US20170314101A1 - Aluminum alloy for die casting, and aluminum alloy die-cast product using same - Google Patents

Aluminum alloy for die casting, and aluminum alloy die-cast product using same Download PDF

Info

Publication number
US20170314101A1
US20170314101A1 US15/520,650 US201415520650A US2017314101A1 US 20170314101 A1 US20170314101 A1 US 20170314101A1 US 201415520650 A US201415520650 A US 201415520650A US 2017314101 A1 US2017314101 A1 US 2017314101A1
Authority
US
United States
Prior art keywords
aluminum alloy
die
die casting
alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/520,650
Other languages
English (en)
Inventor
Teruaki DANNO
Satoshi MIYAJIRI
Naoto Oshiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Aluminium Industry Co Ltd
Original Assignee
Daiki Aluminium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Aluminium Industry Co Ltd filed Critical Daiki Aluminium Industry Co Ltd
Assigned to DAIKI ALUMINIUM INDUSTRY CO., LTD. reassignment DAIKI ALUMINIUM INDUSTRY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DANNO, Teruaki, MIYAJIRI, Satoshi, OSHIRO, NAOTO
Publication of US20170314101A1 publication Critical patent/US20170314101A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Definitions

  • the present invention relates to an aluminum alloy for die casting having improved castability and corrosion resistance, and an aluminum alloy die cast produced using the alloy.
  • Aluminum alloys are lightweight and have various properties such as excellent thermal conductivity and high corrosion resistance, and therefore are widely used as materials for components in various fields such as automobiles, industrial machines, aircrafts, and electrical home appliances.
  • One of such fields is the field of aluminum alloys for die casting, and representative examples thereof include ADC12 that is an Al—Si—Cu based alloy for die casting specified by Japanese Industrial Standards JIS H5302 (hereinafter simply referred to as “ADC12”).
  • ADC12 has satisfactory fluidity and filling characteristic during casting (die casting), and therefore has been frequently used for usage applications such as cases and covers such as cylinder head covers, cylinder blocks, and carburetors for automobiles, or die cast components other than those for automobiles.
  • ADC12 is poor in corrosion resistance
  • a process for improving corrosion resistance such as anodic oxidation, is required if ADC12 is used under an environment where it is easily corroded, which causes problems in terms of labor, cost, and the like.
  • ADCS and ADC6 that are Al—Mg based alloys for die casting specified by Japanese Industrial Standards JIS H5302 (hereinafter simply referred to as “ADCS” and “ADC6”) are excellent in corrosion resistance, but are poor in fluidity because of a large solidification range and therefore are likely to cause cracks in die-cast products. That is, since the Al—Mg based alloys are significantly inferior in castability to ADC12, usage applications thereof are likely to be disadvantageously limited to products with simple structures.
  • Patent Literature 1 discloses an aluminum alloy for die casting that contains: Si by 9.0 to 12.0 wt %; Mg by 0.20 to 0.80 wt %; Mn+Fe by 0.7 to 1.1 wt %, in which Mn/Fe ratio is not less than 1.5; Cu as an impurity that is regulated to be not more than 0.5 wt %; and a remaining portion of the aluminum alloy that consists of aluminum and unavoidable impurities.
  • the amounts of Mn, Fe, and Cu have great influence on corrosion resistance of the aluminum alloy, and the corrosion resistance is greatly improved as compared to that of ADC12 by, for example, regulating the amount of Cu to be not more than 0.5 wt %.
  • Patent Literature 1 can improve corrosion resistance of an aluminum alloy to a level approximately equal to that of AC4C that is an Al—Si—Mg based alloy for die casting specified by Japanese Industrial Standards JIS H5202, mechanical properties of the aluminum alloy in comparison with ADC12 are uncertain.
  • Patent Literature 1 provides castability about 80% of that of ADC12 when compared in flow length, it is difficult to say that the castability reaches a level approximately equal to that of ADC12.
  • a main objective of the present invention is to provide: an aluminum alloy for die casting, having castability and mechanical properties equivalent to those of ADC12 and corrosion resistance equivalent to that of ADC6; and an aluminum alloy die cast produced using the alloy.
  • a first aspect of the present invention is an aluminum alloy for die casting “containing: Cu by not more than 0.10 wt %; Si by 12.0 to 15.0 wt %; Mg by not more than 1.00 wt %; Fe by 0.05 to 1.00 wt %; Cr by 0.10 to 0.50 wt %; and a remaining portion thereof being Al and unavoidable impurities”.
  • Si is contained by 12.0 to 15.0 wt % to improve castability of the alloy, the content ratio of Cu that is considered to have most influence on corrosion resistance is suppressed to not more than 0.10 wt %, and Cr that effectively improves corrosion resistance and anti-seizing characteristic is contained by 0.10 to 0.50 wt %. Therefore, it is possible to obtain an alloy having castability and mechanical properties comparable to those of ADC12, and high corrosion resistance comparable to that of ADC6.
  • an ingot of an aluminum alloy for die casting having not only excellent castability and mechanical properties but also excellent corrosion resistance can be produced safely and easily.
  • At least one selected from Na, Sr, and Ca is added by 30 to 200 ppm, or Sb is added by 0.05 to 0.20 wt %. By doing so, it is possible to reduce the size of particles of eutectic Si and further improve strength and toughness of the aluminum alloy.
  • adding Ti by 0.05 to 0.30 wt % or adding B by 1 to 50 ppm is also preferable. By doing so, crystal grains of the aluminum alloy can be miniaturized even when the amount of Si is particularly small and when a casting method having a low cooling rate is used. As a result, stretching of the aluminum alloy can be improved.
  • a second aspect of the present invention is an aluminum alloy die cast obtained through die-casting the aluminum alloy for die casting according to the first aspect.
  • the aluminum alloy die cast obtained through die-casting the aluminum alloy for die casting of the present invention can be mass produced with satisfactory castability and is superior not only in mechanical properties such as yield strength and stretching but also in corrosion resistance, the aluminum alloy die cast is most suitable for usage applications, such as structural components for automobiles, which are used outdoor for long hours.
  • an aluminum alloy for die casting having castability and mechanical properties equivalent to those of ADC12 and corrosion resistance equivalent to that of ADC6; and an aluminum alloy die cast produced using the alloy.
  • An aluminum alloy for die casting of the present invention (hereinafter, also simply referred to as “aluminum alloy”) mainly contains Cu (copper) by not more than 0.10 wt %, Si (silicon) by 12.0 to 15.0 wt %, Mg (magnesium) by not more than 1.00 wt %, Fe (iron) by 0.05 to 1.00 wt %, Cr (chromium) by 0.10 to 0.50 wt %, and Al (aluminum) and unavoidable impurities as a remaining portion of the aluminum alloy.
  • aluminum alloy mainly contains Cu (copper) by not more than 0.10 wt %, Si (silicon) by 12.0 to 15.0 wt %, Mg (magnesium) by not more than 1.00 wt %, Fe (iron) by 0.05 to 1.00 wt %, Cr (chromium) by 0.10 to 0.50 wt %, and Al (aluminum) and unavoid
  • Cu copper
  • Cu improves mechanical strength and hardness of the aluminum alloy, but on the other hand, significantly degrades corrosion resistance of the aluminum alloy. Therefore, in order to improve corrosion resistance of the aluminum alloy, the content of Cu, except Cu mixed as an impurity, needs to be reduced.
  • the content ratio of Cu with respect to the whole weight of the aluminum alloy is not more than 0.10 wt %. If more strict corrosion resistance is required of the aluminum alloy die cast using the alloy, the content ratio of Cu with respect to the whole weight of the aluminum alloy is preferably not more than 0.08 wt %, and more preferably, not more than 0.05 wt %.
  • Si silicon is an important element that contributes to improvement of fluidity, reduction in liquidus temperature, and the like when the aluminum alloy is molten, thereby to improve castability.
  • the content ratio of Si with respect to the whole weight of the aluminum alloy is preferably within a range of 12.0 to 15.0 wt % as described above.
  • the content ratio of Si is less than 12.0 wt %, melting temperature and casting temperature of the aluminum alloy increase, and sufficient fluidity cannot be ensured during die casting since fluidity of the aluminum alloy reduces when the aluminum alloy is molten.
  • the content ratio of Si is more than 15.0 wt %, castability is degraded due to reduced fluidity and increased liquidus temperature.
  • Mg manganesium mainly exists as Mg2Si or in a solid-solution state in an Al base material in the aluminum alloy, and is a component that provides yield strength and tensile strength to the aluminum alloy but, when being contained by an excessive amount, has an adverse effect on castability and corrosion resistance.
  • the content ratio of Mg with respect to the whole weight of the aluminum alloy is preferably within a range not more than 1.00 wt % as described above.
  • the presence of Mg within the above range can improve mechanical properties of the aluminum alloy such as yield strength and tensile strength, without greatly affecting corrosion resistance.
  • the content ratio of Mg is more than 1.00 wt %, stretching of the alloy is reduced, which results in degraded quality of an aluminum alloy die cast produced by using the alloy.
  • Fe iron
  • Fe is known to have a seizing prevention effect during die casting.
  • Fe causes crystallization of a needle like crystal in the form of Al-Si-Fe, reduces toughness of the aluminum alloy, and, when being added in a large quantity, causes melting at a suitable temperature to be difficult.
  • the content ratio of Fe with respect to the whole weight of the aluminum alloy is preferably within a range of 0.05 to 1.00 wt % as described above.
  • the content ratio of Fe is less than 0.05 wt %, the seizing prevention effect during die casting becomes insufficient, whereas when the content ratio of Fe is more than 1.00 wt %, although the seizing prevention effect becomes sufficient, toughness of the alloy reduces and the melting temperature rises to cause degradation of castability.
  • Cr chromium mainly exists in a molten state when the aluminum alloy is molten, and when the aluminum alloy is solid, exists in a solid-solution state in an Al phase or in a crystallized state as a Cr based compound. Similar to Fe and Mn described above, Cr is used for preventing seizing of the aluminum alloy and a mold during die casting, and for improving corrosion resistance of the alloy.
  • the content ratio of Cr with respect to the whole weight of the aluminum alloy is preferably within the range of 0.10 to 0.50 wt % as described above.
  • the content ratio of Cr is less than 0.10 wt %, the effect of improving corrosion resistance of the alloy becomes insufficient, whereas when the content ratio of Cr is more than 0.50 wt %, although corrosion resistance becomes sufficient, liquidus temperature increases and fluidity reduces to cause degradation of castability.
  • At least one element selected from Na (sodium), Sr (strontium), Ca (calcium), and Sb (antimony) may be added as a modification material.
  • a modification material By adding such a modification material, it is possible to reduce the size of eutectic Si particles, and further improve toughness and strength of the aluminum alloy.
  • the addition ratio of the modification material with respect to the whole weight of the aluminum alloy is preferably within a range of 30 to 200 ppm when the modification material is Na, Sr, and Ca, and within a range of 0.05 to 0.20 wt % when the modification material is Sb.
  • the addition ratio of the modification material is less than 30 ppm (0.05 wt % in the case with Sb)
  • miniaturizing eutectic Si particles in the aluminum alloy becomes difficult
  • the addition ratio of the modification material is more than 200 ppm (0.20 wt % in the case with Sb)
  • eutectic Si particles in the aluminum alloy are sufficiently miniaturized, and no further addition effect can be obtained even when the added amount is increased.
  • At least one of Ti (titanium) and B (boron) may be added instead of or together with the modification material.
  • Ti and B titanium
  • crystal grains of the aluminum alloy are miniaturized, and stretching of the alloy can be improved. It should be noted that such an advantageous effect becomes significant when the amount of Si is particularly small or when a casting method having a low cooling rate is used.
  • the addition ratios of Ti and B with respect to the whole weight of the aluminum alloy are preferably within a range of 0.05 to 0.30 wt % and a range of 1 to 50 ppm, respectively.
  • the addition ratio of Ti is less than 0.05 wt % or the addition ratio of B is less than 1 ppm, miniaturizing the crystal grains in the aluminum alloy becomes difficult, whereas when the addition ratio of Ti is more than 0.30 wt % or the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficiently miniaturized, and no further addition effect can be obtained even when the added amount is increased.
  • the aluminum alloy for die casting according to the present invention When the aluminum alloy for die casting according to the present invention is to be produced, first, a raw material designed to contain, at the predetermined ratio described above, each of the elemental components of Al, Cu, Si, Mg, Fe, and Cr is prepared. Next, the raw material is placed in a melting furnace such as a sealed melting furnace or a melting furnace with a fore hearth to melt the elemental components. The molten raw material, i.e., the molten metal of the aluminum alloy is subjected to refinement treatments such as a dehydrogenation treatment and an inclusion removal treatment, if necessary. Then, the refined molten metal is casted in a predetermined mold and solidified in order to form the molten metal of the aluminum alloy into an alloy base metal ingot or the like.
  • a melting furnace such as a sealed melting furnace or a melting furnace with a fore hearth to melt the elemental components.
  • the molten raw material i.e., the molten metal of the
  • a solution treatment and an aging treatment, etc. are performed if necessary.
  • a solution treatment and an aging treatment, etc. are performed if necessary.
  • castability during die casting was evaluated by the following method, in addition to measuring liquidus temperature of the alloy. That is, the alloy ingot was molten, and a flow length of the solution was measured at a temperature 100° C. higher than the alloy liquidus temperature.
  • Table 1 shows the elemental compositions, salt spray measurement results, and mechanical properties of aluminum alloys, which are the objects of the present invention, in Examples 1 to 9 and Comparative Examples 1 to 9.
  • Table 2 shows the elemental compositions, liquidus temperatures, and flow lengths of aluminum alloys, which are the objects of the present invention, in Examples 10 to 14 and Comparative Examples 10 and 11.
  • Example 10 Liquidus Elemental composition temper- Flow (wt %) ature length Cu Si Mg Fe Cr (° C.) (mm) Notes Example 10 0.00 12.27 0.00 0.20 0.19 581 492 Approximate to Example 1 Example 11 0.00 12.38 0.19 0.21 0.20 582 494 Approximate to Example 2 Example 12 0.00 12.40 0.39 0.21 0.20 582 483 Approximate to Example 3 Example 13 0.00 12.54 0.59 0.21 0.21 584 482 Approximate to Example 4 Example 14 0.00 12.38 0.95 0.22 0.20 585 445 Approximate to Example 5 Comparative 1.90 10.76 0.20 0.84 0.08 571 330 Corresponding to Example 10 ADC12 Comparative 0.02 0.54 3.55 0.50 0.03 635 333 Corresponding to Example 11 ADC6
  • Examples 1 to 9 are compared with Comparative Example 2 corresponding to ADC12, it is found that the aluminum alloys of Examples 1 to 9 have corrosion resistances significantly higher than corrosion resistance of Comparative Example 2, and have mechanical properties approximately equal to mechanical properties of Comparative Example 2.
  • liquidus temperatures of Examples 10 to 14 are significantly lower than liquidus temperature of Comparative Example 11 corresponding to ADC6, and are approximately equal to liquidus temperature of Comparative Example 10 corresponding to ADC12.
  • flow lengths of Examples 10 to 14 are significantly longer than those of Comparative Examples 10 and 11. That is, the aluminum alloys of the Examples 10 to 14 are superior in castability during die casting to the aluminum alloys of Comparative Examples 10 to 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
US15/520,650 2014-10-23 2014-12-15 Aluminum alloy for die casting, and aluminum alloy die-cast product using same Abandoned US20170314101A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014216640 2014-10-23
JP2014-216640 2014-10-23
PCT/JP2014/006238 WO2016063320A1 (ja) 2014-10-23 2014-12-15 ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト

Publications (1)

Publication Number Publication Date
US20170314101A1 true US20170314101A1 (en) 2017-11-02

Family

ID=55760396

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/520,650 Abandoned US20170314101A1 (en) 2014-10-23 2014-12-15 Aluminum alloy for die casting, and aluminum alloy die-cast product using same

Country Status (9)

Country Link
US (1) US20170314101A1 (de)
EP (1) EP3196323B1 (de)
JP (1) JP5969713B1 (de)
KR (1) KR101935243B1 (de)
CN (1) CN107075622A (de)
MX (1) MX2017004376A (de)
MY (1) MY179378A (de)
PL (1) PL3196323T3 (de)
WO (1) WO2016063320A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564431A (zh) * 2021-08-10 2021-10-29 广州立中锦山合金有限公司 一种轮毂用高强度铝合金及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166779A1 (ja) * 2015-04-15 2016-10-20 株式会社大紀アルミニウム工業所 ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト
CN107779695A (zh) * 2017-11-01 2018-03-09 道然精密智造无锡有限公司 一种高流动耐腐蚀的无链自行车壳体制造方法
US20190185967A1 (en) * 2017-12-18 2019-06-20 GM Global Technology Operations LLC Cast aluminum alloy for transmission clutch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105571A (ja) * 2000-10-03 2002-04-10 Ryoka Macs Corp 熱伝導性に優れたヒートシンク用アルミニウム合金材
WO2010086951A1 (ja) * 2009-01-27 2010-08-05 株式会社大紀アルミニウム工業所 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145454B2 (ja) * 2000-01-18 2008-09-03 住友電気工業株式会社 耐摩耗性アルミニウム合金長尺体およびその製造方法
JP4191370B2 (ja) * 2000-03-02 2008-12-03 株式会社大紀アルミニウム工業所 高熱伝導加圧鋳造用合金と該合金鋳物
JP4413106B2 (ja) * 2004-08-30 2010-02-10 三菱樹脂株式会社 ヒートシンク用アルミニウム合金材及びその製造法
JP2007070716A (ja) * 2005-09-09 2007-03-22 Daiki Aluminium Industry Co Ltd 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物
CA2825528A1 (en) * 2011-01-27 2012-08-02 Nippon Light Metal Company, Ltd. High electric resistance aluminum alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105571A (ja) * 2000-10-03 2002-04-10 Ryoka Macs Corp 熱伝導性に優れたヒートシンク用アルミニウム合金材
WO2010086951A1 (ja) * 2009-01-27 2010-08-05 株式会社大紀アルミニウム工業所 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564431A (zh) * 2021-08-10 2021-10-29 广州立中锦山合金有限公司 一种轮毂用高强度铝合金及其制备方法

Also Published As

Publication number Publication date
KR20170063891A (ko) 2017-06-08
MX2017004376A (es) 2018-01-30
EP3196323A1 (de) 2017-07-26
PL3196323T3 (pl) 2019-08-30
JP5969713B1 (ja) 2016-08-17
MY179378A (en) 2020-11-05
JPWO2016063320A1 (ja) 2017-04-27
CN107075622A (zh) 2017-08-18
KR101935243B1 (ko) 2019-01-04
EP3196323A4 (de) 2017-08-09
EP3196323B1 (de) 2019-02-06
WO2016063320A1 (ja) 2016-04-28

Similar Documents

Publication Publication Date Title
EP3121302B1 (de) Aluminiumlegierung zum druckgiessen und druckgussaluminiumlegierung damit
JP5469100B2 (ja) 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物
JP6943968B2 (ja) ダイカスト鋳造用アルミニウム合金及びそれを用いた機能性部品
US20150218678A1 (en) Al-zn alloy for die casting having both high strength and high thermal conductivity
EP3216884B1 (de) Aluminiumlegierung für kokillenguss und daraus hergestellte aluminiumlegierungskokille
JP4852082B2 (ja) マグネシウム合金
EP3196323B1 (de) Druckgussprodukt aus aluminiumlegierung
CA3017279A1 (en) Aluminum alloys having improved tensile properties
JP2007070716A (ja) 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物
JP5852039B2 (ja) 耐熱マグネシウム合金
JP2003027169A (ja) アルミニウム合金およびアルミニウム合金鋳物品
JP6778675B2 (ja) 耐熱マグネシウム合金
JP2016102246A (ja) 延性に優れたダイカスト鋳造用アルミニウム合金及びそれを用いた鋳造製品
KR101589035B1 (ko) 다이캐스팅용 고열전도도 Al-Zn-Mg-Cu계 합금
JP2006316341A (ja) 鋳造用アルミニウム合金および同アルミニウム合金鋳物
JP2002226932A (ja) 強度及び熱伝導性に優れたヒートシンク用アルミニウム合金材及びその製造法
JP7475330B2 (ja) 耐熱性を有する鋳造用マグネシウム合金
JP5723064B2 (ja) ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト
WO2018235272A1 (ja) アルミニウム合金およびアルミニウム合金鋳物品
JP2017071847A (ja) 亜鉛ダイカスト合金

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIKI ALUMINIUM INDUSTRY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DANNO, TERUAKI;MIYAJIRI, SATOSHI;OSHIRO, NAOTO;REEL/FRAME:042298/0050

Effective date: 20170412

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION