US20170233023A1 - Self-balancing vehicle with adjustable or movable positioning of foot platforms - Google Patents

Self-balancing vehicle with adjustable or movable positioning of foot platforms Download PDF

Info

Publication number
US20170233023A1
US20170233023A1 US15/338,387 US201615338387A US2017233023A1 US 20170233023 A1 US20170233023 A1 US 20170233023A1 US 201615338387 A US201615338387 A US 201615338387A US 2017233023 A1 US2017233023 A1 US 2017233023A1
Authority
US
United States
Prior art keywords
fpus
self
foot
foot platform
balancing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/338,387
Inventor
Shane Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shane Chen
Original Assignee
Shane Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shane Chen filed Critical Shane Chen
Priority to US15/338,387 priority Critical patent/US20170233023A1/en
Publication of US20170233023A1 publication Critical patent/US20170233023A1/en
Assigned to SOLOWHEEL INC. reassignment SOLOWHEEL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INVENTIST, INC.
Assigned to INVENTIST, INC. reassignment INVENTIST, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, SHANE
Assigned to SHANE CHEN reassignment SHANE CHEN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUTURE WHEEL TECHNOLOGIES INC.
Assigned to FUTURE WHEEL TECHNOLOGIES INC. reassignment FUTURE WHEEL TECHNOLOGIES INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SOLOWHEEL INC.
Priority to US16/920,125 priority patent/US11279432B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/12Roller skates; Skate-boards with driving mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/12Motorcycles characterised by position of motor or engine with the engine beside or within the driven wheel
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/40Runner or deck of boards articulated between both feet

Definitions

  • the present invention relates to fore-aft self-balancing transportation devices that include two independently movable platform sections, one each for the right and left foot of a rider.
  • the two wheels are maintained in a fixed position relative to one another. They do not move laterally (to the side) relative to one another and they do not move longitudinally (in the direction of travel) relative to one another.
  • the lateral distance between the foot platforms is adjustable and/or variable.
  • bumps or dips such as pronounced sidewalk seams or items laid across a sidewalk (i.e., garden hose, steel construction plates, etc.), are contacted by both wheels at the same time. This tends to cause a rider to be thrown forward off the platforms. If by contrast, one wheel could be extended forward, crossing is easier because a rider can shift his/her weight to the stable foot (the one not immediately encountering the obstacle), allowing the less weighted foot/leg to absorb or avoid the shock of the collision.
  • FIGS. 1-2 are perspective views of a first embodiment of a self-balancing transportation device with movable foot platform units, the platform units in the extended position.
  • FIGS. 5-7 illustrate another embodiment of a self-balancing transportation device with movable foot platform units.
  • FIG. 8 is a plan view of yet another embodiment of a self-balancing transportation device with movable foot platform units.
  • FIGS. 1-4 a first embodiment of a transportation device 10 with adjustable position foot platform units in accordance with the present invention is shown.
  • the Device 10 may include two foot platforms units 20 , 40 that receive the left and right foot of a user, respectively.
  • the foot platform units (“FPUs”) may be constructed in similar fashion and include the same or similar components. They are each independently fore-aft self-balancing (like the two platform sections of the '278 patent) and include suitable components to achieve this function. These components may include a position (i.e., gyroscopic) sensor, battery, drive motor and control circuitry. The control circuitry instructs the motor to drive the wheel towards FPU balancing based on position data from the sensor. Suitable self-balancing components and arrangements are known in the art.
  • the sensor 31 , 51 , battery 32 , 52 and control circuitry 34 , 54 are shown in phantom lines because they are within housing 24 , 44 , respectively.
  • the drive motor 36 , 56 is preferably a hub motor within wheel 26 , 46 , respectively.
  • Each FPU may include a foot platform 22 , 42 and housing 24 , 44 .
  • Platform side walls 25 may extend upwardly from the outside and/or inside edges of the platforms. These sidewalls help to position a user's foot and to permit a user to exert a lateral force to slide the FPUs towards or away from one another. While sidewalls are only shown on FPU 20 , the sidewalls may also be provided with FPU 40 .
  • Housing 24 , 44 supports the platforms 22 , 42 , houses the self-balancing components, and may provide internal structural support.
  • Connector 50 is preferably provided between the two foot platform units.
  • Connector 50 may have a shaft or rod like configuration and is preferably telescoping or the like such that FPUs 20 , 40 can be moved from an extended position (shown in FIGS. 1-2 ) to a contracted position (shown in FIGS. 3-4 ), and vice versa.
  • Connector 50 may include a main rod 51 and two retractable sheaths 52 , 54 . In FIGS. 3-4 , rod 51 has penetrated into a complementary space within the two housings, as have the retractable sheaths.
  • the connector 50 may be configured such that the FPUs may be positioned at a desired lateral distance from one another and the connector releasably secure in that position with the FPUs at the distance.
  • a rotating latch or biased pins or expanding rotary wedge or other suitable mechanism may be used to releasable set a desired spacing.
  • the connector may also be configured such that the FPUs are not set at a fixed distance and a rider can expand and reduce the FPU spacing during use by exerting an outward or inward force through his or her feet.
  • the axis of rotation of wheels 26 , 46 is preferably co-linear. Furthermore, in a preferred embodiment, the axis of connector 50 is preferably co-linear with the axis of the wheels 26 , 46 .
  • each FPU is independently tiltable (in fore-aft), turning is achieved by the rider leaning forward or backward on one FPU more than the other, in the same way that devices of the '287 patent turn.
  • connector 50 may be configured such that rod 51 is releasable decouplable from the FPUs to minimize size for stowage or to allow the FPUs to be operated individually without a connector.
  • Device 110 includes two self-balancing FPUs 120 , 140 that may be the same or similar to FPUs 20 , 40 of device 10 .
  • the FPUs of device 110 preferably include similar components such as a battery, position sensor, control circuitry and drive motor (hub based or otherwise).
  • the connecting structure 150 is preferably configured such that it maintains a parallel relationship between the FPUs, while permitting one FPU to be moved forward or backward longitudinally relative to the other FPU. In the embodiment of FIGS. 5-7 , the connection structure 150 also permits the FPUs to be independently fore-aft rotated to achieve turning of the device.
  • device 110 has three rods (or elongated members) 161 - 163 that extend between the FPUs and are pivotally coupled (through pivots 171 ) to plates 165 , 166 which are secured to FPUs 120 , 140 , respectively.
  • Support or frame members 168 preferably hold rods 161 - 163 at a fixed spacing from one another.
  • Rods 161 - 163 are preferably sufficiently strong to maintain the parallel relationship of the FPUs, yet sufficiently flexible that the FPUs may rotate in fore-aft relative to each other. Steel or strong plastic or other materials may be suitable for this.
  • the plates 165 , 166 are non-rotatably coupled to their respective FPUs and rotation comes from the flexibility of the connector rod material.
  • connector rods 161 - 163 could vary as long as the strength and flexibility characteristics are maintained to allow a substantially parallel FPU relationship and independent fore-aft rotation.
  • connector 150 could be implemented with a torsion bar or the like that possesses both sufficient rigidity and flexibility (particularly directional flexibility).
  • a suitable torsional bar is described in U.S. Pat. No. 8,157,274 entitled Torsional Flexible Connecting Structure for Transporting Device, by Chen.
  • plate 166 is non-rotatably mounted to FPU 140 .
  • the connecting, parallel-position maintaining rods 161 - 163 could be made of a more rigid/less flexible material and plates 165 , 166 could be rotatably mounted to the FPUs.
  • the plates could be mounted about a central pivot 169 . This would allow the FPUs to rotate fore-aft relative to one another, and move forward and backward longitudinally, while maintaining the parallel relationship of the FPUs.
  • Pivot 169 is preferably both equidistant from rods 161 - 163 and co-linear with the axis of the wheels 126 , 146 .
  • FIG. 8 top plan view of yet another embodiment of a transportation device 210 in accordance with the present invention is shown.
  • Device 210 is similar to that of devices 10 , 110 discussed above and includes FPUs 220 , 240 that function in the same or similar manner.
  • FIG. 8 discloses a connector structure 250 that preferably maintains the FPUs in a parallel arrangement and permits fore-aft rotation and longitudinal movement of the FPUs relative to one another (as was the case with device 110 ).
  • Device 210 also provides telescoping of connector 250 so that the distance between the FPUs can be altered, either on the fly or set to a desired spacing.
  • the distance between the FPUs is biased by a spring internal to connector 250 to a minimum distance.
  • the rider may exert an outward (lateral) pressure on the FPUs to increase the distance between them (applying force opposite the contracting spring) and then place one FPU in front of the other so that the wheels 226 , 246 of the FPUs contact the obstacle in series rather that in parallel, which is a more stable manner in which to ride over an obstacle.
  • Sidewalls 225 , 245 assist with foot-supplied application of lateral force.
  • the connector 250 may have no bias spring and be configured to allow rider controlled sliding of the telescoping connector 250 while riding (to enhance the riding experience).
  • the telescoping connector 250 may be configured such that the spacing between the FPUs may be user selected and released secured at a desired spacing.
  • Connector 250 may include the housing shown FIG. 8 which house multiple (at least a pair) of connecting shafts that are each telescoping and to the same amount (to maintain parallel FPU alignment).
  • the FPUs may be pivotally connected (through a pivot similar to 169 or the like) to connector 250 to achieve independent fore-aft rotation of the FPUs.

Abstract

Personal transportation devices having at least first and second foot platform units that are each fore-aft self-balancing. Various connector structures are disclosed that permit movement and/or positioning of the foot platform units at difference distances or spacings from one another. The spacing may be releaseably set or free moving or other. The connecting structure may maintain a parallel relationship between the two foot platform units, in the line of direction of travel of the device. The foot platform units may move laterally or longitudinally or both, depending on the embodiment, from one another.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 62/247,757, filed Oct. 29, 2015, entitled Self-Balancing Vehicle with Separatable Balancing Modules and having the same inventor as above, and U.S. Provisional Application No. 62/292,825, filed Feb. 8, 2016, entitled Self-Balancing Vehicle with Changeable Relative Position of Foot Placement Sections and having the same inventor as above.
  • FIELD OF THE INVENTION
  • The present invention relates to fore-aft self-balancing transportation devices that include two independently movable platform sections, one each for the right and left foot of a rider.
  • BACKGROUND OF THE INVENTION
  • The prior art includes U.S. Pat. No. 8,738,278 issued to Shane Chen (the inventor herein) for a Two-Wheel, Self-Balancing Vehicle with Independently Movable Foot Placement Sections. This patent is hereby incorporated by reference as though disclosed in its entirety herein. The '278 patent teaches fore-aft self-balancing of two independently movable (i.e., fore-aft rotatable) foot platforms, as well as drive motors, control circuitry, and other components for operation of such a device.
  • In the '278 patent, the two wheels are maintained in a fixed position relative to one another. They do not move laterally (to the side) relative to one another and they do not move longitudinally (in the direction of travel) relative to one another.
  • To accommodate different riding preferences (a wider or narrower stance, for example) and to increase the variety of riding experiences, there is a need for the lateral distance between the foot platforms to be adjustable and/or variable.
  • Furthermore, if there is a “bump” in a pathway, it is generally easier to ride over it if one wheel encounters it first, rather than both at the same time. In the device of the '278 patent, bumps or dips, such as pronounced sidewalk seams or items laid across a sidewalk (i.e., garden hose, steel construction plates, etc.), are contacted by both wheels at the same time. This tends to cause a rider to be thrown forward off the platforms. If by contrast, one wheel could be extended forward, crossing is easier because a rider can shift his/her weight to the stable foot (the one not immediately encountering the obstacle), allowing the less weighted foot/leg to absorb or avoid the shock of the collision. Once over the obstacle, the rider can transfer weight to that forward foot allowing the rear foot to be less weighted when it contact the obstacle. Thus, there is a need, in a two foot platform self-balancing device where there is at least one wheel associated with each foot platform, to be able to move one foot platform forward or rearward (in the line of direction of travel) relative to the other.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a self-balancing personal transportation device where the lateral distance between the foot platform units is changeable.
  • It is another object of the present invention to provide a self-balancing personal transportation device where the longitudinal distance (i.e., in the line of direction of travel) between the foot platform units is changeable.
  • It is also an object of the present invention to improve or enhance the riding experience in a self-balancing personal transportation device having two foot platform units and to make overcoming an obstacle in a pathway easier.
  • These and related objects of the present invention are achieved by use of a self-balancing vehicle with adjustable or movable positioning of foot platforms as described herein. The attainment of the foregoing and related advantages and features of the invention should be more readily apparent to those skilled in the art, after review of the following more detailed description of the invention taken together with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-2 are perspective views of a first embodiment of a self-balancing transportation device with movable foot platform units, the platform units in the extended position.
  • FIGS. 3-4 are views of the transportation device of FIGS. 1-2 yet with the foot platform units in a contracted or stowage position.
  • FIGS. 5-7 illustrate another embodiment of a self-balancing transportation device with movable foot platform units.
  • FIG. 8 is a plan view of yet another embodiment of a self-balancing transportation device with movable foot platform units.
  • DETAILED DESCRIPTION
  • Referring to FIGS. 1-4, a first embodiment of a transportation device 10 with adjustable position foot platform units in accordance with the present invention is shown.
  • Device 10 may include two foot platforms units 20,40 that receive the left and right foot of a user, respectively. The foot platform units (“FPUs”) may be constructed in similar fashion and include the same or similar components. They are each independently fore-aft self-balancing (like the two platform sections of the '278 patent) and include suitable components to achieve this function. These components may include a position (i.e., gyroscopic) sensor, battery, drive motor and control circuitry. The control circuitry instructs the motor to drive the wheel towards FPU balancing based on position data from the sensor. Suitable self-balancing components and arrangements are known in the art.
  • In FIG. 2, the sensor 31,51, battery 32,52 and control circuitry 34,54 are shown in phantom lines because they are within housing 24,44, respectively. The drive motor 36,56 is preferably a hub motor within wheel 26,46, respectively.
  • Each FPU may include a foot platform 22,42 and housing 24,44. Platform side walls 25 (shown in FIG. 1 in phantom lines) may extend upwardly from the outside and/or inside edges of the platforms. These sidewalls help to position a user's foot and to permit a user to exert a lateral force to slide the FPUs towards or away from one another. While sidewalls are only shown on FPU 20, the sidewalls may also be provided with FPU 40. Housing 24,44 supports the platforms 22,42, houses the self-balancing components, and may provide internal structural support.
  • A connector or connecting structure 50 is preferably provided between the two foot platform units. Connector 50 may have a shaft or rod like configuration and is preferably telescoping or the like such that FPUs 20,40 can be moved from an extended position (shown in FIGS. 1-2) to a contracted position (shown in FIGS. 3-4), and vice versa. Connector 50 may include a main rod 51 and two retractable sheaths 52,54. In FIGS. 3-4, rod 51 has penetrated into a complementary space within the two housings, as have the retractable sheaths.
  • The connector 50 may be configured such that the FPUs may be positioned at a desired lateral distance from one another and the connector releasably secure in that position with the FPUs at the distance. A rotating latch or biased pins or expanding rotary wedge or other suitable mechanism (known in the art) may be used to releasable set a desired spacing. The connector may also be configured such that the FPUs are not set at a fixed distance and a rider can expand and reduce the FPU spacing during use by exerting an outward or inward force through his or her feet.
  • In the embodiment of FIGS. 1-4, the axis of rotation of wheels 26,46 is preferably co-linear. Furthermore, in a preferred embodiment, the axis of connector 50 is preferably co-linear with the axis of the wheels 26,46.
  • Further, since each FPU is independently tiltable (in fore-aft), turning is achieved by the rider leaning forward or backward on one FPU more than the other, in the same way that devices of the '287 patent turn.
  • It should also recognized that connector 50 may be configured such that rod 51 is releasable decouplable from the FPUs to minimize size for stowage or to allow the FPUs to be operated individually without a connector.
  • Referring to FIGS. 5-7, another embodiment of a transportation device 110 in accordance with the present invention is shown. Device 110 includes two self-balancing FPUs 120,140 that may be the same or similar to FPUs 20,40 of device 10. The FPUs of device 110 preferably include similar components such as a battery, position sensor, control circuitry and drive motor (hub based or otherwise).
  • In device 110, the connecting structure 150 is preferably configured such that it maintains a parallel relationship between the FPUs, while permitting one FPU to be moved forward or backward longitudinally relative to the other FPU. In the embodiment of FIGS. 5-7, the connection structure 150 also permits the FPUs to be independently fore-aft rotated to achieve turning of the device.
  • For example, in FIGS. 5-7, device 110 has three rods (or elongated members) 161-163 that extend between the FPUs and are pivotally coupled (through pivots 171) to plates 165,166 which are secured to FPUs 120,140, respectively. Support or frame members 168 preferably hold rods 161-163 at a fixed spacing from one another. Rods 161-163 are preferably sufficiently strong to maintain the parallel relationship of the FPUs, yet sufficiently flexible that the FPUs may rotate in fore-aft relative to each other. Steel or strong plastic or other materials may be suitable for this. In such a configuration, the plates 165,166 are non-rotatably coupled to their respective FPUs and rotation comes from the flexibility of the connector rod material.
  • It should be noted that the number of connector rods 161-163 could vary as long as the strength and flexibility characteristics are maintained to allow a substantially parallel FPU relationship and independent fore-aft rotation. Furthermore, it should be noted that in place of the mildly flexible, parallel-position maintaining structure of FIGS. 5-7, connector 150 could be implemented with a torsion bar or the like that possesses both sufficient rigidity and flexibility (particularly directional flexibility). A suitable torsional bar is described in U.S. Pat. No. 8,157,274 entitled Torsional Flexible Connecting Structure for Transporting Device, by Chen.
  • Referring to FIG. 7, in the embodiment of device 110 described above, plate 166 is non-rotatably mounted to FPU 140. In an alternative embodiment, the connecting, parallel-position maintaining rods 161-163 could be made of a more rigid/less flexible material and plates 165,166 could be rotatably mounted to the FPUs. For example, the plates could be mounted about a central pivot 169. This would allow the FPUs to rotate fore-aft relative to one another, and move forward and backward longitudinally, while maintaining the parallel relationship of the FPUs. Pivot 169 is preferably both equidistant from rods 161-163 and co-linear with the axis of the wheels 126,146.
  • Referring to FIG. 8, top plan view of yet another embodiment of a transportation device 210 in accordance with the present invention is shown. Device 210 is similar to that of devices 10,110 discussed above and includes FPUs 220,240 that function in the same or similar manner.
  • The FPUs preferably have sidewalls 225,245 discussed above with reference to FIG. 1. FIG. 8 discloses a connector structure 250 that preferably maintains the FPUs in a parallel arrangement and permits fore-aft rotation and longitudinal movement of the FPUs relative to one another (as was the case with device 110). Device 210 also provides telescoping of connector 250 so that the distance between the FPUs can be altered, either on the fly or set to a desired spacing.
  • In one embodiment of device 210, the distance between the FPUs is biased by a spring internal to connector 250 to a minimum distance. However, if the rider sees a bump coming in the path, the rider may exert an outward (lateral) pressure on the FPUs to increase the distance between them (applying force opposite the contracting spring) and then place one FPU in front of the other so that the wheels 226,246 of the FPUs contact the obstacle in series rather that in parallel, which is a more stable manner in which to ride over an obstacle. Sidewalls 225,245 assist with foot-supplied application of lateral force.
  • In another embodiment of device 220, the connector 250 may have no bias spring and be configured to allow rider controlled sliding of the telescoping connector 250 while riding (to enhance the riding experience). In yet another embodiment, the telescoping connector 250 may be configured such that the spacing between the FPUs may be user selected and released secured at a desired spacing.
  • Connector 250 may include the housing shown FIG. 8 which house multiple (at least a pair) of connecting shafts that are each telescoping and to the same amount (to maintain parallel FPU alignment). The FPUs may be pivotally connected (through a pivot similar to 169 or the like) to connector 250 to achieve independent fore-aft rotation of the FPUs.
  • While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modification, and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice in the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as fall within the scope of the invention and the limits of the appended claims.

Claims (1)

1. A personal transportation device, comprising:
a first foot platform unit having a first wheel and configured for fore-aft self-balancing operation;
a second foot platform unit having a second wheel and configured for fore-aft self-balancing operation;
a connector coupled to the first and the second foot platform units that is configured such that the distance between the foot platforms units or the location of the foot platform units relative to one another may be changed.
US15/338,387 2015-10-29 2016-10-29 Self-balancing vehicle with adjustable or movable positioning of foot platforms Abandoned US20170233023A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/338,387 US20170233023A1 (en) 2015-10-29 2016-10-29 Self-balancing vehicle with adjustable or movable positioning of foot platforms
US16/920,125 US11279432B2 (en) 2015-10-29 2020-07-02 Self-balancing foot platform devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562247757P 2015-10-29 2015-10-29
US201662292825P 2016-02-08 2016-02-08
US15/338,387 US20170233023A1 (en) 2015-10-29 2016-10-29 Self-balancing vehicle with adjustable or movable positioning of foot platforms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US62292825 Continuation 2016-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/920,125 Continuation US11279432B2 (en) 2015-10-29 2020-07-02 Self-balancing foot platform devices

Publications (1)

Publication Number Publication Date
US20170233023A1 true US20170233023A1 (en) 2017-08-17

Family

ID=58630959

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/338,387 Abandoned US20170233023A1 (en) 2015-10-29 2016-10-29 Self-balancing vehicle with adjustable or movable positioning of foot platforms
US16/920,125 Active US11279432B2 (en) 2015-10-29 2020-07-02 Self-balancing foot platform devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/920,125 Active US11279432B2 (en) 2015-10-29 2020-07-02 Self-balancing foot platform devices

Country Status (4)

Country Link
US (2) US20170233023A1 (en)
EP (1) EP3368169A4 (en)
CN (1) CN108697926A (en)
WO (1) WO2017075617A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180037293A1 (en) * 2015-08-04 2018-02-08 Shane Chen Two-wheel self-balancing vehicle with platform borne sensor control
CN108407949A (en) * 2018-05-08 2018-08-17 纳恩博(北京)科技有限公司 Traveling apparatus
CN108609095A (en) * 2018-05-08 2018-10-02 纳恩博(北京)科技有限公司 Vehicle frame, connection structure and balance car
CN109398559A (en) * 2018-05-21 2019-03-01 周伟 Self-balancing vehicle
US10322766B2 (en) * 2016-03-17 2019-06-18 Shane Chen Self-balancing transportation device with angular movement of foot platform
US10421006B1 (en) * 2019-05-01 2019-09-24 Bowen Li Self-balancing vehicle and structural support therein
US20190351315A1 (en) * 2018-05-21 2019-11-21 Inmotion Sports Technologies Co., Ltd Self-Balancing Vehicle
US20200282295A1 (en) * 2019-01-09 2020-09-10 Shane Chen Auto-balancing device with longitudinally disposed and movable platform sections
USD911475S1 (en) * 2019-07-29 2021-02-23 Zhejiang Jinbang Sports Equipment Co., Ltd. Balance vehicle
US20220411004A1 (en) * 2021-06-24 2022-12-29 Shenzhen Baike Electronic Commerce Co., Ltd. Self-balancing scooter and control method thereof, and kart powered by the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512348B (en) * 2017-07-27 2020-11-24 纳恩博(北京)科技有限公司 Electric balance car
US11654345B2 (en) * 2021-06-25 2023-05-23 Zhenkun Wang Portable energy-saving and environment-friendly electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070001414A1 (en) * 2002-05-01 2007-01-04 Singi Kang Skateboard with direction-caster
US8738278B2 (en) * 2012-02-12 2014-05-27 Shane Chen Two-wheel, self-balancing vehicle with independently movable foot placement sections
US9376155B2 (en) * 2014-06-13 2016-06-28 Hangzhou Chic Intelligent Technology Co., Ltd Electric balance vehicle
US9499228B2 (en) * 2014-06-10 2016-11-22 Fu-Long Chang Self-balancing vehicle frame
US9682309B2 (en) * 2014-11-26 2017-06-20 Razor Usa Llc Powered wheeled board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083178B2 (en) * 2001-04-11 2006-08-01 Steven Dickinson Potter Balancing skateboard
KR100933532B1 (en) * 2008-12-19 2009-12-23 전정호 The street board
JP5062361B2 (en) * 2010-03-12 2012-10-31 トヨタ自動車株式会社 Moving body
CN101870315A (en) * 2010-06-29 2010-10-27 上海大学 Self-balancing two-wheeled bike
US8684123B2 (en) * 2011-08-02 2014-04-01 Shane Chen Low-profile two-wheeled self-balancing vehicle with exterior foot platforms
US8960353B2 (en) * 2012-03-30 2015-02-24 Shane Chen Foot-controlled powered vehicle
US9682732B2 (en) * 2013-09-06 2017-06-20 Jason Thomas Strack Fully self-balanced hands-free portable vehicle
CN104071275B (en) * 2014-07-14 2016-03-09 张军凯 Self-balancing electronic two-wheel car and assembling vehicle frame thereof
CN105947053A (en) * 2014-12-25 2016-09-21 李陈 Self-balancing double-wheel vehicle
CN104494749B (en) * 2014-12-25 2016-09-21 东莞市乐和智能科技有限公司 A kind of electronic self-balancing type two-wheel car
CN105905207A (en) * 2014-12-25 2016-08-31 李陈 Self-balanced power-driven double-wheeled vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070001414A1 (en) * 2002-05-01 2007-01-04 Singi Kang Skateboard with direction-caster
US8738278B2 (en) * 2012-02-12 2014-05-27 Shane Chen Two-wheel, self-balancing vehicle with independently movable foot placement sections
US9499228B2 (en) * 2014-06-10 2016-11-22 Fu-Long Chang Self-balancing vehicle frame
US9376155B2 (en) * 2014-06-13 2016-06-28 Hangzhou Chic Intelligent Technology Co., Ltd Electric balance vehicle
US9682309B2 (en) * 2014-11-26 2017-06-20 Razor Usa Llc Powered wheeled board

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180037293A1 (en) * 2015-08-04 2018-02-08 Shane Chen Two-wheel self-balancing vehicle with platform borne sensor control
US10843765B2 (en) * 2015-08-04 2020-11-24 Shane Chen Two-wheel self-balancing vehicle with platform borne sensor control
US10322766B2 (en) * 2016-03-17 2019-06-18 Shane Chen Self-balancing transportation device with angular movement of foot platform
CN108407949A (en) * 2018-05-08 2018-08-17 纳恩博(北京)科技有限公司 Traveling apparatus
CN108609095A (en) * 2018-05-08 2018-10-02 纳恩博(北京)科技有限公司 Vehicle frame, connection structure and balance car
CN109398559A (en) * 2018-05-21 2019-03-01 周伟 Self-balancing vehicle
US20190351315A1 (en) * 2018-05-21 2019-11-21 Inmotion Sports Technologies Co., Ltd Self-Balancing Vehicle
US10625141B2 (en) * 2018-05-21 2020-04-21 Shenzhen Tomoloo Technology Industrial Co., Ltd Self-balancing vehicle
US20200282295A1 (en) * 2019-01-09 2020-09-10 Shane Chen Auto-balancing device with longitudinally disposed and movable platform sections
US10421006B1 (en) * 2019-05-01 2019-09-24 Bowen Li Self-balancing vehicle and structural support therein
USD911475S1 (en) * 2019-07-29 2021-02-23 Zhejiang Jinbang Sports Equipment Co., Ltd. Balance vehicle
US20220411004A1 (en) * 2021-06-24 2022-12-29 Shenzhen Baike Electronic Commerce Co., Ltd. Self-balancing scooter and control method thereof, and kart powered by the same

Also Published As

Publication number Publication date
EP3368169A1 (en) 2018-09-05
WO2017075617A1 (en) 2017-05-04
US11279432B2 (en) 2022-03-22
CN108697926A (en) 2018-10-23
EP3368169A4 (en) 2019-01-09
US20210094647A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US20210094647A1 (en) Self-balancing foot platform devices
US10016666B2 (en) Collapsible single passenger riding golf bag cart
JP5265581B2 (en) Rear wheel steering three wheel scooter
EP3068502B1 (en) Light-weight portable bicycle rollers
US9511811B2 (en) Two-wheeled gyroscope-stabilized vehicle and methods for controlling thereof
CN107406116B (en) Scooter with rotary connection
US8584782B2 (en) Two-wheeled self-balancing motorized personal vehicle with tilting wheels
CN203318594U (en) Standing type handle-free self-balancing two-wheeled electric vehicle
CN106660603B (en) Foot-drivable personal vehicle
US20160101823A1 (en) Self-balancing vehicle frame
US20120118657A1 (en) Motorized Golf Bag Cart
US8960353B2 (en) Foot-controlled powered vehicle
US20160185369A1 (en) Collapsible carrying device
JP2017500251A5 (en)
US3746113A (en) Motorcycle
WO2020118230A2 (en) Separable wheel pack assembly
US2170978A (en) Coasting device
RU2554270C1 (en) Device to overcome obstacles
US8973695B2 (en) Vehicle wheeled device
WO2020178842A1 (en) Folding tricycle
KR101010117B1 (en) The bicycle with rear wheel steering
NO326730B1 (en) Snowshoe toy comprising a pair of steering skis and a ski distance adjustment mechanism
CN109050754A (en) Compact mobile device with adjustable driving mode
AU2015101890A4 (en) Golf Buggy Steering System
US9308968B2 (en) Leg type traveling apparatus

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: FUTURE WHEEL TECHNOLOGIES INC., WASHINGTON

Free format text: CHANGE OF NAME;ASSIGNOR:SOLOWHEEL INC.;REEL/FRAME:048567/0570

Effective date: 20180831

Owner name: SOLOWHEEL INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INVENTIST, INC.;REEL/FRAME:048565/0317

Effective date: 20170930

Owner name: INVENTIST, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, SHANE;REEL/FRAME:048565/0297

Effective date: 20170930

Owner name: SHANE CHEN, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUTURE WHEEL TECHNOLOGIES INC.;REEL/FRAME:048565/0405

Effective date: 20190302

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE