US20170020493A1 - Organism Paracentesis Device And Method Thereof - Google Patents

Organism Paracentesis Device And Method Thereof Download PDF

Info

Publication number
US20170020493A1
US20170020493A1 US15/282,758 US201615282758A US2017020493A1 US 20170020493 A1 US20170020493 A1 US 20170020493A1 US 201615282758 A US201615282758 A US 201615282758A US 2017020493 A1 US2017020493 A1 US 2017020493A1
Authority
US
United States
Prior art keywords
syringe needle
organism
tube
piston
sampling tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/282,758
Inventor
Richard Hwang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US15/282,758 priority Critical patent/US20170020493A1/en
Publication of US20170020493A1 publication Critical patent/US20170020493A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0283Pointed or sharp biopsy instruments with vacuum aspiration, e.g. caused by retractable plunger or by connected syringe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150251Collection chamber divided into at least two compartments, e.g. for division of samples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • A61B5/1405Devices for taking blood samples
    • A61B5/1416Devices for taking blood samples by syringes containing more than one piston
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M2005/1787Syringes for sequential delivery of fluids, e.g. first medicament and then flushing liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3123Details having air entrapping or venting means, e.g. purging channels in pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31596Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms comprising means for injection of two or more media, e.g. by mixing
    • A61M2005/31598Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms comprising means for injection of two or more media, e.g. by mixing having multiple telescopically sliding coaxial pistons encompassing volumes for components to be mixed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M2005/3201Coaxially assembled needle cannulas placed on top of another, e.g. needles having different diameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • A61M5/1582Double lumen needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/19Syringes having more than one chamber, e.g. including a manifold coupling two parallelly aligned syringes through separate channels to a common discharge assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M5/2448Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic comprising means for injection of two or more media, e.g. by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • A61M5/284Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle comprising means for injection of two or more media, e.g. by mixing

Definitions

  • the present invention refers to an organism paracentesis device, especially refers to an organism paracentesis device with two syringe needles, wherein one of the syringe needles is for collecting a sample of organism, while the other one is for injecting a medicament in order to prevent the cells of sampled organism from being spread to other places.
  • a sample from the organism which is suspected to contain cancer cells In order to determine whether or not a person has got the cancer, it is necessary to obtain a sample from the organism which is suspected to contain cancer cells.
  • One of the conventional ways to obtain a sample from the organism of the patient is to use a syringe needle to penetrate into the patient's body in order to extract a sample from the organism.
  • Such sampling procedure will require the assistance of ultrasonic scanning in order to make sure the syringe needle has reached the correct position of the suspected organism. If the ultrasonic scanning cannot precisely locate the suspected organism, then Computed Tomography will be employed for assisting the sampling procedure.
  • using the syringe needle to penetrate into the patient's body and extract a sample from the organism is one of the most efficient ways to sift the Thyroid cancer. The drawback of such sampling procedure is unable to distinguish carcinoma-in-situ and invasive carcinoma, and thus is usually used for sifting suspected patients or monitoring transitional carcinoma cells.
  • the conventional way to process such sampling procedure is to use the syringe needle to directly penetrate into the organism and suck out a sample from the organism by means of a negative pressure inside the syringe needle.
  • There is no protecting means to be applied during the sampling procedure and thus it is possible that the cells of the sampled organism might stick on outer surface of the syringe needle and leak or spread to nearby areas and even to contaminate nearby tissues when the syringe needle is pulled out from that sampled organism.
  • using the syringe needle to extract a sample from the organism is widely used in diagnosing hepatoma.
  • the protruding process of the syringe needle especially when the syringe needle is pulled out after the sample has been extracted, might also cause the cancer cells to stick on the outer surface of the syringe needle and then spread to other organisms, and thus might increase the risk for the cancer cells to transfer to other organisms.
  • the present invention provides an organism paracentesis device and method for decreasing the risk of the cells of sampled organism to spread to other organisms.
  • a primary objective of the present invention is to provide an organism paracentesis device, which includes two syringe needles; wherein one of the syringe needles is for collecting a sample of organism, while the other one is for injecting a medicament, so as to prevent the cells of sampled organism from being spread to other places.
  • the present invention provides an organism paracentesis device, which comprises a first tube member and a second tube member.
  • the first tube member comprises an injection tube, a piston attached with a piston rod and a first syringe needle.
  • the piston is received inside the injection tube.
  • the injection tube is filled with a medicament which can be ejected out from the first syringe needle when the piston rod is pushed.
  • the second tube member comprises a sampling tube and a second syringe needle. Both ends of the second syringe needle are in the form of syringe needle.
  • the second syringe needle has an extracting end located at a bottom end of the second syringe needle and a collecting end located at a top end of the second syringe needle and is able to protrude into the sampling tube.
  • the extracting end of the second syringe needle is capable of penetrating into a sampled organism for extracting a sample from the sampled organism into the sampling tube.
  • the lower parts of the first syringe needle and the second syringe needle are abreast with each other; the injection tube of first tube member and an extraction part of the second tube member are integrally formed.
  • the second tube member further comprises an extraction part; the collecting end of the second syringe needle is located in the extraction part; the sampling tube is an individual component and yet can be attached to or released from the extraction part; the sampling, tube has a cover and an inner compartment; the cover is made of resilient rubber or silica rubber and can seal tightly on a bottom end of the sampling tube; the sampling tube can be inserted and pushed into the extraction part of the second tube member in such a manner that, the collecting end of second syringe needle penetrates through the cover and enters the compartment of sampling tube.
  • the medicament is used to kill cancer cells.
  • a plurality of side holes are formed on a lower part of a wall of the first syringe needle; these side holes allow the medicament to eject out there-from.
  • the first syringe needle and the second syringe needle are concentric; the second syringe needle is received within the first syringe needle; the first syringe needle and the second syringe needle has the same central axis, so as to form a “needle in needle” structure; a predetermined distance is formed between an inner surface of the first syringe needle and an outer surface of the second syringe needle so as to form a gap between these two needles for allowing the medicament to flow there-through and eject out from the first syringe needle.
  • the piston rod is a hollow piston rod having a hollow part which forms an extraction part of the second tube member; the hollow part of the piston rod of the piston is capable of receiving the sampling tube; the second syringe needle is elongated and is extending along the central axis inside the injection tube in such a manner that, the collecting end of the second syringe needle is penetrating through a piston head of the piston, and is extending into the hollow part of the hollow rod of piston.
  • the present invention provides an organism paracentesis method, which comprises the steps of:
  • FIG. 1 is a sectional view of a first embodiment of the organism paracentesis device in accordance with the present invention
  • FIG. 2 is a schematic drawing of the organism paracentesis device shown in FIG. 1 in an operational mode
  • FIG. 3 is a flow chart illustrating the first embodiment of the organism paracentesis method in accordance with the present invention
  • FIG. 4 is a partially enlarged view of a second embodiment of the organism paracentesis device in accordance with the present invention.
  • FIG. 5 is a partially enlarged sectional view of a third embodiment of the organism paracentesis device in accordance with the present invention.
  • FIG. 6 is the sectional view of the third embodiment of the organism paracentesis device in accordance with the present invention.
  • FIG. 1 is a sectional view of a first embodiment of the organism paracentesis device in accordance with the present invention
  • FIG. 2 is a schematic drawing of the organism paracentesis device shown in FIG. 1 in an operational mode.
  • the organism paracentesis device comprises: a first tube member 11 and a second tube member 12 .
  • the first tube member 11 further comprises: an injection tube 111 , a piston 112 attached with a piston rod and a first syringe needle 113 .
  • the second tube member 12 comprises: an extraction part 121 , a sampling tube 122 and a second syringe needle 123 .
  • the first syringe need 113 is connected to the inner compartment of the injection tube 111 .
  • Both ends of the second syringe needle 123 are in the form of syringe needle, which comprises an extracting end 1231 located at the bottom end of the second syringe needle 123 and a collecting end 1232 located at the top end of the second syringe needle 123 .
  • the collecting end 1232 is located within the extraction part 121 .
  • the extracting end 1231 is for stabbing into and collecting samples from the sampled organism 91 .
  • the injection tube 111 is filled with a medicament 3 which is known in the art and is used to kill cancer cells while is relatively harmless to ordinary human organisms and cells.
  • the lower parts of the first syringe needle 113 and the second syringe needle 123 are abreast with each other, and the injection tube 111 of first tube member 11 and the extraction part 121 of the second tube member 12 are integrally formed.
  • the sampling tube 122 of the second tube member 12 is an individual component and yet can be attached to or released from the extraction part 121 .
  • the sampling tube 122 includes a cover 1221 and an inner compartment 1222 .
  • the cover 1221 is made of resilient rubber or silica rubber and can seal tightly on the bottom end of the sampling tube 122 and thereby keeps the compartment 1222 in a vacuum (or negative pressure) and aseptic condition.
  • the sampling tube 122 can be inserted and pushed into the extraction part 121 of the second tube member 12 in such a manner that, the collecting end 1232 of second syringe needle 123 penetrates through the cover 1211 and enters the compartment 1222 of sampling tube 122 . Because the compartment 1222 is in the vacuum (or negative pressure) condition, the difference of air pressures at two ends 1231 , 1232 of the second syringe needle 123 will produce a sucking force at the extracting end 1231 , and thus the extracting end 1231 will extract a sample from the sampled organism 91 (such as a tumor or a group of cancer cells) which the extracting end 1231 is contacting with.
  • the sampled organism 91 such as a tumor or a group of cancer cells
  • first syringe needle 131 and second syringe needle 123 are abreast with each other, they will be penetrated into or pulled out from the outer surface 92 of normal tissue 93 and the sampled organism 91 together synchronously.
  • the medicament 3 contained within the injection tube 111 can be ejected out from the first syringe needle 113 at the following timings: (a) when the first and second syringe needles 113 , 123 has already penetrated into the outer surface 92 of normal tissue 93 (or human skin) but has not yet reached the area of sampled organism 91 , and (b) after the first and second syringe needles 113 , 123 has penetrated into the sampled organism 91 and the sample 94 has been obtained by the second syringe needle 123 , when the first and second syringe needles 113 , 123 has been pulled out from the sampled organism 91 but has not yet reached the outer surface 92 of normal tissue 93 (or human skin).
  • the medicament 3 contained within the injection tube 111 can be ejected out from the lower end of the first syringe needle 133 constantly, in order to generate an area filled with the medicament 3 between the outer surface of the sampled organism 91 and the outer surface 92 of the normal tissue 93 (or human skin). Therefore, even if the outer surfaces of the first and second syringe needles 113 , 123 are stuck with some cancer cells brought from the sampled organism 91 , the cancer cells will still be killed by the medicament 3 , and thus significantly reduces the risk for the cancer cells to transfer to the normal tissue 93 or other organisms that the first and second syringe needles 113 , 123 are passing through.
  • the lower part of the first syringe needle 113 of first tube member 11 is extending side by side with the lower part of the second syringe needle 123 of first tube member 12 .
  • the first and second syringe needles 113 , 123 are penetrating to the outer surface 92 in the same time.
  • the ejected medicament 3 will remain in the normal tissue at the area between the outer surface 92 of normal tissue 93 and the outer surface of the sampled organism 91 , so as to form a protecting area to prevent the cells of the sampled organism 91 from spreading out to nearby area when the first and second syringe needles 113 , 123 are stuck into or pulled out of the sampled organism 91 .
  • the bottom ends of the first and second syringe needles 113 , 123 (including the extracting end 1231 ) will penetrate into the sampled organism 91 , when the first and second syringe needles 113 , 123 are pulled out from the sampled organism 91 , it is possible that some cells of that sampled organism 91 might attach on the outer surface of the bottom ends of the first and second syringe needles 113 , 123 (including the extracting end 1231 ).
  • the ejected medicament 3 remaining in the previously illustrated protecting area can kill these cells.
  • the medicament 3 is well known in the art for killing cancer cells while is relatively harmless to ordinary human organisms and cells.
  • the injection tube 111 stops feeding the medicament 3 through the first syringe needle 113 .
  • the sampling tube 122 is pushed into the extraction part 121 of the second tube member 12 , having the cover 1221 of the sampling tube 122 being penetrated by the collecting end 1232 of the second syringe needle 123 .
  • the inner compartment 1222 of the sampling tube 122 is in vacuum or negative pressure state, once the collecting end 1232 enters the compartment 1222 , the inner hole of the second syringe needle 123 becomes negative pressure as well, and thus the pressure difference will generate a sucking force to suck out a sample 94 from the sampled organism 91 .
  • the sample 94 will be sucked out by the extracting end 1231 and then enters the compartment 1222 of the sampling tube 122 via the collecting end 1232 .
  • the sampling tube 122 can then be pulled out from the extraction part 121 and sent to the laboratory for analyzing the collected sample 94 .
  • the medicament 3 contained within the injection tube 111 is once again ejected out from the lower end of the first syringe needle 133 constantly by pushing the rod of the piston 112 , until both the first and second syringe needles 113 , 123 (including the extracting end 1231 ) leave the outer surface 92 of the normal tissue 93 completely, so as to increase the protecting effect of the aforementioned protecting area.
  • FIG. 3 is a flow chart illustrating the first embodiment of the organism paracentesis method in accordance with the present invention.
  • the organism paracentesis method uses the previously illustrated organism paracentesis device 1 of the present invention to perform the sampling procedure, which comprises the following steps:
  • the above mentioned steps (F) and (G) can swap, which means, the needles 113 , 123 can be pulled out first, and then release the sampling tube from the extraction part of the second tube member.
  • FIG. 4 is a partially enlarged view of a second embodiment of the organism paracentesis device in accordance with the present invention.
  • the organism paracentesis device of the second embodiment shown in FIG. 4 have almost all the same components as which previously described in the first embodiment shown in FIG. 1 and FIG. 2 .
  • the only difference between the organism paracentesis device shown in FIG. 4 and the one shown in FIG. 1 is that, in this second embodiment shown in FIG. 4 , there are a plurality of side holes 1133 being formed on the wall of the first syringe needle 113 .
  • These side holes 1133 are through holes connecting the outer surface 1131 of the first syringe needle 113 and the inner surface 1132 of the first syringe needle 113 .
  • These side holes 1133 allow the medicament 3 to eject out from them, so as to increase the size of the protecting area, and thus decrease the risk for the cancer cells to transfer to other organisms.
  • FIG. 5 is a partially enlarged sectional view of a third embodiment of the organism paracentesis device in accordance with the present invention
  • FIG. 6 is the sectional view of the third embodiment of the organism paracentesis device in accordance with the present invention.
  • the organism paracentesis device 1 a of the third embodiment shown in FIG. 5 and FIG. 6 comprises a concentric syringe needle structure. That means, the first syringe needle 113 a and the second syringe needle 123 a are concentric; wherein the second syringe needle 123 a is received within the inner compartment of the first syringe needle 113 a, and the central axis of both the first and second syringe needles 113 a, 123 a is the same central axis 5 .
  • the second syringe needle 123 a is located within the first syringe needle 113 a to form a “needle in needle” structure.
  • the extracting end 1231 a of the second syringe needle 123 a can protrude out of the bottom tip of the first syringe needle 113 a in order to penetrate into the sampled organism 91 for extracting the sample 94 .
  • the piston 112 a of the first tube member 11 a has a hollow rod which substantially becomes the extraction part of the second tube member 12 a.
  • the second tube member 12 a is formed on the hollow rod of the piston 112 a and is located within the injection tube 111 a of the first tube member 11 a and can slide along the central axis 5 together with the piston 112 a.
  • the hollow part 1121 a of the hollow rod of piston 112 a becomes the extraction part of the second tube member 12 a and is capable of receiving the sampling tube 122 a, wherein the sampling tube 122 a is an individual component which can be pushed into or pulled out from the hollow part 1121 a of the hollow rod of piston 112 a.
  • the second syringe needle 123 a is elongated and is extending along the central axis 5 inside the injection tube 222 a in such a manner that, the collecting end of the second syringe needle 123 a is penetrating through the piston head 1122 a of the piston 112 a, and is extending into the hollow part 1121 a of the hollow rod of piston 112 a.
  • the sampling tube 122 a has a cover 1221 a, a plug 1223 a and an inner compartment 1222 a for receiving the sample of the sampled organism 91 extracted by the extracting end 1231 a of the second syringe needle 123 a.
  • the cover 1221 a is made of resilient rubber or silica rubber and can seal tightly on the bottom end of the sampling tube 122 a and thereby keeps the compartment 1222 a in a vacuum (or negative pressure) and aseptic condition.
  • a cultivation solution 8 can be filled within the compartment 1222 a of the sampling tube 122 a in advance before starting the sampling procedures.
  • the cultivation solution 8 is well known in the art for helping the conservation of the sample of sampled organism 91 .
  • the cover 1221 a of the sampling tube 122 a When plugging the sampling tube 122 a into the hollow part 1121 a of the hollow rod of piston 112 a, the cover 1221 a of the sampling tube 122 a will be penetrated by the collecting end (top end) of the second syringe needle 123 a. Because the compartment 1222 a is in the negative pressure condition (although filled with some cultivation solution 8 ), the difference of air pressures at two ends of the second syringe needle 123 a will produce a sucking force at the extracting end 1231 a, and thus the extracting end 1231 a will extract a sample from the sampled organism 91 (such as a tumor or a group of cancer cells) which the extracting end 1231 a is contacting with.
  • the sampled organism 91 such as a tumor or a group of cancer cells
  • the bottom tip of the first syringe needle 113 a of the first tube member 11 a stabs into the outer surface 92 of normal tissues 93 (or human skin).
  • the medicament 3 contained in the injection tube 111 a is ejected out from the first syringe needle 113 a by pushing the top end of the piston rod of the piston 112 a, so as to form a protecting area 95 which is soaked by the medicament 3 .
  • the protecting area 95 is in the normal tissue 93 and is extending along the passage of needles 113 a, 123 a between the outer surface 92 of normal tissue 93 and the outer surface of the sampled organism 91 .
  • the sampling tube 122 a is then pulled out from the hollow part 1121 a of the piston rod of the piston 112 a and is sent to the laboratory for analysis. And then, the extracting end 1231 a of the second syringe needles 123 a is pulled out of the sampled organism 91 . Once the extracting end 1231 a of the second syringe needles 123 a leaves the outer surface of the sampled organism 91 , the medicament 3 can once again applied to the protecting area 95 by pushing the top end of the piston rod of the piston 112 a, until both the first and second syringe needles 113 a, 123 a leave the outer surface 92 of the normal tissue 93 .
  • the second syringe needle 123 a is fixed to the inner wall of the injection tube 111 a and cannot move together with the piston 112 a. Which means, when the piston 112 a is pushed to cause the piston head 1122 a moving downward within the injection tube 111 a, the piston head 1122 a will also slide along the second syringe needle 123 a, because the second syringe needle 123 a will not move with the piston head 1122 a.
  • the second syringe needle 123 a can also be fixed to the piston head 1122 a and thus is movable with the piston head 1122 a along the central axis 5 when the top end of the hollow piston rod of the piston 112 a is pushed downward. That means, when the top end of the hollow piston rod of the piston 112 a is pushed downward, not only the medicament 3 contained within the injection tube 111 a will be ejected out from the first syringe needle 113 a, but also the extracting end 1231 a of the second syringe needle 123 a will protrude out from the bottom tip of the first syringe needle 113 a.
  • the organism paracentesis method uses the previously illustrated third embodiment of the organism paracentesis device 1 a of the present invention to perform the sampling procedure, which comprises the following steps:

Abstract

An organism paracentesis device comprises a first tube member and a second tube member. The first tube member comprises an injection tube filled with a medicament, a piston and a first syringe needle. The second tube member comprises a sampling tube and a second syringe needle. Both ends of the second syringe needle are in the form of syringe needle. Using one end of the second syringe needle to penetrate a cover of the sampling tube which is vacuumed, such that the second syringe needle's the other end which is penetrating into an organism will extract a sample from the organism because of the vacuumed sampling tube. The medicament filled in the injection tube is ejected both when the first and second syringe needles are penetrating into and pulled out of the organism, so as to avoid the cells of sampled organism being spread to other places.

Description

    BACKGROUND OF THE INVENTION
  • (1) Field of the Invention
  • The present invention refers to an organism paracentesis device, especially refers to an organism paracentesis device with two syringe needles, wherein one of the syringe needles is for collecting a sample of organism, while the other one is for injecting a medicament in order to prevent the cells of sampled organism from being spread to other places.
  • (2) Description of the Prior Art
  • In order to determine whether or not a person has got the cancer, it is necessary to obtain a sample from the organism which is suspected to contain cancer cells. One of the conventional ways to obtain a sample from the organism of the patient is to use a syringe needle to penetrate into the patient's body in order to extract a sample from the organism. Such sampling procedure will require the assistance of ultrasonic scanning in order to make sure the syringe needle has reached the correct position of the suspected organism. If the ultrasonic scanning cannot precisely locate the suspected organism, then Computed Tomography will be employed for assisting the sampling procedure. Currently, using the syringe needle to penetrate into the patient's body and extract a sample from the organism is one of the most efficient ways to sift the Thyroid cancer. The drawback of such sampling procedure is unable to distinguish carcinoma-in-situ and invasive carcinoma, and thus is usually used for sifting suspected patients or monitoring transitional carcinoma cells.
  • However, the conventional way to process such sampling procedure is to use the syringe needle to directly penetrate into the organism and suck out a sample from the organism by means of a negative pressure inside the syringe needle. There is no protecting means to be applied during the sampling procedure, and thus it is possible that the cells of the sampled organism might stick on outer surface of the syringe needle and leak or spread to nearby areas and even to contaminate nearby tissues when the syringe needle is pulled out from that sampled organism. For example, using the syringe needle to extract a sample from the organism is widely used in diagnosing hepatoma. However, the protruding process of the syringe needle, especially when the syringe needle is pulled out after the sample has been extracted, might also cause the cancer cells to stick on the outer surface of the syringe needle and then spread to other organisms, and thus might increase the risk for the cancer cells to transfer to other organisms.
  • Accordingly, the present invention provides an organism paracentesis device and method for decreasing the risk of the cells of sampled organism to spread to other organisms.
  • SUMMARY OF THE INVENTION
  • A primary objective of the present invention is to provide an organism paracentesis device, which includes two syringe needles; wherein one of the syringe needles is for collecting a sample of organism, while the other one is for injecting a medicament, so as to prevent the cells of sampled organism from being spread to other places.
  • In order to achieve the objective, the present invention provides an organism paracentesis device, which comprises a first tube member and a second tube member. The first tube member comprises an injection tube, a piston attached with a piston rod and a first syringe needle. The piston is received inside the injection tube. The injection tube is filled with a medicament which can be ejected out from the first syringe needle when the piston rod is pushed. The second tube member comprises a sampling tube and a second syringe needle. Both ends of the second syringe needle are in the form of syringe needle. The second syringe needle has an extracting end located at a bottom end of the second syringe needle and a collecting end located at a top end of the second syringe needle and is able to protrude into the sampling tube. The extracting end of the second syringe needle is capable of penetrating into a sampled organism for extracting a sample from the sampled organism into the sampling tube.
  • In a preferred embodiment, the lower parts of the first syringe needle and the second syringe needle are abreast with each other; the injection tube of first tube member and an extraction part of the second tube member are integrally formed.
  • In a preferred embodiment, the second tube member further comprises an extraction part; the collecting end of the second syringe needle is located in the extraction part; the sampling tube is an individual component and yet can be attached to or released from the extraction part; the sampling, tube has a cover and an inner compartment; the cover is made of resilient rubber or silica rubber and can seal tightly on a bottom end of the sampling tube; the sampling tube can be inserted and pushed into the extraction part of the second tube member in such a manner that, the collecting end of second syringe needle penetrates through the cover and enters the compartment of sampling tube.
  • In a preferred embodiment, the medicament is used to kill cancer cells.
  • In a preferred embodiment, a plurality of side holes are formed on a lower part of a wall of the first syringe needle; these side holes allow the medicament to eject out there-from.
  • In a preferred embodiment, the first syringe needle and the second syringe needle are concentric; the second syringe needle is received within the first syringe needle; the first syringe needle and the second syringe needle has the same central axis, so as to form a “needle in needle” structure; a predetermined distance is formed between an inner surface of the first syringe needle and an outer surface of the second syringe needle so as to form a gap between these two needles for allowing the medicament to flow there-through and eject out from the first syringe needle.
  • In a preferred embodiment, the piston rod is a hollow piston rod having a hollow part which forms an extraction part of the second tube member; the hollow part of the piston rod of the piston is capable of receiving the sampling tube; the second syringe needle is elongated and is extending along the central axis inside the injection tube in such a manner that, the collecting end of the second syringe needle is penetrating through a piston head of the piston, and is extending into the hollow part of the hollow rod of piston.
  • In order to achieve the objective, the present invention provides an organism paracentesis method, which comprises the steps of:
  • (A) providing an organism paracentesis device; the organism paracentesis device comprising a first tube member and a second tube member; the first tube member comprising an injection tube, a piston attached with a piston rod and a first syringe needle; the piston being received inside the injection tube; the injection tube being filled with a medicament which can be ejected out from the first syringe needle when the piston rod is pushed; the second tube member comprising a sampling tube and a second syringe needle; both ends of the second syringe needle being in the form of syringe needle; the second syringe needle having an extracting end located at a bottom end of the second syringe needle and a collecting end located at a top end of the second syringe needle; the collecting end being able to protrude into the sampling tube; the extracting end of the second syringe needle being capable of penetrating into a sampled organism for extracting a sample from the sampled organism into the sampling tube;
  • (B) stabbing the first syringe needle and the second syringe needle into an outer surface of a human skin;
  • (C) making the first syringe needle and the second syringe needle approaching the sampled organism; when the first syringe needle and the second syringe needle are approaching but not yet reaching an outer surface of the sampled organism, pushing the piston rod of the piston in order to apply the medicament via the first syringe needle to an area nearby the sampled organism;
  • (D) making at least the extracting end of the second syringe needle penetrating into the sampled organism, and in the mean time, the first syringe needle of the first tube member stopping feeding the medicament;
  • (E) pushing the sampling tube into an extraction part of the second tube member, and letting the collecting end of the second syringe needle to penetrate through a cover of the sampling tube to contact with an inner compartment of the sampling tube, so as to extract a sample of the sampled organism from the extracting end; and then allowing the sample to enter the inner compartment of the sampling tube via the collecting end of the second syringe needle;
  • (F) pulling out the sampling tube from the extraction part of the second tube member by having the cover leaving from the collecting end; and
  • (G) pulling out the second syringe needle from the sampled organism; wherein, when the second syringe needle has left an outer surface to of the sampled organism but have not yet reached the outer surface of the human skin, pushing the piston rod of the piston to once again inject the medicament; and stop injection of the medicament when the both the first syringe needle and the second syringe needle have been pulled out from the outer surface of the human skin.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will now be specified with reference to its preferred embodiment illustrated in the drawings, in which:
  • FIG. 1 is a sectional view of a first embodiment of the organism paracentesis device in accordance with the present invention;
  • FIG. 2 is a schematic drawing of the organism paracentesis device shown in FIG. 1 in an operational mode;
  • FIG. 3 is a flow chart illustrating the first embodiment of the organism paracentesis method in accordance with the present invention;
  • FIG. 4 is a partially enlarged view of a second embodiment of the organism paracentesis device in accordance with the present invention;
  • FIG. 5 is a partially enlarged sectional view of a third embodiment of the organism paracentesis device in accordance with the present invention; and
  • FIG. 6 is the sectional view of the third embodiment of the organism paracentesis device in accordance with the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Please refer to FIG. 1 and FIG. 2, wherein FIG. 1 is a sectional view of a first embodiment of the organism paracentesis device in accordance with the present invention, while FIG. 2 is a schematic drawing of the organism paracentesis device shown in FIG. 1 in an operational mode. In the first embodiment of the present invention, the organism paracentesis device comprises: a first tube member 11 and a second tube member 12. The first tube member 11 further comprises: an injection tube 111, a piston 112 attached with a piston rod and a first syringe needle 113. The second tube member 12 comprises: an extraction part 121, a sampling tube 122 and a second syringe needle 123. The first syringe need 113 is connected to the inner compartment of the injection tube 111. Both ends of the second syringe needle 123 are in the form of syringe needle, which comprises an extracting end 1231 located at the bottom end of the second syringe needle 123 and a collecting end 1232 located at the top end of the second syringe needle 123. The collecting end 1232 is located within the extraction part 121. The extracting end 1231 is for stabbing into and collecting samples from the sampled organism 91. The injection tube 111 is filled with a medicament 3 which is known in the art and is used to kill cancer cells while is relatively harmless to ordinary human organisms and cells. In this first embodiment, the lower parts of the first syringe needle 113 and the second syringe needle 123 are abreast with each other, and the injection tube 111 of first tube member 11 and the extraction part 121 of the second tube member 12 are integrally formed.
  • The sampling tube 122 of the second tube member 12 is an individual component and yet can be attached to or released from the extraction part 121. The sampling tube 122 includes a cover 1221 and an inner compartment 1222. The cover 1221 is made of resilient rubber or silica rubber and can seal tightly on the bottom end of the sampling tube 122 and thereby keeps the compartment 1222 in a vacuum (or negative pressure) and aseptic condition.
  • The sampling tube 122 can be inserted and pushed into the extraction part 121 of the second tube member 12 in such a manner that, the collecting end 1232 of second syringe needle 123 penetrates through the cover 1211 and enters the compartment 1222 of sampling tube 122. Because the compartment 1222 is in the vacuum (or negative pressure) condition, the difference of air pressures at two ends 1231, 1232 of the second syringe needle 123 will produce a sucking force at the extracting end 1231, and thus the extracting end 1231 will extract a sample from the sampled organism 91 (such as a tumor or a group of cancer cells) which the extracting end 1231 is contacting with.
  • Because the lower parts of first syringe needle 131 and second syringe needle 123 are abreast with each other, they will be penetrated into or pulled out from the outer surface 92 of normal tissue 93 and the sampled organism 91 together synchronously. The medicament 3 contained within the injection tube 111 can be ejected out from the first syringe needle 113 at the following timings: (a) when the first and second syringe needles 113, 123 has already penetrated into the outer surface 92 of normal tissue 93 (or human skin) but has not yet reached the area of sampled organism 91, and (b) after the first and second syringe needles 113, 123 has penetrated into the sampled organism 91 and the sample 94 has been obtained by the second syringe needle 123, when the first and second syringe needles 113, 123 has been pulled out from the sampled organism 91 but has not yet reached the outer surface 92 of normal tissue 93 (or human skin). During the above mentioned timings (a) and (b), the medicament 3 contained within the injection tube 111 can be ejected out from the lower end of the first syringe needle 133 constantly, in order to generate an area filled with the medicament 3 between the outer surface of the sampled organism 91 and the outer surface 92 of the normal tissue 93 (or human skin). Therefore, even if the outer surfaces of the first and second syringe needles 113, 123 are stuck with some cancer cells brought from the sampled organism 91, the cancer cells will still be killed by the medicament 3, and thus significantly reduces the risk for the cancer cells to transfer to the normal tissue 93 or other organisms that the first and second syringe needles 113, 123 are passing through.
  • That means, in the first embodiment of the present invention, the lower part of the first syringe needle 113 of first tube member 11 is extending side by side with the lower part of the second syringe needle 123 of first tube member 12. When proceeding the sampling procedure, the first and second syringe needles 113, 123 are penetrating to the outer surface 92 in the same time. In the mean time, when the bottom ends of the first and second syringe needles 113, 123 have reached the normal tissue 93 but yet have not reached the outer surface of the sampled organism 91, a suitable amount of the medicament 3 contained within the injection tube 111 is ejected out from the bottom end of the first syringe needle 113 by pushing the rod of the piston 112. The ejected medicament 3 will remain in the normal tissue at the area between the outer surface 92 of normal tissue 93 and the outer surface of the sampled organism 91, so as to form a protecting area to prevent the cells of the sampled organism 91 from spreading out to nearby area when the first and second syringe needles 113, 123 are stuck into or pulled out of the sampled organism 91. Because the bottom ends of the first and second syringe needles 113, 123 (including the extracting end 1231) will penetrate into the sampled organism 91, when the first and second syringe needles 113, 123 are pulled out from the sampled organism 91, it is possible that some cells of that sampled organism 91 might attach on the outer surface of the bottom ends of the first and second syringe needles 113, 123 (including the extracting end 1231). The ejected medicament 3 remaining in the previously illustrated protecting area can kill these cells. The medicament 3 is well known in the art for killing cancer cells while is relatively harmless to ordinary human organisms and cells.
  • When the bottom ends of the first and second syringe needles 113, 123 (including the extracting end 1231) penetrate into the sampled organism 91, the injection tube 111 stops feeding the medicament 3 through the first syringe needle 113. In the mean time, the sampling tube 122 is pushed into the extraction part 121 of the second tube member 12, having the cover 1221 of the sampling tube 122 being penetrated by the collecting end 1232 of the second syringe needle 123. Because the inner compartment 1222 of the sampling tube 122 is in vacuum or negative pressure state, once the collecting end 1232 enters the compartment 1222, the inner hole of the second syringe needle 123 becomes negative pressure as well, and thus the pressure difference will generate a sucking force to suck out a sample 94 from the sampled organism 91. The sample 94 will be sucked out by the extracting end 1231 and then enters the compartment 1222 of the sampling tube 122 via the collecting end 1232. The sampling tube 122 can then be pulled out from the extraction part 121 and sent to the laboratory for analyzing the collected sample 94.
  • Moreover, when the bottom ends of the first and second syringe needles 113, 123 (including the extracting end 1231) have been pulled out from the sampled organism 91 hut yet have not reached the outer surface 92 of normal tissue 93, the medicament 3 contained within the injection tube 111 is once again ejected out from the lower end of the first syringe needle 133 constantly by pushing the rod of the piston 112, until both the first and second syringe needles 113, 123 (including the extracting end 1231) leave the outer surface 92 of the normal tissue 93 completely, so as to increase the protecting effect of the aforementioned protecting area.
  • Please refer to FIG. 3, which is a flow chart illustrating the first embodiment of the organism paracentesis method in accordance with the present invention. The organism paracentesis method uses the previously illustrated organism paracentesis device 1 of the present invention to perform the sampling procedure, which comprises the following steps:
  • (A) providing an organism paracentesis device 1 as previously illustrated in FIG. 1 and FIG. 2, and filling the medicament 3 into the injection tube 111 of the first tube member 11;
  • (B) stabbing the first syringe needle 113 of the first tube member 11 and the second syringe needle 123 of the second tube member 12 into the outer surface 92 of the normal tissue 93 in the same time;
  • (C) when the first and second syringe needles 113, 123 are approaching but not yet reaching the outer surface of the sampled organism 91, pushing a rod of the piston 112 of the first tube member 11 in order to apply the medicament 3 via the first syringe needle 113 to the normal tissue 93 at an area nearby the sampled organism 91;
  • (D) when the first and second syringe needles 113, 123 are penetrating into the sampled organism 91, the first syringe needle 113 of the first tube member 11 stops feeding the medicament 3;
  • (E) pushing the sampling tube 122 into the extraction part 121 of the second tube member 12, and letting the collecting end 1232 of the second syringe needle 123 to penetrate through the cover 1221 of the sampling tube 122 to contact with the antiseptic and vacuumed inner compartment 1222 of the sampling tube 122, so as to generate a sucking force at the extracting end 1231 of the second syringe needle 123 by means of pressure difference for extracting a sample 94 of the sampled organism 91 from the extracting end 1231; and then allowing the sample 94 to enter the compartment 122 of the sampling tube 122 via the collecting end 1232 of the second syringe needle 123;
  • (F) pulling out the sampling tube 122 from the extraction part 121 of the second tube member 12 by having the cover 1221 leaving from the collecting end 1232; and
  • (G) pulling out the first and second syringe needles 113, 123 from the sampled organism 91; wherein, when the first and second syringe needles 113, 123 have left the surface of the sampled organism 91 but have not yet reached the outer surface 92 of the normal tissue 93, pushing the rod of the piston 112 to once again inject the medicament 3 to the normal tissue 93 at the area nearby the sampled organism 91; and stop injection of the medicament 3 when the first and second syringe needles 113, 123 have been pulled out from the outer surface 92 of the normal tissue 93.
  • In another embodiment of the organism paracentesis method of the present invention, the above mentioned steps (F) and (G) can swap, which means, the needles 113, 123 can be pulled out first, and then release the sampling tube from the extraction part of the second tube member.
  • Since the following embodiments described below have similar components and features like the one illustrated above, thus same components and structures will be assigned with the same numerals and names, while similar components and structures will be assigned with the same names but will add an additional alphabet after their numerals, and no detail descriptions will be provided for these same or similar components and structures.
  • Please refer to FIG. 4, which is a partially enlarged view of a second embodiment of the organism paracentesis device in accordance with the present invention. The organism paracentesis device of the second embodiment shown in FIG. 4 have almost all the same components as which previously described in the first embodiment shown in FIG. 1 and FIG. 2. The only difference between the organism paracentesis device shown in FIG. 4 and the one shown in FIG. 1 is that, in this second embodiment shown in FIG. 4, there are a plurality of side holes 1133 being formed on the wall of the first syringe needle 113. These side holes 1133 are through holes connecting the outer surface 1131 of the first syringe needle 113 and the inner surface 1132 of the first syringe needle 113. These side holes 1133 allow the medicament 3 to eject out from them, so as to increase the size of the protecting area, and thus decrease the risk for the cancer cells to transfer to other organisms.
  • Please refer to FIG. 5 and FIG. 6, wherein. FIG. 5 is a partially enlarged sectional view of a third embodiment of the organism paracentesis device in accordance with the present invention, while FIG. 6 is the sectional view of the third embodiment of the organism paracentesis device in accordance with the present invention.
  • The difference between the third embodiment shown in FIG. 5 and FIG. 6 and the second embodiment shown in FIG. 4 includes the following points. Firstly, the organism paracentesis device 1 a of the third embodiment shown in FIG. 5 and FIG. 6 comprises a concentric syringe needle structure. That means, the first syringe needle 113 a and the second syringe needle 123 a are concentric; wherein the second syringe needle 123 a is received within the inner compartment of the first syringe needle 113 a, and the central axis of both the first and second syringe needles 113 a, 123 a is the same central axis 5. The second syringe needle 123 a is located within the first syringe needle 113 a to form a “needle in needle” structure. In addition, there is a predetermined distance “d” between the inner surface 1132 a of the first syringe needle 113 a and the outer surface 1233 a of the second syringe needle 123 a, so as to form a gap (passage) between these two needles 113 a, 123 a for allowing the medicament 3 to flow there-through and eject out from the first syringe needle 113 a. In addition, when using the organism paracentesis device 1 a to collect the sample, the extracting end 1231 a of the second syringe needle 123 a can protrude out of the bottom tip of the first syringe needle 113 a in order to penetrate into the sampled organism 91 for extracting the sample 94.
  • As shown in FIG. 6, in the third embodiment of the organism paracentesis device 1 a of the present invention, the piston 112 a of the first tube member 11 a has a hollow rod which substantially becomes the extraction part of the second tube member 12 a. Which means, the second tube member 12 a is formed on the hollow rod of the piston 112 a and is located within the injection tube 111 a of the first tube member 11 a and can slide along the central axis 5 together with the piston 112 a. The hollow part 1121 a of the hollow rod of piston 112 a becomes the extraction part of the second tube member 12 a and is capable of receiving the sampling tube 122 a, wherein the sampling tube 122 a is an individual component which can be pushed into or pulled out from the hollow part 1121 a of the hollow rod of piston 112 a. The second syringe needle 123 a is elongated and is extending along the central axis 5 inside the injection tube 222 a in such a manner that, the collecting end of the second syringe needle 123 a is penetrating through the piston head 1122 a of the piston 112 a, and is extending into the hollow part 1121 a of the hollow rod of piston 112 a. The sampling tube 122 a has a cover 1221 a, a plug 1223 a and an inner compartment 1222 a for receiving the sample of the sampled organism 91 extracted by the extracting end 1231 a of the second syringe needle 123 a. The cover 1221 a is made of resilient rubber or silica rubber and can seal tightly on the bottom end of the sampling tube 122 a and thereby keeps the compartment 1222 a in a vacuum (or negative pressure) and aseptic condition. In addition, a cultivation solution 8 can be filled within the compartment 1222 a of the sampling tube 122 a in advance before starting the sampling procedures. The cultivation solution 8 is well known in the art for helping the conservation of the sample of sampled organism 91. When plugging the sampling tube 122 a into the hollow part 1121 a of the hollow rod of piston 112 a, the cover 1221 a of the sampling tube 122 a will be penetrated by the collecting end (top end) of the second syringe needle 123 a. Because the compartment 1222 a is in the negative pressure condition (although filled with some cultivation solution 8), the difference of air pressures at two ends of the second syringe needle 123 a will produce a sucking force at the extracting end 1231 a, and thus the extracting end 1231 a will extract a sample from the sampled organism 91 (such as a tumor or a group of cancer cells) which the extracting end 1231 a is contacting with. There is a small gap between the outer surface of the sampling tube 122 a and the inner surface of the hollow rod of the piston 112 a in order to allow the air to pass through when the sampling tube 122 a is pushed into or pulled out of the hollow part 1121 a of the hollow rod of the piston 112 a.
  • When performing the sampling procedure, firstly the bottom tip of the first syringe needle 113 a of the first tube member 11 a stabs into the outer surface 92 of normal tissues 93 (or human skin). When the first syringe needle 113 a is approaching but yet has not reached the sampled organism 91, the medicament 3 contained in the injection tube 111 a is ejected out from the first syringe needle 113 a by pushing the top end of the piston rod of the piston 112 a, so as to form a protecting area 95 which is soaked by the medicament 3. The protecting area 95 is in the normal tissue 93 and is extending along the passage of needles 113 a, 123 a between the outer surface 92 of normal tissue 93 and the outer surface of the sampled organism 91. When the extracting end 1231 a of the second syringe needle 123 a penetrates into the sampled organism 91, stop pushing the top end of the hollow piston rod of the piston 112 a in order to stop ejecting the medicament 3 from the first syringe needle 113 a. Then, plugging and pushing the sampling tube 122 a into the hollow part 1121 a of the piston rod of the piston 112 a until the cover 1221 a of the sampling tube 122 a is penetrated by the collecting end (top end) of the second syringe needle 123 a. Therefore, the pressure difference caused by the negative pressure inside the sampling tube 122 a will generate a sucking force at the extracting end 1231 a of the second syringe needle 123 a. Thus, the sample of the sampled organism 91 will be extracted by the extracting end 1231 a of the second syringe needle 123 a and sucked into the compartment 1222 a of the sampling tube 122 a, and soaked within the cultivation solution 8. The sampling tube 122 a is then pulled out from the hollow part 1121 a of the piston rod of the piston 112 a and is sent to the laboratory for analysis. And then, the extracting end 1231 a of the second syringe needles 123 a is pulled out of the sampled organism 91. Once the extracting end 1231 a of the second syringe needles 123 a leaves the outer surface of the sampled organism 91, the medicament 3 can once again applied to the protecting area 95 by pushing the top end of the piston rod of the piston 112 a, until both the first and second syringe needles 113 a, 123 a leave the outer surface 92 of the normal tissue 93.
  • In this embodiment, the second syringe needle 123 a is fixed to the inner wall of the injection tube 111 a and cannot move together with the piston 112 a. Which means, when the piston 112 a is pushed to cause the piston head 1122 a moving downward within the injection tube 111 a, the piston head 1122 a will also slide along the second syringe needle 123 a, because the second syringe needle 123 a will not move with the piston head 1122 a. However, in yet another embodiment of the present invention, the second syringe needle 123 a can also be fixed to the piston head 1122 a and thus is movable with the piston head 1122 a along the central axis 5 when the top end of the hollow piston rod of the piston 112 a is pushed downward. That means, when the top end of the hollow piston rod of the piston 112 a is pushed downward, not only the medicament 3 contained within the injection tube 111 a will be ejected out from the first syringe needle 113 a, but also the extracting end 1231 a of the second syringe needle 123 a will protrude out from the bottom tip of the first syringe needle 113 a.
  • The organism paracentesis method uses the previously illustrated third embodiment of the organism paracentesis device 1 a of the present invention to perform the sampling procedure, which comprises the following steps:
  • (1) providing the organism paracentesis device 1 a as shown in FIG. 5 and FIG. 6, filling a predetermined amount of medicament 3 into the injection tube 111 a, and filling another predetermined amount of cultivation solution 8 into the sampling tube 122 a while keeping the inner compartment 1222 a of the sampling tube 122 a in a negative pressure condition;
  • (2) stabbing the first syringe needle 113 a of the first tube member 11 a and the second syringe needle 123 a of the second tube member 12 a into the outer surface 92 of the normal tissue 93;
  • (3) when the first syringe needles 113 a is approaching but not yet reaching the outer surface of the sampled organism 91, pushing the top of the piston rod of the piston 112 a in order to apply the medicament 3 via the first syringe needle 113 a to the normal tissue 93 at an area nearby the sampled organism 91, so as to form a protecting area 95 soaked with medicament in the normal tissue 93;
  • (4) when the extracting end 1231 a of the second syringe needle 123 a penetrates into the sampled organism 91, push the sampling tube 122 a into the hollow part 1121 a of the rod of the piston 112 a, and letting the collecting end (top end) of the second syringe needle 123 a to penetrate through the cover 1221 a of the sampling tube 122 a to contact with the inner compartment 1222 a of the sampling tube 122 a, so as to generate a sucking force at the extracting end 1231 a of the second syringe needle 123 a for extracting a sample 94 of the sampled organism 91 from the extracting end 1231; and then allowing the sample 94 to enter the compartment 122 a of the sampling tube 122 a and soak in the cultivation solution 8;
  • (5) pulling out the sampling tube 122 a from the hollow part 1121 a of the rod of the piston 112 a by having the cover 1221 a leaving from the collecting end (top end) of the second syringe needle 123 a; and
  • (6) pulling out the second syringe needle 123 a from the sampled organism 91; wherein, when the second syringe needle 123 a has left the surface of the sampled organism 91 but has not yet reached the outer surface 92 of the normal tissue 93, pushing the hollow rod of the piston 112 a to once again inject the medicament 3 to the normal tissue 93 at the area nearby the sampled organism 91; and stop injection of the medicament 3 when the first and second syringe needles 113 a, 123 a have been pulled out from the outer surface 92 of the normal tissue 93.
  • While the present invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be without departing from the spirit and scope of the present invention.

Claims (9)

1-14. (canceled)
15. An organism paracentesis device, comprising:
a first tube member comprising an injection tube, a piston attached with a piston rod and a first syringe needle; the piston being received inside the injection tube; the injection tube being filled with a medicament which is ejected out from the first syringe needle when the piston rod is pushed; and
a second tube member comprising a sampling tube and a second syringe needle;
both ends of the second syringe needle being in the form of syringe needle; the second syringe needle having an extracting end located at a bottom end of the second syringe needle and a collecting end located at a top end of the second syringe needle and being able to protrude into the sampling tube; the extracting end of the second syringe needle being capable of penetrating into a sampled organism for extracting a sample from the sampled organism into the sampling tube;
wherein the first syringe needle and the second syringe needle are concentric; the second syringe needle is received within the first syringe needle; the first syringe needle and the second syringe needle has the same central axis, so as to form a “needle in needle” structure; a predetermined distance is formed between an inner surface of the first syringe needle and an outer surface of the second syringe needle so as to form a gap between these two needles for allowing the medicament to flow there-through and eject out from the first syringe needle;
wherein a plurality of side holes are formed on a lower part of a wall of the first syringe needle; these side holes allow the medicament to eject out there-from.
16. The organism paracentesis device of claim 15, wherein the medicament is used to kill cancer cells.
17. The organism paracentesis device of claim 15, wherein the piston rod is a hollow piston rod having a hollow part which forms an extraction part of the second tube member; the hollow part of the piston rod of the piston is capable of receiving the sampling tube; the second syringe needle is elongated and is extending along the central axis inside the injection tube in such a manner that, the collecting end of the second syringe needle is penetrating through a piston head of the piston, and is extending into the hollow part of the hollow rod of piston.
18. The organism paracentesis device of claim 17, wherein the sampling tube is an individual component and yet can be attached to or released from the extraction part; the sampling tube has a cover and an inner compartment; the cover is made of resilient rubber or silica rubber and can seal tightly on a bottom end of the sampling tube; the sampling tube can be inserted and pushed into the extraction part of the second tube member in such a manner that, the collecting end of second syringe needle penetrates through the cover and enters the compartment of sampling tube.
19. An organism paracentesis method, comprising steps of:
(A) providing an organism paracentesis device; the organism paracentesis device comprising a first tube member and a second tube member; the first tube member comprising an injection tube, a piston attached with a piston rod and a first syringe needle; the piston being received inside the injection tube; the injection tube being filled with a medicament which is ejected out from the first syringe needle when the piston rod is pushed; the second tube member comprising a sampling tube and a second syringe needle; both ends of the second syringe needle being in the form of syringe needle; the second syringe needle having an extracting end located at a bottom end of the second syringe needle and a collecting end located at a top end of the second syringe needle; the collecting end being able to protrude into the sampling tube; the extracting end of the second syringe needle being capable of penetrating into a sampled organism for extracting a sample from the sampled organism into the sampling tube;
wherein the first syringe needle and the second syringe needle are concentric; the second syringe needle is received within the first syringe needle; the first syringe needle and the second syringe needle has the same central axis, so as to form a “needle in needle” structure; a predetermined distance is formed between an inner surface of the first syringe needle and an outer surface of the second syringe needle so as to form a gap between these two needles for allowing the medicament to flow there-through and eject out from the first syringe needle;
wherein a plurality of side holes are formed on a lower part of a wall of the first syringe needle; these side holes allow the medicament to eject out there-from;
(B) stabbing the first syringe needle and the second syringe needle into an outer surface of a human skin;
(C) making the first syringe needle and the second syringe needle approaching the sampled organism; when the first syringe needle and the second syringe needle are approaching but not yet reaching an outer surface of the sampled organism, pushing the piston rod of the piston in order to apply the medicament via the first syringe needle to an area nearby the sampled organism;
(D) making at least the extracting end of the second syringe needle penetrating into the sampled organism, and in the mean time, the first syringe needle of the first tube member stopping feeding the medicament;
(E) pushing the sampling tube into an extraction part of the second tube member, and letting the collecting end of the second syringe needle to penetrate through a cover of the sampling tube to contact with an inner compartment of the sampling tube, so as to extract a sample of the sampled organism from the extracting end; and then allowing the sample to enter the inner compartment of the sampling tube via the collecting end of the second syringe needle;
(F) pulling out the sampling tube from the extraction part of the second tube member by having the cover leaving from the collecting end; and
(G) pulling out the second syringe needle from the sampled organism; wherein, when the second syringe needle has left an outer surface of the sampled organism but have not yet reached the outer surface of the human skin, pushing the piston rod of the piston to once again inject the medicament; and stop injection of the medicament when the both the first syringe needle and the second syringe needle have been pulled out from the outer surface of the human skin.
20. The organism paracentesis method of claim 19, wherein the medicament is used to kill cancer cells.
21. The organism paracentesis method of claim 19, wherein the piston rod is a hollow piston rod having a hollow part which forms an extraction part of the second tube member; the hollow part of the piston rod of the piston is capable of receiving the sampling tube; the second syringe needle is elongated and is extending along the central axis inside the injection tube in such a manner that, the collecting end of the second syringe needle is penetrating through a piston head of the piston, and is extending into the hollow part of the hollow rod of piston.
22. The organism paracentesis method of claim 21, wherein the sampling tube is an individual component and yet can be attached to or released from the extraction part; the sampling tube has a cover and an inner compartment; the cover is made of resilient rubber or silica rubber and can seal tightly on a bottom end of the sampling tube; the sampling tube can be inserted and pushed into the extraction part of the second tube member in such a manner that, the collecting end of second syringe needle penetrates through the cover and enters the compartment of sampling tube.
US15/282,758 2014-01-06 2016-09-30 Organism Paracentesis Device And Method Thereof Abandoned US20170020493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/282,758 US20170020493A1 (en) 2014-01-06 2016-09-30 Organism Paracentesis Device And Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/147,797 US9480465B2 (en) 2014-01-06 2014-01-06 Organism paracentesis device and method thereof
US15/282,758 US20170020493A1 (en) 2014-01-06 2016-09-30 Organism Paracentesis Device And Method Thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/147,797 Continuation US9480465B2 (en) 2014-01-06 2014-01-06 Organism paracentesis device and method thereof

Publications (1)

Publication Number Publication Date
US20170020493A1 true US20170020493A1 (en) 2017-01-26

Family

ID=53494352

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/147,797 Expired - Fee Related US9480465B2 (en) 2014-01-06 2014-01-06 Organism paracentesis device and method thereof
US15/282,758 Abandoned US20170020493A1 (en) 2014-01-06 2016-09-30 Organism Paracentesis Device And Method Thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/147,797 Expired - Fee Related US9480465B2 (en) 2014-01-06 2014-01-06 Organism paracentesis device and method thereof

Country Status (1)

Country Link
US (2) US9480465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109276278A (en) * 2018-11-28 2019-01-29 河南牧业经济学院 Toy subcutaneous mass extracts holder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9937317B2 (en) * 2012-01-30 2018-04-10 Ipsumpro, S.L. Modified medical syringe with a flow regulator for the administration of local anaesthetic
CN204050005U (en) 2014-09-09 2014-12-31 赵潺 Disposable negative pressure paracentesis needle
CN108801671B (en) * 2018-05-19 2023-09-08 南京申友生物技术有限公司 Sampler
CN111534421A (en) * 2020-05-14 2020-08-14 中国科学院沈阳应用生态研究所 Anaerobic culture device, soil anaerobic culture method and sampling method of anaerobic culture device
CN113876366A (en) * 2021-11-19 2022-01-04 中国人民解放军陆军特色医学中心 Tumor sampling device
CN115399811A (en) * 2022-08-05 2022-11-29 广州汉康医疗器械有限公司 Gynecological examination sample processing device
CN115363640B (en) * 2022-10-24 2023-02-24 南昌大学第二附属医院 Capsule liquid sampler for internal diseases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749084A (en) * 1971-05-03 1973-07-31 A Cucchiara Sequentially dispensing syringe with multiple needle assembly
US6702760B2 (en) * 2000-11-06 2004-03-09 Bioengineering Consultants Biopsy and coagulant device
US6981963B2 (en) * 2001-03-13 2006-01-03 Mdc Investment Holdings, Inc. Pre-filled safety diluent injector
US20140025035A1 (en) * 2012-07-17 2014-01-23 Cook Medical Technologies Llc Multi-lumen biologic-delivering device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604410A (en) * 1968-09-11 1971-09-14 Gary L Whitacre Multitube blood sampler
US8083722B2 (en) * 2005-04-29 2011-12-27 Warsaw Orthopedic, Inc Instrumentation for injection of therapeutic fluid into joints
US20090240208A1 (en) * 2008-03-19 2009-09-24 Warsaw Orthopedic, Inc. Microparticle delivery syringe and needle for placing particle suspensions and removing vehicle fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749084A (en) * 1971-05-03 1973-07-31 A Cucchiara Sequentially dispensing syringe with multiple needle assembly
US6702760B2 (en) * 2000-11-06 2004-03-09 Bioengineering Consultants Biopsy and coagulant device
US6981963B2 (en) * 2001-03-13 2006-01-03 Mdc Investment Holdings, Inc. Pre-filled safety diluent injector
US20140025035A1 (en) * 2012-07-17 2014-01-23 Cook Medical Technologies Llc Multi-lumen biologic-delivering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109276278A (en) * 2018-11-28 2019-01-29 河南牧业经济学院 Toy subcutaneous mass extracts holder

Also Published As

Publication number Publication date
US20150190125A1 (en) 2015-07-09
US9480465B2 (en) 2016-11-01

Similar Documents

Publication Publication Date Title
US9480465B2 (en) Organism paracentesis device and method thereof
US10786654B2 (en) Intravenous needle assembly having blood dispensing capabilities
JP6518784B2 (en) Apparatus for generating a local vacuum at the distal end of a sampling device
US9848855B2 (en) Filter for fine needle biopsy
JP2015042290A5 (en)
BR112022003962A2 (en) Catheter system to facilitate blood sampling and related methods
CN104921762B (en) A kind of scope for airway wall punctures sampling probe
JP2010234034A (en) Pressure type puncture syringe
CN203988152U (en) A kind of sampling probe
CN208404772U (en) Percutaneous transhepatic cholangiography and drainage art puncture outfit
CN202515692U (en) Aspiration biopsy needle
CN104758008A (en) Biological tissue puncture device and biological tissue puncture method
US10912539B2 (en) Endoswab for sampling and culture in minimally invasive surgery
CN108186058B (en) Quick extraction element of pathological tissue in art
CN204446713U (en) CT guided percutaneous transthoracic biopsy continuous negative pressure suction pipe
CN203154554U (en) Injector for stomach tube
CN206777582U (en) High-safety needle staying on vein
CN204446042U (en) CT guided percutaneous transthoracic biopsy positioning needle
CN109620305A (en) A kind of pet tumor examination sampler
US20110196258A1 (en) Nesting endoscopic ultrasound guided biopsy device
CN209499781U (en) A kind of tumor puncture needle
CN204797849U (en) Disposable prevents acupuncture and hinders hemostix
CN202982012U (en) Disposable blood-sampling container and puncture needle
CN204445959U (en) A kind of biopsy needle
CN201333042Y (en) Dedicated needle provided with needle cap and used for collecting blood-gas analysis specimens

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION