US20170232198A1 - Pecvd coated pharmaceutical package, coating process and apparatus - Google Patents

Pecvd coated pharmaceutical package, coating process and apparatus Download PDF

Info

Publication number
US20170232198A1
US20170232198A1 US15/585,430 US201715585430A US2017232198A1 US 20170232198 A1 US20170232198 A1 US 20170232198A1 US 201715585430 A US201715585430 A US 201715585430A US 2017232198 A1 US2017232198 A1 US 2017232198A1
Authority
US
United States
Prior art keywords
injection
vessel
layer
coating
primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/585,430
Inventor
Joseph A. Jones
Christopher Weikart
Steven J. Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIO2 Medical Products Inc
Original Assignee
SIO2 Medical Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIO2 Medical Products Inc filed Critical SIO2 Medical Products Inc
Priority to US15/585,430 priority Critical patent/US20170232198A1/en
Assigned to THE TEACHERS' RETIREMENT SYSTEM OF ALABAMA reassignment THE TEACHERS' RETIREMENT SYSTEM OF ALABAMA SECURITY AGREEMENT AMENDMENT Assignors: SIO2 MEDICAL PRODUCTS, INC.
Publication of US20170232198A1 publication Critical patent/US20170232198A1/en
Assigned to SIO2 MEDICAL PRODUCTS, INC. reassignment SIO2 MEDICAL PRODUCTS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE TEACHERS RETIREMENT SYSTEM OF ALABAMA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31511Piston or piston-rod constructions, e.g. connection of piston with piston-rod
    • A61M5/31513Piston constructions to improve sealing or sliding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/026Ceramic or ceramic-like structures, e.g. glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/10Materials for lubricating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3103Leak prevention means for distal end of syringes, i.e. syringe end for mounting a needle
    • A61M2005/3104Caps for syringes without needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • A61M2005/3131Syringe barrels specially adapted for improving sealing or sliding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0238General characteristics of the apparatus characterised by a particular materials the material being a coating or protective layer

Definitions

  • European patent applications describe apparatus, vessels, precursors, coatings or layers and methods (in particular coating methods and test methods for examining the coatings or layers) which can generally be used in performing the present invention, unless stated otherwise herein. They also describe SiO x barrier coatings or layers to which reference is made herein.
  • the present invention relates to the technical field of lubricated and siliconized surfaces, for example interior surfaces of pharmaceutical packages or other vessels for storing or other contact with fluids.
  • a “deposit of lubricant” as defined in this specification also includes deposits of “lubricants” for non-lubricating uses, for example siliconization of a vessel wall to prevent adherence of a fluid stored in the vessel.)
  • the present invention also relates to a pharmaceutical package or other vessel and to a method for making a pharmaceutical package with a lubricated surface.
  • the present invention also relates more generally to medical articles, including articles other than packages or vessels, for example catheters.
  • silicone oil is typically used as a lubricant to allow the plunger tip to slide in the barrel, and/or to promote draining of the intended deliverable fluid from the syringe surfaces.
  • Glass pharmaceutical packages or other vessels are prone to breakage or degradation during manufacture, filling operations, shipping and use, which means that glass particulates may enter the drug.
  • the presence of glass particles has led to many FDA Warning Letters and to product recalls.
  • Glass-forming processes do not yield the tight dimensional tolerances required for some of the newer auto-injectors and delivery systems. Glass is also more difficult and expensive to fabricate into syringes than injection molded plastics.
  • An important consideration regarding medical syringes is to ensure that the plunger can move at a constant speed and with a constant force when it is pressed into the barrel during use, with a low initiation or breakout force, F i , and a low maintenance force, F m .
  • a similar consideration making lubrication desirable applies to vessels such as pharmaceutical vials which have to be closed by a closure, for example a plunger tip, septum or stopper, and to the septum or stopper itself, and more generally to any surface which desirably provides smooth operation of moving parts and/or is protectively coated.
  • the breakout force is lower for glass syringes than for plastic syringes due to the surface energy differences between glass and plastic (glass is a hydrophilic surface and plastic is a hydrophobic surface).
  • PDMS is hydrophobic. It would be useful to provide a similar breakout force profile on plastic and glass syringes, and for the effect of aging on the breakout force to be minimal.
  • a non-limiting aspect of the invention is a syringe having a PECVD treated generally cylindrical interior surface defining an inner sliding surface; and a deposit of fluid lubricant on the PECVD treated surface.
  • the PECVD treatment provides a primer coating or layer on the sliding surface that retains the deposit of fluid lubricant in place on the surface.
  • the primer coating or layer improves the lubrication between the relatively sliding parts. More evenly distributed lubricant might be a factor in lowering the sliding friction and making the sliding friction more uniform. As another potential result, in a medical vessel coated on the interior wall with the primer coating or layer and a deposit of lubricant, the more evenly distributed lubricant can improve draining of the vessel. As a third potential result, the more evenly distributed lubricant can be used in a smaller quantity to obtain the same technical effect or advantage, thus potentially reducing the amount of lubricant available to mix with the contents of the vessel. Some potential examples of the lubricant mixing with the contents of the vessel are mechanical or chemical emulsification of the lubricant and a drug or other contents of the vessel.
  • the primer coating or layer itself without a deposit of lubricant, can improve draining of the vessel.
  • a similar breakout force profile can be obtained on plastic and glass syringes if the plastic syringes are treated as described in this specification.
  • Another non-limiting aspect of the invention is a method of making a syringe as described above.
  • a syringe having a surface to be lubricated.
  • a primer coating or layer of SiO x C y or SiN x C y in which x is from about 0.5 to about 2.4 and y is from about 0.6 to about 3, is applied to the surface.
  • the primer coating or layer can be applied by chemical vapor deposition of a polysiloxane or polysilazane precursor, typically in the presence of oxygen.
  • the primer coating or layer is applied either directly to the syringe surface or with one or more intervening coatings or layers between the primer coating or layer and the syringe surface.
  • the primer coating or layer has a first primer surface facing away from the syringe surface and a second primer surface facing the syringe surface.
  • a deposit of lubricant is applied to the first primer surface.
  • a prefilled syringe comprising a syringe as described above containing a fluid to be dispensed and closed with a plunger.
  • the fluid to be dispensed can be any of the inhalation anesthetics, injectable drugs, liquid drugs (non-injectable), drug classes, diagnostic test materials, or other materials recited in the specification or claims.
  • FIG. 1 is an exploded longitudinal section of a syringe, plunger, and cap assembly of a prefilled syringe.
  • FIG. 2 is an enlarged detail view of the barrel wall and coatings shown in FIG. 1 .
  • FIG. 3 is a plot of F i , the force required to initiate movement of a plunger within the barrel of a syringe, for syringes having a treated plunger tip.
  • FIG. 4 is another plot of F i , the force required to initiate movement of a plunger within the barrel of a syringe, for syringes having a treated plunger tip.
  • First and “second” or similar references to, for example, deposits of lubricant, processing stations or processing devices refer to the minimum number of deposits, processing stations or devices that are present, but do not necessarily represent the order or total number of deposits, processing stations and devices or require additional deposits, processing stations and devices beyond the stated number. These terms do not limit the number of processing stations or the particular processing carried out at the respective stations.
  • an “organosilicon precursor” is a compound having at least one of the linkages:
  • a volatile organosilicon precursor defined as such a precursor that can be supplied as a vapor in a PECVD apparatus, is an optional organosilicon precursor.
  • the organosilicon precursor is selected from the group consisting of a linear siloxane, a monocyclic siloxane, a polycyclic siloxane, a polysilsesquioxane, an alkyl trimethoxysilane, a linear silazane, a monocyclic silazane, a polycyclic silazane, a polysilsesquiazane, and a combination of any two or more of these precursors.
  • the feed amounts of PECVD precursors, gaseous reactant or process gases, and carrier gas are sometimes expressed in “standard volumes” in the specification and claims.
  • the standard volume of a charge or other fixed amount of gas is the volume the fixed amount of the gas would occupy at a standard temperature and pressure (without regard to the actual temperature and pressure of delivery).
  • Standard volumes can be measured using different units of volume, and still be within the scope of the present disclosure and claims.
  • the same fixed amount of gas could be expressed as the number of standard cubic centimeters, the number of standard cubic meters, or the number of standard cubic feet.
  • Standard volumes can also be defined using different standard temperatures and pressures, and still be within the scope of the present disclosure and claims.
  • the standard temperature might be 0° C.
  • the standard pressure might be 760 Torr (as is conventional), or the standard temperature might be 20° C. and the standard pressure might be 1 Torr. But whatever standard is used in a given case, when comparing relative amounts of two or more different gases without specifying particular parameters, the same units of volume, standard temperature, and standard pressure are to be used relative to each gas, unless otherwise indicated.
  • the corresponding feed rates of PECVD precursors, gaseous reactant or process gases, and carrier gas are expressed in standard volumes per unit of time in the specification.
  • the flow rates are expressed as standard cubic centimeters per minute, abbreviated as sccm.
  • other units of time can be used, such as seconds or hours, but consistent parameters are to be used when comparing the flow rates of two or more gases, unless otherwise indicated.
  • the present syringes optionally can be used as pharmaceutical packages or other vessels in which the lumen has a void volume of from 0.5 to 50 mL, optionally from 1 to 10 mL, optionally from 0.5 to 5 mL, optionally from 1 to 3 mL.
  • the substrate surface can be part or all of the inner or interior surface of a vessel having at least one opening and an inner or interior surface.
  • hydrophobic layer in the context of the present invention means that the coating or layer lowers the wetting tension of a surface coated with the coating or layer, compared to the corresponding uncoated surface. Hydrophobicity is thus a function of both the uncoated substrate and the coating or layer. The same applies with appropriate alterations for other contexts wherein the term “hydrophobic” is used.
  • hydrophilic means the opposite, i.e. that the wetting tension is increased compared to reference sample.
  • present hydrophobic layers are primarily defined by their hydrophobicity and the process conditions providing hydrophobicity
  • the values of w, x, y, and z as applicable to the empirical composition Si w O x C y H z throughout this specification should be understood as ratios or an empirical formula (for example for a coating or layer), rather than as a limit on the number or type of atoms in a molecule.
  • octamethylcyclotetrasiloxane which has the molecular composition Si 4 O 4 C 8 H 24
  • Si 4 O 4 C 8 H 24 can be described by the following empirical formula, arrived at by dividing each of w, x, y, and z in the molecular formula by 4, the largest common factor: Si 1 O 1 C 2 H 6 .
  • the values of w, x, y, and z are also not limited to integers.
  • SiO x C y H z is described as equivalent to SiO x C y , it is not necessary to show the presence of hydrogen in any proportion to show the presence of SiO x C y .
  • “Wetting tension” is a specific measure for the hydrophobicity or hydrophilicity of a surface.
  • An optional wetting tension measurement method in the context of the present invention is ASTM D 2578 or a modification of the method described in ASTM D 2578. This method uses standard wetting tension solutions (called dyne solutions) to determine the solution that comes nearest to wetting a plastic film surface for exactly two seconds. This is the film's wetting tension.
  • the procedure utilized is varied herein from ASTM D 2578 in that the substrates are not flat plastic films, but are tubes made according to the Protocol for Forming PET Tube and (except for controls) coated according to the Protocol for coating Tube Interior with Hydrophobic Coating or Layer (see Example 9 of EP2251671 A2).
  • a “primer coating or layer” according to the present invention is a coating or layer which is more receptive than the uncoated surface to a deposit of lubricant.
  • the deposit of lubricant reduces the frictional resistance of the coated surface in comparison to a reference surface that is uncoated.
  • the primer coating or layer optionally can have a composition according to the empirical composition SiO x , or according to the empirical composition Si w O x C y H z , (or its equivalent SiO x C y ) as defined herein, which omits hydrogen because it is not measured by the XPS (X-ray photoelectron spectroscopy) method used in this specification to define the composition of a plasma treated surface or a CVD or chemical vapour deposition coating or layer.
  • the primer coating or layer generally has an atomic ratio Si w O x C y (or its equivalent SiO x C y ) wherein w is 1, x is from about 0.5 to about 2.4, y is from about
  • the atomic ratios of Si, O, and C in the “primer coating or layer” are, as several options:
  • the atomic ratio can be determined by XPS.
  • the coating or layer may thus in one aspect have the formula Si w O x C y H z (or its equivalent SiO x C y ), for example where w is 1, x is from about 0.5 to about 2.4, y is from about 0.6 to about 3, and z is from about 2 to about 9.
  • such coating or layer would hence contain 36% to 41% carbon normalized to 100% carbon plus oxygen plus silicon.
  • “Frictional resistance” can be static frictional resistance and/or kinetic frictional resistance.
  • One of the optional embodiments of the present invention is a syringe part, for example a syringe or plunger tip, coated with a deposit of lubricant on a primer coating or layer.
  • the relevant static frictional resistance in the context of the present invention is the breakout force as defined herein
  • the relevant kinetic frictional resistance in the context of the present invention is the plunger sliding force as defined herein.
  • the plunger sliding force as defined and determined herein is suitable to determine the presence or absence and the lubricity and/or protective characteristics of a deposit of lubricant on a primer coating or layer in the context of the present invention whenever the coating or layer is applied to any syringe or syringe part, for example to the inner wall of a syringe.
  • the breakout force is of particular relevance for evaluation of the coating or layer effect on a prefilled syringe, i.e. a syringe which is filled after coating and can be stored for some time, for example several months or even years, before the plunger tip is moved again (has to be “broken out”).
  • the “plunger sliding force” (synonym to “glide force,” “maintenance force”, or F m , also used in this description) in the context of the present invention is the force required to maintain movement of a plunger tip in a syringe, for example during aspiration or dispense. It can advantageously be determined using the ISO 7886-1:1993 test described herein and known in the art. A synonym for “plunger sliding force” often used in the art is “plunger force” or “pushing force”.
  • the “plunger breakout force” (synonym to “breakout force”, “break loose force”, “initiation force”, F i , also used in this description) in the context of the present invention is the initial force required to move the plunger tip in a syringe, for example in a prefilled syringe.
  • Sliding force and breakout force are sometimes used herein to describe the forces required to advance a stopper or other closure into a pharmaceutical package or other vessel, such as a medical sample tube or a vial, to seat the stopper in a vessel to close the vessel. Its use is analogous to use in the context of a syringe and its plunger tip, and the measurement of these forces for a vessel and its closure are contemplated to be analogous to the measurement of these forces for a syringe, except that at least in most cases no liquid is ejected from a vessel when advancing the closure to a seated position.
  • “Slidably” means that the plunger tip, closure, or other removable part is permitted to slide in a syringe or other vessel.
  • a syringe 252 comprises a syringe barrel 250 having a PECVD treated generally cylindrical interior surface 254 defining an inner sliding surface; and a deposit of fluid lubricant 287 on the PECVD treated surface 254 .
  • the syringe as illustrated includes a plunger 258 having an outer sliding surface 259 configured to slide within the lumen 300 along the inner sliding surface 254 .
  • the outer sliding surface 259 can be a PECVD treated surface as well.
  • syringe is broadly defined to include cartridges, injection “pens,” and other types of barrels or reservoirs adapted to be assembled with one or more other components to provide a functional syringe.
  • “Syringe” is also broadly defined to include related articles such as auto-injectors, which provide a mechanism for dispensing the contents.
  • the syringe in particular a surface of a syringe such as the interior surface 254 to be lubricated, comprises a first deposit of lubricant 287 applied to the primer surface.
  • At least a portion of the wall 214 of the vessel 250 comprises or consists essentially of a polymer, for example a polyolefin (for example a cyclic olefin polymer, a cyclic olefin copolymer, or polypropylene), a polyester, for example polyethylene terephthalate, polyethylene naphthalate, a polycarbonate, or any combination or copolymer of any of these.
  • a polyolefin for example a cyclic olefin polymer, a cyclic olefin copolymer, or polypropylene
  • a polyester for example polyethylene terephthalate, polyethylene naphthalate, a polycarbonate, or any combination or copolymer of any of these.
  • wall materials include COC (cyclic olefin copolymer), COP (cyclic olefin polymer), PET (polyethylene terephthalate), polypropylene (PP), or a combination of two or more of these.
  • at least a portion of the wall 214 of the vessel 250 comprises or consists essentially of glass, for example borosilicate glass.
  • the plunger can be made of a variety of materials.
  • at least a portion of the plunger can be made of chlorobutyl rubber, bromobutyl rubber, silicone rubber, or a combination of any two or none of these.
  • the PECVD treated surface comprises a primer coating or layer 286 of SiO x C y , in which x is from about 0.5 to about 2.4 and y is from about 0.6 to about 3.
  • x is between 0.5 and 1.5 and y is between 0.9 and 2.
  • x is between 0.7 and 1.3 and y is between 0.9 and 2.
  • x is between 0.8 and 1.2 and y is between 0.9 and 1.5.
  • x is between 0.9 and 1.2 and y is between 0.9 and 1.4.
  • x is between 0.92 and 1.07 and y is between 1.16 and 1.33.
  • the PECVD treated surface comprises a primer coating or layer 286 of SiO x , in which x is from 1.5 to 2.9.
  • the primer coating or layer 286 is between 10 and 1000 nm thick.
  • the primer coating or layer is between 10 and 1000 nm thick.
  • the primer coating or layer is between 50 and 800 nm thick.
  • the primer coating or layer is between 100 and 700 nm thick.
  • the primer coating or layer is between 300 and 600 nm thick.
  • the primer coating or layer 286 contacting the fluid is between 10 and 1000 nm thick two years after the article is assembled.
  • the primer coating or layer contacting the fluid is between 20 and 700 nm thick two years after the article is assembled.
  • the primer coating or layer contacting the fluid is between 50 and 500 nm thick two years after the article is assembled.
  • the primer coating or layer contacting the fluid is between 100 and 400 nm thick two years after the article is assembled.
  • the primer coating or layer contacting the fluid is between 150 and 300 nm thick two years after the article is assembled.
  • the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 44 hours of contact with the fluid.
  • the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 88 hours of contact with the fluid.
  • the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 175 hours of contact with the fluid.
  • the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 250 hours of contact with the fluid.
  • the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 350 hours of contact with the fluid.
  • the primer has a contact angle (with distilled water) of from 70° to 130°.
  • the interior surface of the primer has a contact angle (with distilled water) of from 90° to 110°.
  • the interior surface of the primer has a contact angle (with distilled water) of from 80° to 120°.
  • the fluid lubricant 287 comprises polydimethylsiloxane.
  • a deposit of fluid lubricant 287 can be formed on the CVD treated surface 254 in any convenient manner, such as by spraying a liquid lubricant or by applying it using an applicator.
  • the lubricant has a molecular weight of from about 1900 to about 37,000 and a viscosity of from about 20 CSt. to about 13,000 CSt.
  • the lubricant has a contact angle (with distilled water) of from 90° to 150° 0.203.
  • the lubricant has a contact angle (with distilled water) of from 90° to 110°.
  • the lubricant has a contact angle (with distilled water) of from 90° to 120°.
  • the lubricant has a contact angle (with distilled water) of from 0° to 35° greater than the contact angle (with distilled water) of the primer coating or layer.
  • the deposit of lubricant on the primer coating or layer is effective to provide a lower frictional resistance than the uncoated syringe surface between the syringe surface and a relatively sliding part at least one year after the syringe is assembled with a plunger.
  • the frictional resistance is reduced by at least 25% in comparison to the uncoated article surface.
  • the frictional resistance is reduced by at least 45% in comparison to the uncoated article surface.
  • the frictional resistance is reduced by at least 60% in comparison to the uncoated article surface.
  • the deposit of lubricant is effective to reduce the frictional resistance between a portion of the article surface contacted by the fluid and a relatively sliding part after the article is assembled.
  • the deposit of lubricant is effective to reduce the frictional resistance between the article surface and a relatively sliding part at least one year after the article is assembled.
  • the deposit of lubricant is effective to reduce the frictional resistance between the article surface and a relatively sliding part at least eighteen months after the article is assembled.
  • the deposit of lubricant is effective to reduce the frictional resistance between the article surface and a relatively sliding part at least two years after the article is assembled.
  • PECVD coatings or layers are contemplated, in addition to the primer coating or layer 286 .
  • a barrier coating or layer 288 can be provided between the primer coating or layer 286 and the syringe surface 254 .
  • the barrier coating or layer 288 can be made at least in part of SiO x , wherein x is from 1.5 to 2.9, from 2 to 1000 nm thick.
  • the barrier coating or layer of SiOx has an interior surface facing the lumen and an outer surface facing the wall inner or article surface 254 .
  • the barrier coating or layer 288 is effective to reduce the ingress of atmospheric gas into the lumen 212 , compared to an uncoated container otherwise the same as the pharmaceutical package or other vessel 210 .
  • an adhesion layer 266 can be provided between the barrier coating or layer 288 and the syringe surface 254 .
  • a method of making a syringe as previously described is also contemplated.
  • a syringe is provided having a surface to be lubricated.
  • a primer coating or layer of SiO x C y or SiN x C y is applied to the surface; in these formulas x can be from about 0.5 to about 2.4 and y can be from about 0.6 to about 3.
  • the primer coating or layer can be applied by chemical vapor deposition of a polysiloxane or polysilazane precursor, in the presence of oxygen.
  • the primer coating or layer can be applied either directly to the syringe surface or with one or more intervening coatings or layers between the primer coating or layer and the syringe surface.
  • the primer coating or layer can have a first primer surface facing away from the syringe surface and a second primer surface facing the syringe surface.
  • a first deposit of lubricant can be adhered to the first primer surface.
  • a fluid can be placed in the lumen via the opening and the opening can be closed with a closure such as the plunger 258 .
  • the fluid can be an aqueous liquid, for example a drug.
  • the drug can be a parenteral drug, as one type of example.
  • the fluid can be a member selected from the group consisting of:
  • Acetadote (Acetylcysteine Injection)
  • Acetazolamide Injection (Acetazolamide Injection)
  • Acetylcysteine Injection (Acetadote)
  • Adenoscan (Adenosine Injection)
  • Adenosine Injection (Adenoscan)
  • AdreView Iobenguane I 123 Injection for Intravenous Use
  • Aloprim Allopurinol Sodium for Injection
  • Atenolol Inj (Tenormin I.V. Injection)
  • Atracurium Besylate Injection (Atracurium Besylate Injection)
  • Betamethasone Injectable Suspension (Celestone Soluspan)
  • Botox Cosmetic OnabotulinumtoxinA for Injection
  • Capreomycin for Injection Capastat Sulfate
  • Chloramphenicol Sodium Succinate Chloramphenicol Sodium Succinate Injection
  • Chloramphenicol Sodium Succinate Injection Chloramphenicol Sodium Succinate
  • Cisplatin (Cisplatin Injection)
  • DDAVP Injection Desmopressin Acetate Injection
  • Doxil Doxorubicin Hcl Liposome Injection
  • Emend Injection Frasaprepitant Dimeglumine Injection
  • Fabrazyme (Adalsidase beta)
  • Feridex I.V. Feridex Injectable Solution
  • Ferumoxides Injectable Solution Ferumoxides Injectable Solution (Feridex I.V.)
  • Foscarnet Sodium Injection Foscavir
  • Foscavir Foscarnet Sodium Injection
  • Gadofosveset Trisodium Injection (Ablavar)
  • Insulin Aspart [rDNA origin] Inj NovoLog
  • Insulin Glargine [rDNA origin] Injection (Lantus) Insulin Glulisine [rDNA origin] Inj (Apidra) Interferon alfa-2b, Recombinant for Injection (Intron A) Intron A (Interferon alfa-2b, Recombinant for Injection)
  • Mecasermin [rDNA origin] Injection (Increlex) Mecasermin Rinfabate [rDNA origin] Injection (Iplex)
  • Methohexital Sodium for Injection (Brevital Sodium)
  • Minocycline Inj Minocin Injection
  • Nafcillin Injection Nafcillin Sodium
  • NeoProfen Ibuprofen Lysine Injection
  • Neostigmine Methylsulfate (Neostigmine Methylsulfate Injection)
  • NeoTect (Technetium Tc 99m Depreotide Injection)
  • Oxacillin (Oxacillin for Injection)
  • Penicillin G Benzathine and Penicillin G Procaine
  • Phentolamine Mesylate (Phentolamine Mesylate for Injection)
  • Plasma-Lyte 148 Multiple Electrolytes Inj
  • Plasma-Lyte 56 and Dextrose Multiple Electrolytes and Dextrose Injection in Viaflex Plastic Vessel
  • Polidocanol Injection (Asclera)
  • Ringer's Injection Ringer Injection
  • Serostim LQ Somatropin (rDNA origin) Injection
  • Taxotere Docetaxel for Injection
  • Tev-Tropin Somatropin, rDNA Origin, for Injection
  • Thymoglobulin Anti-Thymocyte Globulin (Rabbit)
  • Thyrogen Thirotropin Alfa for Injection
  • Timentin Injection (Ticarcillin Disodium and Clavulanate Potassium Galaxy)
  • Triamcinolone Hexacetonide Injectable Suspension (Aristospan Injection 20 mg)
  • Trivaris Triamcinolone Acetonide Injectable Suspension
  • Vasovist (Gadofosveset Trisodium Injection for Intravenous Use)
  • Vinblastine Sulfate (Vinblastine Sulfate Injection)
  • Vincasar PFS Vincristine Sulfate Injection
  • Agenerase Oral Solution (Amprenavir Oral Solution)
  • Astepro (Azelastine Hydrochloride Nasal Spray)
  • Atrovent Nasal Spray Ipratropium Bromide Nasal Spray
  • Azelex (Azelaic Acid Cream)
  • Ciloxan Ophthalmic Solution Ciprofloxacin HCL Ophthalmic Solution
  • Ciprofloxacin HCL Ophthalmic Solution Ciprofloxacin HCL Ophthalmic Solution
  • Elestat (Epinastine HCl Ophthalmic Solution)
  • Feridex I.V. Feridex Injectable Solution
  • Ketorolac Tromethamine Ophthalmic Solution (Acular LS)
  • Lumigan (Bimatoprost Ophthalmic Solution 0.03% for Glaucoma)
  • Megestrol Acetate Oral Suspension Megestrol Acetate Oral Suspension
  • Methyldopate Hcl Metaldopate Hydrochloride Injection, Solution
  • Methylin Oral Solution Methylin Oral Solution 5 mg/5 mL and 10 mg/5 mL
  • Methylphenidate HCl Oral Solution 5 mg/5 mL and 10 mg/5 mL Methylprednisolone sodium succinate (Solu Medrol)
  • Nevanac Napafenac Ophthalmic Suspension
  • Noxafil (Posaconazole Oral Suspension)
  • Pataday Olatadine Hydrochloride Ophthalmic Solution
  • Patanase Nasal Spray (Olopatadine Hydrochloride Nasal Spray)
  • PENNSAID Diaclofenac Sodium Topical Solution
  • Rotarix Rotarix (Rotavirus Vaccine, Live, Oral Suspension)
  • Vitamin K1 Fluid Colloidal Solution of Vitamin K1
  • 5-alpha-reductase inhibitors 5-aminosalicylates 5HT3 receptor antagonists adamantane antivirals adrenal cortical steroids adrenal corticosteroid inhibitors adrenergic bronchodilators agents for hypertensive emergencies agents for pulmonary hypertension aldosterone receptor antagonists alkylating agents alpha-adrenoreceptor antagonists alpha-glucosidase inhibitors alternative medicines amebicides aminoglycosides aminopenicillins aminosalicylates amylin analogs
  • non-cardioselective beta blockers non-iodinated contrast media non-ionic iodinated contrast media non-sulfonylureas nonsteroidal anti-inflammatory agents norepinephrine reuptake inhibitors norepinephrine-dopamine reuptake inhibitors nucleoside reverse transcriptase inhibitors (NRTIs) nutraceutical products nutritional products ophthalmic anesthetics ophthalmic anti-infectives ophthalmic anti-inflammatory agents ophthalmic antihistamines and decongestants ophthalmic diagnostic agents ophthalmic glaucoma agents ophthalmic lubricants and irrigations ophthalmic preparations ophthalmic steroids ophthalmic steroids with anti-infectives ophthalmic surgical agents oral nutritional supplements otic anesthetics otic anti-infectives otic preparations otic steroids otic steroids with anti-infectives oxazolidinedione anticonvulsants parathyroid hormone and analogs penicillin

Abstract

An article is described including an article surface, a primer coating of SiOx, SiOxCy or SiNxCy applied to the article surface, and optionally a deposit of lubricant applied to the primer coating or layer. The primer coating of SiOx, SiOxCy or SiNxCy is applied by PECVD of an organosiloxane precursor. A deposit of lubricant is applied to the primer coating or layer. The primer coating improves the adhesion or wetting of the lubricant on the surface to be lubricated, as well as the recovery of the liquid contained in the vessel. Examples of such an article are a prefilled syringe having a barrel with a lubricated interior portion and a plunger tip that slides along it. Another example of such an article is a vial having a lubricated opening to receive a septum. Another aspect of the invention is a method of making such an article.

Description

  • This is a continuation of U.S. patent application Ser. No. 14/194,221, filed Feb. 28, 2014, which claims the priority of U.S. Provisional Appl. 61/771,644, filed Mar. 1, 2013, all of which are incorporated by reference here to provide continuity of disclosure.
  • U.S. Provisional Ser. No. 61/177,984 filed May 13, 2009; 61/222,727, filed Jul. 2, 2009; 61/213,904, filed Jul. 24, 2009; 61/234,505, filed Aug. 17, 2009; 61/261,321, filed Nov. 14, 2009; 61/263,289, filed Nov. 20, 2009; 61/285,813, filed Dec. 11, 2009; 61/298,159, filed Jan. 25, 2010; 61/299,888, filed Jan. 29, 2010; 61/318,197, filed Mar. 26, 2010; 61/333,625, filed May 11, 2010; 61/413,334, filed Nov. 12, 2010; 61/636,377, filed Apr. 20, 2012; 61/654,612, filed Jun. 1, 2012; Ser. No. 12/779,007, filed May 12, 2010, now U.S. Pat. No. 7,985,188; International Application PCT/US11/36097, filed May 11, 2011; and U.S. Ser. No. 61/558,885, filed Nov. 11, 2011; are all incorporated here by reference in their entirety.
  • Also incorporated by reference in their entirety are the following European patent applications: EP10162755.2 filed May 12, 2010; EP10162760.2 filed May 12, 2010; EP10162756.0 filed May 12, 2010; EP10162758.6 filed May 12, 2010; EP10162761.0 filed May 12, 2010; and EP10162757.8 filed May 12, 2010. These European patent applications describe apparatus, vessels, precursors, coatings or layers and methods (in particular coating methods and test methods for examining the coatings or layers) which can generally be used in performing the present invention, unless stated otherwise herein. They also describe SiOx barrier coatings or layers to which reference is made herein.
  • FIELD OF THE INVENTION
  • The present invention relates to the technical field of lubricated and siliconized surfaces, for example interior surfaces of pharmaceutical packages or other vessels for storing or other contact with fluids. (A “deposit of lubricant” as defined in this specification also includes deposits of “lubricants” for non-lubricating uses, for example siliconization of a vessel wall to prevent adherence of a fluid stored in the vessel.)
  • The present invention also relates to a pharmaceutical package or other vessel and to a method for making a pharmaceutical package with a lubricated surface. The present invention also relates more generally to medical articles, including articles other than packages or vessels, for example catheters.
  • BACKGROUND OF THE INVENTION
  • In glass syringes and other pharmaceutical packages, silicone oil is typically used as a lubricant to allow the plunger tip to slide in the barrel, and/or to promote draining of the intended deliverable fluid from the syringe surfaces.
  • Glass pharmaceutical packages or other vessels are prone to breakage or degradation during manufacture, filling operations, shipping and use, which means that glass particulates may enter the drug. The presence of glass particles has led to many FDA Warning Letters and to product recalls.
  • Glass-forming processes do not yield the tight dimensional tolerances required for some of the newer auto-injectors and delivery systems. Glass is also more difficult and expensive to fabricate into syringes than injection molded plastics.
  • An important consideration regarding medical syringes is to ensure that the plunger can move at a constant speed and with a constant force when it is pressed into the barrel during use, with a low initiation or breakout force, Fi, and a low maintenance force, Fm. A similar consideration making lubrication desirable applies to vessels such as pharmaceutical vials which have to be closed by a closure, for example a plunger tip, septum or stopper, and to the septum or stopper itself, and more generally to any surface which desirably provides smooth operation of moving parts and/or is protectively coated.
  • One factor affecting the magnitude and aging of the breakout force is the surface composition and topology of the syringe. Specifically, the breakout force is lower for glass syringes than for plastic syringes due to the surface energy differences between glass and plastic (glass is a hydrophilic surface and plastic is a hydrophobic surface). PDMS is hydrophobic. It would be useful to provide a similar breakout force profile on plastic and glass syringes, and for the effect of aging on the breakout force to be minimal.
  • SUMMARY OF THE INVENTION
  • A non-limiting aspect of the invention is a syringe having a PECVD treated generally cylindrical interior surface defining an inner sliding surface; and a deposit of fluid lubricant on the PECVD treated surface. The PECVD treatment provides a primer coating or layer on the sliding surface that retains the deposit of fluid lubricant in place on the surface.
  • The primer coating or layer improves the lubrication between the relatively sliding parts. More evenly distributed lubricant might be a factor in lowering the sliding friction and making the sliding friction more uniform. As another potential result, in a medical vessel coated on the interior wall with the primer coating or layer and a deposit of lubricant, the more evenly distributed lubricant can improve draining of the vessel. As a third potential result, the more evenly distributed lubricant can be used in a smaller quantity to obtain the same technical effect or advantage, thus potentially reducing the amount of lubricant available to mix with the contents of the vessel. Some potential examples of the lubricant mixing with the contents of the vessel are mechanical or chemical emulsification of the lubricant and a drug or other contents of the vessel.
  • Optionally, the primer coating or layer itself, without a deposit of lubricant, can improve draining of the vessel.
  • Optionally, a similar breakout force profile can be obtained on plastic and glass syringes if the plastic syringes are treated as described in this specification.
  • Another non-limiting aspect of the invention is a method of making a syringe as described above.
  • A syringe is provided having a surface to be lubricated.
  • A primer coating or layer of SiOxCy or SiNxCy, in which x is from about 0.5 to about 2.4 and y is from about 0.6 to about 3, is applied to the surface. The primer coating or layer can be applied by chemical vapor deposition of a polysiloxane or polysilazane precursor, typically in the presence of oxygen. The primer coating or layer is applied either directly to the syringe surface or with one or more intervening coatings or layers between the primer coating or layer and the syringe surface. The primer coating or layer has a first primer surface facing away from the syringe surface and a second primer surface facing the syringe surface.
  • A deposit of lubricant is applied to the first primer surface.
  • Another non-limiting aspect of the invention is a prefilled syringe comprising a syringe as described above containing a fluid to be dispensed and closed with a plunger. The fluid to be dispensed can be any of the inhalation anesthetics, injectable drugs, liquid drugs (non-injectable), drug classes, diagnostic test materials, or other materials recited in the specification or claims.
  • Many other embodiments of the present invention are expressly contemplated, as recited in the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded longitudinal section of a syringe, plunger, and cap assembly of a prefilled syringe.
  • FIG. 2 is an enlarged detail view of the barrel wall and coatings shown in FIG. 1.
  • FIG. 3 is a plot of Fi, the force required to initiate movement of a plunger within the barrel of a syringe, for syringes having a treated plunger tip.
  • FIG. 4 is another plot of Fi, the force required to initiate movement of a plunger within the barrel of a syringe, for syringes having a treated plunger tip.
  • The following reference characters are used in the drawing figures:
  • 214 Wall
    216 Exterior surface (of 241)
    218 Fluid
    250 Syringe barrel
    252 Syringe
    254 Inner or interior surface (of 250)
    256 Back end (of 250)
    258 Plunger (of 252) (relatively sliding part)
    259 Outer sliding surface
    260 Front end (of 250)
    262 Cap
    264 Inner or interior surface (of 262)
    266 Adhesion layer
    286 Primer coating or layer
    287 Fluid lubricant
    288 Barrier coating or layer
    300 Lumen (of 250)
    650 Exemplary data point, COP syringe without
    plasma treatment (comparative example)
    652 Exemplary data point, COP syringe with
    PECVD plasma treatment applying SiOx
    barrier layer and SiOxCy pH protective
    layer (inventive example)
    654 Exemplary data point, COP syringe with
    PECVD plasma treatment applying SiOx
    barrier layer as the outer layer
    (inventive example)
    656 Exemplary data point, glass syringe
    (comparative example)
    658 Exemplary data point, glass syringe
    (comparative example)
    660 Exemplary data point, plasma treatment
    without organosilicon precursor
    (inventive example)
  • Definition Section
  • In the context of the present invention, the following definitions and abbreviations are used:
  • The term “at least” in the context of the present invention means “equal or more” than the integer following the term. The word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality unless indicated otherwise. Whenever a parameter range is indicated, it is intended to disclose the parameter values given as limits of the range and all values of the parameter falling within said range.
  • “First” and “second” or similar references to, for example, deposits of lubricant, processing stations or processing devices refer to the minimum number of deposits, processing stations or devices that are present, but do not necessarily represent the order or total number of deposits, processing stations and devices or require additional deposits, processing stations and devices beyond the stated number. These terms do not limit the number of processing stations or the particular processing carried out at the respective stations.
  • For purposes of the present invention, an “organosilicon precursor” is a compound having at least one of the linkages:
  • Figure US20170232198A1-20170817-C00001
  • which is a tetravalent silicon atom connected to an oxygen or nitrogen atom and an organic carbon atom (an organic carbon atom being a carbon atom bonded to at least one hydrogen atom). A volatile organosilicon precursor, defined as such a precursor that can be supplied as a vapor in a PECVD apparatus, is an optional organosilicon precursor. Optionally, the organosilicon precursor is selected from the group consisting of a linear siloxane, a monocyclic siloxane, a polycyclic siloxane, a polysilsesquioxane, an alkyl trimethoxysilane, a linear silazane, a monocyclic silazane, a polycyclic silazane, a polysilsesquiazane, and a combination of any two or more of these precursors.
  • The feed amounts of PECVD precursors, gaseous reactant or process gases, and carrier gas are sometimes expressed in “standard volumes” in the specification and claims. The standard volume of a charge or other fixed amount of gas is the volume the fixed amount of the gas would occupy at a standard temperature and pressure (without regard to the actual temperature and pressure of delivery). Standard volumes can be measured using different units of volume, and still be within the scope of the present disclosure and claims. For example, the same fixed amount of gas could be expressed as the number of standard cubic centimeters, the number of standard cubic meters, or the number of standard cubic feet. Standard volumes can also be defined using different standard temperatures and pressures, and still be within the scope of the present disclosure and claims. For example, the standard temperature might be 0° C. and the standard pressure might be 760 Torr (as is conventional), or the standard temperature might be 20° C. and the standard pressure might be 1 Torr. But whatever standard is used in a given case, when comparing relative amounts of two or more different gases without specifying particular parameters, the same units of volume, standard temperature, and standard pressure are to be used relative to each gas, unless otherwise indicated.
  • The corresponding feed rates of PECVD precursors, gaseous reactant or process gases, and carrier gas are expressed in standard volumes per unit of time in the specification. For example, in the working examples the flow rates are expressed as standard cubic centimeters per minute, abbreviated as sccm. As with the other parameters, other units of time can be used, such as seconds or hours, but consistent parameters are to be used when comparing the flow rates of two or more gases, unless otherwise indicated.
  • The present syringes optionally can be used as pharmaceutical packages or other vessels in which the lumen has a void volume of from 0.5 to 50 mL, optionally from 1 to 10 mL, optionally from 0.5 to 5 mL, optionally from 1 to 3 mL. The substrate surface can be part or all of the inner or interior surface of a vessel having at least one opening and an inner or interior surface.
  • A “hydrophobic layer” in the context of the present invention means that the coating or layer lowers the wetting tension of a surface coated with the coating or layer, compared to the corresponding uncoated surface. Hydrophobicity is thus a function of both the uncoated substrate and the coating or layer. The same applies with appropriate alterations for other contexts wherein the term “hydrophobic” is used. The term “hydrophilic” means the opposite, i.e. that the wetting tension is increased compared to reference sample. The present hydrophobic layers are primarily defined by their hydrophobicity and the process conditions providing hydrophobicity
  • The values of w, x, y, and z as applicable to the empirical composition SiwOxCyHz throughout this specification should be understood as ratios or an empirical formula (for example for a coating or layer), rather than as a limit on the number or type of atoms in a molecule. For example, octamethylcyclotetrasiloxane, which has the molecular composition Si4O4C8H24, can be described by the following empirical formula, arrived at by dividing each of w, x, y, and z in the molecular formula by 4, the largest common factor: Si1O1C2H6. The values of w, x, y, and z are also not limited to integers. For example, (acyclic) octamethyltrisiloxane, molecular composition Si3O2C8H24, is reducible to Si1O0.67C2.67H8. Also, although SiOxCyHz is described as equivalent to SiOxCy, it is not necessary to show the presence of hydrogen in any proportion to show the presence of SiOxCy.
  • “Wetting tension” is a specific measure for the hydrophobicity or hydrophilicity of a surface. An optional wetting tension measurement method in the context of the present invention is ASTM D 2578 or a modification of the method described in ASTM D 2578. This method uses standard wetting tension solutions (called dyne solutions) to determine the solution that comes nearest to wetting a plastic film surface for exactly two seconds. This is the film's wetting tension. The procedure utilized is varied herein from ASTM D 2578 in that the substrates are not flat plastic films, but are tubes made according to the Protocol for Forming PET Tube and (except for controls) coated according to the Protocol for coating Tube Interior with Hydrophobic Coating or Layer (see Example 9 of EP2251671 A2).
  • A “primer coating or layer” according to the present invention is a coating or layer which is more receptive than the uncoated surface to a deposit of lubricant. The deposit of lubricant reduces the frictional resistance of the coated surface in comparison to a reference surface that is uncoated. The primer coating or layer optionally can have a composition according to the empirical composition SiOx, or according to the empirical composition SiwOxCyHz, (or its equivalent SiOxCy) as defined herein, which omits hydrogen because it is not measured by the XPS (X-ray photoelectron spectroscopy) method used in this specification to define the composition of a plasma treated surface or a CVD or chemical vapour deposition coating or layer. The primer coating or layer generally has an atomic ratio SiwOxCy (or its equivalent SiOxCy) wherein w is 1, x is from about 0.5 to about 2.4, y is from about 0.6 to about 3.
  • Typically, expressed as the formula SiwOxCy, the atomic ratios of Si, O, and C in the “primer coating or layer” are, as several options:
  • Si 100:O 50-150:C 90-200 (i.e. w=1, x=0.5 to 1.5, y=0.9 to 2);
  • Si 100:O 70-130:C 90-200 (i.e. w=1, x=0.7 to 1.3, y=0.9 to 2)
  • Si 100:O 80-120:C 90-150 (i.e. w=1, x=0.8 to 1.2, y=0.9 to 1.5)
  • Si 100:O 90-120:C 90-140 (i.e. w=1, x=0.9 to 1.2, y=0.9 to 1.4), or
  • Si 100:O 92-107:C 116-133 (i.e. w=1, x=0.92 to 1.07, y=1.16 to 1.33)
  • The atomic ratio can be determined by XPS. Taking into account the H atoms, which are not measured by XPS, the coating or layer may thus in one aspect have the formula SiwOxCyHz (or its equivalent SiOxCy), for example where w is 1, x is from about 0.5 to about 2.4, y is from about 0.6 to about 3, and z is from about 2 to about 9. Typically, such coating or layer would hence contain 36% to 41% carbon normalized to 100% carbon plus oxygen plus silicon.
  • “Frictional resistance” can be static frictional resistance and/or kinetic frictional resistance.
  • One of the optional embodiments of the present invention is a syringe part, for example a syringe or plunger tip, coated with a deposit of lubricant on a primer coating or layer. In this contemplated embodiment, the relevant static frictional resistance in the context of the present invention is the breakout force as defined herein, and the relevant kinetic frictional resistance in the context of the present invention is the plunger sliding force as defined herein. For example, the plunger sliding force as defined and determined herein is suitable to determine the presence or absence and the lubricity and/or protective characteristics of a deposit of lubricant on a primer coating or layer in the context of the present invention whenever the coating or layer is applied to any syringe or syringe part, for example to the inner wall of a syringe. The breakout force is of particular relevance for evaluation of the coating or layer effect on a prefilled syringe, i.e. a syringe which is filled after coating and can be stored for some time, for example several months or even years, before the plunger tip is moved again (has to be “broken out”).
  • The “plunger sliding force” (synonym to “glide force,” “maintenance force”, or Fm, also used in this description) in the context of the present invention is the force required to maintain movement of a plunger tip in a syringe, for example during aspiration or dispense. It can advantageously be determined using the ISO 7886-1:1993 test described herein and known in the art. A synonym for “plunger sliding force” often used in the art is “plunger force” or “pushing force”.
  • The “plunger breakout force” (synonym to “breakout force”, “break loose force”, “initiation force”, Fi, also used in this description) in the context of the present invention is the initial force required to move the plunger tip in a syringe, for example in a prefilled syringe.
  • Both “plunger sliding force” and “plunger breakout force” and methods for their measurement are described in more detail in subsequent parts of this description. These two forces can be expressed in N, lbs or kg. These units correlate as follows: 1N=0.102 kg=0.2248 lbs (pounds).
  • Sliding force and breakout force are sometimes used herein to describe the forces required to advance a stopper or other closure into a pharmaceutical package or other vessel, such as a medical sample tube or a vial, to seat the stopper in a vessel to close the vessel. Its use is analogous to use in the context of a syringe and its plunger tip, and the measurement of these forces for a vessel and its closure are contemplated to be analogous to the measurement of these forces for a syringe, except that at least in most cases no liquid is ejected from a vessel when advancing the closure to a seated position.
  • “Slidably” means that the plunger tip, closure, or other removable part is permitted to slide in a syringe or other vessel.
  • DETAILED DESCRIPTION
  • The present invention will now be described more fully, with reference to the accompanying drawings, in which several embodiments are shown. This invention can, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth here. Rather, these embodiments are examples of the invention, which has the full scope indicated by the language of the claims. Like numbers refer to like or corresponding elements throughout. The following disclosure relates to all embodiments unless specifically limited to a certain embodiment.
  • Referring to FIGS. 1 and 2 showing an embodiment, a syringe 252 comprises a syringe barrel 250 having a PECVD treated generally cylindrical interior surface 254 defining an inner sliding surface; and a deposit of fluid lubricant 287 on the PECVD treated surface 254.
  • The syringe as illustrated includes a plunger 258 having an outer sliding surface 259 configured to slide within the lumen 300 along the inner sliding surface 254. Optionally, the outer sliding surface 259 can be a PECVD treated surface as well.
  • The term “syringe,” as used here, is broadly defined to include cartridges, injection “pens,” and other types of barrels or reservoirs adapted to be assembled with one or more other components to provide a functional syringe. “Syringe” is also broadly defined to include related articles such as auto-injectors, which provide a mechanism for dispensing the contents.
  • Optionally, the syringe, in particular a surface of a syringe such as the interior surface 254 to be lubricated, comprises a first deposit of lubricant 287 applied to the primer surface.
  • Optionally for any of the embodiments of FIGS. 19-21, at least a portion of the wall 214 of the vessel 250 comprises or consists essentially of a polymer, for example a polyolefin (for example a cyclic olefin polymer, a cyclic olefin copolymer, or polypropylene), a polyester, for example polyethylene terephthalate, polyethylene naphthalate, a polycarbonate, or any combination or copolymer of any of these. Specific contemplated wall materials include COC (cyclic olefin copolymer), COP (cyclic olefin polymer), PET (polyethylene terephthalate), polypropylene (PP), or a combination of two or more of these. Optionally, at least a portion of the wall 214 of the vessel 250 comprises or consists essentially of glass, for example borosilicate glass.
  • The plunger can be made of a variety of materials. For example, at least a portion of the plunger can be made of chlorobutyl rubber, bromobutyl rubber, silicone rubber, or a combination of any two or none of these.
  • Optionally, the PECVD treated surface comprises a primer coating or layer 286 of SiOxCy, in which x is from about 0.5 to about 2.4 and y is from about 0.6 to about 3. Optionally, x is between 0.5 and 1.5 and y is between 0.9 and 2. Optionally, x is between 0.7 and 1.3 and y is between 0.9 and 2. Optionally, x is between 0.8 and 1.2 and y is between 0.9 and 1.5. Optionally, x is between 0.9 and 1.2 and y is between 0.9 and 1.4. Optionally, x is between 0.92 and 1.07 and y is between 1.16 and 1.33.
  • As another option, the PECVD treated surface comprises a primer coating or layer 286 of SiOx, in which x is from 1.5 to 2.9.
  • Optionally, the primer coating or layer 286 is between 10 and 1000 nm thick. Optionally, the primer coating or layer is between 10 and 1000 nm thick. Optionally, the primer coating or layer is between 50 and 800 nm thick. Optionally, the primer coating or layer is between 100 and 700 nm thick. Optionally, the primer coating or layer is between 300 and 600 nm thick.
  • Optionally, the primer coating or layer 286 contacting the fluid is between 10 and 1000 nm thick two years after the article is assembled. Optionally, the primer coating or layer contacting the fluid is between 20 and 700 nm thick two years after the article is assembled. Optionally, the primer coating or layer contacting the fluid is between 50 and 500 nm thick two years after the article is assembled. Optionally, the primer coating or layer contacting the fluid is between 100 and 400 nm thick two years after the article is assembled. Optionally, the primer coating or layer contacting the fluid is between 150 and 300 nm thick two years after the article is assembled.
  • Optionally, the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 44 hours of contact with the fluid. Optionally, the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 88 hours of contact with the fluid. Optionally, the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 175 hours of contact with the fluid. Optionally, the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 250 hours of contact with the fluid. Optionally, the fluid removes the primer coating or layer at a rate of 1 nm or less of primer coating or layer thickness per 350 hours of contact with the fluid.
  • Optionally, the primer has a contact angle (with distilled water) of from 70° to 130°. Optionally, the interior surface of the primer has a contact angle (with distilled water) of from 90° to 110°. Optionally, the interior surface of the primer has a contact angle (with distilled water) of from 80° to 120°.
  • Optionally, the fluid lubricant 287 comprises polydimethylsiloxane. A deposit of fluid lubricant 287 can be formed on the CVD treated surface 254 in any convenient manner, such as by spraying a liquid lubricant or by applying it using an applicator. Optionally, the lubricant has a molecular weight of from about 1900 to about 37,000 and a viscosity of from about 20 CSt. to about 13,000 CSt.
  • Optionally, the lubricant has a contact angle (with distilled water) of from 90° to 150° 0.203. Optionally, the lubricant has a contact angle (with distilled water) of from 90° to 110°. Optionally, the lubricant has a contact angle (with distilled water) of from 90° to 120°. Optionally, the lubricant has a contact angle (with distilled water) of from 0° to 35° greater than the contact angle (with distilled water) of the primer coating or layer.
  • Optionally, the deposit of lubricant on the primer coating or layer is effective to provide a lower frictional resistance than the uncoated syringe surface between the syringe surface and a relatively sliding part at least one year after the syringe is assembled with a plunger. the frictional resistance is reduced by at least 25% in comparison to the uncoated article surface. Optionally, the frictional resistance is reduced by at least 45% in comparison to the uncoated article surface. Optionally, the frictional resistance is reduced by at least 60% in comparison to the uncoated article surface. Optionally, the deposit of lubricant is effective to reduce the frictional resistance between a portion of the article surface contacted by the fluid and a relatively sliding part after the article is assembled. Optionally, the deposit of lubricant is effective to reduce the frictional resistance between the article surface and a relatively sliding part at least one year after the article is assembled. Optionally, the deposit of lubricant is effective to reduce the frictional resistance between the article surface and a relatively sliding part at least eighteen months after the article is assembled. Optionally, the deposit of lubricant is effective to reduce the frictional resistance between the article surface and a relatively sliding part at least two years after the article is assembled.
  • Further PECVD coatings or layers are contemplated, in addition to the primer coating or layer 286.
  • Optionally, a barrier coating or layer 288 can be provided between the primer coating or layer 286 and the syringe surface 254. The barrier coating or layer 288 can be made at least in part of SiOx, wherein x is from 1.5 to 2.9, from 2 to 1000 nm thick. The barrier coating or layer of SiOx has an interior surface facing the lumen and an outer surface facing the wall inner or article surface 254. The barrier coating or layer 288 is effective to reduce the ingress of atmospheric gas into the lumen 212, compared to an uncoated container otherwise the same as the pharmaceutical package or other vessel 210.
  • As another option, an adhesion layer 266 can be provided between the barrier coating or layer 288 and the syringe surface 254.
  • A method of making a syringe as previously described is also contemplated. To carry out the method, a syringe is provided having a surface to be lubricated. A primer coating or layer of SiOxCy or SiNxCy is applied to the surface; in these formulas x can be from about 0.5 to about 2.4 and y can be from about 0.6 to about 3. The primer coating or layer can be applied by chemical vapor deposition of a polysiloxane or polysilazane precursor, in the presence of oxygen. The primer coating or layer can be applied either directly to the syringe surface or with one or more intervening coatings or layers between the primer coating or layer and the syringe surface.
  • The primer coating or layer can have a first primer surface facing away from the syringe surface and a second primer surface facing the syringe surface. A first deposit of lubricant can be adhered to the first primer surface.
  • Optionally, a fluid can be placed in the lumen via the opening and the opening can be closed with a closure such as the plunger 258. The fluid can be an aqueous liquid, for example a drug. The drug can be a parenteral drug, as one type of example.
  • The fluid can be a member selected from the group consisting of:
  • Inhalation Anesthetics Aliflurane Chloroform Cyclopropane Desflurane (Suprane) Diethyl Ether Enflurane (Ethrane) Ethyl Chloride Ethylene Halothane (Fluothane) Isoflurane (Forane, Isoflo)
  • Isopropenyl vinyl ether
  • Methoxyflurane
  • methoxyflurane,
  • Methoxypropane Nitrous Oxide Roflurane Sevoflurane (Sevorane, Ultane, Sevoflo) Teflurane Trichloroethylene Vinyl Ether Xenon Injectable Drugs Ablavar (Gadofosveset Trisodium Injection) Abarelix Depot Abobotulinumtoxin A Injection (Dysport) ABT-263 ABT-869 ABX-EFG Accretropin (Somatropin Injection) Acetadote (Acetylcysteine Injection) Acetazolamide Injection (Acetazolamide Injection) Acetylcysteine Injection (Acetadote) Actemra (Tocilizumab Injection) Acthrel (Corticorelin Ovine Triflutate for Injection) Actummune Activase Acyclovir for Injection (Zovirax Injection) Adacel Adalimumab Adenoscan (Adenosine Injection) Adenosine Injection (Adenoscan) Adrenaclick AdreView (Iobenguane I 123 Injection for Intravenous Use) Afluria Ak-Fluor (Fluorescein Injection) Aldurazyme (Laronidase) Alglucerase Injection (Ceredase) Alkeran Injection (Melphalan Hcl Injection) Allopurinol Sodium for Injection (Aloprim) Aloprim (Allopurinol Sodium for Injection) Alprostadil Alsuma (Sumatriptan Injection) ALTU-238 Amino Acid Injections Aminosyn Apidra Apremilast Alprostadil Dual Chamber System for Injection (Caverject Impulse) AMG 009 AMG 076 AMG 102 AMG 108 AMG 114 AMG 162 AMG 220 AMG 221 AMG 222 AMG 223 AMG 317 AMG 379 AMG 386 AMG 403 AMG 477 AMG 479 AMG 517 AMG 531 AMG 557 AMG 623 AMG 655 AMG 706 AMG 714 AMG 745 AMG 785 AMG 811 AMG 827 AMG 837 AMG 853 AMG 951 Amiodarone HCl Injection (Amiodarone HCl Injection) Amobarbital Sodium Injection (Amytal Sodium) Amytal Sodium (Amobarbital Sodium Injection) Anakinra Anti-Abeta Anti-Beta7 Anti-Beta20 Anti-CD4 Anti-CD20 Anti-CD40 Anti-IFNalpha Anti-IL13 Anti-OX40L Anti-oxLDS Anti-NGF Anti-NRP1 Arixtra Amphadase (Hyaluronidase Inj) Ammonul (Sodium Phenylacetate and Sodium Benzoate Injection) Anaprox Anzemet Injection (Dolasetron Mesylate Injection)
  • Apidra (Insulin Glulisine [rDNA origin] Inj)
  • Apomab
  • Aranesp (darbepoetin alfa)
  • Argatroban (Argatroban Injection) Arginine Hydrochloride Injection (R-Gene 10) Aristocort Aristospan Arsenic Trioxide Injection (Trisenox) Articane HCl and Epinephrine Injection (Septocaine) Arzerra (Ofatumumab Injection) Asclera (Polidocanol Injection) Ataluren Ataluren-DMD Atenolol Inj (Tenormin I.V. Injection) Atracurium Besylate Injection (Atracurium Besylate Injection) Avastin Azactam Injection (Aztreonam Injection) Azithromycin (Zithromax Injection) Aztreonam Injection (Azactam Injection) Baclofen Injection (Lioresal Intrathecal) Bacteriostatic Water (Bacteriostatic Water for Injection) Baclofen Injection (Lioresal Intrathecal) Bal in Oil Ampules (Dimercarprol Injection) BayHepB BayTet Benadryl Bendamustine Hydrochloride Injection (Treanda) Benztropine Mesylate Injection (Cogentin) Betamethasone Injectable Suspension (Celestone Soluspan) Bexxar Bicillin C-R 900/300 (Penicillin G Benzathine and Penicillin G Procaine Injection) Blenoxane (Bleomycin Sulfate Injection) Bleomycin Sulfate Injection (Blenoxane) Boniva Injection (Ibandronate Sodium Injection) Botox Cosmetic (OnabotulinumtoxinA for Injection) BR3-FC Bravelle (Urofollitropin Injection) Bretylium (Bretylium Tosylate Injection) Brevital Sodium (Methohexital Sodium for Injection) Brethine Briobacept BTT-1023 Bupivacaine HCl Byetta Ca-DTPA (Pentetate Calcium Trisodium Inj) Cabazitaxel Injection (Jevtana) Caffeine Alkaloid (Caffeine and Sodium Benzoate Injection) Calcijex Injection (Calcitrol) Calcitrol (Calcijex Injection) Calcium Chloride (Calcium Chloride Injection 10%) Calcium Disodium Versenate (Edetate Calcium Disodium Injection) Campath (Altemtuzumab) Camptosar Injection (Irinotecan Hydrochloride) Canakinumab Injection (Ilaris) Capastat Sulfate (Capreomycin for Injection) Capreomycin for Injection (Capastat Sulfate) Cardiolite (Prep kit for Technetium Tc99 Sestamibi for Injection) Carticel Cathflo Cefazolin and Dextrose for Injection (Cefazolin Injection) Cefepime Hydrochloride Cefotaxime Ceftriaxone Cerezyme Carnitor Injection Caverject Celestone Soluspan Celsior Cerebyx (Fosphenytoin Sodium Injection) Ceredase (Alglucerase Injection) Ceretec (Technetium Tc99m Exametazime Injection) Certolizumab CF-101 Chloramphenicol Sodium Succinate (Chloramphenicol Sodium Succinate Injection) Chloramphenicol Sodium Succinate Injection (Chloramphenicol Sodium Succinate) Cholestagel (Colesevelam HCL) Choriogonadotropin Alfa Injection (Ovidrel) Cimzia Cisplatin (Cisplatin Injection) Clolar (Clofarabine Injection) Clomiphine Citrate Clonidine Injection (Duraclon) Cogentin (Benztropine Mesylate Injection) Colistimethate Injection (Coly-Mycin M) Coly-Mycin M (Colistimethate Injection) Compath Conivaptan Hcl Injection (Vaprisol) Conjugated Estrogens for Injection (Premarin Injection) Copaxone Corticorelin Ovine Triflutate for Injection (Acthrel) Corvert (Ibutilide Fumarate Injection) Cubicin (Daptomycin Injection) CF-101 Cyanokit (Hydroxocobalamin for Injection) Cytarabine Liposome Injection (DepoCyt) Cyanocobalamin
  • Cytovene (ganciclovir)
  • D.H.E. 45 Dacetuzumab Dacogen (Decitabine Injection) Dalteparin Dantrium IV (Dantrolene Sodium for Injection) Dantrolene Sodium for Injection (Dantrium IV) Daptomycin Injection (Cubicin) Darbepoietin Alfa DDAVP Injection (Desmopressin Acetate Injection) Decavax Decitabine Injection (Dacogen) Dehydrated Alcohol (Dehydrated Alcohol Injection) Denosumab Injection (Prolia) Delatestryl Delestrogen Delteparin Sodium Depacon (Valproate Sodium Injection) Depo Medrol (Methylprednisolone Acetate Injectable Suspension) DepoCyt (Cytarabine Liposome Injection) DepoDur (Morphine Sulfate XR Liposome Injection) Desmopressin Acetate Injection (DDAVP Injection) Depo-Estradiol
  • Depo-Provera 104 mg/ml
    Depo-Provera 150 mg/ml
  • Depo-Testosterone Dexrazoxane for Injection, Intravenous Infusion Only (Totect) Dextrose/Electrolytes Dextrose and Sodium Chloride Inj (Dextrose 5% in 0.9% Sodium Chloride) Dextrose Diazepam Injection (Diazepam Injection) Digoxin Injection (Lanoxin Injection) Dilaudid-HP (Hydromorphone Hydrochloride Injection) Dimercarprol Injection (Bal in Oil Ampules) Diphenhydramine Injection (Benadryl Injection) Dipyridamole Injection (Dipyridamole Injection) DMOAD Docetaxel for Injection (Taxotere) Dolasetron Mesylate Injection (Anzemet Injection) Doribax (Doripenem for Injection) Doripenem for Injection (Doribax) Doxercalciferol Injection (Hectorol Injection) Doxil (Doxorubicin Hcl Liposome Injection) Doxorubicin Hcl Liposome Injection (Doxil) Duraclon (Clonidine Injection) Duramorph (Morphine Injection) Dysport (Abobotulinumtoxin A Injection) Ecallantide Injection (Kalbitor)
  • EC-Naprosyn (naproxen)
  • Edetate Calcium Disodium Injection (Calcium Disodium Versenate) Edex (Alprostadil for Injection) Engerix Edrophonium Injection (Enlon) Eliglustat Tartate Eloxatin (Oxaliplatin Injection) Emend Injection (Fosaprepitant Dimeglumine Injection) Enalaprilat Injection (Enalaprilat Injection) Enlon (Edrophonium Injection) Enoxaparin Sodium Injection (Lovenox) Eovist (Gadoxetate Disodium Injection)
  • Enbrel (etanercept)
  • Enoxaparin Epicel Epinepherine Epipen Epipen Jr. Epratuzumab Erbitux Ertapenem Injection (Invanz) Erythropoieten Essential Amino Acid Injection (Nephramine) Estradiol Cypionate Estradiol Valerate Etanercept Exenatide Injection (Byetta) Evlotra
  • Fabrazyme (Adalsidase beta)
  • Famotidine Injection FDG (Fludeoxyglucose F 18 Injection) Feraheme (Ferumoxytol Injection) Feridex I.V. (Ferumoxides Injectable Solution) Fertinex Ferumoxides Injectable Solution (Feridex I.V.) Ferumoxytol Injection (Feraheme) Flagyl Injection (Metronidazole Injection) Fluarix Fludara (Fludarabine Phosphate) Fludeoxyglucose F 18 Injection (FDG) Fluorescein Injection (Ak-Fluor) Follistim AQ Cartridge (Follitropin Beta Injection) Follitropin Alfa Injection (Gonal-f RFF) Follitropin Beta Injection (Follistim AQ Cartridge) Folotyn (Pralatrexate Solution for Intravenous Injection) Fondaparinux
  • Forteo (Teriparatide (rDNA origin) Injection)
  • Fostamatinib Fosaprepitant Dimeglumine Injection (Emend Injection) Foscarnet Sodium Injection (Foscavir) Foscavir (Foscarnet Sodium Injection) Fosphenytoin Sodium Injection (Cerebyx) Fospropofol Disodium Injection (Lusedra) Fragmin
  • Fuzeon (enfuvirtide)
  • GA101 Gadobenate Dimeglumine Injection (Multihance) Gadofosveset Trisodium Injection (Ablavar) Gadoteridol Injection Solution (ProHance) Gadoversetamide Injection (OptiMARK) Gadoxetate Disodium Injection (Eovist) Ganirelix (Ganirelix Acetate Injection) Gardasil GC1008 GDFD Gemtuzumab Ozogamicin for Injection (Mylotarg) Genotropin Gentamicin Injection GENZ-112638 Golimumab Injection (Simponi Injection) Gonal-f RFF (Follitropin Alfa Injection) Granisetron Hydrochloride (Kytril Injection) Gentamicin Sulfate Glatiramer Acetate Glucagen Glucagon HAE1 Haldol (Haloperidol Injection) Havrix Hectorol Injection (Doxercalciferol Injection) Hedgehog Pathway Inhibitor Heparin Herceptin
  • hG-CSF
  • Humalog Human Growth Hormone Humatrope HuMax Humegon Humira Humulin Ibandronate Sodium Injection (Boniva Injection) Ibuprofen Lysine Injection (NeoProfen) Ibutilide Fumarate Injection (Corvert) Idamycin PFS (Idarubicin Hydrochloride Injection) Idarubicin Hydrochloride Injection (Idamycin PFS) Ilaris (Canakinumab Injection) Imipenem and Cilastatin for Injection (Primaxin I.V.) Imitrex Incobotulinumtoxin A for Injection (Xeomin)
  • Increlex (Mecasermin [rDNA origin] Injection)
  • Indocin IV (Indomethacin Inj) Indomethacin Inj (Indocin IV) Infanrix Innohep Insulin
  • Insulin Aspart [rDNA origin] Inj (NovoLog)
    Insulin Glargine [rDNA origin] Injection (Lantus)
    Insulin Glulisine [rDNA origin] Inj (Apidra)
    Interferon alfa-2b, Recombinant for Injection (Intron A)
    Intron A (Interferon alfa-2b, Recombinant for Injection)
  • Invanz (Ertapenem Injection) Invega Sustenna (Paliperidone Palmitate Extended-Release Injectable Suspension)
  • Invirase (saquinavir mesylate)
    lobenguane I 123 Injection for Intravenous Use (AdreView)
    lopromide Injection (Ultravist)
    loversol Injection (Optiray Injection)
    Iplex (Mecasermin Rinfabate [rDNA origin] Injection)
  • Iprivask Irinotecan Hydrochloride (Camptosar Injection) Iron Sucrose Injection (Venofer) Istodax (Romidepsin for Injection) Itraconazole Injection (Sporanox Injection) Jevtana (Cabazitaxel Injection) Jonexa Kalbitor (Ecallantide Injection) KCL in D5NS (Potassium Chloride in 5% Dextrose and Sodium Chloride Injection) KCL in D5W KCL in NS Kenalog 10 Injection (Triamcinolone Acetonide Injectable Suspension) Kepivance (Palifermin) Keppra Injection (Levetiracetam) Keratinocyte KFG Kinase Inhibitor Kineret (Anakinra) Kinlytic (Urokinase Injection) Kinrix
  • Klonopin (clonazepam)
  • Kytril Injection (Granisetron Hydrochloride)
  • lacosamide Tablet and Injection (Vimpat)
  • Lactated Ringer's Lanoxin Injection (Digoxin Injection) Lansoprazole for Injection (Prevacid I.V.) Lantus Leucovorin Calcium (Leucovorin Calcium Injection) Lente (L) Leptin Levemir Leukine Sargramostim Leuprolide Acetate Levothyroxine Levetiracetam (Keppra Injection) Lovenox Levocarnitine Injection (Carnitor Injection) Lexiscan (Regadenoson Injection) Lioresal Intrathecal (Baclofen Injection)
  • Liraglutide [rDNA] Injection (Victoza)
  • Lovenox (Enoxaparin Sodium Injection) Lucentis (Ranibizumab Injection) Lumizyme Lupron (Leuprolide Acetate Injection) Lusedra (Fospropofol Disodium Injection) Maci Magnesium Sulfate (Magnesium Sulfate Injection) Mannitol Injection (Mannitol IV) Marcaine (Bupivacaine Hydrochloride and Epinephrine Injection) Maxipime (Cefepime Hydrochloride for Injection) MDP Multidose Kit of Technetium Injection (Technetium Tc99m Medronate Injection)
  • Mecasermin [rDNA origin] Injection (Increlex)
    Mecasermin Rinfabate [rDNA origin] Injection (Iplex)
  • Melphalan Hcl Injection (Alkeran Injection) Methotrexate Menactra Menopur (Menotropins Injection) Menotropins for Injection (Repronex) Methohexital Sodium for Injection (Brevital Sodium) Methyldopate Hydrochloride Injection, Solution (Methyldopate Hcl) Methylene Blue (Methylene Blue Injection) Methylprednisolone Acetate Injectable Suspension (Depo Medrol) MetMab Metoclopramide Injection (Reglan Injection) Metrodin (Urofollitropin for Injection) Metronidazole Injection (Flagyl Injection) Miacalcin Midazolam (Midazolam Injection) Mimpara (Cinacalet) Minocin Injection (Minocycline Inj) Minocycline Inj (Minocin Injection) Mipomersen Mitoxantrone for Injection Concentrate (Novantrone) Morphine Injection (Duramorph) Morphine Sulfate XR Liposome Injection (DepoDur) Morrhuate Sodium (Morrhuate Sodium Injection) Motesanib Mozobil (Plerixafor Injection) Multihance (Gadobenate Dimeglumine Injection) Multiple Electrolytes and Dextrose Injection Multiple Electrolytes Injection Mylotarg (Gemtuzumab Ozogamicin for Injection)
  • Myozyme (Alglucosidase alfa)
  • Nafcillin Injection (Nafcillin Sodium) Nafcillin Sodium (Nafcillin Injection) Naltrexone XR Inj (Vivitrol)
  • Naprosyn (naproxen)
  • NeoProfen (Ibuprofen Lysine Injection) Nandrol Decanoate Neostigmine Methylsulfate (Neostigmine Methylsulfate Injection) NEO-GAA NeoTect (Technetium Tc 99m Depreotide Injection) Nephramine (Essential Amino Acid Injection)
  • Neulasta (pegfilgrastim)
  • Neupogen (Filgrastim) Novolin Novolog NeoRecormon Neutrexin (Trimetrexate Glucuronate Inj) NPH (N) Nexterone (Amiodarone HCl Injection) Norditropin (Somatropin Injection) Normal Saline (Sodium Chloride Injection) Novantrone (Mitoxantrone for Injection Concentrate) Novolin 70/30 Innolet (70% NPH, Human Insulin Isophane Suspension and 30% Regular, Human Insulin Injection)
  • NovoLog (Insulin Aspart [rDNA origin] Inj)
    Nplate (romiplostim)
    Nutropin (Somatropin (rDNA origin) for Inj)
  • Nutropin AQ
  • Nutropin Depot (Somatropin (rDNA origin) for Inj)
  • Octreotide Acetate Injection (Sandostatin LAR) Ocrelizumab Ofatumumab Injection (Arzerra) Olanzapine Extended Release Injectable Suspension (Zyprexa Relprevv) Omnitarg
  • Omnitrope (Somatropin [rDNA origin] Injection)
  • Ondansetron Hydrochloride Injection (Zofran Injection) OptiMARK (Gadoversetamide Injection)
  • Optiray Injection (loversol Injection)
  • Orencia Osmitrol Injection in Aviva (Mannitol Injection in Aviva Plastic Vessel) Osmitrol Injection in Viaflex (Mannitol Injection in Viaflex Plastic Vessel) Osteoprotegrin Ovidrel (Choriogonadotropin Alfa Injection) Oxacillin (Oxacillin for Injection) Oxaliplatin Injection (Eloxatin) Oxytocin Injection (Pitocin) Paliperidone Palmitate Extended-Release Injectable Suspension (Invega Sustenna) Pamidronate Disodium Injection (Pamidronate Disodium Injection) Panitumumab Injection for Intravenous Use (Vectibix) Papaverine Hydrochloride Injection (Papaverine Injection) Papaverine Injection (Papaverine Hydrochloride Injection) Parathyroid Hormone Paricalcitol Injection Fliptop Vial (Zemplar Injection) PARP Inhibitor Pediarix PEGIntron Peginterferon Pegfilgrastim Penicillin G Benzathine and Penicillin G Procaine Pentetate Calcium Trisodium Inj (Ca-DTPA) Pentetate Zinc Trisodium Injection (Zn-DTPA) Pepcid Injection (Famotidine Injection) Pergonal Pertuzumab Phentolamine Mesylate (Phentolamine Mesylate for Injection)
  • Physostigmine Salicylate (Physostigmine Salicylate (injection))
    Physostigmine Salicylate (injection) (Physostigmine Salicylate)
  • Piperacillin and Tazobactam Injection (Zosyn) Pitocin (Oxytocin Injection) Plasma-Lyte 148 (Multiple Electrolytes Inj) Plasma-Lyte 56 and Dextrose (Multiple Electrolytes and Dextrose Injection in Viaflex Plastic Vessel) PlasmaLyte Plerixafor Injection (Mozobil) Polidocanol Injection (Asclera) Potassium Chloride Pralatrexate Solution for Intravenous Injection (Folotyn) Pramlintide Acetate Injection (Symlin) Premarin Injection (Conjugated Estrogens for Injection) Prep kit for Technetium Tc99 Sestamibi for Injection (Cardiolite) Prevacid I.V. (Lansoprazole for Injection) Primaxin I.V. (Imipenem and Cilastatin for Injection) Prochymal Procrit Progesterone ProHance (Gadoteridol Injection Solution) Prolia (Denosumab Injection) Promethazine HCl Injection (Promethazine Hydrochloride Injection) Propranolol Hydrochloride Injection (Propranolol Hydrochloride Injection) Quinidine Gluconate Injection (Quinidine Injection) Quinidine Injection (Quinidine Gluconate Injection) R-Gene 10 (Arginine Hydrochloride Injection) Ranibizumab Injection (Lucentis) Ranitidine Hydrochloride Injection (Zantac Injection) Raptiva Reclast (Zoledronic Acid Injection) Recombivarix HB Regadenoson Injection (Lexiscan) Reglan Injection (Metoclopramide Injection) Remicade Renagel Renvela (Sevelamer Carbonate) Repronex (Menotropins for Injection) Retrovir IV (Zidovudine Injection)
  • rhApo2L/TRAIL
  • Ringer's and 5% Dextrose Injection (Ringers in Dextrose) Ringer's Injection (Ringers Injection) Rituxan Rituximab
  • Rocephin (ceftriaxone)
  • Rocuronium Bromide Injection (Zemuron)
  • Roferon-A (interferon alfa-2a)
    Romazicon (flumazenil)
  • Romidepsin for Injection (Istodax) Saizen (Somatropin Injection) Sandostatin LAR (Octreotide Acetate Injection) Sclerostin Ab
  • Sensipar (cinacalcet)
  • Sensorcaine (Bupivacaine HCl Injections) Septocaine (Articane HCl and Epinephrine Injection)
  • Serostim LQ (Somatropin (rDNA origin) Injection)
  • Simponi Injection (Golimumab Injection) Sodium Acetate (Sodium Acetate Injection) Sodium Bicarbonate (Sodium Bicarbonate 5% Injection) Sodium Lactate (Sodium Lactate Injection in AVIVA) Sodium Phenylacetate and Sodium Benzoate Injection (Ammonul)
  • Somatropin (rDNA origin) for Inj (Nutropin)
  • Sporanox Injection (Itraconazole Injection) Stelara Injection (Ustekinumab) Stemgen Sufenta (Sufentanil Citrate Injection) Sufentanil Citrate Injection (Sufenta) Sumavel Sumatriptan Injection (Alsuma) Symlin Symlin Pen Systemic Hedgehog Antagonist Synvisc-One (Hylan G-F 20 Single Intra-articular Injection) Tarceva Taxotere (Docetaxel for Injection) Technetium Tc 99m Telavancin for Injection (Vibativ) Temsirolimus Injection (Torisel) Tenormin I.V. Injection (Atenolol Inj)
  • Teriparatide (rDNA origin) Injection (Forteo)
  • Testosterone Cypionate Testosterone Enanthate Testosterone Propionate
  • Tev-Tropin (Somatropin, rDNA Origin, for Injection)
    tgAAC94
  • Thallous Chloride Theophylline Thiotepa (Thiotepa Injection) Thymoglobulin (Anti-Thymocyte Globulin (Rabbit) Thyrogen (Thyrotropin Alfa for Injection) Ticarcillin Disodium and Clavulanate Potassium Galaxy (Timentin Injection) Tigan Injection (Trimethobenzamide Hydrochloride Injectable) Timentin Injection (Ticarcillin Disodium and Clavulanate Potassium Galaxy) TNKase Tobramycin Injection (Tobramycin Injection) Tocilizumab Injection (Actemra) Torisel (Temsirolimus Injection) Totect (Dexrazoxane for Injection, Intravenous Infusion Only) Trastuzumab-DM1 Travasol (Amino Acids (Injection)) Treanda (Bendamustine Hydrochloride Injection) Trelstar (Triptorelin Pamoate for Injectable Suspension) Triamcinolone Acetonide Triamcinolone Diacetate Triamcinolone Hexacetonide Injectable Suspension (Aristospan Injection 20 mg) Triesence (Triamcinolone Acetonide Injectable Suspension) Trimethobenzamide Hydrochloride Injectable (Tigan Injection) Trimetrexate Glucuronate Inj (Neutrexin) Triptorelin Pamoate for Injectable Suspension (Trelstar) Twinject Trivaris (Triamcinolone Acetonide Injectable Suspension) Trisenox (Arsenic Trioxide Injection) Twinrix Typhoid Vi
  • Ultravist (lopromide Injection)
  • Urofollitropin for Injection (Metrodin) Urokinase Injection (Kinlytic) Ustekinumab (Stelara Injection) Ultralente (U)
  • Valium (diazepam)
  • Valproate Sodium Injection (Depacon) Valtropin (Somatropin Injection) Vancomycin Hydrochloride (Vancomycin Hydrochloride Injection) Vancomycin Hydrochloride Injection (Vancomycin Hydrochloride) Vaprisol (Conivaptan Hcl Injection) VAQTA Vasovist (Gadofosveset Trisodium Injection for Intravenous Use) Vectibix (Panitumumab Injection for Intravenous Use) Venofer (Iron Sucrose Injection) Verteporfin Inj (Visudyne) Vibativ (Telavancin for Injection)
  • Victoza (Liraglutide [rDNA] Injection)
    Vimpat (lacosamide Tablet and Injection)
  • Vinblastine Sulfate (Vinblastine Sulfate Injection) Vincasar PFS (Vincristine Sulfate Injection) Victoza Vincristine Sulfate (Vincristine Sulfate Injection) Visudyne (Verteporfin Inj) Vitamin B-12 Vivitrol (Naltrexone XR Inj) Voluven (Hydroxyethyl Starch in Sodium Chloride Injection) Xeloda
  • Xenical (orlistat)
  • Xeomin (Incobotulinumtoxin A for Injection) Xolair Zantac Injection (Ranitidine Hydrochloride Injection) Zemplar Injection (Paricalcitol Injection Fliptop Vial) Zemuron (Rocuronium Bromide Injection)
  • Zenapax (daclizumab)
  • Zevalin Zidovudine Injection (Retrovir IV) Zithromax Injection (Azithromycin) Zn-DTPA (Pentetate Zinc Trisodium Injection) Zofran Injection (Ondansetron Hydrochloride Injection) Zingo Zoledronic Acid for Inj (Zometa) Zoledronic Acid Injection (Reclast) Zometa (Zoledronic Acid for Inj) Zosyn (Piperacillin and Tazobactam Injection) Zyprexa Relprevv (Olanzapine Extended Release Injectable Suspension) Liquid Drugs (Non-Injectable) Abilify AccuNeb (Albuterol Sulfate Inhalation Solution) Actidose Aqua (Activated Charcoal Suspension) Activated Charcoal Suspension (Actidose Aqua) Advair Agenerase Oral Solution (Amprenavir Oral Solution) Akten (Lidocaine Hydrochloride Ophthalmic Gel) Alamast (Pemirolast Potassium Ophthalmic Solution) Albumin (Human) 5% Solution (Buminate 5%) Albuterol Sulfate Inhalation Solution Alinia Alocril Alphagan Alrex Alvesco Amprenavir Oral Solution Analpram-HC Arformoterol Tartrate Inhalation Solution (Brovana) Aristospan Injection 20 mg (Triamcinolone Hexacetonide Injectable Suspension) Asacol Asmanex Astepro Astepro (Azelastine Hydrochloride Nasal Spray) Atrovent Nasal Spray (Ipratropium Bromide Nasal Spray) Atrovent Nasal Spray 0.06 Augmentin ES-600 Azasite (Azithromycin Ophthalmic Solution) Azelaic Acid (Finacea Gel) Azelastine Hydrochloride Nasal Spray (Astepro) Azelex (Azelaic Acid Cream) Azopt (Brinzolamide Ophthalmic Suspension) Bacteriostatic Saline Balanced Salt Bepotastine Bactroban Nasal Bactroban Beclovent Benzac W Betimol Betoptic S Bepreve Bimatoprost Ophthalmic Solution Bleph 10 (Sulfacetamide Sodium Ophthalmic Solution 10%) Brinzolamide Ophthalmic Suspension (Azopt) Bromfenac Ophthalmic Solution (Xibrom) Bromhist Brovana (Arformoterol Tartrate Inhalation Solution) Budesonide Inhalation Suspension (Pulmicort Respules) Cambia (Diclofenac Potassium for Oral Solution) Capex Carac Carboxine-PSE Carnitor Cayston (Aztreonam for Inhalation Solution) Cellcept Centany Cerumenex Ciloxan Ophthalmic Solution (Ciprofloxacin HCL Ophthalmic Solution) Ciprodex Ciprofloxacin HCL Ophthalmic Solution (Ciloxan Ophthalmic Solution) Clemastine Fumarate Syrup (Clemastine Fumarate Syrup) CoLyte (PEG Electrolytes Solution) Combiven Comtan Condylox Cordran Cortisporin Ophthalmic Suspension Cortisporin Otic Suspension Cromolyn Sodium Inhalation Solution (Intal Nebulizer Solution) Cromolyn Sodium Ophthalmic Solution (Opticrom)
  • Crystalline Amino Acid Solution with Electrolytes (Aminosyn Electrolytes)
  • Cutivate Cuvposa (Glycopyrrolate Oral Solution) Cyanocobalamin (CaloMist Nasal Spray) Cyclosporine Oral Solution (Gengraf Oral Solution) Cyclogyl Cysview (Hexaminolevulinate Hydrochloride Intravesical Solution) DermOtic Oil (Fluocinolone Acetonide Oil Ear Drops) Desmopressin Acetate Nasal Spray DDAVP Derma-Smoothe/FS Dexamethasone Intensol Dianeal Low Calcium Dianeal PD Diclofenac Potassium for Oral Solution (Cambia) Didanosine Pediatric Powder for Oral Solution (Videx) Differin Dilantin 125 (Phenytoin Oral Suspension) Ditropan Dorzolamide Hydrochloride Ophthalmic Solution (Trusopt) Dorzolamide Hydrochloride-Timolol Maleate Ophthalmic Solution (Cosopt) Dovonex Scalp (Calcipotriene Solution) Doxycycline Calcium Oral Suspension (Vibramycin Oral) Efudex Elaprase (Idursulfase Solution) Elestat (Epinastine HCl Ophthalmic Solution) Elocon Epinastine HCl Ophthalmic Solution (Elestat) Epivir HBV
  • Epogen (Epoetin alfa)
  • Erythromycin Topical Solution 1.5% (Staticin) Ethiodol (Ethiodized Oil) Ethosuximide Oral Solution (Zarontin Oral Solution) Eurax Extraneal (Icodextrin Peritoneal Dialysis Solution) Felbatol Feridex I.V. (Ferumoxides Injectable Solution) Flovent Floxin Otic (Ofloxacin Otic Solution) Flo-Pred (Prednisolone Acetate Oral Suspension) Fluoroplex Flunisolide Nasal Solution (Flunisolide Nasal Spray 0.025%) Fluorometholone Ophthalmic Suspension (FML) Flurbiprofen Sodium Ophthalmic Solution (Ocufen) FML Foradil Formoterol Fumarate Inhalation Solution (Perforomist) Fosamax Furadantin (Nitrofurantoin Oral Suspension) Furoxone Gammagard Liquid (Immune Globulin Intravenous (Human) 10%) Gantrisin (Acetyl Sulfisoxazole Pediatric Suspension) Gatifloxacin Ophthalmic Solution (Zymar) Gengraf Oral Solution (Cyclosporine Oral Solution) Glycopyrrolate Oral Solution (Cuvposa) Halcinonide Topical Solution (Halog Solution) Halog Solution (Halcinonide Topical Solution) HEP-LOCK U/P (Preservative-Free Heparin Lock Flush Solution) Heparin Lock Flush Solution (Hepflush 10) Hexaminolevulinate Hydrochloride Intravesical Solution (Cysview) Hydrocodone Bitartrate and Acetaminophen Oral Solution (Lortab Elixir) Hydroquinone 3% Topical Solution (Melquin-3 Topical Solution) IAP Antagonist Isopto Ipratropium Bromide Nasal Spray (Atrovent Nasal Spray) Itraconazole Oral Solution (Sporanox Oral Solution) Ketorolac Tromethamine Ophthalmic Solution (Acular LS) Kaletra Lanoxin Lexiva Leuprolide Acetate for Depot Suspension (Lupron Depot 11.25 mg) Levobetaxolol Hydrochloride Ophthalmic Suspension (Betaxon) Levocarnitine Tablets, Oral Solution, Sugar-Free (Carnitor) Levofloxacin Ophthalmic Solution 0.5% (Quixin) Lidocaine HCl Sterile Solution (Xylocaine MPF Sterile Solution) Lok Pak (Heparin Lock Flush Solution) Lorazepam Intensol Lortab Elixir (Hydrocodone Bitartrate and Acetaminophen Oral Solution) Lotemax (Loteprednol Etabonate Ophthalmic Suspension) Loteprednol Etabonate Ophthalmic Suspension (Alrex) Low Calcium Peritoneal Dialysis Solutions (Dianeal Low Calcium) Lumigan (Bimatoprost Ophthalmic Solution 0.03% for Glaucoma) Lupron Depot 11.25 mg (Leuprolide Acetate for Depot Suspension) Megestrol Acetate Oral Suspension (Megestrol Acetate Oral Suspension) MEK Inhibitor Mepron Mesnex Mestinon Mesalamine Rectal Suspension Enema (Rowasa) Melquin-3 Topical Solution (Hydroquinone 3% Topical Solution) MetMab Methyldopate Hcl (Methyldopate Hydrochloride Injection, Solution)
  • Methylin Oral Solution (Methylphenidate HCl Oral Solution 5 mg/5 mL and 10 mg/5 mL)
  • Methylprednisolone Acetate Injectable Suspension (Depo Medrol)
  • Methylphenidate HCl Oral Solution 5 mg/5 mL and 10 mg/5 mL (Methylin Oral Solution)
    Methylprednisolone sodium succinate (Solu Medrol)
  • Metipranolol Ophthalmic Solution (Optipranolol) Migranal Miochol-E (Acetylcholine Chloride Intraocular Solution) Micro-K for Liquid Suspension (Potassium Chloride Extended Release Formulation for Liquid Suspension) Minocin (Minocycline Hydrochloride Oral Suspension) Nasacort Neomycin and Polymyxin B Sulfates and Hydrocortisone Nepafenac Ophthalmic Suspension (Nevanac) Nevanac (Nepafenac Ophthalmic Suspension) Nitrofurantoin Oral Suspension (Furadantin) Noxafil (Posaconazole Oral Suspension)
  • Nystatin (oral) (Nystatin Oral Suspension)
    Nystatin Oral Suspension (Nystatin (oral))
  • Ocufen (Flurbiprofen Sodium Ophthalmic Solution) Ofloxacin Ophthalmic Solution (Ofloxacin Ophthalmic Solution) Ofloxacin Otic Solution (Floxin Otic) Olopatadine Hydrochloride Ophthalmic Solution (Pataday) Opticrom (Cromolyn Sodium Ophthalmic Solution) Optipranolol (Metipranolol Ophthalmic Solution) Patanol Pediapred PerioGard Phenytoin Oral Suspension (Dilantin 125) Phisohex Posaconazole Oral Suspension (Noxafil) Potassium Chloride Extended Release Formulation for Liquid Suspension (Micro-K for Liquid Suspension) Pataday (Olopatadine Hydrochloride Ophthalmic Solution) Patanase Nasal Spray (Olopatadine Hydrochloride Nasal Spray) PEG Electrolytes Solution (CoLyte) Pemirolast Potassium Ophthalmic Solution (Alamast) Penlac (Ciclopirox Topical Solution) PENNSAID (Diclofenac Sodium Topical Solution) Perforomist (Formoterol Fumarate Inhalation Solution) Peritoneal Dialysis Solution Phenylephrine Hydrochloride Ophthalmic Solution (Neo-Synephrine) Phospholine Iodide (Echothiophate Iodide for Ophthalmic Solution) Podofilox (Podofilox Topical Solution) Pred Forte (Prednisolone Acetate Ophthalmic Suspension) Pralatrexate Solution for Intravenous Injection (Folotyn) Pred Mild Prednisone Intensol Prednisolone Acetate Ophthalmic Suspension (Pred Forte) Prevacid PrismaSol Solution (Sterile Hemofiltration Hemodiafiltration Solution) ProAir Proglycem ProHance (Gadoteridol Injection Solution) Proparacaine Hydrochloride Ophthalmic Solution (Alcaine) Propine Pulmicort Pulmozyme Quixin (Levofloxacin Ophthalmic Solution 0.5%) QVAR Rapamune Rebetol Relacon-HC Rotarix (Rotavirus Vaccine, Live, Oral Suspension) Rotavirus Vaccine, Live, Oral Suspension (Rotarix) Rowasa (Mesalamine Rectal Suspension Enema) Sabril (Vigabatrin Oral Solution) Sacrosidase Oral Solution (Sucraid) Sandimmune Sepra Serevent Diskus Solu Cortef (Hydrocortisone Sodium Succinate)
  • Solu Medrol (Methylprednisolone sodium succinate)
  • Spiriva Sporanox Oral Solution (Itraconazole Oral Solution) Staticin (Erythromycin Topical Solution 1.5%) Stalevo Starlix Sterile Hemofiltration Hemodiafiltration Solution (PrismaSol Solution) Stimate Sucralfate (Carafate Suspension) Sulfacetamide Sodium Ophthalmic Solution 10% (Bleph 10) Synarel Nasal Solution (Nafarelin Acetate Nasal Solution for Endometriosis) Taclonex Scalp (Calcipotriene and Betamethasone Dipropionate Topical Suspension) Tamiflu Tobi TobraDex Tobradex ST (Tobramycin/Dexamethasone Ophthalmic Suspension 0.3%/0.05%) Tobramycin/Dexamethasone Ophthalmic Suspension 0.3%/0.05% (Tobradex ST) Timolol Timoptic Travatan Z Treprostinil Inhalation Solution (Tyvaso) Trusopt (Dorzolamide Hydrochloride Ophthalmic Solution) Tyvaso (Treprostinil Inhalation Solution) Ventolin Vfend Vibramycin Oral (Doxycycline Calcium Oral Suspension) Videx (Didanosine Pediatric Powder for Oral Solution) Vigabatrin Oral Solution (Sabril) Viokase Viracept Viramune Vitamin K1 (Fluid Colloidal Solution of Vitamin K1) Voltaren Ophthalmic (Diclofenac Sodium Ophthalmic Solution) Zarontin Oral Solution (Ethosuximide Oral Solution) Ziagen Zyvox Zymar (Gatifloxacin Ophthalmic Solution) Zymaxid (Gatifloxacin Ophthalmic Solution) Drug Classes
  • 5-alpha-reductase inhibitors
    5-aminosalicylates
    5HT3 receptor antagonists
    adamantane antivirals
    adrenal cortical steroids
    adrenal corticosteroid inhibitors
    adrenergic bronchodilators
    agents for hypertensive emergencies
    agents for pulmonary hypertension
    aldosterone receptor antagonists
    alkylating agents
    alpha-adrenoreceptor antagonists
    alpha-glucosidase inhibitors
    alternative medicines
    amebicides
    aminoglycosides
    aminopenicillins
    aminosalicylates
    amylin analogs
  • Analgesic Combinations Analgesics
  • androgens and anabolic steroids
    angiotensin converting enzyme inhibitors
    angiotensin II inhibitors
    anorectal preparations
    anorexiants
    antacids
    anthelmintics
    anti-angiogenic ophthalmic agents
    anti-CTLA-4 monoclonal antibodies
    anti-infectives
    antiadrenergic agents, centrally acting
    antiadrenergic agents, peripherally acting
    antiandrogens
    antianginal agents
    antiarrhythmic agents
    antiasthmatic combinations
    antibiotics/antineoplastics
    anticholinergic antiemetics
    anticholinergic antiparkinson agents
    anticholinergic bronchodilators
    anticholinergic chronotropic agents
    anticholinergics/antispasmodics
    anticoagulants
    anticonvulsants
    antidepressants
    antidiabetic agents
    antidiabetic combinations
    antidiarrheals
    antidiuretic hormones
    antidotes
    antiemetic/antivertigo agents
    antifungals
    antigonadotropic agents
    antigout agents
    antihistamines
    antihyperlipidemic agents
    antihyperlipidemic combinations
    antihypertensive combinations
    antihyperuricemic agents
    antimalarial agents
    antimalarial combinations
    antimalarial quinolines
    antimetabolites
    antimigraine agents
    antineoplastic detoxifying agents
    antineoplastic interferons
    antineoplastic monoclonal antibodies
    antineoplastics
    antiparkinson agents
    antiplatelet agents
    antipseudomonal penicillins
    antipsoriatics
    antipsychotics
    antirheumatics
    antiseptic and germicides
    antithyroid agents
    antitoxins and antivenins
    antituberculosis agents
    antituberculosis combinations
    antitussives
    antiviral agents
    antiviral combinations
    antiviral interferons
    anxiolytics, sedatives, and hypnotics
    aromatase inhibitors
    atypical antipsychotics
    azole antifungals
    bacterial vaccines
    barbiturate anticonvulsants
    barbiturates
    BCR-ABL tyrosine kinase inhibitors
    benzodiazepine anticonvulsants
    benzodiazepines
    beta-adrenergic blocking agents
    beta-lactamase inhibitors
    bile acid sequestrants
    biologicals
    bisphosphonates
    bone resorption inhibitors
    bronchodilator combinations
    bronchodilators
    calcitonin
    calcium channel blocking agents
    carbamate anticonvulsants
    carbapenems
    carbonic anhydrase inhibitor anticonvulsants
    carbonic anhydrase inhibitors
    cardiac stressing agents
    cardioselective beta blockers
    cardiovascular agents
    catecholamines
    CD20 monoclonal antibodies
    CD33 monoclonal antibodies
    CD52 monoclonal antibodies
    central nervous system agents
    cephalosporins
    cerumenolytics
    chelating agents
    chemokine receptor antagonist
    chloride channel activators
    cholesterol absorption inhibitors
    cholinergic agonists
    cholinergic muscle stimulants
    cholinesterase inhibitors
    CNS stimulants
    coagulation modifiers
    colony stimulating factors
    contraceptives
    corticotropin
    coumarins and indandiones
    cox-2 inhibitors
    decongestants
    dermatological agents
    diagnostic radiopharmaceuticals
    dibenzazepine anticonvulsants
    digestive enzymes
    dipeptidyl peptidase 4 inhibitors
    diuretics
    dopaminergic antiparkinsonism agents
    drugs used in alcohol dependence
    echinocandins
    EGFR inhibitors
    estrogen receptor antagonists
    estrogens
    expectorants
    factor Xa inhibitors
    fatty acid derivative anticonvulsants
    fibric acid derivatives
    first generation cephalosporins
    fourth generation cephalosporins
    functional bowel disorder agents
    gallstone solubilizing agents
    gamma-aminobutyric acid analogs
    gamma-aminobutyric acid reuptake inhibitors
    gamma-aminobutyric acid transaminase inhibitors
    gastrointestinal agents
    general anesthetics
    genitourinary tract agents
    GI stimulants
    glucocorticoids
    glucose elevating agents
    glycopeptide antibiotics
    glycoprotein platelet inhibitors
    glycylcyclines
    gonadotropin releasing hormones
    gonadotropin-releasing hormone antagonists
    gonadotropins
    group I antiarrhythmics
    group II antiarrhythmics
    group III antiarrhythmics
    group IV antiarrhythmics
    group V antiarrhythmics
    growth hormone receptor blockers
    growth hormones
    H. pylori eradication agents
    H2 antagonists
    hematopoietic stem cell mobilizer
    heparin antagonists
    heparins
    HER2 inhibitors
    herbal products
    histone deacetylase inhibitors
    hormone replacement therapy
    hormones
    hormones/antineoplastics
    hydantoin anticonvulsants
    illicit (street) drugs
    immune globulins
    immunologic agents
    immunosuppressive agents
    impotence agents
    in vivo diagnostic biologicals
    incretin mimetics
    inhaled anti-infectives
    inhaled corticosteroids
    inotropic agents
    insulin
    insulin-like growth factor
    integrase strand transfer inhibitor
    interferons
    intravenous nutritional products
    iodinated contrast media
    ionic iodinated contrast media
    iron products
    ketolides
    laxatives
    leprostatics
    leukotriene modifiers
    lincomycin derivatives
    lipoglycopeptides
    local injectable anesthetics
    loop diuretics
    lung surfactants
    lymphatic staining agents
    lysosomal enzymes
    macrolide derivatives
    macrolides
    magnetic resonance imaging contrast media
    mast cell stabilizers
    medical gas
    meglitinides
    metabolic agents
    methylxanthines
    mineralocorticoids
    minerals and electrolytes
    miscellaneous agents
    miscellaneous analgesics
    miscellaneous antibiotics
    miscellaneous anticonvulsants
    miscellaneous antidepressants
    miscellaneous antidiabetic agents
    miscellaneous antiemetics
    miscellaneous antifungals
    miscellaneous antihyperlipidemic agents
    miscellaneous antimalarials
    miscellaneous antineoplastics
    miscellaneous antiparkinson agents
    miscellaneous antipsychotic agents
    miscellaneous antituberculosis agents
    miscellaneous antivirals
    miscellaneous anxiolytics, sedatives and hypnotics
    miscellaneous biologicals
    miscellaneous bone resorption inhibitors
    miscellaneous cardiovascular agents
    miscellaneous central nervous system agents
    miscellaneous coagulation modifiers
    miscellaneous diuretics
    miscellaneous genitourinary tract agents
    miscellaneous GI agents
    miscellaneous hormones
    miscellaneous metabolic agents
    miscellaneous ophthalmic agents
    miscellaneous otic agents
    miscellaneous respiratory agents
    miscellaneous sex hormones
    miscellaneous topical agents
    miscellaneous uncategorized agents
    miscellaneous vaginal agents
    mitotic inhibitors
    monoamine oxidase inhibitors
    monoclonal antibodies
    mouth and throat products
    mTOR inhibitors
    mTOR kinase inhibitors
    mucolytics
    multikinase inhibitors
    muscle relaxants
    mydriatics
    narcotic analgesic combinations
    narcotic analgesics
    nasal anti-infectives
    nasal antihistamines and decongestants
    nasal lubricants and irrigations
    nasal preparations
    nasal steroids
    natural penicillins
    neuraminidase inhibitors
    neuromuscular blocking agents
    next generation cephalosporins
    nicotinic acid derivatives
    nitrates
  • NNRTIs
  • non-cardioselective beta blockers
    non-iodinated contrast media
    non-ionic iodinated contrast media
    non-sulfonylureas
    nonsteroidal anti-inflammatory agents
    norepinephrine reuptake inhibitors
    norepinephrine-dopamine reuptake inhibitors
    nucleoside reverse transcriptase inhibitors (NRTIs)
    nutraceutical products
    nutritional products
    ophthalmic anesthetics
    ophthalmic anti-infectives
    ophthalmic anti-inflammatory agents
    ophthalmic antihistamines and decongestants
    ophthalmic diagnostic agents
    ophthalmic glaucoma agents
    ophthalmic lubricants and irrigations
    ophthalmic preparations
    ophthalmic steroids
    ophthalmic steroids with anti-infectives
    ophthalmic surgical agents
    oral nutritional supplements
    otic anesthetics
    otic anti-infectives
    otic preparations
    otic steroids
    otic steroids with anti-infectives
    oxazolidinedione anticonvulsants
    parathyroid hormone and analogs
    penicillinase resistant penicillins
    penicillins
    peripheral opioid receptor antagonists
    peripheral vasodilators
    peripherally acting antiobesity agents
    phenothiazine antiemetics
    phenothiazine antipsychotics
    phenylpiperazine antidepressants
    plasma expanders
    platelet aggregation inhibitors
    platelet-stimulating agents
    polyenes
    potassium-sparing diuretics
    probiotics
    progesterone receptor modulators
    progestins
    prolactin inhibitors
    prostaglandin D2 antagonists
    protease inhibitors
    proton pump inhibitors
    psoralens
    psychotherapeutic agents
    psychotherapeutic combinations
    purine nucleosides
    pyrrolidine anticonvulsants
    quinolones
    radiocontrast agents
    radiologic adjuncts
    radiologic agents
    radiologic conjugating agents
    radiopharmaceuticals
    RANK ligand inhibitors
    recombinant human erythropoietins
    renin inhibitors
    respiratory agents
    respiratory inhalant products
    rifamycin derivatives
    salicylates
    sclerosing agents
    second generation cephalosporins
    selective estrogen receptor modulators
    selective serotonin reuptake inhibitors
    serotonin-norepinephrine reuptake inhibitors
    serotoninergic neuroenteric modulators
    sex hormone combinations
    sex hormones
    skeletal muscle relaxant combinations
    skeletal muscle relaxants
    smoking cessation agents
    somatostatin and somatostatin analogs
    spermicides
    statins
    sterile irrigating solutions
    streptomyces derivatives
    succinimide anticonvulsants
    sulfonamides
    sulfonylureas
    synthetic ovulation stimulants
    tetracyclic antidepressants
    tetracyclines
    therapeutic radiopharmaceuticals
    thiazide diuretics
    thiazolidinediones
    thioxanthenes
    third generation cephalosporins
    thrombin inhibitors
    thrombolytics
    thyroid drugs
    tocolytic agents
    topical acne agents
    topical agents
    topical anesthetics
    topical anti-infectives
    topical antibiotics
    topical antifungals
    topical antihistamines
    topical antipsoriatics
    topical antivirals
    topical astringents
    topical debriding agents
    topical depigmenting agents
    topical emollients
    topical keratolytics
    topical steroids
    topical steroids with anti-infectives
    toxoids
    triazine anticonvulsants
    tricyclic antidepressants
    trifunctional monoclonal antibodies
    tumor necrosis factor (TNF) inhibitors
    tyrosine kinase inhibitors
    ultrasound contrast media
    upper respiratory combinations
    urea anticonvulsants
    urinary anti-infectives
    urinary antispasmodics
    urinary pH modifiers
    uterotonic agents
    vaccine
    vaccine combinations
    vaginal anti-infectives
    vaginal preparations
    vasodilators
    vasopressin antagonists
    vasopressors
    VEGF/VEGFR inhibitors
    viral vaccines
    viscosupplementation agents
    vitamin and mineral combinations
    vitamins
  • Diagnostic Tests 17-Hydroxyprogesterone
  • ACE (Angiotensin I converting enzyme)
  • Acetaminophen
  • Acid phosphatase
  • ACTH
  • Activated clotting time
    Activated protein C resistance
    Adrenocorticotropic hormone (ACTH)
    Alanine aminotransferase (ALT)
  • Albumin Aldolase Aldosterone
  • Alkaline phosphatase
    Alkaline phosphatase (ALP)
    Alpha1-antitrypsin
  • Alpha-fetoprotein Alpha-fetoprotien
  • Ammonia levels
  • Amylase
  • ANA (antinuclear antibodies)
    ANA (antinuclear antibodies)
    Angiotensin-converting enzyme (ACE)
  • Anion gap
  • Anticardiolipin antibody
    Anticardiolipin antivbodies (ACA)
    Anti-centromere antibody
    Antidiuretic hormone
  • Anti-DNA Anti-Dnase-B
  • Anti-Gliadin antibody
    Anti-glomerular basement membrane antibody
    Anti-HBc (Hepatitis B core antibodies
    Anti-HBs (Hepatitis B surface antibody
    Antiphospholipid antibody
    Anti-RNA polymerase
    Anti-Smith (Sm) antibodies
    Anti-Smooth Muscle antibody
  • Antistreptolysin O (ASO) Antithrombin III
  • Anti-Xa activity
    Anti-Xa assay
  • Apolipoproteins Arsenic
  • Aspartate aminotransferase (AST)
  • B12 Basophil Beta-2-Microglobulin Beta-hydroxybutyrate B-HCG Bilirubin
  • Bilirubin, direct
    Bilirubin, indirect
    Bilirubin, total
    Bleeding time
    Blood gases (arterial)
    Blood urea nitrogen (BUN)
  • BUN
  • BUN (blood urea nitrogen)
  • CA 125 CA 15-3 CA 19-9 Calcitonin Calcium
  • Calcium (ionized)
    Carbon monoxide (CO)
    Carcinoembryonic antigen (CEA)
  • CBC CEA
  • CEA (carcinoembryonic antigen)
  • Ceruloplasmin CH50Chloride Cholesterol Cholesterol, HDL
  • Clot lysis time
    Clot retraction time
  • CMP CO2
  • Cold agglutinins
  • Complement C3 Copper
  • Corticotrophin releasing hormone (CRH) stimulation test
  • Cortisol
  • Cortrosyn stimulation test
  • C-peptide CPK (Total) CPK-MB
  • C-reactive protein
  • Creatinine
  • Creatinine kinase (CK)
  • Cryoglobulins
  • DAT (Direct antiglobulin test)
  • D-Dimer
  • Dexamethasone suppression test
  • DHEA-S
  • Dilute Russell viper venom
  • Elliptocytes Eosinophil
  • Erythrocyte sedimentation rate (ESR)
  • Estradiol Estriol Ethanol
  • Ethylene glycol
    Euglobulin lysis
  • Factor V Leiden
  • Factor VIII inhibitor
    Factor VIII level
  • Ferritin
  • Fibrin split products
  • Fibrinogen Folate
  • Folate (serum
    Fractional excretion of sodium (FENA)
    FSH (follicle stimulating factor)
  • FTA-ABS
  • Gamma glutamyl transferase (GGT)
  • Gastrin
  • GGTP (Gamma glutamyl transferase)
  • Glucose
  • Growth hormone
  • Haptoglobin
  • HBeAg (Hepatitis Be antigen)
    HBs-Ag (Hepatitis B surface antigen)
    Helicobacter pylori
  • Hematocrit Hematocrit (HCT) Hemoglobin Hemoglobin A1C
  • Hemoglobin electrophoresis
    Hepatitis A antibodies
    Hepatitis C antibodies
    IAT (Indirect antiglobulin test)
  • Immunofixation (IFE) Iron
  • Lactate dehydrogenase (LDH)
    Lactic acid (lactate)
  • LDH
  • LH (Leutinizing hormone
  • Lipase
  • Lupus anticoagulant
  • Lymphocyte Magnesium
  • MCH (mean corpuscular hemoglobin
    MCHC (mean corpuscular hemoglobin concentration)
    MCV (mean corpuscular volume)
  • Methylmalonate Monocyte
  • MPV (mean platelet volume)
  • Myoglobin Neutrophil
  • Parathyroid hormone (PTH)
  • Phosphorus
  • Platelets (pit)
  • Potassium Prealbumin Prolactin
  • Prostate specific antigen (PSA)
  • Protein C Protein S
  • PSA (prostate specific antigen)
    PT (Prothrombin time)
    PTT (Partial thromboplastin time)
    RDW (red cell distribution width)
  • Renin Rennin
  • Reticulocyte count
    reticulocytes
    Rheumatoid factor (RF)
  • Sed Rate
  • Serum glutamic-pyruvic transaminase (SGPT
    Serum protein electrophoresis (SPEP)
  • Sodium
  • T3-resin uptake (T3RU)
  • T4, Free
  • Thrombin time
    Thyroid stimulating hormone (TSH)
  • Thyroxine (T4)
  • Total iron binding capacity (TIBC)
    Total protein
  • Transferrin
  • Transferrin saturation
  • Triglyceride (TG) Troponin
  • Uric acid
  • Vitamin B12
  • White blood cells (WBC)
    Widal test
    Protocol for Coating Syringe Barrel Interior with SiOx
  • The apparatus and protocol generally as found in U.S. Pat. No. 7,985,188 were used for coating syringe barrel interiors with an SiOx barrier coating or layer, in some cases with minor variations. A similar apparatus and protocol were used for coating vials with an SiOx barrier coating or layer, in some cases with minor variations.
  • Protocol for Coating Syringe Barrel Interior with Primer Coating or Layer
  • Syringe barrels already interior coated with a barrier coating or layer of SiOx, as previously identified, are further interior coated with a primer coating or layer of SiOxCy as previously identified, generally following the protocols of U.S. Pat. No. 7,985,188 for applying the lubricity coating or layer, except with modified conditions in certain instances.
  • Protocol for Fi (Breakout or Initiation Force) Measurement
  • Convenient methods for measuring the breakout or initiation force required to initiate travel of a previously parked plunger in a syringe are described in Examples 11, 12, or 21 of U.S. Pat. No. 7,985,188, which are incorporated here by reference.
  • Protocol for Total Silicon Measurement
  • This protocol is used to determine the total amount of silicon coatings present on the entire vessel wall. A supply of 0.1 N potassium hydroxide (KOH) aqueous solution is prepared, taking care to avoid contact between the solution or ingredients and glass. The water used is purified water, 18 M′Ω quality. A Perkin Elmer Optima Model 7300DV ICP-OES instrument is used for the measurement except as otherwise indicated.
  • Each device (vial, syringe, tube, or the like) to be tested and its cap and crimp (in the case of a vial) or other closure are weighed empty to 0.001 g, then filled completely with the KOH solution (with no headspace), capped, crimped, and reweighed to 0.001 g. In a digestion step, each vial is placed in an autoclave oven (liquid cycle) at 121° C. for 1 hour. The digestion step is carried out to quantitatively remove the silicon coatings from the vessel wall into the KOH solution. After this digestion step, the vials are removed from the autoclave oven and allowed to cool to room temperature. The contents of the vials are transferred into ICP tubes. The total Si concentration is run on each solution by ICP/OES following the operating procedure for the ICP/OES.
  • The total Si concentration is reported as parts per billion of Si in the KOH solution. This concentration represents the total amount of silicon coatings that were on the vessel wall before the digestion step was used to remove it.
  • The total Si concentration can also be determined for fewer than all the silicon layers on the vessel, as when an SiOx barrier layer is applied, an SiOxCy second layer (for example, a lubricity layer or a primer coating or layer) is then applied, and it is desired to know the total silicon concentration of just the SiOxCy layer. This determination is made by preparing two sets of vessels, one set to which only the SiOx layer is applied and the other set to which the same SiOx layer is applied, followed by the SiOxCy layer or other layers of interest. The total Si concentration for each set of vessels is determined in the same manner as described above. The difference between the two Si concentrations is the total Si concentration of the SiOxCy second layer.
  • Protocol for Measuring Dissolved Silicon in a Vessel
  • In some of the working examples, the amount of silicon dissolved from the wall of the vessel by a test solution is determined, in parts per billion (ppb), for example to evaluate the dissolution rate of the test solution. This determination of dissolved silicon is made by storing the test solution in a vessel provided with an SiOx and/or SiOxCy coating or layer under test conditions, then removing a sample of the solution from the vessel and testing the Si concentration of the sample. The test is done in the same manner as the Protocol for Total Silicon Measurement, except that the digestion step of that protocol is replaced by storage of the test solution in the vessel as described in this protocol. The total Si concentration is reported as parts per billion of Si in the test solution
  • Protocol for Determining Average Dissolution Rate
  • The average dissolution rates reported in the working examples are determined as follows. A series of test vessels having a known total silicon measurement are filled with the desired test solution analogous to the manner of filling the vials with the KOH solution in the Protocol for Total Silicon Measurement. (The test solution can be a physiologically inactive test solution as employed in the present working examples or a physiologically active pharmaceutical preparation intended to be stored in the vessels to form a pharmaceutical package). The test solution is stored in respective vessels for several different amounts of time, then analyzed for the Si concentration in parts per billion in the test solution for each storage time. The respective storage times and Si concentrations are then plotted. The plots are studied to find a series of substantially linear points having the steepest slope.
  • The plot of dissolution amount (ppb Si) versus days decreases in slope with time, even though it does not appear that the Si layer has been fully digested by the test solution.
  • For the PC194 test data in Table 3, linear plots of dissolution versus time data are prepared by using a least squares linear regression program to find a linear plot corresponding to the first five data points of each of the experimental plots. The slope of each linear plot is then determined and reported as representing the average dissolution rate applicable to the test, measured in parts per billion of Si dissolved in the test solution per unit of time.
  • Protocol for Determining Calculated Shelf Life
  • The calculated shelf life values reported in the working examples below are determined by extrapolation of the total silicon measurements and average dissolution rates, respectively determined as described in the Protocol for Total Silicon Measurement and the Protocol for Determining Average Dissolution Rate. The assumption is made that under the indicated storage conditions the SiOxCy primer coating or layer will be removed at the average dissolution rate until the coating is entirely removed. Thus, the total silicon measurement for the vessel, divided by the dissolution rate, gives the period of time required for the test solution to totally dissolve the SiOxCy coating. This period of time is reported as the calculated shelf life. Unlike commercial shelf life calculations, no safety factor is calculated. Instead, the calculated shelf life is the calculated time to failure.
  • It should be understood that because the plot of ppb Si versus hours decreases in slope with time, an extrapolation from relatively short measurement times to relatively long calculated shelf lives is believed to be a “worst case” test that tends to underestimate the calculated shelf life actually obtainable.
  • EXAMPLES Examples 1-3
  • Syringe samples 1-3, employing three different primer coatings or layers, were produced under the following PECVD conditions:
      • OMCTS—2.5 sccm
      • Argon gas—7.6 sccm (when used)
      • Oxygen 0.38 sccm (when used)
      • Power—3 watts
      • Power on time—10 seconds
  • Syringe 1 had a three-component primer coating or layer employing OMCTS, oxygen, and carrier gas. Syringe 2 had a two component primer coating or layer employing OMCTS and oxygen, but no carrier gas. Syringe 3 had a one-component primer coating or layer (OMCTS only). The primer coatings or layers produced according to these working examples are contemplated to function as protective coatings or layers to increase the shelf life of the vessels, compared to similar vessels provided with a barrier coating or layer but no primer coating or layer.
  • Examples 4-6
  • HMDSO was used as the precursor in Examples 4-6. The results are shown in Table 1. The coatings produced according to these working examples are contemplated to function as primer coatings or layers, and also as protective coatings or layers to increase the shelf life of the vessels, compared to similar vessels provided with a barrier coating or layer but no primer coating or layer.
  • Example 7: Primer Coating or Layer Extractables
  • Silicon extractables from syringes were measured using ICP-MS analysis as described in the Protocol for Measuring Dissolved Silicon in a Vessel. The syringes were evaluated in both static and dynamic situations. The Protocol for Measuring Dissolved Silicon in a Vessel, modified as follows, describes the test procedure:
      • Syringe filled with 2 ml of 0.9% saline solution
      • Syringe placed in a stand—stored at 50° C. for 72 hours.
      • After 72 hours saline solution test for dissolved silicon
      • Dissolved silicon measured before and after saline solution expelled through syringe.
  • The extractable Silicon Levels from a silicone oil coated glass syringe and a protective coated and SiOx coated COC syringe are shown in Table 2. Precision of the ICP-MS total silicon measurement is +/−3%.
  • Comparative Example 8: Dissolution of SiOx Coating Versus pH
  • The Protocol for Measuring Dissolved Silicon in a Vessel is followed, except as modified here. Test solutions—50 mM buffer solutions at pH 3, 6, 7, 8, 9, and 12 are prepared. Buffers are selected having appropriate pKa values to provide the pH values being studied. A potassium phosphate buffer is selected for pH 3, 7, 8 and 12, a sodium citrate buffer is utilized for pH 6 and tris buffer is selected for pH 9. 3 ml of each test solution is placed in borosilicate glass 5 ml pharmaceutical vials and SiOx coated 5 ml thermoplastic pharmaceutical vials. The vials are all closed with standard coated stoppers and crimped. The vials are placed in storage at 20-25° C. and pulled at various time points for inductively coupled plasma spectrometer (ICP) analysis of Si content in the solutions contained in the vials, in parts per billion (ppb) by weight, for different storage times.
  • The Protocol for Determining Average Dissolution Rate Si content is used to monitor the rate of glass dissolution, except as modified here. The data is plotted to determine an average rate of dissolution of borosilicate glass or SiOx coating at each pH condition.
  • The rate of Si dissolution in ppb is converted to a predicted thickness (nm) rate of Si dissolution by determining the total weight of Si removed, then using a surface area calculation of the amount of vial surface (11.65 cm2) exposed to the solution and a density of SiOx of 2.2 g/cm3. The predicted initial thickness of the SiOx coating required, based on the conditions and assumptions of this example (assuming a residual SiOx coating of at least 30 nm at the end of the desired shelf life of two years, and assuming storage at 20 to 25° C.) is about 36 nm at pH 5, about 80 nm at pH 6, about 230 nm at pH 7, about 400 nm at pH 7.5, about 750 nm at pH 8, and about 2600 nm at pH 9.
  • The coating thicknesses represent atypically harsh case scenarios for pharma and biotech products. Most biotech products and many pharma products are stored at refrigerated conditions and none are typically recommended for storage above room temperature. As a general rule of thumb, storage at a lower temperature reduces the thickness required, all other conditions being equivalent.
  • The following conclusions are reached, based on this test. First, the amount of dissolved Si in the SiOx coating or glass increases exponentially with increasing pH. Second, the SiOx coating dissolves more slowly than borosilicate glass at a pH lower than 8. The SiOx coating shows a linear, monophasic dissolution over time, whereas borosilicate glass tends to show a more rapid dissolution in the early hours of exposure to solutions, followed by a slower linear dissolution. This may be due to surface accumulation of some salts and elements on borosilicate during the forming process relative to the uniform composition of the SiOx coating. This result incidentally suggests the utility of an SiOx coating on the wall of a borosilicate glass vial to reduce dissolution of the glass at a pH lower than 8. Third, PECVD applied barrier coatings for vials in which pharmaceutical preparations are stored will need to be adapted to the specific pharmaceutical preparation and proposed storage conditions (or vice versa), at least in some instances in which the pharmaceutical preparation interacts with the barrier coating significantly.
  • Example 9
  • An experiment is conducted with vessels coated with SiOx coating+OMCTS primer coating or layer, to test the primer coating or layer for its functionality as a protective coating or layer. The vessels are 5 mL vials (the vials are normally filled with product to 5 mL; their capacity without headspace, when capped, is about 7.5 mL) composed of cyclic olefin co-polymer (COC, Topas® 6013M-07).
  • Sixty vessels are coated on their interior surfaces with an SiOx coating produced in a plasma enhanced chemical vapor deposition (PECVD) process using a HMDSO precursor gas according to the Protocol for Coating Tube Interior with SiOx set forth above, except that equipment suitable for coating a vial is used. The following conditions are used.
      • HMDSO flow rate: 0.47 sccm
      • Oxygen flow rate: 7.5 sccm
      • RF power: 70 Watts
      • Coating time: 12 seconds (includes a 2-sec RF power ramp-up time)
  • Next the SiOx coated vials are coated over the SiOx with an SiOxCy coating produced in a PECVD process using an OMCTS precursor gas according to the Protocol for Coating COC Syringe Barrel Interior with OMCTS Lubricity Coating set forth above, except that the same coating equipment is used as for the SiOx coating. Thus, the special adaptations in the protocol for coating a syringe are not used. The following conditions are used.
      • OMCTS flow rate: 2.5 sccm
      • Argon flow rate: 10 sccm
      • Oxygen flow rate: 0.7 sccm
      • RF power: 3.4 Watts
      • Coating time: 5 seconds
  • Eight vials are selected and the total deposited quantity of PECVD coating (SiOx+SiOxCy) is determined with a Perkin Elmer Optima Model 7300DV ICP-OES instrument, using the Protocol for Total Silicon Measurement set forth above. This measurement determines the total amount of silicon in both coatings, and does not distinguish between the respective SiOx and SiOxCy coatings. The results are shown below.
  • Vial Total Silicon ug/L
    1 13844
    2 14878
    3 14387
    4 13731
    5 15260
    6 15017
    7 15118
    8 12736
    Mean 14371
    StdDev 877
    Quantity of SiOx + Lubricity layer on Vials
  • In the following work, except as indicated otherwise in this example, the Protocol for Determining Average Dissolution Rate is followed. Two buffered pH test solutions are used in the remainder of the experiment, respectively at pH 4 and pH 8 to test the effect of pH on dissolution rate. Both test solutions are 50 mM buffers using potassium phosphate as the buffer, diluted in water for injection (WFI) (0.1 um sterilized, filtered). The pH is adjusted to pH 4 or 8, respectively, with concentrated nitric acid.
  • 25 vials are filled with 7.5 ml per vial of pH 4 buffered test solution and 25 other vials are filled with 7.5 ml per vial of pH 4 buffered test solution (note the fill level is to the top of the vial—no head space). The vials are closed using prewashed butyl stoppers and aluminum crimps. The vials at each pH are split into two groups. One group at each pH containing 12 vials is stored at 4° C. and the second group of 13 vials is stored at 23° C.
  • The vials are sampled at Days 1, 3, 6, and 8. The Protocol for Measuring Dissolved Silicon in a Vessel is used, except as otherwise indicated in this example. The analytical result is reported on the basis of parts per billion of silicon in the buffered test solutions of each vial. A dissolution rate is calculated in terms of parts per billion per day as described above in the Protocol for Determining Average Dissolution Rate. The results at the respective storage temperatures follow:
  • Vial SiOx + Lubricity Vial SiOx + Lubricity
    Coating at pH 4 Coating at pH 8
    Shelf Life Conditions 23° C.
    Si Dissolution Rate 31 7
    (PPB/day)
    Shelf Life Conditions 4° C.
    Si Dissolution Rate 7 11
    (PPB/day)
  • The observations of Si dissolution versus time for the OMCTS-based coating at pH8 and pH 4 indicate the pH 4 rates are higher at ambient conditions. Thus, the pH 4 rates are used to determine how much material would need to be initially applied to leave a coating of adequate thickness at the end of the shelf life, taking account of the amount of the initial coating that would be dissolved. The results of this calculation are:
  • Shell Life Calculation
    Vial SiOx + Lubricity
    Coating at pH 4
    Si Dissolution Rate (PPB/day) 31
    Mass of Coating Tested (Total Si) 14,371
    Shelf Life (days) at 23° C. 464
    Shelf Life (years) at 23° C. 1.3
    Required Mass of Coating 22,630
    (Total Si) - 2 years
    Required Mass of Coating 33,945
    (Total Si) - 3 years
  • Based on this calculation, the OMCTS protective layer needs to be about 2.5 times thicker—resulting in dissolution of 33945 ppb versus the 14,371 ppb representing the entire mass of coating tested—to achieve a 3-year calculated shelf life.
  • Example 10
  • The results of Comparative Example 8 and Example 9 above can be compared as follows, where the “primer coating or layer” is the coating of SiOxCy referred to in Example 9.
  • Shelf Life Conditions - - pH 8 and 23° C.
    Vial SiOx Vial SiOx + Lubricity Coating
    Si Dissolution Rate 1,250 7
    (PPB/day)
  • This data shows that the silicon dissolution rate of SiOx alone is reduced by more than 2 orders of magnitude at pH 8 in vials also coated with SiOxCy coatings.
  • Another comparison is shown by the data in Table 5 from several different experiments carried out under similar accelerated dissolution conditions.
  • Table 5, Row A (SiOx with OMCTS coating) versus C (SiOx without OMCTS coating) show that the OMCTS primer coating or layer is also an effective protective coating or layer to the SiOx coating at pH 8. The OMCTS coating reduced the one-day dissolution rate from 2504 ug/L (“u” or μ or the Greek letter “mu” as used herein are identical, and are abbreviations for “micro”) to 165 ug/L. This data also shows that an HMDSO-based SiwOxCy (or its equivalent SiOxCy) overcoat (Row D) provided a far higher dissolution rate than an OMCTS-based SiwOxCy (or its equivalent SiOxCy) overcoat (Row A).
  • Example 11
  • An experiment similar to Example 9 was carried out, modified as indicated in this example and in Table 3 (where the results are tabulated). 100 5 mL COP vials were made and coated with an SiOx barrier layer and an OMCTS-based primer coating or layer as described previously, except that for Sample PC194 only the primer coating or layer was applied. The coating quantity was again measured in parts per billion extracted from the surfaces of the vials to remove the entire primer coating or layer, as reported in Table 3.
  • In this example, several different coating dissolution conditions were employed. The test solutions used for dissolution contained either 0.02 or 0.2 wt. % polysorbate-80 surfactant, as well as a buffer to maintain a pH of 8. Dissolution tests were carried out at either 23° C. or 40° C.
  • Multiple syringes were filled with each test solution, stored at the indicated temperature, and analyzed at several intervals to determine the extraction profile and the amount of silicon extracted. An average dissolution rate for protracted storage times was then calculated by extrapolating the data obtained according to the Protocol for Determining Average Dissolution Rate. The results were calculated as described previously and are shown in Table 3. Of particular note, as shown on Table 3, were the very long calculated shelf lives of the filled packages provided with a PC 194 primer coating or layer:
      • 21045 days (over 57 years) based on storage at a pH of 8, 0.02 wt. % polysorbate-80 surfactant, at 23° C.;
      • 38768 days (over 100 years) based on storage at a pH of 8, 0.2 wt. % polysorbate-80 surfactant, at 23° C.;
      • 8184 days (over 22 years) based on storage at a pH of 8, 0.02 wt. % polysorbate-80 surfactant, at 40° C.; and
      • 14732 days (over 40 years) based on storage at a pH of 8, 0.2 wt. % polysorbate-80 surfactant, at 40° C.
  • Referring to Table 3, the longest calculated shelf lives corresponded with the use of an RF power level of 150 Watts and a corresponding high W/FM value. It is believed that the use of a higher power level causes higher cross-link density of the primer coating or layer.
  • Example 12—Deposit of Lubricant
  • A preliminary study was conducted to compare the relative amounts of free (i.e. readily removable) Dow Corning 360 Medical Fluid (PMDS non-reactive silicone fluid) on:
      • borosilicate glass vials,
      • SiOx barrier-coated COP vials, and
      • SiOx barrier-coated COP vials further coated with an OMCTS primer coating or layer.
  • The SiOx barrier coatings were applied according to the Protocol for Coating Syringe Barrel Interior with SiOx. The OMCTS primer coating or layer was applied according to the Protocol for Coating Syringe Barrel Interior with OMCTS Primer Coating or Layer.
  • This study was carried out by applying a deposit of Dow Corning 360 Medical Fluid (having a viscosity of 350 CST) to the test vials
  • To carry out the preliminary study, the vials were filled with a 50 mM potassium phosphate solution of pH 8 with 0.2% Tween®-80. The filled vials were closed with a prewashed stopper and aluminum crimp and stored for up to 600 hours at a temperature of 40° C., then the solutions from the vials were tested for PMDS non-reactive silicone fluid content according to the Protocol for Determining Average Dissolution Rate.
  • This preliminary study showed that the OMCTS primer coating or layer prevented significant amounts of PMDS non-reactive silicone fluid from dissolving into a Tween solution, while significant amounts of PMDS non-reactive silicone fluid dissolved in solution from the borosilicate glass vials and SiOx barrier-coated COP vials. The OMCTS primer coating or layer appeared to have a great affinity for PMDS non-reactive silicone fluid, compared to the other substrates tested.
  • Example 13—Hypothetical Example of Deposit of Lubricant
  • A more rigorous study similar to Example 12 is conducted, using as the substrates:
      • borosilicate glass vials,
      • uncoated COP vials,
      • SiOx barrier-coated COP vials, and
      • SiOx barrier-coated COP vials further coated with an OMCTS primer coating or layer.
  • One set of each type of vial is provided with a deposit of PMDS non-reactive silicone fluid, except that, as indicated above, some of the test vials receiving the deposit of lubricant have not previously been coated with a primer coating or layer. A second set of each type of vial does not receive a deposit of lubricant and serves as controls.
  • The vials are filled with one of the following test solutions:
      • 50 mM aqueous phosphate solutions with pHs of 4.0, 6.5, 8.0, 8.0, each also containing 0.2% Tween®-80
      • water for injection (wfi) and
      • 300 mM aqueous sodium chloride (NaCl).
  • All vials with solution are incubated at 40° C. and samples pulled at the intervals shown in the table below for testing. The following tests are performed:
      • Dissolved Si in solution, a measure of silicone oil and dissolved SiO2
      • Total Organic Carbon (TOC) on solution not containing tween, to determine amount of silicone oil in solution
      • Particulates focusing on low micron channels to measure micelles of silicone oil
      • pH of wfi solutions
      • Oxygen transmission rate (OTR) as deemed appropriate to verify integrity of barrier coatings
  • The study is expected to demonstrate that the application of a primer coating or layer as described in this specification improves the retention of the PMDS non-reactive silicone fluid on the vials.
  • Example 14—Measurement of Contact Angle
  • The test purpose was to determine the contact angle or surface energy on the inside surface of two kinds of plastic vials and one kind of glass vial
  • The specimens that underwent testing and analysis reported here are three kinds of vials. The specimens are (A) an uncoated COP vial, (B) an SiOx+primer layer coated COP vial prepared according to the above Protocol for Coating Syringe Barrel Interior with SiOx, followed by the Protocol for Coating Syringe Barrel Interior with OMCTS Primer Coating or Layer, and (C) a glass vial. Small pieces were obtained by cutting the plastic vials or crushing the glass vial in order to test the inside surface.
  • The analysis instrument for the contact angle tests is the Contact Angle Meter model DM-701, made by Kyowa Interface Science Co., Ltd. (Tokyo, Japan). To obtain the contact angle, five water droplets were deposited on the inside surface of small pieces obtained from each specimen. The testing conditions and parameters are summarized below. Both plastic vials were cut and trimmed, while the glass vial needed to be crushed. The best representative pieces for each specimen were selected for testing. A dropsize of 1 μL (one microliter) was used for all samples. Due to the curvature of the specimens, a curvature correction routine was used to accurately measure the contact angle. The second table below contains the values for the radius of curvature used for each specimen.
  • Contact Angle Testing Conditions and Parameters
  • Test instrument DM-701 Contact Angle Meter
    Liquid Dispenser 22 gauge stainless steel needle
    Drop Size 1 μL
    Test liquid Distilled water
    Environment Ambient air, room temperature
  • Radius of Curvature for Each Vial Specimen
  • Radius of Curvature
    Specimen (μm, micrometers)
    COP 9240
    COP plus primer 9235
    Glass 9900
  • The contact angle results for each specimen are provided below.
  • The COP plus primer coated specimen had the highest average contact angle of all tested specimens. The average contact angle for the COP plus primer coating or layer specimen was 99.1. The average contact angle for the uncoated COP specimen was 90.5°. The glass specimen had a significantly lower average contact angle at 10.6°. This data shows the utility of the primer coating to raise the contact angle of the uncoated COP vessel. It is expected that an SiOx coated vessel without the primer coating or layer would exhibit a result similar to glass, which shows a hydrophilic coating relative to the primer coating or layer.
  • Contact Angle Result for Each Tested Specimen (degrees)
    Test Std.
    Specimen Test 1 Test 2 Test 3 Test 4 5 Ave Dev.
    COP 88.9 91.9 89.1 91.4 91.1 90.5 1.4
    COP/Primer 98.9 96.8 102.2 98.3 99.5 99.1 2.0
    Glass 11.6 10.6 10.1 10.4 10.4 10.6 0.6
  • Example 15
  • The purpose of this example was to evaluate the recoverability or drainage of a slightly viscous aqueous solution from glass, COP and coated vials,
  • This study evaluated the recovery of a 30 cps (centipoise) carbohydrate solution in water-for-injection from (A) an uncoated COP vial, (B) an SiOx+primer layer coated COP vial prepared according to the above Protocol for Coating Syringe Barrel Interior with SiOx, followed by the Protocol for Coating Syringe Barrel Interior with OMCTS Primer Coating or Layer, and (C) a glass vial.
  • 2.0 ml of the carbohydrate solution was pipetted into 30 vials each of glass, COP and primer coated vials. The solution was aspirated from the vials with a 10 ml syringe, through a 23 gauge, 1.5″ needle. The vials were tipped to one side as the solution was aspirated to maximize the amount recovered. The same technique and similar withdrawal time was used for all vials. The vials were weighed empty, after placing 2.0 ml of the solution to the vial and at the conclusion of aspirating the solution from the vial. The amount delivered to the vial (A) was determined by subtracting the weight of the empty vial from the weight of the vial with the 2.0 ml of solution. The weight of solution not recovered (B) was determined by subtracting the weight of the empty vial from the weight of the vials after aspirating the solution from the vial. The percent unrecovered was determined by dividing B by A and multiplying by 100.
  • It was observed during the aspiration of drug product that the glass vials remained wetted with the solution. The COP vial repelled the liquid and as the solution was aspirated from the vials. This helped with recovery but droplets were observed to bead on the sidewalls of the vials during the aspiration. The primer coated vials also repelled the liquid during aspiration but no beading of solution on the sidewalls was observed.
  • The conclusion was that primer coated vials do not wet with aqueous solutions as do glass vials, leading to superior recovery of drug product relative to glass. Primer coated vials were not observed to cause beading of solution on sidewall during aspiration of aqueous products therefore coated vials performed better than uncoated COP vials in product recovery experiments.
  • Example 16—PECVD Treatments and Lubricity Testing
  • Multiple syringe samples of each type defined below are plasma processed (except the comparative examples), lubricated with polydimethylsiloxane (PDMS), assembled and filled, and then tested for breakout force. The plasma treating processes and PECVD primer coating formulations used on the syringes tested in this example are among those defined by the parameters set out in Table 4 (employing HMDSO to deposit a PECVD coating, or no HMDSO to effect a plasma treatment without coating, or no HMDSO to effect a plasma treatment of the SiOxCy or SiNxCy coated surface), and the data obtained is presented in FIG. 3.
  • The treatment conditions and data identified as “421-48 COP” relate to plastic syringe samples composed of cyclic olefin polymer (COP) that has not been plasma treated (Comparative example).
  • The treatment conditions and data identified as “EO-4 bilayer” relate to plastic syringe samples composed of cyclic olefin polymer. A bi-layer coating (an SiOx barrier coating or layer, followed by an SiOxCy pH protective coating or layer) is applied to the interior surface of the syringe using a PECVD process. The top (pH protective) layer is hydrophobic. After PDMS is applied onto the top layer the syringe is treated with ethylene oxide (sterilization).
  • The treatment conditions and data identified as “EO-1 SiOx” relate to plastic syringe samples composed of cyclic olefin polymer. A SiOx coating is applied to the interior surface of the syringe using a PECVD process. The SiOx layer is hydrophilic. PDMS is applied on to the SiOx layer. The syringe has been treated with ethylene oxide (sterilization).
  • The treatment conditions and data identified as “BD” relate to a glass syringe commercially available from Becton, Dickinson and Company or a related company, which is coated by the supplier with 1000 cst PDMS (Comparative example).
  • The treatment conditions and data identified as “Schott” relate to a glass syringe commercially available from Schott AG or a related company, which is coated by the supplier with 1000 cst PDMS (Comparative example).
  • The barrel interior of each of the above-listed samples except the glass syringes is coated with approximately 1 mg of PDMS (Dow 360 Medical Fluid, 1,000 cst) using an IVEK Multispense 2000 coater under the following conditions:
      • Volume—0.8-1.0 mL
      • Dispense Rate—10 □L/sec
      • Atomizing Pressure—5-8 psi (×N/cm2)
      • Back Pressure—25-30 psi (×N/cm2)
  • The syringe barrels are then assembled with Grey Stelmi plunger tips, which are parked in the syringe for the amount of time indicated in FIG. 3, then tested for Fi (breakout force). Breakout force testing is then conducted similarly to the testing in Example 21 of U.S. Pat. No. 7,985,188.
  • The results of this testing are shown in FIG. 3. Fi in Newtons (N) is shown in the vertical scale. and hours are shown in the horizontal scale.
  • The following guide is provided to assist interpretation of the test results represented in FIG. 3. A high breakout force is undesirable because it indicates that a user administering medication to a patient using the syringe needs to apply a large force to start the plunger moving. Typically, the force to keep the plunger moving is lower than the breakout force, so the syringe typically is prone to jerking after breakout when administration of a medicament is started, causing discomfort to the recipient. A rapidly increasing breakout force versus park time is undesirable because it indicates that the syringe will soon age as the park time increases, to the point where the breakout force is high with the disadvantage noted above. Thus, a rapidly increasing breakout force with park time indicates a syringe with a short useful shelf life.
  • As FIG. 3 illustrates, the data points such as 650 represent the breakout force data for the lubricated, non-plasma treated COP syringe. This syringe type has the highest breakout force after any tested park time, and the breakout force increases substantially with park time—for example at 0.25 hours (15 minutes) park time the breakout force is about 6 N but at 24 hours the breakout force is about 18 N—three times as great.
  • The bilayer syringe samples represented by the data points 652 of FIG. 3 have a much lower breakout force and a much lower rate of increase of breakout force with park time than the non-plasma-treated samples represented by the data points 650. Thus, at 0.25 hours (15 minutes) park time the breakout force is about 3.5 N, while at 24 hours park time the breakout force is about 7.6 N.
  • The SiOx barrier coated syringe samples represented by the data points 654 of FIG. 3 have a much lower breakout force and rate of increase with park time than the samples described above represented by the data points 650 and 652. Thus, at 0.25 hours, 15 minutes, the SiOx barrier coated syringe samples have a breakout force of less than 2 N, comparable to that of the glass-coated syringes represented by the overlapping data points 656 and 658, and at 24 hours the overlap is similar and the breakout force is about 3.5 N. Under the test conditions, therefore, the COP syringes that are barrier coated and lubricated with PDMS perform about as well as the glass syringes. This is a surprising result, showing that the barrier coating on a plastic syringe makes its breakout performance substantially that of a much more expensive and breakable glass syringe.
  • Example 17—PECVD and Plasma Treatments and Lubricity Testing
  • Example 17 is carried out comparably to Example 16, except that in addition to the above types of samples, all represented by data points having the same reference numbers in FIG. 4 as in FIG. 3, another type of samples, represented by data points such as 660, represented among the surface modifications in Table 4 employing no monomer (“NA”), was also prepared and tested. These represent plasma treatment without PECVD coating, or plasma treatment after applying a pH protective layer by PECVD. FIG. 4 shows similar results again, and for the plasma treatment only samples represented by the points 660, the results are surprisingly similar to those obtained using glass or SiOx barrier coated syringe barrels.
  • The working examples thus show several different types of plasma treatments, with and without deposition of a PECVD coating, improving the breakout force and the rate of increase of breakout force with park time in a molded plastic syringe.
  • Tables
  • TABLE 1
    primer coating or layer
    OMCTS O2 Ar
    Example (sccm) (sccm) (sccm)
    I 2.5 0.38 7.6
    J 2.5 0.38
    K 2.5
  • TABLE 2
    Silicon Extractables Comparison of Lubricity Coatings
    Package Type Static (ug/L) Dynamic (ug/L)
    Cyclic Olefin Syringe with CV 70 81
    Holdings SiOCH Lubricity Coating
    Borocilicate Glass Syringe 825 835
    with silicone oil
  • TABLE 3
    OMCTS Argon O2 Total Si Average
    Flow Flow Flow Plasma (ppb) Calculated Rate of
    Rate Rate Rate Power Duration W/FM (OMCTS) Shelf-life Dissolution
    Sample (sccm) (sccm) (sccm) (W) (sec) (kJ/kg) layer) (days) (ppb/day)
    Si Dissolution @
    Process Parameters pH 8/23° C./0.02% Tween ®-80
    PC194 0.5 20 0.5 150 20 1223335 73660 21045 3.5
    018 1.0 20 0.5 18 15 77157 42982 1330 32.3
    Si Dissolution @
    Process Parameters pH 8/23° C./0.2% Tween ®-80
    PC194 0.5 20 0.5 150 20 1223335 73660 38768 1.9
    018 1.0 20 0.5 18 15 77157 42982 665 64.6
    048 4 80 2 35 20 37507 56520 1074 52.62
    Si Dissolution @
    Process Parameters pH 8/40° C./0.02% Tween ®-80
    PC194 0.5 20 0.5 150 20 1223335 73660 8184 9
    018 1.0 20 0.5 18 15 77157 42982 511 84
    Si Dissolution @
    Process Parameters pH 8/40° C./0.2% Tween ®-80
    PC194 0.5 20 0.5 150 20 1223335 73660 14732 5
    018 1.0 20 0.5 18 15 77157 42982 255 168
  • TABLE 4
    Surface Monomer Argon Oxygen Power Time
    Mod Monomer (sccm) (sccm) (sccm) (W) (sec)
    1 HMDSO about 3 0 25 35 2.5
    2 HMDSO 0 25 35 5
    3 HMDSO 0 25 35 10
    4 HMDSO 0 25 40 5
    5 HMDSO 0 50 40 5
    6 HMDSO 0 75 40 5
    7 None NA 50 0 40 5
    8 None NA 25 25 40 5
    9 None NA 0 50 40 5
  • TABLE 5
    Silicon Dissolution with pH 8 at 40° C.
    Vial Coating (ug/L)
    Description 1 day 2 days 3 days 4 days 7 days 10 days 15 days
    A. SiOx made 165 211 226 252 435 850 1,364
    with HMDSO
    Plasma +
    SiwOxCy or its
    equivalent
    SiOxCy made
    with OMCTS
    Plasma
    B. SiwOxCy or 109 107 76 69 74 158 198
    its equivalent
    SiOxCy made
    with OMCTS
    Plasma
    C. SiOx made 2,504 4,228 5,226 5,650 9,292 10,177 9,551
    with HMDSO
    Plasma
    D. SiOx made 1,607 1,341 3,927 10,182 18,148 20,446 21,889
    with HMDSO
    Plasma +
    SiwOxCy or its
    equivalent
    SiOxCy made
    with HMDSO
    Plasma
    E. SiwOxCy or 1,515 1,731 1,813 1,743 2,890 3,241 3,812
    its equivalent
    SiOxCy made
    with HMDSO
    Plasma

Claims (30)

1. A vessel having a lumen defined at least in part by a wall, the wall having an interior surface facing the lumen, an outer surface, and a coating set on the interior surface comprising:
a plasma enhanced chemical vapor deposition (PECVD) primer coating or layer on the interior surface, in which the primer coating or layer consists essentially of SiOxCy, in which x is from about 0.5 to about 2.4 and y is from about 0.6 to about 3; and
optionally a barrier coating or layer between the primer coating or layer and the vessel wall, in which the barrier coating consists essentially of SiOx, in which x is from 1.5 to 2.9;
wherein, in the presence of a fluid composition contained in the lumen, the coating set presents a higher recovery rate for the fluid composition than an uncoated fluid contacting surface or a glass surface.
2. The vessel of claim 1, wherein the fluid is an aqueous liquid.
3. The vessel of claim 1, wherein the fluid is a high viscosity solution or a low viscosity solution.
4. The vessel of claim 1, wherein the fluid contains a drug.
5. The vessel of claim 1, wherein at least a portion of the wall of the vessel comprises a cyclic olefin polymer.
6. The vessel of claim 1, wherein at least a portion of the wall of the vessel comprises glass.
7. The vessel of claim 1, wherein the vessel is a syringe barrel, a vial, or a blister package.
8. The vessel of claim 1, wherein the barrier coating or layer is from 4 nm to 500 nm thick.
9. The vessel of claim 1, wherein the primer coating is applied by PECVD of a precursor feed comprising an acyclic siloxane, a monocyclic siloxane, a polycyclic siloxane, a polysilsesquioxane, a monocyclic silazane, a polycyclic silazane, a polysilsesquiazane, a silatrane, a silquasilatrane, a silproatrane, an azasilatrane, an azasilquasiatrane, an azasilproatrane, or a combination of any two or more of these precursors.
10. The vessel of claim 1, wherein the primer coating or layer is between 10 and 1000 nm thick.
11. The vessel of claim 1, further comprising an adhesion layer between the barrier coating or layer and the vessel wall.
12. A vessel having a lumen defined at least in part by a wall, the wall having an interior surface facing the lumen, an outer surface, and a coating set on the interior surface comprising:
a plasma enhanced chemical vapor deposition (PECVD) primer coating or layer on the interior surface, in which the primer coating or layer consists essentially of SiOxCy, in which x is from about 0.5 to about 2.4 and y is from about 0.6 to about 3; and
optionally a barrier coating or layer between the primer coating or layer and the vessel wall, in which the barrier coating consists essentially of SiOx, in which x is from 1.5 to 2.9;
wherein the coating set has a higher contact angle with water than an uncoated fluid contacting surface or a glass surface.
13. The vessel of claim 12, wherein the primer coated surface has a contact angle (with distilled water) of from 0° C. to 35° C. greater than the contact angle (with distilled water) of the uncoated COP surface.
14. The vessel of claim 12, wherein the primer coated surface has a contact angle (with distilled water) of from 0° C. to 20° C. greater than the contact angle (with distilled water) of the uncoated COP surface.
15. The vessel of claim 12, wherein the primer coated surface has a contact angle (with distilled water) of at least 4° C. greater than the contact angle (with distilled water) of the uncoated COP surface.
16. The vessel of claim 12, wherein the primer coated surface has a contact angle (with distilled water) of from 0° C. to 100° C. greater than the contact angle (with distilled water) of glass surface.
17. The vessel of claim 12, wherein the primer coated surface has a contact angle (with distilled water) of from 0° C. to 80° C. greater than the contact angle (with distilled water) of glass surface.
18. The vessel of claim 12, wherein the primer coated surface has a contact angle (with distilled water) of at least 70° C. greater than the contact angle (with distilled water) of glass surface.
19. A vessel having a lumen defined at least in part by a wall, the wall having an interior surface facing the lumen, an outer surface, and a coating set on the interior surface comprising:
a plasma enhanced chemical vapor deposition (PECVD) primer coating or layer on the interior surface, in which the primer coating or layer consists essentially of SiOxCy, in which x is from about 0.5 to about 2.4 and y is from about 0.6 to about 3;
optionally a barrier coating or layer between the primer coating or layer and the vessel wall, in which the barrier coating consists essentially of SiOx, in which x is from 1.5 to 2.9; and
a deposit of fluid lubricant on the PECVD treated surface; wherein the primer coated surface has a greater affinity for the fluid lubricant deposited thereon than an uncoated fluid contact surface or a glass surface.
20. The vessel of claim 19, wherein the fluid lubricant comprises polydimethylsiloxane.
21. The vessel of claim 19, wherein the deposit of fluid lubricant is formed on the PECVD treated surface by spraying a liquid lubricant.
22. The vessel of claim 19, further comprising an adhesion layer between the barrier coating or layer and the vessel wall.
23. The vessel of claim 19, wherein the vessel is a syringe having a barrel.
24. The vessel of claim 23, wherein the syringe further comprises a plunger within the barrel.
25. The vessel of claim 24, wherein at least a portion of the plunger comprises chlorobutyl rubber, bromobutyl rubber, silicone rubber, or a combination of any two or more of these.
26. The vessel of claim 24, wherein the plunger has an outer sliding surface configured to slide within the inner surface of the lumen of the barrel.
27. The vessel of claim 26, wherein the outer sliding surface is a PECVD treated surface.
28. The vessel of claim 19, wherein at least a portion of the wall of the vessel comprises a cyclic olefin polymer.
29. The vessel of claim 19, wherein the primer coating is applied by PECVD of a precursor feed comprising an acyclic siloxane, a monocyclic siloxane, a polycyclic siloxane, a polysilsesquioxane, a monocyclic silazane, a polycyclic silazane, a polysilsesquiazane, a silatrane, a silquasilatrane, a silproatrane, an azasilatrane, an azasilquasiatrane, an azasilproatrane, or a combination of any two or more of these precursors.
30. The vessel of claim 19, wherein the primer coating or layer is between 10 and 1000 nm thick.
US15/585,430 2013-03-01 2017-05-03 Pecvd coated pharmaceutical package, coating process and apparatus Abandoned US20170232198A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/585,430 US20170232198A1 (en) 2013-03-01 2017-05-03 Pecvd coated pharmaceutical package, coating process and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361771644P 2013-03-01 2013-03-01
US14/194,221 US9662450B2 (en) 2013-03-01 2014-02-28 Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US15/585,430 US20170232198A1 (en) 2013-03-01 2017-05-03 Pecvd coated pharmaceutical package, coating process and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/194,221 Continuation US9662450B2 (en) 2013-03-01 2014-02-28 Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus

Publications (1)

Publication Number Publication Date
US20170232198A1 true US20170232198A1 (en) 2017-08-17

Family

ID=50290306

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/194,221 Active 2035-01-29 US9662450B2 (en) 2013-03-01 2014-02-28 Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US14/771,751 Abandoned US20160015898A1 (en) 2013-03-01 2014-02-28 Plasma or cvd pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US15/585,430 Abandoned US20170232198A1 (en) 2013-03-01 2017-05-03 Pecvd coated pharmaceutical package, coating process and apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/194,221 Active 2035-01-29 US9662450B2 (en) 2013-03-01 2014-02-28 Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US14/771,751 Abandoned US20160015898A1 (en) 2013-03-01 2014-02-28 Plasma or cvd pre-treatment for lubricated pharmaceutical package, coating process and apparatus

Country Status (3)

Country Link
US (3) US9662450B2 (en)
EP (1) EP2961858B1 (en)
WO (1) WO2014134577A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160184183A1 (en) * 2008-05-23 2016-06-30 Hospira, Inc. Packaged Iron Sucrose Products
US20170340823A1 (en) * 2014-12-23 2017-11-30 Merz Pharma Gmbh & Co. Kgaa Botulinum toxin prefilled container

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
PT2251453E (en) 2009-05-13 2014-03-13 Sio2 Medical Products Inc Vessel holder
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
WO2013071138A1 (en) 2011-11-11 2013-05-16 Sio2 Medical Products, Inc. PASSIVATION, pH PROTECTIVE OR LUBRICITY COATING FOR PHARMACEUTICAL PACKAGE, COATING PROCESS AND APPARATUS
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
JOP20200175A1 (en) * 2012-07-03 2017-06-16 Novartis Ag Syringe
CN104854257B (en) 2012-11-01 2018-04-13 Sio2医药产品公司 coating inspection method
EP2920567B1 (en) 2012-11-16 2020-08-19 SiO2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
WO2014085348A2 (en) 2012-11-30 2014-06-05 Sio2 Medical Products, Inc. Controlling the uniformity of pecvd deposition on medical syringes, cartridges, and the like
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
KR102472240B1 (en) 2013-03-11 2022-11-30 에스아이오2 메디컬 프로덕츠, 인크. Coated Packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US11326254B2 (en) * 2014-03-03 2022-05-10 Picosun Oy Protecting an interior of a gas container with an ALD coating
EP3122917B1 (en) 2014-03-28 2020-05-06 SiO2 Medical Products, Inc. Antistatic coatings for plastic vessels
KR102544705B1 (en) 2014-11-05 2023-06-15 제넨테크, 인크. Methods of producing two chain proteins in bacteria
US9744209B2 (en) 2015-01-30 2017-08-29 Par Pharmaceutical, Inc. Vasopressin formulations for use in treatment of hypotension
US9925233B2 (en) 2015-01-30 2018-03-27 Par Pharmaceutical, Inc. Vasopressin formulations for use in treatment of hypotension
US9687526B2 (en) 2015-01-30 2017-06-27 Par Pharmaceutical, Inc. Vasopressin formulations for use in treatment of hypotension
US9937223B2 (en) 2015-01-30 2018-04-10 Par Pharmaceutical, Inc. Vasopressin formulations for use in treatment of hypotension
US9750785B2 (en) 2015-01-30 2017-09-05 Par Pharmaceutical, Inc. Vasopressin formulations for use in treatment of hypotension
US9375478B1 (en) 2015-01-30 2016-06-28 Par Pharmaceutical, Inc. Vasopressin formulations for use in treatment of hypotension
JP6813492B2 (en) * 2015-02-03 2021-01-13 メルツ ファーマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト アウフ アクティーン Botulinum toxin-filled container
DE102015207228A1 (en) * 2015-04-21 2016-10-27 Vetter Pharma-Fertigung GmbH & Co. KG Primary packaging and method of making a primary packaging
KR20180048694A (en) 2015-08-18 2018-05-10 에스아이오2 메디컬 프로덕츠, 인크. Packaging containers for medicines and other products with low oxygen transfer rates
JP6267172B2 (en) * 2015-10-23 2018-01-24 ファナック株式会社 Injection molding system
US10471211B2 (en) * 2016-01-15 2019-11-12 W. L. Gore & Associates, Inc. Medical delivery device with laminated stopper
EP3251654A1 (en) * 2016-05-30 2017-12-06 Chemische Fabrik Kreussler & Co. Gmbh Nonionic surfactants for reduction of adipose tissue
DK3436054T4 (en) 2016-09-13 2022-08-29 Allergan Inc STABILIZED NON-PROTEIN CLOSTRID TOXIN COMPOSITIONS
KR102535910B1 (en) 2017-03-27 2023-05-25 리제너론 파아마슈티컬스, 인크. Sterilization method
US20180318319A1 (en) 2017-05-04 2018-11-08 Ocular Science, Inc. Compositions and Methods for Treating Eyes and Methods of Preparation
DE102018116560A1 (en) * 2018-07-09 2020-01-09 Gerresheimer Regensburg Gmbh METHOD FOR COATING A GLASS SYRINGE BODY FOR A HYPODERMIC FINISHED GLASS SYRINGE, HYPODERMIC FINISHED GLASS SYRINGE AND PLASMA TREATMENT DEVICE FOR GLASS SYRINGE BODIES OF HYPODERMIC FINISHED GLASS SYRINGES
US11597580B2 (en) * 2018-09-07 2023-03-07 Wacker Chemie Ag Method for packaging silicone compounds
ES2841807T3 (en) 2018-11-30 2021-07-09 Klaus Stegemann Application syringe containing a sterile solution with a medical active ingredient and procedure for its facilitation
CN111846514A (en) * 2019-04-30 2020-10-30 北京蓝丹医药科技有限公司 Combination of flurbiprofen injection and container
US11071724B2 (en) 2019-05-17 2021-07-27 Ocular Science, Inc. Compositions and methods for treating presbyopia
US20230052782A1 (en) 2019-12-12 2023-02-16 Novartis Ag Injection device and injection solution transferring system
CN111624353A (en) * 2020-06-10 2020-09-04 光景生物科技(苏州)有限公司 Microalbumin/creatinine combined detection reagent card and preparation method thereof
WO2022026798A1 (en) 2020-07-30 2022-02-03 Sio2 Medical Products, Inc. Common contact surfaces for use in the manufacture, packaging, delivery, and assessment of biopharmaceutical products
IT202100024574A1 (en) 2021-09-24 2023-03-24 Stevanato Group S P A Method for manufacturing a medical device by injection and the resulting medical device
WO2023047375A2 (en) * 2021-09-24 2023-03-30 Stevanato Group S.P.A. Method of manufacturing a medical injection device and medical injection device thus obtained
CN116870872B (en) * 2023-09-06 2023-12-01 山东建筑大学 Carbon dioxide gas adsorption separation membrane, application thereof and underground facility safety device

Family Cites Families (1035)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR891892A (en) 1942-11-17 1944-03-22 Injection needle
GB752822A (en) 1953-03-12 1956-07-18 Onera (Off Nat Aerospatiale) Improvements in rate of flow meters, especially for liquids
US3355947A (en) 1959-02-26 1967-12-05 Rockwell Mfg Co Viscosity compensated turbine flow meter
DE1147836B (en) 1959-09-26 1963-04-25 Nadler Werke Process for the sterilization of pulpy vegetable foods
DE1147838B (en) 1960-10-12 1963-04-25 Andre Michels Drive of the corner locking elements of a stamp in a device for erecting a blank made of paper, cardboard or the like to form a box
US3274267A (en) 1963-09-23 1966-09-20 Union Carbide Corp Cyclic alpha-perfluoro-di-p-xylylenes
US3297465A (en) 1963-12-31 1967-01-10 Ibm Method for producing organic plasma and for depositing polymer films
US3442686A (en) 1964-03-13 1969-05-06 Du Pont Low permeability transparent packaging films
FR1475825A (en) 1966-02-21 1967-04-07 Compteurs Comp D Improvements to turbine meters for metering volumes of fluids
US3838598A (en) 1969-03-28 1974-10-01 Brunswick Corp Capillary flow meter
US3590634A (en) 1969-05-05 1971-07-06 Stanford Research Inst Instrument for determining permeation rates through a membrane
GB1363762A (en) 1971-06-28 1974-08-14 Atomic Energy Authority Uk Fluid flow meters
US3957653A (en) 1975-04-03 1976-05-18 Becton, Dickinson And Company Apparatus for collection, separation and isolation of blood
US4187952A (en) 1976-03-04 1980-02-12 Becton, Dickinson And Company Cannula pierceable, self-sealing closure
US4111326A (en) 1976-03-04 1978-09-05 Becton, Dickinson And Company Closure for air evacuated container
US4162528A (en) 1976-05-18 1979-07-24 Bell Telephone Laboratories, Incorporated X-ray-fluorescence measurement of thin film thicknesses
GB1513426A (en) 1976-06-01 1978-06-07 Aspro Nicholas Ltd Packaging
NO137663C (en) 1976-09-30 1978-03-29 Ken Heimreid PROCEDURES FOR EXAMINATION OF UNCOAGULATED BLOOD
GB1566251A (en) 1976-10-15 1980-04-30 Gervase Instr Ltd Flow meters
US4118972A (en) 1977-08-31 1978-10-10 Container Corporation Of America Apparatus for detecting leaks in composite packages
US4168330A (en) 1977-10-13 1979-09-18 Rca Corporation Method of depositing a silicon oxide layer
US4484479A (en) 1978-04-05 1984-11-27 Richard Eckhardt Gas flow metering
US4392218A (en) 1979-01-02 1983-07-05 Lanier Business Products, Inc. Apparatus for identifying a dictate station by providing an automatically generated sequence of signals and a manually entered sequence of signals
US4289726A (en) 1979-07-02 1981-09-15 Potoczky Joseph B Apparatus and method for injection molding of elongated hollow plastic container walls
JPS5627330A (en) 1979-08-15 1981-03-17 Yoshino Kogyosho Co Ltd Heat treatment for internal wall surface of saturated polyester resin biaxially stretched bottle
US4293078A (en) 1979-11-01 1981-10-06 Becton, Dickinson And Company Vacuum indicator closure for a blood collection tube
US4486378A (en) 1980-05-07 1984-12-04 Toyo Seikan Kaisha Ltd. Plastic bottles and process for preparation thereof
US4391128A (en) 1981-04-20 1983-07-05 Air Products And Chemicals, Inc. Back-diffusion quality control method for barrier treated containers
US4452679A (en) 1981-10-07 1984-06-05 Becton Dickinson And Company Substrate with chemically modified surface and method of manufacture thereof
US4422896A (en) 1982-01-26 1983-12-27 Materials Research Corporation Magnetically enhanced plasma process and apparatus
JPS58154602A (en) 1982-03-10 1983-09-14 Nippon Kokan Kk <Nkk> Method and apparatus for measuring film thickness of surface of tin-free steel
JPH0635323B2 (en) 1982-06-25 1994-05-11 株式会社日立製作所 Surface treatment method
US4522510A (en) 1982-07-26 1985-06-11 Therma-Wave, Inc. Thin film thickness measurement with thermal waves
DE3239379A1 (en) 1982-10-23 1984-04-26 Helmut Fischer GmbH & Co Institut für Elektronik und Meßtechnik, 7032 Sindelfingen DEVICE FOR MEASURING THE THICKNESS LAYERS
JPS5987307A (en) 1982-11-11 1984-05-19 Nippon Kokan Kk <Nkk> Measuring device of thickness of surface film
US4483737A (en) 1983-01-31 1984-11-20 University Of Cincinnati Method and apparatus for plasma etching a substrate
JPS59154029A (en) 1983-02-23 1984-09-03 Nippon Telegr & Teleph Corp <Ntt> Formation of insulating film
JPS59168310A (en) 1983-03-02 1984-09-22 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Method and device for measuring thickness of thin-film
US4478873A (en) 1983-05-23 1984-10-23 American Optical Corporation Method imparting anti-static, anti-reflective properties to ophthalmic lenses
CA1199854A (en) 1983-08-31 1986-01-28 Majesty (Her) The Queen In Right Of Canada As Represented By The Minister Of National Defence Laminar flow element
US4524616A (en) 1983-09-02 1985-06-25 Tylan Corporation Adjustable laminar flow bypass
US4524089A (en) 1983-11-22 1985-06-18 Olin Corporation Three-step plasma treatment of copper foils to enhance their laminate adhesion
US4552791A (en) 1983-12-09 1985-11-12 Cosden Technology, Inc. Plastic container with decreased gas permeability
JPH0627323B2 (en) 1983-12-26 1994-04-13 株式会社日立製作所 Sputtering method and apparatus
AT379069B (en) 1984-01-11 1985-11-11 Greiner & Soehne C A BLOOD SAMPLES
JPS60158316A (en) 1984-01-30 1985-08-19 Osaka Gas Co Ltd Turbine type flowmeter
GR850153B (en) 1984-02-06 1985-03-29 Obrist Ag Crown
JPS6113626A (en) 1984-06-29 1986-01-21 Hitachi Ltd Plasma processor
JPS6130036A (en) 1984-07-23 1986-02-12 Fujitsu Ltd Microwave plasma processing apparatus
DE3566194D1 (en) 1984-08-31 1988-12-15 Hitachi Ltd Microwave assisting sputtering
US4668365A (en) 1984-10-25 1987-05-26 Applied Materials, Inc. Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
US4648107A (en) 1984-12-05 1987-03-03 Latter Terence D Device for measuring the thickness of thin films
JPH0740468B2 (en) 1984-12-11 1995-05-01 株式会社日立製作所 High frequency plasma generator
JPS61183462A (en) 1985-02-06 1986-08-16 Yuugou Giken:Kk Apparatus and method for ion plating inner surface of pipe and the like utilizing magnetic field of magnet and coil
CH667528A5 (en) 1985-03-15 1988-10-14 Alusuisse METHOD FOR DETERMINING THE THICKNESS OF TRANSPARENT PAINT LAYERS AND DEVICE FOR IMPLEMENTING IT.
US4767414A (en) 1985-05-16 1988-08-30 Becton, Dickinson And Company Ionizing plasma lubricant method
US4667620A (en) 1985-10-29 1987-05-26 Cosden Technology, Inc. Method and apparatus for making plastic containers having decreased gas permeability
JPS62180069A (en) 1986-02-05 1987-08-07 Kobe Steel Ltd Method for coating inside surface of pipe
US4824444A (en) 1986-04-11 1989-04-25 Applied Membrane Technology, Inc. Gas permselective composite membrane prepared by plasma polymerization coating techniques
JP2575653B2 (en) 1986-06-06 1997-01-29 日新電機株式会社 Method for forming a thin film on the inner surface of a metal cylindrical coated material
US6248219B1 (en) 1986-06-23 2001-06-19 Unaxis Balzers Aktiengesellschaft Process and apparatus for sputter etching or sputter coating
JPS638524A (en) 1986-06-30 1988-01-14 Yamatake Honeywell Co Ltd Differential pressure transmitter
ZA874580B (en) 1986-07-04 1988-01-04
US4778721A (en) 1986-07-09 1988-10-18 Battelle Memorial Institute Method of forming abrasion-resistant plasma coatings and resulting articles
US4697717A (en) 1986-08-18 1987-10-06 Becton, Dickinson And Company Rubber/plastic stopper composite with mechanical adhesive joints
DE3729347A1 (en) 1986-09-05 1988-03-17 Mitsubishi Electric Corp PLASMA PROCESSOR
DE3632748A1 (en) 1986-09-26 1988-04-07 Ver Foerderung Inst Kunststoff Method of coating hollow bodies
US4756964A (en) 1986-09-29 1988-07-12 The Dow Chemical Company Barrier films having an amorphous carbon coating and methods of making
JP2587924B2 (en) 1986-10-11 1997-03-05 日本電信電話株式会社 Thin film forming equipment
US4725481A (en) 1986-10-31 1988-02-16 E. I. Du Pont De Nemours And Company Vapor-permeable, waterproof bicomponent structure
JPS63124521A (en) 1986-11-14 1988-05-28 Shin Etsu Chem Co Ltd Method for treating mask surface for x-ray lithography
DE3774098D1 (en) 1986-12-29 1991-11-28 Sumitomo Metal Ind PLASMA UNIT.
US4741446A (en) 1986-12-29 1988-05-03 Becton, Dickinson And Company Computer generated stopper
US4853102A (en) 1987-01-07 1989-08-01 Hitachi, Ltd. Sputtering process and an apparatus for carrying out the same
SU1530913A1 (en) 1987-01-13 1989-12-23 Казахский научно-исследовательский институт энергетики Flow meter
DE3853890T2 (en) 1987-01-19 1995-10-19 Hitachi Ltd Device working with a plasma.
EP0284867A2 (en) 1987-04-03 1988-10-05 Tegal Corporation Dry etching apparatus using surface magnetic field confinement of plasma
US5028566A (en) 1987-04-10 1991-07-02 Air Products And Chemicals, Inc. Method of forming silicon dioxide glass films
US4973504A (en) 1987-04-13 1990-11-27 The West Company Incorporated Pharmaceutical elastomeric coating
US4808453A (en) 1987-04-13 1989-02-28 Romberg Val G Pharmaceutical elastomeric coating
US5000994A (en) 1987-04-13 1991-03-19 The West Company, Incorporated Pharmaceutical elastomeric coating
JPH0672306B2 (en) 1987-04-27 1994-09-14 株式会社半導体エネルギー研究所 Plasma processing apparatus and plasma processing method
US5203959A (en) 1987-04-27 1993-04-20 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma etching and deposition method employing first and second magnetic fields
EP0375778B1 (en) 1987-06-19 1993-09-08 Terumo Kabushiki Kaisha Medical instrument and production thereof
ZA884511B (en) 1987-07-15 1989-03-29 Boc Group Inc Method of plasma enhanced silicon oxide deposition
KR920002864B1 (en) 1987-07-20 1992-04-06 가부시기가이샤 히다찌세이사꾸쇼 Apparatus for treating matrial by using plasma
JPS6428509A (en) 1987-07-23 1989-01-31 Nippon Kokan Kk Apparatus for measuring thickness of film
US4842704A (en) 1987-07-29 1989-06-27 Collins George J Magnetron deposition of ceramic oxide-superconductor thin films
DE3867621D1 (en) 1987-08-24 1992-02-20 Gen Electric WEAR-RESISTANT PLASTIC ITEMS AND METHOD FOR THE PRODUCTION THEREOF.
US4809876A (en) 1987-08-27 1989-03-07 Aluminum Company Of America Container body having improved gas barrier properties
US4880120A (en) 1987-09-02 1989-11-14 The Coca-Cola Company Plastic container inspection process
US4810752A (en) 1987-09-24 1989-03-07 The West Company Halobutyl thermoplastic elastomer
GB2210826B (en) 1987-10-19 1992-08-12 Bowater Packaging Ltd Barrier packaging materials
DE3738993A1 (en) 1987-11-17 1989-05-24 Philips Patentverwaltung METHOD FOR THE GLIMATE CHARGE-ACTIVATED REACTIVE DEPOSITION OF METAL FROM A GAS PHASE
US4886086A (en) 1987-12-23 1989-12-12 Graco, Inc. Non-degrading pressure regulator
JPH0668152B2 (en) 1988-01-27 1994-08-31 株式会社半導体エネルギー研究所 Thin film forming equipment
US5798027A (en) 1988-02-08 1998-08-25 Optical Coating Laboratory, Inc. Process for depositing optical thin films on both planar and non-planar substrates
US4844986A (en) * 1988-02-16 1989-07-04 Becton, Dickinson And Company Method for preparing lubricated surfaces and product
JPH01225775A (en) 1988-03-04 1989-09-08 Toyo Sutoufuaa Chem:Kk Formation of ceramic coating film on inner surface of tubular material
US5041303A (en) 1988-03-07 1991-08-20 Polyplasma Incorporated Process for modifying large polymeric surfaces
JPH0534669Y2 (en) 1988-03-16 1993-09-02
US5275299A (en) 1988-04-15 1994-01-04 C. A. Greiner & Sohne Gesellschaft Mbh Closure device for an in particular evacuable cylindrical housing
US4880675A (en) 1988-04-25 1989-11-14 Air Products And Chemicals, Inc. Hot-fillable plastic containers
JP2599176B2 (en) 1988-05-02 1997-04-09 オリエント時計 株式会社 Golden ornaments
EP0343017A3 (en) 1988-05-20 1990-05-23 Nec Corporation Reactive ion etching apparatus
US4883686A (en) 1988-05-26 1989-11-28 Energy Conversion Devices, Inc. Method for the high rate plasma deposition of high quality material
DE3820237C1 (en) 1988-06-14 1989-09-14 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
JPH025038A (en) 1988-06-24 1990-01-09 Konica Corp Silver halide photographic sensitive material
US4948628A (en) 1988-07-01 1990-08-14 Becton, Dickinson And Company Method for plasma treatment of small diameter tubes
US4846101A (en) 1988-07-01 1989-07-11 Becton, Dickinson And Company Apparatus for plasma treatment of small diameter tubes
JPH0224502A (en) 1988-07-12 1990-01-26 Dainippon Screen Mfg Co Ltd Film-thickness measuring method
US4869203A (en) 1988-07-18 1989-09-26 Vapor Technologies Inc. Apparatus for coating a metal gas-pressure bottle or tank
DE3926023A1 (en) 1988-09-06 1990-03-15 Schott Glaswerke CVD COATING METHOD FOR PRODUCING LAYERS AND DEVICE FOR CARRYING OUT THE METHOD
CA1335495C (en) 1988-12-22 1995-05-09 Renate Foerch Modification of polymer surfaces by two-step reactions
US4978714A (en) 1989-03-01 1990-12-18 The West Company Incorporated Modified halobutyl thermoplastic elastomer
GB8905075D0 (en) 1989-03-06 1989-04-19 Nordiko Ltd Electrode assembly and apparatus
US5472660A (en) 1989-03-08 1995-12-05 Fortex, Inc. Method for the manufacture of shaped products of biaxially oriented polymeric material
DE3908418C2 (en) 1989-03-15 1999-06-02 Buck Chem Tech Werke Process for the internal coating of plastic containers and device for coating
US4999014A (en) 1989-05-04 1991-03-12 Therma-Wave, Inc. Method and apparatus for measuring thickness of thin films
US5042951A (en) 1989-09-19 1991-08-27 Therma-Wave, Inc. High resolution ellipsometric apparatus
EP0396919A3 (en) 1989-05-08 1991-07-10 Applied Materials, Inc. Plasma reactor and method for semiconductor processing
US5225024A (en) 1989-05-08 1993-07-06 Applied Materials, Inc. Magnetically enhanced plasma reactor system for semiconductor processing
JPH02298024A (en) 1989-05-12 1990-12-10 Tadahiro Omi Reactive ion etching apparatus
US5429070A (en) 1989-06-13 1995-07-04 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5032202A (en) 1989-10-03 1991-07-16 Martin Marietta Energy Systems, Inc. Plasma generating apparatus for large area plasma processing
US5792550A (en) 1989-10-24 1998-08-11 Flex Products, Inc. Barrier film having high colorless transparency and method
US5044199A (en) 1989-11-13 1991-09-03 Dxl International, Inc. Flowmeter
JP2905828B2 (en) 1989-12-05 1999-06-14 株式会社吉野工業所 Syringe cylinder molding apparatus and syringe cylinder molding method
US5067491A (en) 1989-12-08 1991-11-26 Becton, Dickinson And Company Barrier coating on blood contacting devices
JPH03183759A (en) 1989-12-12 1991-08-09 Toyobo Co Ltd Laminated plastic film and its production
JP2706546B2 (en) 1990-03-08 1998-01-28 日東工器株式会社 Coating method for inner peripheral cylindrical body
US5064083A (en) 1990-03-08 1991-11-12 The West Company, Incorporated Closure device
AT401341B (en) 1990-03-09 1996-08-26 Greiner & Soehne C A LOCKING DEVICE FOR A PARTICULARLY EVACUABLE HOUSING
DE4008405C1 (en) 1990-03-16 1991-07-11 Schott Glaswerke, 6500 Mainz, De
JPH03271374A (en) 1990-03-22 1991-12-03 Toshiba Corp Thin film forming device
JPH04374A (en) 1990-04-16 1992-01-06 Mitsubishi Heavy Ind Ltd Production of hardened protective film on surface of plastic substrate
JPH04375A (en) 1990-04-16 1992-01-06 Mitsubishi Heavy Ind Ltd Production of hardened protective film on surface of plastic substrate
JPH04373A (en) 1990-04-16 1992-01-06 Mitsubishi Heavy Ind Ltd Production of hardened protective film on surface of plastic substrate
US5084356A (en) 1990-04-20 1992-01-28 E. I. Du Pont De Nemours And Company Film coated with glass barrier layer with metal dopant
US5085904A (en) 1990-04-20 1992-02-04 E. I. Du Pont De Nemours And Company Barrier materials useful for packaging
JPH0414440A (en) 1990-05-07 1992-01-20 Toray Ind Inc Laminated film
US5443645A (en) 1990-05-19 1995-08-22 Canon Kabushiki Kaisha Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
DE4026367A1 (en) 1990-06-25 1992-03-12 Leybold Ag DEVICE FOR COATING SUBSTRATES
US5131752A (en) 1990-06-28 1992-07-21 Tamarack Scientific Co., Inc. Method for film thickness endpoint control
US6251792B1 (en) 1990-07-31 2001-06-26 Applied Materials, Inc. Plasma etch processes
US5079481A (en) 1990-08-02 1992-01-07 Texas Instruments Incorporated Plasma-assisted processing magneton with magnetic field adjustment
US5082542A (en) 1990-08-02 1992-01-21 Texas Instruments Incorporated Distributed-array magnetron-plasma processing module and method
EP0470777A3 (en) 1990-08-07 1993-06-02 The Boc Group, Inc. Thin gas barrier films and rapid deposition method therefor
US5192849A (en) 1990-08-10 1993-03-09 Texas Instruments Incorporated Multipurpose low-thermal-mass chuck for semiconductor processing equipment
JPH04110617A (en) 1990-08-31 1992-04-13 Nippon Tairan Kk Divided flow structure of mass flow controller
CA2051219C (en) 1990-09-14 2001-06-19 Yuji Komiya Method of preparing laminated packaging material
JP2916942B2 (en) 1990-09-14 1999-07-05 住友重機械工業株式会社 Plasma CVD treatment method and apparatus for inner surface of tube
DE69122212T2 (en) 1990-10-25 1997-01-30 Matsushita Electric Ind Co Ltd Monomolecular film laminated by chemical adsorption and process for its production
US5240774A (en) 1990-10-25 1993-08-31 Matsushita Electric Industrial Co., Ltd. Fluorocarbon-based coating film and method of manufacturing the same
US5779802A (en) 1990-12-10 1998-07-14 Imec V.Z.W. Thin film deposition chamber with ECR-plasma source
JPH04236770A (en) 1991-01-17 1992-08-25 Kobe Steel Ltd Method for controlling arc spot in vacuum arc deposition and vaporization source
FR2671931A1 (en) 1991-01-22 1992-07-24 Metal Process DEVICE FOR DISTRIBUTING MICROWAVE ENERGY FOR EXCITATION OF PLASMA
US5288560A (en) 1991-01-30 1994-02-22 Daikyo Gomu Seiko, Ltd. Laminated sanitary rubber article
US5330578A (en) 1991-03-12 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma treatment apparatus
DE4109619C1 (en) 1991-03-23 1992-08-06 Leybold Ag, 6450 Hanau, De
JP2501490B2 (en) 1991-03-25 1996-05-29 日新製鋼株式会社 Plate thickness controller for tandem rolling mill
CA2067691C (en) 1991-05-13 1995-12-12 James A. Burns Stopper-shield combination closure
US5189446A (en) 1991-05-17 1993-02-23 International Business Machines Corporation Plasma wafer processing tool having closed electron cyclotron resonance
DE4119362A1 (en) 1991-06-12 1992-12-17 Leybold Ag PARTICLE SOURCE, ESPECIALLY FOR REACTIVE ION NETWORK AND PLASMA SUPPORTED CVD PROCESSES
JPH056688A (en) 1991-06-20 1993-01-14 Fujitsu Ltd Sample and hold circuit
US5888414A (en) 1991-06-27 1999-03-30 Applied Materials, Inc. Plasma reactor and processes using RF inductive coupling and scavenger temperature control
US6518195B1 (en) 1991-06-27 2003-02-11 Applied Materials, Inc. Plasma reactor using inductive RF coupling, and processes
KR100255703B1 (en) 1991-06-27 2000-05-01 조셉 제이. 스위니 Device of plasma using electromagnetic rf
US5633711A (en) 1991-07-08 1997-05-27 Massachusettes Institute Of Technology Measurement of material properties with optically induced phonons
DE4122802C1 (en) 1991-07-10 1992-12-17 Schott Glaswerke, 6500 Mainz, De
US5198725A (en) 1991-07-12 1993-03-30 Lam Research Corporation Method of producing flat ecr layer in microwave plasma device and apparatus therefor
US5271274A (en) 1991-08-14 1993-12-21 The Board Of Trustees Of The Leland Stanford Junior University Thin film process monitoring techniques using acoustic waves
US5204141A (en) 1991-09-18 1993-04-20 Air Products And Chemicals, Inc. Deposition of silicon dioxide films at temperatures as low as 100 degree c. by lpcvd using organodisilane sources
JP3105962B2 (en) 1991-09-20 2000-11-06 株式会社豊田中央研究所 Amorphous thin film having solid lubricity and method for producing the same
US5224441A (en) 1991-09-27 1993-07-06 The Boc Group, Inc. Apparatus for rapid plasma treatments and method
DE69208793T2 (en) 1991-10-03 1996-09-19 Becton Dickinson Co Blood collection tube
CA2268719C (en) 1991-10-03 2001-08-28 Becton, Dickinson And Company Blood collection tube assembly
EP0537950B1 (en) 1991-10-17 1997-04-02 Applied Materials, Inc. Plasma reactor
JP2647585B2 (en) 1991-11-28 1997-08-27 三菱電機株式会社 Automatic thin film measuring device
US5333049A (en) 1991-12-06 1994-07-26 Hughes Aircraft Company Apparatus and method for interferometrically measuring the thickness of thin films using full aperture irradiation
US5372851A (en) 1991-12-16 1994-12-13 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a chemically adsorbed film
US5397956A (en) 1992-01-13 1995-03-14 Tokyo Electron Limited Electron beam excited plasma system
DE4204082A1 (en) 1992-02-12 1993-08-19 Leybold Ag METHOD FOR PRODUCING A ADHESIVE LAYER ON WORKPIECE SURFACES
JPH05263223A (en) 1992-03-14 1993-10-12 Nitto Kohki Co Ltd Method for coating body to be coated having inner part and device therefor
US5302266A (en) 1992-03-20 1994-04-12 International Business Machines Corporation Method and apparatus for filing high aspect patterns with metal
DE4209384C1 (en) 1992-03-23 1993-04-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
US5444207A (en) 1992-03-26 1995-08-22 Kabushiki Kaisha Toshiba Plasma generating device and surface processing device and method for processing wafers in a uniform magnetic field
EP0574100B1 (en) 1992-04-16 1999-05-12 Mitsubishi Jukogyo Kabushiki Kaisha Plasma CVD method and apparatus therefor
DE4214401C1 (en) 1992-04-30 1993-03-11 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De Plasma-aided CVD of coating inside hollow body - by introducing atmos. contg. cpd. vapour into cavity at below atmos. pressure and passing microwaves into cavity
CA2095674A1 (en) 1992-05-13 1993-11-14 Nicholas A. Grippi Blood collection tube assembly
EP0571896B1 (en) 1992-05-27 1996-08-28 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a chemically adsorbed film
MX9303141A (en) 1992-05-28 1994-04-29 Polar Materials Inc METHODS AND DEVICES FOR DEPOSITING BARRIER COATINGS.
US5486701A (en) 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US5286297A (en) 1992-06-24 1994-02-15 Texas Instruments Incorporated Multi-electrode plasma processing apparatus
US5252178A (en) 1992-06-24 1993-10-12 Texas Instruments Incorporated Multi-zone plasma processing method and apparatus
US5308649A (en) 1992-06-26 1994-05-03 Polar Materials, Inc. Methods for externally treating a container with application of internal bias gas
JPH0610132A (en) 1992-06-29 1994-01-18 Nagasaki Pref Gov Production of thin film of organosilicon compound
US5812261A (en) 1992-07-08 1998-09-22 Active Impulse Systems, Inc. Method and device for measuring the thickness of opaque and transparent films
CA2100275A1 (en) 1992-07-22 1994-01-23 Mitchell K. Antoon, Jr. Blood collection assembly
US5272735A (en) 1992-08-03 1993-12-21 Combustion Engineering, Inc. Sputtering process burnable poison coating
US5531683A (en) 1992-08-13 1996-07-02 Science Incorporated Mixing and delivery syringe assembly
US5292370A (en) 1992-08-14 1994-03-08 Martin Marietta Energy Systems, Inc. Coupled microwave ECR and radio-frequency plasma source for plasma processing
US5260095A (en) 1992-08-21 1993-11-09 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers
GB9219450D0 (en) 1992-09-15 1992-10-28 Glaverbel Thin film thickness monitoring and control
TW267975B (en) 1992-10-20 1996-01-11 Toppan Printing Co Ltd
US5433345A (en) 1992-10-28 1995-07-18 Dai Nippon Printing Co., Ltd. Bag-in-carton and pouring spout thereof
AU669754B2 (en) 1992-12-18 1996-06-20 Becton Dickinson & Company Barrier coating
CA2085805A1 (en) 1992-12-18 1994-06-19 Jaromir Friedrich Fluid flow rate measuring apparatus
CA2110761A1 (en) 1992-12-18 1994-06-19 Yelena G. Tropsha Barrier label
US5298587A (en) 1992-12-21 1994-03-29 The Dow Chemical Company Protective film for articles and method
TW249313B (en) 1993-03-06 1995-06-11 Tokyo Electron Co
JP3274217B2 (en) 1993-04-05 2002-04-15 株式会社リコー Manufacturing method of liquid crystal display device
AU5914994A (en) 1993-04-21 1994-10-27 Bend Research, Inc. Plasma polymerization and surface modification inside hollow micro-substrates
US5494170A (en) 1993-05-06 1996-02-27 Becton Dickinson And Company Combination stopper-shield closure
US5632396A (en) 1993-05-06 1997-05-27 Becton, Dickinson And Company Combination stopper-shield closure
PE9895A1 (en) 1993-05-13 1995-05-15 Coca Cola Co METHOD FOR OBTAINING A BEVERAGE CONTAINER HAVING AN INTERNAL SURFACE WITH A RELATIVELY LOW PERMEABILITY / ABSORPTION
IL109589A0 (en) 1993-05-14 1994-08-26 Hughes Aircraft Co Apparatus and method for performing high spatial resolution thin film layer thickness metrology
DE4316349C2 (en) 1993-05-15 1996-09-05 Ver Foerderung Inst Kunststoff Process for the internal coating of hollow bodies with organic cover layers by plasma polymerization, and device for carrying out the process
ES2117789T3 (en) 1993-06-01 1998-08-16 Kautex Textron Gmbh & Co Kg PROCEDURE TO PRODUCE A POLYMER COATING IN HOLLOW BODIES OF PLASTIC MATTER.
CH685755A5 (en) 1993-06-03 1995-09-29 Tetra Pak Suisse Sa A process for preparing a laminate.
JP2803017B2 (en) 1993-06-07 1998-09-24 工業技術院長 Antithrombotic medical material and medical device, and their manufacturing method, manufacturing apparatus, and plasma processing apparatus
US5361921A (en) 1993-06-29 1994-11-08 Becton Dickinson And Company Combination stopper-shield closure
JP3369261B2 (en) 1993-08-02 2003-01-20 東洋紡績株式会社 Gas barrier container
US5356029A (en) 1993-08-25 1994-10-18 Kaneka Texas Corporation Bin-type bulk fluid container
JP3183759B2 (en) 1993-08-26 2001-07-09 株式会社三協精機製作所 Load measuring device
US5433786A (en) 1993-08-27 1995-07-18 The Dow Chemical Company Apparatus for plasma enhanced chemical vapor deposition comprising shower head electrode with magnet disposed therein
JPH0768614A (en) 1993-09-03 1995-03-14 Olympus Optical Co Ltd Injection molding die and injection molding method for optical element
US5512399A (en) 1993-09-21 1996-04-30 Fuji Electric Co., Ltd. Organic photo sensitive member for electrophotography
US5364666A (en) 1993-09-23 1994-11-15 Becton, Dickinson And Company Process for barrier coating of plastic objects
CA2130388A1 (en) 1993-09-23 1995-03-24 Joel L. Williams Process for barrier coating of plastic objects
KR100241470B1 (en) 1993-10-04 2000-02-01 지. 쇼 데이비드 Cross-linked acrylate coating material useful for forming capacitor dielectric
US5440446A (en) 1993-10-04 1995-08-08 Catalina Coatings, Inc. Acrylate coating material
KR100276736B1 (en) 1993-10-20 2001-03-02 히가시 데쓰로 Plasma processing equipment
US5449432A (en) 1993-10-25 1995-09-12 Applied Materials, Inc. Method of treating a workpiece with a plasma and processing reactor having plasma igniter and inductive coupler for semiconductor fabrication
FR2711647B1 (en) 1993-10-27 1996-01-19 Europ Propulsion Process for the chemical vapor infiltration of a material into a porous substrate at a controlled surface temperature.
US5679412A (en) 1993-10-28 1997-10-21 Manfred R. Kuehnle Method and apparatus for producing gas impermeable, chemically inert container structures for food and volatile substances
JPH07126419A (en) 1993-11-04 1995-05-16 Toppan Printing Co Ltd Gas-barrier laminate
US5413813A (en) 1993-11-23 1995-05-09 Enichem S.P.A. CVD of silicon-based ceramic materials on internal surface of a reactor
US5354286A (en) 1993-12-07 1994-10-11 Survival Technology, Inc. Injection device having polyparaxylylene coated container
AT400802B (en) 1993-12-16 1996-03-25 Greiner & Soehne C A HOLDING DEVICE FOR A BLOOD SAMPLING TUBE OF A BLOOD SAMPLING DEVICE
US5871700A (en) 1993-12-21 1999-02-16 C.A. Greiner & Sohne Gesellschaft M.B.H. Holding device with a cylindrical container and blood sampling tube with such a holding device
US5439736A (en) 1994-01-21 1995-08-08 Neomecs Incorporated Gas plasma polymerized permselective membrane
DE69500531T2 (en) 1994-01-31 1998-02-26 Nissin Electric Co Ltd Process for producing a tube with a film covering on the inner peripheral surface and device for producing it
CH687601A5 (en) 1994-02-04 1997-01-15 Tetra Pak Suisse Sa Process for the production of internally sterile packaging with excellent barrier properties.
US5565248A (en) 1994-02-09 1996-10-15 The Coca-Cola Company Method and apparatus for coating hollow containers through plasma-assisted deposition of an inorganic substance
US6149982A (en) 1994-02-16 2000-11-21 The Coca-Cola Company Method of forming a coating on an inner surface
DK0693975T4 (en) 1994-02-16 2003-08-18 Coca Cola Co Hollow containers with inert or impermeable inner surface through plasma supported surface reaction or surface polymerization
US5618619A (en) 1994-03-03 1997-04-08 Monsanto Company Highly abrasion-resistant, flexible coatings for soft substrates
US5569810A (en) 1994-03-18 1996-10-29 Samco International, Inc. Method of and system for processing halogenated hydrocarbons
US5620523A (en) 1994-04-11 1997-04-15 Canon Sales Co., Inc. Apparatus for forming film
US5593550A (en) 1994-05-06 1997-01-14 Medtronic, Inc. Plasma process for reducing friction within the lumen of polymeric tubing
JPH07304127A (en) 1994-05-13 1995-11-21 Toppan Printing Co Ltd Gas barrier packaging material and production thereof
US5670415A (en) 1994-05-24 1997-09-23 Depositech, Inc. Method and apparatus for vacuum deposition of highly ionized media in an electromagnetic controlled environment
US5514246A (en) 1994-06-02 1996-05-07 Micron Technology, Inc. Plasma reactors and method of cleaning a plasma reactor
GB9411626D0 (en) 1994-06-10 1994-08-03 Smithkline Beecham Plc Package
EP0955951B1 (en) 1994-07-01 2005-08-24 Edwards Lifesciences Corporation Device for harvesting adipose tissue containing autologous microvascular endothelial cells
US5452082A (en) 1994-07-05 1995-09-19 Uop Flow cell with leakage detection
US5536253A (en) 1994-07-15 1996-07-16 Habley Medical Technology Corporation Pre-filled safety syringe having a retractable needle
JPH0825244A (en) 1994-07-21 1996-01-30 Besutoma Kk Control device for fastening force of bolt joint
US5578103A (en) 1994-08-17 1996-11-26 Corning Incorporated Alkali metal ion migration control
US5521351A (en) 1994-08-30 1996-05-28 Wisconsin Alumni Research Foundation Method and apparatus for plasma surface treatment of the interior of hollow forms
US5510155A (en) 1994-09-06 1996-04-23 Becton, Dickinson And Company Method to reduce gas transmission
JPH0884773A (en) 1994-09-14 1996-04-02 Taisei Kako Kk Syringe cylinder made of amorphous resin without draft angle and method for injection molding thereof
US5545375A (en) 1994-10-03 1996-08-13 Becton, Dickinson And Company Blood collection tube assembly
DE4437050A1 (en) 1994-10-17 1996-04-18 Leybold Ag Device for treating surfaces of hollow bodies, in particular inner surfaces of fuel tanks
DE4438359C2 (en) 1994-10-27 2001-10-04 Schott Glas Plastic container with a barrier coating
DE4438360C2 (en) * 1994-10-27 1999-05-20 Schott Glas Pre-fillable, low-particle, sterile disposable syringe for the injection of preparations and methods for their manufacture
US6083628A (en) 1994-11-04 2000-07-04 Sigma Laboratories Of Arizona, Inc. Hybrid polymer film
DE4445427C2 (en) 1994-12-20 1997-04-30 Schott Glaswerke Plasma CVD method for producing a gradient layer
DE4445969C1 (en) 1994-12-22 1996-03-14 Schott Glaswerke Syringe cylinder with two compartments for two constituents
JP3022229B2 (en) 1994-12-26 2000-03-15 東洋製罐株式会社 Method for forming silicon oxide film of uniform thickness on three-dimensional container made of plastics material
MX9705922A (en) 1995-02-01 1997-10-31 Schneider Usa Inc Process for hydrophilicization of hydrophobic polymers.
BR9607516A (en) 1995-02-07 1997-12-30 Fidia Advanced Biopolymers Srl Process for coating objects with hyaluronic acid derived from them and semi-synthetic polymers
JPH08288096A (en) 1995-02-13 1996-11-01 Mitsubishi Electric Corp Plasma treatment device
EP0728676A1 (en) 1995-02-25 1996-08-28 TNT Limited Sampling device for a flexible container
US5877895A (en) 1995-03-20 1999-03-02 Catalina Coatings, Inc. Multicolor interference coating
US5674321A (en) 1995-04-28 1997-10-07 Applied Materials, Inc. Method and apparatus for producing plasma uniformity in a magnetic field-enhanced plasma reactor
JP2920187B2 (en) 1995-04-28 1999-07-19 日新電機株式会社 Method and apparatus for forming a film on the peripheral surface of a tube
US5485091A (en) 1995-05-12 1996-01-16 International Business Machines Corporation Contactless electrical thin oxide measurements
US5513515A (en) 1995-05-15 1996-05-07 Modern Controls, Inc. Method for measuring permeability of a material
US5555471A (en) 1995-05-24 1996-09-10 Wyko Corporation Method for measuring thin-film thickness and step height on the surface of thin-film/substrate test samples by phase-shifting interferometry
KR100463008B1 (en) 1995-06-26 2005-06-16 제너럴 일렉트릭 캄파니 Protected Thermal Barrier Coating Composite With Multiple Coatings
US5840167A (en) 1995-08-14 1998-11-24 Lg Semicon Co., Ltd Sputtering deposition apparatus and method utilizing charged particles
WO1997011482A2 (en) 1995-09-05 1997-03-27 Lsi Logic Corporation Removal of halogens and photoresist from wafers
US5837903A (en) 1995-09-22 1998-11-17 The Scott Fetzer Company Inc. Device for measuring exhaust flowrate using laminar flow element
US5779716A (en) 1995-10-06 1998-07-14 Metamorphic Surgical Devices, Inc. Device for removing solid objects from body canals, cavities and organs
US5591898A (en) 1995-10-12 1997-01-07 Modern Controls, Inc. Method for measuring material permeability characteristics
JPH11513713A (en) 1995-10-13 1999-11-24 ザ ダウ ケミカル カンパニー Coated plastic substrate
DE69611722T2 (en) 1995-10-18 2001-05-10 Daikyo Seiko Ltd Plastic cap and process for its manufacture
US6210791B1 (en) 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
US5658438A (en) 1995-12-19 1997-08-19 Micron Technology, Inc. Sputter deposition method for improved bottom and side wall coverage of high aspect ratio features
US5985103A (en) 1995-12-19 1999-11-16 Micron Technology, Inc. Method for improved bottom and side wall coverage of high aspect ratio features
US6471822B1 (en) 1996-01-24 2002-10-29 Applied Materials, Inc. Magnetically enhanced inductively coupled plasma reactor with magnetically confined plasma
TW303480B (en) 1996-01-24 1997-04-21 Applied Materials Inc Magnetically confined plasma reactor for processing a semiconductor wafer
US5683771A (en) 1996-01-30 1997-11-04 Becton, Dickinson And Company Blood collection tube assembly
US5716683A (en) 1996-01-30 1998-02-10 Becton, Dickinson And Company Blood collection tube assembly
CA2277679C (en) 1996-01-30 2003-06-10 Becton, Dickinson And Company Blood collection tube assembly
US5763033A (en) 1996-01-30 1998-06-09 Becton, Dickinson And Company Blood collection tube assembly
US5955161A (en) 1996-01-30 1999-09-21 Becton Dickinson And Company Blood collection tube assembly
US5686157A (en) 1996-01-30 1997-11-11 Becton, Dickinson And Company Blood collection tube assembly
TW434301B (en) 1996-01-30 2001-05-16 Becton Dickinson Co Non-ideal barrier coating composition comprising organic and inorganic materials
US5702770A (en) 1996-01-30 1997-12-30 Becton, Dickinson And Company Method for plasma processing
US5738920A (en) 1996-01-30 1998-04-14 Becton, Dickinson And Company Blood collection tube assembly
US5737179A (en) 1996-02-07 1998-04-07 Catalina Coatings, Inc. Metallized film capacitor
US5667840A (en) 1996-02-27 1997-09-16 Becton Dickinson And Company Lubricant soluble fluorescent agent and method for its use in a system for detection of lubricant coatings
US6160350A (en) 1996-03-25 2000-12-12 Sumitomo Heavy Industries, Ltd. Ion plating apparatus
US6106678A (en) 1996-03-29 2000-08-22 Lam Research Corporation Method of high density plasma CVD gap-filling
JP4439594B2 (en) 1996-04-22 2010-03-24 ナムローゼ フェンノートシャップ ベッカルト エス.エー. Diamond-like nanocomposite composition
US5888591A (en) 1996-05-06 1999-03-30 Massachusetts Institute Of Technology Chemical vapor deposition of fluorocarbon polymer thin films
US6020196A (en) 1996-05-09 2000-02-01 Baxter International Inc. Devices for harvesting and homogenizing adipose tissue containing autologous endothelial cells
JP3256459B2 (en) 1996-05-20 2002-02-12 株式会社大協精工 Sanitary goods container and method for producing the same
EP0814114A1 (en) 1996-06-18 1997-12-29 Becton, Dickinson and Company Barrier coating
JPH108254A (en) 1996-06-21 1998-01-13 Toyota Motor Corp Formation of silicon dioxide layer
JPH1023105A (en) 1996-07-03 1998-01-23 Nec Corp Data reception system
US6190992B1 (en) 1996-07-15 2001-02-20 Micron Technology, Inc. Method to achieve rough silicon surface on both sides of container for enhanced capacitance/area electrodes
US6161712A (en) 1996-07-22 2000-12-19 Becton Dickinson And Company Ball and socket closure
DE19629877C1 (en) 1996-07-24 1997-03-27 Schott Glaswerke CVD for internal coating of hollow articles with barrier film
US5900284A (en) 1996-07-30 1999-05-04 The Dow Chemical Company Plasma generating device and method
AT404317B (en) 1996-08-02 1998-10-27 Greiner & Soehne C A LOCKING DEVICE, DISCONNECTING DEVICE AND RECEIVING CONTAINER FOR A RECEIVING DEVICE
JP3198065B2 (en) 1996-08-19 2001-08-13 株式会社大協精工 Hygiene container
JP3945664B2 (en) 1996-09-06 2007-07-18 治 高井 Method for producing water-repellent silicon oxide film
US5750892A (en) 1996-09-27 1998-05-12 Teledyne Industries, Inc. Laminar flow element with inboard sensor taps and coaxial laminar flow guides
US5766362A (en) 1996-09-30 1998-06-16 Becton Dickinson And Company Apparatus for depositing barrier film on three-dimensional articles
US5807343A (en) 1996-09-30 1998-09-15 Becton Dickinson And Company Protective sealing barrier for a syringe
US5691007A (en) 1996-09-30 1997-11-25 Becton Dickinson And Company Process for depositing barrier film on three-dimensional articles
US5792940A (en) 1996-09-30 1998-08-11 Becton, Dickinson And Company Rapid evaluation of thin-film barrier coatings on thick substrates via transient response measurements
US6112695A (en) 1996-10-08 2000-09-05 Nano Scale Surface Systems, Inc. Apparatus for plasma deposition of a thin film onto the interior surface of a container
US6027619A (en) 1996-12-19 2000-02-22 Micron Technology, Inc. Fabrication of field emission array with filtered vacuum cathodic arc deposition
US5913140A (en) 1996-12-23 1999-06-15 Lam Research Corporation Method for reduction of plasma charging damage during chemical vapor deposition
CA2275903A1 (en) 1996-12-23 1998-07-02 Novo Nordisk A/S A medicament container of polymer of linear olefin for storing a liquid medicament
US7268179B2 (en) 1997-02-03 2007-09-11 Cytonix Corporation Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same
US5824607A (en) 1997-02-06 1998-10-20 Applied Materials, Inc. Plasma confinement for an inductively coupled plasma reactor
DE19706255C2 (en) 1997-02-18 2000-11-30 Schott Glas Sterilizable glass container for medical purposes, in particular for storing pharmaceutical or diagnostic products
DE19707645A1 (en) 1997-02-26 1998-08-27 Leybold Ag Layer thickness determination
JP3380705B2 (en) 1997-03-12 2003-02-24 株式会社大協精工 Sealed rubber stopper for syringe and container
US20020155299A1 (en) 1997-03-14 2002-10-24 Harris Caroline S. Photo-induced hydrophilic article and method of making same
US6223683B1 (en) 1997-03-14 2001-05-01 The Coca-Cola Company Hollow plastic containers with an external very thin coating of low permeability to gases and vapors through plasma-assisted deposition of inorganic substances and method and system for making the coating
JP3582287B2 (en) 1997-03-26 2004-10-27 株式会社日立製作所 Etching equipment
US6017317A (en) 1997-03-26 2000-01-25 Becton Dickinson And Company Assembly for collecting blood or other body fluids
US5800880A (en) 1997-03-26 1998-09-01 Tetra Laval Holdings & Finance, S.A. Process for coating the interior wall of a container with a SiOx barrier layer
WO1998045871A1 (en) 1997-04-04 1998-10-15 Alexander Igorevich Dodonov Producing electric arc plasma in a curvilinear plasmaguide and substrate coating
US6261643B1 (en) 1997-04-08 2001-07-17 General Electric Company Protected thermal barrier coating composite with multiple coatings
US5880034A (en) 1997-04-29 1999-03-09 Princeton University Reduction of semiconductor structure damage during reactive ion etching
US5814738A (en) 1997-05-01 1998-09-29 Mccrometer, Inc. Fluid flow meter and mixer having removable and replaceable displacement member
US5837888A (en) 1997-05-14 1998-11-17 Modern Controls, Inc. Process for measuring vapor transmission through materials
JP3387775B2 (en) 1997-05-22 2003-03-17 株式会社大協精工 Sealing stopper for syringe and prefilled syringe
JPH10335314A (en) 1997-06-05 1998-12-18 Mitsubishi Electric Corp Plasma processing device and substrate processing method
JPH111770A (en) 1997-06-06 1999-01-06 Anelva Corp Sputtering apparatus and sputtering method
US6110544A (en) 1997-06-26 2000-08-29 General Electric Company Protective coating by high rate arc plasma deposition
CA2241678C (en) 1997-06-26 2007-08-28 General Electric Company Silicon dioxide deposition by plasma activated evaporation process
US6135053A (en) 1997-07-16 2000-10-24 Canon Kabushiki Kaisha Apparatus for forming a deposited film by plasma chemical vapor deposition
US6001429A (en) 1997-08-07 1999-12-14 Becton Dickinson And Company Apparatus and method for plasma processing
US5861546A (en) 1997-08-20 1999-01-19 Sagi; Nehemiah Hemi Intelligent gas flow measurement and leak detection apparatus
US6110395A (en) 1997-08-26 2000-08-29 Trikon Technologies, Inc. Method and structure for controlling plasma uniformity
US5902461A (en) 1997-09-03 1999-05-11 Applied Materials, Inc. Apparatus and method for enhancing uniformity of a metal film formed on a substrate with the aid of an inductively coupled plasma
DE19739321C2 (en) 1997-09-09 2001-09-27 Helmut Fischer Gmbh & Co Method and device for determining the measurement uncertainty in X-ray fluorescence layer thickness measurements
US5948364A (en) 1997-09-12 1999-09-07 Becton Dickinson & Company Ball and socket closure for specimen collection container
US5972297A (en) 1997-09-12 1999-10-26 Becton, Dickinson & Company Ball and socket closure for specimen collection container incorporating a septum
US6032813A (en) 1997-09-12 2000-03-07 Becton, Dickinson And Company Ball and socket closure for specimen collection container incorporating an integral flexible seal
US5919420A (en) 1997-09-12 1999-07-06 Becton Dickinson And Company Ball and socket closure for specimen collection container incorporating a resilient elastomeric seal
US6350415B1 (en) 1997-09-12 2002-02-26 Becton, Dickinson And Company Ball and socket closure for specimen collection container incorporating a dimple locking mechanism
US6757056B1 (en) 2001-03-26 2004-06-29 Candela Instruments Combined high speed optical profilometer and ellipsometer
JPH11102799A (en) 1997-09-26 1999-04-13 Mitsubishi Electric Corp Plasma generator
BR9812701A (en) 1997-09-30 2000-08-22 Tetra Laval Holdings & Finance Method and apparatus for the treatment of the inner surface of plastic bottles in a plasma-intensified process
US6376028B1 (en) 1997-09-30 2002-04-23 Tetra Laval Holdings & Finance S.A. Device and method for treating the inside surface of a plastic container with a narrow opening in a plasma enhanced process
JPH11108833A (en) 1997-10-06 1999-04-23 Mitsubishi Chemical Corp Method for spectroscopic analysis of substance
JPH11106920A (en) 1997-10-08 1999-04-20 Nissin Electric Co Ltd Container and its production
US6124212A (en) 1997-10-08 2000-09-26 Taiwan Semiconductor Manufacturing Co. High density plasma (HDP) etch method for suppressing micro-loading effects when etching polysilicon layers
JP2001521989A (en) 1997-11-03 2001-11-13 シーメンス アクチエンゲゼルシヤフト Method for forming a film and apparatus for performing the method
GB9723222D0 (en) 1997-11-04 1998-01-07 Pilkington Plc Coating glass
US6051151A (en) 1997-11-12 2000-04-18 International Business Machines Corporation Apparatus and method of producing a negative ion plasma
SE511139C2 (en) 1997-11-20 1999-08-09 Hana Barankova Plasma processing apparatus with rotatable magnets
US6136165A (en) 1997-11-26 2000-10-24 Cvc Products, Inc. Apparatus for inductively-coupled-plasma-enhanced ionized physical-vapor deposition
US5961911A (en) 1997-12-05 1999-10-05 Becton Dickinson And Company Process for manufacture of closure assembly
KR100256173B1 (en) 1997-12-22 2000-05-15 윤종용 Plasma etching chamber for fabricating semiconductor device
JPH11193470A (en) 1997-12-26 1999-07-21 Canon Inc Deposited film forming device and formation of deposited film
US6162443A (en) 1998-01-09 2000-12-19 Abbott Laboratories Container for an inhalation anesthetic
DE19801861C2 (en) 1998-01-20 2001-10-18 Schott Glas Process for producing a hollow, internally coated molded glass body
JPH11218418A (en) 1998-02-03 1999-08-10 Seiko Instruments Inc In-line fluorescence x-ray film thickness monitor
US6163006A (en) 1998-02-06 2000-12-19 Astex-Plasmaquest, Inc. Permanent magnet ECR plasma source with magnetic field optimization
US6103074A (en) 1998-02-14 2000-08-15 Phygen, Inc. Cathode arc vapor deposition method and apparatus
US5993745A (en) 1998-03-04 1999-11-30 Roche Diagnostics Corporation Archival storage tray for multiple test tubes
JP3669138B2 (en) 1998-03-05 2005-07-06 日新電機株式会社 Plasma CVD method, plasma CVD apparatus and electrode
US6189484B1 (en) 1999-03-05 2001-02-20 Applied Materials Inc. Plasma reactor having a helicon wave high density plasma source
US6482509B2 (en) 1998-03-06 2002-11-19 Novo Nordisk A/S Coating system providing low friction
JP3698887B2 (en) 1998-03-16 2005-09-21 株式会社アルバック Diamond-like carbon film production equipment
US6243938B1 (en) 1998-03-17 2001-06-12 Becton, Dickinson And Company Low silicone plastic prefillable syringe
DE19912737A1 (en) 1998-03-19 2000-06-21 Henning Nagel Production of porous silicon oxide film useful as antireflection coating on glass or transparent plastics, involves using self-shading or atoms and molecules in plasma-enhanced chemical vapor deposition
FR2776540B1 (en) 1998-03-27 2000-06-02 Sidel Sa BARRIER-EFFECT CONTAINER AND METHOD AND APPARATUS FOR ITS MANUFACTURING
CN1295628A (en) 1998-03-31 2001-05-16 根特大学 Method and apparatus for deposition of biaxially textured coatings
JPH11297673A (en) 1998-04-15 1999-10-29 Hitachi Ltd Plasma processor and cleaning method
WO1999054924A1 (en) 1998-04-21 1999-10-28 Hitachi, Ltd. Apparatus and method for measuring thickness of thin film and method and apparatus for manufacturing thin film device using the same
US6068884A (en) 1998-04-28 2000-05-30 Silcon Valley Group Thermal Systems, Llc Method of making low κ dielectric inorganic/organic hybrid films
US5951527A (en) 1998-05-05 1999-09-14 Daikyo Seiko, Ltd Sliding piston for syringe
US6217716B1 (en) 1998-05-06 2001-04-17 Novellus Systems, Inc. Apparatus and method for improving target erosion in hollow cathode magnetron sputter source
US6035717A (en) 1998-05-12 2000-03-14 Krautkramer Branson, Inc. Method and apparatus for measuring the thickness of a coated material
US6271047B1 (en) 1998-05-21 2001-08-07 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
US6015595A (en) 1998-05-28 2000-01-18 Felts; John T. Multiple source deposition plasma apparatus
JPH11344316A (en) 1998-05-29 1999-12-14 Futec Inc Film thickness measuring method
US6093175A (en) 1998-06-05 2000-07-25 Becton Dickinson And Company Localized lubrication of syringe barrels and stoppers
JP4254058B2 (en) 1998-06-30 2009-04-15 日本ゼオン株式会社 Container and blow molded body
US20010042510A1 (en) 1998-07-08 2001-11-22 The Coca-Cola Company Hollow containers with inert or impermeable inner surface through plasma-assisted surface reaction or on-surface polymerization
DE19830794B4 (en) 1998-07-09 2005-10-27 Singulus Technologies Ag Coating thickness measurement system and method
US7798993B2 (en) 1998-07-29 2010-09-21 Becton, Dickinson And Company Single use syringe
US6018987A (en) 1998-08-03 2000-02-01 Mocon, Inc. Apparatus for measuring gas transmission through container closures
JP3437772B2 (en) 1998-08-17 2003-08-18 長崎県 Surface treatment method and apparatus for pipe inner surface
US6125687A (en) 1998-08-20 2000-10-03 International Business Machines Corporation Apparatus for measuring outgassing of volatile materials from an object
US6009743A (en) 1998-08-24 2000-01-04 Mocon, Inc. Apparatus and method for online or offline measurement of vapor transmission through sheet materials
WO2000019507A1 (en) 1998-09-28 2000-04-06 Tokyo Electron Limited Method of plasma-assisted film deposition
US6165138A (en) 1998-09-30 2000-12-26 Becton Dickinson And Company Self-sealing closure for a medical speciman collection container
EP0992610A3 (en) 1998-09-30 2003-10-15 Becton Dickinson and Company Barrier coating on plastic substrates and process for its deposition
JP2000109076A (en) 1998-10-01 2000-04-18 Toppan Printing Co Ltd Inner surface-coated bottle and manufacture thereof
JP2000140103A (en) 1998-11-05 2000-05-23 Daikyo Seiko Ltd Plunger for injector
US6236459B1 (en) 1998-11-05 2001-05-22 University Of Miami Thin film measuring device and method
US6596401B1 (en) 1998-11-10 2003-07-22 C. R. Bard Inc. Silane copolymer compositions containing active agents
KR100341565B1 (en) 1998-11-11 2002-06-22 김윤 Fluorinated resins having a surface with high wettability
US6486081B1 (en) 1998-11-13 2002-11-26 Applied Materials, Inc. Gas distribution system for a CVD processing chamber
US6263249B1 (en) 1999-02-26 2001-07-17 Medtronic, Inc. Medical electrical lead having controlled texture surface and method of making same
US6204922B1 (en) 1998-12-11 2001-03-20 Filmetrics, Inc. Rapid and accurate thin film measurement of individual layers in a multi-layered or patterned sample
US6620139B1 (en) 1998-12-14 2003-09-16 Tre Esse Progettazione Biomedica S.R.L. Catheter system for performing intramyocardiac therapeutic treatment
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6396024B1 (en) 1998-12-23 2002-05-28 Nexx Systems Packaging, Llc Permanent magnet ECR plasma source with integrated multipolar magnetic confinement
AT407007B (en) 1998-12-23 2000-11-27 Greiner Labortechnik Gmbh RECEIVING DEVICE FOR AN INSERT ELEMENT
US6165542A (en) 1998-12-23 2000-12-26 United Technologies Corporation Method for fabricating and inspecting coatings
US6188079B1 (en) 1999-01-12 2001-02-13 Owens-Brockway Glass Container Inc. Measurement of hot container wall thickness
US6774018B2 (en) 1999-02-01 2004-08-10 Sigma Laboratories Of Arizona, Inc. Barrier coatings produced by atmospheric glow discharge
US6193853B1 (en) 1999-02-25 2001-02-27 Cametoid Limited Magnetron sputtering method and apparatus
US6284986B1 (en) 1999-03-15 2001-09-04 Seh America, Inc. Method of determining the thickness of a layer on a silicon substrate
SE520491C2 (en) 1999-04-07 2003-07-15 Tetra Laval Holdings & Finance Packaging laminate with barrier properties against gas and flavorings
US6929727B2 (en) 1999-04-12 2005-08-16 G & H Technologies, Llc Rectangular cathodic arc source and method of steering an arc spot
US6645354B1 (en) 2000-04-07 2003-11-11 Vladimir I. Gorokhovsky Rectangular cathodic arc source and method of steering an arc spot
DE59912579D1 (en) 1999-04-28 2006-02-02 Alcan Tech & Man Ag Method and device for producing packages
US6582823B1 (en) 1999-04-30 2003-06-24 North Carolina State University Wear-resistant polymeric articles and methods of making the same
DE19921303C1 (en) 1999-05-07 2000-10-12 Schott Glas Medical glass container, for holding pharmaceutical or medical diagnostic solution, has an inner PECVD non-stick layer containing silicon, oxygen, carbon and hydrogen
EP1206395B1 (en) 1999-05-28 2006-01-11 Novo Nordisk A/S Injection-moulded stopper for medical containers
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US6399944B1 (en) 1999-07-09 2002-06-04 Fei Company Measurement of film thickness by inelastic electron scattering
DE19932082A1 (en) 1999-07-12 2001-01-18 Schott Glas Interference optical narrow band filter
US6085927A (en) 1999-07-12 2000-07-11 Owens-Illinois Closure Inc. Container with insert to reduce effective volume and package incorporating same
US6185992B1 (en) 1999-07-15 2001-02-13 Veeco Instruments Inc. Method and system for increasing the accuracy of a probe-based instrument measuring a heated sample
JP3226512B2 (en) 1999-07-19 2001-11-05 東洋ガラス株式会社 Glass container coating inspection method and apparatus
US6083313A (en) 1999-07-27 2000-07-04 Advanced Refractory Technologies, Inc. Hardcoats for flat panel display substrates
US6054188A (en) 1999-08-02 2000-04-25 Becton Dickinson And Company Non-ideal barrier coating architecture and process for applying the same to plastic substrates
US6143140A (en) 1999-08-16 2000-11-07 Applied Materials, Inc. Method and apparatus to improve the side wall and bottom coverage in IMP process by using magnetic field
DE19938724A1 (en) 1999-08-16 2001-02-22 Tetra Laval Holdings & Finance Device for the production of plastic containers by means of stretch blow molding
US6602206B1 (en) 1999-08-18 2003-08-05 Becton, Dickinson And Company Stopper-shield assembly
US6410926B1 (en) 1999-10-01 2002-06-25 Ppg Industries Ohio, Inc. Coating with optical taggent
CA2286414A1 (en) 1999-10-04 2001-04-04 Zhibo Gan Non-separation heterogenous assay for biological substance
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US6322661B1 (en) 1999-11-15 2001-11-27 Lam Research Corporation Method and apparatus for controlling the volume of a plasma
SE521904C2 (en) 1999-11-26 2003-12-16 Ladislav Bardos Hybrid Plasma Treatment Device
SE0004353L (en) 1999-12-06 2001-06-07 Greiner Bio One Gmbh Device in the form of a vessel and / or seal
US6308556B1 (en) 1999-12-17 2001-10-30 Atc, Inc. Method and apparatus of nondestructive testing a sealed product for leaks
US6584828B2 (en) 1999-12-17 2003-07-01 Atc, Inc. Method and apparatus of nondestructive testing a sealed product for leaks
DE19963122A1 (en) 1999-12-24 2001-06-28 Tetra Laval Holdings & Finance Plasma chemical vapor deposition assembly has a cylindrical structure with a waveguide system to couple the microwave energy with a gas feed to coat the interior of plastics containers of all shapes and sizes without modification
AU2001229866A1 (en) 2000-01-27 2001-08-07 Greiner Bio-One Gmbh Container for holding fluids
DE10004274A1 (en) 2000-02-01 2001-08-02 Tetra Laval Holdings & Finance Apparatus to coat the inner surface of a hollow body comprises a feed pipe for process gas and a waste gas line outside of the hollow body connected to a waste gas pipe
JP3697250B2 (en) 2000-02-24 2005-09-21 三菱重工業株式会社 Plasma processing apparatus and method for producing carbon coating-formed plastic container
JP4492985B2 (en) 2000-02-24 2010-06-30 三菱商事プラスチック株式会社 Liquid medicine plastic container and liquid medicine storage and recovery method
PT1279002E (en) 2000-03-01 2006-05-31 Plastic Techn Inc MEDICATION OF THE WALL THICKNESS MEDIUM OF A PLASTIC CONTAINER
DE10010831A1 (en) 2000-03-10 2001-09-13 Pierre Flecher Low pressure microwave plasma treatment method for plastic bottles involves filling bottles with process gas and subjecting to microwaves from a plasma in a vacuum chamber
US20010038894A1 (en) 2000-03-14 2001-11-08 Minoru Komada Gas barrier film
DE10012446B4 (en) 2000-03-15 2007-06-14 Tetra Laval Holdings & Finance S.A. Method for measuring the gas permeability of a coating on a plastic wall and apparatus for carrying out the method
AT414209B (en) 2000-03-17 2006-10-15 Greiner Bio One Gmbh COLLECTION TANK FOR LIQUIDS
US6853141B2 (en) 2002-05-22 2005-02-08 Daniel J. Hoffman Capacitively coupled plasma reactor with magnetic plasma control
US6382441B1 (en) 2000-03-22 2002-05-07 Becton, Dickinson And Company Plastic tube and resealable closure having protective collar
KR100458779B1 (en) 2000-03-27 2004-12-03 미츠비시 쥬고교 가부시키가이샤 Method for forming metallic film and apparatus for forming the same
US20030010454A1 (en) 2000-03-27 2003-01-16 Bailey Andrew D. Method and apparatus for varying a magnetic field to control a volume of a plasma
US7067034B2 (en) 2000-03-27 2006-06-27 Lam Research Corporation Method and apparatus for plasma forming inner magnetic bucket to control a volume of a plasma
US20040039401A1 (en) 2000-03-31 2004-02-26 Chow Alan Y. Implant instrument
CA2305938C (en) 2000-04-10 2007-07-03 Vladimir I. Gorokhovsky Filtered cathodic arc deposition method and apparatus
DE10018015A1 (en) 2000-04-11 2001-10-25 Infineon Technologies Ag Arrangement for carrying out plasma-based process especially for ionised physical vapour deposition (IPVD) for metal deposition in microelectronics components manufacture
DE10019355A1 (en) 2000-04-18 2001-10-31 Schott Glas Vitreous body with increased strength
US6562189B1 (en) 2000-05-19 2003-05-13 Applied Materials Inc. Plasma reactor with a tri-magnet plasma confinement apparatus
GB0012170D0 (en) 2000-05-20 2000-07-12 Harcostar Drums Limited Treatment of plastics containers
JP2001338912A (en) 2000-05-29 2001-12-07 Tokyo Electron Ltd Plasma processing equipment and method for processing thereof
AU2001275172A1 (en) 2000-06-06 2001-12-17 The Dow Chemical Company Transmission barrier layer for polymers and containers
US6394979B1 (en) 2000-06-09 2002-05-28 Inviro Medical Devices Ltd. Cannula for use with a medical syringe
TW583249B (en) 2000-06-20 2004-04-11 Mitsui Chemicals Inc Crosslinkable rubber composition and sealing materials, potting materials, coating materials and adhesives using the same
US6375022B1 (en) 2000-06-30 2002-04-23 Becton, Dickinson And Company Resealable closure for containers
JP3860954B2 (en) 2000-07-07 2006-12-20 株式会社日立グローバルストレージテクノロジーズ Plasma processing apparatus with real-time particle filter
US6352629B1 (en) 2000-07-10 2002-03-05 Applied Materials, Inc. Coaxial electromagnet in a magnetron sputtering reactor
US6346596B1 (en) 2000-07-14 2002-02-12 Valspar Corporation Gas barrier polymer composition
US6354452B1 (en) 2000-07-25 2002-03-12 Becton, Dickinson And Company Collection container assembly
US6749078B2 (en) 2000-07-25 2004-06-15 Becton, Dickinson And Company Collection assembly
JP2002107134A (en) 2000-07-27 2002-04-10 Seiko Instruments Inc Thickness meter for x-ray fluorescence film
EP1178134A1 (en) 2000-08-04 2002-02-06 Cold Plasma Applications C.P.A. Process and apparatus for the continuous plasma treatment of metallic substrates
US20020185226A1 (en) 2000-08-10 2002-12-12 Lea Leslie Michael Plasma processing apparatus
GB0100958D0 (en) 2001-01-13 2001-02-28 Surface Technology Systems Ltd Plasma processing apparatus
US6720052B1 (en) 2000-08-24 2004-04-13 The Coca-Cola Company Multilayer polymeric/inorganic oxide structure with top coat for enhanced gas or vapor barrier and method for making same
JP2002086481A (en) 2000-09-14 2002-03-26 Terumo Corp Method for manufacturing gasket
EP1340247B1 (en) 2000-09-19 2010-11-24 Mattson Technology Inc. Method of forming dielectric films
US6633831B2 (en) 2000-09-20 2003-10-14 Kla Tencor Technologies Methods and systems for determining a critical dimension and a thin film characteristic of a specimen
CH694949A5 (en) 2000-09-22 2005-09-30 Tetra Laval Holdings & Finance Method and apparatus for the treatment of surfaces by means of a glow discharge plasma.
PT1326718E (en) 2000-10-04 2004-04-30 Dow Corning Ireland Ltd METHOD AND APPARATUS FOR FORMING A COAT
US6551267B1 (en) 2000-10-18 2003-04-22 Becton, Dickinson And Company Medical article having blood-contacting surface
FR2815954B1 (en) 2000-10-27 2003-02-21 Commissariat Energie Atomique PROCESS AND DEVICE FOR DEPOSIT BY PLASMA AT THE ELECTRONIC CYCLOTRON RESONANCE OF MONOPAROIS CARBON NANOTUBES AND NANOTUBES THUS OBTAINED
WO2002043116A2 (en) 2000-11-01 2002-05-30 Applied Materials, Inc. Etching of high aspect ratio features in a substrate
US20050054942A1 (en) 2002-01-22 2005-03-10 Melker Richard J. System and method for therapeutic drug monitoring
US20070258894A1 (en) 2000-11-08 2007-11-08 Melker Richard J System and Method for Real-Time Diagnosis, Treatment, and Therapeutic Drug Monitoring
FR2816926B1 (en) 2000-11-20 2003-02-14 Becton Dickinson France MULTIFUNCTIONAL PACKAGING, AND MORE PARTICULARLY PACKAGING INTENDED TO TRANSPORT STERILIZED OR PRODUCTS INTENDED TO BE STERILIZED
US20020070647A1 (en) 2000-12-11 2002-06-13 Andrey Ginovker Nanostructure plasma source
JP4698020B2 (en) 2000-12-19 2011-06-08 テルモ株式会社 Drug storage container
WO2002049925A1 (en) 2000-12-21 2002-06-27 Mitsubishi Shoji Plastics Corporation Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode
JP2002206167A (en) 2000-12-28 2002-07-26 Toshiba Corp Plasma coating apparatus, and plasma coating method
JP2002209975A (en) 2001-01-19 2002-07-30 Daikyo Seiko Ltd Laminated rubber stopper for medical vial
AU2002237947B2 (en) 2001-01-24 2008-02-21 Becton, Dickinson And Company Lubricious coating for medical device
US6640615B1 (en) 2001-01-26 2003-11-04 Darrell R. Morrow System for determining the integrity of a package or packaging material based on its transmission of a test gas
US6680621B2 (en) 2001-01-26 2004-01-20 Semiconductor Diagnostics, Inc. Steady state method for measuring the thickness and the capacitance of ultra thin dielectric in the presence of substantial leakage current
US6597193B2 (en) 2001-01-26 2003-07-22 Semiconductor Diagnostics, Inc. Steady state method for measuring the thickness and the capacitance of ultra thin dielectric in the presence of substantial leakage current
DK1227126T3 (en) 2001-01-30 2006-12-04 Daikyo Seiko Ltd Rubber composition used for a rubber stopper for a drug or for a medical treatment or its cross-linked product
EP1229068B1 (en) 2001-02-06 2005-09-14 Shibuya Kogyo Co., Ltd. Method and apparatus for modifying the inner surface of containers made of polymeric compound
US6673199B1 (en) 2001-03-07 2004-01-06 Applied Materials, Inc. Shaping a plasma with a magnetic field to control etch rate uniformity
DE10112731A1 (en) 2001-03-14 2002-10-02 Schott Glas Coating of substrates
DE10114401B4 (en) 2001-03-23 2005-03-17 Tetra Laval Holdings & Finance S.A. Method for blow molding a container made of plastic and for coating the container interior
US20020182101A1 (en) 2001-03-27 2002-12-05 Pavel Koulik Process and device for plasma surface treatment
US7288293B2 (en) 2001-03-27 2007-10-30 Apit Corp. S.A. Process for plasma surface treatment and device for realizing the process
JP3833900B2 (en) 2001-03-28 2006-10-18 株式会社東芝 Etching apparatus and etching method
JP3954319B2 (en) 2001-03-28 2007-08-08 株式会社東芝 Thin film thickness monitoring method and substrate temperature measurement method
JP4085593B2 (en) 2001-03-29 2008-05-14 日新電機株式会社 Vacuum arc evaporation system
US20040161623A1 (en) 2001-03-29 2004-08-19 Domine Joseph D Ionomer laminates and articles formed from ionomer laminates
AT500247B1 (en) 2001-03-30 2007-06-15 Greiner Bio One Gmbh RECEIVING DEVICE, ESPECIALLY FOR BODY FLUIDS, WITH A SEPARATION DEVICE AND SEPARATING DEVICE THEREFOR
US20020150709A1 (en) 2001-04-16 2002-10-17 Hetzler Kevin George Method of fusing a component to a medical storage or transfer device and container assembly
US6595961B2 (en) 2001-04-16 2003-07-22 Becton, Dickinson And Company Sterilizable transfer or storage device for medicaments, drugs and vaccines
US20020153103A1 (en) 2001-04-20 2002-10-24 Applied Process Technologies, Inc. Plasma treatment apparatus
ATE496388T1 (en) 2001-04-20 2011-02-15 Gen Plasma Inc PENNINE DISCHARGE PLASMA SOURCE
DE10119571C1 (en) 2001-04-21 2002-11-28 Schott Glas Process for the uniform coating of hollow bodies and their use
US20030119193A1 (en) 2001-04-25 2003-06-26 Robert Hess System and method for high throughput screening of droplets
PT1253216E (en) 2001-04-27 2004-04-30 Europ Economic Community METHOD AND APPARATUS FOR PLASMA SEQUENTIAL TREATMENT
TW570876B (en) 2001-05-11 2004-01-11 Toyo Seikan Kaisha Ltd Silicon oxide film
DE10122959A1 (en) 2001-05-11 2002-11-21 West Pharm Serv Drug Res Ltd Method for producing a piston for a pharmaceutical syringe or a similar item includes a step in which surplus of the inert foil cap on the piston body is separated in a punching unit
JP4014440B2 (en) 2001-05-11 2007-11-28 松下電器産業株式会社 Information recording apparatus, information recording method, and information recording system
US20020170495A1 (en) 2001-05-17 2002-11-21 Ngk Insulators, Ltd. Method for fabricating a thin film and apparatus for fabricating a thin film
DE10124225B4 (en) 2001-05-18 2006-03-02 Tetra Laval Holdings & Finance S.A. Method and device for determining the permeation of a barrier layer
US7362425B2 (en) 2001-05-18 2008-04-22 Meeks Steven W Wide spatial frequency topography and roughness measurement
US20030215652A1 (en) 2001-06-04 2003-11-20 O'connor Paul J. Transmission barrier layer for polymers and containers
JP3678361B2 (en) 2001-06-08 2005-08-03 大日本印刷株式会社 Gas barrier film
US6397776B1 (en) 2001-06-11 2002-06-04 General Electric Company Apparatus for large area chemical vapor deposition using multiple expanding thermal plasma generators
JP4774635B2 (en) 2001-06-15 2011-09-14 凸版印刷株式会社 Thin film deposition apparatus for three-dimensional hollow container and thin film deposition method using the same
MXPA03011486A (en) 2001-06-18 2004-03-18 Becton Dickinson Co Multilayer containers and process for forming multilayer containers.
US20030031806A1 (en) 2001-07-10 2003-02-13 Jinks Philip A. Medicinal inhalation devices and components coated using thermal chemical vapor deposition
JP3932836B2 (en) 2001-07-27 2007-06-20 株式会社日立製作所 Thin film thickness measuring method and apparatus, and device manufacturing method using the same
JP2003050115A (en) 2001-08-07 2003-02-21 Seiko Instruments Inc X-ray film thickness meter
DE10139305A1 (en) 2001-08-07 2003-03-06 Schott Glas Composite material made of a substrate material and a barrier layer material
DE10138696A1 (en) 2001-08-07 2003-03-06 Schott Glas Method and device for simultaneously coating and shaping a three-dimensional body
US20030029837A1 (en) 2001-08-10 2003-02-13 Applied Materials, Inc. Dielectric etch plasma chamber utilizing a magnetic filter to optimize plasma characteristics
EP1419286A1 (en) 2001-08-20 2004-05-19 Nova-Plasma Inc. Coatings with low permeation of gases and vapors
US7507378B2 (en) 2001-08-21 2009-03-24 Becton, Dickinson And Company Collection assembly
JP4812991B2 (en) 2001-09-20 2011-11-09 東京エレクトロン株式会社 Plasma processing equipment
EP1430270A4 (en) 2001-09-21 2006-10-25 Kmac Apparatus for measuring thickness profile and refractive index distribution of multiple layers of thin films by means of two-dimensional reflectometry and method of measuring the same
DE10150738C1 (en) 2001-10-13 2003-05-22 Schott Glas Process for producing a glass tube with a radiation-absorbing, aging-resistant coating and its use
US6766682B2 (en) 2001-10-19 2004-07-27 Desert Cryogenics Llc Precise measurement system for barrier materials
US6887578B2 (en) 2001-10-30 2005-05-03 Massachusetts Institute Of Technology Fluorocarbon-organosilicon copolymers and coatings prepared by hot-filament chemical vapor deposition
US7569035B1 (en) 2001-11-02 2009-08-04 Meridian Medical Technologies, Inc. Automatic injector with anti-coring needle
DE10154404C1 (en) 2001-11-06 2003-06-18 Ovd Kinegram Ag Zug Method and device for measuring physical parameters of thin, optically transparent layers and device for carrying out the method
KR20050044500A (en) 2001-11-15 2005-05-12 이오닉 퓨즌 코포레이션 Ionic plasma deposition apparatus
US6948448B2 (en) 2001-11-27 2005-09-27 General Electric Company Apparatus and method for depositing large area coatings on planar surfaces
JP2003234331A (en) 2001-12-05 2003-08-22 Tokyo Electron Ltd Plasma etching method and apparatus
JP4067817B2 (en) 2001-12-07 2008-03-26 日精エー・エス・ビー機械株式会社 Container coating equipment
WO2003053801A1 (en) 2001-12-13 2003-07-03 Mitsubishi Heavy Industries, Ltd. System for forming carbon film on inner surface of plastic container and method for producing plastic container having inner surface coated with carbon film
US7348055B2 (en) 2001-12-21 2008-03-25 Surmodics, Inc. Reagent and method for providing coatings on surfaces
DE10201110B4 (en) 2002-01-15 2006-09-28 Schott Ag Container for Parenteralia / Injectabila
US6752899B1 (en) 2002-01-16 2004-06-22 Advanced Micro Devices, Inc. Acoustic microbalance for in-situ deposition process monitoring and control
JP3953821B2 (en) 2002-01-17 2007-08-08 ファブソリューション株式会社 Film thickness measuring method and film thickness measuring apparatus
JP2003305121A (en) 2002-04-16 2003-10-28 Jfe Steel Kk Method for manufacturing medical ceramic-coated needle
EP1491154A1 (en) 2002-01-22 2004-12-29 JFE Steel Corporation Ceramic-coated instruments for medical use, ceramic-coated instruments for studying living organisms and process for producing the same
DE10202311B4 (en) 2002-01-23 2007-01-04 Schott Ag Apparatus and method for the plasma treatment of dielectric bodies
JP4494792B2 (en) 2002-02-05 2010-06-30 ダウ グローバル テクノロジーズ インコーポレイティド Chemical vapor deposition by corona on support.
US6684683B2 (en) 2002-02-27 2004-02-03 General Electric Company Method and apparatus for characterizing the barrier properties of members of combinatorial libraries
US6816570B2 (en) 2002-03-07 2004-11-09 Kla-Tencor Corporation Multi-technique thin film analysis tool
JP4031654B2 (en) 2002-03-12 2008-01-09 三菱商事プラスチック株式会社 CVD film forming apparatus and method for cleaning internal electrode for CVD film forming apparatus
JP4124609B2 (en) 2002-04-03 2008-07-23 エスアイアイ・ナノテクノロジー株式会社 Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process
AU2003236309A1 (en) 2002-04-08 2003-10-20 Kabushiki Kaisha Toshiba Plasma etching method
JP4377698B2 (en) 2002-04-08 2009-12-02 東京エレクトロン株式会社 Plasma etching method and plasma etching apparatus
GB0209291D0 (en) 2002-04-24 2002-06-05 Trikon Technologies Ltd Plasma processing apparatus
US6876154B2 (en) 2002-04-24 2005-04-05 Trikon Holdings Limited Plasma processing apparatus
US20050233091A1 (en) 2002-05-08 2005-10-20 Devendra Kumar Plasma-assisted coating
US20060228497A1 (en) 2002-05-08 2006-10-12 Satyendra Kumar Plasma-assisted coating
CN100374617C (en) 2002-05-24 2008-03-12 肖特股份公司 Chemical vapour phase deposition coating coating equipment
US7810448B2 (en) 2002-05-24 2010-10-12 Schott Ag Apparatus and method for the treating of workpieces
EP1507723B1 (en) 2002-05-24 2006-03-15 SIG Technology Ltd. Method and device for handling workpieces
US20060086320A1 (en) 2002-05-24 2006-04-27 Michael Lizenberg Method and device for plasma treating workpieces
WO2003100128A1 (en) 2002-05-24 2003-12-04 Schott Ag Coating device comprising a conveying device
EP1507893B1 (en) 2002-05-24 2014-03-26 KHS Corpoplast GmbH Method and device for the plasma treatment of workpieces
EP1367145B1 (en) 2002-05-24 2006-05-17 Schott Ag CVD apparatus
JP4386832B2 (en) 2002-05-24 2009-12-16 ショット アクチエンゲゼルシャフト Rotating device for CVD coating
WO2003100125A1 (en) 2002-05-24 2003-12-04 Sig Technology Ltd. Method and device for plasma treating workpieces
CN100412230C (en) 2002-05-24 2008-08-20 肖特股份公司 Multistation coating device and method for plasma coating
CN2546041Y (en) 2002-05-28 2003-04-23 无锡市宇寿医疗器械有限公司 Safety self-destroy injector
EP2052987B1 (en) 2002-05-28 2011-08-24 Kirin Beer Kabushiki Kaisha DLC film coated plastic container
JP4168671B2 (en) 2002-05-31 2008-10-22 凸版印刷株式会社 Thin film deposition system for 3D hollow containers
JP3611324B2 (en) 2002-06-03 2005-01-19 信越化学工業株式会社 Magnetron plasma magnetic field generator
WO2003104523A1 (en) 2002-06-05 2003-12-18 三菱商事プラスチック株式会社 Method and device for cleaning raw material gas introduction tube used in cvd film forming apparatus
JP2004008509A (en) 2002-06-07 2004-01-15 Terumo Corp Syringe gasket and manufacturing method therefor, and syringe
US6764714B2 (en) 2002-06-11 2004-07-20 Southwest Research Institute Method for depositing coatings on the interior surfaces of tubular walls
US7052736B2 (en) 2002-06-11 2006-05-30 Southwest Research Institute Method for depositing coatings on the interior surfaces of tubular structures
US20080090425A9 (en) 2002-06-12 2008-04-17 Christopher Olsen Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics
JP4080799B2 (en) 2002-06-28 2008-04-23 三井金属鉱業株式会社 Method for forming polyimide film containing dielectric filler on metal material surface, method for producing copper clad laminate for forming capacitor layer for printed wiring board, and copper clad laminate obtained by the method
TWI283899B (en) 2002-07-09 2007-07-11 Applied Materials Inc Capacitively coupled plasma reactor with magnetic plasma control
JP4385657B2 (en) 2002-07-15 2009-12-16 凸版印刷株式会社 Film forming apparatus and film forming method
KR100390540B1 (en) 2002-07-31 2003-07-04 에이엔 에스 주식회사 Magnetron plasma etching apparatus
US6995377B2 (en) 2002-08-02 2006-02-07 Plastipak Packaging, Inc. Process and apparatus for testing bottles
US7109070B2 (en) 2002-08-07 2006-09-19 Schot Glas Production of a composite material having a biodegradable plastic substrate and at least one coating
EP1388594B1 (en) 2002-08-07 2010-01-06 Schott Ag Composite material with smooth barrier layer and process for its production
EP1388593B1 (en) 2002-08-07 2015-12-30 Schott AG Rapid process for producing multilayer barrier coatings
US7399500B2 (en) 2002-08-07 2008-07-15 Schott Ag Rapid process for the production of multilayer barrier layers
AU2003257652A1 (en) 2002-08-21 2004-03-11 Shin-Etsu Chemical Co., Ltd. Magnetron plasma-use magnetic field generation device
US20040040372A1 (en) 2002-08-30 2004-03-04 George Plester Method for determining the permeation of gases into or out of plastic packages and for determination of shelf-life with respect to gas permeation
US7959866B2 (en) 2002-09-04 2011-06-14 Becton, Dickinson And Company Collection assembly
US6758949B2 (en) 2002-09-10 2004-07-06 Applied Materials, Inc. Magnetically confined metal plasma sputter source with magnetic control of ion and neutral densities
US7015640B2 (en) 2002-09-11 2006-03-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
DE10242086A1 (en) 2002-09-11 2004-04-15 Sig Technology Ltd. Containers for packaging products, device for processing plastic and methods for producing containers
DE10242698B3 (en) 2002-09-13 2004-03-25 Fresenius Hemocare Gmbh Container made from silica-coated entropy-elastic film, useful especially as blood transfusion bag, has increased water vapor permeability after stretching
KR100885083B1 (en) 2002-09-14 2009-02-25 쇼오트 아게 Method for producing layers and layer systems and coated substrate
DE10246181A1 (en) 2002-10-02 2004-04-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plasma coating, etching or treatment of concave surfaces in vacuum, directs electron beam from arc source along magnetic field lines into cavity of substrate
AT413648B (en) 2002-10-02 2006-04-15 Greiner Bio One Gmbh RECORDING DEVICE WITH ADJUSTABLE COVERING ELEMENT
CH707466B1 (en) 2002-10-03 2014-07-15 Tetra Laval Holdings & Finance Apparatus for performing a plasma-assisted process.
US6863731B2 (en) 2002-10-18 2005-03-08 Controls Corporation Of America System for deposition of inert barrier coating to increase corrosion resistance
JP2004156444A (en) 2002-11-01 2004-06-03 Mitsubishi Heavy Ind Ltd Thermal barrier coating degradation diagnosing method
CN100347229C (en) 2002-11-12 2007-11-07 陶氏环球技术公司 Process and apparatus for depositing plasma coating onto a container
WO2004044039A2 (en) 2002-11-12 2004-05-27 Dow Global Technologies Inc. Process and apparatus for depositing plasma coating onto a container
US6965221B2 (en) 2002-11-12 2005-11-15 O2Micro International Limited Controller for DC to DC converter
DE10353540A1 (en) 2002-11-15 2004-05-27 Laure, Stefan, Dr. Process for the plasma-supported coating of a tubular component comprises inserting a source containing coating material into the component, evacuating the inner chamber of the component, and producing a high frequency magnetic field
JP4238015B2 (en) 2002-11-19 2009-03-11 大日本印刷株式会社 Manufacturing method for plastic containers
JP3970169B2 (en) 2002-11-20 2007-09-05 三菱商事プラスチック株式会社 DLC film coated plastic container manufacturing method
US8066854B2 (en) 2002-12-18 2011-11-29 Metascape Llc Antimicrobial coating methods
US7059268B2 (en) 2002-12-20 2006-06-13 Tokyo Electron Limited Method, apparatus and magnet assembly for enhancing and localizing a capacitively coupled plasma
JP2004203682A (en) 2002-12-25 2004-07-22 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing optical fiber preform
US6891158B2 (en) 2002-12-27 2005-05-10 Revera Incorporated Nondestructive characterization of thin films based on acquired spectrum
US6800852B2 (en) 2002-12-27 2004-10-05 Revera Incorporated Nondestructive characterization of thin films using measured basis spectra
EP1583845A4 (en) 2003-01-02 2006-06-28 Bioforce Nanosciences Inc Method and apparatus for molecular analysis in small sample volumes
US7252651B2 (en) 2003-01-07 2007-08-07 Becton, Dickinson And Company Disposable injection device
AT413947B (en) 2003-01-27 2006-07-15 Greiner Bio One Gmbh MEDICAL ASSEMBLY, AND A PROTECTION DEVICE, AN ARTICLE AND HANDLING DEVICE FOR THIS MODULE
JP2004229750A (en) 2003-01-28 2004-08-19 Nipro Corp Prefilled syringe and production method for barrel thereof
US6989675B2 (en) 2003-03-13 2006-01-24 Multimetrixs Llc Method and apparatus for precision measurement of film thickness
US7288311B2 (en) 2003-02-10 2007-10-30 Dai Nippon Printing Co., Ltd. Barrier film
JP4233085B2 (en) 2003-02-17 2009-03-04 日本碍子株式会社 Thin film manufacturing method and apparatus
US7303789B2 (en) 2003-02-17 2007-12-04 Ngk Insulators, Ltd. Methods for producing thin films on substrates by plasma CVD
JP2004253683A (en) 2003-02-21 2004-09-09 Komatsu Ltd Resist outgas measuring instrument
WO2004075958A2 (en) 2003-02-27 2004-09-10 Baxter International Inc. Piston assembly for syringe
WO2004077006A1 (en) 2003-02-28 2004-09-10 Youtec Co.,Ltd. Method of measuring gas barrier property of plastic molding
US7332227B2 (en) 2003-03-14 2008-02-19 Becton, Dickinson And Company Non-volatile lubricant system for medical devices
US7694403B2 (en) 2003-03-25 2010-04-13 Becton, Dickinson And Company Method of forming IV catheter and needle assembly
US6946164B2 (en) 2003-03-26 2005-09-20 E.I. Du Pont Nemours And Company Thin nanometer-controlled polymer film gradient
US7488683B2 (en) 2003-03-28 2009-02-10 Toyo Seikan Kaisha, Ltd. Chemical vapor deposited film based on a plasma CVD method and method of forming the film
US6864773B2 (en) 2003-04-04 2005-03-08 Applied Materials, Inc. Variable field magnet apparatus
JP4252347B2 (en) 2003-04-07 2009-04-08 三菱商事プラスチック株式会社 Method for producing gas barrier thin film coated plastic container
AT500525A1 (en) 2003-04-17 2006-01-15 Greiner Bio One Gmbh RECEIVING DEVICE AND SEALING DEVICE AND CAP SHAPED LOCKING DEVICE
US7972467B2 (en) 2003-04-17 2011-07-05 Applied Materials Inc. Apparatus and method to confine plasma and reduce flow resistance in a plasma reactor
US7431989B2 (en) 2003-05-06 2008-10-07 Tribofilm Research, Inc. Article with lubricated surface and method
KR100509298B1 (en) 2003-05-31 2005-08-22 한국과학기술연구원 Method to manufacture composite polymer electrolyte membranes coated with inorganic thin films for direct methanol fuel cells
JP4202841B2 (en) 2003-06-30 2008-12-24 株式会社Sumco Surface polishing equipment
US20050057754A1 (en) 2003-07-08 2005-03-17 Smith David E. A. Measurement of thin film properties using plasmons
JP2005029855A (en) 2003-07-08 2005-02-03 Fuji Electric Device Technology Co Ltd Vacuum arc deposition system, vacuum arc deposition method, and magnetic recording medium
DE10330981B4 (en) 2003-07-09 2010-04-01 Medion Diagnostics Ag Apparatus and method for simultaneously performing blood grouping, serum cross-checking and antibody-screening
JP2005035597A (en) 2003-07-14 2005-02-10 Fuji Seal International Inc Method of protecting gas-barrier film in plastic container
JP4437647B2 (en) 2003-07-17 2010-03-24 三菱商事プラスチック株式会社 Method for producing gas container coated plastic container
JP4179941B2 (en) 2003-07-24 2008-11-12 独立行政法人科学技術振興機構 X-ray diffraction measurement container for thin film sample
US20050037331A1 (en) 2003-08-13 2005-02-17 William Galbraith Apparatuses and methods for reducing albumin in samples
US20070076833A1 (en) 2003-09-05 2007-04-05 Hans Becker Attenuated phase shift mask blank and photomask
JP3811150B2 (en) 2003-09-05 2006-08-16 株式会社東芝 Film thickness measuring method, film thickness measuring system, semiconductor device manufacturing method, and film thickness measuring system control program
US7029803B2 (en) 2003-09-05 2006-04-18 Schott Ag Attenuating phase shift mask blank and photomask
WO2005028697A1 (en) 2003-09-12 2005-03-31 Applied Process Technologies, Inc. Magnetic mirror plasma source and method using same
US7150299B2 (en) 2003-09-12 2006-12-19 Air Products And Chemicals, Inc. Assembly and method for containing, receiving and storing fluids and for dispensing gas from a fluid control and gas delivery assembly having an integrated fluid flow restrictor
US7087437B2 (en) 2003-09-16 2006-08-08 Vici Gig Harbor Group, Inc. Direct vial surface sorbent micro extraction device and method
JP4000373B2 (en) 2003-09-26 2007-10-31 独立行政法人物質・材料研究機構 Synthesis method of zinc sulfide in zinc oxide crystals by co-implantation of ions
US20070017870A1 (en) 2003-09-30 2007-01-25 Belov Yuri P Multicapillary device for sample preparation
US20050075611A1 (en) 2003-10-01 2005-04-07 Hetzler Kevin G. Low extractable, thermoplastic syringe and tip cap
US20050075612A1 (en) 2003-10-03 2005-04-07 Baxter International Inc. Parylene coated fluid flow regulator
JP2005114461A (en) 2003-10-06 2005-04-28 Hitachi Industries Co Ltd Thin film thickness measurement method and apparatus
US6844075B1 (en) 2003-10-06 2005-01-18 General Electric Company Environmental barrier coating
JP4000374B2 (en) 2003-10-10 2007-10-31 独立行政法人物質・材料研究機構 Semiconductor metal oxide photocatalyst and method for decomposing hazardous chemicals using the same
DE10347338A1 (en) 2003-10-11 2005-05-19 Schott Ag Dünnstsubstrathalter
US7381311B2 (en) 2003-10-21 2008-06-03 The United States Of America As Represented By The Secretary Of The Air Force Filtered cathodic-arc plasma source
FR2861386B1 (en) 2003-10-23 2006-02-17 Saint Gobain SUBSTRATE, IN PARTICULAR GLASS SUBSTRATE, CARRYING A PHOTOCATALYTIC LAYER COATED WITH A PROTECTIVE THIN LAYER.
JP2005132416A (en) 2003-10-30 2005-05-26 Toppan Printing Co Ltd Silicon oxide film coating hollow container
US6981403B2 (en) 2003-10-31 2006-01-03 Mocon, Inc. Method and apparatus for measuring gas transmission rates of deformable or brittle materials
DE10351467B4 (en) 2003-11-04 2011-07-07 Schott Ag, 55122 An article with an easily cleanable surface and process for its preparation
JP4000375B2 (en) 2003-11-19 2007-10-31 独立行政法人産業技術総合研究所 Stimulated scattering container
WO2005050725A1 (en) 2003-11-20 2005-06-02 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device and substrate processing apparatus
WO2005052544A2 (en) 2003-11-20 2005-06-09 Sigma-Aldrich Co. Polysilazane thermosetting polymers for use in chromatographic systems and applications
DE10354625A1 (en) 2003-11-22 2005-06-30 Sig Technology Ltd. Method for determining the gas permeability of container walls, containers with surface coating and coating device with measuring device
US7513953B1 (en) 2003-11-25 2009-04-07 Nano Scale Surface Systems, Inc. Continuous system for depositing films onto plastic bottles and method
WO2005051525A1 (en) 2003-11-25 2005-06-09 Polyvalor, Limited Partnership Permeation barrier coating or layer with modulated properties and methods of making the same
JP2005160888A (en) 2003-12-05 2005-06-23 Terumo Corp Gasket for syringe, and manufacturing method for syringe and gasket for syringe
ZA200801231B (en) 2003-12-16 2009-05-27 Genentech Inc Novel gene disruptions, compositions and methods relating thereto
JP4460278B2 (en) 2003-12-17 2010-05-12 株式会社大協精工 Seal plug for syringe and prefilled syringe
WO2005061222A1 (en) 2003-12-22 2005-07-07 Novo Nordisk A/S Transparent, flexible, impermeable plastic container for storage of pharmaceutical liquids
WO2005089107A2 (en) 2004-01-08 2005-09-29 University Of Virginia Patent Foundation Apparatus and method for applying coatings onto the interior surfaces of components and related structures produced therefrom
DE102004001603B4 (en) 2004-01-09 2009-03-05 Schott Ag Container with interior decor
JP2005200044A (en) 2004-01-14 2005-07-28 Dainippon Printing Co Ltd Plastic container and manufacturing method for the same
KR20050076827A (en) 2004-01-22 2005-07-28 쇼오트 아게 Ultra high transmission phase shift mask blanks
AT500459B1 (en) 2004-01-23 2010-08-15 Greiner Bio One Gmbh METHOD FOR ASSEMBLING A CAP WITH A RECEIVING CONTAINER
JP3914925B2 (en) 2004-01-28 2007-05-16 株式会社リガク Film thickness measuring method and apparatus
CA2555242A1 (en) 2004-02-12 2005-09-01 Valspar Sourcing, Inc. Methods of coating interior container surfaces and containers containing internal coatings
US7534733B2 (en) 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
JP2005241524A (en) 2004-02-27 2005-09-08 Sii Nanotechnology Inc Scanning probe microscope and measuring method using it
JP5039907B2 (en) 2004-03-09 2012-10-03 エグザテック・リミテッド・ライアビリティー・カンパニー Plasma coating apparatus for nonplanar substrates.
JP2007528446A (en) 2004-03-09 2007-10-11 エクスアテック、エル.エル.シー. Expandable thermal plasma deposition system
JP4323991B2 (en) 2004-03-19 2009-09-02 大日本スクリーン製造株式会社 Spectral reflectance measuring device, film thickness measuring device, and spectral reflectance measuring method
JP2005271997A (en) 2004-03-22 2005-10-06 Kazuo Saito Protective film of inner wall of pet bottle
DE102004017236B4 (en) 2004-04-05 2012-10-25 Schott Ag Composite having improved chemical resistance and method of making the same
JP4527431B2 (en) 2004-04-08 2010-08-18 東京エレクトロン株式会社 Plasma processing equipment
US20050260504A1 (en) 2004-04-08 2005-11-24 Hans Becker Mask blank having a protection layer
WO2005103605A1 (en) 2004-04-22 2005-11-03 Opo Sprl Instrument for measuring the thickness of a coating on bottles
US7232038B2 (en) 2004-04-27 2007-06-19 Whitney Steven G Disposable test tube rack
US8038858B1 (en) 2004-04-28 2011-10-18 Alameda Applied Sciences Corp Coaxial plasma arc vapor deposition apparatus and method
US7867366B1 (en) 2004-04-28 2011-01-11 Alameda Applied Sciences Corp. Coaxial plasma arc vapor deposition apparatus and method
US20080131638A1 (en) 2004-05-04 2008-06-05 Becton, Dickinson And Company Multilayer barrier containers having increased adhesion and durability
US7112541B2 (en) 2004-05-06 2006-09-26 Applied Materials, Inc. In-situ oxide capping after CVD low k deposition
GB0410749D0 (en) 2004-05-14 2004-06-16 Dow Corning Ireland Ltd Coating apparatus
EP1744795A1 (en) 2004-05-14 2007-01-24 Becton, Dickinson and Company Articles having bioactive surfaces and solvent-free methods of preparation thereof
US7444955B2 (en) 2004-05-19 2008-11-04 Sub-One Technology, Inc. Apparatus for directing plasma flow to coat internal passageways
ES2293416T3 (en) 2004-05-29 2008-03-16 Gerresheimer Bunde Gmbh SYRINGE CLOSURE AND PROCEDURE FOR MANUFACTURING AND A SYRINGE CLOSURE.
CN1964919B (en) 2004-06-11 2010-08-25 株式会社丰田中央研究所 Metal oxide nanoporous body, coating composition for obtaining same, methods for producing those
DE102004028369B4 (en) 2004-06-11 2007-05-31 Schott Ag Method and device for treating substrates in a rotary machine
US7220687B2 (en) 2004-06-25 2007-05-22 Applied Materials, Inc. Method to improve water-barrier performance by changing film surface morphology
US7421885B2 (en) 2004-06-28 2008-09-09 Air Products And Chemicals, Inc. Method for characterizing porous low dielectric constant films
US20060079839A1 (en) 2004-06-29 2006-04-13 Becton, Dickinson And Company Single-use syringe
US20060014309A1 (en) 2004-07-13 2006-01-19 Sachdev Krishna G Temporary chip attach method using reworkable conductive adhesive interconnections
DE102004034417B4 (en) 2004-07-15 2007-09-27 Schott Ag Process for the preparation of a coated substrate with a curved surface
US7300684B2 (en) 2004-07-15 2007-11-27 Sub-One Technology, Inc. Method and system for coating internal surfaces of prefabricated process piping in the field
DE102004034418B4 (en) 2004-07-15 2009-06-25 Schott Ag Process for producing structured optical filter layers on substrates
US7118538B2 (en) 2004-07-19 2006-10-10 Greiner Bio-One Gmbh Holding device for a medical device
DE102004035336A1 (en) 2004-07-21 2006-02-16 Schott Ag Cleanable coating system
DE102004036170B4 (en) 2004-07-26 2007-10-11 Schott Ag Vacuum coating system and method for vacuum coating and their use
US7238382B2 (en) 2004-07-30 2007-07-03 Tokyo Electron Limited Method and system for characterizing porous materials
EP1626278A3 (en) 2004-08-03 2006-06-21 OnChip Cellomics Consortium Cellomics system
DE102004037837B3 (en) 2004-08-04 2006-05-11 Universität Augsburg Apparatus for providing an evacuated cryogenic environment for a sample and using the apparatus
US7736728B2 (en) 2004-08-18 2010-06-15 Dow Corning Corporation Coated substrates and methods for their preparation
JP2006064416A (en) 2004-08-24 2006-03-09 Takeshi Kage Method and apparatus for measuring gas barrier property of plastic molded body
FR2874606B1 (en) 2004-08-26 2006-10-13 Saint Gobain METHOD FOR TRANSFERRING A FUNCTIONAL ORGANIC MOLECULE TO A TRANSPARENT SUBSTRATE
US20060042755A1 (en) 2004-08-30 2006-03-02 Plasmamed, Llc Large surface area dry etcher
DE102004042431B4 (en) 2004-08-31 2008-07-03 Schott Ag Method and device for plasma coating of workpieces with spectral evaluation of the process parameters and use of the device
US20060046006A1 (en) 2004-08-31 2006-03-02 Bastion Bradley J Multilayer polymeric barrier film, flexible packaging made therewith, and methods
GB0419772D0 (en) 2004-09-07 2004-10-06 Scalar Technologies Ltd Method and apparatus for thin film metrology
JP2008512128A (en) 2004-09-09 2008-04-24 マイクロフルイディク システムズ インコーポレイテッド Extraction apparatus and sample preparation method
DK1634819T3 (en) 2004-09-14 2008-11-17 Daikyo Seiko Ltd Drug container and rubber closure
US20070048456A1 (en) 2004-09-14 2007-03-01 Keshner Marvin S Plasma enhanced chemical vapor deposition apparatus and method
JP2006083408A (en) 2004-09-14 2006-03-30 Shin Meiwa Ind Co Ltd Vacuum film-forming apparatus
US7480363B2 (en) 2004-09-15 2009-01-20 Ge Betz, Inc. Converting a digital radiograph to an absolute thickness map
DE102004045046B4 (en) 2004-09-15 2007-01-04 Schott Ag Method and device for applying an electrically conductive transparent coating to a substrate
JP4545073B2 (en) 2004-09-17 2010-09-15 三菱重工業株式会社 Gas barrier membrane and container
WO2006037124A2 (en) 2004-09-28 2006-04-06 Mallinckrodt Inc. Container with constrained quality maintenance agent
EP1640031A3 (en) 2004-09-28 2006-06-07 Nipro Corporation Syringe coated with lubricant containing silicone oil and silica powder
FR2876094B1 (en) 2004-10-04 2009-01-09 Saint Gobain GLASS SUBSTRATE FOR DISPLAY SCREEN.
PT1807009E (en) 2004-10-05 2015-02-25 Univ California Stepped cannula
US20060076231A1 (en) 2004-10-12 2006-04-13 Southwest Research Institute Method for magnetron sputter deposition
US7520965B2 (en) 2004-10-12 2009-04-21 Southwest Research Institute Magnetron sputtering apparatus and method for depositing a coating using same
MX2007004481A (en) 2004-10-13 2007-05-09 Dow Global Technologies Inc Process for plasma coating.
JP4412661B2 (en) 2004-10-15 2010-02-10 信越化学工業株式会社 Plasma processing apparatus and plasma processing method
JP4171452B2 (en) 2004-10-18 2008-10-22 三菱重工食品包装機械株式会社 Barrier film forming internal electrode and film forming apparatus
BE1016251A3 (en) 2004-10-27 2006-06-06 Ct Rech Metallurgiques Asbl Improved method and apparatus for measuring the thickness of a layer oxide.
DE102004053707B8 (en) 2004-11-03 2008-08-28 Schott Ag Process for producing a glass-ceramic article with diffusion barrier and use of a glass-ceramic article produced according to the method
DE102004053706A1 (en) 2004-11-03 2006-05-04 Schott Ag Barrier coated article and method of making such article
DE102004053708A1 (en) 2004-11-03 2006-05-04 Schott Ag Process for the production of a product with anti-fog coating, as well as product according to the method
EP1808056B1 (en) 2004-11-05 2015-08-26 Dow Corning Ireland Limited Plasma process
AT414322B (en) 2004-11-29 2007-03-15 Greiner Bio One Gmbh SEPARATING DEVICE, ESPECIALLY FOR BODY FLUIDS, AND RECORDING EQUIPMENT WITH SUCH A SEPARATING DEVICE
JP2006153770A (en) 2004-11-30 2006-06-15 Omron Corp Spectral measurement apparatus
JP4566719B2 (en) 2004-12-02 2010-10-20 麒麟麦酒株式会社 Carbon film coated plastic container manufacturing method, plasma CVD film forming apparatus and plastic container
US7534615B2 (en) 2004-12-03 2009-05-19 Cryovac, Inc. Process for detecting leaks in sealed packages
US8097725B2 (en) 2004-12-03 2012-01-17 Roche Diagnostics Operations, Inc. Luminescent indicator dye and optical sensor
CN2766863Y (en) 2004-12-23 2006-03-29 许亮 Painless injection needle
JP2006181027A (en) 2004-12-27 2006-07-13 Daikyo Seiko Ltd Piston for syringe
WO2006069469A1 (en) 2004-12-27 2006-07-06 Sae Magnetics (H.K.) Ltd. Method of nano thin film thickness measurement by auger electron spectrscopy
DE102004063703A1 (en) 2004-12-28 2006-07-06 Schott Ag Vacuum coating system
US7297640B2 (en) 2005-01-13 2007-11-20 Chartered Semiconductor Manufacturing Ltd. Method for reducing argon diffusion from high density plasma films
JP4929727B2 (en) 2005-02-14 2012-05-09 東洋製罐株式会社 Gas supply pipe for plasma processing
US7202564B2 (en) 2005-02-16 2007-04-10 International Business Machines Corporation Advanced low dielectric constant organosilicon plasma chemical vapor deposition films
JP4515280B2 (en) 2005-02-17 2010-07-28 麒麟麦酒株式会社 Apparatus and method for manufacturing a plastic container having a gas barrier thin film formed thereon
US7339682B2 (en) 2005-02-25 2008-03-04 Verity Instruments, Inc. Heterodyne reflectometer for film thickness monitoring and method for implementing
US7608151B2 (en) 2005-03-07 2009-10-27 Sub-One Technology, Inc. Method and system for coating sections of internal surfaces
US7541069B2 (en) 2005-03-07 2009-06-02 Sub-One Technology, Inc. Method and system for coating internal surfaces using reverse-flow cycling
NZ561676A (en) 2005-03-16 2009-06-26 Attogenix Biosystems Pte Ltd Methods and device for transmitting, enclosing and analysing fluid samples
US20060210425A1 (en) 2005-03-21 2006-09-21 Laura Mirkarimi Inorganic coatings for optical and other applications
US8822272B2 (en) 2005-03-28 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and measuring method thereof
US7682816B2 (en) 2005-04-07 2010-03-23 454 Life Sciences Corporation Thin film coated microwell arrays and methods of using same
US7785862B2 (en) 2005-04-07 2010-08-31 454 Life Sciences Corporation Thin film coated microwell arrays
JP4122011B2 (en) 2005-04-15 2008-07-23 株式会社アルバック Method for forming diamond-like carbon film
JP5124751B2 (en) 2005-04-15 2013-01-23 ラクセル・バイオサイエンシズ・リミテッド Evaluation of biological or chemical samples
EP1715289A1 (en) 2005-04-21 2006-10-25 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno An optical light reflection method
DE102005023582B4 (en) 2005-05-18 2009-04-16 Schott Ag Process for the production of internally tempered glass tubes
US20080312607A1 (en) 2005-05-31 2008-12-18 Baxter International Inc. Polypropylene Hollow Barrel with Sliding Coated Rubber Piston
US20070005024A1 (en) 2005-06-10 2007-01-04 Jan Weber Medical devices having superhydrophobic surfaces, superhydrophilic surfaces, or both
WO2007003502A2 (en) 2005-07-01 2007-01-11 Siemens Aktiengesellschaft Parylene coating and method for the production thereof
US20070009673A1 (en) 2005-07-06 2007-01-11 Asm Japan K.K. Insulation film and method for manufacturing same
FR2889204B1 (en) 2005-07-26 2007-11-30 Sidel Sas APPARATUS FOR THE PECVD DEPOSITION OF AN INTERNAL BARRIER LAYER ON A CONTAINER, COMPRISING A GAS LINE ISOLATED BY ELECTROVANNE
US7745547B1 (en) 2005-08-05 2010-06-29 Becton, Dickinson And Company Multi-arm cyclic or cubic siloxane-based formulations for drug delivery
US8475886B2 (en) 2005-08-05 2013-07-02 Corning Incorporated Methods for producing surfaces that resist non-specific protein binding and cell attachment
JP2007050898A (en) 2005-08-17 2007-03-01 Toppan Printing Co Ltd Method and apparatus for manufacturing film deposition container
CN101243329B (en) 2005-08-17 2011-05-25 西门子公司 Method for determining the layer thickness of a tbc coating of at least one blade of a non-positive-displacement machine, a corresponding tbc layer thickness measuring device for carrying out the method and uses of tbc thickness measuring device
US9212947B2 (en) 2005-08-24 2015-12-15 New Sts Limited Measurement, coating and monitoring system and method
DE102005040266A1 (en) 2005-08-24 2007-03-01 Schott Ag Method and device for inside plasma treatment of hollow bodies
WO2007027585A2 (en) 2005-08-29 2007-03-08 West Pharmaceutical Services, Inc. Dual material plunger tip for use with a syringe
JP5275543B2 (en) 2005-08-31 2013-08-28 株式会社吉野工業所 Synthetic resin container with high barrier properties
US20070049048A1 (en) 2005-08-31 2007-03-01 Shahid Rauf Method and apparatus for improving nitrogen profile during plasma nitridation
WO2007089216A1 (en) 2005-09-01 2007-08-09 Gorokhovsky Vladimir I Plasma vapor deposition method and apparatus utilizing bipolar bias controller
US8786439B2 (en) 2005-09-02 2014-07-22 Wg Security Products Active antenna
WO2006073012A1 (en) 2005-09-05 2006-07-13 Fukuwauchi Technologies Inc. Dlc film-forming apparatus
US20070051629A1 (en) 2005-09-08 2007-03-08 Vladislav Dolnik Poly(amino saccharide) wall coating for electrophoretic separations in capillaries and microchannels
US20080268252A1 (en) 2005-09-20 2008-10-30 Juan Garces Process for Plasma Coating a Nanocomposite Object
US20090022981A1 (en) 2005-09-20 2009-01-22 Mitsubishi Plastics, Inc. Laminated film having gas barrier characteristics
FR2891279B1 (en) 2005-09-27 2007-12-14 Centre Nat Rech Scient NEW CHIPS FOR SURFACE PLASMON DETECTION (SPR)
AT502522A3 (en) 2005-10-04 2007-12-15 Greiner Bio One Gmbh DISCONNECTION DEVICE, RECORDING DEVICE AND METHOD OF DISCONNECTING
ATE554111T1 (en) 2005-11-07 2012-05-15 Fraunhofer Ges Forschung PAINTS WITH OXYGEN SCAVENGER AND POSSIBLE. OXYGEN INDICATOR FUNCTION FOR COATING OR BONDING AND PRODUCTS MADE THEREWITH
EP1960279B1 (en) 2005-12-01 2011-10-19 CSP Technologies, Inc. Bottle shaped container
US7409313B2 (en) 2005-12-16 2008-08-05 General Electric Company Method and apparatus for nondestructive evaluation of insulative coating
US20070148326A1 (en) 2005-12-28 2007-06-28 Hastings Mitchell R Syringe
US8025915B2 (en) 2006-01-11 2011-09-27 Schott Ag Method of preparing a macromolecule deterrent surface on a pharmaceutical package
US20070166187A1 (en) 2006-01-18 2007-07-19 Song Jing F Stabilization of paricalcitol using chlorobutyl or chlorinated butyl stoppers
ES2550539T3 (en) 2006-02-08 2015-11-10 Becton, Dickinson And Company Improved tag processor and related method
US20070184657A1 (en) 2006-02-09 2007-08-09 Tokyo Electron Limited Etching method
US20080045880A1 (en) 2006-02-11 2008-02-21 Rune Kjeken Device and method for single-needle in vivo electroporation
CA3063263C (en) 2006-02-11 2024-01-16 Genetronics, Inc. Device and method for single-needle in vivo electroporation
EP1991993B2 (en) 2006-02-14 2017-01-25 Hitachi Zosen Corporation Electron beam emitter
DE102006009822B4 (en) 2006-03-01 2013-04-18 Schott Ag Process for the plasma treatment of glass surfaces, their use and glass substrate and its use
JP2007231386A (en) 2006-03-02 2007-09-13 Toppan Printing Co Ltd Container treatment apparatus using plasma
US20070205096A1 (en) 2006-03-06 2007-09-06 Makoto Nagashima Magnetron based wafer processing
JP4693120B2 (en) 2006-03-15 2011-06-01 国立大学法人 長崎大学 Coating method for extra-long shaft body and coating apparatus for extra-long shaft body
WO2007109198A2 (en) 2006-03-17 2007-09-27 Applied Process Technologies, Inc. Mirror magnetron plasma source
US8521471B2 (en) 2006-03-24 2013-08-27 University Of Utah Research Foundation Measurement of thickness of dielectric films on surfaces
US8545865B2 (en) 2006-03-24 2013-10-01 Boston Scientific Scimed, Inc. Medical devices having polymer brushes
US7943242B2 (en) 2006-03-30 2011-05-17 Becton, Dickinson And Company Sealing members, articles using the same and methods of reducing sticktion
US8075995B2 (en) 2006-03-30 2011-12-13 Becton, Dickinson And Company Coating system, articles and assembly using the same and methods of reducing sticktion
US8916001B2 (en) 2006-04-05 2014-12-23 Gvd Corporation Coated molds and related methods and components
US20070243618A1 (en) 2006-04-11 2007-10-18 Oxysense, Inc. Device and method for non-invasive oxygen sensing of sealed packages
US20070259184A1 (en) 2006-05-04 2007-11-08 Commonwealth Scientific And Industrial Research Organisation Method of mounting objects for chemical vapour deposition
WO2007133378A1 (en) 2006-05-11 2007-11-22 Dow Global Technologies Inc. Multi-wall plastic sheet having an internal plasma-enhanced chemical vapor deposition coating and process for manufacturing the same
US8273222B2 (en) 2006-05-16 2012-09-25 Southwest Research Institute Apparatus and method for RF plasma enhanced magnetron sputter deposition
DE102006023018A1 (en) 2006-05-17 2007-11-22 Strämke, Siegfried, Dr. Plasma process for surface treatment of workpieces
AT503747B1 (en) 2006-05-18 2009-05-15 Greiner Bio One Gmbh RECORDING DEVICE FOR A MEDICAL DEVICE
ITRM20060277A1 (en) 2006-05-24 2007-11-25 Sipa Societa Industrializzazio PLANT AND PROCESS OF CONTAINER PAINTING
US7624622B1 (en) 2006-05-26 2009-12-01 Mocon, Inc. Method of measuring the transmission rate of a permeant through a container and determining shelf life of a packaged product within the container
US7825038B2 (en) 2006-05-30 2010-11-02 Applied Materials, Inc. Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen
US20070281117A1 (en) 2006-06-02 2007-12-06 Xtent, Inc. Use of plasma in formation of biodegradable stent coating
JP2008000287A (en) 2006-06-21 2008-01-10 Terumo Corp Sliding composition for coating medical appliance and medical appliance with sliding coat
US7645696B1 (en) 2006-06-22 2010-01-12 Novellus Systems, Inc. Deposition of thin continuous PVD seed layers having improved adhesion to the barrier layer
FR2903622B1 (en) 2006-07-17 2008-10-03 Sidel Participations DEVICE FOR DEPOSITING A COATING ON AN INTERNAL SIDE OF A CONTAINER
US8197452B2 (en) 2006-07-28 2012-06-12 Becton, Dickinson And Company Vascular access device non-adhering surfaces
JP5127180B2 (en) 2006-07-31 2013-01-23 株式会社大協精工 MEDICAL CONTAINER AND METHOD FOR TREATING THE MEDICAL CONTAINER
US7740792B2 (en) 2006-08-03 2010-06-22 Medrad, Inc. Methods of molding a syringe
US20080033370A1 (en) 2006-08-03 2008-02-07 Becton, Dickinson And Company Binary needle attachment mechanisms
US20080050932A1 (en) 2006-08-23 2008-02-28 Applied Materials, Inc. Overall defect reduction for PECVD films
DE102006061585B4 (en) 2006-08-23 2013-11-28 Singulus Technologies Ag Method and device for spin coating substrates
US7555934B2 (en) 2006-09-07 2009-07-07 3M Innovative Properties Company Fluid permeation testing apparatus employing mass spectrometry
US7552620B2 (en) 2006-09-07 2009-06-30 3M Innovative Properties Company Fluid permeation testing method employing mass spectrometry
EP2061529B1 (en) 2006-09-15 2013-07-24 Becton, Dickinson & Company Medical components having coated surfaces exhibiting low friction and methods of reducing sticktion
JP5551439B2 (en) 2006-09-15 2014-07-16 ベクトン・ディキンソン・アンド・カンパニー Medical parts having a coated surface exhibiting low friction and methods for reducing stiction
JP5257915B2 (en) 2006-09-29 2013-08-07 国立大学法人東北大学 Film coating apparatus and film coating method
JP2008086855A (en) 2006-09-29 2008-04-17 Fujifilm Corp Biochemical instrument
WO2008040531A1 (en) 2006-10-05 2008-04-10 Greiner Bio-One Gmbh Thermoplastic elastomers containing organoclays
US8062266B2 (en) 2006-10-11 2011-11-22 Becton, Dickinson And Company Vascular access device including a tear-resistant septum
DE102006048658B4 (en) 2006-10-14 2014-03-27 Khs Corpoplast Gmbh PICVD coating for plastic containers and process for their manufacture
US20080139003A1 (en) 2006-10-26 2008-06-12 Shahid Pirzada Barrier coating deposition for thin film devices using plasma enhanced chemical vapor deposition process
US20080102206A1 (en) 2006-11-01 2008-05-01 Sigurd Wagner Multilayered coatings for use on electronic devices or other articles
CA2668153A1 (en) 2006-11-02 2008-05-08 Asahi Glass Company, Limited Ethylene/tetrafluoroethylene copolymer molded product and method for its production
EP1918966A1 (en) 2006-11-02 2008-05-07 Dow Corning Corporation Method for forming a film with a graded bandgap by deposition of an amorphous material from a plasma
US9492596B2 (en) 2006-11-06 2016-11-15 Atrium Medical Corporation Barrier layer with underlying medical device and one or more reinforcing support structures
DE102007037527B4 (en) 2006-11-10 2013-05-08 Schott Ag Process for coating objects with alternating layers
DE102006053366A1 (en) 2006-11-10 2008-05-15 Schott Ag Method and apparatus for plasma enhanced chemical vapor deposition
US7780866B2 (en) 2006-11-15 2010-08-24 Applied Materials, Inc. Method of plasma confinement for enhancing magnetic control of plasma radial distribution
US7744567B2 (en) 2006-11-22 2010-06-29 Becton, Dickinson And Company Reducing withdrawal force in a safety IV catheter
US8092605B2 (en) 2006-11-28 2012-01-10 Applied Materials, Inc. Magnetic confinement of a plasma
US8115326B2 (en) 2006-11-30 2012-02-14 Corning Incorporated Flexible substrates having a thin-film barrier
AT504533A1 (en) 2006-12-05 2008-06-15 Greiner Bio One Gmbh SAMPLE PACKAGE
DE102006058771B4 (en) 2006-12-12 2018-03-01 Schott Ag Container with improved emptiness and method for its production
US20080145271A1 (en) 2006-12-19 2008-06-19 Kidambi Srikanth S Method of using sulfur-based corrosion inhibitors for galvanized metal surfaces
US20100042055A1 (en) 2006-12-27 2010-02-18 Daikyo Seiko, Ltd. Syringe Piston
FR2911071A1 (en) 2007-01-09 2008-07-11 Becton Dickinson France Soc Pa METHOD AND EQUIPMENT FOR RADIATION DECONTAMINATION OF A PRODUCT SUCH AS A PACKAGE CONTAINING MEDICAL DEVICES
CN201002786Y (en) 2007-01-12 2008-01-09 石家庄第一橡胶股份有限公司 Bottle stopper coated with film
JP2008174793A (en) 2007-01-18 2008-07-31 Nanotec Corp Film-forming apparatus and film-forming method
WO2008093335A2 (en) 2007-01-29 2008-08-07 Greenkote (Israel) Ltd. Methods of preparing thin polymetal diffusion coatings
JP2008194317A (en) 2007-02-14 2008-08-28 Daikyo Seiko Ltd Syringe barrel and syringe
US20080202414A1 (en) 2007-02-23 2008-08-28 General Electric Company Methods and devices for coating an interior surface of a plastic container
US8409441B2 (en) 2007-02-27 2013-04-02 Deka Products Limited Partnership Blood treatment systems and methods
DE102007011589A1 (en) 2007-03-08 2008-09-11 Schott Ag Conveyor for precursor
US20100178490A1 (en) 2007-03-28 2010-07-15 Glenn Cerny Roll-to-roll plasma enhanced chemical vapor deposition method of barrier layers comprising silicon and carbon
US20080260966A1 (en) 2007-04-22 2008-10-23 Applied Materials, Inc. Plasma processing method
EP3106189A1 (en) 2007-04-26 2016-12-21 Daikyo Seiko, LTD. Mold and method for molding same for needle-equipped syringe barrel and needle-equipped syringe
US20080277332A1 (en) 2007-05-11 2008-11-13 Becton, Dickinson And Company Micromachined membrane filter device for a glaucoma implant and method for making the same
MY154004A (en) 2007-05-23 2015-04-30 Southwest Res Inst Plasma immersion ion processing fro coating of hollow substrates
US7922880B1 (en) 2007-05-24 2011-04-12 Novellus Systems, Inc. Method and apparatus for increasing local plasma density in magnetically confined plasma
KR20080105617A (en) 2007-05-31 2008-12-04 삼성모바일디스플레이주식회사 Chemical vapor deposition apparatus and plasma enhanced chemical vapor deposition apparatus
CN201056331Y (en) 2007-05-31 2008-05-07 许奕新 Packing bottle with coating
US8723332B2 (en) 2007-06-11 2014-05-13 Invensas Corporation Electrically interconnected stacked die assemblies
EP2165724B1 (en) 2007-06-20 2018-08-15 Daikyo Seiko, LTD. Slide valve installed in injector and injector with the slide valve
KR20080111801A (en) 2007-06-20 2008-12-24 삼성전자주식회사 Plasma processing apparatus and method thereof
US8633034B2 (en) 2007-06-25 2014-01-21 Becton, Dickinson And Company Methods for evaluating the aggregation of a protein in a suspension including organopolysiloxane and medical articles coated with organopolysiloxane containing a protein solution
EP2173408A1 (en) 2007-06-27 2010-04-14 Medingo Ltd. Tubing for fluid delivery device
US7563425B2 (en) 2007-06-28 2009-07-21 Korea Advanced Institute Of Science And Technology Carbonnitride nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pore thereof
FR2918301B1 (en) 2007-07-06 2011-06-24 Sidel Participations PLASMA REMOVABLE BARRIER COATING COMPRISING AT LEAST THREE LAYERS, PROCESS FOR OBTAINING SUCH COATING AND CONTAINER COATED WITH SUCH COATING
WO2009011214A1 (en) 2007-07-13 2009-01-22 Daikyo Seiko, Ltd. Plunger assembly for injector
EP2172515B1 (en) 2007-07-25 2012-06-06 Daikyo Seiko, LTD. Rubber compound and molded article
CH702317B1 (en) 2007-08-02 2011-06-15 Stevanato Group Internat As Structure of the pack of glass vials for pharmaceutical use.
WO2009025719A1 (en) 2007-08-03 2009-02-26 University Of Massachusetts Medical School Polymer compositions for biomedical and material applications
US8389958B2 (en) 2009-03-18 2013-03-05 Duke University Up and down conversion systems for production of emitted light from various energy sources
KR101117929B1 (en) 2007-08-08 2012-02-29 가부시키가이샤 아루박 Plasma processing method and plasma processing apparatus
WO2009021257A1 (en) 2007-08-13 2009-02-19 Greiner Bio-One Gmbh Medical separator
US20090061237A1 (en) 2007-08-28 2009-03-05 International Business Machines Corporation LOW k POROUS SiCOH DIELECTRIC AND INTEGRATION WITH POST FILM FORMATION TREATMENT
EP2183289A2 (en) 2007-08-31 2010-05-12 Corning Incorporated Reactive surface on a polymeric substrate
WO2009030976A1 (en) 2007-09-03 2009-03-12 Becton Dickinson France Medical device and smooth coating therefor
WO2009030975A1 (en) 2007-09-03 2009-03-12 Becton Dickinson France Medical device comprising a siliconized chamber and a coated closure means
WO2009030974A1 (en) 2007-09-03 2009-03-12 Becton Dickinson France Medical device and lubricant coating therefor
KR100917913B1 (en) 2007-09-05 2009-09-16 한국표준과학연구원 Spectral analyzer for measuring the thickness and identification of chemicals of organic thin films using CARS microscopy
US20090069790A1 (en) 2007-09-07 2009-03-12 Edward Maxwell Yokley Surface properties of polymeric materials with nanoscale functional coating
DE102007045455A1 (en) 2007-09-24 2009-04-09 Schott Ag Process for producing wafers from ingots
JP5711868B2 (en) 2007-09-28 2015-05-07 テルモ株式会社 Stable edaravone-containing aqueous formulation
US8231568B2 (en) 2007-10-16 2012-07-31 Nordson Corporation Syringes with a reduced susceptibility to freeze-thaw void formation and methods of manufacturing such syringes
WO2009053947A2 (en) 2007-10-22 2009-04-30 Becton Dickinson France Surface coating to prevent cation leaching
CN100566764C (en) 2007-10-26 2009-12-09 哈尔滨医科大学 A kind of preparation method that is used for the medicine coating carrier and the medicine coating blood vessel support of medicine coating blood vessel support
EP2216061A4 (en) 2007-10-31 2014-12-24 Daikyo Seiko Ltd Injector and syringe barrel
US8227025B2 (en) 2007-11-02 2012-07-24 Gvd Corporation Conductive polymer coatings and methods of forming the same
JP2009119171A (en) 2007-11-19 2009-06-04 Daikyo Seiko Ltd Plunger rod and syringe
DE102007056240A1 (en) 2007-11-22 2009-05-28 Henke-Sass, Wolf Gmbh syringe
KR100935976B1 (en) 2007-12-07 2010-01-08 삼성전기주식회사 Method of transmitting data to multi destinations in wireless lan system
JP5230185B2 (en) 2007-12-13 2013-07-10 富士フイルム株式会社 Reactive sputtering apparatus and reactive sputtering method
CA2707035A1 (en) 2007-12-19 2009-09-24 Ajjer Llc High throughput methods for analysis of contamination in environmental samples
DE102007062977B4 (en) 2007-12-21 2018-07-19 Schott Ag Process for the production of process gases for the vapor phase separation
DK2223677T3 (en) 2007-12-26 2018-12-03 Daikyo Seiko Ltd Molded rubber products
US8277025B2 (en) 2008-01-16 2012-10-02 Zamtec Limited Printhead cartridge with no paper path obstructions
JP5286553B2 (en) 2008-02-05 2013-09-11 東洋製罐株式会社 High frequency plasma processing apparatus and high frequency plasma processing method
US8505480B2 (en) 2008-03-12 2013-08-13 Alytus Corporation S.A. Plasma system
FR2929295A1 (en) 2008-03-25 2009-10-02 Becton Dickinson France Soc Pa APPARATUS FOR PLASMA TREATMENT OF HOLLOW BODIES
US20110079582A1 (en) 2008-03-31 2011-04-07 Akira Yonesu Plasma generating device and method
US20090263668A1 (en) 2008-04-21 2009-10-22 3M Innovative Properties Company Durable coating of an oligomer and methods of applying
US7632549B2 (en) 2008-05-05 2009-12-15 Asm Japan K.K. Method of forming a high transparent carbon film
JP2011519695A (en) 2008-05-08 2011-07-14 リプレニッシュ パンプス, エルエルシー Implantable drug delivery device and apparatus and method for filling the device
DE102008023027B4 (en) 2008-05-09 2012-06-28 Von Ardenne Anlagentechnik Gmbh Electrode arrangement for magnetic-field-guided plasma-assisted processes in vacuum
US8062470B2 (en) 2008-05-12 2011-11-22 Yuri Glukhoy Method and apparatus for application of thin coatings from plasma onto inner surfaces of hollow containers
US7967945B2 (en) 2008-05-30 2011-06-28 Yuri Glukhoy RF antenna assembly for treatment of inner surfaces of tubes with inductively coupled plasma
WO2009158613A1 (en) 2008-06-26 2009-12-30 West Pharmaceutical Services, Inc. Method of coating polyxylylene onto flouropolymer surfaces and devices coated thereby
US20090326517A1 (en) 2008-06-27 2009-12-31 Toralf Bork Fluidic capillary chip for regulating drug flow rates of infusion pumps
KR100995700B1 (en) 2008-07-14 2010-11-22 한국전기연구원 Method And Chamber For Inductively Coupled Plasma Processing For Cylinderical Material With Three-dimensional Surface
WO2010009724A1 (en) 2008-07-25 2010-01-28 Dr. Laure Plasmatechnologie Gmbh Device for plasma-assisted coating of the inner side of tubular components
US8288513B2 (en) 2008-07-25 2012-10-16 Becton, Dickinson And Company Defined cell culturing surfaces and methods of use
TWI641292B (en) 2008-08-04 2018-11-11 Agc北美平面玻璃公司 Plasma source
DE102008037159A1 (en) 2008-08-08 2010-02-11 Krones Ag Apparatus and method for the plasma treatment of hollow bodies
JP5093686B2 (en) 2008-08-27 2012-12-12 富士電機株式会社 Method for forming protective film for magnetic recording medium
WO2010034004A1 (en) 2008-09-22 2010-03-25 Becton, Dickinson And Company Systems, apparatus and methods for coating the interior of a container using a photolysis and/or thermal chemical vapor deposition process
DE102008051614B4 (en) 2008-10-09 2012-09-20 Schott Ag Process for the production of glass packaging materials for pharmaceutical products
US9018098B2 (en) 2008-10-23 2015-04-28 Lam Research Corporation Silicon etch with passivation using chemical vapor deposition
US8668972B2 (en) 2008-10-24 2014-03-11 Gvd Corporation Coating methods and coated syringe
US20100104770A1 (en) 2008-10-27 2010-04-29 Asm Japan K.K. Two-step formation of hydrocarbon-based polymer film
JP5012762B2 (en) 2008-10-30 2012-08-29 大日本印刷株式会社 Manufacturing method for plastic containers
JP5012761B2 (en) 2008-10-30 2012-08-29 大日本印刷株式会社 Manufacturing method for plastic containers
WO2010065564A1 (en) 2008-12-02 2010-06-10 Georgia Tech Research Corporation Environmental barrier coating for organic semiconductor devices and methods thereof
DE102008062881B4 (en) 2008-12-16 2021-04-08 Schott Ag Process for the production of a hollow molded glass body
US20100174245A1 (en) 2009-01-08 2010-07-08 Ward Dean Halverson System for pretreating the lumen of a catheter
WO2010132589A2 (en) 2009-05-13 2010-11-18 Cv Holdings, Llc Outgassing method for inspecting a coated surface
US20100190036A1 (en) 2009-01-27 2010-07-29 Kyriakos Komvopoulos Systems and Methods for Surface Modification by Filtered Cathodic Vacuum Arc
EP2218465A1 (en) 2009-02-02 2010-08-18 KHS GmbH Apparatus for sterilising a container
US8469928B2 (en) 2009-02-11 2013-06-25 Becton, Dickinson And Company Systems and methods for providing a flushable catheter assembly
US8679063B2 (en) 2009-02-11 2014-03-25 Becton, Dickinson And Company Systems and methods for providing a catheter assembly
US8388583B2 (en) 2009-08-20 2013-03-05 Becton, Dickinson And Company Systems and methods for providing a flushable catheter assembly
US8574203B2 (en) 2009-02-11 2013-11-05 Becton, Dickinson And Company Systems and methods for providing a flushable catheter assembly
JP5795266B2 (en) 2009-02-18 2015-10-14 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Method for depositing diamond-like carbon as a protective coating on the inner surface of a molded object
DE102009011960B4 (en) 2009-03-10 2013-06-13 Schott Ag Method for monitoring plasma discharges
KR20100104119A (en) 2009-03-16 2010-09-29 삼성전자주식회사 Thin film forming apparatus and method for forming the thin film with the same
US8197910B2 (en) 2009-04-27 2012-06-12 Becton, Dickinson And Company Methods for producing synthetic surfaces that mimic collagen coated surfaces for cell culture
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
PT2251453E (en) 2009-05-13 2014-03-13 Sio2 Medical Products Inc Vessel holder
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
FR2948177B1 (en) 2009-07-16 2011-08-05 Inst Francais Du Petrole CHEMICAL LOOP COMBUSTION PROCESS WITH INDEPENDENT CONTROL OF SOLIDS CIRCULATION
TWI393798B (en) 2009-07-17 2013-04-21 Ulvac Inc Apparatus and method for forming film
JP5431051B2 (en) 2009-07-17 2014-03-05 株式会社大協精工 A small-capacity piston for a syringe and a plunger to which the piston is attached
KR20110020186A (en) 2009-08-21 2011-03-02 한양대학교 산학협력단 Polymer electrolyte for polymer electrolyte membrane fuel cell, method of preparing same, and polyer electrolyte membrane fuel cell system including same
JP2011060885A (en) 2009-09-08 2011-03-24 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
DE102009041132B4 (en) 2009-09-14 2014-08-14 Schott Ag Method for producing a sliding layer and pharmaceutical packaging with sliding layer
US20110065798A1 (en) 2009-09-17 2011-03-17 Becton, Dickinson And Company Anti-infective lubricant for medical devices and methods for preparing the same
CN102665803A (en) 2009-09-22 2012-09-12 药物混合系统股份公司 Sealed container comprising a displaceable piston
CN102725202B (en) 2009-10-09 2015-03-25 西氏制药服务德国有限公司及两合公司 Elastomeric closure with barrier layer and method for its manufacture
US8722178B2 (en) 2009-10-29 2014-05-13 W. L. Gore & Associates, Inc. Syringe stopper
US20110111132A1 (en) 2009-11-09 2011-05-12 Electric Power Research Institute, Inc. System and method for depositing coatings on inner surface of tubular structure
WO2011060033A1 (en) 2009-11-10 2011-05-19 Immunolight, L.L.C. Up and down coversion systems for production of emitted light from various energy sources including radio frequency, microwave energy and magnetic induction sources for upconversion
JP5357710B2 (en) 2009-11-16 2013-12-04 東京エレクトロン株式会社 Substrate processing method, substrate processing apparatus, and recording medium recording program
US20110152820A1 (en) 2009-12-22 2011-06-23 Medtronic Minimed, Inc. Barrier coatings for fluids contacting medical devices
FR2954326B1 (en) 2009-12-23 2013-01-18 Valois Sas METHOD FOR SURFACE TREATMENT OF A FLUID PRODUCT DISPENSING DEVICE
US8900663B2 (en) 2009-12-28 2014-12-02 Gvd Corporation Methods for coating articles
EP2519291A1 (en) 2009-12-31 2012-11-07 Becton Dickinson France Medical components having coated surfaces exhibiting low friction and/or low gas/liquid permeability
US8475843B2 (en) 2009-12-31 2013-07-02 Surmodics, Inc. Silyl ether-modified hydrophilic polymers and uses for medical articles
JP6150523B2 (en) 2010-02-05 2017-06-21 デカ・プロダクツ・リミテッド・パートナーシップ Infusion pump apparatus, method and system
US8747631B2 (en) 2010-03-15 2014-06-10 Southwest Research Institute Apparatus and method utilizing a double glow discharge plasma for sputter cleaning
JP5226031B2 (en) 2010-04-13 2013-07-03 テルモ株式会社 Drug container
EP2381246A1 (en) 2010-04-26 2011-10-26 Becton Dickinson France Device, kit and method for inspection of an article
EP2563430A2 (en) 2010-04-30 2013-03-06 Bayer Pharma Aktiengesellschaft Displacement syringe
WO2011143509A1 (en) * 2010-05-12 2011-11-17 Cv Holdings, Llc Vessel outgassing inspection methods
US8802603B2 (en) 2010-06-17 2014-08-12 Becton, Dickinson And Company Medical components having coated surfaces exhibiting low friction and low reactivity
US8628475B2 (en) 2010-06-24 2014-01-14 Cdw Investments, Llc Hyperechogenic needles
CA2803613C (en) 2010-06-29 2018-12-11 Cv Holdings, Llc Syringe with integrated needle
EP2593286B1 (en) 2010-07-16 2015-03-04 SiO2 Medical Products, Inc. Injection molding process
US20120021136A1 (en) 2010-07-20 2012-01-26 Varian Semiconductor Equipment Associates, Inc. System and method for controlling plasma deposition uniformity
US8623324B2 (en) 2010-07-21 2014-01-07 Aat Bioquest Inc. Luminescent dyes with a water-soluble intramolecular bridge and their biological conjugates
WO2012021537A1 (en) 2010-08-09 2012-02-16 Msnw Llc Apparatus, systems and methods for establishing plasma and using plasma in a rotating magnetic field
US8932259B2 (en) 2010-09-13 2015-01-13 Becton, Dickinson And Company Catheter assembly
US8773020B2 (en) 2010-10-22 2014-07-08 Applied Materials, Inc. Apparatus for forming a magnetic field and methods of use thereof
US8476162B2 (en) 2010-10-27 2013-07-02 Applied Materials, Inc. Methods of forming layers on substrates
UA97584C2 (en) 2010-11-08 2012-02-27 Национальный Научный Центр "Харьковский Физико-Технический Институт" METHOD For TRANSPORTATION vacuum-arc cathode plasma with FILTERING OF MACROparticles AND DEVICE FOR realization thereof
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US8921516B2 (en) 2010-12-08 2014-12-30 Corning Incorporated Synthetic, defined fibronectin mimetic peptides and surfaces modified with the same
WO2012100100A2 (en) 2011-01-19 2012-07-26 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces and biological applications thereof
DE102011009057B4 (en) 2011-01-20 2015-12-10 Schott Ag Plasma treatment apparatus for the production of coatings and methods for the internal plasma treatment of containers
US10081864B2 (en) 2011-03-10 2018-09-25 Kaiatech, Inc Method and apparatus for treating containers
JP5801586B2 (en) 2011-03-31 2015-10-28 テルモ株式会社 Fat emulsion prefilled syringe formulation
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US8871319B2 (en) 2011-04-12 2014-10-28 The Procter & Gamble Company Flexible barrier packaging derived from renewable resources
DE102011076754A1 (en) 2011-05-31 2012-12-06 Schott Ag Substrate element for the coating with an easy-to-clean coating
WO2013017547A1 (en) 2011-07-29 2013-02-07 Dsm Ip Assets B.V. Medical device comprising a wetted hydrophilic coating
US20130046375A1 (en) 2011-08-17 2013-02-21 Meng Chen Plasma modified medical devices and methods
US10388493B2 (en) 2011-09-16 2019-08-20 Lam Research Corporation Component of a substrate support assembly producing localized magnetic fields
KR20200003228A (en) 2011-09-27 2020-01-08 벡톤 디킨슨 프랑스 Medicinal injection device and method of treating a medicinal injection device using plasma treated silicone oil as a coating
FR2980789B1 (en) 2011-09-29 2013-10-25 Commissariat Energie Atomique METHOD FOR MANUFACTURING AN OBJECT FROM A SOL-GEL SOLUTION
SE1250261A1 (en) 2011-10-31 2013-05-01 Billerudkorsnaes Gaevle Froevi Ab Coating composition, a method for coating a substrate, a coated substrate, a packaging material and liquid packaging
WO2013071138A1 (en) 2011-11-11 2013-05-16 Sio2 Medical Products, Inc. PASSIVATION, pH PROTECTIVE OR LUBRICITY COATING FOR PHARMACEUTICAL PACKAGE, COATING PROCESS AND APPARATUS
FR2982914B1 (en) 2011-11-22 2014-01-17 Snecma HALL EFFECTOR
EP2602354A1 (en) 2011-12-05 2013-06-12 Pivot a.s. Filtered cathodic vacuum arc deposition apparatus and method
DE102012201955A1 (en) 2012-02-09 2013-08-14 Krones Ag Power lance and plasma-enhanced coating with high-frequency coupling
CN102581274B (en) 2012-03-08 2014-06-11 中国工程物理研究院化工材料研究所 Method for coating micro/nano-metal powder by chemical vapor deposition
US9068565B2 (en) 2012-05-03 2015-06-30 Becton, Dickinson And Company Container and method for storing a pharmaceutical agent
CN104619367A (en) 2012-05-09 2015-05-13 Sio2医药产品公司 Inspection methods for pecvd coatings
EP2855644B9 (en) 2012-05-29 2021-12-29 Becton Dickinson France Lubricant coating and medical injection device comprising such a coating
US9034442B2 (en) 2012-11-30 2015-05-19 Corning Incorporated Strengthened borosilicate glass containers with improved damage tolerance
JP6488232B2 (en) 2012-07-03 2019-03-20 エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド Drug package SiOx barrier and coating process
TWI501441B (en) 2012-08-24 2015-09-21 Ind Tech Res Inst Discontinuous compound barrier layer, method for forming the same and package using the same
FR2994851B1 (en) 2012-09-04 2015-08-21 Rexam Healthcare La Verpillier APPARATUS FOR INJECTING PHARMACEUTICAL LIQUID CONFIGURED TO BE PRE-FILLED
WO2014059012A1 (en) 2012-10-12 2014-04-17 Sio2 Medical Products, Inc. Process for the internal coating of hollow bodies
CN104854257B (en) 2012-11-01 2018-04-13 Sio2医药产品公司 coating inspection method
EP2920567B1 (en) 2012-11-16 2020-08-19 SiO2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
WO2014085348A2 (en) 2012-11-30 2014-06-05 Sio2 Medical Products, Inc. Controlling the uniformity of pecvd deposition on medical syringes, cartridges, and the like
US10117806B2 (en) 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
KR102472240B1 (en) 2013-03-11 2022-11-30 에스아이오2 메디컬 프로덕츠, 인크. Coated Packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
DE102013103676A1 (en) 2013-04-11 2014-10-30 Schott Ag Containers with low particulate emission and frictionally controlled dry sliding surface, and process for its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160184183A1 (en) * 2008-05-23 2016-06-30 Hospira, Inc. Packaged Iron Sucrose Products
US20170340823A1 (en) * 2014-12-23 2017-11-30 Merz Pharma Gmbh & Co. Kgaa Botulinum toxin prefilled container
US10549042B2 (en) * 2014-12-23 2020-02-04 Merz Pharma Gmbh & Co. Kgaa Botulinum toxin prefilled glass syringe
US11167090B2 (en) 2014-12-23 2021-11-09 Merz Pharma Gmbh & Co. Kgaa Botulinum toxin prefilled container

Also Published As

Publication number Publication date
US20160015898A1 (en) 2016-01-21
US20140249484A1 (en) 2014-09-04
EP2961858B1 (en) 2022-09-07
WO2014134577A1 (en) 2014-09-04
EP2961858A1 (en) 2016-01-06
US9662450B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
US11684546B2 (en) PECVD coated pharmaceutical packaging
US9662450B2 (en) Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US11884446B2 (en) Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10537494B2 (en) Trilayer coated blood collection tube with low oxygen transmission rate
US9545360B2 (en) Saccharide protective coating for pharmaceutical package
US20130041241A1 (en) Pecvd coating methods for capped syringes, cartridges and other articles
CA2878638A1 (en) Siox barrier for pharmaceutical package and coating process
WO2014059012A1 (en) Process for the internal coating of hollow bodies
US20230277415A1 (en) Polymer vials having standard external dimensions and reduced internal volume

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE TEACHERS' RETIREMENT SYSTEM OF ALABAMA, ALABAM

Free format text: SECURITY AGREEMENT AMENDMENT;ASSIGNOR:SIO2 MEDICAL PRODUCTS, INC.;REEL/FRAME:043480/0951

Effective date: 20170725

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SIO2 MEDICAL PRODUCTS, INC., ALABAMA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE TEACHERS RETIREMENT SYSTEM OF ALABAMA;REEL/FRAME:063257/0371

Effective date: 20211220