e.g., displaying) the visitors on a remote computing device. Thus, the system 408 (shown in FIG. 10) enables a user to selectively decide what visit information to share with members of the doorbell user group.
  • In contrast, the configuration illustrated in FIG. 8 does not enable selectively deciding what visit information to share. Instead, all the remote computing devices 204 a, 204 b, 204 c receive the visit information. While the configuration illustrated in FIG. 8 may work well for one household, it typically does not work well with multiple households (e.g., an entire neighborhood) due to privacy concerns and due to the fact that most neighbors would not want to receive a notification every time a person approaches any home in the neighborhood. The number of unhelpful notifications would be very bothersome. Imagine how many uneventful notifications a user would receive each day after school as dozens of children come home. Thus, the system 408 illustrated in FIG. 10 works much better than the system illustrated in FIG. 8 when multiple households, homes, and/or buildings are involved in the visitor information sharing.
  • For example, as shown in FIG. 11, the remote computing device 204 b and/or the user group 400 can act as a gatekeeper system to enable a user to select which visitor information is shared other remote computing devices 204 a, 204 c after the user's remote computing device 204 b receives the visitor information. This approach allows a user to share (e.g., by selecting a button on the device 204 b) information regarding some visitors (e.g., suspicious visitors) with other remote computing devices 204 a, 204 c after seeing (or displaying) the visitors on the computing device 204 b. This approach also allows the user to not share information regarding other visitors (e.g., trusted friends) with other remote computing devices 204 a, 204 c after seeing (or displaying) the other visitors on the computing device 204 b. Thus, the “share decision” can be in response to the user seeing (e.g., analyzing) the visitors on her remote computing device 204 b.
  • In contrast, the system shown in FIG. 8 does not include a visitor by visitor “share decision.” Instead, a user simply adds several computing devices 204 a, 204 b, 204 c to a system such that the computing devices 204 a, 204 b, 204 c receive a visitor notification (e.g., an alert) each time the doorbell 202 a detects a visitor in response to the computing devices 204 a, 204 b, 204 c being communicatively coupled with the doorbell 202 a.
  • FIG. 9 illustrates an embodiment in which a remote computing device 204 a is communicatively coupled (e.g., wirelessly) with multiple doorbells 202 a, 202 b, 202 c. For example, a first user could be able to see and/or talk with visitors detected by her own doorbell 202 a or detected by neighbors' doorbells 202 b, 202 c. This approach raises privacy concerns.
  • FIG. 10 illustrates a diagrammatic view of an embodiment that includes a user group 400. The user group 400 can include a database 390, a server 404, and user information 406 such as email addresses, user profiles, and user doorbell locations.
  • Thus, many embodiments enable members of a user group to share visitor information with each other without granting doorbell control to members of the user group. For example, a first user can alter at least one setting (e.g., a chime tone, a greeting, a silent mode, on-demand video modes) of her doorbell but typically cannot alter settings of neighbors' doorbells (e.g., of other doorbells in the user group). These embodiments enable a first user to determine what visitor pictures and information her doorbell shares with a user group.
  • The doorbell system 408 can include a first remote computing device 204 a communicatively coupled to a first doorbell 202 a that has a first camera 208 (labeled in FIG. 1). Some embodiments include sending a first picture 410, taken by the first doorbell 202 a, of a first visitor 402 a to the first remote computing device 204 a. An arrow indicates the first doorbell 202 a is communicatively coupled with the first remote computing device 204 a. This communicatively coupling can be wireless and can include two-way communication to enable the first remote computing device 204 a to send data and doorbell setting parameters to the first doorbell 202 a.
  • The first doorbell 202 a is not communicatively coupled to the second remote computing device 204 b even though the second remote computing device 204 b can receive a picture taken by the first doorbell 202 a from at least a portion of the user group 400. This way, the second remote computing device 204 b can receive information regarding a visitor detected by the first doorbell 202 a, but the second remote computing device 204 b cannot alter settings of the first doorbell 202 a, initiate on-demand videos from the first doorbell 202 a, or talk with the first visitor 402 a via the first doorbell 202 a.
  • Embodiments can include creating a doorbell user group 400 comprising a first user of the first remote computing device 204 a and a second user of the second remote computing device 204 b, which is communicatively coupled to a second doorbell 202 b (as shown by the arrow) but is not communicatively coupled to the first doorbell 202 a. The remote computing devices 204 a, 204 b, 204 c can be communicatively coupled with the user group 400 to enable sharing visitor information (e.g., pictures, audio files, visitor descriptions) detected by one of the doorbells 202 a, 202 b, 202 c (and/or recorded by one of the remote computing devices 204 a, 204 b, 204 c) with all of the remote computing devices 204 a, 204 b, 204 c communicatively coupled with the user group 400. This way, visitor information can be shared with members of the user group 400 without users being concerned that other members of the user group 400 might hear private visitor conversations and/or see confidential visitors. Embodiments can enable a user to control what visitor information members of the user group receive from the user's doorbell.
  • Embodiments can include sharing the first picture 410 of the first visitor 402 a with the doorbell user group 400 such that the second remote computing device 204 b receives the first picture 410 taken by the first doorbell 202 a. Sharing the first picture 410 with the doorbell user group 400 can require the user of the first remote computing device 204 a to authorize sharing the first picture (and/or other information regarding the first visitor 402 a) with the user group 400.
  • As illustrated in FIG. 10, the first remote computing device 204 a is not communicatively coupled to the second doorbell 202 b. Embodiments can include receiving, by the first remote computing device 204 a, a second picture 412 taken by the second doorbell 202 b in response to the second doorbell 202 b sending the second picture 412 to a database 390 configured to provide visitor information 406 to the doorbell user group 400.
  • The visitors 402 a, 402 b, 402 c can be the same person. For example, a solicitor knocking on doors of buildings 300 a, 300 b, 300 c in a neighborhood can be detected by motion sensors of many doorbells 202 a, 202 b, 202 c. In some cases, visitors 402 b, 402 c can be different people.
  • FIG. 11 illustrates a diagrammatic view of an embodiment that includes a user group 400. Using a doorbell system 408 can include coupling a first doorbell 202 a having a first camera 208 (labeled in FIG. 1) to a first building 300 a. The first building 300 a can include a first wireless network 308 a that communicatively couples the first doorbell 202 a to the first remote computing device 204 a, but does not communicatively couple the first doorbell 202 a to a second remote computing device 204 b.
  • In some embodiments, the doorbell 202 a is connected to the first wireless 308 a, which connects to the Internet and/or to a cellular network to enable the first doorbell 202 a to be communicatively coupled to the first remote computing device 204 a even when the first remote computing device 204 a is many miles away from the first building 300 a. In some cases, when the first remote computing device 204 a is located within range of the first wireless network 308 a (e.g., inside the first building 300 a), the first wireless network 308 a can directly communicatively couple the first doorbell 202 a to the first remote computing device 204 b. The second building 300 b can include a second wireless network 308 b, which can communicatively couple the second doorbell 202 b to the second remote computing device 204 b. The third building 300 c, to which the third doorbell 202 c can be mechanically coupled, can include a third wireless network 308 c.
  • Several embodiments include configuring the first doorbell 202 a to wirelessly communicate with the first remote computing device 204 a. Some embodiments include joining, by the first remote computing device 204 a, a doorbell user group 400 that comprises a second user of the second doorbell 202 b having a second camera coupled to the second building 300 b. The doorbell user group 400 can also include a third user of a third doorbell 202 c having a third camera coupled to the third building 300 c. The second doorbell 202 b can be configured to wirelessly communicate with the second remote computing device 204 b.
  • Some embodiments include receiving, by the first remote computing device 204 a, a first visitor picture 410 that was taken by the second doorbell 202 b or the third doorbell 202 c. For example, arrow 416 shows how the first visitor picture 410 from the second doorbell 202 b can be sent to the second remote computing device 204 b and/or to the user group 400 (in some cases without passing through the second remote computing device 204 b). Arrow 418 represents that the second remote computing device 204 b can send the first picture 410 to the user group 400 and/or can send permission for members of the user group 400 to view the first picture 410 to the user group 400. Arrow 420 represents how the user group 400 can send the first picture 410 to the first remote computing device 204 a and/or to the third remote computing device 204 c.
  • As used herein, “user groups” often do not include humans, but instead include devices owned by various humans. For example, a neighborhood association may decide to purchase doorbells 202 a, 202 b, 202 c. Creating a doorbell user group can include communicatively coupling the doorbells 202 a, 202 b, 202 c and the remote computing devices 204 a, 204 b, 204 c as shown in FIG. 10. As a result of this communicatively coupling, members of the neighborhood association can share visitor information. A doorbell user group can include the doorbells 202 a, 202 b, 202 c and/or the remote computing devices 204 a, 204 b, 204 c. User groups 400 can include databases 390, servers 404, and information 406 regarding the owners of the doorbells 202 a, 202 b, 202 c and the remote computing devices 204 a, 204 b, 204 c. User groups 400 can include the locations of each doorbell in the user group 400. User groups 400 can store visitor pictures and visitor information for future reference by members of the user groups 400.
  • Referring now to FIG. 11, embodiments can include receiving from the doorbell user group 400, by the first remote computing device 204 a, the first visitor picture 410 taken by the second doorbell 202 b even though the first remote computing device 204 a is not communicatively coupled to the second doorbell 202 b. Embodiments can also include receiving, by the first remote computing device 204 a, a first trait regarding a first visitor 402 a in response to a second user of the second remote computing device 204 b inputting the first trait into the second remote computing device 204 b. For example, the second user can label the first visitor 402 as “suspicious” and/or can record a description of the first visitor 402 a.
  • Several embodiments include taking a second visitor picture 412, by the first doorbell 202 a, and sending the second visitor picture 412 to the doorbell user group 400 such that the second remote computing device 204 b and the third remote computing device 204 c can display the second visitor picture 412 even though the second remote computing device 204 b and the third remote computing device 204 c are not communicatively coupled to the first doorbell 202 a
  • The doorbell user group 400 can comprise a database 390 that includes many visitor pictures taken by more doorbells that are communicatively coupled to the doorbell user group 400. The database 390 can include a first visitor picture 410 taken by the second doorbell 202 b of the second building 300 b. The first doorbell 202 a of the first building 300 a can take a second visitor picture 412. At least a portion of the doorbell system 408 can determine that the first visitor picture 410 and the second visitor 412 picture show a visitor (i.e., show the same person). Embodiments can include labeling the visitor with solicitor information such that members of the doorbell user group 400 can see the first visitor picture 410 associated with the solicitor information. For example, the remote computing devices 204 a, 204 b, 204 c can download the first visitor picture 410 (or another visitor picture) and information regarding the visitor's solicitation behavior. The remote computing devices 204 a, 204 b, 204 c can display the solicitor information along with the picture of the solicitor.
  • Users can type information regarding visitors into their remote computing devices 204 a, 204 b, 204 c. The user group 400 can then share this information with members of the user group 400. Some embodiments include alerting the members regarding at least a portion of the solicitor information. This alert 422 can include a picture of the solicitor and other information regarding the solicitor. Several embodiments include receiving a solicitor alert 422 in response to the second doorbell 202 b of the second building 300 b and the third doorbell 202 c of the third building 300 c detecting a visitor (e.g., detecting the same person within a predetermined time, which can be within 24 hours).
  • The alerts 422 shown in FIG. 11 can also be burglary alerts. Some embodiments include sending an alert 422 to members of the doorbell user group 400 in response to detecting a burglary of the first building 300 a. A remote burglar detection system (e.g., a remote sensor 242 of an alarm system), can detect the burglary. The remote sensor 424 can also be a fire alarm or smoke alarm. Some embodiments include sending an alert 422 to members of the doorbell user group 400 in response to a remote sensor 424 detecting fire and/or smoke.
  • A doorbell system 408 can comprise a first doorbell 202 a having a first camera coupled to a first building 300 a, wherein the first doorbell 202 a is communicatively coupled to a first remote computing device 204 a; a second doorbell 202 b having a second camera coupled to a second building 300 b, wherein the second doorbell 202 b is communicatively coupled to a second remote computing device 204 b; and a doorbell user group 400 comprising a database 390 having images 410, 412 taken by the first camera and the second camera. The doorbell user group 400 can be communicatively coupled to the first remote computing device 204 a and the second remote computing device 204 b.
  • In several embodiments, the first doorbell 202 a is not communicatively coupled to the second remote computing device 204 b, and the second doorbell 202 b is not communicatively coupled to the first remote computing device 204 a while the system 408 is configured such that the first remote computing device 204 a receives a first visitor picture 410 taken by the second doorbell 202 b via the doorbell user group 400. A second visitor picture 412 can be taken by the first doorbell 202 a and displayed by the second remote computing device 204 b.
  • The doorbell system 408 can also include a remote sensor 424 configured to monitor the first building 300 a and detect an unauthorized building intrusion. The doorbell system 408 can include at least one alert 422 sent to the doorbell user group 400 in response to the remote sensor 424 detecting the unauthorized building intrusion.
  • Several embodiments include a solicitor alert sent to the doorbell user group 400 in response to a visitor being detected by the first doorbell 202 a at the first building 300 a and by the second doorbell 202 b at the second building 300 b.
  • Information collected from the doorbells 202 a, 202 b, 202 c can be analyzed (e.g., by the system). An alert 422 can be send to remote computing devices 204 a, 204 c in response to analytics based on the collected information.
  • Aggregated doorbell information can be analyzed to look for trends and abnormal behaviors that might be correlated with crime or other unwanted behavior. Analytics can include the number of visits or visitors to a particular building, group of buildings, or area. For example, a high number of unique visitors could suggest an illegal business is being operated out of a home (e.g., drug dealing). Analytics can also evaluate how long visitors wait at a door before leaving. In some cases, analytics include determining whether a person with a criminal history or arrest warrant is contacting more than one building in an area within a predetermined time.
  • Several embodiments include taking, by the second doorbell 202 b, a first visitor picture 410; sending, by the second doorbell 202 b, the first visitor picture to the user group; and comparing, by the user group 400, the first visitor picture 410 to criminal pictures of a database 390. A moderator (e.g., a person who acts as an administrator of the user group 400) can compare visitor pictures to determine if the pictures show the same person (e.g., a solicitor) or show a criminal. Some embodiments use computer image recognition to compare images.
  • The first building 300 a can include an alarm 434 that can be located remotely relative to the first doorbell 202 a. In some embodiments, the doorbell 202 a is communicatively coupled to the alarm 434. The alarm 434 can include a speaker and electronics configured to enable the speaker to emit an alarm sound.
  • A button on the user interface of the first remote computing device 204 a can enable a user to active the alarm 434. In response to a signal from the remote sensor 424, the system 408 can enter an Alarm State, which can include recording, by the first doorbell 202 a, a video; blinking a light 216, 220 (shown in FIG. 1) of the first doorbell 202 a; and emitting an alarm sound from a speaker 488 (shown in FIG. 4) of the first doorbell 202 a. Other members of the user group 400 can receive an alert 422 regarding the Alarm State. Other members can also see a flashing light and hear the alarm sound from the first doorbell 202 a. As a result, the first doorbell 202 a can serve as a beacon to first responders, which can include neighbors, medical personnel, and law enforcement officers.
  • Each member of the user group 400 can choose which members receive alerts, visitor pictures, and visitor information from the choosing member. This approach enables sub-groups within a larger user group.
  • Some embodiments enable the ability for a user to trigger an alert button (e.g., on an app that is run on a computing device), which causes the system to send images (e.g., a video) to remote computing devices (e.g., smartphones) of other users in the doorbell user group. Several embodiments enable the ability for a user to trigger an alert button that causes the system to send commands to other doorbells in the user group. The commands can cause other doorbells to emit sounds, emit lights, and/or record videos. For example, a user might see a person acting suspiciously (e.g., peering into windows). The user can press a button on a doorbell app on her smartphone. Pressing the button can cause the user's doorbell to emit an alarm sound or light. Pressing the button can cause the user's doorbell to start recording a video (e.g., to try to record a video of the person acting suspiciously). The video, however, might not capture the person acting suspiciously, so the system can also tell neighbors' doorbells to record video. Having multiple doorbells recording videos simultaneously can increase the odds of recording a video of the person acting suspiciously. To scare the person away, all the doorbells in the user group can emit a sound or light (e.g., a strobe light). The sound emitted can be a verbal message to the person.
  • The videos recorded in response to the user triggering the alert button can be flagged (e.g., labeled) as videos related to the alert event (e.g., recorded in response to the user pressing the alert button). The videos can be saved in such a way that there is an identifier regarding the videos to indicate the videos are related to an emergency event. The videos can be shared and saved in a way that makes them accessible to members of the doorbell user group. Members of the doorbell user group can comment regarding the person acting suspiciously and/or regarding the videos. The comments can be associated with the videos such that other members of the doorbell user group can read the comments and reply to the comments. For example, a member can reply that the person acting suspiciously was actually just the person he hired to babysit his children. The videos can be saved in the cloud for easy access from diverse locations.
  • Alerts and videos can be sent to members of the doorbell user group via texts, push notifications, emails, and/or any suitable means. Members can choose the means by which they are notified.
  • In some embodiments, the videos are monitored by a central monitoring service. The central monitoring service can see an emergency in the videos and can decide what action is appropriate. For example, the central monitoring service can call the police, an ambulance, and/or the fire department. In some embodiments, a member of the doorbell user group presses a button on the doorbell app, which sends an alert to a third-party monitoring facility.
  • In some embodiments, the doorbell system uses doorbell cameras to take pictures, which are then analyzed using facial recognition to detect when the same person has visited multiple homes in a neighborhood. The system can use machine learning to optimize its ability to detect when the same person visits multiple houses (e.g., within a brief period of time). The system can proactively alert a doorbell user group to be cautious and attentive regarding the person. Even if the system does not know the identity of the visitor (e.g., due to being a friend of a member of the doorbell user group), the system can still identify that the person is a solicitor due to determining that the visitor has visited multiple doorbells in the neighborhood.
  • Users can automatically post videos from alerts to allow user groups to discuss the videos in a section of the app. Thus, the system can encourage communication among members of the group.
  • In some embodiments, the system is configured to predict future issues such as home burglaries. Machine learning can be used to identify traits and behaviors indicative of burglaries. These traits and behaviors can include peeking in windows, looking around outside a house, staring at the house for a suspicious amount of time, and/or exhibiting traits that were exhibited by past burglars. Data from the doorbells and/or future predictions can be sent to a third party such as a real estate service like Zillow.
  • The system can analyze historical data to predict future events. For example, if crime typically increases in a neighborhood a week before Christmas, then the system can send an alert regarding the heightened risk to members of the doorbell user group.
  • The system can use machine learning to analyze alert data and determine the time of day, which days of the week, and the frequency of alerts to anticipate future crime risk and send alerts ahead of time. The system can also use machine learning and data analysis to plot all alerts by location (e.g., by zip code) to produce a safety score that represents a crime risk for the location. The safety score can be given to third parties like Zillow. Zillow can then show the safety score to potential real estate buyers to help the buyers understand the estimated crime risk of a location. The safety score can be based on many factors including the number of user submitted alerts and crime data from police databases. Data from doorbells can be combined with data from other sources (e.g., police reports, sex offender databases) to determine the safety score.
  • Information regarding safety can be sent to members of doorbell user groups periodically (e.g., weekly or monthly). Safety data (e.g., the safety score) can be sent to social networks (e.g., Facebook) and websites (e.g., Airbnb).
  • The safety score can be a number on any suitable scale (e.g., 1 to 10). A higher number can indicate a safer neighborhood. The safety score can be a number of stars (e.g., a 4.4 star rating out of 5 stars).
  • Information from several neighborhoods can be analyzed to extrapolate the data to other neighborhoods (such as adjoining neighborhoods). If a criminal or solicitor is identified in one neighborhood, users of doorbell user groups in nearby neighborhoods can also receive a warning via their remote computing devices.
  • The system can also use videos from non-doorbell cameras (e.g., outdoor security cameras) and data from locks. Data can be shared between many homes. The system can also include information regarding a “home” or “away” state of the occupants of each home. For example, the system can enter a heightened security state if the occupants of a home are away from the home when the system detects suspicious indicators and/or visitors.
  • Interpretation
  • None of the steps described herein is essential or indispensable. Any of the steps can be adjusted or modified. Other or additional steps can be used. Any portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in one embodiment, flowchart, or example in this specification can be combined or used with or instead of any other portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in a different embodiment, flowchart, or example. The embodiments and examples provided herein are not intended to be discrete and separate from each other.
  • The section headings and subheadings provided herein are nonlimiting. The section headings and subheadings do not represent or limit the full scope of the embodiments described in the sections to which the headings and subheadings pertain. For example, a section titled “Topic 1” may include embodiments that do not pertain to Topic 1 and embodiments described in other sections may apply to and be combined with embodiments described within the “Topic 1” section.
  • Some of the devices, systems, embodiments, and processes use computers. Each of the routines, processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computers, computer processors, or machines configured to execute computer instructions. The code modules may be stored on any type of non-transitory computer-readable storage medium or tangible computer storage device, such as hard drives, solid state memory, flash memory, optical disc, and/or the like. The processes and algorithms may be implemented partially or wholly in application-specific circuitry. The results of the disclosed processes and process steps may be stored, persistently or otherwise, in any type of non-transitory computer storage such as, e.g., volatile or non-volatile storage.
  • The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event, state, or process blocks may be omitted in some implementations. The methods, steps, and processes described herein are also not limited to any particular sequence, and the blocks, steps, or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than the order specifically disclosed. Multiple steps may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
  • Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y, and at least one of Z to each be present.
  • The term “and/or” means that “and” applies to some embodiments and “or” applies to some embodiments. Thus, A, B, and/or C can be replaced with A, B, and C written in one sentence and A, B, or C written in another sentence. A, B, and/or C means that some embodiments can include A and B, some embodiments can include A and C, some embodiments can include B and C, some embodiments can only include A, some embodiments can include only B, some embodiments can include only C, and some embodiments can include A, B, and C. The term “and/or” is used to avoid unnecessary redundancy.
  • While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions, and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions disclosed herein.

Claims (30)

The following is claimed:
1. A method of using a doorbell system, wherein the doorbell system comprises a first remote computing device communicatively coupled to a first doorbell having a first camera, the method comprising:
sending a first picture, taken by the first doorbell, of a first visitor to the first remote computing device;
creating a doorbell user group comprising the first remote computing device and a second remote computing device that is communicatively coupled to a second doorbell but is not communicatively coupled to the first doorbell; and
sharing the first picture of the first visitor with the doorbell user group such that the second remote computing device receives the first picture.
2. The method of claim 1, further comprising sending, by the doorbell system, an alert to the doorbell user group in response to a selection of a first button on the first remote computing device.
3. The method of claim 2, wherein the alert comprising at least one of a video and an image taken by the first doorbell.
4. The method of claim 1, further comprising sending, in response to a selection of a first button on the first remote computing device, a communication to at least a portion of the doorbell user group,
wherein the communication is configured to cause the first and second doorbells to simultaneously record videos to capture evidence regarding an emergency situation in a neighborhood of the first and second doorbells.
5. The method of claim 4, further comprising recording comments regarding the videos from the doorbell user group such that members of the doorbell user group can read the comments.
6. The method of claim 1, further comprising recording comments regarding the first picture from the doorbell user group such that members of the doorbell user group can read the comments.
7. The method of claim 1, further comprising sending, in response to a selection of a first button on the first remote computing device, a communication to at least a portion of the doorbell user group,
wherein the communication is configured to cause the first and second doorbells to simultaneously emit an alarm sound in response to an emergency situation.
8. The method of claim 7, wherein the communication is configured to cause the first and second doorbells to simultaneously emit lights in response to the emergency situation.
9. The system of claim 1, wherein the first doorbell is coupled to a first building, and a remote sensor is configured to detect an unauthorized intrusion of the first building, the method further comprising sending an alert sent to the doorbell user group in response to the remote sensor detecting the unauthorized intrusion.
10. The method of claim 9, wherein the alert comprising at least one of a video and an image taken by the first doorbell.
11. The method of claim 1, further comprising sending an alert to members of the doorbell user group in response to detecting, by a remote burglar detection system, a burglary of the first building.
12. The method of claim 11, wherein the alert comprising at least one of a video and an image taken by the first doorbell.
13. The method of claim 1, wherein the first remote computing device is not communicatively coupled to the second doorbell, the method further comprising receiving a second picture taken by the second doorbell in response to the second doorbell sending the second picture to a database configured to provide visitor information to the doorbell user group.
14. The method of claim 1, further comprising receiving a first trait of the first visitor from the first remote computing device, and sharing the first picture of the first visitor with the doorbell user group in response to the first trait of the first visitor.
15. The method of claim 1, further comprising displaying a map on the first remote computing device, wherein the map displays a second location of the second doorbell and a third location of a third doorbell, the method further comprising displaying information regarding the second doorbell in response to receiving a selection by a user of a map icon representing the second doorbell while the map icon is displayed on the first remote computing device.
16. The method of claim 15, further comprising adding the second doorbell to the doorbell user group in response to detecting the user selecting the second doorbell on the first remote computing device.
17. The method of claim 1, wherein the first doorbell is coupled to a first building, the second doorbell is coupled to a second building, and a third doorbell is coupled to a third building, the method further comprising analyzing information collected from the first, second, and third doorbells, and then sending an alert in response to facial recognition of the information.
18. The method of claim 17, wherein the facial recognition is configured to detect the visitor having visited the first, second, and third buildings.
19. A method of using a doorbell system communicatively coupled to a first doorbell coupled to a first building, a second doorbell coupled to a second building, and a third doorbell coupled to a third building, the method comprising:
coupling communicatively, by the doorbell system, the first doorbell to a first remote computing device;
receiving, by the doorbell system, information from the first, second, and third doorbells; and
analyzing, by the doorbell system, the information collected from the first, second, and third doorbells.
20. The method of claim 19, further comprising sending an alert to the first remote computing device in response to facial recognition of the information.
21. The method of claim 19, further comprising sending an alert to the first remote computing device in response to determining by analyzing the information via facial recognition that the first, second, and third doorbells have taken images of a same visitor.
22. The method of claim 19, further comprising creating a doorbell user group comprising the first remote computing device and a second remote computing device that is communicatively coupled to the second doorbell but is not communicatively coupled to the first doorbell, the method further comprising sending an alert to the doorbell user group in response to facial recognition of the information.
23. The method of claim 19, further comprising sending an alert to the first remote computing device in response to identifying, by the doorbell system, abnormal behaviors correlated with crime.
24. The method of claim 19, further comprising sending an alert to the first remote computing device in response to determining a number of visits of a visitor to a group of buildings comprising the first, second, and third buildings.
25. The method of claim 19, further comprising sending an alert to the first remote computing device in response to analyzing a combination of the information and a database of past criminal activity in an area of the first, second, and third buildings.
26. The method of claim 19, further comprising predicting, by the doorbell system based at least partially on the information, a likelihood of future criminal activity.
27. The method of claim 19, further comprising predicting, by the doorbell system based at least partially on the information and on a database of past criminal activity in an area of the first, second, and third buildings, a likelihood of future criminal activity.
28. The method of claim 19, further comprising determining, by the doorbell system based at least partially on the information and on a database of past criminal activity in an area of the first, second, and third buildings, a safety score of the area.
29. The method of claim 28, further comprising sending the safety score to a third party in a manner configured to enable the third party to display a safety metric based at least partially on the safety score with real estate listings.
30. A doorbell system comprising:
a first doorbell having a first camera coupled to a first building, wherein the first doorbell is communicatively coupled to a first remote computing device;
a second doorbell having a second camera coupled to a second building, wherein the second doorbell is communicatively coupled to a second remote computing device; and
a doorbell user group comprising a database having images taken by the first camera and the second camera, wherein the doorbell system is configured to share the images with members of the doorbell user group,
wherein the doorbell user group is communicatively coupled to the first remote computing device and the second remote computing device, and
wherein the first doorbell is not communicatively coupled to the second remote computing device, and the second doorbell is not communicatively coupled to the first remote computing device while the doorbell system is configured such that the first remote computing device receives, due to the doorbell user group, a first visitor picture taken by the second doorbell.
US15/793,720 2015-06-23 2017-10-25 Doorbell communities Abandoned US20180047269A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/793,720 US20180047269A1 (en) 2015-06-23 2017-10-25 Doorbell communities
US16/054,961 US20180343141A1 (en) 2015-09-22 2018-08-03 Doorbell communication systems and methods
US16/926,531 US11651668B2 (en) 2017-10-20 2020-07-10 Doorbell communities
US18/136,231 US20230252868A1 (en) 2017-10-20 2023-04-18 Doorbell communities

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14/748,054 US9230424B1 (en) 2013-12-06 2015-06-23 Doorbell communities
US14/861,613 US10044519B2 (en) 2015-01-05 2015-09-22 Doorbell communication systems and methods
US15/789,121 US11004312B2 (en) 2015-06-23 2017-10-20 Doorbell communities
US15/793,720 US20180047269A1 (en) 2015-06-23 2017-10-25 Doorbell communities

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/293,334 Continuation-In-Part US10742938B2 (en) 2015-03-07 2016-10-14 Garage door communication systems and methods
US15/789,121 Continuation-In-Part US11004312B2 (en) 2013-07-26 2017-10-20 Doorbell communities

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/951,534 Continuation-In-Part US10672238B2 (en) 2013-07-26 2018-04-12 Doorbell communities
US16/926,531 Continuation US11651668B2 (en) 2017-10-20 2020-07-10 Doorbell communities

Publications (1)

Publication Number Publication Date
US20180047269A1 true US20180047269A1 (en) 2018-02-15

Family

ID=72921699

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/793,720 Abandoned US20180047269A1 (en) 2015-06-23 2017-10-25 Doorbell communities
US16/926,531 Active 2038-03-03 US11651668B2 (en) 2017-10-20 2020-07-10 Doorbell communities

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/926,531 Active 2038-03-03 US11651668B2 (en) 2017-10-20 2020-07-10 Doorbell communities

Country Status (1)

Country Link
US (2) US20180047269A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10027726B1 (en) * 2012-11-21 2018-07-17 Ozog Media, LLC Device, apparatus, and method for facial recognition
US10027727B1 (en) * 2012-11-21 2018-07-17 Ozog Media, LLC Facial recognition device, apparatus, and method
US10742939B1 (en) * 2018-09-24 2020-08-11 Amazon Technologies, Inc. Security video data processing systems and methods
EP3703362A1 (en) * 2019-02-28 2020-09-02 Arlo Technologies, Inc. Electronic doorbell system with camera selection
CN113763655A (en) * 2021-09-24 2021-12-07 深圳市蓝丝腾科技有限公司 Alarm host control circuit with mobile phone communication function
US11313689B2 (en) 2019-04-03 2022-04-26 Uber Technologies, Inc. Route safety determination system
US11320280B2 (en) * 2019-04-03 2022-05-03 Uber Technologies, Inc. Location safety determination system
CN116229629A (en) * 2023-05-09 2023-06-06 山东力拓智能科技有限公司 Access control calling device control method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210150651A1 (en) * 2019-11-19 2021-05-20 Matthew G. Shoup Property and neighborhood assessment system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140266669A1 (en) * 2013-03-14 2014-09-18 Nest Labs, Inc. Devices, methods, and associated information processing for security in a smart-sensored home
US20150156031A1 (en) * 2012-09-21 2015-06-04 Google Inc. Environmental sensing with a doorbell at a smart-home

Family Cites Families (397)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1647558A (en) 1927-11-01 Doorbell structure
US1647708A (en) 1925-02-04 1927-11-01 Monica Pasquale Della Doorbell and light-control switch
US3240113A (en) 1961-08-29 1966-03-15 Visophone Internat Establishme Pickup and projection mirror system for panoramic photography and panoramic picture projection at horizontal plane angles
US3708742A (en) 1971-06-30 1973-01-02 Ibm High dc to low dc voltage converter
US4982092A (en) 1973-07-05 1991-01-01 The United States Of America As Represented By The Secretary Of The Navy 360 Degree optical surveillance system
US7663502B2 (en) 1992-05-05 2010-02-16 Intelligent Technologies International, Inc. Asset system control arrangement and method
US4523193A (en) 1983-11-21 1985-06-11 Levinson Samuel H Remote-controlled doorbell signal receiver
USD283130S (en) 1983-11-30 1986-03-25 Claiborne Electronics, Inc. Combined door viewer and two-way intercom unit
DE3689631T2 (en) 1985-06-25 1994-05-19 Matsushita Electric Works Ltd MONITORING DEVICE USING NIGHT VISION FOR A DOOR PHONE SYSTEM.
USD297222S (en) 1985-12-20 1988-08-16 Rauch Howard L Smoke and fire alarm
US5210520A (en) 1987-07-15 1993-05-11 Housley Todd B Programmable doorbell control
US5521578A (en) 1991-01-31 1996-05-28 Delvalle; Ivan Display and control device for homes, apartments, and other buildings
US6226031B1 (en) 1992-02-19 2001-05-01 Netergy Networks, Inc. Video communication/monitoring apparatus and method therefor
US5428388A (en) 1992-06-15 1995-06-27 Richard von Bauer Video doorbell system
CN2131143Y (en) 1992-08-17 1993-04-28 李肇云 Multipurpose doorbell structure device
US5493618A (en) 1993-05-07 1996-02-20 Joseph Enterprises Method and apparatus for activating switches in response to different acoustic signals
US5602580A (en) 1993-09-17 1997-02-11 Tseng; Ling-Yuan Video communication controller using FM sideband transmission
ATE182734T1 (en) 1994-05-25 1999-08-15 Siemens Ag PROGRAMMABLE RADIO DEVICE
US5774569A (en) 1994-07-25 1998-06-30 Waldenmaier; H. Eugene W. Surveillance system
US5802281A (en) 1994-09-07 1998-09-01 Rsi Systems, Inc. Peripheral audio/video communication system that interfaces with a host computer and determines format of coded audio/video signals
US6028626A (en) 1995-01-03 2000-02-22 Arc Incorporated Abnormality detection and surveillance system
USD379454S (en) 1995-03-07 1997-05-27 Siemens Nixdorf Informationssysteme Ag Multimedia terminal housing having four different components
USD371086S (en) 1995-04-11 1996-06-25 DAC Technolgies of America, Inc. Window alarm
KR0164044B1 (en) 1995-09-25 1999-01-15 김광호 Visitor recognition system and method
US5781108A (en) 1995-11-14 1998-07-14 Future Tech Systems, Inc. Automated detection and monitoring (ADAM)
US6828909B2 (en) 1996-05-30 2004-12-07 Guardit Technologies Llc Portable motion detector and alarm system and method
US6542078B2 (en) 1996-05-30 2003-04-01 Henry J. Script Portable motion detector and alarm system and method
US6459451B2 (en) 1996-06-24 2002-10-01 Be Here Corporation Method and apparatus for a panoramic camera to capture a 360 degree image
US6414589B1 (en) 1996-07-08 2002-07-02 Dimango Products Corporation Apparatus for remotely controlling auxiliary doorbell chime from doorbell push button
US6185294B1 (en) 1996-11-01 2001-02-06 O. Joseph Chornenky Method and apparatus for installing telephone intercom-voice messaging apparatus at doorbell for dwelling
US5784446A (en) 1996-11-01 1998-07-21 Cms Investors Method and apparatus for installing telephone intercom-voice messaging apparatus at doorbell for dwelling
US5907352A (en) 1997-02-20 1999-05-25 Gilley; Terry W. Door mountable security system
KR19980076702A (en) 1997-04-12 1998-11-16 윤종용 Image communication system and method thereof having image information storage and automatic connection function
WO1999006979A1 (en) 1997-08-01 1999-02-11 Siemens Aktiengesellschaft Home emergency warning system
US6535243B1 (en) 1998-01-06 2003-03-18 Hewlett- Packard Company Wireless hand-held digital camera
USD404673S (en) 1998-04-30 1999-01-26 Tom Gordon Doorbell button
US6429893B1 (en) 1998-06-04 2002-08-06 Alfred X. Xin Security system
US20030025599A1 (en) 2001-05-11 2003-02-06 Monroe David A. Method and apparatus for collecting, sending, archiving and retrieving motion video and still images and notification of detected events
JP3865516B2 (en) 1998-10-23 2007-01-10 ソニー株式会社 Omni-directional imaging device
USD421727S (en) 1999-05-11 2000-03-21 Theodore Pierson Doorbell button
AUPQ122099A0 (en) 1999-06-25 1999-07-22 Fendis, Gregory Monitoring system
US6690411B2 (en) 1999-07-20 2004-02-10 @Security Broadband Corp. Security system
US6707486B1 (en) 1999-12-15 2004-03-16 Advanced Technology Video, Inc. Directional motion estimator
US6993123B1 (en) 2000-03-10 2006-01-31 Verizon Services Corp. Intelligent access control system
DE10013780C1 (en) 2000-03-20 2001-05-23 Hartig E Videor Tech Video surveillance device has first separation plane between dome camera and circuit board device and second separation plane between security housing and carrier flange for circuit board device
US6590604B1 (en) 2000-04-07 2003-07-08 Polycom, Inc. Personal videoconferencing system having distributed processing architecture
US6812970B1 (en) 2000-05-15 2004-11-02 Mcbride Richard L. Video camera utilizing power line modulation
WO2001093220A1 (en) 2000-05-26 2001-12-06 Royal Thoughts, L.L.C. Modular communication and control system and method
US7619657B2 (en) 2000-10-04 2009-11-17 Fujifilm Corp. Recording apparatus, communications apparatus, recording system, communications system, and methods therefor for setting the recording function of the recording apparatus in a restricted state
US8073327B2 (en) 2000-11-08 2011-12-06 Yaron Mayer System and method for improving the efficiency of routers on the internet and/or cellular networks and/or other networks and alleviating bottlenecks and overloads on the network
US8188878B2 (en) 2000-11-15 2012-05-29 Federal Law Enforcement Development Services, Inc. LED light communication system
US7061393B2 (en) 2000-12-20 2006-06-13 Inncom International Inc. System and method for managing services and facilities in a multi-unit building
US6928461B2 (en) 2001-01-24 2005-08-09 Raja Singh Tuli Portable high speed internet access device with encryption
US6710715B2 (en) 2001-01-25 2004-03-23 Douglas Arthur Deeds Alarm system with integrated weather alert function
US6661340B1 (en) 2001-04-24 2003-12-09 Microstrategy Incorporated System and method for connecting security systems to a wireless device
US6744569B2 (en) 2001-06-19 2004-06-01 Genex Technologies, Inc Method and apparatus for omnidirectional three dimensional imaging
JP2003022309A (en) 2001-07-06 2003-01-24 Hitachi Ltd Device for managing facility on basis of flow line
US7194412B2 (en) 2001-07-19 2007-03-20 Overhead Door Corporation Speech activated door operator system
US7154531B2 (en) 2001-10-26 2006-12-26 The Chamberlain Group, Inc. Detecting objects by digital imaging device
US6824317B2 (en) 2001-11-21 2004-11-30 Thales Avionics, Inc. Universal security camera
US6778084B2 (en) 2002-01-09 2004-08-17 Chang Industry, Inc. Interactive wireless surveillance and security system and associated method
US6992591B2 (en) 2002-02-15 2006-01-31 Jenesis International Inc. Marker lights for wireless doorbell transmitters and other devices
US8354914B2 (en) 2005-01-27 2013-01-15 Inncom International, Inc. Reduced power electronic lock system
JP2005525930A (en) 2002-05-16 2005-09-02 ユナイテッド パーセル サービス オブ アメリカ インコーポレイテッド System and method for classifying and delivering packages using radio frequency identification techniques
US6970698B2 (en) 2002-07-23 2005-11-29 Sbc Technology Resources, Inc. System and method for updating data in remote devices
US6870488B1 (en) 2002-08-07 2005-03-22 John L. Compton Driveway security sensor
US6753899B2 (en) 2002-09-03 2004-06-22 Audisoft Method and apparatus for telepresence
US20040095254A1 (en) 2002-09-20 2004-05-20 Maruszczak Douglas D. Door bell answering system
US6830217B2 (en) 2002-09-26 2004-12-14 The Boeing Company Integrated cockpit door lock and access system
US8154581B2 (en) 2002-10-15 2012-04-10 Revolutionary Concepts, Inc. Audio-video communication system for receiving person at entrance
US8139098B2 (en) 2002-10-15 2012-03-20 Revolutionary Concepts, Inc. Video communication method for receiving person at entrance
US8144183B2 (en) 2002-10-15 2012-03-27 Revolutionary Concepts, Inc. Two-way audio-video communication method for receiving person at entrance
US7193644B2 (en) 2002-10-15 2007-03-20 Revolutionary Concepts, Inc. Automated audio video messaging and answering system
US20040086093A1 (en) 2002-10-29 2004-05-06 Schranz Paul Steven VoIP security monitoring & alarm system
US20040085205A1 (en) 2002-10-31 2004-05-06 Jacob Yeh Monitor system with video and audio transmission actuated by doorbell actuator
US11082664B2 (en) 2004-07-06 2021-08-03 Tseng-Lu Chien Multiple functions LED night light
US7113578B2 (en) 2002-11-12 2006-09-26 Electronic Locking Specialties, Inc. Vandal proof intercom system for apartment buildings
US7752070B2 (en) 2002-11-12 2010-07-06 Sas Institute Inc. Enterprise information evolution analysis system
US7047087B2 (en) 2002-12-05 2006-05-16 Overhead Door Corporation Door operator console with message center
US9033569B2 (en) 2010-11-22 2015-05-19 Tseng-Lu Chien Lamp holder has built-in night light
US7486271B2 (en) 2003-03-05 2009-02-03 Shmuel Hershkovitz Security system user interface with video display
US7113070B2 (en) 2003-03-21 2006-09-26 Sheng Bill Deng Door lock and operation mechanism
US7738917B2 (en) 2003-03-31 2010-06-15 Vtech Telecommunications Limited Intercom/wireless door bell for multi-handset telephone system
GB2400958B (en) 2003-04-23 2005-12-07 Frank Cunningham Security system
US20040229569A1 (en) 2003-05-13 2004-11-18 Hewlett-Packard Development Company, L.P. Door answering systems and methods
USD501652S1 (en) 2003-05-15 2005-02-08 Theodore Pierson Doorbell push button
WO2005008914A1 (en) 2003-07-10 2005-01-27 University Of Florida Research Foundation, Inc. Mobile care-giving and intelligent assistance device
US7015943B2 (en) 2003-07-11 2006-03-21 Chiang Thomas S C Premises entry security system
US7039397B2 (en) 2003-07-30 2006-05-02 Lear Corporation User-assisted programmable appliance control
US20050040954A1 (en) 2003-08-19 2005-02-24 Mcnally Terry C. Pressure sensitive doorbell mat
WO2005026488A1 (en) 2003-09-08 2005-03-24 Sony Corporation Control device, control method, recording medium, program, and building
US7330112B1 (en) 2003-09-09 2008-02-12 Emigh Aaron T Location-aware services
US7362227B2 (en) 2003-10-15 2008-04-22 Walter Taehwan Kim Anti-theft and security system for computers
US7831282B2 (en) 2003-10-15 2010-11-09 Eaton Corporation Wireless node providing improved battery power consumption and system employing the same
US20050097248A1 (en) 2003-10-29 2005-05-05 Kelley Brian H. System and method for establishing a communication between a peripheral device and a wireless device
US7375492B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductively charged battery pack
USD500751S1 (en) 2003-12-25 2005-01-11 Matsushita Electric Industrial Co., Ltd. Outdoor intercom unit
US20050267605A1 (en) 2004-01-07 2005-12-01 Lee Paul K Home entertainment, security, surveillance, and automation control system
JP3712002B2 (en) 2004-03-31 2005-11-02 オムロン株式会社 Information processing apparatus, information processing control system, information processing apparatus control method, information processing apparatus control program, and recording medium on which information processing apparatus control program is recorded
US7079027B2 (en) 2004-04-09 2006-07-18 Jamie Wojcik Motion detector and illumination apparatus and method
US7382233B2 (en) 2004-05-08 2008-06-03 Scott Steinetz Sampling playback doorbell system
US8856383B2 (en) 2004-05-20 2014-10-07 Presto Services, Inc. Systems and methods for controlling information and use of communications devices through a central server
CN1704985A (en) 2004-06-01 2005-12-07 林青扬 Door bell system
US9581299B2 (en) 2004-07-06 2017-02-28 Tseng-Lu Chien LED bulb has multiple features
US7531007B2 (en) 2004-07-06 2009-05-12 Taiwan Semiconductor Manufacturing Co., Ltd. Security apparatus using a telecommunication device
USD525963S1 (en) 2004-07-28 2006-08-01 Matsushita Electric Industrial Co., Ltd. Outdoor intercom unit
USD522490S1 (en) 2004-07-28 2006-06-06 Matsushita Electric Industrial, Co., Ltd. Outdoor intercom unit
USD531160S1 (en) 2004-07-28 2006-10-31 Matsushita Electric Industrial Co., Ltd. Outdoor intercom unit
US7319386B2 (en) 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
CA2519606A1 (en) 2004-09-15 2006-03-15 Belkin Corporation Power supply system comprising rechargeable battery pack and attachment apparatus
KR100561633B1 (en) 2004-09-22 2006-03-20 한국전자통신연구원 Intelligent system and method of visitor confirming and communication service using mobile terminal
US7593547B2 (en) 2004-10-12 2009-09-22 Siemens Corporate Research, Inc. Video-based encroachment detection
US20070194945A1 (en) 2004-12-07 2007-08-23 Paul Atkinson Mobile Device for Selectively Activating a Target and Method of Using Same
US20060139449A1 (en) 2004-12-23 2006-06-29 Wen-Liang Cheng Wireless audio-video doorbell monitoring system
CA2532502A1 (en) 2005-01-12 2006-07-12 Walter W. Wang Remote viewing system
USD519100S1 (en) 2005-01-13 2006-04-18 Matsushita Electric Industrial Co., Ltd. Outdoor intercom unit
US7548151B2 (en) 2005-01-27 2009-06-16 Inncom International Inc. Power management lock system and method
US7532709B2 (en) 2005-02-04 2009-05-12 Styers Justin R Remote garage door monitoring system
US7218220B1 (en) 2005-02-09 2007-05-15 Bovsun Vladimir V Signaling system
KR100735233B1 (en) 2005-02-25 2007-07-03 삼성전자주식회사 System for providing personal broadcasting service
US7796154B2 (en) 2005-03-07 2010-09-14 International Business Machines Corporation Automatic multiscale image acquisition from a steerable camera
US8138478B2 (en) 2005-03-21 2012-03-20 Visonic Ltd. Passive infra-red detectors
US7751285B1 (en) 2005-03-28 2010-07-06 Nano Time, LLC Customizable and wearable device with electronic images
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US7539882B2 (en) 2005-05-30 2009-05-26 Rambus Inc. Self-powered devices and methods
US20060273895A1 (en) 2005-06-07 2006-12-07 Rhk Technology, Inc. Portable communication device alerting apparatus
EP2228969B1 (en) 2005-06-09 2017-04-19 Whirlpool Corporation Software architecture system and method for communication with, and management of, at least one component within a household appliance
US20070008081A1 (en) 2005-06-17 2007-01-11 Tylicki Scott B MP3 doorbell chime system
US7765131B2 (en) 2006-06-20 2010-07-27 United Parcel Service Of America, Inc. Systems and methods for providing personalized delivery services
US7657255B2 (en) 2005-06-23 2010-02-02 Microsoft Corporation Provisioning of wireless connectivity for devices using NFC
US7609952B2 (en) 2005-08-01 2009-10-27 Scott Jezierski Apparatus and method for remote viewing system
US7570154B2 (en) 2005-08-25 2009-08-04 O-Zone Management Corporation Wireless door chime having changeable high quality sounds and method therefor
US7701171B2 (en) 2005-08-31 2010-04-20 Pro Tech Monitoring, Inc. System, method and apparatus for charging a worn device
US7417535B2 (en) 2005-09-02 2008-08-26 Radioshack Corporation Apparatus and method for converting a low voltage AC wiring circuit to a high speed data communications link
JP2009508450A (en) 2005-09-13 2009-02-26 ヴェリフィコン コーポレーション System and method for object tracking and activity analysis
US20070066316A1 (en) 2005-09-20 2007-03-22 Hoover Thomas R Multi-channel Internet protocol smart devices
US9189934B2 (en) 2005-09-22 2015-11-17 Rsi Video Technologies, Inc. Security monitoring with programmable mapping
US8125329B1 (en) 2005-10-12 2012-02-28 Hirou Timothy L Identification system
US9288317B2 (en) 2005-10-20 2016-03-15 NobelBiz, Inc. System and method for modifying communication information (MCI)
US7440025B2 (en) 2005-11-15 2008-10-21 Yi-Jen Cheng Defogging device for a surveillance camera
US7429924B2 (en) 2005-12-02 2008-09-30 Peter Langer Automatic doorbell driver
US7283039B2 (en) 2005-12-22 2007-10-16 Ratner David L Window-attached alerting device
JP4898225B2 (en) 2006-01-06 2012-03-14 キヤノン株式会社 Application device and method for restoring power of application device
KR101268432B1 (en) 2006-01-09 2013-05-28 삼성전자주식회사 Smart door open and close certification System using Smart Communicator and Method thereof
US8774072B2 (en) 2006-03-03 2014-07-08 Garmin Switzerland Gmbh System and method for adaptive network technique using isochronous transmission
US9021134B1 (en) 2006-03-03 2015-04-28 Juniper Networks, Inc. Media stream transport conversion within an intermediate network device
US20140125754A1 (en) 2006-03-07 2014-05-08 Helen Haywood Web portal for managing premise security
US9071367B2 (en) 2006-03-17 2015-06-30 Fatdoor, Inc. Emergency including crime broadcast in a neighborhood social network
ES2677274T3 (en) 2006-03-24 2018-07-31 Rsi Video Technologies, Inc. Security monitoring with programmable mapping
US9338839B2 (en) 2006-03-28 2016-05-10 Wireless Environment, Llc Off-grid LED power failure lights
US20070237358A1 (en) 2006-04-11 2007-10-11 Wei-Nan William Tseng Surveillance system with dynamic recording resolution and object tracking
WO2007126299A1 (en) 2006-05-02 2007-11-08 Jang-Ho Park Multi digital door
US7477134B2 (en) 2006-05-06 2009-01-13 Peter Langer Apparatuses and methods for driving a doorbell system peripheral load at a higher current
US7492303B1 (en) 2006-05-09 2009-02-17 Personnel Protection Technologies Llc Methods and apparatus for detecting threats using radar
US8902042B2 (en) 2006-05-16 2014-12-02 Lpd, L.L.C. Methods of controlling access to real estate properties
US8772970B2 (en) 2006-07-27 2014-07-08 Gainsborough Hardware Industries Limited Lock arrangement and a method of providing power to a lock
US7823073B2 (en) 2006-07-28 2010-10-26 Microsoft Corporation Presence-based location and/or proximity awareness
US20080036862A1 (en) 2006-08-11 2008-02-14 Steve Lang Digital video surveillance system
US20080047287A1 (en) 2006-08-24 2008-02-28 Jonathan Paul Ruppert Refrigerator based audio-visual presentation and communication system
WO2008048478A2 (en) 2006-10-13 2008-04-24 Soliant Energy, Inc. Sun sensor assembly and related method of using
US7583191B2 (en) 2006-11-14 2009-09-01 Zinser Duke W Security system and method for use of same
US7746223B2 (en) 2006-12-01 2010-06-29 Embarq Holdings Company, Llc System and method for receiving security content from wireless cameras
US9848172B2 (en) 2006-12-04 2017-12-19 Isolynx, Llc Autonomous systems and methods for still and moving picture production
US8031264B2 (en) 2006-12-06 2011-10-04 Sony Corporation Wall mount camera
IL179930A0 (en) 2006-12-07 2007-07-04 Wave Group Ltd Tvms - a total view monitoring system
US7868757B2 (en) 2006-12-29 2011-01-11 Nokia Corporation Method for the monitoring of sleep using an electronic device
US9511714B2 (en) 2006-12-29 2016-12-06 Rosco, Inc. Geometrically shaped ellipsoid vehicular mirror
US20080167072A1 (en) 2007-01-04 2008-07-10 Viktors Berstis System and method for providing telephone service access via a gateway telephone
US8665333B1 (en) 2007-01-30 2014-03-04 Videomining Corporation Method and system for optimizing the observation and annotation of complex human behavior from video sources
USD562306S1 (en) 2007-03-27 2008-02-19 Samsung Electronics Co., Ltd. Door-phone for home network
US7991381B1 (en) 2007-04-18 2011-08-02 Cellco Partnership Hierarchical telematics emergency call direction
US8193919B2 (en) 2007-05-05 2012-06-05 Peter Langer Apparatuses and methods for driving a doorbell system peripheral load at a higher current
US7460149B1 (en) 2007-05-28 2008-12-02 Kd Secure, Llc Video data storage, search, and retrieval using meta-data and attribute data in a video surveillance system
USD577301S1 (en) 2007-06-18 2008-09-23 Honeywell International, Inc. Gas detector
US8018337B2 (en) 2007-08-03 2011-09-13 Fireear Inc. Emergency notification device and system
US8504103B2 (en) 2007-08-09 2013-08-06 Dale Ficquette Cellular home security system
KR100883065B1 (en) 2007-08-29 2009-02-10 엘지전자 주식회사 Apparatus and method for record control by motion detection
US7826729B2 (en) 2007-09-17 2010-11-02 Airmar Technology Corporation Underwater camera assembly
US8515390B2 (en) 2007-10-05 2013-08-20 Mformation Software Technologies, Inc. System and method for protecting data in wireless devices
US8154398B2 (en) 2007-10-23 2012-04-10 La Crosse Technology Remote location monitoring
US20100225455A1 (en) 2007-10-24 2010-09-09 Jimmy David Claiborne Polyphonic Doorbell Chime System
US8875208B1 (en) 2007-11-21 2014-10-28 Skype High quality multimedia transmission from a mobile device for live and on-demand viewing
US8384780B1 (en) 2007-11-28 2013-02-26 Flir Systems, Inc. Infrared camera systems and methods for maritime applications
US8204273B2 (en) 2007-11-29 2012-06-19 Cernium Corporation Systems and methods for analysis of video content, event notification, and video content provision
MY152353A (en) 2007-12-12 2014-09-15 Mark K Moser Light source tracker
US20090207249A1 (en) 2008-02-14 2009-08-20 Bulent Erel Climate controlled surveillance system
US7742070B2 (en) 2008-02-21 2010-06-22 Otto Gregory Glatt Panoramic camera
US20090273670A1 (en) 2008-04-16 2009-11-05 Christina Tamayo Door cam security
US20090284578A1 (en) 2008-05-11 2009-11-19 Revolutionary Concepts, Inc. Real estate communications and monitoring systems and methods for use by real estate agents
US8016676B2 (en) 2008-05-11 2011-09-13 Revolutionary Concepts, Inc. Child's car seat assembly enabling access to remote gaming applications and two-way person-to-person communications
US8144725B2 (en) 2008-05-28 2012-03-27 Apple Inc. Wireless femtocell setup methods and apparatus
WO2009149428A1 (en) 2008-06-05 2009-12-10 Hawkeye Systems, Inc. Above-water monitoring of swimming pools
USD595260S1 (en) 2008-06-11 2009-06-30 Aiphone Co., Ltd. Interphone
USD588574S1 (en) 2008-06-11 2009-03-17 Aiphone Co., Ltd. Interphone
US20080297339A1 (en) 2008-07-18 2008-12-04 Mathews David K Apparatus and Method for Converting a Low Voltage AC Wiring Circuit to a High Speed Data Communications Link
AU2009101387A4 (en) 2008-07-18 2014-01-09 Brent Sanders Personal safety device
US20100087161A1 (en) 2008-10-08 2010-04-08 Sony Ericsson Mobile Communications Ab Personal security feature for a regular camera phone
US8878646B2 (en) 2008-10-13 2014-11-04 Gentex Corporation Communication system and method
FR2937208B1 (en) 2008-10-13 2011-04-15 Withings METHOD AND DEVICE FOR TELEVISIONING
US20100103300A1 (en) 2008-10-24 2010-04-29 Tenebraex Corporation Systems and methods for high resolution imaging
US8279112B2 (en) 2008-11-03 2012-10-02 Trimble Navigation Limited Methods and apparatuses for RFID tag range determination
US20100141761A1 (en) 2008-12-08 2010-06-10 Mccormack Kenneth Method and system for stabilizing video images
US8201220B2 (en) 2008-12-23 2012-06-12 Qwest Communications International Inc. Network user usage profiling
US7991575B2 (en) 2009-01-08 2011-08-02 Trimble Navigation Limited Method and system for measuring angles based on 360 degree images
CA2691774C (en) 2009-02-02 2014-11-18 Alarmforce Industries Inc. Security system with two-way communication and video
US8749635B2 (en) 2009-06-03 2014-06-10 Flir Systems, Inc. Infrared camera systems and methods for dual sensor applications
US20100245060A1 (en) 2009-03-31 2010-09-30 Scott Blaise Tylicki Method and Apparatus Pertaining to Doorbell Chimes
US9290966B2 (en) 2009-05-15 2016-03-22 Hanchett Entry Systems, Inc. System for providing power and data transmission between a door and a frame
JP2011034415A (en) 2009-08-03 2011-02-17 Masahide Tanaka Monitoring apparatus
US8385879B2 (en) 2009-08-03 2013-02-26 Hewlett-Packard Development Company, L.P. Systems and methods for providing contacts in emergency situation
US8325033B2 (en) 2009-09-25 2012-12-04 At&T Intellectual Property I, L.P. Systems and methods for remote building security and automation
US8390462B2 (en) 2009-10-15 2013-03-05 At&T Intellectual Property I, L.P. System and method to monitor a person in a residence with use of a set-top box device
US8334656B2 (en) 2009-11-03 2012-12-18 Msi, Llc Replaceable lighting unit with adjustable output intensity and optional capability for reporting usage information, and method of operating same
US20110121940A1 (en) 2009-11-24 2011-05-26 Joseph Jones Smart Door
CN102109107A (en) 2009-12-25 2011-06-29 富准精密工业(深圳)有限公司 Light emitting diode lamp
US8452353B2 (en) 2010-02-24 2013-05-28 Hewlett-Packard Development Company, L.P. Apparatus and methods for providing intelligent battery management
WO2011106787A2 (en) 2010-02-26 2011-09-01 Duthie Hill Llc Systems and methods for arranging delivery of a package
US8384556B2 (en) 2010-04-21 2013-02-26 Gordon Ko Solar powered light and alarm system
US8522283B2 (en) 2010-05-20 2013-08-27 Google Inc. Television remote control data transfer
CN102859825B (en) 2010-06-30 2016-04-06 惠普发展公司,有限责任合伙企业 For the battery pack of electronic equipment
US8621656B2 (en) 2010-07-06 2013-12-31 Nokia Corporation Method and apparatus for selecting a security policy
US8483481B2 (en) 2010-07-27 2013-07-09 International Business Machines Corporation Foreground analysis based on tracking information
HK1143034A2 (en) 2010-08-19 2010-12-17 World Entpr Ltd Multifunctional doorbell with controllable lighting
US20120044050A1 (en) 2010-08-23 2012-02-23 Samir Vig Smart Doorbell Security System and Method to Identify Visitors
US20120044049A1 (en) 2010-08-23 2012-02-23 Samir Vig Smart Doorbell Security System and Method to Identify Visitors
US8342409B2 (en) 2010-10-08 2013-01-01 Symbol Technologies, Inc. Object proximity sensor recessed into imaging reader
US8730062B2 (en) 2010-10-14 2014-05-20 Xerox Corporation Computer-implemented system and method for providing gun shot detection through a centralized parking services server
USD689828S1 (en) 2010-10-25 2013-09-17 Theodore Pierson Doorbell button
US20120108215A1 (en) 2010-10-29 2012-05-03 Nader Kameli Remote notification device
US20120113253A1 (en) 2010-11-08 2012-05-10 Terry Slater Residential Video Surveillance Device
US9154747B2 (en) 2010-12-22 2015-10-06 Pelco, Inc. Stopped object detection
US8810436B2 (en) 2011-03-10 2014-08-19 Security Identification Systems Corporation Maritime overboard detection and tracking system
US9057210B2 (en) 2011-03-17 2015-06-16 Unikey Technologies, Inc. Wireless access control system and related methods
US20140292481A1 (en) 2011-03-17 2014-10-02 Unikey Technologies, Inc. Wireless access control system and related methods
US9196104B2 (en) 2011-03-17 2015-11-24 Unikey Technologies Inc. Wireless access control system and related methods
US9336637B2 (en) 2011-03-17 2016-05-10 Unikey Technologies Inc. Wireless access control system and related methods
US20140077929A1 (en) 2012-03-08 2014-03-20 Unikey Technologies, Inc. Wireless access control system and related methods
USD692847S1 (en) 2011-04-18 2013-11-05 WGI Innovations Ltd. Mobile wireless sound monitor base
US20130045763A1 (en) 2011-04-28 2013-02-21 Cellnock Corporation System and method for providing notice of visitor
CA2834964A1 (en) 2011-05-02 2012-11-08 Apigy Inc. Systems and methods for controlling a locking mechanism using a portable electronic device
US8203605B1 (en) 2011-05-11 2012-06-19 Google Inc. Point-of-view object selection
US20120293310A1 (en) 2011-05-17 2012-11-22 Heathco, Llc Method and Apparatus Pertaining to Using a Door Chime to Audibilize Non-Door-Chime Messages
DE102011076963A1 (en) 2011-06-06 2012-12-06 Robert Bosch Gmbh Battery pack with a separate power supply device for a wireless communication device of the battery pack
US20120182427A1 (en) 2011-06-06 2012-07-19 Aaron Marshall System and method for providing thermal gender recognition
US20120320150A1 (en) 2011-06-15 2012-12-20 Montgomery Myles Multi-lens, 360-degree time lapse camera
US20120327225A1 (en) 2011-06-22 2012-12-27 Barley Christopher B Surveillance camera with wireless communication and control capability
US9425981B2 (en) 2011-07-14 2016-08-23 Colin Foster Remote access control to residential or office buildings
US8630452B2 (en) 2011-08-02 2014-01-14 Patents Innovations, Llc Mailboxes and mailbox systems enabling enhanced security and logistics, and/or associated methods
GB2493390A (en) 2011-08-05 2013-02-06 Marine & Remote Sensing Solutions Ltd System for detecting a person overboard event
US20130173477A1 (en) 2011-08-19 2013-07-04 Geoffrey I. Cairns Storing and forwarding credentials securely from one RFID device to another
US8983552B2 (en) 2011-09-02 2015-03-17 Gn Netcom A/S Battery powered electronic device comprising a movable part and adapted to be set into shipping mode
US8976244B2 (en) 2011-09-02 2015-03-10 Verizon Patent And Licensing Inc. Personal mobile surveillance systems and methods
US20130057695A1 (en) 2011-09-07 2013-03-07 Timothy J. Huisking Method and apparatus for unlocking/locking a door and enabling two-way communications with a door security system via a smart phone
US20130091213A1 (en) 2011-10-08 2013-04-11 Broadcom Corporation Management of social device interaction with social network infrastructure
JP5826090B2 (en) 2011-10-13 2015-12-02 Kddi株式会社 Gateway and program
US20130128050A1 (en) 2011-11-22 2013-05-23 Farzin Aghdasi Geographic map based control
US20130136033A1 (en) 2011-11-28 2013-05-30 Abhishek Patil One-click connect/disconnect feature for wireless devices forming a mesh network
US8922356B2 (en) 2011-12-13 2014-12-30 General Motors Llc Entryway control and monitoring system
US20130169814A1 (en) 2011-12-28 2013-07-04 Da-Ming Liu Lamp socket type camera
USD660819S1 (en) 2012-01-04 2012-05-29 Amroad Technology Inc. Door intercom
WO2013103698A1 (en) 2012-01-06 2013-07-11 Thermal Solution Resources, Llc Led lamps with enhanced wireless communication
US20130208123A1 (en) 2012-02-13 2013-08-15 Honeywell International Inc. Method and System for Collecting Evidence in a Security System
US9143402B2 (en) 2012-02-24 2015-09-22 Qualcomm Incorporated Sensor based configuration and control of network devices
US8714841B2 (en) 2012-02-28 2014-05-06 Airborne Sensor Llc Camera pod
US20130286211A1 (en) 2012-04-26 2013-10-31 Jianhua Cao Method and apparatus for live capture image-live streaming camera utilizing personal portable device
US9587804B2 (en) 2012-05-07 2017-03-07 Chia Ming Chen Light control systems and methods
US8710983B2 (en) 2012-05-07 2014-04-29 Integrated Security Corporation Intelligent sensor network
US9702939B2 (en) 2012-06-06 2017-07-11 Johnson Controls Technology Company Battery charging and maintaining with defective battery monitoring
US20140009609A1 (en) 2012-07-06 2014-01-09 Conexant Systems, Inc. Video door monitor using smarttv with voice wakeup
US20140015967A1 (en) 2012-07-16 2014-01-16 Shaun Moore Social intelligence, tracking and monitoring system and methods
USD707147S1 (en) 2012-07-30 2014-06-17 Amroad Technology Inc. Doorbell
US10289917B1 (en) 2013-11-12 2019-05-14 Kuna Systems Corporation Sensor to characterize the behavior of a visitor or a notable event
US20140334684A1 (en) 2012-08-20 2014-11-13 Jonathan Strimling System and method for neighborhood-scale vehicle monitoring
US20150035987A1 (en) 2012-09-07 2015-02-05 Jose Mario Fernandez Method and apparatus for unlocking/locking a door and enabling two-way communications with a door security system via a smart phone
US20140070922A1 (en) 2012-09-10 2014-03-13 Garry Davis Doorbell system, apparatus, and method
EP3287242B1 (en) 2012-09-21 2021-10-20 iRobot Corporation Proximity sensor for a mobile robot
US20150120598A1 (en) 2012-09-21 2015-04-30 Google Inc. Tracking of a package delivery to a smart-home
US9600645B2 (en) 2012-09-21 2017-03-21 Google Inc. Smart invitation handling at a smart-home
US10735216B2 (en) 2012-09-21 2020-08-04 Google Llc Handling security services visitor at a smart-home
US9626841B2 (en) 2012-09-21 2017-04-18 Google Inc. Occupant notification of visitor interaction with a doorbell at a smart-home
US20150120015A1 (en) 2012-09-21 2015-04-30 Google Inc. Automated handling of a package delivery at a smart-home
CN202872976U (en) 2012-09-21 2013-04-10 天津市滨海新区塘沽海天科贸有限公司 Electronic doorbell based on GPRS network
US20150156030A1 (en) 2012-09-21 2015-06-04 Google Inc. Handling specific visitor behavior at an entryway to a smart-home
US10332059B2 (en) 2013-03-14 2019-06-25 Google Llc Security scoring in a smart-sensored home
CN202939738U (en) 2012-09-26 2013-05-15 孙华 Novel remote monitoring doorbell
KR101545883B1 (en) 2012-10-30 2015-08-20 삼성전자주식회사 Method for controlling camera of terminal and terminal thereof
US9208629B2 (en) 2012-10-30 2015-12-08 Continental Automotive Systems, Inc. Garage door open alert
KR101934519B1 (en) 2012-11-26 2019-01-02 삼성전자주식회사 Storage device and data transfering method thereof
EP3691179A1 (en) 2012-12-18 2020-08-05 Samsung Electronics Co., Ltd. Method and device for controlling home device remotely in home network system
US9071923B2 (en) 2012-12-20 2015-06-30 Cellco Partnership Automatic archiving of an application on a mobile device
US20140188643A1 (en) 2013-01-01 2014-07-03 Bank Of America Corporation Transaction cost recovery for funds transfer
WO2014107196A1 (en) 2013-01-04 2014-07-10 Unikey Technologies, Inc. Wireless access control system and related methods
US9196103B2 (en) 2013-01-30 2015-11-24 International Business Machines Corporation Entry technology for building automation
US8983494B1 (en) 2013-02-08 2015-03-17 Urban Airship, Inc. Processing location information
GB2510821B (en) 2013-02-13 2015-08-19 Jaguar Land Rover Ltd Charging Method
US20140253725A1 (en) 2013-03-05 2014-09-11 Lku Technology Ltd. Enhanced Surveillance Camera
MX355747B (en) 2013-03-13 2018-04-27 Spectrum Brands Inc Electronic lock with remote monitoring.
US8907807B2 (en) 2013-03-15 2014-12-09 Oplink Communications, Inc. Security system power management
US9470018B1 (en) 2013-03-15 2016-10-18 August Home, Inc. Intelligent door lock system with friction detection and deformed door mode operation
US10999561B2 (en) 2013-03-15 2021-05-04 Vivint, Inc. Methods for using an image capture device integrated at a building entry with an automation control panel, and systems and devices related thereto
WO2014144628A2 (en) 2013-03-15 2014-09-18 Master Lock Company Cameras and networked security systems and methods
KR102038746B1 (en) 2013-03-15 2019-10-30 스펙트럼 브랜즈, 인크. Wireless lockset with integrated antenna, touch activation, and light communication device
US20160073479A1 (en) 2013-05-01 2016-03-10 BeON HOME INC. Modular illumination device and associated systems and methods
US20140368643A1 (en) 2013-06-12 2014-12-18 Prevvio IP Holding LLC Systems and methods for monitoring and tracking emergency events within a defined area
USD710727S1 (en) 2013-06-27 2014-08-12 BOT Home Automation, Inc. Electronic device
USD710728S1 (en) 2013-06-27 2014-08-12 BOT Home Automation, Inc. Electronic device
US20150022618A1 (en) 2013-07-18 2015-01-22 Bot Home Automation Inc. Wireless Entrance Communication Device
US9978254B2 (en) 2013-07-17 2018-05-22 BOT Home Automation, Inc. Wireless speaker devices for wireless audio/video recording and communication devices
US9734675B2 (en) 2013-07-17 2017-08-15 BOT Home Automation, Inc. Wireless communication USB dongle
US9894328B2 (en) 2013-07-18 2018-02-13 BOT Home Automation, Inc. Wireless entrance communication device
US9584775B2 (en) 2013-07-18 2017-02-28 BOT Home Automation, Inc. Wireless entrance communication device
US9058738B1 (en) 2013-07-26 2015-06-16 SkyBell Technologies, Inc. Doorbell communication systems and methods
US9113051B1 (en) 2013-07-26 2015-08-18 SkyBell Technologies, Inc. Power outlet cameras
US9049352B2 (en) 2013-07-26 2015-06-02 SkyBell Technologies, Inc. Pool monitor systems and methods
US8823795B1 (en) 2013-07-26 2014-09-02 SkyBell Technologies, Inc. Doorbell communication systems and methods
US9013575B2 (en) 2013-07-26 2015-04-21 SkyBell Technologies, Inc. Doorbell communication systems and methods
US9060103B2 (en) 2013-07-26 2015-06-16 SkyBell Technologies, Inc. Doorbell security and safety
US9113052B1 (en) 2013-07-26 2015-08-18 SkyBell Technologies, Inc. Doorbell communication systems and methods
US9142214B2 (en) 2013-07-26 2015-09-22 SkyBell Technologies, Inc. Light socket cameras
US9172922B1 (en) 2013-12-06 2015-10-27 SkyBell Technologies, Inc. Doorbell communication systems and methods
USD711275S1 (en) 2013-07-26 2014-08-19 SkyBell Technologies, Inc. Doorbell
US8953040B1 (en) 2013-07-26 2015-02-10 SkyBell Technologies, Inc. Doorbell communication and electrical systems
US9065987B2 (en) 2013-07-26 2015-06-23 SkyBell Technologies, Inc. Doorbell communication systems and methods
US9053622B2 (en) 2013-07-26 2015-06-09 Joseph Frank Scalisi Light socket cameras
US8941736B1 (en) 2013-07-26 2015-01-27 SkyBell Technologies, Inc. Doorbell communication systems and methods
US9094584B2 (en) 2013-07-26 2015-07-28 SkyBell Technologies, Inc. Doorbell communication systems and methods
US8937659B1 (en) 2013-07-26 2015-01-20 SkyBell Technologies, Inc. Doorbell communication and electrical methods
US8872915B1 (en) 2013-07-26 2014-10-28 SkyBell Technologies, Inc. Doorbell communication systems and methods
US9230424B1 (en) 2013-12-06 2016-01-05 SkyBell Technologies, Inc. Doorbell communities
US9060104B2 (en) 2013-07-26 2015-06-16 SkyBell Technologies, Inc. Doorbell communication systems and methods
US8947530B1 (en) 2013-07-26 2015-02-03 Joseph Frank Scalisi Smart lock systems and methods
WO2015023737A1 (en) 2013-08-15 2015-02-19 Unikey Technologies, Inc. Wireless access control system and related methods
US9106746B2 (en) 2013-08-27 2015-08-11 James Siminoff System and method for controlling calls for contact centers
US20150109111A1 (en) 2013-10-23 2015-04-23 The Chamberlain Group, Inc. Wireless Door Chime
US20150145991A1 (en) 2013-11-22 2015-05-28 Vose Technical Systems, Inc. System and method for shared surveillance
US20150163463A1 (en) 2013-12-06 2015-06-11 Vivint, Inc. Systems and methods for operating a doorbell camera
US9396624B2 (en) 2013-12-09 2016-07-19 Echostar Technologies L.L.C. Systems and methods for home automation integration with a doorbell
US20150179031A1 (en) 2013-12-19 2015-06-25 Robert F. Wallace Security device
US9274673B2 (en) 2013-12-31 2016-03-01 Google Inc. Methods, systems, and media for rewinding media content based on detected audio events
US9716401B2 (en) 2014-01-06 2017-07-25 Otter Products, Llc Recharegable battery pack
US9282665B1 (en) 2014-01-13 2016-03-08 Litex Industries, Limited Illuminated doorbell chime system
US9697723B1 (en) 2014-01-15 2017-07-04 Litex Industries, Limited Illuminated doorbell touch pad system
US20150208032A1 (en) 2014-01-17 2015-07-23 James Albert Gavney, Jr. Content data capture, display and manipulation system
US20150228281A1 (en) 2014-02-07 2015-08-13 First Principles,Inc. Device, system, and method for active listening
US20150236966A1 (en) 2014-02-18 2015-08-20 Alcatel-Lucent Usa Inc. Control of congestion window size of an information transmission connection
US9609462B2 (en) 2014-03-28 2017-03-28 Google Inc. Facilitating radio frequency communications among environmental control system components
US20150275564A1 (en) 2014-04-01 2015-10-01 Avi Rosenthal Garage door operator accessory
US9734644B2 (en) 2014-04-25 2017-08-15 The Chamberlain Group, Inc. Wireless camera facilitated building security
US10274909B2 (en) 2014-04-25 2019-04-30 Vivint, Inc. Managing barrier and occupancy based home automation system
US10657483B2 (en) 2014-04-29 2020-05-19 Vivint, Inc. Systems and methods for secure package delivery
CN204480411U (en) 2014-05-23 2015-07-15 中磊电子(苏州)有限公司 Door bell device
US9664503B2 (en) 2014-05-23 2017-05-30 Ricoh Company, Ltd. Side edge detection device with multicolored light detection unit, image forming apparatus provided with the side edge detection device, side edge detection method using multicolored light detection unit and storage medium thereof
US10367814B2 (en) 2014-06-22 2019-07-30 Citrix Systems, Inc. Enabling user entropy encryption in non-compliant mobile applications
US20150370272A1 (en) 2014-06-23 2015-12-24 Google Inc. Intelligent configuration of a smart environment based on arrival time
US20160019495A1 (en) 2014-07-18 2016-01-21 Dmitriy Kolchin System and method for context-sensitive delivery notification
USD788061S1 (en) 2014-07-18 2017-05-30 BOT Home Automation, Inc. Wireless entrance communication device
US9674433B1 (en) 2014-07-24 2017-06-06 Hoyos Vsn Corp. Image center calibration for a quadric panoramic optical device
US20160057199A1 (en) 2014-08-21 2016-02-25 Facebook, Inc. Systems and methods for transmitting a media file in multiple portions
KR101577626B1 (en) 2014-08-27 2015-12-16 주식회사 토브넷 Digital Video Recorder system
US20160058181A1 (en) 2014-09-03 2016-03-03 Qing Han Systems and Methods for Securing and Temperature Regulating a Delivery Container
US9810887B1 (en) 2014-09-05 2017-11-07 Hoyos Integrity Corporation Overhang enclosure of a panoramic optical device to eliminate double reflection
US9508207B2 (en) 2014-09-12 2016-11-29 Storycloud Incorporated Method and apparatus for network controlled access to physical spaces
US20160104061A1 (en) 2014-10-08 2016-04-14 Randy McGill Synthetic barcode payment system and method
US10922642B2 (en) 2014-11-04 2021-02-16 Hall Labs Llc System and method for linking an event to video documenting the event
US10929804B2 (en) 2014-11-21 2021-02-23 Deliveright Logistics, Inc. Delivery management systems and methods for zero-inventory distribution
US11341452B2 (en) 2014-12-12 2022-05-24 At&T Intellectual Property I, L.P. Method and apparatus for providing secure delivery
US10074224B2 (en) 2015-04-20 2018-09-11 Gate Labs Inc. Access management system
US10635907B2 (en) 2015-01-13 2020-04-28 Vivint, Inc. Enhanced doorbell camera interactions
US10257473B2 (en) 2015-01-27 2019-04-09 Sercomm Corporation Doorbell device and method thereof
US9833097B2 (en) 2015-02-13 2017-12-05 Cisco Technology, Inc. Smart postal box in support of autonomous delivery nodes
US9619955B2 (en) 2015-02-13 2017-04-11 David L. Eichenblatt Systems and methods for facilitating package delivery or pickup
US9679420B2 (en) 2015-04-01 2017-06-13 Smartdrive Systems, Inc. Vehicle event recording system and method
US10891584B2 (en) 2015-04-10 2021-01-12 Smiotex, Inc. Devices, systems, and methods for storing items
AU2016258199B2 (en) 2015-05-07 2020-09-17 Ring Inc. Wireless audio/video recording and communication doorbells with integrated image sensor/button
US10571668B2 (en) 2015-05-09 2020-02-25 Cognex Corporation Catadioptric projector systems, devices, and methods
US20170064504A1 (en) 2015-08-28 2017-03-02 Boban Jose System and method for detecting a loss of portable property
US10306187B2 (en) 2015-10-16 2019-05-28 Vivint, Inc. Adjustable movement detection doorbell
WO2017079006A1 (en) 2015-11-02 2017-05-11 Sargent Manufacturing Company Method and systems for ensuring secure delivery of parcels using internet-enabled storage receptacle
US10771520B2 (en) 2015-11-24 2020-09-08 Comcast Cable Communications, Llc Methods and systems for intelligent utilization of off-peak network bandwidth
US10139281B2 (en) 2015-12-04 2018-11-27 Amazon Technologies, Inc. Motion detection for A/V recording and communication devices
US10325625B2 (en) 2015-12-04 2019-06-18 Amazon Technologies, Inc. Motion detection for A/V recording and communication devices
USD789404S1 (en) 2016-01-20 2017-06-13 BOT Home Automation, Inc. Display screen or portion thereof with animated graphical user interface
USD791165S1 (en) 2016-01-20 2017-07-04 BOT Home Automation, Inc. Display screen or portion thereof with animated graphical user interface
US9761092B2 (en) 2016-02-01 2017-09-12 Sercomm Corporation Doorbell system and doorbell control device
US9819713B2 (en) 2016-02-26 2017-11-14 BOT Home Automation, Inc. Sharing video footage from audio/video recording and communication devices
US10397528B2 (en) 2016-02-26 2019-08-27 Amazon Technologies, Inc. Providing status information for secondary devices with video footage from audio/video recording and communication devices
WO2017160668A1 (en) 2016-03-15 2017-09-21 BOT Home Automation, Inc. Audio/video recording and communication devices
USD789820S1 (en) 2016-03-15 2017-06-20 BOT Home Automation, Inc. Doorbell
WO2017165525A1 (en) 2016-03-24 2017-09-28 BOT Home Automation, Inc. Jumpers for pcb design and assembly
WO2017176503A1 (en) 2016-04-07 2017-10-12 BOT Home Automation, Inc. Combination heatsink and battery heater for electronic devices
US20170293883A1 (en) 2016-04-08 2017-10-12 Jianhua Li Package Security Device
USD791240S1 (en) 2016-05-05 2017-07-04 BOT Home Automation, Inc. Illuminated sign
USD791241S1 (en) 2016-05-05 2017-07-04 BOT Home Automation, Inc. Illuminated sign
USD791243S1 (en) 2016-05-26 2017-07-04 BOT Home Automation, Inc. Illuminated sign
USD791878S1 (en) 2016-05-26 2017-07-11 BOT Home Automation, Inc. Illuminated sign
US10263802B2 (en) 2016-07-12 2019-04-16 Google Llc Methods and devices for establishing connections with remote cameras
USD798177S1 (en) 2016-09-14 2017-09-26 Ring Inc. Audio/Video doorbell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150156031A1 (en) * 2012-09-21 2015-06-04 Google Inc. Environmental sensing with a doorbell at a smart-home
US20140266669A1 (en) * 2013-03-14 2014-09-18 Nest Labs, Inc. Devices, methods, and associated information processing for security in a smart-sensored home

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10027726B1 (en) * 2012-11-21 2018-07-17 Ozog Media, LLC Device, apparatus, and method for facial recognition
US10027727B1 (en) * 2012-11-21 2018-07-17 Ozog Media, LLC Facial recognition device, apparatus, and method
US10742939B1 (en) * 2018-09-24 2020-08-11 Amazon Technologies, Inc. Security video data processing systems and methods
US11659144B1 (en) 2018-09-24 2023-05-23 Amazon Technologies, Inc. Security video data processing systems and methods
EP3703362A1 (en) * 2019-02-28 2020-09-02 Arlo Technologies, Inc. Electronic doorbell system with camera selection
US11159772B2 (en) 2019-02-28 2021-10-26 Arlo Technologies, Inc. Electronic doorbell system with camera selection
US11313689B2 (en) 2019-04-03 2022-04-26 Uber Technologies, Inc. Route safety determination system
US11320280B2 (en) * 2019-04-03 2022-05-03 Uber Technologies, Inc. Location safety determination system
US11686588B2 (en) 2019-04-03 2023-06-27 Uber Technologies, Inc. Route safety determination system
CN113763655A (en) * 2021-09-24 2021-12-07 深圳市蓝丝腾科技有限公司 Alarm host control circuit with mobile phone communication function
CN116229629A (en) * 2023-05-09 2023-06-06 山东力拓智能科技有限公司 Access control calling device control method and system

Also Published As

Publication number Publication date
US20200342727A1 (en) 2020-10-29
US11651668B2 (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US11132877B2 (en) Doorbell communities
US9230424B1 (en) Doorbell communities
US11651668B2 (en) Doorbell communities
US20210264749A1 (en) Doorbell communities
US10044519B2 (en) Doorbell communication systems and methods
US9160987B1 (en) Doorbell chime systems and methods
US9060104B2 (en) Doorbell communication systems and methods
US9094584B2 (en) Doorbell communication systems and methods
US9058738B1 (en) Doorbell communication systems and methods
US8872915B1 (en) Doorbell communication systems and methods
US9065987B2 (en) Doorbell communication systems and methods
US11651665B2 (en) Doorbell communities
US11362853B2 (en) Doorbell communication systems and methods
US20200336329A1 (en) Doorbell communications systems and methods
US11909549B2 (en) Doorbell communication systems and methods
US20230306825A1 (en) Doorbell communication systems and methods
US20230090745A1 (en) Doorbell communication systems and methods
US20230252868A1 (en) Doorbell communities
US20200382333A1 (en) Doorbell communication systems and methods
US11764990B2 (en) Doorbell communications systems and methods
US20220368557A1 (en) Doorbell communication systems and methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: SKYBELL TECHNOLOGIES, INC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCALISI, JOSEPH FRANK;MEJIA, DESIREE;HARRISON, GREGORY SAUL;AND OTHERS;REEL/FRAME:044299/0752

Effective date: 20171205

AS Assignment

Owner name: ARROW ELECTRONICS, INC., COLORADO

Free format text: SECURITY INTEREST;ASSIGNOR:SKYBELL TECHNOLOGIES, INC.;REEL/FRAME:046330/0809

Effective date: 20180531

AS Assignment

Owner name: ALARM.COM INCORPORATED, VIRGINIA

Free format text: SECURITY INTEREST;ASSIGNOR:SKYBELL TECHNOLOGIES, INC.;REEL/FRAME:047761/0265

Effective date: 20181003

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: SB LOAN SERIES I, LLC, C/O HUTTON VENTURES LLC, NE

Free format text: SECURITY INTEREST;ASSIGNOR:SKYBELL TECHNOLOGIES, INC.;REEL/FRAME:049771/0731

Effective date: 20190712

Owner name: SB LOAN SERIES I, LLC, C/O HUTTON VENTURES LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:SKYBELL TECHNOLOGIES, INC.;REEL/FRAME:049771/0731

Effective date: 20190712

AS Assignment

Owner name: ALARM.COM INCORPORATED, VIRGINIA

Free format text: SECURITY INTEREST;ASSIGNOR:ARROW ELECTRONICS, INC.;REEL/FRAME:049801/0245

Effective date: 20190710

AS Assignment

Owner name: SKYBELL TECHNOLOGIES, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ALARM.COM INCORPORATED;REEL/FRAME:049841/0078

Effective date: 20190710

Owner name: SKYBELL TECHNOLOGIES, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ALARM.COM INCORPORATED;REEL/FRAME:049841/0168

Effective date: 20190710

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: SKYBELL TECHNOLOGIES, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SB LOAN SERIES I, LLC, C/O HUTTON VENTURES LLC;REEL/FRAME:051307/0025

Effective date: 20191213

Owner name: SKYBELL TECHNOLOGIES IP, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SKYBELL TECHNOLOGIES, INC.;REEL/FRAME:051312/0521

Effective date: 20191213

AS Assignment

Owner name: STAR MOUNTAIN DIVERSIFIED CREDIT INCOME FUND III,

Free format text: SECURITY INTEREST;ASSIGNORS:SB IP HOLDINGS LLC;SKYBELL TECHNOLOGIES, INC.;SKYBELL TECHNOLOGIES IP, LLC;REEL/FRAME:051395/0958

Effective date: 20191213

Owner name: STAR MOUNTAIN DIVERSIFIED CREDIT INCOME FUND III, LP, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:SB IP HOLDINGS LLC;SKYBELL TECHNOLOGIES, INC.;SKYBELL TECHNOLOGIES IP, LLC;REEL/FRAME:051395/0958

Effective date: 20191213

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION