US20170295989A1 - Moving inlet nozzles in beverage systems - Google Patents

Moving inlet nozzles in beverage systems Download PDF

Info

Publication number
US20170295989A1
US20170295989A1 US15/516,893 US201515516893A US2017295989A1 US 20170295989 A1 US20170295989 A1 US 20170295989A1 US 201515516893 A US201515516893 A US 201515516893A US 2017295989 A1 US2017295989 A1 US 2017295989A1
Authority
US
United States
Prior art keywords
inlet nozzle
beverage
sealed container
receptacle
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/516,893
Inventor
Bruce D. Burrows
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coffee Solutions LLC
Original Assignee
Coffee Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2015/015971 external-priority patent/WO2015123612A1/en
Priority claimed from PCT/US2015/025013 external-priority patent/WO2015157475A1/en
Application filed by Coffee Solutions LLC filed Critical Coffee Solutions LLC
Priority to US15/516,893 priority Critical patent/US20170295989A1/en
Priority claimed from PCT/US2015/045146 external-priority patent/WO2016057116A1/en
Assigned to HAGEN, DAVID reassignment HAGEN, DAVID ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REMINGTON DESIGNS, LLC
Assigned to COFFEE SOLUTIONS, LLC reassignment COFFEE SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAGEN, DAVID
Publication of US20170295989A1 publication Critical patent/US20170295989A1/en
Assigned to COFFEE SOLUTIONS, LLC reassignment COFFEE SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURROWS, BRUCE D.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • A47J31/3666Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means whereby the loading of the brewing chamber with the brewing material is performed by the user
    • A47J31/3676Cartridges being employed
    • A47J31/369Impermeable cartridges being employed
    • A47J31/3695Cartridge perforating means for creating the hot water inlet
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/40Beverage-making apparatus with dispensing means for adding a measured quantity of ingredients, e.g. coffee, water, sugar, cocoa, milk, tea
    • A47J31/407Beverage-making apparatus with dispensing means for adding a measured quantity of ingredients, e.g. coffee, water, sugar, cocoa, milk, tea with ingredient-containing cartridges; Cartridge-perforating means
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • A23F3/18Extraction of water soluble tea constituents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/24Extraction of coffee; Coffee extracts; Making instant coffee
    • A23F5/26Extraction of water-soluble constituents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/04Coffee-making apparatus with rising pipes
    • A47J31/057Coffee-making apparatus with rising pipes with water container separated from beverage container, the hot water passing the filter only once i.e. classical type of drip coffee makers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • A47J31/3604Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means with a mechanism arranged to move the brewing chamber between loading, infusing and ejecting stations
    • A47J31/3623Cartridges being employed
    • A47J31/3628Perforating means therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/46Dispensing spouts, pumps, drain valves or like liquid transporting devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/52Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/52Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus
    • A47J31/525Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus the electronic control being based on monitoring of specific process parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/804Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package
    • B65D85/8043Packages adapted to allow liquid to pass through the contents

Definitions

  • aspects of the present disclosure generally relate to a liquid forming system and method of using the same. More specifically, the present disclosure relates to a coffee brewing system designed to brew a single-serve or multi-serve coffee cartridge or the like.
  • beverage forming devices such as coffee brewers use a cartridge containing a slurry of beverage medium, e.g., ground coffee, to form a solution, e.g., beverage.
  • a slurry of beverage medium e.g., ground coffee
  • water or other solvents
  • the water (solvent) infuses with the coffee grounds (slurry) in the cartridge, and extracts solutes (e.g., soluble portions of the slurry) or other materials from the coffee grounds to form the solution (e.g., beverage), which is then removed from the cartridge for consumption.
  • Coffee brewers of this type use a stationary inlet needle that pierces the top of the cartridge and injects a relatively constant stream of hot water into the cartridge.
  • This hot water stream may channel or tunnel through the ground coffee therein and not fully extract some grounds while over-extracting other grounds, resulting in a brewed beverage that can be bitter and can have an undesirable after taste. Coffee drinkers often try to mask this undesirable bitter taste with additives such as sugar or cream.
  • the present disclosure describes beverage and/or brewing systems, and specifically systems for rotating, spinning or vertically oscillating an inlet nozzle within the interior of a beverage cartridge (e.g., a single-serve cartridge), wherein the moving inlet nozzle delivers a stream or spray of fluid, e.g., water, that wets and fluidizes at least a portion of the beverage medium therein to create a brewed beverage (e.g., a cup of coffee).
  • a beverage cartridge e.g., a single-serve cartridge
  • fluid e.g., water
  • a single-serve beverage making device in accordance with an aspect of the present disclosure comprises a pump and a beverage head coupled to the pump.
  • the beverage head comprises a receptacle, an inlet nozzle, and an outlet conduit.
  • the receptacle is configured to selectively receive a sealed container within the receptacle of the beverage head when the beverage head is in a first position.
  • the sealed container comprises an outer surface and an inner volume, and a beverage medium is contained within the inner volume of the sealed container.
  • the inlet nozzle is coupled to the pump and passes through the outer surface of the sealed container to couple at least a portion of the inlet nozzle to the inner volume of the sealed container when the beverage head is in a second position.
  • the sealed container is substantially stationary with respect to the single serve beverage device while the beverage head is in the second position.
  • the pump delivers at least a first fluid to an inner volume of the sealed container of beverage medium in the receptacle of the beverage head through the inlet nozzle such that an at least second fluid comprising the at least first fluid and a quantity of beverage medium are combined within the inner volume of the sealed container when the sealed container is present in the receptacle of the beverage head.
  • the outlet conduit is coupled to the inner volume of the sealed container of beverage medium and directs at least a portion of the second fluid out of the beverage head, such as to an external receptacle.
  • the inlet nozzle selectively moves with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and when the at least first fluid is being delivered to the inner volume of the sealed container.
  • the inlet nozzle itself may rotate or spin above or at least partially immersed within the coffee grounds.
  • the inlet nozzle may be stationary and include a central rotating shaft that spins or rotates one or more blades or fans at one end thereof to generate the fluidized mixture of hot water and coffee.
  • An apparatus in accordance with an aspect of the present disclosure comprises a pump and a receptacle, coupled to the pump.
  • the receptacle is configured to selectively receive a slurry within the receptacle.
  • the apparatus further comprises an inlet nozzle coupled between the receptacle and the pump.
  • the pump is configured to deliver at least a first solvent to the slurry in the receptacle through the inlet nozzle such that at least one solution, comprising at least a portion of the at least first solvent and at least one solute from the slurry, is created.
  • the apparatus further comprises an outlet conduit coupled to the receptacle and configured to direct at least a portion of the solution external to the receptacle, in which the inlet nozzle is configured to selectively move while delivering the at least first solvent to the slurry to infuse the solution with the at least one solute.
  • a method in accordance with an aspect of the present disclosure comprises configuring a beverage head comprising a receptacle to selectively receive a sealed container when the beverage head is in a first position, configuring an inlet nozzle to pass through an outer surface of the sealed container and coupling at least a portion of the inlet nozzle to an inner volume of the sealed container when the beverage head is in a second position, delivering at least a first fluid to a beverage medium in the inner volume of the sealed container through the inlet nozzle, and selectively rotating the inlet nozzle with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and when the at least first fluid is being delivered to the inner volume of the sealed container for at least a portion of a time that the beverage head is in the second position.
  • the method further comprises creating an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium during operation of the single-serve beverage making device, coupling an outlet conduit to the inner volume of the sealed container of beverage medium, and directing at least a portion of the second fluid through the outlet conduit to a receptacle external to the beverage head.
  • a solute extraction device in accordance with an aspect of the present disclosure comprises a receptacle configured to selectively contain a slurry, a conduit coupled to the beverage head, the conduit configured to selectively deliver at least one solvent to the slurry while the slurry is contained within the receptacle; and an outlet, coupled to the receptacle, in which the outlet is configured to deliver at least one solution comprising at least a portion of the at least one solvent and at least one solute extracted from the slurry external to the receptacle, in which the conduit, via the delivery of the at least one solvent or otherwise, is further configured to agitate the slurry while the slurry is contained in the receptacle.
  • Such apparatuses, devices, and methods may optionally include the inlet nozzle being configured to selectively rotate while delivering the at least first solvent to the slurry, the inlet nozzle being configured to selectively vibrate while delivering the at least first solvent to the slurry, and/or the inlet nozzle being configured to selectively rotate in a plurality of directions while delivering the at least first solvent to the slurry.
  • Such apparatuses, devices, and methods may optionally include the inlet nozzle comprising an outer shaft and an inner platform, at least one flow port, in which the at least one flow port is configured to assist in the creation of the at least one solution, at least one channel configured to selectively direct the at least first solvent into contact with the slurry to control the extraction of the at least one solute, and/or at least one serration.
  • the apparatuses, devices, and methods may also comprise a controller, coupled to the inlet nozzle, in which the controller is configured to change a motion of the inlet nozzle to affect the motion of the slurry.
  • a device in accordance with an aspect of the present disclosure comprises a beverage head and a processor.
  • the beverage head further comprises a receptacle, an inlet nozzle, and an outlet conduit.
  • the receptacle is configured to selectively receive a slurry within the receptacle of the beverage head when the beverage head is in a first position.
  • the slurry comprises a quantity of beverage medium.
  • the inlet nozzle is coupled to the receptacle and configured to deliver at least one solvent to the slurry when the beverage head is in a second position such that at least one solution comprising at least a portion of the at least one solvent and at least a portion of one solute of the slurry is created during operation of the device.
  • the receptacle is further configured to contain the slurry and the at least one solvent for at least a first period of time to assist the at least one solvent in extracting the at least one solute.
  • the outlet conduit is coupled to the receptacle and configured to direct at least a portion of the at least one solution to a receptacle external to the beverage head.
  • the processor is coupled to the inlet nozzle, and controls a selective rotation of the inlet nozzle with respect to the slurry while the inlet nozzle is proximate the slurry for at least a portion of the time the at least one solvent is being delivered to the slurry.
  • FIG. 1 illustrates a perspective view of one embodiment of a beverage brewer in accordance with an aspect of the present disclosure
  • FIG. 2 is a perspective view of an embodiment of a beverage brewer, illustrating a lid of a brewer head in an open position in accordance with an aspect of the present disclosure
  • FIG. 3 is an enlarged front view of the brewer head taken about circle 6 in FIG. 2 , further illustrating rotation or spinning motion of an inlet nozzle;
  • FIGS. 4A-4C illustrate a beverage cartridge that may be employed with the beverage brewer in an aspect of the present disclosure
  • FIG. 5 is a cross-sectional view of the brewer head taken about the line 7 - 7 in FIG. 2 , in accordance with an aspect of the present disclosure
  • FIG. 6 is a top view of the brewer head, illustrating a motor for rotating the inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 7 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 8 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 9 is across-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 10 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 11 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 12 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 13 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 14 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 15 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 16 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 17 is a cross-sectional view of a brewer head in accordance with an aspect of the present disclosure.
  • FIG. 18 illustrates a block diagram of a beverage brewer in accordance with an aspect of the present disclosure
  • FIG. 19 illustrates a flow diagram showing possible steps used in an embodiment of the present disclosure.
  • FIG. 20 illustrates an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 1 illustrates a perspective view of one embodiment of a beverage brewer in accordance with an aspect of the present disclosure.
  • a beverage brewer 10 may be designed for use with container-based beverage cartridges, such as single-serve coffee cartridges.
  • the beverage brewer 10 may include a generally upright housing 12 having a base or platen 14 extending out at the bottom and positioned generally below an outwardly extending brewer head (also referred to as a “beverage head” herein) 16 .
  • the vertical distance between the platen 14 and the brewer head 16 can adequately accommodate a coffee mug or other external receptacle for delivery of the beverage from the beverage brewer 10 .
  • the receptacle may be capable of retaining at least 6 oz. of beverage, and possibly 10 oz. or more of beverage.
  • the housing 12 may further comprise a rear housing 18 having a gravity-fed and/or other type of water reservoir 20 on one side and an outer shell 22 that houses or protects the internal features of the beverage brewer 10 , including, for example, the conduit system between the water reservoir 20 and the brewer head 16 .
  • Such features within the housing 12 of the beverage brewer 10 may generally include a fluid conduit system, a pump, and/or a heating element, in order to deliver a fluid from the reservoir 20 (or other source) to the brewer head 16 and/or to the receptacle external to the beverage brewer 10 .
  • FIG. 2 is a perspective view of a beverage brewer, illustrating a lid of a brewer head in an open position (also referred to as a first position, second position, and/or access position herein) in accordance with an aspect of the present disclosure.
  • the brewer head 16 may be a clam-shell structure including a stationary lower support member 24 and a movable upper member or lid 26 that pivots relative to the lower support member 24 about a hinge 28 .
  • the scope of the present disclosure includes embodiments where the lower support member 24 and the lid 26 may both be movable, or that the lower support member 24 may be movable relative to a stationary lid 26 . Additionally, the lower support member 24 and/or the lid 26 may pivot or rotate about the common hinge 28 , or separate hinges or points within the beverage brewer 10 .
  • the lower support member 24 and the lid 26 are selectively opened and closed and form a brew chamber therebetween during a brew cycle (also known as a preparation cycle) for selective retention of a beverage cartridge 32 in a receptacle 30 of the brewer head 16 .
  • the beverage cartridge 32 may include any liquid medium known in the art, including, but not limited to, liquid and/or beverage medium used to form various types of coffee, espresso, tea, hot chocolate, lemonade and other fruit-based drinks, carbonated drinks such as soda, soups and other liquid foods, etc.
  • FIG. 1 illustrates the lid 26 engaged with the lower support member 24 such that the brewer head 16 is in the closed or locked position (also referred to as a brewing position, first position, and/or second position herein).
  • a jaw lock 176 includes an externally accessible release button 172 which may be at or near the brewer head 16 and configured for hand manipulation. To open the brewer head 16 , a user presses or otherwise activates the release button 172 . Activation of the release button 172 selectively disengages the jaw lock 176 when the brewer head 16 is in the closed position shown in FIG. 1 .
  • the lid 26 is able to pivot away from the lower support member 24 which allows access to the receptacle 30 . In the position shown in FIG. 2 , a user may selectively insert or remove a beverage cartridge 32 .
  • the user may again activate the release button 172 , and/or may push on the lid 26 to move the lid 26 closer to the lower support member 24 .
  • the jaw lock 176 may selectively lock during a brew cycle and/or preparation cycle to prevent any liquid delivered by the beverage brewer 10 from being expelled by the beverage brewer 10 external to the receptacle located proximate to the platen 14 .
  • the contact between the lower support member 24 and the jaw lock 176 selectively holds the brewer head 16 closed as shown in FIG. 1 .
  • the beverage brewer 10 also comprises an inlet nozzle 44 that generally extends downwardly out from underneath the lid 26 , as shown within the brewer head 16 .
  • the inlet nozzle 44 is coupled to, e.g., in fluid communication with, a conduit system, e.g., the pump 134 , for injecting at least a first fluid, such as turbulent or laminar hot water and steam, a liquid such as water and/or milk, or other gas and/or other liquid in a fluid or semi-fluid form, into the beverage cartridge 32 through the inlet nozzle 44 .
  • a first fluid such as turbulent or laminar hot water and steam, a liquid such as water and/or milk, or other gas and/or other liquid in a fluid or semi-fluid form
  • the inlet nozzle 44 may be a needle, spine, spout, spigot, jet, projection, spike, and/or other inlet means for delivering the at least first fluid to a beverage medium 78 .
  • FIG. 3 is an enlarged front view of the brewer head taken about circle 6 in FIG. 2 , further illustrating rotation or spinning motion of an inlet nozzle in an aspect of the present disclosure.
  • the lid 26 is moved from a closed position (shown in FIG. 1 ) to an open position (shown in FIG. 2 ).
  • the beverage cartridge 32 can be inserted into and/or removed from the receptacle 30 .
  • the receptacle 30 is configured to selectively receive and accept the beverage cartridge 32 within the receptacle 30 of the brewer head 16 when the brewer head 16 is in the open position shown in FIG. 2 .
  • the beverage cartridge 32 generally comprises a sealed container including an outer surface and an inner volume or chamber, although the beverage cartridge 32 can also include unsealed containers.
  • a beverage medium 78 such as coffee, tea, soup, chocolate, etc., is contained within the inner volume of the beverage cartridge 32 .
  • the lid 24 of the beverage brewer 10 may comprise an encapsulation cap 46 having a diameter sized for at least partial slide-fit insertion over the receptacle 30 to encapsulate and retain the beverage cartridge 32 therebetween.
  • the beverage cartridge 32 may thus be held in a substantially stationary position with respect to the beverage brewer 10 device while the brewer head 16 is in the closed position, although it is understood that the beverage cartridge 32 can be held in a substantially stationary position via other means, and/or can be non-stationary.
  • FIGS. 4A-4C illustrate a beverage cartridge that may be employed with the beverage brewer in an aspect of the present disclosure.
  • a beverage cartridge such as the beverage cartridge 32
  • a beverage cartridge 32 may be employed within an aspect of the present disclosure.
  • other types of containers or uncontained mediums can also be used in embodiments of the present invention, such as soft pods, sealed or unsealed packets containing a liquid medium (e.g., coffee grounds), tea bags, grounds or leaves, etc.
  • Beverage cartridge 32 may allow for easier brewing or making of beverages.
  • Beverage cartridge 32 may comprise an outer surface 48 and an inner chamber 50 .
  • Beverage medium 78 may be contained or otherwise located within the inner chamber 50 (also referred to as an inner volume herein) of the beverage cartridge 32 .
  • Other features, such as a filter, etc. may also be included in the inner chamber 50 of the beverage cartridge 32 , to filter coffee grounds, tea leaves, etc., that may be part of the beverage medium 78 not desired in a final beverage or liquid.
  • FIG. 4A illustrates an open or exposed inner chamber 50 .
  • beverage cartridge 32 may also comprise a cover 49 .
  • Cover 49 may comprise foil or other material to seal the beverage cartridge 32 from external environments that may be deleterious to the beverage medium 78 in the inner chamber 50 .
  • beverage cartridge 32 may be sealed against air, water, or other external hazards until one or more entry points are made to access the inner chamber 50 .
  • Beverage cartridges 32 such as those that comprise a cover 49 and/or comprise one or more sealed inner chambers 50 , may use a needle or other instrument, such as inlet nozzle 44 , to direct a fluid into and/or out of the inner chamber(s) 50 of the beverage cartridge 32 .
  • Beverage cartridge 32 also comprises a height 51 , also referred to as a vertical height herein. It is understood that while the beverage cartridge 32 is a sealed container, many different types of cartridges and/or mediums can be used.
  • FIG. 4C illustrates an aspect of the present disclosure where the beverage cartridge 32 is accessed by the inlet nozzle 44 and/or the outlet conduit 400 .
  • the outlet conduit 400 is coupled to the brewer head 16 , and is selectively coupled to the beverage cartridge 32 when the brewer head 16 is in a certain position.
  • the outlet conduit 400 can comprise a point 402 that, when the lid 26 is pushed downward toward the lower support member 24 or the lid 26 is otherwise closed as shown by arrow 404 , the beverage cartridge 32 is pressed onto the point 402 , and the outlet conduit 400 now has access to the inner chamber 50 of the beverage cartridge 32 .
  • the beverage cartridge 32 may be pressed onto the point 402 upon user placement of the beverage cartridge 32 into the brewer head receptacle 30 .
  • Many different embodiments are possible as would be understood by one of skill in the art, and it is also contemplated that an outlet conduit according to the present invention can access a medium, such as a medium within a beverage cartridge, with or without a point 402
  • the lid 26 can be pushed downward toward the lower support member 24 such that the inlet nozzle 44 is placed proximate the beverage medium 78 , and in some embodiments, at least below a level of the height 51 of the beverage cartridge 32 .
  • the lid 26 is pushed downward toward the lower support member 24 and/or is closed, e.g., such that the lid 26 is locked and/or otherwise sealed against the lower support member 24 as shown in FIG. 1 .
  • the inlet nozzle 44 may be placed proximate to the beverage medium 78 to direct the fluid from the flow port 74 toward the beverage medium 78 .
  • the inlet nozzle 44 may pierce the beverage cartridge 32 , either through the cover 49 or through another portion of the outer surface 48 , which provides the flow port 74 with access to the inner chamber 50 of the beverage cartridge 32 .
  • the beverage cartridge 32 is open, e.g., does not comprise cover 49 or the beverage medium is otherwise accessible to the inlet nozzle 44 without breaking or puncturing beverage cartridge 32
  • the inlet nozzle 44 may be placed proximate to the beverage medium 78 in the beverage cartridge 32 .
  • the proximate placement of inlet nozzle 44 to the beverage medium 78 includes the inlet nozzle 44 being partially or fully immersed in the beverage medium 78 as well as being maintained at a level above and/or near a top of the beverage medium 78 , whether or not the beverage medium 78 is contained in a beverage cartridge 32 .
  • the inlet nozzle 44 pierces the beverage cartridge 32 approximately on a center line 406 of the beverage cartridge 32 , e.g., through the cover 49 , although it is understood that, in other embodiments, an inlet nozzle 44 may puncture the beverage cartridge 32 in off-center locations or other locations of the outer surface 48 of the beverage cartridge 32 .
  • the inlet nozzle 44 may be rotated as shown by arrow 408 while coupled to the inner chamber 50 .
  • the beverage cartridge may be substantially stationary with respect to the beverage brewer 10 , as motion of both the inlet nozzle 44 and the beverage cartridge 32 may result in fluid from the beverage cartridge 32 being directed somewhere other than the outlet conduit 400 .
  • it may be desirable to move both the inlet nozzle 44 and the beverage cartridge 32 e.g., simultaneously. For many applications, delivery of fluid from the beverage cartridge somewhere other than outlet conduit 400 is undesired.
  • FIG. 5 is a cross-sectional view of the brewer head taken about the line 7 - 7 in FIG. 2 in an aspect of the present disclosure.
  • FIG. 5 illustrates at least some of the internal fluid, e.g., water, steam, etc., flow paths in the beverage brewer 10 that pass through the brewer head 16 , the inlet nozzle 44 , and a plurality of flow ports 74 , and into the inner chamber 50 of a container-based beverage cartridge 32 .
  • the inlet nozzle 44 is correspondingly moved into a position to puncture or otherwise pass through an outer surface 48 of the beverage cartridge 32 and extend down into an inner beverage medium-filled chamber 50 of the beverage cartridge 32 .
  • the inlet nozzle 44 When the brewer head 16 is in the closed position, the inlet nozzle 44 may be rotated by a motor 52 or other means coupled to the inlet nozzle 44 for at least a portion of the time while fluid is being delivered to the inner volume of the sealed container or for at least a portion of the time that the beverage brewer 10 is in the closed position.
  • the same or different motor or means may also selectively vertically move or position the inlet nozzle 44 with respect to the beverage cartridge 32 and/or the beverage medium 78 .
  • the inlet nozzle 44 in accordance with an aspect of the present disclosure may comprise a blunt or rounded nose 54 that force pierces the surface 48 to permit entry of the inlet nozzle 44 into the interior of the beverage cartridge 32 .
  • the nose of the inlet nozzle 44 may be sharpened, e.g., with jagged edges, having a point on the inlet nozzle 44 , etc., to make the piercing of the outer surface 48 easier, but such a sharp or jagged edge may be less desirable since such an embodiment carries an inherently higher risk of user injury when the inlet nozzle 44 is exposed to the user as shown in FIG. 2 .
  • the brewer head 16 may further include a gasket 56 having a concentric aperture with an inner diameter sized to snugly slide-fit around the exterior surface diameter of the inlet nozzle 44 .
  • the gasket 56 may be made from any sealing material, e.g., rubber, silicone, other food-safe materials, etc.
  • FIG. 5 shows the gasket 56 with a generally larger mushroom-shaped head 58 forming a ledge or step 60 that has a relatively smaller diameter neck 62 including an outer diameter sized for snug slide-fit reception into a corresponding aperture 64 in the brewer head 16 permitting extension of the inlet nozzle 44 into the beverage cartridge 32 .
  • the gasket 56 pressure seals the inlet nozzle 44 relative to the interior of the brewer head 16 and related hot water conduit system.
  • Other shaped gaskets are possible within the scope of the present disclosure.
  • a fluid conduit 66 terminates at an upper end 68 of the inlet nozzle 44 and is generally aligned with an inlet channel 70 bored into the exterior diameter of the inlet nozzle 44 .
  • the inlet channel is coupled to, e.g., in fluid communication with, a central shaft 72 that channels fluid water from the upper end 68 toward the nose 54 and out through one or more flow ports 74 .
  • O-rings 76 , 76 ′ may be positioned on each side of the inlet channel 70 to assist in minimizing leakage from pressurized fluid leaving the fluid conduit 66 for flow into the inlet channel 70 .
  • the inlet channel 70 may be a reduced diameter bore that remains coupled with the fluid conduit 66 during the preparation cycle, and may remain coupled to the fluid conduit 66 while the inlet nozzle 44 spins or rotates within the beverage cartridge 32 .
  • any fluid delivered to the beverage cartridge 32 through the inlet nozzle 44 while the inlet nozzle 44 is spinning or rotating may cause the beverage medium 78 to move as described herein.
  • a motor 52 couples to the upper end 68 and rotates or spins the inlet nozzle 44 during a brew cycle to rotate or spin the one or more flow ports 74 within the beverage cartridge 32 to more thoroughly mix the fluid delivered through inlet nozzle 44 with the beverage medium 78 .
  • a secondary fluid comprising a mixture of the fluid delivered through the inlet nozzle 44 and a portion of the beverage medium 78 , is thus created during the preparation cycle.
  • the secondary fluid may be, for example, coffee, tea, etc., where the secondary fluid does not include, or includes only limited, solids from the beverage medium 78 (e.g., coffee grounds, tea leaves, etc.). In other words, some of the beverage medium 78 may remain in the beverage cartridge 32 after mixture with the fluid delivered through the inlet nozzle 44 , whether or not the inlet nozzle 44 is rotated or otherwise moved while coupled to the inner chamber of the beverage cartridge 32 .
  • This secondary fluid may be referred to as a “fluidized mixture” herein.
  • the embodiment of the present disclosure shown in FIG. 5 illustrates four flow ports 74 , but the inlet nozzle 44 may have as few as one flow port 74 or more than four flow ports 74 without departing from the scope of the present disclosure.
  • the ports 74 may be structured or otherwise designed to inject fluid (e.g., hot water) into the beverage cartridge 32 in a variety of different ways, including an upward stream or spray and/or a downward stream or spray. Rotational movement of the inlet nozzle 44 and the injection stream or spray of hot water from the nozzle 44 may create a fluidized mixture of hot water and coffee within the interior of the beverage cartridge 32 .
  • fluid e.g., hot water
  • an aspect of the beverage brewer of the present disclosure described herein helps minimize channeling and/or overexposure of beverage medium (e.g., coffee grounds) during the preparation cycle. At least with respect to coffee, this may substantially reduce unwanted flavors and/or tastes, such as the bitter taste often associated with single-serve coffee brewers. Further, rotation of the inlet nozzle 44 within the beverage medium 78 in an aspect of the present disclosure may also produce a noticeable layer of coffee crema after the brewed coffee dispenses from the brewer head 16 into the receptacle (e.g., mug, cup, etc.) proximate the platen 14 .
  • the receptacle e.g., mug, cup, etc.
  • FIG. 6 is a top view of the brewer head, illustrating a motor for rotating the inlet nozzle in accordance with an aspect of the present disclosure.
  • the top view of the brewer head 16 illustrates a top mounted motor 52 that may be used to rotate the inlet nozzle 44 (which is located opposite the view shown in FIG. 6 ) 360 degrees at a constant speed (typically measured in revolutions per minute, or RPMs) or at variable speeds (e.g., higher RPMs when the brew cycle first initiates and relatively slower RPMs closer to the end of the brew cycle, or vice versa).
  • the motor 52 may only partially rotate or pivot the inlet nozzle 44 (e.g., 300 degrees), then stop and reverse rotation (e.g., an opposite 300 degrees). This same or similar partial rotational feature may also be accomplished through use of a solenoid (not shown), as opposed to the motor 52 .
  • FIG. 6 also illustrates the extension spring 45 coupled within the interior of the lid 26 , which urges the lid 26 to pivot from the closed position shown in FIG. 1 to the open position shown in FIG. 2 when the jaw clip 36 is released.
  • the inlet nozzle 44 may rotate at variable speeds within a brew cycle, or may rotate at a constant speed for part of a brew cycle and for another portion of the brew cycle the inlet nozzle 44 may rotate at variable speeds or in a different direction.
  • the inlet nozzle 44 may do more than rotate about its own central axis; the inlet nozzle 44 may oscillate, nutate, rotate about a non-central axis such as an axis remote from the inlet nozzle 44 itself, or otherwise move within the brewer head 16 (including combinations of the movements mentioned above), whether or not the inlet nozzle 44 is inserted into the beverage cartridge 32 , at least in part to agitate, move, or otherwise assist in the infusion of the fluids from the inlet nozzle 44 with the beverage medium 78 .
  • the inlet nozzle 44 may be moved, rotated, nutated, oscillated, vibrated, or subjected to any combination of various motions based on the brew cycle duration, type of beverage cartridge 32 , water temperature, or other factors as desired to create a desired mixture of the beverage medium 78 with one or more fluids delivered through the inlet nozzle 44 .
  • a “rotation” may only be a partial rotation, rotation or motion in a different direction, or movement about one or more different axes of the inlet nozzle 44 or about an axis of another device (e.g., the motor 52 ) of the beverage system 10 .
  • the present disclosure also envisions various methods for moving the inlet nozzle 44 .
  • the inlet nozzle 44 may be attached to a motor 52 , and thus the inlet nozzle 44 is rotated as the motor 52 is energized.
  • the inlet nozzle 44 may be stationary and attached to another device that is part of the beverage system that moves.
  • the inlet nozzle 44 may move with respect to the beverage medium 78 , the inner chamber 50 , and/or the beverage cartridge 32 .
  • the beverage cartridge 32 is substantially stationary relative to the beverage brewer 10 .
  • FIG. 7 is a cross-sectional view of an inlet nozzle in an aspect of the present disclosure.
  • FIG. 7 illustrates a pressurized fluid flow 84 , e.g., hot water, steam, or other fluids as provided by a pump or other pressure source internal or external to beverage brewer 10 , flowing through the interior of the inlet nozzle 44 toward the nose 54 .
  • the pressurized hot water flow 84 contacts an angled or concave interior portion of the nose 54 as shown and is ejected out therefrom as the stream or spray 80 through one or more of the flow ports 74 ′.
  • the interior of the nose 54 can be shaped as desired to obtain the desired direction and intensity of directional outflow or spray 80 .
  • the inlet nozzle 44 may rotate about its axis, or otherwise move, such that the stream or spray 80 fluidizes and rotates the beverage medium 78 (e.g., ground coffee) in the beverage cartridge 32 .
  • FIG. 8 is another cross-sectional view of an inlet nozzle in accordance with another aspect of the present disclosure.
  • FIG. 8 illustrates an embodiment wherein the shaft of the inlet nozzle 44 is stationary and includes a spinning or rotating platform 86 designed to disperse the incoming flow 84 into the aforementioned stream or spray 80 .
  • the platform 86 may include a shaft 88 coupled to the motor 52 and driven at a constant or variable rate (RPM) to attain substantial rotational fluidized mixture of the hot water and beverage medium 78 in the beverage cartridge 32 .
  • the platform may be coupled to the nose 54 if desired.
  • the platform 86 may also have serrations or other surface features to disperse the incoming flow 84 as desired.
  • FIG. 9 is another cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • a modified platform 86 ′ may include one or more straight or angled fans or blades 90 attached or otherwise extending therefrom and configured to be hydraulically driven by the pressurized fluid flow 84 travelling through the interior of the inlet nozzle 44 .
  • the fluid flow 84 contacts the blades 90 and causes the modified platform 86 ′ to spin or rotate about its shaft 88 ′ in a comparable manner as if driven by the motor 52 in response to the fluid flow 84 contacting the blades 90 .
  • This embodiment may be employed as a mechanism for saving energy and/or cost related to the installation, use and power requirements of the motor 52 .
  • FIG. 10 is a cross-sectional view of an inlet nozzle in accordance with another aspect of the present disclosure.
  • FIG. 10 illustrates an aspect of the present disclosure wherein four flow ports 74 are positioned generally horizontal and perpendicular to the vertical length of the inlet nozzle 44 and generally opposite one another.
  • the embodiment of the present disclosure illustrated in FIG. 10 provides for a stream or spray 80 exiting the inlet nozzle 44 that is generally tangential to the inlet nozzle 44 . More than or less than four flow ports 74 can be used.
  • FIG. 11 is another cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 11 illustrates an alternative embodiment wherein four flow ports 74 ′′′ channel the fluid flow 84 out from the inlet nozzle 44 at an acute angle.
  • the discharge angle from the inlet nozzle may vary between the generally tangential flow (e.g., 90 degree turn) shown in FIG. 9 and near parallel flow (e.g., on the order of 5 or 10 degrees) as shown in FIG. 11 (not to scale).
  • the discharge angle of the flow ports could, of course, be the reverse of the acute angles shown in FIG. 11 , or at any desired angle with respect to the inlet nozzle 44 .
  • the inlet nozzle 44 produces a downwardly projecting stream or spray of incoming fluid flow 84 into the beverage cartridge 32 . Rotation or other movement of the inlet nozzle 44 then changes location that the discharge from the inlet nozzle 44 contacts the inner chamber 50 of the beverage cartridge 32 , which may aid in the fluidization of the beverage medium 78 in the inner chamber.
  • FIGS. 12 and 13 are cross-sectional views of inlet nozzles in accordance with various aspects of the present disclosure.
  • FIG. 12 illustrates one embodiment of the present disclosure wherein a plurality of flow ports 74 ′′′′ are oriented to direct the stream or spray 80 in an upward manner at angles larger than 90 degrees relative to the incoming flow 84 , and upwards of 170 or 175 degrees relative to the incoming fluid flow 84 .
  • Other angles of stream or spray 80 are possible within the scope of the present disclosure.
  • the inlet nozzle 44 could include a mixture of the flow ports 74 - 74 ′′′′.
  • FIG. 13 illustrates an inlet nozzle 44 comprising horizontal flow ports 74 that produce tangential outward flow of the stream or spray 80 , the downwardly facing or acute flow ports 74 ′′′ that direct the stream or spray 80 in a downward or acute manner relative to the incoming fluid flow 84 , and upwardly facing or obtuse flow ports 74 ′′′′ that direct the stream or spray 80 in an upward or obtuse manner relative to the incoming fluid flow 84 .
  • each of the flow ports 74 - 74 ′′′′ can be mixed and matched as desired along the length of the inlet nozzle 44 or the nose 54 to attain the desired outward flow of fluid to adequately mix and fluidize the beverage medium 78 within the beverage cartridge 32 during the preparation cycle.
  • the pressure delivered to the flow ports 74 - 74 ′′′′ can also be constant or variable during the course of the preparation cycle.
  • the beverage brewer 10 may initiate incoming fluid flow 84 through the inlet nozzle 44 prior to rotation or movement of the inlet nozzle 44 to prevent clogging any of the flow ports 74 - 74 ′′′′ at the start of the preparation cycle.
  • the flow ports 74 - 74 ′′′′ may be of a shape and size such that they may collect beverage medium 78 as the inlet nozzle 44 spins, similar to a scoop or receptacle.
  • the collected beverage medium 78 may occlude the flow ports 74 - 74 ′′′′, thereby substantially occluding or otherwise preventing fluid from adequately exiting the inlet nozzle 44 .
  • Initiating fluid flow 84 may allow the pressurized fluid 84 to establish an exit stream that otherwise prevents beverage medium 78 from entering the flow ports 74 - 74 ′′′′, to substantially reduce or eliminate the potential for the beverage medium 78 to block any one of the flow ports 74 - 74 ′′′′.
  • the beverage brewer 10 may stop rotation of the inlet nozzle 44 before stopping the flow of fluid flow 84 water through any of the flow ports 74 - 74 ′′′′ to flush any beverage medium 78 away from the flow ports 74 - 74 ′′′′ at the end of the preparation cycle.
  • the delay after fluid flow exiting the inlet nozzle 44 and the before the beginning of inlet nozzle 44 movement can be a non-zero time of less than two seconds. In another embodiment this time is 0.1 to 1.0 second, and in another embodiment this time is 0.5 second. Similarly, in some embodiments, the delay between cessation of inlet nozzle 44 movement and the cessation of fluid flow can be a non-zero time of less than two seconds; 0.1 to 1.0 second; and/or 0.5 second. Under certain circumstances, this goal can be achieved by beginning fluid flow and inlet nozzle 44 movement simultaneously.
  • FIG. 14 is an alternative cross-sectional view of the inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 14 illustrates an embodiment wherein the flow ports are elongated and form one or more exit channels 92 .
  • the exit channels 92 may be particularly configured to attain a wider or open flow of the stream or spray 80 as shown in FIG. 14 .
  • the elongated channel 92 may track the vertical height 51 (shown in FIG. 4B ) of the beverage cartridge 32 by as little as 50% of the vertical height 51 and by as much as 95% of the vertical height 51 , although embodiments of less than 50% and above 95% are contemplated.
  • the elongated channels 92 may be centered within the inner chamber 50 , but the channels 92 may also be at a staggered height relative to the beverage cartridge 32 sidewalls, or staggered relative to each other if more than one channel 92 is configured in the inlet nozzle 44 .
  • the elongated channel 92 may be able to better disperse fluid flow 84 , e.g., laminar or turbulent hot water, into the inner chamber 50 such as, e.g., when the inlet nozzle 44 rotates, spins, or otherwise moves within the beverage cartridge 32 .
  • FIG. 15 is another cross-sectional view of the inlet nozzle in accordance with an aspect of the present disclosure.
  • the flow port of the inlet nozzle 44 may be in the form of a downwardly extending spiral channel 94 that generally tracks the outer periphery of the inlet nozzle 44 .
  • the number and orientation of the flow ports 74 - 74 ′′′′, the elongated channels 92 and the spiral channel 94 may be mixed and matched as desired in a given beverage brewer 10 to obtain the desired stream or spray 80 exiting the inlet nozzle 44 .
  • the flow ports 74 - 74 ′′′′ or the channels 92 , 94 could be staggered, positioned opposite one another, or positioned at various angles (e.g., every 30, 60 or 90 degrees) along a given inlet nozzle 44 .
  • FIG. 16 is a cross-sectional view illustrating an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 16 illustrates an embodiment of the inlet nozzle 44 , including at least one, and in the embodiment illustrated in FIG. 16 , a plurality of serrations 178 disposed or otherwise formed along the outer periphery of the inlet nozzle 44 for agitating the beverage medium 78 in the cartridge 32 .
  • the serrations 178 preferably act as paddles that stir or otherwise move the beverage medium 78 and heated water in the beverage cartridge 32 during the preparation cycle. Such agitation with the serrations 178 may enhance fluidized mixing of the beverage medium 78 with the incoming fluid flow 84 , which may provide a more homogeneous wetting and/or heating of the beverage medium 78 and more consistent flavor extraction.
  • the serrations 178 may be any shape known in the art (e.g., rectangular, triangular, hemispherical, blade-shaped, etc.). Moreover, the serrations 178 may extend outwardly from the periphery of the inlet nozzle 44 or may be cut into the periphery thereof. The periphery of the inlet nozzle 44 may also be smooth, or may comprise some smooth portions and some serrations 178 as desired to produce a desired flow of incoming fluid flow 84 with the beverage medium 78 and/or a desired agitation or extraction of flavors from beverage medium 78 .
  • FIG. 17 illustrates a cross-sectional view of the brewer head in an aspect of the present disclosure.
  • FIG. 17 illustrates another embodiment where the inlet nozzle 44 vertically oscillates instead of, or in addition to, spinning and/or rotating.
  • the beverage brewer 10 may comprise an inlet nozzle solenoid 174 that causes the inlet nozzle 44 to vertically oscillate as generally illustrated in FIG. 17 .
  • the inlet nozzle 44 slidably or otherwise couples to the lid 26 and is generally spring biased in an upper position.
  • the solenoid 174 may extend an oscillation shaft 176 down into contact with the inlet nozzle 44 , thereby forcing the inlet nozzle 44 downwardly against the return force of the spring and into an extended position.
  • the solenoid 174 then retracts the oscillation shaft 176 , and the spring-bias returns the inlet nozzle 44 to the upper position.
  • the beverage brewer 10 may pulse the solenoid 174 , thereby causing the inlet nozzle 44 to move up and down at a predetermined or desired rate.
  • the inlet nozzle 44 may move up and down at a rate of 50-70 Hertz, such as a rate of 60 Hertz, as 60 Hertz is the frequency used for power delivery in the United States, thereby simplifying the coupling of the solenoid 174 to a frequency source.
  • the inlet nozzle 44 may vertically oscillate at any rate within the scope of the present disclosure, and the vertical oscillation rate may change during the course of a brew cycle.
  • the beverage brewer 10 may alternately use a cam or other means to vertically oscillate the inlet nozzle 44 in accordance with the embodiments described herein.
  • the inlet nozzle 44 may also simultaneously vertically oscillate and rotate, as described above, at least in part to assist in the agitation or movement of beverage medium 78 . Indeed, many different combinations of inlet nozzle 44 movement as described herein are possible.
  • FIG. 18 illustrates a block diagram of a beverage brewer in accordance with an aspect of the present disclosure.
  • Beverage brewer 10 may be coupled to a fluid source 500 .
  • the fluid source 500 may be a reservoir that is included within and/or attached to a beverage brewer 10 , but such a fluid source may also be the water supply for a home or building, a filtered water supply, a carbon dioxide (CO 2 ) line, or other fluid source as desired. Further, more than one fluid source 500 may be coupled to the beverage brewer 10 .
  • a pump 502 is coupled to the fluid source 500 .
  • the pump may provide pressure to the fluid 504 within the beverage brewer 10 , such that the pump 500 delivers the fluid 504 , e.g., water, milk, CO 2 , etc., at a desired, known, and/or predetermined pressure to the remainder of the beverage brewer 10 .
  • the pump 502 is coupled to a heater 506 , and delivers fluid 504 to heater 506 for those fluids 504 that may need to be heated prior to delivery to the beverage cartridge 32 .
  • Heater 506 heats (or optionally cools) the fluid 504 as desired.
  • Heater 506 when employed by the beverage brewer 10 , delivers the heated or otherwise processed fluid 504 to the inlet nozzle 44 .
  • the inlet nozzle 44 When the brewer head 16 is in the proper position (i.e., the closed position shown in FIG. 1 ), at least a portion of the inlet nozzle 44 is coupled to the inner chamber 50 of the beverage cartridge 44 . Fluid 504 that is delivered to the inlet nozzle 44 may then be delivered to the inner chamber of the beverage cartridge 32 .
  • motor 52 and/or other means within beverage brewer 10 may spin, rotate, nutate, vibrate, oscillate, or otherwise move inlet nozzle 44 , such as the movements previously described.
  • Fluid 504 delivered through the moving inlet nozzle 44 may then move the beverage medium 78 (as shown in FIGS. 5 and 16 ) to assist in the fluidizing and/or mixture of fluid 504 with beverage medium 78 .
  • the outlet conduit 400 is also coupled to the inner chamber 50 of the beverage cartridge 32 when the brewer head is in the closed position.
  • a secondary fluid 508 is delivered from the inner chamber 50 of the beverage cartridge 32 to a receptacle 510 , e.g., a coffee mug, glass, cup, or other container that may be external to the beverage medium 10 .
  • the beverage brewer 10 may also comprise receptacle 510 , e.g., a carafe, etc., however, in many applications the receptacle eventually is used externally to the beverage brewer 10 .
  • the pump 502 , motor 52 , heater 506 , brewer head 16 , and, optionally, the fluid source 500 are coupled to a processor 512 .
  • the processor 512 is further coupled, either internally or externally, to a memory 514 .
  • the processor 512 provides computer-based control of the pump 502 , motor 52 , and heater 506 , and may control other components within beverage brewer 10 .
  • the processor 512 may receive a signal or other input from a sensor coupled to the fluid source 500 , to indicate to the beverage brewer 10 that there is not enough fluid 504 available to brew a beverage. The processor 512 may then prevent the beverage brewer 10 from initiating a preparation cycle for a beverage cartridge 32 .
  • the processor 512 may sense a particular type of beverage cartridge 32 present in the brewer head 16 . Once the type of beverage cartridge 32 is known, the processor 512 may provide different inputs to the pump 502 , motor 52 , heater 506 , or other components in the beverage brewer 10 to change one or more variables in the mixture of fluid 504 and the beverage medium in the particular beverage cartridge 32 . The processor 512 may increase or decrease the speed of rotation of motor 52 , may insert the inlet nozzle 44 further into the beverage container 32 , provide pulsed or different types of current to the pump 502 and/or heater 506 , or may change some path for the fluid 504 prior to introduction into the inner chamber 50 of the beverage cartridge 32 .
  • the processor 512 may select a particular kind of inlet nozzle 44 motion or combination of motions based on the type of beverage cartridge 32 that is sensed or a specific user input. These and/or other inputs to the processor 512 may cause the processor 512 to access memory 514 to provide such instructions to various components of the beverage brewer 10 .
  • FIG. 19 is a process diagram 1900 illustrating possible steps used in an embodiment of the present disclosure.
  • Block 1902 illustrates configuring a beverage head comprising a receptacle to selectively receive a sealed container when the beverage head is in a first position (e.g., open).
  • Block 1904 illustrates configuring an inlet nozzle to pass through an outer surface of the sealed container and coupling at least a portion of the inlet nozzle to an inner volume of the sealed container when the beverage head is in a second position (e.g., closed).
  • Block 1906 illustrates maintaining the beverage container substantially stationary with respect to the single-serve beverage device while the beverage head is in the second position.
  • Block 1908 illustrates delivering at least a first fluid to a beverage medium in the inner volume of the sealed container through the inlet nozzle.
  • Block 1910 illustrates selectively rotating the inlet nozzle with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and when the at least first fluid is being delivered to the inner volume of the sealed container for at least a portion of a time that the beverage head is in the second position.
  • Block 1912 illustrates creating an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium during operation of the single-serve beverage making device.
  • Block 1914 illustrates coupling an outlet conduit to the inner volume of the sealed container of beverage medium.
  • Block 1916 illustrates directing at least a portion of the second fluid through the outlet conduit to a receptacle external to the beverage head.
  • FIG. 20 illustrates an inlet nozzle in accordance with an aspect of the present disclosure.
  • pump 502 may direct fluid 2000 , which may be one or more fluids, to one or more conduits 2002 - 2008 at specified times.
  • pump 502 may deliver fluid 2000 to conduit 2002 for a first time period, then discontinue delivery of fluid 2000 to conduit 2002 and begin delivering fluid 2000 to conduit 2004 for a second time period.
  • delivery of the fluid 2000 to different conduits may overlap; for example, delivery of the fluid 2000 to conduit 2002 may end after delivery of fluid to another conduit, e.g. the conduit 2004 , has begun.
  • fluid 2000 may be selectively delivered through channels 2010 - 2016 in inlet nozzle 44 to flow ports 74 a - 74 b .
  • Flow port 74 a is shown in phantom lines to indicate that flow port 74 a is on a surface not visible from the perspective of FIG. 20 .
  • flow ports 74 b and 74 d are shown as being approximately in the plane of perspective of FIG. 20
  • flow port 74 c is shown as facing the perspective plane of FIG. 20 .
  • flow ports 74 a - d There may be fewer or additional flow ports 74 a - d , and the flow ports 74 a - d may be at any angle, location, or orientation with respect to each other or with respect to the inlet nozzle 44 without departing from the scope of the present disclosure.
  • a sequence of fluid flows 2018 - 2024 may be created.
  • a sequence of fluid flows 2018 - 2024 may be sequential, e.g., first fluid flow 2018 , then fluid flow 2020 , then fluid flow 2022 , then fluid flow 2024 (also referred to as a “chaser” sequence), any sequence of fluid flows 2018 - 2024 including but not limited to exclusive and/or overlapping fluid flows may be employed within the scope of the present disclosure.
  • the sequencing of fluid flows 2018 - 2024 may be obtained by, for example, pump 502 comprising and/or being coupled to a manifold that has a rotating or movable plenum that selectively directs the fluid 2000 to one or more of the conduits 2002 - 2008 .
  • pump 502 comprising and/or being coupled to a manifold that has a rotating or movable plenum that selectively directs the fluid 2000 to one or more of the conduits 2002 - 2008 .
  • Other means for obtaining selective delivery of fluid 2000 to one or more of the conduits 2002 - 2008 are possible within the scope of the present disclosure.
  • the fluid flows 2018 - 2024 may create a fluid flow, agitation, or other movement of beverage medium 78 with the fluid flows 2018 - 2024 .
  • control of the sequencing of fluid flows 2018 - 2024 may be performed by processor 412 , and the speed, order, and pressure of fluid flows 2018 - 2024 may be varied or constant during a preparation cycle, or may be combined with rotational, vibrational, and/or other motion of inlet nozzle 44 to create a preferred time, concentration, and/or other mixture or agitation of fluid 2000 with beverage medium 78 .
  • the control of the order, speed, and pressure of fluid flows 2018 - 2024 may also be based on other factors, such as the type of beverage medium 78 , the presence or absence of a beverage cartridge 32 , the presence or absence of a cover 49 on the beverage cartridge 32 , manual inputs or overrides to the beverage brewer 10 , or other factors.
  • the memory 514 may be implemented in firmware and/or software implementation.
  • the firmware and/or software implementation methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • a machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein.
  • software codes may be stored in a memory (e.g., memory 514 ) and executed by a processor unit (e.g., processor 512 ).
  • Memory may be implemented within the processor unit or external to the processor unit.
  • the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored.
  • the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program.
  • Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • instructions and/or data may be provided as signals on transmission media included in a communication apparatus.
  • a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store specified program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

Abstract

The brewing system disclosed herein includes a moving inlet nozzle for use in intermixing hot water and coffee in a coffee cartridge. The inlet nozzle may include one or more flow ports that inject hot water into an inner chamber of the coffee cartridge at select angles, locations and pressures to create the desired fluidized mixture of hot water and beverage medium.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a National Stage International Application No. PCT/US2015/045146, filed on Aug. 13, 2015 and entitled “Moving Inlet Nozzles in Beverage Systems”; which claims priority to U.S. Provisional Application Ser. No. 62/060,282, filed on 6 Oct. 2014 and entitled “Coffee Brewing System and Method of Using the Same”; U.S. Provisional Application Ser. No. 62/069,772, filed on 28 Oct. 2014 and entitled “Coffee Brewing System and Method of Using the Same”; U.S. Provisional Application Ser. No. 62/136,258, filed on 20 Mar. 2015 and entitled “Coffee Brewing System and Method of Using the Same”; and U.S. Provisional Application Ser. No. 62/230,508, filed on 5 Jun. 2015, entitled “Beverage Brewing Systems and Methods for Using the Same”; U.S. Provisional Application Ser. No. 62/174,443, filed on 11 Jun. 2015, entitled “Beverage Brewing Systems and Methods for Using the Same”; U.S. patent application Ser. No. 14/810,429, filed on 27 Jul. 2015, entitled “Moving Inlet Nozzles in Beverage Systems”; U.S. patent application Ser. No. 14/810,445, filed on 27 Jul. 2015, entitled “Apparatuses and Methods for Solute Extraction”; U.S. patent application Ser. No. 14/810,448, filed on 27 Jul. 2015, entitled “Processor Control of Solute Extraction System”; U.S. Provisional Application Ser. No. 62/199,941, filed on 1 Aug. 2015, entitled “Devices and Methods for Beverage Brewer Pressure Regulation”; U.S. Provisional Application Ser. No. 62/202,709, filed on 7 Aug. 2015, entitled “Thermocline Control in Fluid Delivery Systems”; and U.S. Provisional Application Ser. No. 62/202,753, filed on 7 Aug. 2015, entitled “Inductive Method of Fluid Flow Determination”.
  • The disclosures, figures, and subject matter of the above-identified patent applications are expressly incorporated by reference herein in their entirety.
  • BACKGROUND Field
  • Aspects of the present disclosure generally relate to a liquid forming system and method of using the same. More specifically, the present disclosure relates to a coffee brewing system designed to brew a single-serve or multi-serve coffee cartridge or the like.
  • Background
  • Some types of beverage forming devices such as coffee brewers use a cartridge containing a slurry of beverage medium, e.g., ground coffee, to form a solution, e.g., beverage. In coffee brewers of this type, water (or other solvents), may be heated by the brewer and introduced into the cartridge at the brewer head. The water (solvent) infuses with the coffee grounds (slurry) in the cartridge, and extracts solutes (e.g., soluble portions of the slurry) or other materials from the coffee grounds to form the solution (e.g., beverage), which is then removed from the cartridge for consumption. Coffee brewers of this type use a stationary inlet needle that pierces the top of the cartridge and injects a relatively constant stream of hot water into the cartridge. This hot water stream may channel or tunnel through the ground coffee therein and not fully extract some grounds while over-extracting other grounds, resulting in a brewed beverage that can be bitter and can have an undesirable after taste. Coffee drinkers often try to mask this undesirable bitter taste with additives such as sugar or cream.
  • SUMMARY
  • The present disclosure describes beverage and/or brewing systems, and specifically systems for rotating, spinning or vertically oscillating an inlet nozzle within the interior of a beverage cartridge (e.g., a single-serve cartridge), wherein the moving inlet nozzle delivers a stream or spray of fluid, e.g., water, that wets and fluidizes at least a portion of the beverage medium therein to create a brewed beverage (e.g., a cup of coffee).
  • A single-serve beverage making device in accordance with an aspect of the present disclosure comprises a pump and a beverage head coupled to the pump. The beverage head comprises a receptacle, an inlet nozzle, and an outlet conduit. The receptacle is configured to selectively receive a sealed container within the receptacle of the beverage head when the beverage head is in a first position. The sealed container comprises an outer surface and an inner volume, and a beverage medium is contained within the inner volume of the sealed container.
  • The inlet nozzle is coupled to the pump and passes through the outer surface of the sealed container to couple at least a portion of the inlet nozzle to the inner volume of the sealed container when the beverage head is in a second position. The sealed container is substantially stationary with respect to the single serve beverage device while the beverage head is in the second position. While the beverage head is in the second position, the pump delivers at least a first fluid to an inner volume of the sealed container of beverage medium in the receptacle of the beverage head through the inlet nozzle such that an at least second fluid comprising the at least first fluid and a quantity of beverage medium are combined within the inner volume of the sealed container when the sealed container is present in the receptacle of the beverage head.
  • The outlet conduit is coupled to the inner volume of the sealed container of beverage medium and directs at least a portion of the second fluid out of the beverage head, such as to an external receptacle. For at least a portion of a time that the beverage head is in the second position, the inlet nozzle selectively moves with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and when the at least first fluid is being delivered to the inner volume of the sealed container.
  • In one embodiment, the inlet nozzle itself may rotate or spin above or at least partially immersed within the coffee grounds. In another embodiment, the inlet nozzle may be stationary and include a central rotating shaft that spins or rotates one or more blades or fans at one end thereof to generate the fluidized mixture of hot water and coffee.
  • The present disclosure describes devices, apparatuses and methods for infusing solutes into solution. An apparatus in accordance with an aspect of the present disclosure comprises a pump and a receptacle, coupled to the pump. The receptacle is configured to selectively receive a slurry within the receptacle. The apparatus further comprises an inlet nozzle coupled between the receptacle and the pump. The pump is configured to deliver at least a first solvent to the slurry in the receptacle through the inlet nozzle such that at least one solution, comprising at least a portion of the at least first solvent and at least one solute from the slurry, is created. The apparatus further comprises an outlet conduit coupled to the receptacle and configured to direct at least a portion of the solution external to the receptacle, in which the inlet nozzle is configured to selectively move while delivering the at least first solvent to the slurry to infuse the solution with the at least one solute.
  • A method in accordance with an aspect of the present disclosure comprises configuring a beverage head comprising a receptacle to selectively receive a sealed container when the beverage head is in a first position, configuring an inlet nozzle to pass through an outer surface of the sealed container and coupling at least a portion of the inlet nozzle to an inner volume of the sealed container when the beverage head is in a second position, delivering at least a first fluid to a beverage medium in the inner volume of the sealed container through the inlet nozzle, and selectively rotating the inlet nozzle with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and when the at least first fluid is being delivered to the inner volume of the sealed container for at least a portion of a time that the beverage head is in the second position. The method further comprises creating an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium during operation of the single-serve beverage making device, coupling an outlet conduit to the inner volume of the sealed container of beverage medium, and directing at least a portion of the second fluid through the outlet conduit to a receptacle external to the beverage head.
  • A solute extraction device in accordance with an aspect of the present disclosure comprises a receptacle configured to selectively contain a slurry, a conduit coupled to the beverage head, the conduit configured to selectively deliver at least one solvent to the slurry while the slurry is contained within the receptacle; and an outlet, coupled to the receptacle, in which the outlet is configured to deliver at least one solution comprising at least a portion of the at least one solvent and at least one solute extracted from the slurry external to the receptacle, in which the conduit, via the delivery of the at least one solvent or otherwise, is further configured to agitate the slurry while the slurry is contained in the receptacle.
  • Such apparatuses, devices, and methods may optionally include the inlet nozzle being configured to selectively rotate while delivering the at least first solvent to the slurry, the inlet nozzle being configured to selectively vibrate while delivering the at least first solvent to the slurry, and/or the inlet nozzle being configured to selectively rotate in a plurality of directions while delivering the at least first solvent to the slurry. Such apparatuses, devices, and methods may optionally include the inlet nozzle comprising an outer shaft and an inner platform, at least one flow port, in which the at least one flow port is configured to assist in the creation of the at least one solution, at least one channel configured to selectively direct the at least first solvent into contact with the slurry to control the extraction of the at least one solute, and/or at least one serration. The apparatuses, devices, and methods may also comprise a controller, coupled to the inlet nozzle, in which the controller is configured to change a motion of the inlet nozzle to affect the motion of the slurry.
  • A device in accordance with an aspect of the present disclosure comprises a beverage head and a processor. The beverage head further comprises a receptacle, an inlet nozzle, and an outlet conduit. The receptacle is configured to selectively receive a slurry within the receptacle of the beverage head when the beverage head is in a first position. The slurry comprises a quantity of beverage medium. The inlet nozzle is coupled to the receptacle and configured to deliver at least one solvent to the slurry when the beverage head is in a second position such that at least one solution comprising at least a portion of the at least one solvent and at least a portion of one solute of the slurry is created during operation of the device. The receptacle is further configured to contain the slurry and the at least one solvent for at least a first period of time to assist the at least one solvent in extracting the at least one solute. The outlet conduit is coupled to the receptacle and configured to direct at least a portion of the at least one solution to a receptacle external to the beverage head. The processor is coupled to the inlet nozzle, and controls a selective rotation of the inlet nozzle with respect to the slurry while the inlet nozzle is proximate the slurry for at least a portion of the time the at least one solvent is being delivered to the slurry.
  • The above summary has outlined, rather broadly, some features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described below. It should be appreciated by those skilled in the art that this disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings.
  • FIG. 1 illustrates a perspective view of one embodiment of a beverage brewer in accordance with an aspect of the present disclosure;
  • FIG. 2 is a perspective view of an embodiment of a beverage brewer, illustrating a lid of a brewer head in an open position in accordance with an aspect of the present disclosure;
  • FIG. 3 is an enlarged front view of the brewer head taken about circle 6 in FIG. 2, further illustrating rotation or spinning motion of an inlet nozzle;
  • FIGS. 4A-4C illustrate a beverage cartridge that may be employed with the beverage brewer in an aspect of the present disclosure;
  • FIG. 5 is a cross-sectional view of the brewer head taken about the line 7-7 in FIG. 2, in accordance with an aspect of the present disclosure;
  • FIG. 6 is a top view of the brewer head, illustrating a motor for rotating the inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 7 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 8 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 9 is across-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 10 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 11 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 12 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 13 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 14 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 15 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 16 is a cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure;
  • FIG. 17 is a cross-sectional view of a brewer head in accordance with an aspect of the present disclosure;
  • FIG. 18 illustrates a block diagram of a beverage brewer in accordance with an aspect of the present disclosure;
  • FIG. 19 illustrates a flow diagram showing possible steps used in an embodiment of the present disclosure; and
  • FIG. 20 illustrates an inlet nozzle in accordance with an aspect of the present disclosure.
  • DETAILED DESCRIPTION
  • The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. It will be apparent to those skilled in the art, however, that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts. As described herein, the use of the term “and/or” is intended to represent an “inclusive OR”, and the use of the term “or” is intended to represent an “exclusive OR”.
  • Overview of Single-Serve Beverage System
  • FIG. 1 illustrates a perspective view of one embodiment of a beverage brewer in accordance with an aspect of the present disclosure.
  • A beverage brewer 10, as shown in FIGS. 1 and 2, may be designed for use with container-based beverage cartridges, such as single-serve coffee cartridges. The beverage brewer 10 may include a generally upright housing 12 having a base or platen 14 extending out at the bottom and positioned generally below an outwardly extending brewer head (also referred to as a “beverage head” herein) 16.
  • The vertical distance between the platen 14 and the brewer head 16 (also referred to as a “brew head 16” or a “beverage head 16” herein) can adequately accommodate a coffee mug or other external receptacle for delivery of the beverage from the beverage brewer 10. In some aspects of the present disclosure, the receptacle may be capable of retaining at least 6 oz. of beverage, and possibly 10 oz. or more of beverage. The housing 12 may further comprise a rear housing 18 having a gravity-fed and/or other type of water reservoir 20 on one side and an outer shell 22 that houses or protects the internal features of the beverage brewer 10, including, for example, the conduit system between the water reservoir 20 and the brewer head 16. Such features within the housing 12 of the beverage brewer 10 may generally include a fluid conduit system, a pump, and/or a heating element, in order to deliver a fluid from the reservoir 20 (or other source) to the brewer head 16 and/or to the receptacle external to the beverage brewer 10.
  • FIG. 2 is a perspective view of a beverage brewer, illustrating a lid of a brewer head in an open position (also referred to as a first position, second position, and/or access position herein) in accordance with an aspect of the present disclosure. As shown in FIG. 2, the brewer head 16 may be a clam-shell structure including a stationary lower support member 24 and a movable upper member or lid 26 that pivots relative to the lower support member 24 about a hinge 28. The scope of the present disclosure includes embodiments where the lower support member 24 and the lid 26 may both be movable, or that the lower support member 24 may be movable relative to a stationary lid 26. Additionally, the lower support member 24 and/or the lid 26 may pivot or rotate about the common hinge 28, or separate hinges or points within the beverage brewer 10.
  • The lower support member 24 and the lid 26 are selectively opened and closed and form a brew chamber therebetween during a brew cycle (also known as a preparation cycle) for selective retention of a beverage cartridge 32 in a receptacle 30 of the brewer head 16. The beverage cartridge 32 may include any liquid medium known in the art, including, but not limited to, liquid and/or beverage medium used to form various types of coffee, espresso, tea, hot chocolate, lemonade and other fruit-based drinks, carbonated drinks such as soda, soups and other liquid foods, etc.
  • In this respect, FIG. 1 illustrates the lid 26 engaged with the lower support member 24 such that the brewer head 16 is in the closed or locked position (also referred to as a brewing position, first position, and/or second position herein). A jaw lock 176 includes an externally accessible release button 172 which may be at or near the brewer head 16 and configured for hand manipulation. To open the brewer head 16, a user presses or otherwise activates the release button 172. Activation of the release button 172 selectively disengages the jaw lock 176 when the brewer head 16 is in the closed position shown in FIG. 1. Once the release button 172 is pressed, so long as the brewer head 16 is not in a preparation cycle or other operational mode that prevents opening of the brewer head 16, the lid 26 is able to pivot away from the lower support member 24 which allows access to the receptacle 30. In the position shown in FIG. 2, a user may selectively insert or remove a beverage cartridge 32.
  • To close the brewer head 16, the user may again activate the release button 172, and/or may push on the lid 26 to move the lid 26 closer to the lower support member 24. If the beverage brewer 10 senses a beverage cartridge 32 in the receptacle 30, or upon a user initiating closure of the lid 26 and/or a preparation cycle, the jaw lock 176 may selectively lock during a brew cycle and/or preparation cycle to prevent any liquid delivered by the beverage brewer 10 from being expelled by the beverage brewer 10 external to the receptacle located proximate to the platen 14. In this respect, the contact between the lower support member 24 and the jaw lock 176 selectively holds the brewer head 16 closed as shown in FIG. 1.
  • The beverage brewer 10 also comprises an inlet nozzle 44 that generally extends downwardly out from underneath the lid 26, as shown within the brewer head 16. The inlet nozzle 44 is coupled to, e.g., in fluid communication with, a conduit system, e.g., the pump 134, for injecting at least a first fluid, such as turbulent or laminar hot water and steam, a liquid such as water and/or milk, or other gas and/or other liquid in a fluid or semi-fluid form, into the beverage cartridge 32 through the inlet nozzle 44. Although described as the inlet nozzle 44 herein, the inlet nozzle 44 may be a needle, spine, spout, spigot, jet, projection, spike, and/or other inlet means for delivering the at least first fluid to a beverage medium 78.
  • Preparation Cycle for Making Beverages
  • FIG. 3 is an enlarged front view of the brewer head taken about circle 6 in FIG. 2, further illustrating rotation or spinning motion of an inlet nozzle in an aspect of the present disclosure.
  • As mentioned above, to prepare the beverage brewer 10 for a brew cycle (also referred to a preparation cycle), the lid 26 is moved from a closed position (shown in FIG. 1) to an open position (shown in FIG. 2). When in an open or first position, the beverage cartridge 32 can be inserted into and/or removed from the receptacle 30. The receptacle 30 is configured to selectively receive and accept the beverage cartridge 32 within the receptacle 30 of the brewer head 16 when the brewer head 16 is in the open position shown in FIG. 2. The beverage cartridge 32 generally comprises a sealed container including an outer surface and an inner volume or chamber, although the beverage cartridge 32 can also include unsealed containers. A beverage medium 78, such as coffee, tea, soup, chocolate, etc., is contained within the inner volume of the beverage cartridge 32.
  • The lid 24 of the beverage brewer 10 may comprise an encapsulation cap 46 having a diameter sized for at least partial slide-fit insertion over the receptacle 30 to encapsulate and retain the beverage cartridge 32 therebetween. The beverage cartridge 32 may thus be held in a substantially stationary position with respect to the beverage brewer 10 device while the brewer head 16 is in the closed position, although it is understood that the beverage cartridge 32 can be held in a substantially stationary position via other means, and/or can be non-stationary.
  • FIGS. 4A-4C illustrate a beverage cartridge that may be employed with the beverage brewer in an aspect of the present disclosure.
  • It is understood that a beverage cartridge, such as the beverage cartridge 32, is not required for operation of systems and methods according to the present disclosure. A beverage cartridge 32 may be employed within an aspect of the present disclosure. Further, other types of containers or uncontained mediums can also be used in embodiments of the present invention, such as soft pods, sealed or unsealed packets containing a liquid medium (e.g., coffee grounds), tea bags, grounds or leaves, etc. Beverage cartridge 32 may allow for easier brewing or making of beverages. Beverage cartridge 32 may comprise an outer surface 48 and an inner chamber 50. Beverage medium 78 may be contained or otherwise located within the inner chamber 50 (also referred to as an inner volume herein) of the beverage cartridge 32. Other features, such as a filter, etc., may also be included in the inner chamber 50 of the beverage cartridge 32, to filter coffee grounds, tea leaves, etc., that may be part of the beverage medium 78 not desired in a final beverage or liquid.
  • FIG. 4A illustrates an open or exposed inner chamber 50. As shown in FIG. 4B, beverage cartridge 32 may also comprise a cover 49. Cover 49 may comprise foil or other material to seal the beverage cartridge 32 from external environments that may be deleterious to the beverage medium 78 in the inner chamber 50. As such, beverage cartridge 32 may be sealed against air, water, or other external hazards until one or more entry points are made to access the inner chamber 50. Beverage cartridges 32, such as those that comprise a cover 49 and/or comprise one or more sealed inner chambers 50, may use a needle or other instrument, such as inlet nozzle 44, to direct a fluid into and/or out of the inner chamber(s) 50 of the beverage cartridge 32. Beverage cartridge 32 also comprises a height 51, also referred to as a vertical height herein. It is understood that while the beverage cartridge 32 is a sealed container, many different types of cartridges and/or mediums can be used.
  • FIG. 4C illustrates an aspect of the present disclosure where the beverage cartridge 32 is accessed by the inlet nozzle 44 and/or the outlet conduit 400. The outlet conduit 400 is coupled to the brewer head 16, and is selectively coupled to the beverage cartridge 32 when the brewer head 16 is in a certain position. The outlet conduit 400 can comprise a point 402 that, when the lid 26 is pushed downward toward the lower support member 24 or the lid 26 is otherwise closed as shown by arrow 404, the beverage cartridge 32 is pressed onto the point 402, and the outlet conduit 400 now has access to the inner chamber 50 of the beverage cartridge 32. Alternatively, the beverage cartridge 32 may be pressed onto the point 402 upon user placement of the beverage cartridge 32 into the brewer head receptacle 30. Many different embodiments are possible as would be understood by one of skill in the art, and it is also contemplated that an outlet conduit according to the present invention can access a medium, such as a medium within a beverage cartridge, with or without a point 402.
  • The lid 26 can be pushed downward toward the lower support member 24 such that the inlet nozzle 44 is placed proximate the beverage medium 78, and in some embodiments, at least below a level of the height 51 of the beverage cartridge 32. In one such system and method according to the disclosure, the lid 26 is pushed downward toward the lower support member 24 and/or is closed, e.g., such that the lid 26 is locked and/or otherwise sealed against the lower support member 24 as shown in FIG. 1. In embodiments where the beverage medium 78 is contained in a soft pod, bag, filter, or other device where beverage cartridge 32 is not used, the inlet nozzle 44 may be placed proximate to the beverage medium 78 to direct the fluid from the flow port 74 toward the beverage medium 78. In embodiments where the beverage cartridge 32 comprises a cover 49, the inlet nozzle 44 may pierce the beverage cartridge 32, either through the cover 49 or through another portion of the outer surface 48, which provides the flow port 74 with access to the inner chamber 50 of the beverage cartridge 32. Where the beverage cartridge 32 is open, e.g., does not comprise cover 49 or the beverage medium is otherwise accessible to the inlet nozzle 44 without breaking or puncturing beverage cartridge 32, the inlet nozzle 44 may be placed proximate to the beverage medium 78 in the beverage cartridge 32. The proximate placement of inlet nozzle 44 to the beverage medium 78 includes the inlet nozzle 44 being partially or fully immersed in the beverage medium 78 as well as being maintained at a level above and/or near a top of the beverage medium 78, whether or not the beverage medium 78 is contained in a beverage cartridge 32. In an aspect of the present disclosure, the inlet nozzle 44 pierces the beverage cartridge 32 approximately on a center line 406 of the beverage cartridge 32, e.g., through the cover 49, although it is understood that, in other embodiments, an inlet nozzle 44 may puncture the beverage cartridge 32 in off-center locations or other locations of the outer surface 48 of the beverage cartridge 32. At a desired time, the inlet nozzle 44 may be rotated as shown by arrow 408 while coupled to the inner chamber 50. In such situations, the beverage cartridge may be substantially stationary with respect to the beverage brewer 10, as motion of both the inlet nozzle 44 and the beverage cartridge 32 may result in fluid from the beverage cartridge 32 being directed somewhere other than the outlet conduit 400. However, in other embodiments, it may be desirable to move both the inlet nozzle 44 and the beverage cartridge 32, e.g., simultaneously. For many applications, delivery of fluid from the beverage cartridge somewhere other than outlet conduit 400 is undesired.
  • Operation of the Beverage Brewer
  • FIG. 5 is a cross-sectional view of the brewer head taken about the line 7-7 in FIG. 2 in an aspect of the present disclosure.
  • FIG. 5 illustrates at least some of the internal fluid, e.g., water, steam, etc., flow paths in the beverage brewer 10 that pass through the brewer head 16, the inlet nozzle 44, and a plurality of flow ports 74, and into the inner chamber 50 of a container-based beverage cartridge 32. As described with respect to FIG. 4C, When the lid 26 is pivoted to the closed position shown in FIG. 1, the inlet nozzle 44 is correspondingly moved into a position to puncture or otherwise pass through an outer surface 48 of the beverage cartridge 32 and extend down into an inner beverage medium-filled chamber 50 of the beverage cartridge 32.
  • When the brewer head 16 is in the closed position, the inlet nozzle 44 may be rotated by a motor 52 or other means coupled to the inlet nozzle 44 for at least a portion of the time while fluid is being delivered to the inner volume of the sealed container or for at least a portion of the time that the beverage brewer 10 is in the closed position. The same or different motor or means may also selectively vertically move or position the inlet nozzle 44 with respect to the beverage cartridge 32 and/or the beverage medium 78.
  • The inlet nozzle 44 in accordance with an aspect of the present disclosure may comprise a blunt or rounded nose 54 that force pierces the surface 48 to permit entry of the inlet nozzle 44 into the interior of the beverage cartridge 32. The nose of the inlet nozzle 44 may be sharpened, e.g., with jagged edges, having a point on the inlet nozzle 44, etc., to make the piercing of the outer surface 48 easier, but such a sharp or jagged edge may be less desirable since such an embodiment carries an inherently higher risk of user injury when the inlet nozzle 44 is exposed to the user as shown in FIG. 2.
  • The brewer head 16 may further include a gasket 56 having a concentric aperture with an inner diameter sized to snugly slide-fit around the exterior surface diameter of the inlet nozzle 44. The gasket 56 may be made from any sealing material, e.g., rubber, silicone, other food-safe materials, etc. In an aspect of the present disclosure, FIG. 5 shows the gasket 56 with a generally larger mushroom-shaped head 58 forming a ledge or step 60 that has a relatively smaller diameter neck 62 including an outer diameter sized for snug slide-fit reception into a corresponding aperture 64 in the brewer head 16 permitting extension of the inlet nozzle 44 into the beverage cartridge 32. In this respect, the gasket 56 pressure seals the inlet nozzle 44 relative to the interior of the brewer head 16 and related hot water conduit system. Other shaped gaskets are possible within the scope of the present disclosure.
  • A fluid conduit 66 (also referred to as a hot water conduit 66 herein) terminates at an upper end 68 of the inlet nozzle 44 and is generally aligned with an inlet channel 70 bored into the exterior diameter of the inlet nozzle 44. The inlet channel is coupled to, e.g., in fluid communication with, a central shaft 72 that channels fluid water from the upper end 68 toward the nose 54 and out through one or more flow ports 74. O- rings 76, 76′ may be positioned on each side of the inlet channel 70 to assist in minimizing leakage from pressurized fluid leaving the fluid conduit 66 for flow into the inlet channel 70.
  • The inlet channel 70 may be a reduced diameter bore that remains coupled with the fluid conduit 66 during the preparation cycle, and may remain coupled to the fluid conduit 66 while the inlet nozzle 44 spins or rotates within the beverage cartridge 32. As such, any fluid delivered to the beverage cartridge 32 through the inlet nozzle 44 while the inlet nozzle 44 is spinning or rotating may cause the beverage medium 78 to move as described herein. Accordingly, in this arrangement, a motor 52 couples to the upper end 68 and rotates or spins the inlet nozzle 44 during a brew cycle to rotate or spin the one or more flow ports 74 within the beverage cartridge 32 to more thoroughly mix the fluid delivered through inlet nozzle 44 with the beverage medium 78. A secondary fluid, comprising a mixture of the fluid delivered through the inlet nozzle 44 and a portion of the beverage medium 78, is thus created during the preparation cycle. The secondary fluid may be, for example, coffee, tea, etc., where the secondary fluid does not include, or includes only limited, solids from the beverage medium 78 (e.g., coffee grounds, tea leaves, etc.). In other words, some of the beverage medium 78 may remain in the beverage cartridge 32 after mixture with the fluid delivered through the inlet nozzle 44, whether or not the inlet nozzle 44 is rotated or otherwise moved while coupled to the inner chamber of the beverage cartridge 32. This secondary fluid may be referred to as a “fluidized mixture” herein.
  • The embodiment of the present disclosure shown in FIG. 5 illustrates four flow ports 74, but the inlet nozzle 44 may have as few as one flow port 74 or more than four flow ports 74 without departing from the scope of the present disclosure. The ports 74 may be structured or otherwise designed to inject fluid (e.g., hot water) into the beverage cartridge 32 in a variety of different ways, including an upward stream or spray and/or a downward stream or spray. Rotational movement of the inlet nozzle 44 and the injection stream or spray of hot water from the nozzle 44 may create a fluidized mixture of hot water and coffee within the interior of the beverage cartridge 32. As such, an aspect of the beverage brewer of the present disclosure described herein helps minimize channeling and/or overexposure of beverage medium (e.g., coffee grounds) during the preparation cycle. At least with respect to coffee, this may substantially reduce unwanted flavors and/or tastes, such as the bitter taste often associated with single-serve coffee brewers. Further, rotation of the inlet nozzle 44 within the beverage medium 78 in an aspect of the present disclosure may also produce a noticeable layer of coffee crema after the brewed coffee dispenses from the brewer head 16 into the receptacle (e.g., mug, cup, etc.) proximate the platen 14.
  • Nozzle Rotation
  • FIG. 6 is a top view of the brewer head, illustrating a motor for rotating the inlet nozzle in accordance with an aspect of the present disclosure.
  • From the perspective of FIG. 6, the top view of the brewer head 16 illustrates a top mounted motor 52 that may be used to rotate the inlet nozzle 44 (which is located opposite the view shown in FIG. 6) 360 degrees at a constant speed (typically measured in revolutions per minute, or RPMs) or at variable speeds (e.g., higher RPMs when the brew cycle first initiates and relatively slower RPMs closer to the end of the brew cycle, or vice versa). Alternatively, the motor 52 may only partially rotate or pivot the inlet nozzle 44 (e.g., 300 degrees), then stop and reverse rotation (e.g., an opposite 300 degrees). This same or similar partial rotational feature may also be accomplished through use of a solenoid (not shown), as opposed to the motor 52.
  • The motor 52 is shown next to the entry point of the hot water conduit 66. In this embodiment, hot water flow to the brewer head 16 may be regulated by a solenoid 83. FIG. 6 also illustrates the extension spring 45 coupled within the interior of the lid 26, which urges the lid 26 to pivot from the closed position shown in FIG. 1 to the open position shown in FIG. 2 when the jaw clip 36 is released.
  • For example, and not by way of limitation, the inlet nozzle 44 may rotate at variable speeds within a brew cycle, or may rotate at a constant speed for part of a brew cycle and for another portion of the brew cycle the inlet nozzle 44 may rotate at variable speeds or in a different direction. As discussed herein, the present disclosure also envisions that the inlet nozzle 44 may do more than rotate about its own central axis; the inlet nozzle 44 may oscillate, nutate, rotate about a non-central axis such as an axis remote from the inlet nozzle 44 itself, or otherwise move within the brewer head 16 (including combinations of the movements mentioned above), whether or not the inlet nozzle 44 is inserted into the beverage cartridge 32, at least in part to agitate, move, or otherwise assist in the infusion of the fluids from the inlet nozzle 44 with the beverage medium 78. The inlet nozzle 44 may be moved, rotated, nutated, oscillated, vibrated, or subjected to any combination of various motions based on the brew cycle duration, type of beverage cartridge 32, water temperature, or other factors as desired to create a desired mixture of the beverage medium 78 with one or more fluids delivered through the inlet nozzle 44.
  • Further, a “rotation” may only be a partial rotation, rotation or motion in a different direction, or movement about one or more different axes of the inlet nozzle 44 or about an axis of another device (e.g., the motor 52) of the beverage system 10. The present disclosure also envisions various methods for moving the inlet nozzle 44. As described with respect to FIG. 8, the inlet nozzle 44 may be attached to a motor 52, and thus the inlet nozzle 44 is rotated as the motor 52 is energized. However, the inlet nozzle 44 may be stationary and attached to another device that is part of the beverage system that moves. In this particular embodiment, the inlet nozzle 44 may move with respect to the beverage medium 78, the inner chamber 50, and/or the beverage cartridge 32. In one such embodiment, the beverage cartridge 32 is substantially stationary relative to the beverage brewer 10.
  • Inlet Nozzle Configurations
  • FIG. 7 is a cross-sectional view of an inlet nozzle in an aspect of the present disclosure.
  • FIG. 7 illustrates a pressurized fluid flow 84, e.g., hot water, steam, or other fluids as provided by a pump or other pressure source internal or external to beverage brewer 10, flowing through the interior of the inlet nozzle 44 toward the nose 54. In this embodiment, the pressurized hot water flow 84 contacts an angled or concave interior portion of the nose 54 as shown and is ejected out therefrom as the stream or spray 80 through one or more of the flow ports 74′. In this respect, a person of ordinary skill in the art will readily recognize that the interior of the nose 54 can be shaped as desired to obtain the desired direction and intensity of directional outflow or spray 80. The inlet nozzle 44 may rotate about its axis, or otherwise move, such that the stream or spray 80 fluidizes and rotates the beverage medium 78 (e.g., ground coffee) in the beverage cartridge 32.
  • FIG. 8 is another cross-sectional view of an inlet nozzle in accordance with another aspect of the present disclosure.
  • FIG. 8 illustrates an embodiment wherein the shaft of the inlet nozzle 44 is stationary and includes a spinning or rotating platform 86 designed to disperse the incoming flow 84 into the aforementioned stream or spray 80. In this embodiment, the platform 86 may include a shaft 88 coupled to the motor 52 and driven at a constant or variable rate (RPM) to attain substantial rotational fluidized mixture of the hot water and beverage medium 78 in the beverage cartridge 32. The platform may be coupled to the nose 54 if desired. The platform 86 may also have serrations or other surface features to disperse the incoming flow 84 as desired.
  • FIG. 9 is another cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • As shown in FIG. 9, a modified platform 86′ may include one or more straight or angled fans or blades 90 attached or otherwise extending therefrom and configured to be hydraulically driven by the pressurized fluid flow 84 travelling through the interior of the inlet nozzle 44. In this embodiment, the fluid flow 84 contacts the blades 90 and causes the modified platform 86′ to spin or rotate about its shaft 88′ in a comparable manner as if driven by the motor 52 in response to the fluid flow 84 contacting the blades 90. This embodiment may be employed as a mechanism for saving energy and/or cost related to the installation, use and power requirements of the motor 52.
  • FIG. 10 is a cross-sectional view of an inlet nozzle in accordance with another aspect of the present disclosure.
  • FIG. 10 illustrates an aspect of the present disclosure wherein four flow ports 74 are positioned generally horizontal and perpendicular to the vertical length of the inlet nozzle 44 and generally opposite one another. The embodiment of the present disclosure illustrated in FIG. 10 provides for a stream or spray 80 exiting the inlet nozzle 44 that is generally tangential to the inlet nozzle 44. More than or less than four flow ports 74 can be used.
  • FIG. 11 is another cross-sectional view of an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 11 illustrates an alternative embodiment wherein four flow ports 74′″ channel the fluid flow 84 out from the inlet nozzle 44 at an acute angle. The discharge angle from the inlet nozzle may vary between the generally tangential flow (e.g., 90 degree turn) shown in FIG. 9 and near parallel flow (e.g., on the order of 5 or 10 degrees) as shown in FIG. 11 (not to scale). The discharge angle of the flow ports could, of course, be the reverse of the acute angles shown in FIG. 11, or at any desired angle with respect to the inlet nozzle 44. As shown in FIG. 11, the inlet nozzle 44 produces a downwardly projecting stream or spray of incoming fluid flow 84 into the beverage cartridge 32. Rotation or other movement of the inlet nozzle 44 then changes location that the discharge from the inlet nozzle 44 contacts the inner chamber 50 of the beverage cartridge 32, which may aid in the fluidization of the beverage medium 78 in the inner chamber.
  • FIGS. 12 and 13 are cross-sectional views of inlet nozzles in accordance with various aspects of the present disclosure.
  • FIG. 12 illustrates one embodiment of the present disclosure wherein a plurality of flow ports 74″″ are oriented to direct the stream or spray 80 in an upward manner at angles larger than 90 degrees relative to the incoming flow 84, and upwards of 170 or 175 degrees relative to the incoming fluid flow 84. Other angles of stream or spray 80 are possible within the scope of the present disclosure.
  • As shown in FIG. 13, the inlet nozzle 44 could include a mixture of the flow ports 74-74″″. FIG. 13 illustrates an inlet nozzle 44 comprising horizontal flow ports 74 that produce tangential outward flow of the stream or spray 80, the downwardly facing or acute flow ports 74′″ that direct the stream or spray 80 in a downward or acute manner relative to the incoming fluid flow 84, and upwardly facing or obtuse flow ports 74″″ that direct the stream or spray 80 in an upward or obtuse manner relative to the incoming fluid flow 84. Of course, each of the flow ports 74-74″″ can be mixed and matched as desired along the length of the inlet nozzle 44 or the nose 54 to attain the desired outward flow of fluid to adequately mix and fluidize the beverage medium 78 within the beverage cartridge 32 during the preparation cycle. The pressure delivered to the flow ports 74-74″″ can also be constant or variable during the course of the preparation cycle.
  • The beverage brewer 10 may initiate incoming fluid flow 84 through the inlet nozzle 44 prior to rotation or movement of the inlet nozzle 44 to prevent clogging any of the flow ports 74-74″″ at the start of the preparation cycle. In some embodiments, the flow ports 74-74″″ may be of a shape and size such that they may collect beverage medium 78 as the inlet nozzle 44 spins, similar to a scoop or receptacle. The collected beverage medium 78 may occlude the flow ports 74-74″″, thereby substantially occluding or otherwise preventing fluid from adequately exiting the inlet nozzle 44. Initiating fluid flow 84 may allow the pressurized fluid 84 to establish an exit stream that otherwise prevents beverage medium 78 from entering the flow ports 74-74″″, to substantially reduce or eliminate the potential for the beverage medium 78 to block any one of the flow ports 74-74″″. Similarly, the beverage brewer 10 may stop rotation of the inlet nozzle 44 before stopping the flow of fluid flow 84 water through any of the flow ports 74-74″″ to flush any beverage medium 78 away from the flow ports 74-74″″ at the end of the preparation cycle. In some embodiments, the delay after fluid flow exiting the inlet nozzle 44 and the before the beginning of inlet nozzle 44 movement can be a non-zero time of less than two seconds. In another embodiment this time is 0.1 to 1.0 second, and in another embodiment this time is 0.5 second. Similarly, in some embodiments, the delay between cessation of inlet nozzle 44 movement and the cessation of fluid flow can be a non-zero time of less than two seconds; 0.1 to 1.0 second; and/or 0.5 second. Under certain circumstances, this goal can be achieved by beginning fluid flow and inlet nozzle 44 movement simultaneously. Additionally, it may be advantageous to initiate fluid flow when the flow ports 74-74″″ are at a position above the beverage medium 78 (e.g., before the flow ports 74-74″″ are in contact with the beverage medium 78), and then move the inlet nozzle 44 into contact with the beverage medium 78 and/or move the inlet nozzle 44 to a position proximate to the beverage medium 78 after flow has begun.
  • FIG. 14 is an alternative cross-sectional view of the inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 14 illustrates an embodiment wherein the flow ports are elongated and form one or more exit channels 92. The exit channels 92 may be particularly configured to attain a wider or open flow of the stream or spray 80 as shown in FIG. 14. The elongated channel 92 may track the vertical height 51 (shown in FIG. 4B) of the beverage cartridge 32 by as little as 50% of the vertical height 51 and by as much as 95% of the vertical height 51, although embodiments of less than 50% and above 95% are contemplated. The elongated channels 92 may be centered within the inner chamber 50, but the channels 92 may also be at a staggered height relative to the beverage cartridge 32 sidewalls, or staggered relative to each other if more than one channel 92 is configured in the inlet nozzle 44. In an embodiment as shown in FIG. 14, the elongated channel 92 may be able to better disperse fluid flow 84, e.g., laminar or turbulent hot water, into the inner chamber 50 such as, e.g., when the inlet nozzle 44 rotates, spins, or otherwise moves within the beverage cartridge 32.
  • FIG. 15 is another cross-sectional view of the inlet nozzle in accordance with an aspect of the present disclosure.
  • As shown in FIG. 15, the flow port of the inlet nozzle 44 may be in the form of a downwardly extending spiral channel 94 that generally tracks the outer periphery of the inlet nozzle 44. The number and orientation of the flow ports 74-74″″, the elongated channels 92 and the spiral channel 94 may be mixed and matched as desired in a given beverage brewer 10 to obtain the desired stream or spray 80 exiting the inlet nozzle 44. For example, and not by way of limitation, the flow ports 74-74″″ or the channels 92, 94 could be staggered, positioned opposite one another, or positioned at various angles (e.g., every 30, 60 or 90 degrees) along a given inlet nozzle 44.
  • FIG. 16 is a cross-sectional view illustrating an inlet nozzle in accordance with an aspect of the present disclosure.
  • FIG. 16 illustrates an embodiment of the inlet nozzle 44, including at least one, and in the embodiment illustrated in FIG. 16, a plurality of serrations 178 disposed or otherwise formed along the outer periphery of the inlet nozzle 44 for agitating the beverage medium 78 in the cartridge 32. The serrations 178 preferably act as paddles that stir or otherwise move the beverage medium 78 and heated water in the beverage cartridge 32 during the preparation cycle. Such agitation with the serrations 178 may enhance fluidized mixing of the beverage medium 78 with the incoming fluid flow 84, which may provide a more homogeneous wetting and/or heating of the beverage medium 78 and more consistent flavor extraction. The serrations 178 may be any shape known in the art (e.g., rectangular, triangular, hemispherical, blade-shaped, etc.). Moreover, the serrations 178 may extend outwardly from the periphery of the inlet nozzle 44 or may be cut into the periphery thereof. The periphery of the inlet nozzle 44 may also be smooth, or may comprise some smooth portions and some serrations 178 as desired to produce a desired flow of incoming fluid flow 84 with the beverage medium 78 and/or a desired agitation or extraction of flavors from beverage medium 78.
  • Any combination of the flow ports, channels, and/or serrations shown in FIGS. 7 through 16 is possible with a moving inlet nozzle 44 within the scope of the present disclosure.
  • Additional and/or Alternate Nozzle Movement
  • FIG. 17 illustrates a cross-sectional view of the brewer head in an aspect of the present disclosure.
  • FIG. 17 illustrates another embodiment where the inlet nozzle 44 vertically oscillates instead of, or in addition to, spinning and/or rotating. The beverage brewer 10 may comprise an inlet nozzle solenoid 174 that causes the inlet nozzle 44 to vertically oscillate as generally illustrated in FIG. 17. The inlet nozzle 44 slidably or otherwise couples to the lid 26 and is generally spring biased in an upper position. The solenoid 174 may extend an oscillation shaft 176 down into contact with the inlet nozzle 44, thereby forcing the inlet nozzle 44 downwardly against the return force of the spring and into an extended position.
  • The solenoid 174 then retracts the oscillation shaft 176, and the spring-bias returns the inlet nozzle 44 to the upper position. The beverage brewer 10 may pulse the solenoid 174, thereby causing the inlet nozzle 44 to move up and down at a predetermined or desired rate. In one embodiment, the inlet nozzle 44 may move up and down at a rate of 50-70 Hertz, such as a rate of 60 Hertz, as 60 Hertz is the frequency used for power delivery in the United States, thereby simplifying the coupling of the solenoid 174 to a frequency source. The inlet nozzle 44 may vertically oscillate at any rate within the scope of the present disclosure, and the vertical oscillation rate may change during the course of a brew cycle. The beverage brewer 10 may alternately use a cam or other means to vertically oscillate the inlet nozzle 44 in accordance with the embodiments described herein. In another alternative embodiment, the inlet nozzle 44 may also simultaneously vertically oscillate and rotate, as described above, at least in part to assist in the agitation or movement of beverage medium 78. Indeed, many different combinations of inlet nozzle 44 movement as described herein are possible.
  • Processor Control of Beverage Brewer
  • FIG. 18 illustrates a block diagram of a beverage brewer in accordance with an aspect of the present disclosure.
  • Beverage brewer 10, as shown in dashed lines in FIG. 18, may be coupled to a fluid source 500. The fluid source 500 may be a reservoir that is included within and/or attached to a beverage brewer 10, but such a fluid source may also be the water supply for a home or building, a filtered water supply, a carbon dioxide (CO2) line, or other fluid source as desired. Further, more than one fluid source 500 may be coupled to the beverage brewer 10.
  • A pump 502 is coupled to the fluid source 500. The pump may provide pressure to the fluid 504 within the beverage brewer 10, such that the pump 500 delivers the fluid 504, e.g., water, milk, CO2, etc., at a desired, known, and/or predetermined pressure to the remainder of the beverage brewer 10.
  • The pump 502 is coupled to a heater 506, and delivers fluid 504 to heater 506 for those fluids 504 that may need to be heated prior to delivery to the beverage cartridge 32. Heater 506 heats (or optionally cools) the fluid 504 as desired. Heater 506, when employed by the beverage brewer 10, delivers the heated or otherwise processed fluid 504 to the inlet nozzle 44.
  • When the brewer head 16 is in the proper position (i.e., the closed position shown in FIG. 1), at least a portion of the inlet nozzle 44 is coupled to the inner chamber 50 of the beverage cartridge 44. Fluid 504 that is delivered to the inlet nozzle 44 may then be delivered to the inner chamber of the beverage cartridge 32.
  • During at least a portion of the time that the brewer head 16 is in the closed position, motor 52 and/or other means within beverage brewer 10, may spin, rotate, nutate, vibrate, oscillate, or otherwise move inlet nozzle 44, such as the movements previously described. Fluid 504 delivered through the moving inlet nozzle 44 may then move the beverage medium 78 (as shown in FIGS. 5 and 16) to assist in the fluidizing and/or mixture of fluid 504 with beverage medium 78.
  • The outlet conduit 400 is also coupled to the inner chamber 50 of the beverage cartridge 32 when the brewer head is in the closed position. As such, as the fluidization of fluid 504 and beverage medium 78 occurs, a secondary fluid 508 is delivered from the inner chamber 50 of the beverage cartridge 32 to a receptacle 510, e.g., a coffee mug, glass, cup, or other container that may be external to the beverage medium 10. The beverage brewer 10 may also comprise receptacle 510, e.g., a carafe, etc., however, in many applications the receptacle eventually is used externally to the beverage brewer 10.
  • The pump 502, motor 52, heater 506, brewer head 16, and, optionally, the fluid source 500, are coupled to a processor 512. The processor 512 is further coupled, either internally or externally, to a memory 514. The processor 512 provides computer-based control of the pump 502, motor 52, and heater 506, and may control other components within beverage brewer 10.
  • For example, and not by way of limitation, the processor 512 may receive a signal or other input from a sensor coupled to the fluid source 500, to indicate to the beverage brewer 10 that there is not enough fluid 504 available to brew a beverage. The processor 512 may then prevent the beverage brewer 10 from initiating a preparation cycle for a beverage cartridge 32.
  • Further, the processor 512 may sense a particular type of beverage cartridge 32 present in the brewer head 16. Once the type of beverage cartridge 32 is known, the processor 512 may provide different inputs to the pump 502, motor 52, heater 506, or other components in the beverage brewer 10 to change one or more variables in the mixture of fluid 504 and the beverage medium in the particular beverage cartridge 32. The processor 512 may increase or decrease the speed of rotation of motor 52, may insert the inlet nozzle 44 further into the beverage container 32, provide pulsed or different types of current to the pump 502 and/or heater 506, or may change some path for the fluid 504 prior to introduction into the inner chamber 50 of the beverage cartridge 32. Additionally, the processor 512 may select a particular kind of inlet nozzle 44 motion or combination of motions based on the type of beverage cartridge 32 that is sensed or a specific user input. These and/or other inputs to the processor 512 may cause the processor 512 to access memory 514 to provide such instructions to various components of the beverage brewer 10.
  • Process Flow
  • FIG. 19 is a process diagram 1900 illustrating possible steps used in an embodiment of the present disclosure.
  • Block 1902 illustrates configuring a beverage head comprising a receptacle to selectively receive a sealed container when the beverage head is in a first position (e.g., open). Block 1904 illustrates configuring an inlet nozzle to pass through an outer surface of the sealed container and coupling at least a portion of the inlet nozzle to an inner volume of the sealed container when the beverage head is in a second position (e.g., closed). Block 1906 illustrates maintaining the beverage container substantially stationary with respect to the single-serve beverage device while the beverage head is in the second position. Block 1908 illustrates delivering at least a first fluid to a beverage medium in the inner volume of the sealed container through the inlet nozzle. Block 1910 illustrates selectively rotating the inlet nozzle with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and when the at least first fluid is being delivered to the inner volume of the sealed container for at least a portion of a time that the beverage head is in the second position. Block 1912 illustrates creating an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium during operation of the single-serve beverage making device. Block 1914 illustrates coupling an outlet conduit to the inner volume of the sealed container of beverage medium. Block 1916 illustrates directing at least a portion of the second fluid through the outlet conduit to a receptacle external to the beverage head.
  • FIG. 20 illustrates an inlet nozzle in accordance with an aspect of the present disclosure.
  • In an aspect of the present disclosure, pump 502 may direct fluid 2000, which may be one or more fluids, to one or more conduits 2002-2008 at specified times. As an example, and not by way of limitation, pump 502 may deliver fluid 2000 to conduit 2002 for a first time period, then discontinue delivery of fluid 2000 to conduit 2002 and begin delivering fluid 2000 to conduit 2004 for a second time period. It is also understood that delivery of the fluid 2000 to different conduits may overlap; for example, delivery of the fluid 2000 to conduit 2002 may end after delivery of fluid to another conduit, e.g. the conduit 2004, has begun. By alternating or staggering the flow of fluid 2000 to different conduits 2002-2008 during different time periods, fluid 2000 may be selectively delivered through channels 2010-2016 in inlet nozzle 44 to flow ports 74 a-74 b. Flow port 74 a is shown in phantom lines to indicate that flow port 74 a is on a surface not visible from the perspective of FIG. 20. Further, flow ports 74 b and 74 d are shown as being approximately in the plane of perspective of FIG. 20, and flow port 74 c is shown as facing the perspective plane of FIG. 20. There may be fewer or additional flow ports 74 a-d, and the flow ports 74 a-d may be at any angle, location, or orientation with respect to each other or with respect to the inlet nozzle 44 without departing from the scope of the present disclosure.
  • As the fluid 2000 is selectively delivered to one or more of flow ports 74 a-74 b, a sequence of fluid flows 2018-2024 may be created. Although a sequence of fluid flows 2018-2024 may be sequential, e.g., first fluid flow 2018, then fluid flow 2020, then fluid flow 2022, then fluid flow 2024 (also referred to as a “chaser” sequence), any sequence of fluid flows 2018-2024 including but not limited to exclusive and/or overlapping fluid flows may be employed within the scope of the present disclosure.
  • The sequencing of fluid flows 2018-2024 may be obtained by, for example, pump 502 comprising and/or being coupled to a manifold that has a rotating or movable plenum that selectively directs the fluid 2000 to one or more of the conduits 2002-2008. Other means for obtaining selective delivery of fluid 2000 to one or more of the conduits 2002-2008 are possible within the scope of the present disclosure.
  • With or without rotating or otherwise moving the inlet nozzle 44, the fluid flows 2018-2024, through sequencing, upon introduction or proximity to beverage cartridge 32 and/or beverage medium 78 as shown by arrow 2026, may create a fluid flow, agitation, or other movement of beverage medium 78 with the fluid flows 2018-2024. Further, control of the sequencing of fluid flows 2018-2024 may be performed by processor 412, and the speed, order, and pressure of fluid flows 2018-2024 may be varied or constant during a preparation cycle, or may be combined with rotational, vibrational, and/or other motion of inlet nozzle 44 to create a preferred time, concentration, and/or other mixture or agitation of fluid 2000 with beverage medium 78. The control of the order, speed, and pressure of fluid flows 2018-2024 may also be based on other factors, such as the type of beverage medium 78, the presence or absence of a beverage cartridge 32, the presence or absence of a cover 49 on the beverage cartridge 32, manual inputs or overrides to the beverage brewer 10, or other factors.
  • The memory 514 may be implemented in firmware and/or software implementation. The firmware and/or software implementation methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. A machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a memory (e.g., memory 514) and executed by a processor unit (e.g., processor 512). Memory may be implemented within the processor unit or external to the processor unit. As used herein, the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored.
  • If implemented in firmware and/or software, the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • In addition to storage on computer readable medium, instructions and/or data may be provided as signals on transmission media included in a communication apparatus. For example, a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
  • Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the technology of the disclosure as defined by the appended claims. For example, relational terms, such as “above” and “below” are used with respect to brewers. Of course, if the brewer is inverted, above becomes below, and vice versa. Additionally, if oriented sideways, above and below may refer to sides of a brewer. Moreover, the scope of the present application is not intended to be limited to the particular configurations of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding configurations described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
  • Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
  • The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • The steps of a method or algorithm described in connection with the disclosure may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
  • In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store specified program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • The description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
  • Although several embodiments have been described in detail for purposes of illustration, various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the disclosure is not to be limited by the examples presented herein, but is envisioned as encompassing the scope described in the appended claims and the full range of equivalents of the appended claims.

Claims (60)

What is claimed is:
1. A single-serve beverage making device, comprising:
a pump; and
a beverage head coupled to the pump, the beverage head comprising:
a receptacle, in which the receptacle is configured to selectively receive a sealed container within the receptacle of the beverage head when the beverage head is in a first position, the sealed container comprising an outer surface and an inner volume, wherein the sealed container is configured to contain a quantity of beverage medium within the inner volume of the sealed container;
an inlet nozzle coupled to the beverage head, the inlet nozzle configured to pass through the outer surface of the sealed container to couple at least a portion of the inlet nozzle to the inner volume of the sealed container when the beverage head is in a second position, the pump configured to deliver at least a first fluid to the quantity of beverage medium in the inner volume of the sealed container in the receptacle of the beverage head through the inlet nozzle while the beverage head is in the second position, such that an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium is created during operation of the single-serve beverage making device, the receptacle configured to maintain the sealed container substantially stationary with respect to the single-serve beverage device while the beverage head is in the second position; and
an outlet conduit, coupled to the beverage head and configured to be coupled to the inner volume of the sealed container of beverage medium, in which the outlet conduit is configured to direct at least a portion of the second fluid to a receptacle external to the beverage head, wherein the inlet nozzle is configured to selectively rotate with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container and is configured to selectively rotate for at least a portion of the time the at least first fluid is being delivered to the inner volume of the sealed container.
2. The single-serve beverage making device of claim 1, in which the inlet nozzle is configured to selectively vibrate while the inlet nozzle is passed through the outer surface of the sealed container and in contact with the inner volume of the sealed container, the selective vibration of the inlet nozzle occurring for at least a portion of the time when the at least first fluid is being delivered to the inner volume of the sealed container.
3. The single-serve beverage making device of claim 1, in which the rotation of the inlet nozzle comprises a rotational motion in more than one direction of rotation.
4. The single-serve beverage making device of claim 1, in which the inlet nozzle further comprises an outer shaft coupled to the outer surface of the sealed container and an inner platform wherein the inner platform rotates with respect to the outer shaft.
5. The single-serve beverage making device of claim 1, in which the inlet nozzle further comprises at least one flow port, in which the at least one flow port is configured to assist in the creation of the at least one second fluid.
6. The single-serve beverage making device of claim 1, in which the inlet nozzle further comprises at least one channel, the at least one channel configured to direct the at least first fluid when the inlet nozzle is coupled to the inner chamber of the beverage container.
7. The single-serve beverage making device of claim 1, in which the inlet nozzle further comprises at least one serration.
8. The single-serve beverage making device of claim 1, further comprising a controller coupled to the inlet nozzle, in which the controller is configured to change a speed of the rotation of the inlet nozzle while the inlet nozzle is passed through the outer surface of the sealed container and in contact with the inner volume of the sealed container, the controller configured to change the speed of the rotation of the inlet nozzle when the at least first fluid is being delivered to the inner volume of the sealed container through the at least one flow port.
9. A single-serve beverage making device, comprising:
a pump; and
a beverage head coupled to the pump, the beverage head comprising:
a receptacle, in which the receptacle is configured to selectively receive a sealed container within the receptacle of the beverage head when the beverage head is in a first position, the sealed container comprising an outer surface and an inner volume, wherein the sealed container is configured to contain a quantity of beverage medium within the inner volume of the sealed container;
an inlet nozzle coupled to the beverage head, the inlet nozzle configured to pass through the outer surface of the sealed container to couple at least a portion of the inlet nozzle to the inner volume of the sealed container when the beverage head is in a second position, the pump configured to deliver at least a first fluid to the quantity of beverage medium in the inner volume of the sealed container in the receptacle of the beverage head through the inlet nozzle while the beverage head is in the second position, such that an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium is created during operation of the single-serve beverage making device, the receptacle configured to maintain the sealed container substantially stationary with respect to the single-serve beverage device while the beverage head is in the second position; and
an outlet conduit, coupled to the beverage head and configured to be coupled to the inner volume of the sealed container of beverage medium, in which the outlet conduit is configured to direct at least a portion of the second fluid to a receptacle external to the beverage head, wherein the inlet nozzle is configured to selectively move with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container and the inlet nozzle is configured to selectively move for at least a portion of the time the at least first fluid is being delivered to the inner volume of the sealed container.
10. The single-serve beverage making device of claim 9, in which the inlet nozzle is configured to selectively move while the inlet nozzle is passed through the outer surface of the sealed container and in contact with the inner volume of the sealed container, the selective motion of the inlet nozzle comprising at least one of a selective rotational motion, a selective vibrational motion, and a selective nutational motion, the selective motion of the inlet nozzle occurring for at least a portion of the time when the at least first fluid is being delivered to the inner volume of the sealed container through the at least one flow port.
11. The single-serve beverage making device of claim 9, in which the selective movement of the inlet nozzle comprises a rotational motion in more than one direction of rotation.
12. The single-serve beverage making device of claim 9, in which the inlet nozzle further comprises an outer shaft coupled to the outer surface of the sealed container and an inner platform wherein the inner platform rotates with respect to the outer shaft.
13. The single-serve beverage making device of claim 9, in which the inlet nozzle further comprises at least one flow port, in which the at least one flow port is configured to assist in the creation of the at least one second fluid.
14. The single-serve beverage making device of claim 9, in which the inlet nozzle further comprises at least one channel, the at least one channel configured to direct the at least first fluid when the inlet nozzle is coupled to the inner chamber of the beverage container.
15. The single-serve beverage making device of claim 9, in which the inlet nozzle further comprises at least one serration.
16. The single-serve beverage making device of claim 9, further comprising a controller, coupled to the inlet nozzle, in which the controller is configured to change the selective motion of the inlet nozzle while the inlet nozzle is passed through the outer surface of the sealed container and in contact with the inner volume of the sealed container, the controller configured to change the selective motion of the inlet nozzle for at least a portion of the time when the at least first fluid is being delivered to the inner volume of the sealed container through the at least one flow port.
17. A single-serve beverage making device, comprising:
a pump; and
a beverage head coupled to the pump, the beverage head comprising:
a receptacle, in which the receptacle is configured to selectively receive a sealed container within the receptacle of the beverage head when the beverage head is in a first position, the sealed container comprising an outer surface and an inner volume, wherein the sealed container is configured to contain a quantity of beverage medium within the inner volume of the sealed container;
an inlet nozzle coupled to the beverage head, the inlet nozzle configured to pass through the outer surface of the sealed container to couple at least a portion of the inlet nozzle to the inner volume of the sealed container when the beverage head is in a second position, the pump configured to deliver at least a first fluid to the quantity of beverage medium in the inner volume of the sealed container in the receptacle of the beverage head through the inlet nozzle while the beverage head is in the second position, such that an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium is created during operation of the single-serve beverage making device, the receptacle configured to maintain the sealed container substantially stationary with respect to the single-serve beverage device while the beverage head is in the second position; and
an outlet conduit, coupled to the beverage head and configured to be coupled to the inner volume of the sealed container of beverage medium, in which the outlet conduit is configured to direct at least a portion of the second fluid to a receptacle external to the beverage head, wherein the pump is configured to selectively provide the at least first fluid to the at least one flow port such that the at least one flow port is selectively activated while in contact with the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and for at least a portion of the time when the at least first fluid is being delivered to the inner volume of the sealed container for at least a portion of a time that the beverage head is in the second position.
18. The single-serve beverage making device of claim 17, in which the pump is variably energized to pulse the at least first fluid through the at least one flow port.
19. The single-serve beverage making device of claim 17, in which the inlet nozzle is configured to selectively move while the inlet nozzle is passed through the outer surface of the sealed container and in contact with the inner volume of the sealed container, the selective motion of the inlet nozzle comprising at least one of a selective rotational motion, a selective vibrational motion, and a selective nutational motion, the selective motion of the inlet nozzle configured to occur when the at least first fluid is being delivered to the inner volume of the sealed container through the at least one flow port.
20. The single-serve beverage making device of claim 17, further comprising a controller, coupled to the inlet nozzle, the controller configured to change the selective motion of the inlet nozzle while the inlet nozzle is passed through the outer surface of the sealed container and in contact with the inner volume of the sealed container, the controller changing the selective motion of the inlet nozzle when the at least first fluid is being delivered to the inner volume of the sealed container through the at least one flow port.
21. An apparatus, comprising:
a pump; and
a receptacle, coupled to the pump and configured to selectively receive a slurry within the receptacle;
an inlet nozzle coupled between the receptacle and the pump, the pump configured to deliver at least a first solvent to the slurry in the receptacle through the inlet nozzle, such that at least one solution, comprising at least a portion of the at least first solvent and at least one solute from the slurry, is created; and
an outlet conduit coupled to the receptacle and configured to direct at least a portion of the solution external to the receptacle, in which the inlet nozzle is configured to selectively move while delivering the at least first solvent to the slurry to infuse the solution with the at least one solute.
22. The apparatus of claim 21, in which the inlet nozzle is configured to selectively rotate while delivering the at least first solvent to the slurry.
23. The apparatus of claim 21, in which the inlet nozzle is configured to selectively vibrate while delivering the at least first solvent to the slurry.
24. The apparatus of claim 21, in which the inlet nozzle is configured to selectively rotate in a plurality of directions while delivering the at least first solvent to the slurry.
25. The apparatus of claim 21, in which the inlet nozzle further comprises an outer shaft and an inner platform.
26. The apparatus of claim 21, in which the inlet nozzle further comprises at least one flow port, in which the at least one flow port is configured to assist in the creation of the at least one solution.
27. The apparatus of claim 21, in which the inlet nozzle further comprises at least one channel configured to selectively direct the at least first solvent into contact with the slurry to control the extraction of the at least one solute.
28. The apparatus of claim 21, in which the inlet nozzle further comprises at least one serration.
29. The apparatus of claim 21, further comprising a controller, coupled to the inlet nozzle, in which the controller is configured to change a motion of the inlet nozzle to affect the motion of the slurry.
30. A method for making a solution, comprising:
configuring a beverage head comprising a receptacle to selectively receive a sealed container when the beverage head is in a first position;
configuring an inlet nozzle to pass through an outer surface of the sealed container and coupling at least a portion of the inlet nozzle to an inner volume of the sealed container when the beverage head is in a second position;
delivering at least a first fluid to a beverage medium in the inner volume of the sealed container through the inlet nozzle;
selectively rotating the inlet nozzle with respect to the beverage medium while the inlet nozzle is passed through the outer surface of the sealed container and coupled to the inner volume of the sealed container, and when the at least first fluid is being delivered to the inner volume of the sealed container for at least a portion of a time that the beverage head is in the second position;
creating an at least second fluid comprising at least a portion of the at least first fluid and at least a portion of the quantity of beverage medium during operation of the single-serve beverage making device;
coupling an outlet conduit to the inner volume of the sealed container of beverage medium; and
directing at least a portion of the second fluid through the outlet conduit to a receptacle external to the beverage head.
31. The method of claim 30, further comprising configuring the inlet nozzle to selectively move while the inlet nozzle is passed through the outer surface of the sealed container and in contact with the inner volume of the sealed container, the selective motion of the inlet nozzle comprising at least one of a selective vibrational motion and a selective nutational motion, the selective motion of the inlet nozzle occurring for at least a portion of the time when the at least first fluid is being delivered to the inner volume of the sealed container through the at least one flow port.
32. The method of claim 30, in which the selective rotation of the inlet nozzle comprises rotation in more than one direction of rotation.
33. The method of claim 30, in which the inlet nozzle further comprises an outer shaft coupled to the outer surface of the sealed container and an inner platform wherein the inner platform rotates with respect to the outer shaft.
34. The method of claim 30, in which the inlet nozzle further comprises at least one flow port, in which the at least one flow port is configured to assist in the creation of the at least one second fluid.
35. The method of claim 30, further comprising configuring a controller to change the selective motion of the inlet nozzle while the inlet nozzle is passed through the outer surface of the sealed container and in contact with the inner volume of the sealed container for at least a portion of the time when the at least first fluid is being delivered to the inner volume of the sealed container.
36. A solute extraction device, comprising:
a receptacle configured to selectively contain a slurry;
a conduit coupled to the beverage head, the conduit configured to selectively deliver at least one solvent to the slurry while the slurry is contained within the receptacle; and
an outlet, coupled to the receptacle, in which the outlet is configured to deliver at least one solution comprising at least a portion of the at least one solvent and at least one solute extracted from the slurry external to the receptacle, in which the conduit, via the delivery of the at least one solvent or otherwise, is further configured to agitate the slurry while the slurry is contained in the receptacle.
37. The solute extraction device of claim 36, the conduit further comprising a nozzle, in which the conduit agitates the slurry at least in part by selectively moving the nozzle.
38. The solute extraction device of claim 37, in which the selective motion of the nozzle comprising at least one of a selective rotational motion, a selective vibrational motion, and a selective nutational motion, the selective motion of the inlet nozzle configured to occur when the at least one solvent is being delivered to the slurry.
39. The solute extraction device of claim 37, further comprising a controller, coupled to the conduit, the controller configured to change the selective motion of the inlet nozzle to control at least one of an amount, a type, and a concentration of the solute infused into the at least one solution.
40. The solute extraction device of claim 39, in which the controller is further configured to change at least one of the selective motion, a time, and a type of selective motion based at least in part on a type of the slurry.
41. A device, comprising:
a beverage head comprising:
a receptacle, in which the receptacle is configured to selectively receive a slurry within the receptacle of the beverage head when the beverage head is in a first position, the slurry comprising a quantity of beverage medium;
an inlet nozzle, coupled to the receptacle, the inlet nozzle configured to deliver at least one solvent to the slurry when the beverage head is in a second position such that at least one solution comprising at least a portion of the at least one solvent and at least a portion of one solute of the slurry is created during operation of the device, in which the receptacle is further configured to contain the slurry and the at least one solvent for at least a first period of time to assist the at least one solvent in extracting the at least one solute;
an outlet conduit, coupled to the receptacle, in which the outlet conduit is configured to direct at least a portion of the at least one solution to a receptacle external to the beverage head; and
a processor, coupled to the inlet nozzle, for controlling a selective rotation of the inlet nozzle with respect to the slurry while the inlet nozzle is proximate the slurry for at least a portion of the time the at least one solvent is being delivered to the slurry.
42. The device of claim 41, wherein the receptacle is configured to selectively receive the slurry when the slurry is contained in a beverage cartridge.
43. The device of claim 42, wherein the receptacle is configured to be in contact with the beverage cartridge.
44. The device of claim 43, wherein the receptacle is configured to selectively receive the slurry when the slurry is contained in a sealed beverage cartridge.
45. The device of claim 44, wherein the receptacle is configured to selectively receive the slurry when the slurry is contained in a sealed beverage cartridge comprising a filter.
46. The device of claim 45, wherein the outlet nozzle is configured to contact an inner volume of the sealed beverage cartridge when the beverage head is in the second position.
47. The device of claim 46, wherein the inlet nozzle is configured to contact the inner volume of the sealed beverage cartridge when the beverage head is in the second position.
48. The device of claim 47, wherein the beverage head is configured to hold the sealed beverage cartridge substantially stationary with respect to the device for at least a portion of the time that the at least first solvent is delivered.
49. The device of claim 48, wherein the processor is further configured to move the inlet nozzle to agitate the slurry while coupled to the inner volume of the sealed beverage cartridge.
50. The device of claim 49, wherein the processor is configured to move the inlet nozzle to agitate the slurry by motion of the inlet nozzle while the inlet nozzle is coupled to the inner volume of the sealed beverage cartridge.
51. The device of claim 50, wherein the inlet nozzle further comprises a plurality of flow ports.
52. The device of claim 51, wherein the plurality of flow ports are staggered on a length of the inlet nozzle to assist in agitation of the slurry.
53. The device of claim 52, wherein the processor is further configured to control a speed of the rotational motion of the inlet nozzle.
54. The device of claim 53, wherein the processor is configured to control the speed of the rotational motion of the inlet nozzle such that the inlet nozzle rotationally moves only for a portion of a time the inlet nozzle is proximate the slurry.
55. The device of claim 54, wherein the receptacle is configured to selectively receive a slurry comprising ground coffee beans.
56. The device of claim 55, wherein the inlet nozzle is configured to deliver at least one solvent comprising water to the slurry.
57. The device of claim 56, wherein the receptacle is configured to selectively receive a slurry comprising ground coffee beans contained within the sealed container.
58. The device of claim 57, wherein the beverage head is configured to separate at least a portion of the ground coffee beans from the at least one solution.
59. The device of claim 58, wherein the inlet nozzle is configured to deliver at least one solvent comprising heated water to the slurry.
60. The device of claim 59, wherein the at least one solution comprises coffee.
US15/516,893 2014-02-14 2015-08-13 Moving inlet nozzles in beverage systems Abandoned US20170295989A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/516,893 US20170295989A1 (en) 2014-02-14 2015-08-13 Moving inlet nozzles in beverage systems

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US201461940290P 2014-02-14 2014-02-14
US201461977069P 2014-04-08 2014-04-08
US201462060282P 2014-10-06 2014-10-06
US201462069772P 2014-10-28 2014-10-28
PCT/US2015/015971 WO2015123612A1 (en) 2014-02-14 2015-02-13 Beverage brewer and related methods for brewing beverages
US201562136258P 2015-03-20 2015-03-20
PCT/US2015/025013 WO2015157475A1 (en) 2014-04-08 2015-04-08 Beverage brewing systems and methods for using the same
US201562230508P 2015-06-05 2015-06-05
US201562174443P 2015-06-11 2015-06-11
US14/810,429 US10045654B2 (en) 2014-02-14 2015-07-27 Moving inlet nozzles in beverage systems
US201562199941P 2015-07-31 2015-07-31
US201562202709P 2015-08-07 2015-08-07
US201562202753P 2015-08-07 2015-08-07
US15/516,893 US20170295989A1 (en) 2014-02-14 2015-08-13 Moving inlet nozzles in beverage systems
PCT/US2015/045146 WO2016057116A1 (en) 2014-10-06 2015-08-13 Moving inlet nozzles in beverage systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/810,429 Continuation US10045654B2 (en) 2014-02-14 2015-07-27 Moving inlet nozzles in beverage systems

Publications (1)

Publication Number Publication Date
US20170295989A1 true US20170295989A1 (en) 2017-10-19

Family

ID=54537511

Family Applications (6)

Application Number Title Priority Date Filing Date
US14/810,445 Abandoned US20150327718A1 (en) 2014-02-14 2015-07-27 Apparatuses and methods for solute extraction
US14/810,429 Active 2036-03-09 US10045654B2 (en) 2014-02-14 2015-07-27 Moving inlet nozzles in beverage systems
US14/810,448 Active US9307860B2 (en) 2014-02-14 2015-07-27 Processor control of solute extraction system
US15/516,893 Abandoned US20170295989A1 (en) 2014-02-14 2015-08-13 Moving inlet nozzles in beverage systems
US15/056,131 Abandoned US20160174755A1 (en) 2014-02-14 2016-02-29 Processor control of solute extraction system
US16/024,453 Active 2035-10-10 US10881241B2 (en) 2014-02-14 2018-06-29 Moving inlet nozzles in beverage systems

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/810,445 Abandoned US20150327718A1 (en) 2014-02-14 2015-07-27 Apparatuses and methods for solute extraction
US14/810,429 Active 2036-03-09 US10045654B2 (en) 2014-02-14 2015-07-27 Moving inlet nozzles in beverage systems
US14/810,448 Active US9307860B2 (en) 2014-02-14 2015-07-27 Processor control of solute extraction system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/056,131 Abandoned US20160174755A1 (en) 2014-02-14 2016-02-29 Processor control of solute extraction system
US16/024,453 Active 2035-10-10 US10881241B2 (en) 2014-02-14 2018-06-29 Moving inlet nozzles in beverage systems

Country Status (1)

Country Link
US (6) US20150327718A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039413B1 (en) * 2016-09-29 2018-08-07 Levo Oil Infusion, Llc Apparatus and method for infusing and dispensing oils
USD882338S1 (en) 2017-11-16 2020-04-28 Levo Oil Infusion, Llc Cage for use in an oil infusion device
US11330931B2 (en) 2016-09-29 2022-05-17 Levo Oil Infusion Apparatus and method for infusing and dispensing oils, and drying and heating infusing materials
US11457765B1 (en) 2022-05-10 2022-10-04 Havana Savannah, Llc Magnetically driven beverage brewing and cleaning system
US11503942B1 (en) 2018-09-25 2022-11-22 Havana Savannah, Llc Magnetically driven beverage brewing system and method

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832755B2 (en) * 2007-07-13 2023-12-05 Adrian Rivera Brewing material container for a beverage brewer
US10722066B2 (en) * 2010-12-04 2020-07-28 Adrian Rivera Windowed single serving brewing material holder
WO2012010317A1 (en) * 2010-07-22 2012-01-26 Krüger Gmbh & Co. Kg Portion capsule having an identifier
WO2015123612A1 (en) * 2014-02-14 2015-08-20 Remington Designs, Llc Beverage brewer and related methods for brewing beverages
US10342378B2 (en) * 2014-04-16 2019-07-09 Red River Tea Company Still beverage brewing method
US10111554B2 (en) 2015-03-20 2018-10-30 Meltz, LLC Systems for and methods of controlled liquid food or beverage product creation
WO2017031212A1 (en) * 2015-08-18 2017-02-23 Remington Designs, Llc Beverage maker
US10455972B2 (en) * 2015-11-05 2019-10-29 Adrian Rivera Beverage brewer with brewing rotation
US11534018B2 (en) 2015-11-05 2022-12-27 Adrian Rivera Beverage brewer with brewing material rotation
US9883766B2 (en) * 2015-11-20 2018-02-06 Pepsico, Inc. Beverage dispenser systems and methods
US10123651B2 (en) * 2016-01-05 2018-11-13 Adrian Rivera Coffee maker with moving water dispersion
DE202016002400U1 (en) * 2016-03-24 2017-06-27 LigaLife GmbH & Co. KG Device for producing a liquid food. Use of a fluid supply in a chamber of a capsule to produce a liquid food and system of device and capsule
CN105662151B (en) * 2016-04-06 2018-08-10 宁波锦宇电器有限公司 A kind of brewing structure of capsule coffee machine
WO2018029538A2 (en) * 2016-08-10 2018-02-15 Remington Designs, Llc Beverage machine with strength control
CA3041722A1 (en) 2016-11-09 2018-05-17 Pepsico, Inc. Carbonated beverage makers, methods, and systems
GB201622102D0 (en) * 2016-12-23 2017-02-08 Mars Inc Beverage preparation machine
US10172494B2 (en) * 2017-03-11 2019-01-08 Kete Long Method for semi-automatic food cooking
US11229317B2 (en) * 2017-03-11 2022-01-25 Kete Long Food cooking apparatus
EP3614889A1 (en) 2017-04-27 2020-03-04 Meltz LLC Method for centrifugal extraction and apparatus suitable for carrying out this method
US11627827B2 (en) 2017-09-12 2023-04-18 Adrian Rivera Beverage brewer
US10575672B2 (en) 2017-09-12 2020-03-03 Adrian Rivera Cold coffee brewer
US11064836B2 (en) 2017-09-12 2021-07-20 Adrian Rivera Beverage brewer
US11672373B2 (en) * 2018-03-02 2023-06-13 Samir Prakash SAHOO Beverage forming apparatus, method, and cartridge
USD929171S1 (en) * 2019-01-04 2021-08-31 Kete Long Automated guided food preparation device
WO2020144216A1 (en) * 2019-01-08 2020-07-16 Arcelik Anonim Sirketi A hot beverage preparation machine
US11724849B2 (en) 2019-06-07 2023-08-15 Cometeer, Inc. Packaging and method for single serve beverage product
USD965370S1 (en) * 2019-09-03 2022-10-04 Strauss Water Ltd Water dispenser with steam sterilizer
USD929167S1 (en) * 2020-07-05 2021-08-31 Strauss Water Ltd Appliance for preparing beverages
US11805934B1 (en) * 2020-10-21 2023-11-07 Adrian Rivera Brewing material lid and container for a beverage brewer

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256528A2 (en) * 1986-08-15 1988-02-24 Phillips Petroleum Company Hydrofining process for hydrocarbon containing feed streams
US4779520A (en) * 1986-12-22 1988-10-25 Melitta-Werke Bentz & Sohn Coffee maker or tea maker
US4983412A (en) * 1986-12-22 1991-01-08 Melitta-Werke Bentz & Sohn Method and device for producing aqueous extracts from coffee
US20050126400A1 (en) * 2003-12-12 2005-06-16 Bragg Tim A. Brew chamber for a single serve beverage brewer
US20050193890A1 (en) * 2004-03-03 2005-09-08 Sanyo Electric Co., Ltd. Beverage manufacturing apparatus
US6955116B2 (en) * 2003-06-13 2005-10-18 Robert Hale Beverage dispensing machine including cartridge ejector assembly
US20070243305A1 (en) * 2004-04-21 2007-10-18 Marconi Gian C Device for Producing a Milk-Based Drink
US20070251459A1 (en) * 2006-05-01 2007-11-01 Sanyo Electric Co., Ltd., Milk foamer
US7335387B2 (en) * 2001-04-27 2008-02-26 Mars, Inc. Methods, capsule and apparatuses for the production of foamed drinks
US20080148956A1 (en) * 2006-12-20 2008-06-26 Maurer Scott D Coffee maker
US20090126828A1 (en) * 2005-06-30 2009-05-21 Rancillo Macchine Per Caffé S.P.A. Machine and Device for Supplying Beverages in Containers Having Different Sizes and Method Therefor
US7621426B2 (en) * 2004-12-15 2009-11-24 Joseph Kanfer Electronically keyed dispensing systems and related methods utilizing near field frequency response
WO2011134375A1 (en) * 2010-04-29 2011-11-03 Lin Bo Rainbow cocktail preparer
US20120183659A1 (en) * 2010-12-28 2012-07-19 Starbucks Corporation D/B/A Starbucks Coffee Company Apparatus for brewing a beverage and related method
US20130139927A1 (en) * 2011-12-01 2013-06-06 Miele & Cie. Kg Beverage preparing device
US20130206014A1 (en) * 2010-07-16 2013-08-15 Nestec S.A. Device for preparing a beverage by centrifugation
US20140083300A1 (en) * 2011-05-27 2014-03-27 Nestec S.A. Beverage dispenser with removable nozzle rotating module
US20150075387A1 (en) * 2011-09-14 2015-03-19 Kyungpook National University Industry-Academic Cooperation Foundation Hand drip coffee maker
US20150289712A1 (en) * 2014-04-15 2015-10-15 Sun-Ho Choi Auto coffee drip apparatus
US20150344219A1 (en) * 2012-12-27 2015-12-03 Sarong Societa' Per Azioni Capsule For Beverages

Family Cites Families (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2111996A1 (en) 1971-03-12 1972-09-21 Manfred Burger Method and device for the production of coffee drinks
DK162369C (en) 1982-07-19 1992-03-23 Mars G B Ltd METHOD AND DISPENSES FOR THE PREPARATION OF AN INFUSIONAL BEVERAGE
US4962693A (en) 1988-11-02 1990-10-16 Kabushiki Kaisha Toshiba Centrifugal brewing type coffee maker
US4984511A (en) 1988-11-25 1991-01-15 Sanden Corporation Beverage brewing apparatus for vending machines
CH682909C1 (en) * 1990-10-31 1997-11-28 Coffea Sa Apparatus for the preparation of a liquid product by introducing a liquid and / or a vapor into a cartridge and cartridge usable in such an apparatus.
US5327815A (en) 1991-07-05 1994-07-12 Nestec S.A. Device for use in beverage extraction machines
GB9214156D0 (en) 1992-07-02 1992-08-12 Ag Patents Ltd Method and apparatus for producing a coffee beverage
US5840189A (en) 1992-09-16 1998-11-24 Keurig, Inc. Beverage filter cartridge
ES2151226T3 (en) 1997-07-14 2000-12-16 Nestle Sa DEVICE FOR THE MAKING OF BEVERAGES.
US8642051B2 (en) 2000-03-21 2014-02-04 Suzanne Jaffe Stillman Method of hydration; infusion packet system(s), support member(s), delivery system(s), and method(s); with business model(s) and Method(s)
ATE268557T1 (en) 2000-09-06 2004-06-15 Mars Uk Ltd METHOD AND DEVICE FOR BREWING COFFEE
US6644173B2 (en) 2001-04-11 2003-11-11 Keuring, Incorporated Beverage filter cartridge holder
CA2443591A1 (en) 2001-04-18 2002-10-31 Keurig, Incorporated System for monitoring and controlling the operation of a single serve beverage brewer
US20060283332A1 (en) 2001-12-11 2006-12-21 Garman Michael H Hot beverage maker
US6811299B2 (en) 2002-05-13 2004-11-02 Linda Ann Collier Hot coffee mixing device for a coffee maker
US7640843B2 (en) 2003-01-24 2010-01-05 Kraft Foods R & D, Inc. Cartridge and method for the preparation of beverages
ITBO20030062A1 (en) 2003-02-13 2004-08-14 Ima Spa CAPSULE USED FOR THE PREPARATION OF AN INFUSED BEVERAGE.
CA2519791C (en) 2003-04-04 2011-04-26 Omron Corporation Flow measurement device
US6968775B2 (en) 2003-05-19 2005-11-29 Aroma Fresh, Llc Coffee brewer
CN1552264A (en) * 2003-06-05 2004-12-08 韦坤莲 Multifunctional coffee maker controlling method and use thereof
EP1495702A1 (en) 2003-07-10 2005-01-12 Nestec S.A. Device for the extraction of a cartridge
EP1508325B1 (en) 2003-08-21 2009-03-11 Nestec S.A. Natural lycopene concentrate and process for producing the same
EP1510159A1 (en) * 2003-08-25 2005-03-02 Nestec S.A. Procedure for making a food product
ES2373436T5 (en) * 2003-08-25 2014-12-29 Nestec S.A. Method and device for preparing a beverage from capsules containing a substance
WO2005020709A1 (en) 2003-08-28 2005-03-10 Nestec S.A. Food product providing sustained blood levels of exogenous substances
MY142017A (en) 2004-03-19 2010-08-16 Nestec Sa Composition comprising all essential nutrients of a fruit or a plant material with increased stability and bioavailability and process of forming the same
ES2348020T3 (en) 2004-07-09 2010-11-26 Nestec S.A. SYSTEM AND DEVICE FOR THE PREPARATION AND SUPPLY OF FOOD PRODUCTS FROM A COMPOSITE MIXTURE OF A FOOD LIQUID AND A DILUENT.
EP1839492B1 (en) 2006-03-27 2011-09-14 Nestec S.A. Whey protein micelles
US8695482B2 (en) * 2004-11-17 2014-04-15 Bunn-O-Matic Corporation Brewer having a programmable temperature component
WO2007027206A2 (en) 2005-04-11 2007-03-08 Coffee Equipment Company Machine for brewing a beverage such as coffee and related method
US7581490B2 (en) * 2005-04-28 2009-09-01 Applica Consumer Products, Inc. Coffeemaker with water feed velocity decreaser
US9795243B2 (en) 2005-05-23 2017-10-24 Adrian Rivera Single serving brewing material holder
JP2007054607A (en) 2005-07-25 2007-03-08 Izumi Products Co Beverage maker
US20140060336A1 (en) 2006-02-23 2014-03-06 Carl Campetella Apparatus for Making Crema Coffee
WO2007109168A2 (en) 2006-03-17 2007-09-27 Wms Gaming Inc. Service controller for servicing wagering game machines
ATE411758T1 (en) 2006-04-25 2008-11-15 Imel Ag DEVICE AND METHOD FOR PREPARING HOT BEVERAGES BY BREWING A PARTICLE-SHAPED SUBSTANCE THAT CAN BE EXTRACTED BY WATER
DK2238880T3 (en) 2006-05-24 2012-04-02 Nestec Sa Capsule Penetration Module
PL2189088T3 (en) 2006-06-16 2013-10-31 Nestec Sa Beverage distribution apparatus with support system and droplet recuperation for containers with different sizes
US8435579B2 (en) 2006-07-07 2013-05-07 Kraft Foods Group Brands Llc Infused roasted seeds and methods of making thereof
US20080032030A1 (en) 2006-08-15 2008-02-07 Eilaz Babaev Method and Apparatus for Producing Beverages from Coffee Beans Using Ultrasound Energy
US8403174B2 (en) 2006-08-28 2013-03-26 Kraft Foods Global Brands Llc Snap resealing closure for a container
EP1917960A1 (en) 2006-11-06 2008-05-07 Nestec S.A. Improved biological effects of rosmarinic acid
PL1950150T3 (en) 2007-01-24 2010-08-31 Nestec Sa Identification of beverage ingredient containing capsules
DK1967099T3 (en) 2007-03-06 2010-03-15 Nestec Sa Device for preparing a nutrient liquid from a capsule
EP1967100B1 (en) 2007-03-06 2009-05-20 Nestec S.A. System for preparing a beverage from a capsule and method
GB2462392B (en) 2007-05-18 2010-08-18 Kraft Foods R & D Inc Beverage preparation machines and methods for operating beverage preparation machines
JP5400039B2 (en) 2007-06-05 2014-01-29 ネステク ソシエテ アノニム Capsule and method for producing food liquid by centrifugation
US8431175B2 (en) 2007-06-05 2013-04-30 Nestec S.A. Method for preparing a beverage or food liquid and system using brewing centrifugal force
ATE504228T1 (en) 2007-06-05 2011-04-15 Nestec Sa METHOD FOR PRODUCING A DRINK OR LIQUID FOOD
US7980168B2 (en) 2007-06-26 2011-07-19 Maurer Scott D Hot beverage maker with filter deforming member
US9572452B2 (en) 2010-12-04 2017-02-21 Adrian Rivera Single serving brewing material adapter with readable label
US20130284805A1 (en) 2007-09-14 2013-10-31 Ward Kraft, Inc. Kiosk For Providing Customized Transaction Cards To Customers
US8429021B2 (en) 2007-09-14 2013-04-23 Ward Kraft, Inc. Method and system for receiving an item during a precious stone and metal appraisal
US20140195442A1 (en) 2007-09-14 2014-07-10 Ward Kraft, Inc. Combination Retailing System For Appraising Precious Stones And Metals And Dispensing Gift Cards, Coupons And The Like
US20140195377A1 (en) 2007-09-14 2014-07-10 Ward Kraft, Inc. Combination Retailing System For Appraising Precious Stones And Metals And Dispensing Gift Cards, Coupons And The Like
EP2218374B1 (en) 2007-10-04 2017-12-27 Nestec S.A. Integrated heater for a beverage preparation device
CL2008002963A1 (en) 2007-10-04 2010-01-22 Nestec Sa Heating device for a machine for the preparation of liquid food or drink, comprising a thermal unit with a metallic mass, through which the liquid circulates, and accumulates heat and supplies it to the liquid, and has one or more insured electrical components rigidly to the thermal unit; and machine.
JP2011505142A (en) 2007-11-29 2011-02-24 キャドバリー アダムス ユーエスエー エルエルシー Fine particle coating
EP2227093B1 (en) 2007-12-20 2014-10-15 Nestec S.A. Instant beverage product
WO2009084059A1 (en) 2008-01-03 2009-07-09 Essence-Sbt Sa System for delivering infusion beverages and infusion capsule
PT2100824E (en) 2008-03-12 2011-07-27 Nestec Sa Capsule with flow control and filtering member(
AU2009235593A1 (en) 2008-04-07 2009-10-15 Nestec S.A. Beverage preparation device with in-line scale removal system and descaling method using such system
BRPI0911872A2 (en) 2008-04-11 2015-08-18 Nestec Sa Aerated frozen confectionery particles for cold drinks
US8371343B2 (en) 2008-04-24 2013-02-12 Kraft Foods Group Brands Llc Method and apparatus to facilitate determining proper placement of a liquid
EP2303761B1 (en) 2008-05-08 2011-08-24 Nestec S.A. Setting the level of fill in a cup used with a beverage dispenser
CN102046053B (en) 2008-05-28 2014-11-05 雀巢产品技术援助有限公司 Pump for liquid beverage preparation devices
EP2127568A1 (en) 2008-05-29 2009-12-02 Nestec S.A. Mixing and dispensing apparatus with movable mixing chamber
US20120070542A1 (en) 2010-09-16 2012-03-22 Starbucks Corporation D/B/A Starbucks Coffee Company Instant beverage cartridges and methods
US8431172B2 (en) 2008-07-31 2013-04-30 Kraft Foods Global Brands Llc Production of cookies having large particulates using ultrasonic wirecutting
US11786068B2 (en) 2008-09-04 2023-10-17 Danny J. Roberson Infant formula preparation apparatus and method
WO2010054322A1 (en) 2008-11-07 2010-05-14 Solazyme, Inc. Cosmetic compositions comprising microalgal components
ATE538667T1 (en) 2008-11-10 2012-01-15 Nestec Sa SIAL ACID PRODUCING BACTERIA
JP5497778B2 (en) 2008-12-09 2014-05-21 ネステク ソシエテ アノニム Liquid food preparation system for preparing liquid food by centrifugation
AU2009326131B2 (en) 2008-12-09 2015-10-08 Société des Produits Nestlé S.A. Capsule for preparing a beverage by centrifugation in a beverage preparation device and device adapted therefore
US8166868B2 (en) 2008-12-18 2012-05-01 Whirlpool Corporation Liquid flow control and beverage preparation apparatus
US8166867B2 (en) 2008-12-18 2012-05-01 Whirlpool Corporation Liquid flow control through a beverage preparation apparatus
US8133525B2 (en) 2008-12-18 2012-03-13 Whirlpool Corporation Liquid flow control and beverage preparation apparatuses, methods and systems
US8468935B2 (en) 2008-12-18 2013-06-25 Whirlpool Corporation Liquid flow control and beverage preparation apparatuses, methods and systems
US8227000B2 (en) 2008-12-18 2012-07-24 Whirlpool Corporation Liquid flow control and beverage preparation apparatuses, methods and systems
RU2560053C2 (en) 2009-01-05 2015-08-20 Нестек С.А. Capsule with filter element for flow regulation
PL2393404T3 (en) 2009-02-06 2014-04-30 Nestec Sa Device and method using centrifugation for extracting a liquid and heat loss compensating means
JP2012521231A (en) * 2009-03-23 2012-09-13 ネステク ソシエテ アノニム Pump installation in beverage preparation equipment
ES2471448T3 (en) 2009-03-27 2014-06-26 Kraft Foods R & D, Inc. Beverage concentrates
US20100260892A1 (en) 2009-04-08 2010-10-14 Nestec S.A. Mixing nozzle fitments
MX2011011507A (en) 2009-04-28 2011-11-18 Nestec Sa Food or beverage composition comprising unroasted coffee solids.
GB2469874B (en) 2009-05-01 2012-09-19 Kraft Foods R & D Inc Beverage preparation machines
US8474368B2 (en) 2009-05-13 2013-07-02 Curwood, Inc. Mineral composite beverage brewing cup and cartridge
BR112012000038A2 (en) 2009-07-03 2016-03-15 Nestec Sa a beverage preparation capsule comprising an identification element
EP2292104A1 (en) 2009-08-13 2011-03-09 Nestec S.A. A flavour active composition
MY169949A (en) 2009-08-28 2019-06-19 Keurig Green Mountain Inc Beverage cartridge and method for beverage formation using filter aid
US8293299B2 (en) 2009-09-11 2012-10-23 Kraft Foods Global Brands Llc Containers and methods for dispensing multiple doses of a concentrated liquid, and shelf stable Concentrated liquids
US9108794B2 (en) 2009-09-29 2015-08-18 Lbp Manufacturing, Inc. Disposable single use beverage package
US9763461B2 (en) 2009-10-28 2017-09-19 Bkon Llc Vacuum infusion method
US9295358B2 (en) 2009-10-28 2016-03-29 Bkon Llc Vacuum brewed beverage machine and vacuum brewing method
US8586117B2 (en) 2009-10-28 2013-11-19 Bkon Llc Liquid infusion process and method of brewing a beverage
EP2512305B1 (en) 2009-12-18 2013-10-30 Green Mountain Coffee Roasters Beverage formation apparatus and method using sonic energy
US8999421B2 (en) 2010-03-13 2015-04-07 Bunn-O-Matic Corporation Cartridge retaining device, brewer in combination with same, and method of using said device
US20150004287A1 (en) 2010-03-31 2015-01-01 Multisorb Technologies, Inc. Oxygen, water vapor, and carbon dioxide absorption in a single use container
US20110244108A1 (en) 2010-04-02 2011-10-06 Rabin Michael David Container for single-serve liquid/solid food product
GB2482032B (en) 2010-07-16 2013-04-10 Kraft Foods R & D Inc Coffee products and related processes
US8596026B2 (en) 2010-08-05 2013-12-03 Kraft Foods Group Brands Llc Vacuum flow wrap packaging system and method of packaging
PL2603120T3 (en) 2010-08-13 2017-06-30 Koninklijke Philips N.V. Device, system and method for preparing a beverage suitable for consumption from a capsule
CA2814969A1 (en) 2010-08-13 2012-02-16 Koninklijke Douwe Egberts B.V. Device, system and method for preparing a beverage from a capsule
US8807823B2 (en) 2010-10-11 2014-08-19 Hamilton Beach Brands, Inc. Automated mix in-cup apparatus and the method of operating the same
US8573115B2 (en) 2010-11-15 2013-11-05 Conair Corporation Brewed beverage appliance and method
JP2014504181A (en) 2010-11-30 2014-02-20 ネステク ソシエテ アノニム Capsules and methods for the preparation of beverages by centrifugal force
DK2462850T3 (en) 2010-12-13 2014-01-13 Nestec Sa The beverage preparation machine
PT2912948T (en) 2011-03-14 2017-08-16 K Fee System Gmbh Portion capsule for producing a beverage
US8794439B2 (en) 2011-03-30 2014-08-05 Lawrence Charles Product packaging
US8707855B2 (en) 2011-05-09 2014-04-29 Eko Brands, Llc Beverage Brewing Device
US20130019903A1 (en) 2011-07-19 2013-01-24 Conair Corporation Cleaning system and method for beverage appliance
WO2013032330A1 (en) 2011-09-02 2013-03-07 Koninklijke Douwe Egberts B.V. Beverage filter cartridge
WO2013032331A1 (en) 2011-09-02 2013-03-07 Koninklijke Douwe Egberts B.V. Beverage filter assembly
US8985395B2 (en) 2011-09-09 2015-03-24 Fountain Master Llc Beverage maker
GB2494464B (en) 2011-09-12 2014-12-03 Kraft Foods R & D Inc Improvements in and relating to beverage preparation machines
US8974849B2 (en) 2011-10-13 2015-03-10 Aly Gamay Concentrated shelf stable liquid coffee
US10080459B2 (en) 2011-11-09 2018-09-25 La Vit Technology Llc Capsule-based system for preparing and dispensing a beverage
US8752476B2 (en) 2011-11-17 2014-06-17 Dong Sheng International Technology Company Limited Coffee maker enabling automated drip brewing
US8479637B2 (en) 2011-11-18 2013-07-09 John A. Fedor Beverage brewing system
EP2604124A1 (en) 2011-12-16 2013-06-19 Nestec S.A. Soluble non-dairy creamer tablet surface-treated with carbohydrate
US20150140193A1 (en) 2011-12-22 2015-05-21 Nestec S.A. Composition for the preparation of homemade frozen confections
US8911811B2 (en) 2011-12-27 2014-12-16 Whirlpool Corporation Method of operating a coffee maker
US20130174743A1 (en) 2012-01-06 2013-07-11 B/E Aerospace, Inc. Aircraft brewing apparatus
AU2013208999A1 (en) 2012-01-13 2014-07-24 Nestec S.A. Beverage machine with a removable module
US8739735B2 (en) 2012-01-16 2014-06-03 Nestec S.A. Compositions useful as animal litter
RU2619002C2 (en) 2012-01-17 2017-05-11 Конинклейке Филипс Н.В. Beverage preparation machine with adjustable nozzle for dispensing
ES2608721T3 (en) 2012-01-25 2017-04-12 Qbo Coffee Gmbh Infusion set module
US10849334B2 (en) 2012-02-01 2020-12-01 Koninklijke Douwe Egberts B.V. Dairy mineral-fortified liquid dairy products and methods for making the dairy mineral-fortified liquid dairy products
CA2788043A1 (en) 2012-02-01 2013-08-01 Kienna Coffee Usa, Inc. Pod adapter for use with k-cup tm beverage brewer
GB2499005B (en) 2012-02-02 2014-06-25 Kraft Foods R & D Inc Improvements in or relating to beverage preparation machines
GB2499201B (en) 2012-02-07 2014-07-02 Kraft Foods R & D Inc A beverage preparation system, a coded insert and methods of use thereof
US9444260B2 (en) 2012-02-07 2016-09-13 Newco Enterprises, Inc. Energy management system and method for controlling high current draws from variable current devices commonly connectable to an electrical circuit
US20130213240A1 (en) 2012-02-17 2013-08-22 Espressi, Inc. Portable brewing device
US20130233177A1 (en) 2012-02-22 2013-09-12 David Lambert Single Cup Coffee and Tea Brewing Mug
FR2987352B1 (en) 2012-02-23 2015-05-15 Francoise Moreau DISPENSING DEVICE MIXER
US8986763B2 (en) 2012-02-27 2015-03-24 Rialto Coffee Company Ltd. Optimal extraction rate coffee capsule with effective seal for diverse group heads
EP2633789A1 (en) 2012-02-28 2013-09-04 Nestec S.A. Beverage preparation machine with drop management
AU2013225016B2 (en) 2012-02-28 2016-11-24 Nestec S.A. Cover for an ingredient inlet with moisture management
ES2739295T3 (en) 2012-02-29 2020-01-30 Nestle Sa Tank or container support with filtration unit for use in a nutritional preparation machine
US20130233952A1 (en) 2012-03-08 2013-09-12 Hamilton Beach Brands, Inc. Kitchen Appliance for Processing Foodstuff and Method of Operating Same
US9161654B2 (en) 2012-03-09 2015-10-20 Primo Products Llc Select serving and flavored sparkling beverage maker system
US9795245B2 (en) 2012-03-14 2017-10-24 Hamilton Beach Brands, Inc. Kitchen appliance for preparing a beverage and method of operating same
USD690150S1 (en) 2012-03-14 2013-09-24 Societe Des Produits Nestle S.A. Coffee machine
WO2013138164A1 (en) 2012-03-16 2013-09-19 Starbucks Corporation Dba Starbucks Coffee Company Dynamic graphical display for a beverage dispensing system
EP2638833A1 (en) 2012-03-16 2013-09-18 Nestec S.A. A beverage preparation machine with cleanable brewing head
GB201205650D0 (en) 2012-03-29 2012-05-16 Kraft Foods Inc Resealable package, method for producing the resealable package and apparatus for producing the resealable package
US20150090128A1 (en) 2012-04-04 2015-04-02 Amcor Flexibles Denmark A/S System for admixture of a material in powder or liquid form
SG11201406283YA (en) 2012-04-24 2014-11-27 Nestec Sa A capsule holder for a beverage preparation machine
EP2840943B1 (en) 2012-04-25 2017-08-23 Nestec S.A. Method for the preparation of a beverage by centrifugation using a container
WO2013160268A1 (en) 2012-04-25 2013-10-31 Nestec S.A. Capsule for the preparation of a beverage by centrifugation
JP2015514790A (en) 2012-04-27 2015-05-21 ネステク ソシエテ アノニム How to improve swallowing efficiency
US20130290210A1 (en) 2012-04-27 2013-10-31 Furstperson, Inc. System and method for automating pre-employment assessment
JP6348485B2 (en) 2012-04-30 2018-06-27 ネステク ソシエテ アノニム Container with improved pressure resistance
EP2846665A4 (en) 2012-05-06 2016-01-27 Bruce D Burrows Coffee brewer apparatuses and methods for brewing beverages
EP2662314A1 (en) 2012-05-07 2013-11-13 Nestec S.A. An ingredient capsule for beverage preparation
EP2662315A1 (en) 2012-05-07 2013-11-13 Nestec S.A. An ingredient capsule for beverage preparation
EP2662316A1 (en) 2012-05-07 2013-11-13 Nestec S.A. An ingredient capsule for beverage preparation
US11013248B2 (en) 2012-05-25 2021-05-25 Kraft Foods Group Brands Llc Shelf stable, concentrated, liquid flavorings and methods of preparing beverages with the concentrated liquid flavorings
US20150128615A1 (en) 2012-05-25 2015-05-14 Nestec S.A. Cold beverage dispenser implementing thermoelectric cooling
USD696888S1 (en) 2012-05-29 2014-01-07 Societe Des Produits Nestle S.A. Coffee machines
US9943187B2 (en) 2012-06-15 2018-04-17 Nestec S.A. Beverage machine with vibration inhibitor
KR102075814B1 (en) 2012-06-22 2020-02-10 터치 커피 & 베버리지스, 엘엘씨. Beverage brewing system
JP6185058B2 (en) 2012-07-06 2017-08-23 ユニリーバー・ナームローゼ・ベンノートシヤープ Capsule and method and device for extracting beverages
US20140013958A1 (en) 2012-07-12 2014-01-16 Select Brands, Inc. Hybrid coffee maker with multiple brewing modes
JP2015530892A (en) 2012-07-24 2015-10-29 ネステク ソシエテ アノニム Capsules used in food preparation machines
US20140040830A1 (en) 2012-08-02 2014-02-06 Bsh Home Appliances Corporation User interface - status bar
US20140051045A1 (en) 2012-08-14 2014-02-20 James Tanner Stults Method and Device for Enhancing Memory
WO2014029628A1 (en) 2012-08-22 2014-02-27 Nestec S.A. Capsule assemblies with data storage and communication means
BR112015003865A2 (en) 2012-08-24 2017-07-04 Nestec Sa capsule for use with food preparation machine
IN2015DN00757A (en) 2012-08-24 2015-07-10 Nestec Sa
WO2014029264A1 (en) 2012-08-24 2014-02-27 广东新宝电器股份有限公司 Capsule coffee machine
JP2015530141A (en) 2012-09-05 2015-10-15 ネステク ソシエテ アノニム Food preparation machine with safety function
US9433317B2 (en) 2012-09-07 2016-09-06 Nestec S. A. Capsule storage
AU2013200893B2 (en) 2012-09-14 2014-05-22 Madura Tea Estates Woven mesh and uses
EP2895005B1 (en) 2012-09-15 2019-06-05 Deepak Boggavarapu Systems and methods for coffee preparation
US20140076167A1 (en) 2012-09-15 2014-03-20 Deepak Boggavarapu Coffee preparation system
DE102012216747A1 (en) 2012-09-19 2014-03-20 Robert Bosch Gmbh Method and device for determining at least one predetermined movement of at least part of a body of a living being
CN104918877A (en) 2012-10-18 2015-09-16 康富公司 Apparatus for carbonating beverages
US9289041B2 (en) 2012-10-25 2016-03-22 Francis M Brown Portable modular cooking enabled travel bag
US20140120217A1 (en) 2012-10-26 2014-05-01 Printpack Illinois, Inc. Container With Improved Puncture Design
US20140120218A1 (en) 2012-10-26 2014-05-01 Printpack Illinois, Inc. Container With Improved Puncture Design
WO2014071101A1 (en) 2012-11-01 2014-05-08 Mag Aerospace Industries, Inc. Beverage maker with interchangeable components
US20140127364A1 (en) 2012-11-07 2014-05-08 2266170 Ontario Inc. Beverage Capsule With Moldable Filter
EP2730523B1 (en) 2012-11-12 2016-04-06 2266170 Ontario, Inc. Beverage capsule and process and system for making same
TWI536943B (en) * 2012-11-27 2016-06-11 Yun Cheng Huang Sprinkler water drip filter coffee machine
US20140175125A1 (en) 2012-12-19 2014-06-26 Michael John Breault Beverage dispenser and related methods
CL2013001516S1 (en) 2012-12-21 2014-09-05 Nestle Sa Coffee machine.
WO2014095985A1 (en) 2012-12-21 2014-06-26 Nestec S.A. Beverage production system
US9058024B2 (en) 2013-01-07 2015-06-16 Bsh Home Appliances Corporation User interface—oven timer
US9554689B2 (en) 2013-01-17 2017-01-31 Bsh Home Appliances Corporation User interface—demo mode
US20140201688A1 (en) 2013-01-17 2014-07-17 Bsh Home Appliances Corporation User interface - gestural touch
US9961721B2 (en) 2013-01-17 2018-05-01 Bsh Home Appliances Corporation User interface for oven: info mode
US20140208952A1 (en) 2013-01-30 2014-07-31 Hamilton Beach Brands, Inc. Kitchen Appliance for Preparing a Beverage and Method of Operating Same
US9332876B2 (en) 2013-01-30 2016-05-10 Hamilton Beach Brands, Inc. Kitchen appliance for preparing a beverage and method of operating same
US20140217211A1 (en) 2013-02-04 2014-08-07 Hamilton Beach Brands, Inc. Kitchan Appliance With Quiet Shield and Method of Operating Same
US9192260B2 (en) 2013-02-23 2015-11-24 Dov Z Glucksman Apparatus and method for infusing hot beverages
US20140245893A1 (en) 2013-03-02 2014-09-04 Robert Bao Vu Methods, apparatus and products for grinding brewable materials into a filter cartridge
US9486104B2 (en) 2013-03-05 2016-11-08 B/E Aerospace, Inc. Multi-purpose coffee maker pod holder
US9113742B2 (en) 2013-03-06 2015-08-25 Sunbeam Products, Inc. Beverage brewing platform
US8863987B2 (en) 2013-03-12 2014-10-21 Keurig Green Mountain, Inc. Beverage apparatus waste bin level detection
US9717366B2 (en) 2013-03-12 2017-08-01 Keurig Green Mountain, Inc. Beverage forming station door for beverage machine
DE102013204226A1 (en) 2013-03-12 2014-10-02 Robert Bosch Gmbh Arrester for an electrochemical energy storage
US10470604B2 (en) 2013-03-12 2019-11-12 Keurig Green Mountain, Inc. Delayed fill of beverage machine heater tank
US9783361B2 (en) 2013-03-14 2017-10-10 Starbucks Corporation Stretchable beverage cartridges and methods
US9930989B2 (en) 2013-03-14 2018-04-03 Spectrum Brands, Inc. Apparatus for brewing beverages
JP6395797B2 (en) 2013-03-15 2018-09-26 スターバックス・コーポレイション Enhanced extract of food and beverage ingredients
US20140260999A1 (en) 2013-03-15 2014-09-18 Advanced Services Beverage vending system
US20140370181A1 (en) 2013-03-15 2014-12-18 The Folger Coffee Company Coffee composition for use with a beverage unit and methods of using the same
US9557222B2 (en) 2013-03-15 2017-01-31 Robert Bosch Gmbh Portable device with temperature sensing
US8906436B2 (en) 2013-03-15 2014-12-09 Ptc-Innovations, Llc Single serve beverage additive cartridge
US20140287116A1 (en) 2013-03-25 2014-09-25 James E. Mack Single-serve container brewer and coffeemaker
SG11201507922TA (en) 2013-03-26 2015-10-29 Premier Nutrition Corp Methods for enhancing muscle protein synthesis following concurrent training
TWI586302B (en) 2013-04-01 2017-06-11 賈碩頎 Beverage filtering cartridge
CA2905217C (en) 2013-04-03 2016-11-08 2266170 Ontario Inc. Capsule machine and components
KR20150143551A (en) 2013-04-04 2015-12-23 코넬리어스 아이엔씨. Seal and anti foam device
US9657155B2 (en) 2013-04-12 2017-05-23 Printpack Illinois, Inc. Containers and materials with improved punctureability
US20140318378A1 (en) 2013-04-26 2014-10-30 Sunbeam Products, Inc. Content cartridge
AU350575S (en) 2013-05-02 2013-09-03 Nestle Sa A coffee machine
JP2014239871A (en) 2013-05-07 2014-12-25 安東 秀夫 Biological activity detection method, biological activity measuring apparatus, biological activity detection signal transfer method, and providing method of service using biological activity information
US20140335236A1 (en) 2013-05-08 2014-11-13 G Cup Technology Corp. Biodegradable and compostable single-serve beverage ingredient package
US20140342058A1 (en) 2013-05-14 2014-11-20 Adel Wahhas Paper based single cup brewing
US9375114B2 (en) 2013-05-22 2016-06-28 Sunbeam Products, Inc. Hot beverage maker with cleaning apparatus and related method
US20140345473A1 (en) 2013-05-22 2014-11-27 Kenneth Buck Albritton Self fill disposable coffee pod
CA2912723C (en) 2013-05-23 2017-02-07 2266170 Ontario Inc. Capsule housing
TW201509354A (en) 2013-06-03 2015-03-16 Starbucks Corp Dba Starbucks Coffee Co Apparatus for brewing a beverage and method using the same
US9210948B2 (en) 2013-07-19 2015-12-15 Brandeis University Par-baked and milled coffee beans for use in foods, beverages and dietary supplements
USD718565S1 (en) 2013-08-06 2014-12-02 Conair Corporation Coffee machine
CA2920909A1 (en) 2013-08-15 2015-02-19 2266170 Ontario Inc. Capsule identification system
DE102013109212B4 (en) 2013-08-26 2019-07-25 Infineon Technologies Ag RFID device, RFID reader, portion hot drink machine and system
CN203609280U (en) 2013-08-30 2014-05-28 漳州灿坤实业有限公司 Automatic puncture mechanism of capsule coffee machine
CN203749211U (en) 2013-08-30 2014-08-06 漳州灿坤实业有限公司 Automatic bag dropping mechanism for capsule coffee machine
US20150079237A1 (en) 2013-09-14 2015-03-19 Aly Gamay System for preparing instant food and methods of making thereof
US9320387B2 (en) 2013-09-30 2016-04-26 Lam Research Corporation Sulfur doped carbon hard masks
US20150099042A1 (en) 2013-10-04 2015-04-09 Yisroel Koenig Coffee Capsule with Diffuser for Single Serve Brewer
CN203468348U (en) 2013-10-14 2014-03-12 漳州灿坤实业有限公司 Switch device and capsule coffee machine using same
CN203468345U (en) 2013-10-14 2014-03-12 漳州灿坤实业有限公司 Structure of bag exiting device of capsule coffee machine
EP3062664A4 (en) 2013-10-31 2016-12-14 Courtesy Products L L C Brew basket and filter pack for electric coffee brewing machine
US20150129039A1 (en) 2013-11-12 2015-05-14 Hamilton Beach Brands, Inc. Beverage Maker with Capacitance Fluid Level Sensor
US20150135967A1 (en) 2013-11-21 2015-05-21 Plitek, L.L.C. Single-Serve Cartridge with Pressure Relief Valve
US9533783B2 (en) 2013-12-06 2017-01-03 David J. Talarico Custom-content beverage cartridge manufacturing and vending machine
US9596956B2 (en) * 2013-12-18 2017-03-21 Invergo, Inc. Apparatus for and method of making coffee
US9278801B2 (en) 2013-12-18 2016-03-08 Robert Gruder Beverage mixing cartridge and method of using same
US9743796B2 (en) 2013-12-31 2017-08-29 Brett C. Richardson Portable coffee brewing device
US9295357B2 (en) 2014-01-17 2016-03-29 Keurig Green Mountain, Inc. Apparatus for cup and carafe beverage production
US9173519B2 (en) 2014-01-17 2015-11-03 Keurig Green Mountain, Inc. Method and apparatus for beverage carafe detection
US10136754B2 (en) 2014-01-17 2018-11-27 Keurig Green Mountain, Inc. Beverage machine cartridge holder
US9474406B2 (en) 2014-01-17 2016-10-25 Keurig Green Mountain, Inc. Apparatus with beverage cartridge holder having movable outlet
EP2898801B1 (en) 2014-01-24 2017-01-11 Spectrum Brands, Inc. Apparatus and method for brewing beverages
US20150223635A1 (en) 2014-02-11 2015-08-13 Hamilton Beach Brands, Inc. Computer Controlled Coffeemaker
US10274072B2 (en) 2014-08-05 2019-04-30 RB Distribution, Inc. Integrated wheel end coupler

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256528A2 (en) * 1986-08-15 1988-02-24 Phillips Petroleum Company Hydrofining process for hydrocarbon containing feed streams
US4779520A (en) * 1986-12-22 1988-10-25 Melitta-Werke Bentz & Sohn Coffee maker or tea maker
US4983412A (en) * 1986-12-22 1991-01-08 Melitta-Werke Bentz & Sohn Method and device for producing aqueous extracts from coffee
US7335387B2 (en) * 2001-04-27 2008-02-26 Mars, Inc. Methods, capsule and apparatuses for the production of foamed drinks
US6955116B2 (en) * 2003-06-13 2005-10-18 Robert Hale Beverage dispensing machine including cartridge ejector assembly
US20050126400A1 (en) * 2003-12-12 2005-06-16 Bragg Tim A. Brew chamber for a single serve beverage brewer
US20050193890A1 (en) * 2004-03-03 2005-09-08 Sanyo Electric Co., Ltd. Beverage manufacturing apparatus
US20070243305A1 (en) * 2004-04-21 2007-10-18 Marconi Gian C Device for Producing a Milk-Based Drink
US7621426B2 (en) * 2004-12-15 2009-11-24 Joseph Kanfer Electronically keyed dispensing systems and related methods utilizing near field frequency response
US20090126828A1 (en) * 2005-06-30 2009-05-21 Rancillo Macchine Per Caffé S.P.A. Machine and Device for Supplying Beverages in Containers Having Different Sizes and Method Therefor
US20070251459A1 (en) * 2006-05-01 2007-11-01 Sanyo Electric Co., Ltd., Milk foamer
US20080148956A1 (en) * 2006-12-20 2008-06-26 Maurer Scott D Coffee maker
WO2011134375A1 (en) * 2010-04-29 2011-11-03 Lin Bo Rainbow cocktail preparer
EP2565258A1 (en) * 2010-04-29 2013-03-06 Bo Lin Rainbow cocktail preparer
US20130206014A1 (en) * 2010-07-16 2013-08-15 Nestec S.A. Device for preparing a beverage by centrifugation
US20120183659A1 (en) * 2010-12-28 2012-07-19 Starbucks Corporation D/B/A Starbucks Coffee Company Apparatus for brewing a beverage and related method
US20140083300A1 (en) * 2011-05-27 2014-03-27 Nestec S.A. Beverage dispenser with removable nozzle rotating module
US20150075387A1 (en) * 2011-09-14 2015-03-19 Kyungpook National University Industry-Academic Cooperation Foundation Hand drip coffee maker
US20130139927A1 (en) * 2011-12-01 2013-06-06 Miele & Cie. Kg Beverage preparing device
US20150344219A1 (en) * 2012-12-27 2015-12-03 Sarong Societa' Per Azioni Capsule For Beverages
US20150289712A1 (en) * 2014-04-15 2015-10-15 Sun-Ho Choi Auto coffee drip apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039413B1 (en) * 2016-09-29 2018-08-07 Levo Oil Infusion, Llc Apparatus and method for infusing and dispensing oils
US20180220836A1 (en) * 2016-09-29 2018-08-09 Levo Oil Infusion, Llc Apparatus and method for infusing and dispensing oils
US10758078B2 (en) 2016-09-29 2020-09-01 LEVO Oil Infusion, Inc. Apparatus and method for infusing and dispensing oils, and drying and heating infusing materials
US11330931B2 (en) 2016-09-29 2022-05-17 Levo Oil Infusion Apparatus and method for infusing and dispensing oils, and drying and heating infusing materials
USD882338S1 (en) 2017-11-16 2020-04-28 Levo Oil Infusion, Llc Cage for use in an oil infusion device
US11503942B1 (en) 2018-09-25 2022-11-22 Havana Savannah, Llc Magnetically driven beverage brewing system and method
US11793347B2 (en) 2018-09-25 2023-10-24 Havana Savannah, Llc Magnetically driven beverage brewing system and method
US11457765B1 (en) 2022-05-10 2022-10-04 Havana Savannah, Llc Magnetically driven beverage brewing and cleaning system
US11812888B1 (en) 2022-05-10 2023-11-14 Havana Savannah, Llc Magnetically driven beverage brewing and cleaning system

Also Published As

Publication number Publication date
US10881241B2 (en) 2021-01-05
US20180303276A1 (en) 2018-10-25
US9307860B2 (en) 2016-04-12
US20150327719A1 (en) 2015-11-19
US20150327718A1 (en) 2015-11-19
US20160174755A1 (en) 2016-06-23
US20150327717A1 (en) 2015-11-19
US10045654B2 (en) 2018-08-14

Similar Documents

Publication Publication Date Title
US10881241B2 (en) Moving inlet nozzles in beverage systems
CA2839293C (en) Beverage formation apparatus and method using vibratory energy
US20210315411A1 (en) Beverage maker for espresso
WO2018029538A2 (en) Beverage machine with strength control
JP2022509518A (en) Beverage preparation machine with entrance structure
KR20160123367A (en) Beverage brewer and related methods for brewing beverages
US20220386804A1 (en) Funnel assembly for making powdered beverage
WO2017031212A1 (en) Beverage maker
CN108602616B (en) Bag for preparing food or beverage products
EP3185730B1 (en) Improvements in machines for the preparation of beverage and liquid food products
AU2015328659A1 (en) Moving inlet nozzles in beverage systems
WO2017214062A1 (en) Beverage maker
US20200253414A1 (en) Method and apparatus for adjusting brew parameters during dispensing
US20220304502A1 (en) Beverage machine heated water source with horizontal heating coil
WO2021055581A1 (en) Method and apparatus for over ice brewing

Legal Events

Date Code Title Description
AS Assignment

Owner name: HAGEN, DAVID, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REMINGTON DESIGNS, LLC;REEL/FRAME:044256/0059

Effective date: 20170831

AS Assignment

Owner name: COFFEE SOLUTIONS, LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAGEN, DAVID;REEL/FRAME:044207/0600

Effective date: 20170901

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: COFFEE SOLUTIONS, LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURROWS, BRUCE D.;REEL/FRAME:044885/0297

Effective date: 20171117

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION