US20160375093A9 - Pharmaceutical compositions and methods - Google Patents

Pharmaceutical compositions and methods Download PDF

Info

Publication number
US20160375093A9
US20160375093A9 US14/750,877 US201514750877A US2016375093A9 US 20160375093 A9 US20160375093 A9 US 20160375093A9 US 201514750877 A US201514750877 A US 201514750877A US 2016375093 A9 US2016375093 A9 US 2016375093A9
Authority
US
United States
Prior art keywords
methyl
amino
tyrosine
propanoate
chloro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/750,877
Other versions
US9549969B2 (en
US20150290279A1 (en
Inventor
Steven Hoffman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tyme Inc
Original Assignee
Tyme Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/371,076 external-priority patent/US8481498B1/en
Priority to US14/750,877 priority Critical patent/US9549969B2/en
Application filed by Tyme Inc filed Critical Tyme Inc
Publication of US20150290279A1 publication Critical patent/US20150290279A1/en
Priority to US15/158,712 priority patent/US9895425B2/en
Priority to US15/158,679 priority patent/US10010590B2/en
Priority to US15/351,966 priority patent/US10272068B2/en
Publication of US20160375093A9 publication Critical patent/US20160375093A9/en
Publication of US9549969B2 publication Critical patent/US9549969B2/en
Application granted granted Critical
Priority to US15/618,344 priority patent/US10307465B2/en
Priority to US16/298,504 priority patent/US10507198B2/en
Priority to US16/420,900 priority patent/US10646552B2/en
Priority to US16/710,043 priority patent/US11052068B2/en
Priority to US16/845,229 priority patent/US11103559B2/en
Priority to US17/366,650 priority patent/US20210379014A1/en
Priority to US17/460,772 priority patent/US20210386832A1/en
Assigned to TYME, INC. reassignment TYME, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOFFMAN, STEVEN
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/33Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans derived from pro-opiomelanocortin, pro-enkephalin or pro-dynorphin
    • A61K38/34Melanocyte stimulating hormone [MSH], e.g. alpha- or beta-melanotropin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41661,3-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. phenytoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • A61K31/787Polymers containing nitrogen containing heterocyclic rings having nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present inventions relate generally to compositions, kits and methods for the reduction of cellular proliferation as, for example, in the treatment of cancer.
  • Cancer treatments today include surgery, hormone therapy, radiation, chemotherapy, immunotherapy, targeted therapy, and combinations thereof. Surgical removal of cancer has advanced significantly; however, there remains a high chance of recurrence of the disease. Hormone therapy using drugs such as aromatase inhibitors and luteinizing hormone-releasing hormone analogs and inhibitors has been relatively effective in treating prostate and breast cancers. Radiation and the related techniques of conformal proton beam radiation therapy, stereotactic radiosurgery, stereotactic radiation therapy, intraoperative radiation therapy, chemical modifiers, and radio sensitizers are effective at killing cancerous cells, but can also kill and alter surrounding normal tissue.
  • Chemotherapy drugs such as aminopterin, cisplatin, methotrexate, doxorubicin, daunorubicin and others alone and in combinations are effective at killing cancer cells, often by altering the DNA replication process.
  • Biological response modifier (BRM) therapy, biologic therapy, biotherapy, or immunotherapy alter cancer cell growth or influence the natural immune response, and involve administering biologic agents to a patient such as an interferons, interleukins, and other cytokines and antibodies such as rituximab and trastuzumab and even cancer vaccines such as Sipuleucel-T.
  • Targeted therapies have been developed to fight cancer. These targeted therapies differ from chemotherapy because chemotherapy works by killing both cancerous and normal cells, with greater effects on the cancerous cells. Targeted therapies work by influencing the processes that control growth, division, and the spread of cancer cells and signals that cause cancer cells to die naturally.
  • One type of targeted therapy includes growth signal inhibitors such as trastuzumab, gefitinib, imatinib, centuximab, dasatinib and nilotinib.
  • Another type of targeted therapy includes angiogenesis inhibitors such as bevacizumab that inhibit cancers from increasing surrounding vasculature and blood supply.
  • a final type of targeted therapy includes apoptosis-inducing drugs that are able to induce direct cancer cell death.
  • the present invention provides compositions, combination therapies, kits, and methods for reducing undue cellular proliferation, including that associated with the treatment of cancer.
  • the invention provides pharmaceutical compositions comprising at least one tyrosine hydroxylase inhibitor; at least one of melanin, a melanin promoter, or a combination thereof; at least one p450 3A4 promoter; at least one leucine aminopeptidase inhibitor; and, optionally, at least one growth hormone inhibitor.
  • the invention provides kits that comprise these components together with suitable packaging.
  • Also provided are methods of reducing cellular proliferation and/or methods of treating cancer comprising administering an effective amount of at least one tyrosine hydroxylase inhibitor; at least one of melanin, a melanin promoter, or a combination thereof; at least one p450 3A4 promoter; at least one leucine aminopeptidase inhibitor; and, optionally, at least one growth hormone inhibitor to the subject in need thereof.
  • the terms “component,” “composition,” “composition of compounds,” “compound,” “drug,” “pharmacologically active agent,” “active agent,” “therapeutic,” “therapy,” “treatment,” or “medicament” are used interchangeably herein to refer to a compound or compounds or composition of matter which, when administered to a subject (human or animal) induces a desired pharmacological and/or physiologic effect by local and/or systemic action.
  • treatment or “therapy” (as well as different forms thereof) include preventative (e.g., prophylactic), curative or palliative treatment.
  • treating includes alleviating or reducing at least one adverse or negative effect or symptom of a condition, disease or disorder. This condition, disease or disorder can be cancer.
  • the term “effective amount” refers to an amount effective, at dosages, and for periods of time necessary, to achieve the desired result with respect to the treatment of the relevant disorder, condition, or side effect. It will be appreciated that the effective amount of components of the present invention will vary from patient to patient not only with the particular compound, component or composition selected, the route of administration, and the ability of the components to elicit a desired result in the individual, but also with factors such as the disease state or severity of the condition to be alleviated, hormone levels, age, sex, weight of the individual, the state of being of the patient, and the severity of the pathological condition being treated, concurrent medication or special diets then being followed by the particular patient, and other factors which those skilled in the art will recognize, with the appropriate dosage being at the discretion of the attending physician. Dosage regimes may be adjusted to provide the improved therapeutic response. An effective amount is also one in which any toxic or detrimental effects of the components are outweighed by the therapeutically beneficial effects.
  • “Pharmaceutically acceptable” refers to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem complications commensurate with a reasonable benefit/risk ratio.
  • the disclosed compounds may be prepared in the form of pharmaceutically acceptable salts.
  • “Pharmaceutically acceptable salts” refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof.
  • Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
  • the pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
  • such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.
  • inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like
  • organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic,
  • physiologically acceptable salts are prepared by methods known in the art, e.g., by dissolving the free amine bases with an excess of the acid in aqueous alcohol, or neutralizing a free carboxylic acid with an alkali metal base such as a hydroxide, or with an amine.
  • Compounds described herein can be prepared in alternate forms. For example, many amino-containing compounds can be used or prepared as an acid addition salt. Often such salts improve isolation and handling properties of the compound. For example, depending on the reagents, reaction conditions and the like, compounds as described herein can be used or prepared, for example, as their hydrochloride or tosylate salts. Isomorphic crystalline forms, all chiral and racemic forms, N-oxide, hydrates, solvates, and acid salt hydrates, are also contemplated to be within the scope of the present invention.
  • Certain acidic or basic compounds of the present invention may exist as zwitterions. All forms of the compounds, including free acid, free base and zwitterions, are contemplated to be within the scope of the present invention. It is well known in the art that compounds containing both amino and carboxy groups often exist in equilibrium with their zwitterionic forms. Thus, any of the compounds described herein that contain, for example, both amino and carboxy groups, also include reference to their corresponding zwitterions.
  • stereoisomers refers to compounds that have identical chemical constitution, but differ as regards the arrangement of the atoms or groups in space.
  • administering means either directly administering a compound or composition of the present invention, or administering a prodrug, derivative or analog which will form an equivalent amount of the active compound or substance within the body.
  • subject refers to an animal, for example a human, to whom treatment, including prophylactic treatment, with the pharmaceutical composition according to the present invention, is provided.
  • subject refers to human and non-human animals.
  • non-human animals and “non-human mammals” are used interchangeably herein and include all vertebrates, e.g., mammals, such as non-human primates, (particularly higher primates), sheep, dog, rodent, (e.g. mouse or rat), guinea pig, goat, pig, cat, rabbits, cows, horses and non-mammals such as reptiles, amphibians, chickens, and turkeys.
  • inhibitor includes compounds that inhibit the expression or activity of a protein, polypeptide or enzyme and does not necessarily mean complete inhibition of expression and/or activity. Rather, the inhibition includes inhibition of the expression and/or activity of a protein, polypeptide or enzyme to an extent, and for a time, sufficient to produce the desired effect.
  • promoter includes compounds that promote the expression or activity of a protein, polypeptide or enzyme and does not necessarily mean complete promotion of expression and/or activity. Rather, the promotion includes promotion of the expression and/or activity of a protein, polypeptide or enzyme to an extent, and for a time, sufficient to produce the desired effect.
  • the present invention provides combination therapies that alter the defenses of cancerous cells to oxidative stress.
  • One class of such therapies increases free radical availability to cancerous cells.
  • a representative subclass of such therapies involves administration of pharmaceutical compositions comprising a tyrosine hydroxylase inhibitor, melanin or a melanin promoter, a p450 3A4 promoter, a leucine aminopeptidase inhibitor, and, optionally, a growth hormone inhibitor.
  • Another subclass involves administration of pharmaceutical compositions comprising melanin and either a tyrosine hydroxylase inhibitor. Particular components of the pharmaceutical composition are described below.
  • tyrosine hydroxylase inhibitors function by accumulating in cancer cells and preventing them from forming a coating of either lipids or hyaluronan. By preventing the cancer cells from forming a coating of either lipids or hyaluron, the cancer cells are believed to be made more accessible to oxidative stress.
  • Representative tyrosine hydroxylase inhibitors include tyrosine derivatives, which typically are rapidly absorbed by most cancers and inflamed tissues.
  • tyrosine derivatives include one or more of methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl)methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxyphenyl
  • the present invention involves the use of at least one of melanin, a melanin promoter, or a combination thereof.
  • melanin can be used, one or more melanin promoters can be used, and both melanin and one or more melanin promoters can be used (either in separate dosage forms or in the same dosage form).
  • Melanin promoters according to the present invention are chemical compounds that increase the production and/or the activity of melanin. Increased melanin levels are believed to reduce inflammation (through, for example, suppression of TNF) and exclude the sequestered lymph system. Melanin is a photo catalyst, and can therefore promote chemical reactions that generate free radicals which, in turn, can become accessible to cancer cells.
  • Representative melanin promoters are methoxsalen and melanotan II.
  • the tyrosine hydroxylase inhibitor is mixed with melanin in the same dosage form. This association of melanin with the tyrosine hydroxylase inhibitor is believed to facilitate uptake of melanin in cancer cells because tyrosine hydroxylase inhibitors are more readily taken up by such cells.
  • melanin is solubilized in a solubilizing agent and then mixed with the tyrosine hydroxylase inhibitor by methods known in the art.
  • the solubilizing agent may be removed by standard techniques, such as evaporation, drying, etc.
  • the solubilizing agent may be a non-toxic solubilizing agent, such as hydrogen peroxide or other solubilizing agents commonly known in the art.
  • the melanin and/or the pharmaceutical composition may be further processed to optimize the pharmaceutical composition's effect on cancer cells.
  • the pharmaceutical composition may include additional active agents and/or pharmaceutical excipients.
  • the pharmaceutical compositions of the invention also include a p450 3A4 promoter.
  • “Cytochrome p450 3A4” (which can be abbreviated as “p450 3A4”) is a member of the cytochrome p450 superfamily of enzymes, and is a mixed-function oxidase that is involved in the metabolism of xenobiotics in the body. It has the widest range of substrates of all of the cytochromes.
  • the function of a p450 3A4 promoter in the pharmaceutical compositions of the invention is to increase the expression and/or the activity of p450 3A4. The increased p450 3A4 expression and/or activity is believed to reduce cortisone and estrogen levels in the patient.
  • p450 3A4 expression and/or activity also slightly decreases blood pH, which is believed to help to preserve or enhance melanin activity.
  • Representative p450 3A4 promoters are 5,5-diphenylhydantoin (sold commercially as, for example, Dilantin), valproic acid, and carbamazepine, which are believed to induce expression of the p450 3A4 enzyme.
  • the instant pharmaceutical compositions further include leucine aminopeptidase inhibitors (alternatively known as leucyl aminopeptidase inhibitors).
  • Leucine aminopeptidases are enzymes that preferentially catalyze the hydrolysis of leucine residues at the N-terminus of peptides and/or proteins. Inhibiting the expression and/or activity of leucine aminopeptidases is believed to assist in tumor reabsorption by increasing cholesterol transport to the liver.
  • aminopeptidase inhibitors including aminopeptidase inhibitors, deplete sensitive tumor cells of specific amino acids by preventing protein recycling, thus generating an antiproliferative effect.
  • Representative leucine aminopeptidase inhibitors are N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine, and rapamycin.
  • compositions also optionally include a growth hormone inhibitor.
  • Growth hormone such as, for example, pancreatic growth hormone
  • Representative growth hormone inhibitors are octreotide, somatostatin, and seglitide.
  • the pharmaceutical compositions of the invention can further include D-leucine.
  • D-leucine is a stereoisomer of the naturally occurring L-leucine, the form of leucine incorporated into polypeptides and proteins. D-leucine cannot be incorporated into polypeptides and/or proteins.
  • the D-leucine is believed to create a physiological environment that mimics a leucine shortage.
  • the presence of D-leucine permits the use of lower doses of leucine aminopeptidase inhibitor in a pharmaceutical composition.
  • kits including a combination therapy that creates alterations in the defenses of cancerous cells to oxidative stress.
  • An intended suitable embodiment is a kit that includes a combination therapy that increases free radical availability to cancerous cells.
  • Representative kits comprise a tyrosine hydroxylase inhibitor, melanin and/or a melanin promoter, a p450 3A4 promoter, a leucine aminopeptidase inhibitor and, optionally, a growth hormone inhibitor of the type described above, together with packaging for same.
  • the kit can include one or more separate containers, dividers or compartments and, optionally, informational material such as instructions for administration.
  • each inhibitor or promoter can be contained in a bottle, vial, or syringe, and the informational material can be contained in a plastic sleeve or packet or provided in a label.
  • the kit includes a plurality (e.g., a pack) of individual containers, each containing one or more unit dosage forms of a compound described herein.
  • the kit can include a plurality of syringes, ampules, foil packets, or blister packs, each containing a single unit dose of a compound described herein or any of the various combinations thereof.
  • kits can be air tight, waterproof (e.g., impermeable to changes in moisture or evaporation), and/or light-tight.
  • the kit optionally includes a device suitable for administration of the composition, e.g., a syringe, inhalant, pipette, forceps, measured spoon, dropper (e.g., eye dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device.
  • a device suitable for administration of the composition e.g., a syringe, inhalant, pipette, forceps, measured spoon, dropper (e.g., eye dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device.
  • Methods of treating cancer in a subject also are provided, as are methods of reducing undue cellular proliferation. Such methods can include administering an effective amount of a combination therapy that creates alterations in the defenses of cancerous cells to oxidative stress.
  • Representative methods of treating cancer include administering an effective amount of a combination therapy that increases free radical availability to cancerous cells.
  • Suitable embodiments are methods that include administering an effective amount of the above-noted tyrosine hydroxylase inhibitor, melanin and/or melanin promoter, p450 3A4 promoter, leucine aminopeptidase inhibitor and, optionally, growth hormone inhibitor.
  • Other suitable methods include administering an effective amount of melanin and a tyrosine hydroxylase inhibitor.
  • Suitable methods include simultaneous or at least contemporaneous administration of at least two of the tyrosine hydroxylase inhibitor, melanin or a melanin promoter, p450 3A4 promoter, and leucine aminopeptidase inhibitor, at least three of them, or each of them (in each case, optionally, with a growth hormone inhibitor). It is believed to be desirable that an effective concentration of these moieties be in the subject's bloodstream at the same time, and any dosing regimen that achieves this is within the scope of the present invention.
  • the desired number of inhibitors and promoters can be provided in a single dosage form or any number of desired dosage forms, including in individual dosage forms.
  • Representative dosage forms include tablets, capsules, caplets, sterile aqueous or organic solutions, reconstitutable powders, elixirs, liquids, colloidal or other types of suspensions, emulsions, beads, beadlets, granules, microparticles, nanoparticles, and combinations thereof.
  • the amount of composition administered will, of course, be dependent on the subject being treated, the subject's weight, the severity of the condition being treated, the manner of administration, and the judgment of the prescribing physician.
  • Administration of the melanin, promoters, and/or inhibitors can be through various routes, including orally, nasally, subcutaneously, intravenously, intramuscularly, transdermally, vaginally, rectally or in any combination thereof.
  • Transdermal administration can be effected using, for example, oleic acid, 1-methyl-2-pyrrolidone, or dodecylnonaoxyethylene glycol monoether.
  • the melanin, promoters and/or inhibitors can be administered during a cycle consisting of five to seven days of administering the melanin, promoters and/or inhibitors and one to two days of not administering the melanin, promoters and/or inhibitors.
  • the melanin, promoters and/or inhibitors can be administered over the course of at least six of said cycles. It can be desirable to administer these components about two hours between meals to facilitate uptake.
  • compositions are administered can be a mammal, preferably a human.
  • 60 mg of the tyrosine derivative is administered orally and 0.25 mL of a 2 mg/mL suspension of the tyrosine derivative is administered subcutaneously; 10 mg of the methoxsalen is administered orally and 0.25 mL of a 1 mg/mL suspension of the methoxsalen is administered subcutaneously; 30 mg of the 5,5-diphenylhydantoin is administered orally; and 20 mg of the N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine is administered orally.
  • the combination therapy comprises: (i) a dosage form containing melanin (50 mcg) and ⁇ -methyl-DL-tyrosine (75 mg); (ii) a dosage form containing 5,5-diphenylhydantoin (15 mg) and ⁇ -methyl-DL-tyrosine (75 mg); (iii) a dosage form containing 3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine (50 mcg) and ⁇ -methyl-DL-tyrosine (75 mg); (iv) a dosage form containing 3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine (5 mcg), melanotan II (10 mcg), and 5,5-diphenylhydantoin (2 mg); and (v) a dosage form containing ⁇ -methyl-DL-tyrosine (5 mg) in NaCl bacteriostatic water.
  • the combination therapy comprises: (i) a dosage form containing melanin (50 mcg) and ⁇ -methyl-DL-tyrosine (75 mg); (ii) a dosage form containing 5,5-diphenylhydantoin (15 mg) and ⁇ -methyl-DL-tyrosine (75 mg); (iii) a dosage form containing rapamycin (0.2 mg) and ⁇ -methyl-DL-tyrosine (75 mg); (iv) a dosage form containing rapamycin (0.15 mcg), melanotan II (10 mcg), and 5,5-diphenylhydantoin (2 mg); and (v) a dosage form containing ⁇ -methyl-DL-tyrosine (5 mg) in NaCl bacteriostatic water. Dosages that are two times greater than this, and even four times greater than this, are believed to be both safe and efficacious.
  • the cancer is non-small cell lung cancer.
  • the non-small cell lung cancer is stage IV non-small cell lung cancer.
  • the cancer is ovarian cancer, breast cancer, cervical cancer, pancreatic cancer, stomach cancer, brain cancer, liver cancer, or testicular cancer.
  • the cancer can also be leukemia or lymphoma.
  • one or more of the tyrosine hydroxylase inhibitor; the melanin promoter; the p450 3A4 promoter; and the leucine aminopeptidase inhibitor is a nucleic acid, protein, antibody or antigen-binding fragment of an antibody.
  • the present methods can include not only the disclosed administration step but also the step of assessing progression of said cancer in said subject and/or the extent of cellular proliferation.
  • the assessing step can be performed before or after the administering step.
  • Suitable embodiments can include a pharmaceutical composition comprising a tyrosine hydroxylase inhibitor, melanin and/or a melanin promoter, a p450 3A4 promoter, and a leucine aminopeptidase inhibitor.
  • the pharmaceutical composition can further comprise a growth hormone inhibitor.
  • the growth hormone can be pancreatic growth hormone.
  • the growth hormone inhibitor can be octreotide or somatostatin.
  • the tyrosine hydroxylase inhibitor can be a tyrosine derivative.
  • the tyrosine derivative can be one or more of methyl (2R)-2-amino-3-(2-chloro-4 hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl) methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxypheny
  • the melanin promoter can be methoxsalen or melanotan II.
  • the p450 3A4 promoter can be 5,5-diphenylhydantoin.
  • the p450 3A4 promoter can be valproic acid or carbamazepine.
  • the leucine aminopeptidase inhibitor can be N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine or rapamycin.
  • the pharmaceutical compositions of the invention can further comprise D-leucine.
  • kits comprising a tyrosine hydroxylase inhibitor, melanin and/or a melanin promoter, a p450 3A4 promoter, and a leucine aminopeptidase inhibitor, together with packaging for same.
  • the kit can further comprise a growth hormone inhibitor.
  • the growth hormone can be pancreatic growth hormone.
  • the growth hormone inhibitor can be octreotide or somatostatin.
  • the tyrosine hydroxylase inhibitor can be a tyrosine derivative.
  • the tyrosine derivative can be one or more of methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl) methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxypheny
  • the melanin promoter can be methoxsalen or melanotan II.
  • the p450 3A4 promoter can be 5,5-diphenylhydantoin, valproic acid or carbamazepine.
  • the leucine aminopeptidase inhibitor can be N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine or rapamycin.
  • the kits of the invention can further comprise D-leucine.
  • Methods of treating cancer in a subject comprising administering an effective amount of a tyrosine hydroxylase inhibitor, melanin and/or a melanin promoter, a p450 3A4 promoter, and a leucine aminopeptidase inhibitor to the subject in need thereof.
  • the method of treating cancer can further comprise a growth hormone inhibitor.
  • at least two of the components i.e., melanin, promoters and/or inhibitors
  • at least three of the components are administered simultaneously.
  • Each of the components can be administered simultaneously.
  • the components are administered orally, subcutaneously, intravenously, transdermally, vaginally, rectally or in any combination thereof.
  • the transdermal administration can be done with oleic acid, 1-methyl-2-pyrrolidone, or dodecylnonaoxyethylene glycol monoether.
  • the components are administered during a cycle consisting of five to seven days of administering the components and one to two days of not administering the components.
  • the components can be administered over the course of at least six of said cycles.
  • the tyrosine hydroxylase inhibitor can be a tyrosine derivative.
  • the tyrosine derivative can be one or more of methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl) methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxypheny
  • the tyrosine derivative is administered orally and 0.25 mL of a 2 mg/mL suspension of the tyrosine derivative is administered subcutaneously.
  • the melanin promoter can be methoxsalen.
  • 10 mg of the methoxsalen is administered orally and 0.25 mL of a 1 mg/mL suspension of the methoxsalen is administered subcutaneously.
  • the melanin promoter can also be melanotan II.
  • the p450 3A4 promoter can be 5,5-diphenylhydantoin.
  • 30 mg of the 5,5-diphenylhydantoin is administered orally.
  • the p450 3A4 promoter can also be valproic acid or carbamazepine.
  • the leucine aminopeptidase inhibitor can be N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine. In another suitable method, 20 mg of the N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine is administered orally.
  • the leucine aminopeptidase inhibitor can also be rapamycin.
  • the growth hormone can be pancreatic growth hormone.
  • the growth hormone inhibitor can be octreotide.
  • the method can further comprise administering an effective amount of D-leucine.
  • the subject can be a mammal and that mammal can be a human.
  • Representative methods include those in which the cancer is non-small cell lung cancer.
  • the non-small cell lung cancer is stage IV non-small cell lung cancer.
  • the cancer is ovarian cancer, breast cancer, cervical cancer, pancreatic cancer, stomach cancer, brain cancer, liver cancer, or testicular cancer.
  • the cancer is leukemia or lymphoma.
  • the tyrosine hydroxylase inhibitor, the melanin promoter, the p450 3A4 promoter, and the leucine aminopeptidase inhibitor is one or more of a nucleic acid, protein, antibody or antigen-binding fragment of an antibody.
  • Another suitable embodiment further comprises assessing progression of said cancer in said subject. The assessing step can be performed before said administering step or the assessing step can be performed after said administering step.
  • Methods of reducing cell proliferation in a subject comprising administering an effective amount of a tyrosine hydroxylase inhibitor; melanin and/or a melanin promoter; a p450 3A4 promoter; and a leucine aminopeptidase inhibitor to the subject in need thereof.
  • the method of treating cancer can further comprise a growth hormone inhibitor.
  • at least two of the components i.e., melanin, promoters and/or inhibitors
  • at least three of the components are administered simultaneously.
  • Each of the components can be administered simultaneously.
  • components are administered orally, subcutaneously, intravenously, transdermally, vaginally, rectally or in any combination thereof.
  • the transdermal administration can be done with oleic acid, 1-methyl-2-pyrrolidone, or dodecylnonaoxyethylene glycol monoether.
  • the components are administered during a cycle consisting of five to seven days of administering the components and one to two days of not administering the components.
  • the components can be administered over the course of at least six of said cycles.
  • the tyrosine hydroxylase inhibitor can be a tyrosine derivative.
  • the tyrosine derivative can be one or more of methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl) methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxypheny
  • the tyrosine derivative is administered orally and 0.25 mL of a 2 mg/mL suspension of the tyrosine derivative is administered subcutaneously.
  • the melanin promoter can be methoxsalen.
  • 10 mg of the methoxsalen is administered orally and 0.25 mL of a 1 mg/mL suspension of the methoxsalen is administered subcutaneously.
  • the melanin promoter can also be melanotan II.
  • the p450 3A4 promoter can be 5,5-diphenylhydantoin.
  • 30 mg of the 5,5-diphenylhydantoin is administered orally.
  • the p450 3A4 promoter can also be valproic acid or carbamazepine.
  • the leucine aminopeptidase inhibitor can be N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine. In another suitable method, 20 mg of the N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine is administered orally.
  • the leucine aminopeptidase inhibitor can also be rapamycin.
  • the growth hormone can be pancreatic growth hormone.
  • the growth hormone inhibitor can be octreotide.
  • the method can further comprise administering an effective amount of D-leucine.
  • the subject can be a mammal and the mammal can be a human.
  • Representative methods include those in which the cancer is non-small cell lung cancer.
  • the non-small cell lung cancer is stage IV non-small cell lung cancer.
  • the cancer is ovarian cancer, breast cancer, cervical cancer, pancreatic cancer, stomach cancer, brain cancer, liver cancer, or testicular cancer.
  • the cancer is leukemia or lymphoma.
  • the tyrosine hydroxylase inhibitor, the melanin promoter, the p450 3A4 promoter, and the leucine aminopeptidase inhibitor is one or more of a nucleic acid, protein, antibody or antigen-binding fragment of an antibody.
  • Another suitable embodiment further comprises assessing progression of said cancer in said subject. The assessing step can be performed before said administering step or the assessing step can be performed after said administering step.
  • compositions and combination therapies are provided.
  • Various embodiments of the present invention further relate to methods of administering a pharmaceutical composition or combination therapy to a human patient for the treatment of cancer.
  • the methods may comprise administering a pharmaceutical composition or combination therapy by generally accepted routes of administration (e.g., oral, subcutaneous, parenteral, inhalation, topical, etc.).
  • routes of administration e.g., oral, subcutaneous, parenteral, inhalation, topical, etc.
  • a pharmaceutical composition or combination therapy may be administered orally and/or subcutaneously.
  • a pharmaceutical composition or combination therapy may be administered to human patients between meals.
  • a pharmaceutical composition or combination therapy may be administered to a human patient for 5 days per week for a period of 6 weeks, creating one cycle of 30 days of treatment. Depending on the outcome after 6 weeks or one cycle of treatment, additional cycles of the pharmaceutical composition or combination therapy may be administered.
  • the present invention also provides:
  • a clinical study was performed to evaluate the effectiveness, safety, acceptability, and tolerability of a combination therapy in accordance with embodiments of the present invention as a treatment for metastatic cancer.
  • the combination therapy comprised the following:
  • Each patient was administered the combination therapy five days per week for six weeks. More than 200 patients were screened. The criteria included patients with any metastatic cancer. Thirty patients meeting the criteria were accepted and participated in the study.
  • tyrosine hydroxylase inhibitor i.e., ⁇ -methyl-DL tyrosine
  • melanin promoter i.e., melanotan II
  • p450 3A4 promoter i.e., 5,5-diphenylhydantoin
  • leucine aminopeptidase inhibitor i.e., rapamycin
  • EORTC European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaire Core
  • the present invention provides methods of inducing melanin production in vivo with one or both of methoxsalen and melanotan and/or through administration of melanin.
  • melanin is believed to be beneficial because of its photocatalytic nature and its ability to convert various wavelengths of ambient or induced electromagnetic radiation into electrical energy, thus potentiating desirable reactions or dislocations.
  • melanin preferably is combined mechanically or chemically with ⁇ -methyl-DL-tyrosine prior to administration.
  • Melanin as a photocatalyst is believed to have polarity at points in its physical mass. It has been determined that small melanin particles may produce less electrical energy than larger particles, and a plurality of melanin particles tend not to accumulate in polarity-specific formations. An effective method to obtain high yield of electrical energy from melanin is to form the melanin in large, polarized particles. By implication, it is believed that nanoparticles, regardless of quantity, are not as desirable as larger particles for cancer treatment, and that larger particles have a greater capacity to be accepted by cancer cell membranes.
  • melanin is combined with ⁇ -methyl-DL-tyrosine in at least three ways.

Abstract

Pharmaceutical compositions and kits including a tyrosine hydroxylase inhibitor; melanin, a melanin promoter, or a combination thereof; a p450 3A4 promoter; and a leucine aminopeptidase inhibitor are provided. Also provided are methods of treating cancer in a subject, comprising administering an effective amount of a tyrosine hydroxylase inhibitor, a melanin promoter, a p450 3A4 promoter, and a leucine aminopeptidase inhibitor to the subject in need thereof. Also provided are methods of reducing cell proliferation in a subject comprising administering an effective amount of a tyrosine hydroxylase inhibitor, a melanin promoter, a p450 3A4 promoter, and a leucine aminopeptidase inhibitor to the subject in need thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/742,865, filed on Jan. 16, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/371,076, filed on Feb. 10, 2012, which claims priority to U.S. Provisional Application No. 61/587,420, filed on Jan. 17, 2012. This application also claims priority to U.S. Provisional Application No. 61/702,994, filed on Sep. 19, 2012. All of the applications mentioned in this paragraph are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • The present inventions relate generally to compositions, kits and methods for the reduction of cellular proliferation as, for example, in the treatment of cancer.
  • BACKGROUND
  • According to the U.S. National Cancer Institute's Surveillance Epidemiology and End Results (SEER) database for the year 2008, the most recent year for which incidence data are available, 11,958,000 Americans have invasive cancers. Cancer is the second most common cause of death in the United States, behind only heart disease, and accounts for one in four deaths. It has been estimated that approximately 1600 Americans die of cancer each day. In addition to the medical, emotional and psychological costs of cancer, cancer has significant financial costs to both the individual and society. It is estimated by the National Institutes of Health that the overall costs of cancer in 2010 was $263.8 billion. In addition, it is estimated that another $140.1 billion is lost in productivity due to premature death.
  • Cancer treatments today include surgery, hormone therapy, radiation, chemotherapy, immunotherapy, targeted therapy, and combinations thereof. Surgical removal of cancer has advanced significantly; however, there remains a high chance of recurrence of the disease. Hormone therapy using drugs such as aromatase inhibitors and luteinizing hormone-releasing hormone analogs and inhibitors has been relatively effective in treating prostate and breast cancers. Radiation and the related techniques of conformal proton beam radiation therapy, stereotactic radiosurgery, stereotactic radiation therapy, intraoperative radiation therapy, chemical modifiers, and radio sensitizers are effective at killing cancerous cells, but can also kill and alter surrounding normal tissue. Chemotherapy drugs such as aminopterin, cisplatin, methotrexate, doxorubicin, daunorubicin and others alone and in combinations are effective at killing cancer cells, often by altering the DNA replication process. Biological response modifier (BRM) therapy, biologic therapy, biotherapy, or immunotherapy alter cancer cell growth or influence the natural immune response, and involve administering biologic agents to a patient such as an interferons, interleukins, and other cytokines and antibodies such as rituximab and trastuzumab and even cancer vaccines such as Sipuleucel-T.
  • Recently, new targeted therapies have been developed to fight cancer. These targeted therapies differ from chemotherapy because chemotherapy works by killing both cancerous and normal cells, with greater effects on the cancerous cells. Targeted therapies work by influencing the processes that control growth, division, and the spread of cancer cells and signals that cause cancer cells to die naturally. One type of targeted therapy includes growth signal inhibitors such as trastuzumab, gefitinib, imatinib, centuximab, dasatinib and nilotinib. Another type of targeted therapy includes angiogenesis inhibitors such as bevacizumab that inhibit cancers from increasing surrounding vasculature and blood supply. A final type of targeted therapy includes apoptosis-inducing drugs that are able to induce direct cancer cell death.
  • Although all of these treatments have been effective to one degree or another, they all have drawbacks and limitations. In addition to many of the treatments being expensive, they also are often too imprecise or the cancers are able to adapt to them and become resistant.
  • Thus, there is a great need for additional cancer treatments. In particular, there is a need for treatments for cancers that have become resistant to other forms of treatment.
  • SUMMARY
  • The present invention provides compositions, combination therapies, kits, and methods for reducing undue cellular proliferation, including that associated with the treatment of cancer. In certain embodiments, the invention provides pharmaceutical compositions comprising at least one tyrosine hydroxylase inhibitor; at least one of melanin, a melanin promoter, or a combination thereof; at least one p450 3A4 promoter; at least one leucine aminopeptidase inhibitor; and, optionally, at least one growth hormone inhibitor. In other embodiments, the invention provides kits that comprise these components together with suitable packaging. Also provided are methods of reducing cellular proliferation and/or methods of treating cancer comprising administering an effective amount of at least one tyrosine hydroxylase inhibitor; at least one of melanin, a melanin promoter, or a combination thereof; at least one p450 3A4 promoter; at least one leucine aminopeptidase inhibitor; and, optionally, at least one growth hormone inhibitor to the subject in need thereof.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • The present subject matter may be understood more readily by reference to the following detailed description which forms a part of this disclosure. It is to be understood that this invention is not limited to the specific products, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention.
  • Unless otherwise defined herein, scientific and technical terms used in connection with the present application shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.
  • As employed above and throughout the disclosure, the following terms and abbreviations, unless otherwise indicated, shall be understood to have the following meanings.
  • In the present disclosure the singular forms “a,” “an,” and “the” include the plural reference, and reference to a particular numerical value includes at least that particular value, unless the context clearly indicates otherwise. Thus, for example, a reference to “a compound” is a reference to one or more of such compounds and equivalents thereof known to those skilled in the art, and so forth. The term “plurality”, as used herein, means more than one. When a range of values is expressed, another embodiment includes from the one particular and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it is understood that the particular value forms another embodiment. All ranges are inclusive and combinable.
  • As used herein, the terms “component,” “composition,” “composition of compounds,” “compound,” “drug,” “pharmacologically active agent,” “active agent,” “therapeutic,” “therapy,” “treatment,” or “medicament” are used interchangeably herein to refer to a compound or compounds or composition of matter which, when administered to a subject (human or animal) induces a desired pharmacological and/or physiologic effect by local and/or systemic action.
  • As used herein, the terms “treatment” or “therapy” (as well as different forms thereof) include preventative (e.g., prophylactic), curative or palliative treatment. As used herein, the term “treating” includes alleviating or reducing at least one adverse or negative effect or symptom of a condition, disease or disorder. This condition, disease or disorder can be cancer.
  • As employed above and throughout the disclosure the term “effective amount” refers to an amount effective, at dosages, and for periods of time necessary, to achieve the desired result with respect to the treatment of the relevant disorder, condition, or side effect. It will be appreciated that the effective amount of components of the present invention will vary from patient to patient not only with the particular compound, component or composition selected, the route of administration, and the ability of the components to elicit a desired result in the individual, but also with factors such as the disease state or severity of the condition to be alleviated, hormone levels, age, sex, weight of the individual, the state of being of the patient, and the severity of the pathological condition being treated, concurrent medication or special diets then being followed by the particular patient, and other factors which those skilled in the art will recognize, with the appropriate dosage being at the discretion of the attending physician. Dosage regimes may be adjusted to provide the improved therapeutic response. An effective amount is also one in which any toxic or detrimental effects of the components are outweighed by the therapeutically beneficial effects.
  • “Pharmaceutically acceptable” refers to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem complications commensurate with a reasonable benefit/risk ratio.
  • Within the present invention, the disclosed compounds may be prepared in the form of pharmaceutically acceptable salts. “Pharmaceutically acceptable salts” refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like. These physiologically acceptable salts are prepared by methods known in the art, e.g., by dissolving the free amine bases with an excess of the acid in aqueous alcohol, or neutralizing a free carboxylic acid with an alkali metal base such as a hydroxide, or with an amine.
  • Compounds described herein can be prepared in alternate forms. For example, many amino-containing compounds can be used or prepared as an acid addition salt. Often such salts improve isolation and handling properties of the compound. For example, depending on the reagents, reaction conditions and the like, compounds as described herein can be used or prepared, for example, as their hydrochloride or tosylate salts. Isomorphic crystalline forms, all chiral and racemic forms, N-oxide, hydrates, solvates, and acid salt hydrates, are also contemplated to be within the scope of the present invention.
  • Certain acidic or basic compounds of the present invention may exist as zwitterions. All forms of the compounds, including free acid, free base and zwitterions, are contemplated to be within the scope of the present invention. It is well known in the art that compounds containing both amino and carboxy groups often exist in equilibrium with their zwitterionic forms. Thus, any of the compounds described herein that contain, for example, both amino and carboxy groups, also include reference to their corresponding zwitterions.
  • The term “stereoisomers” refers to compounds that have identical chemical constitution, but differ as regards the arrangement of the atoms or groups in space.
  • The term “administering” means either directly administering a compound or composition of the present invention, or administering a prodrug, derivative or analog which will form an equivalent amount of the active compound or substance within the body.
  • The terms “subject,” “individual,” and “patient” are used interchangeably herein, and refer to an animal, for example a human, to whom treatment, including prophylactic treatment, with the pharmaceutical composition according to the present invention, is provided. The term “subject” as used herein refers to human and non-human animals. The terms “non-human animals” and “non-human mammals” are used interchangeably herein and include all vertebrates, e.g., mammals, such as non-human primates, (particularly higher primates), sheep, dog, rodent, (e.g. mouse or rat), guinea pig, goat, pig, cat, rabbits, cows, horses and non-mammals such as reptiles, amphibians, chickens, and turkeys.
  • The term “inhibitor” as used herein includes compounds that inhibit the expression or activity of a protein, polypeptide or enzyme and does not necessarily mean complete inhibition of expression and/or activity. Rather, the inhibition includes inhibition of the expression and/or activity of a protein, polypeptide or enzyme to an extent, and for a time, sufficient to produce the desired effect.
  • The term “promoter” as used herein includes compounds that promote the expression or activity of a protein, polypeptide or enzyme and does not necessarily mean complete promotion of expression and/or activity. Rather, the promotion includes promotion of the expression and/or activity of a protein, polypeptide or enzyme to an extent, and for a time, sufficient to produce the desired effect.
  • In one embodiment, the present invention provides combination therapies that alter the defenses of cancerous cells to oxidative stress. One class of such therapies increases free radical availability to cancerous cells. A representative subclass of such therapies involves administration of pharmaceutical compositions comprising a tyrosine hydroxylase inhibitor, melanin or a melanin promoter, a p450 3A4 promoter, a leucine aminopeptidase inhibitor, and, optionally, a growth hormone inhibitor. Another subclass involves administration of pharmaceutical compositions comprising melanin and either a tyrosine hydroxylase inhibitor. Particular components of the pharmaceutical composition are described below.
  • While not intending to be bound by any particular mechanism of operation, tyrosine hydroxylase inhibitors according to the present invention function by accumulating in cancer cells and preventing them from forming a coating of either lipids or hyaluronan. By preventing the cancer cells from forming a coating of either lipids or hyaluron, the cancer cells are believed to be made more accessible to oxidative stress. Representative tyrosine hydroxylase inhibitors include tyrosine derivatives, which typically are rapidly absorbed by most cancers and inflamed tissues. Representative tyrosine derivatives include one or more of methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl)methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-5-fluoro-4-hydroxyphenyl) propanoate, diethyl 2-(acetylamino)-2-(4-[(2-chloro-6-fluorobenzyl)oxy]benzyl malonate, methyl (2R)-2-amino-3-(3-chloro-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxy-5-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2,6-dichloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxyphenyl) propanoate, H-DL-tyr-OME HCl, H-3,5-diiodo-tyr-OME HCl, H-D-3,5-diiodo-tyr-OME HCl, H-D-tyr-OME HCl, D-tyrosine methyl ester hydrochloride, D-tyrosine-ome HCl, methyl D-tyrosinate hydrochloride, H-D-tyr-OMe.HCl, D-tyrosine methyl ester HCl, H-D-Tyr-OMe-HCl, (2R)-2-amino-3-(4-hydroxyphenyl) propionic acid, (2R)-2-amino-3-(4-hydroxyphenyl) methyl ester hydrochloride, methyl (2R)-2-amino-3-(4-hydroxyphenyl) propanoate hydrochloride, methyl (2R)-2-azanyl-3-(4-hydroxyphenyl) propanoate hydrochloride, 3-chloro-L-tyrosine, 3-nitro-L-tyrosine, 3-nitro-L-tyrosine ethyl ester hydrochloride, DL-m-tyrosine, DL-o-tyrosine, Boc-Tyr (3,5-I2)—OSu, Fmoc-tyr(3-NO2)—OH, and α-methyl-DL-tyrosine (also known as DL-2-Methyl-3-(4-Hydroxyphenyl) alanine).
  • The present invention involves the use of at least one of melanin, a melanin promoter, or a combination thereof. Thus, melanin can be used, one or more melanin promoters can be used, and both melanin and one or more melanin promoters can be used (either in separate dosage forms or in the same dosage form). Melanin promoters according to the present invention are chemical compounds that increase the production and/or the activity of melanin. Increased melanin levels are believed to reduce inflammation (through, for example, suppression of TNF) and exclude the sequestered lymph system. Melanin is a photo catalyst, and can therefore promote chemical reactions that generate free radicals which, in turn, can become accessible to cancer cells. Representative melanin promoters are methoxsalen and melanotan II.
  • In some instances, the tyrosine hydroxylase inhibitor is mixed with melanin in the same dosage form. This association of melanin with the tyrosine hydroxylase inhibitor is believed to facilitate uptake of melanin in cancer cells because tyrosine hydroxylase inhibitors are more readily taken up by such cells. In certain embodiments melanin is solubilized in a solubilizing agent and then mixed with the tyrosine hydroxylase inhibitor by methods known in the art. The solubilizing agent may be removed by standard techniques, such as evaporation, drying, etc. The solubilizing agent may be a non-toxic solubilizing agent, such as hydrogen peroxide or other solubilizing agents commonly known in the art. The melanin and/or the pharmaceutical composition may be further processed to optimize the pharmaceutical composition's effect on cancer cells. In another embodiment the pharmaceutical composition may include additional active agents and/or pharmaceutical excipients.
  • The pharmaceutical compositions of the invention also include a p450 3A4 promoter. “Cytochrome p450 3A4” (which can be abbreviated as “p450 3A4”) is a member of the cytochrome p450 superfamily of enzymes, and is a mixed-function oxidase that is involved in the metabolism of xenobiotics in the body. It has the widest range of substrates of all of the cytochromes. The function of a p450 3A4 promoter in the pharmaceutical compositions of the invention is to increase the expression and/or the activity of p450 3A4. The increased p450 3A4 expression and/or activity is believed to reduce cortisone and estrogen levels in the patient. Additionally, the increased p450 3A4 expression and/or activity also slightly decreases blood pH, which is believed to help to preserve or enhance melanin activity. Representative p450 3A4 promoters are 5,5-diphenylhydantoin (sold commercially as, for example, Dilantin), valproic acid, and carbamazepine, which are believed to induce expression of the p450 3A4 enzyme.
  • The instant pharmaceutical compositions further include leucine aminopeptidase inhibitors (alternatively known as leucyl aminopeptidase inhibitors). Leucine aminopeptidases are enzymes that preferentially catalyze the hydrolysis of leucine residues at the N-terminus of peptides and/or proteins. Inhibiting the expression and/or activity of leucine aminopeptidases is believed to assist in tumor reabsorption by increasing cholesterol transport to the liver. Generally, it is believed that aminopeptidase inhibitors, including aminopeptidase inhibitors, deplete sensitive tumor cells of specific amino acids by preventing protein recycling, thus generating an antiproliferative effect. Representative leucine aminopeptidase inhibitors are N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine, and rapamycin.
  • The instant pharmaceutical compositions also optionally include a growth hormone inhibitor. Growth hormone (such as, for example, pancreatic growth hormone) induces cell replication. Inhibition of the expression and/or activity of growth hormone is believed to exclude normal cells from rapid replication while allowing cancer cells to continue to rapidly replicate and incorporate the tyrosine derivative. Representative growth hormone inhibitors are octreotide, somatostatin, and seglitide.
  • The pharmaceutical compositions of the invention can further include D-leucine. D-leucine is a stereoisomer of the naturally occurring L-leucine, the form of leucine incorporated into polypeptides and proteins. D-leucine cannot be incorporated into polypeptides and/or proteins. Along with the leucine aminopeptidase inhibitor, the D-leucine is believed to create a physiological environment that mimics a leucine shortage. Thus, the presence of D-leucine permits the use of lower doses of leucine aminopeptidase inhibitor in a pharmaceutical composition.
  • Also provided herein are kits including a combination therapy that creates alterations in the defenses of cancerous cells to oxidative stress. An intended suitable embodiment is a kit that includes a combination therapy that increases free radical availability to cancerous cells. Representative kits comprise a tyrosine hydroxylase inhibitor, melanin and/or a melanin promoter, a p450 3A4 promoter, a leucine aminopeptidase inhibitor and, optionally, a growth hormone inhibitor of the type described above, together with packaging for same. The kit can include one or more separate containers, dividers or compartments and, optionally, informational material such as instructions for administration. For example, each inhibitor or promoter (or the various combinations thereof) can be contained in a bottle, vial, or syringe, and the informational material can be contained in a plastic sleeve or packet or provided in a label. In some embodiments, the kit includes a plurality (e.g., a pack) of individual containers, each containing one or more unit dosage forms of a compound described herein. For example, the kit can include a plurality of syringes, ampules, foil packets, or blister packs, each containing a single unit dose of a compound described herein or any of the various combinations thereof. The containers of the kits can be air tight, waterproof (e.g., impermeable to changes in moisture or evaporation), and/or light-tight. The kit optionally includes a device suitable for administration of the composition, e.g., a syringe, inhalant, pipette, forceps, measured spoon, dropper (e.g., eye dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device.
  • Methods of treating cancer in a subject also are provided, as are methods of reducing undue cellular proliferation. Such methods can include administering an effective amount of a combination therapy that creates alterations in the defenses of cancerous cells to oxidative stress. Representative methods of treating cancer include administering an effective amount of a combination therapy that increases free radical availability to cancerous cells. Suitable embodiments are methods that include administering an effective amount of the above-noted tyrosine hydroxylase inhibitor, melanin and/or melanin promoter, p450 3A4 promoter, leucine aminopeptidase inhibitor and, optionally, growth hormone inhibitor. Other suitable methods include administering an effective amount of melanin and a tyrosine hydroxylase inhibitor.
  • Suitable methods include simultaneous or at least contemporaneous administration of at least two of the tyrosine hydroxylase inhibitor, melanin or a melanin promoter, p450 3A4 promoter, and leucine aminopeptidase inhibitor, at least three of them, or each of them (in each case, optionally, with a growth hormone inhibitor). It is believed to be desirable that an effective concentration of these moieties be in the subject's bloodstream at the same time, and any dosing regimen that achieves this is within the scope of the present invention. The desired number of inhibitors and promoters can be provided in a single dosage form or any number of desired dosage forms, including in individual dosage forms. Representative dosage forms include tablets, capsules, caplets, sterile aqueous or organic solutions, reconstitutable powders, elixirs, liquids, colloidal or other types of suspensions, emulsions, beads, beadlets, granules, microparticles, nanoparticles, and combinations thereof. The amount of composition administered will, of course, be dependent on the subject being treated, the subject's weight, the severity of the condition being treated, the manner of administration, and the judgment of the prescribing physician.
  • Administration of the melanin, promoters, and/or inhibitors can be through various routes, including orally, nasally, subcutaneously, intravenously, intramuscularly, transdermally, vaginally, rectally or in any combination thereof. Transdermal administration can be effected using, for example, oleic acid, 1-methyl-2-pyrrolidone, or dodecylnonaoxyethylene glycol monoether.
  • The melanin, promoters and/or inhibitors can be administered during a cycle consisting of five to seven days of administering the melanin, promoters and/or inhibitors and one to two days of not administering the melanin, promoters and/or inhibitors. The melanin, promoters and/or inhibitors can be administered over the course of at least six of said cycles. It can be desirable to administer these components about two hours between meals to facilitate uptake.
  • The subject to which the instant compositions are administered can be a mammal, preferably a human.
  • In one representative method, 60 mg of the tyrosine derivative is administered orally and 0.25 mL of a 2 mg/mL suspension of the tyrosine derivative is administered subcutaneously; 10 mg of the methoxsalen is administered orally and 0.25 mL of a 1 mg/mL suspension of the methoxsalen is administered subcutaneously; 30 mg of the 5,5-diphenylhydantoin is administered orally; and 20 mg of the N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine is administered orally.
  • In certain embodiments, the combination therapy comprises: (i) a dosage form containing melanin (50 mcg) and α-methyl-DL-tyrosine (75 mg); (ii) a dosage form containing 5,5-diphenylhydantoin (15 mg) and α-methyl-DL-tyrosine (75 mg); (iii) a dosage form containing 3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine (50 mcg) and α-methyl-DL-tyrosine (75 mg); (iv) a dosage form containing 3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine (5 mcg), melanotan II (10 mcg), and 5,5-diphenylhydantoin (2 mg); and (v) a dosage form containing α-methyl-DL-tyrosine (5 mg) in NaCl bacteriostatic water. In other embodiments, the combination therapy comprises: (i) a dosage form containing melanin (50 mcg) and α-methyl-DL-tyrosine (75 mg); (ii) a dosage form containing 5,5-diphenylhydantoin (15 mg) and α-methyl-DL-tyrosine (75 mg); (iii) a dosage form containing rapamycin (0.2 mg) and α-methyl-DL-tyrosine (75 mg); (iv) a dosage form containing rapamycin (0.15 mcg), melanotan II (10 mcg), and 5,5-diphenylhydantoin (2 mg); and (v) a dosage form containing α-methyl-DL-tyrosine (5 mg) in NaCl bacteriostatic water. Dosages that are two times greater than this, and even four times greater than this, are believed to be both safe and efficacious.
  • Representative methods include those in which the cancer is non-small cell lung cancer. In certain embodiments, the non-small cell lung cancer is stage IV non-small cell lung cancer. In yet other embodiments, the cancer is ovarian cancer, breast cancer, cervical cancer, pancreatic cancer, stomach cancer, brain cancer, liver cancer, or testicular cancer. The cancer can also be leukemia or lymphoma.
  • In certain embodiments, one or more of the tyrosine hydroxylase inhibitor; the melanin promoter; the p450 3A4 promoter; and the leucine aminopeptidase inhibitor is a nucleic acid, protein, antibody or antigen-binding fragment of an antibody.
  • The present methods can include not only the disclosed administration step but also the step of assessing progression of said cancer in said subject and/or the extent of cellular proliferation. The assessing step can be performed before or after the administering step.
  • Suitable embodiments can include a pharmaceutical composition comprising a tyrosine hydroxylase inhibitor, melanin and/or a melanin promoter, a p450 3A4 promoter, and a leucine aminopeptidase inhibitor. The pharmaceutical composition can further comprise a growth hormone inhibitor. The growth hormone can be pancreatic growth hormone. The growth hormone inhibitor can be octreotide or somatostatin. The tyrosine hydroxylase inhibitor can be a tyrosine derivative. The tyrosine derivative can be one or more of methyl (2R)-2-amino-3-(2-chloro-4 hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl) methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-5-fluoro-4-hydroxyphenyl) propanoate, diethyl 2-(acetylamino)-2-(4-[(2-chloro-6-fluorobenzyl)oxy]benzyl malonate, methyl (2R)-2-amino-3-(3-chloro-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxy-5-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2,6-dichloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxyphenyl) propanoate, H-DL-tyr-OME HCl, H-3,5-diiodo-tyr-OME HCl, H-D-3,5-diiodo-tyr-OME HCl, H-D-tyr-OME HCl, D-tyrosine methyl ester hydrochloride, D-tyrosine-ome HCl, methyl D-tyrosinate hydrochloride, H-D-tyr-OMe.HCl, D-tyrosine methyl ester HCl, H-D-Tyr-OMe-HCl, (2R)-2-amino-3-(4-hydroxyphenyl) propionic acid, (2R)-2-amino-3-(4-hydroxyphenyl) methyl ester hydrochloride, methyl (2R)-2-amino-3-(4-hydroxyphenyl) propanoate hydrochloride, methyl (2R)-2-azanyl-3-(4-hydroxyphenyl) propanoate hydrochloride, 3-chloro-L-tyrosine, 3-nitro-L-tyrosine, 3-nitro-L-tyrosine ethyl ester hydrochloride, DL-m-tyrosine, DL-o-tyrosine, Boc-Tyr (3,5-I2)—OSu, Fmoc-tyr(3-NO2)—OH, and α-methyl-DL-tyrosine. The melanin promoter can be methoxsalen or melanotan II. The p450 3A4 promoter can be 5,5-diphenylhydantoin. The p450 3A4 promoter can be valproic acid or carbamazepine. The leucine aminopeptidase inhibitor can be N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine or rapamycin. The pharmaceutical compositions of the invention can further comprise D-leucine.
  • Also provided herein are kits comprising a tyrosine hydroxylase inhibitor, melanin and/or a melanin promoter, a p450 3A4 promoter, and a leucine aminopeptidase inhibitor, together with packaging for same. The kit can further comprise a growth hormone inhibitor. The growth hormone can be pancreatic growth hormone. The growth hormone inhibitor can be octreotide or somatostatin. The tyrosine hydroxylase inhibitor can be a tyrosine derivative. The tyrosine derivative can be one or more of methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl) methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-5-fluoro-4-hydroxyphenyl) propanoate, diethyl 2-(acetylamino)-2-(4-[(2-chloro-6-fluorobenzyl)oxy]benzyl malonate, methyl (2R)-2-amino-3-(3-chloro-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxy-5-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2,6-dichloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxyphenyl) propanoate, H-DL-tyr-OME HCl, H-3,5-diiodo-tyr-OME HCl, H-D-3,5-diiodo-tyr-OME HCl, H-D-tyr-OME HCl, D-tyrosine methyl ester hydrochloride, D-tyrosine-ome HCl, methyl D-tyrosinate hydrochloride, H-D-tyr-OMe.HCl, D-tyrosine methyl ester HCl, H-D-Tyr-OMe-HCl, (2R)-2-amino-3-(4-hydroxyphenyl) propionic acid, (2R)-2-amino-3-(4-hydroxyphenyl) methyl ester hydrochloride, methyl (2R)-2-amino-3-(4-hydroxyphenyl) propanoate hydrochloride methyl (2R)-2-azanyl-3-(4-hydroxyphenyl) propanoate hydrochloride, 3-chloro-L-tyrosine, 3-nitro-L-tyrosine, 3-nitro-L-tyrosine ethyl ester hydrochloride, DL-m-tyrosine, DL-o-tyrosine, Boc-Tyr (3,5-I2)—OSu, Fmoc-tyr(3-NO2)—OH, and α-methyl-DL-tyrosine. The melanin promoter can be methoxsalen or melanotan II. The p450 3A4 promoter can be 5,5-diphenylhydantoin, valproic acid or carbamazepine. The leucine aminopeptidase inhibitor can be N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine or rapamycin. The kits of the invention can further comprise D-leucine.
  • Methods of treating cancer in a subject are also provided comprising administering an effective amount of a tyrosine hydroxylase inhibitor, melanin and/or a melanin promoter, a p450 3A4 promoter, and a leucine aminopeptidase inhibitor to the subject in need thereof. In a suitable embodiment, the method of treating cancer can further comprise a growth hormone inhibitor. In certain embodiments, at least two of the components (i.e., melanin, promoters and/or inhibitors) are administered simultaneously. In other embodiments, at least three of the components are administered simultaneously. Each of the components can be administered simultaneously. In suitable embodiments, the components are administered orally, subcutaneously, intravenously, transdermally, vaginally, rectally or in any combination thereof. The transdermal administration can be done with oleic acid, 1-methyl-2-pyrrolidone, or dodecylnonaoxyethylene glycol monoether. In other embodiments, the components are administered during a cycle consisting of five to seven days of administering the components and one to two days of not administering the components. The components can be administered over the course of at least six of said cycles. The tyrosine hydroxylase inhibitor can be a tyrosine derivative. The tyrosine derivative can be one or more of methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl) methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-5-fluoro-4-hydroxyphenyl) propanoate, diethyl 2-(acetylamino)-2-(4-[(2-chloro-6-fluorobenzyl)oxy]benzyl malonate, methyl (2R)-2-amino-3-(3-chloro-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxy-5-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2,6-dichloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxyphenyl) propanoate, H-DL-tyr-OME HCl, H-3,5-diiodo-tyr-OME HCl, H-D-3,5-diiodo-tyr-OME HCl, H-D-tyr-OME HCl, D-tyrosine methyl ester hydrochloride, D-tyrosine-ome HCl, methyl D-tyrosinate hydrochloride, H-D-tyr-OMe.HCl, D-tyrosine methyl ester HCl, H-D-Tyr-OMe-HCl, (2R)-2-amino-3-(4-hydroxyphenyl) propionic acid, (2R)-2-amino-3-(4-hydroxyphenyl) methyl ester hydrochloride, methyl (2R)-2-amino-3-(4-hydroxyphenyl) propanoate hydrochloride, methyl (2R)-2-azanyl-3-(4-hydroxyphenyl) propanoate hydrochloride, 3-chloro-L-tyrosine, 3-nitro-L-tyrosine, 3-nitro-L-tyrosine ethyl ester hydrochloride, DL-m-tyrosine, DL-o-tyrosine, Boc-Tyr (3,5-I2)—OSu, Fmoc-tyr(3-NO2)—OH, and α-methyl-DL-tyrosine. In a suitable embodiment of the method, 60 mg of the tyrosine derivative is administered orally and 0.25 mL of a 2 mg/mL suspension of the tyrosine derivative is administered subcutaneously. The melanin promoter can be methoxsalen. In another suitable method, 10 mg of the methoxsalen is administered orally and 0.25 mL of a 1 mg/mL suspension of the methoxsalen is administered subcutaneously. The melanin promoter can also be melanotan II. The p450 3A4 promoter can be 5,5-diphenylhydantoin. In another suitable method, 30 mg of the 5,5-diphenylhydantoin is administered orally. The p450 3A4 promoter can also be valproic acid or carbamazepine. The leucine aminopeptidase inhibitor can be N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine. In another suitable method, 20 mg of the N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine is administered orally. The leucine aminopeptidase inhibitor can also be rapamycin. The growth hormone can be pancreatic growth hormone. The growth hormone inhibitor can be octreotide. The method can further comprise administering an effective amount of D-leucine. The subject can be a mammal and that mammal can be a human. Representative methods include those in which the cancer is non-small cell lung cancer. In certain embodiments, the non-small cell lung cancer is stage IV non-small cell lung cancer. In other embodiments, the cancer is ovarian cancer, breast cancer, cervical cancer, pancreatic cancer, stomach cancer, brain cancer, liver cancer, or testicular cancer. In other embodiments, the cancer is leukemia or lymphoma. In other suitable embodiments, the tyrosine hydroxylase inhibitor, the melanin promoter, the p450 3A4 promoter, and the leucine aminopeptidase inhibitor is one or more of a nucleic acid, protein, antibody or antigen-binding fragment of an antibody. Another suitable embodiment further comprises assessing progression of said cancer in said subject. The assessing step can be performed before said administering step or the assessing step can be performed after said administering step.
  • Methods of reducing cell proliferation in a subject are also provided comprising administering an effective amount of a tyrosine hydroxylase inhibitor; melanin and/or a melanin promoter; a p450 3A4 promoter; and a leucine aminopeptidase inhibitor to the subject in need thereof. In a suitable embodiment, the method of treating cancer can further comprise a growth hormone inhibitor. In certain embodiments, at least two of the components (i.e., melanin, promoters and/or inhibitors) are administered simultaneously. In other embodiments, at least three of the components are administered simultaneously. Each of the components can be administered simultaneously. In suitable embodiments, components are administered orally, subcutaneously, intravenously, transdermally, vaginally, rectally or in any combination thereof. The transdermal administration can be done with oleic acid, 1-methyl-2-pyrrolidone, or dodecylnonaoxyethylene glycol monoether. In other embodiments, the components are administered during a cycle consisting of five to seven days of administering the components and one to two days of not administering the components. The components can be administered over the course of at least six of said cycles. The tyrosine hydroxylase inhibitor can be a tyrosine derivative. The tyrosine derivative can be one or more of methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl) methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-5-fluoro-4-hydroxyphenyl) propanoate, diethyl 2-(acetylamino)-2-(4-[(2-chloro-6-fluorobenzyl)oxy]benzyl malonate, methyl (2R)-2-amino-3-(3-chloro-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxy-5-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2,6-dichloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxyphenyl) propanoate, H-DL-tyr-OME HCl, H-3,5-diiodo-tyr-OME HCl, H-D-3,5-diiodo-tyr-OME HCl, H-D-tyr-OME HCl, D-tyrosine methyl ester hydrochloride, D-tyrosine-ome HCl, methyl D-tyrosinate hydrochloride, H-D-tyr-OMe.HCl, D-tyrosine methyl ester HCl, H-D-Tyr-OMe-HCl, (2R)-2-amino-3-(4-hydroxyphenyl) propionic acid, (2R)-2-amino-3-(4-hydroxyphenyl) methyl ester hydrochloride, methyl (2R)-2-amino-3-(4-hydroxyphenyl) propanoate hydrochloride, methyl (2R)-2-azanyl-3-(4-hydroxyphenyl) propanoate hydrochloride, 3-chloro-L-tyrosine, 3-nitro-L-tyrosine, 3-nitro-L-tyrosine ethyl ester hydrochloride, DL-m-tyrosine, DL-o-tyrosine, Boc-Tyr (3,5-I2)—OSu, Fmoc-tyr(3-NO2)—OH, and α-methyl-DL-tyrosine. In a suitable embodiment of the method, 60 mg of the tyrosine derivative is administered orally and 0.25 mL of a 2 mg/mL suspension of the tyrosine derivative is administered subcutaneously. The melanin promoter can be methoxsalen. In another suitable method, 10 mg of the methoxsalen is administered orally and 0.25 mL of a 1 mg/mL suspension of the methoxsalen is administered subcutaneously. The melanin promoter can also be melanotan II. The p450 3A4 promoter can be 5,5-diphenylhydantoin. In another suitable method, 30 mg of the 5,5-diphenylhydantoin is administered orally. The p450 3A4 promoter can also be valproic acid or carbamazepine. The leucine aminopeptidase inhibitor can be N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine. In another suitable method, 20 mg of the N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine is administered orally. The leucine aminopeptidase inhibitor can also be rapamycin. The growth hormone can be pancreatic growth hormone. The growth hormone inhibitor can be octreotide. The method can further comprise administering an effective amount of D-leucine. The subject can be a mammal and the mammal can be a human. Representative methods include those in which the cancer is non-small cell lung cancer. In certain embodiments, the non-small cell lung cancer is stage IV non-small cell lung cancer. In other embodiments, the cancer is ovarian cancer, breast cancer, cervical cancer, pancreatic cancer, stomach cancer, brain cancer, liver cancer, or testicular cancer. In other embodiments, the cancer is leukemia or lymphoma. In other suitable embodiments, the tyrosine hydroxylase inhibitor, the melanin promoter, the p450 3A4 promoter, and the leucine aminopeptidase inhibitor is one or more of a nucleic acid, protein, antibody or antigen-binding fragment of an antibody. Another suitable embodiment further comprises assessing progression of said cancer in said subject. The assessing step can be performed before said administering step or the assessing step can be performed after said administering step.
  • The following examples of specific embodiments for carrying out the present invention are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.
  • Representative methods of administration of the pharmaceutical compositions and combination therapies also are provided. Various embodiments of the present invention further relate to methods of administering a pharmaceutical composition or combination therapy to a human patient for the treatment of cancer. The methods may comprise administering a pharmaceutical composition or combination therapy by generally accepted routes of administration (e.g., oral, subcutaneous, parenteral, inhalation, topical, etc.). In some instances, a pharmaceutical composition or combination therapy may be administered orally and/or subcutaneously. In some instances, a pharmaceutical composition or combination therapy may be administered to human patients between meals.
  • In certain embodiments of the present invention, a pharmaceutical composition or combination therapy may be administered to a human patient for 5 days per week for a period of 6 weeks, creating one cycle of 30 days of treatment. Depending on the outcome after 6 weeks or one cycle of treatment, additional cycles of the pharmaceutical composition or combination therapy may be administered.
  • The present invention also provides:
      • pharmaceutical compositions comprising a tyrosine hydroxylase inhibitor; and melanin, a melanin promoter, or a combination thereof (preferably melanin);
      • pharmaceutical compositions comprising a tyrosine hydroxylase inhibitor and a p450 3A4 promoter;
      • pharmaceutical compositions comprising a tyrosine hydroxylase inhibitor and a leucine aminopeptidase inhibitor; and
      • pharmaceutical compositions comprising melanin, a melanin promoter, or a combination thereof (preferably melanotan II); a p450 3A4 promoter; and a leucine aminopeptidase inhibitor.
        The tyrosine hydroxylase inhibitor in such compositions preferably is α-methyl-DL-tyrosine, the p450 3A4 promoter preferably is 5,5-diphenylhydantoin, and the leucine aminopeptidase inhibitor preferably is N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine. The invention also provides kits comprising each of these pharmaceutical compositions, along with a pharmaceutical composition comprising a tyrosine hydroxylase inhibitor; as well as methods comprising administering each of the pharmaceutical compositions to a patient along with a pharmaceutical composition comprising a tyrosine hydroxylase inhibitor, preferably such that they are administered to the patient within a 24 hour period.
    Example 1
  • A clinical study was performed to evaluate the effectiveness, safety, acceptability, and tolerability of a combination therapy in accordance with embodiments of the present invention as a treatment for metastatic cancer.
  • The combination therapy comprised the following:
      • (a) capsule containing melanin (50 mcg) and α-methyl-DL-tyrosine (75 mg), administered orally;
      • (b) capsule containing 5,5-diphenylhydantoin (15 mg) and α-methyl-DL-tyrosine (75 mg), administered orally;
      • (c) capsule containing 5,5-diphenylhydantoin (15 mg) and α-methyl-DL-tyrosine (75 mg), administered orally;
      • (d) capsule containing rapamycin (0.2 mg) and α-methyl-DL-tyrosine (75 mg), administered orally;
      • (e) suspension containing rapamycin (0.15 mcg), melanotan II (10 mcg), and 5,5-diphenylhydantoin (2 mg), administered subcutaneously; and
      • (f) suspension containing α-methyl-DL-tyrosine (5 mg) in NaCl bacteriostatic water, administered subcutaneously.
  • Each patient was administered the combination therapy five days per week for six weeks. More than 200 patients were screened. The criteria included patients with any metastatic cancer. Thirty patients meeting the criteria were accepted and participated in the study.
  • Treatment of Metastatic Breast Cancer
  • Fourteen patients in the study suffered from metastatic breast cancer. Patient information and results are as follows in Table 1:
  • TABLE 1
    Patient Characteristics
    Average age 55 (40-70 years old)
    Female 14/14
    Caucasian 13/14
    Prior to Study
    Declined routine treatment prior to study 4/14
    enrollment
    Used all available treatment and were 10/14
    considered incurable
    Treatment Results
    1-3 point improvement in ECOG rating 11/14
    1-5 point improvement in EORTC rating 10/14
    (scale 1-7)
    Weight
    Gained weight 4/14 (1-5 lbs)
    Remained the same weight 6/14
    Lost weight 4/14 (1-2 lbs)
    Pain
    Reduction in pain level (scale of 1-10) 8/14 (1-9)
    Entered study with no pain and maintained 6/14
    the same level
    Entered study on pain medication 6/14
    No longer needed pain medication at the 5/6
    end of the cycle
    Evidence of Cancer
    Disease free with normal physical exam, 3/14
    review of systems, and imaging
    Significant reduction in quantity and/or 5/14
    size of the largest tumor
    Reduction in quantity and/or size of the 2/14
    largest tumor
    No progression of the cancer 4/14
    Survival
    Alive 14/14
    33-37 wks 4/14
    27-29 wks 5/14
    12-19 wks 5/14
    Current Status
    Went home 3/14
    Continued treatment 11/14

    One side effect of the therapy was hyperpigmentation in all of the patients. Overall, all of the patients tolerated the combination therapy and no adverse events were reported.
  • Over 200 cancer patients were screened in a clinical trial. Thirty (30) subjects meeting the study criteria consented. The average patient age was 56 years old with a range of 30 years old to 70 years old. The patients in the study were administered a treatment regimen that included a tyrosine hydroxylase inhibitor (i.e., α-methyl-DL tyrosine), a melanin promoter (i.e., melanotan II), a p450 3A4 promoter (i.e., 5,5-diphenylhydantoin), and a leucine aminopeptidase inhibitor (i.e., rapamycin). These compounds were administered on each of five days per week for a period of six weeks, with one or two days off between weekly cycles.
  • After six weeks of treatment, 12 of the 30 patients (40%) maintained the same rating under the Eastern Cooperative Oncology Group (ECOG) 0-5 scale (see Oken, et al., Toxicity And Response Criteria Of The Eastern Cooperative Oncology Group, Am. J. Clin. Oncol., 5:649-655, 1982). Fourteen (14) of 30 (46%) had 1-3 point improvement in their ECOG rating.
  • Fourteen (14) of the 30 patients (46%) maintained the same rating under the European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaire Core (EORTC) 1-7 scale (see, e.g., Bergman, et al., The EORTC QLQ-LC13: a modular supplement to the EORTC Core Quality of Life Questionnaire (QLQ-C30) for use in lung cancer clinical trials, EORTC Study Group on Quality of Life, Eur. J. Cancer, 1994. 30A(5): p. 635-42). Sixteen (16) of 30 (54%) had 1-5 point improvement in their EORTC rating.
  • Eleven (11) of the 30 patients gained weight of 1 to 9 pounds, 17 of 30 stayed the same weight, and 2 of 30 lost 1 to 2 pounds.
  • Thirteen (13) of 30 (43%) had a reduction in pain levels. Seventeen (17) of 30 (57%) entered with minimal pain and maintained the same level. Nine (9) of 30 (30%) entered the study on pain medication and 8 of those nine (89%) no longer needed pain medication at the end of the cycle.
  • No disease was detected in four (4) of 30 (13%) with normal physical exam, review of systems, and imaging. Eight (8) of 30 (27%) had significant reduction in quantity of tumors and/or size of the largest tumor. Eight (8) of 30 (27%) exhibited reduction in quantity of tumors and/or size of the largest tumor. Ten (10) of 30 (33%) showed no progression of disease.
  • Twenty nine (29) of the 30 patients were alive with median survival of 22 weeks. Thirteen (13) of 30 (43%) were released and went home. Seventeen (17) of 30 (57%) continue with the treatment. All of the subjects developed hyperpigmentation.
  • Overall, the above-noted treatment was well tolerated by the subjects, with no adverse events related to the treatment, and responses have been documented to the treatment 100%.
  • Example 2
  • In one aspect, the present invention provides methods of inducing melanin production in vivo with one or both of methoxsalen and melanotan and/or through administration of melanin. Without intending to be bound by any particular theory of operation, melanin is believed to be beneficial because of its photocatalytic nature and its ability to convert various wavelengths of ambient or induced electromagnetic radiation into electrical energy, thus potentiating desirable reactions or dislocations. In some patients, either because of genetic variation, infirmity, necessity of expedited availability, or to realize maximum effectiveness, it has been determined that melanin preferably is combined mechanically or chemically with α-methyl-DL-tyrosine prior to administration.
  • Melanin as a photocatalyst is believed to have polarity at points in its physical mass. It has been determined that small melanin particles may produce less electrical energy than larger particles, and a plurality of melanin particles tend not to accumulate in polarity-specific formations. An effective method to obtain high yield of electrical energy from melanin is to form the melanin in large, polarized particles. By implication, it is believed that nanoparticles, regardless of quantity, are not as desirable as larger particles for cancer treatment, and that larger particles have a greater capacity to be accepted by cancer cell membranes.
  • In accordance with certain embodiments, melanin is combined with α-methyl-DL-tyrosine in at least three ways.
      • 1) Melanin, either naturally occurring or synthetic, is mechanically mixed with compressive force to adhere the melanin, which is non-water soluble and somewhat malleable, with the α-methyl-DL-tyrosine. Following the initial combining of these components, it is desirable to add additional α-methyl-DL-tyrosine until substantial coverage of the melanin is achieved.
      • 2) Melanin can be solubilized by many methods as described in U.S. Pat. No. 5,225,435, the contents of which are incorporated herein by reference. One preferred method involves mixing melanin with distilled water and hydrogen peroxide to achieve a melanin concentration of at least 5 weight percent, and then placing the resulting composition in a microwave oven until it reaches a boiling point. The dissolved melanin that is produced is used to infuse or saturate through the mass of α-methyl-DL-tyrosine. The composition is then dried and the dry powder is used.
      • 3) α-Methyl-DL-tyrosine is placed in distilled water with 5-benzyloxy-6-methoxy-indole and sealed for up to a month. The L portion of the racemic α-methyl-DL-tyrosine is believed to convert to (DOPA) melanin. The size of the melanin particle can be controlled by controlling the time of growth period. The powder produced is then cleaned and dried. The ratio of the racemic mix is no longer 50/50, but the utility of the chemically combined ingredients facilitates penetration of the melanin even with reduced L component and appears to offer potentially sufficient benefit.

Claims (20)

What is claimed:
1. A pharmaceutical composition comprising;
a tyrosine hydroxylase inhibitor that is methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl) methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-5-fluoro-4-hydroxyphenyl) propanoate, diethyl 2-(acetylamino)-2-(4-[(2-chloro-6-fluorobenzyl)oxy]benzyl malonate, methyl (2R)-2-amino-3-(3-chloro-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxy-5-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2,6-dichloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxyphenyl) propanoate, H-DL-tyr-OME HCl, H-3,5-diiodo-tyr-OME HCl, H-D-3,5-diiodo-tyr-OME HCl, H-D-tyr-OME HCl, D-tyrosine methyl ester hydrochloride, D-tyrosine-ome HCl, methyl D-tyrosinate hydrochloride, H-D-tyr-OMe.HCl, D-tyrosine methyl ester HCl, H-D-Tyr-OMe-HCl, (2R)-2-amino-3-(4-hydroxyphenyl) propionic acid, (2R)-2-amino-3-(4-hydroxyphenyl) methyl ester hydrochloride, methyl (2R)-2-amino-3-(4-hydroxyphenyl) propanoate hydrochloride, methyl (2R)-2-azanyl-3-(4-hydroxyphenyl) propanoate hydrochloride, 3-chloro-L-tyrosine, 3-nitro-L-tyrosine, 3-nitro-L-tyrosine ethyl ester hydrochloride, DL-m-tyrosine, DL-o-tyrosine, Boc-Tyr (3,5I2)-OSu, Fmoc-tyr(3-NO2)-OH, or α-methyl-DL-tyrosine; and
melanin, a melanin promoter that is methoxsalen or melanotan II, or a combination of melanin, methoxsalen and melanotan II.
2. The pharmaceutical composition of claim 1 wherein said tyrosine hydroxylase inhibitor is α-methyl-DL-tyrosine.
3. The pharmaceutical composition of claim 1 comprising melanin.
4. A pharmaceutical composition comprising a tyrosine hydroxylase inhibitor and a p450 3A4 promoter.
5. The pharmaceutical composition of claim 4 wherein said tyrosine hydroxylase inhibitor is α-methyl-DL-tyrosine.
6. The pharmaceutical composition of claim 4 wherein said p450 3A4 promoter is 5,5-diphenylhydantoin.
7. A pharmaceutical composition comprising a tyrosine hydroxylase inhibitor and a leucine aminopeptidase inhibitor.
8. The pharmaceutical composition of claim 7 wherein said tyrosine hydroxylase inhibitor is α-methyl-DL-tyrosine.
9. The pharmaceutical composition of claim 7 wherein said leucine aminopeptidase inhibitor is rapamycin or N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine.
10. The pharmaceutical composition of claim 1 further comprising a p450 3A4 promoter that is 5,5-diphenylhydantoin, valproic acid, or carbamazepine; and a leucine aminopeptidase inhibitor that is N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine, or rapamycin.
11. The pharmaceutical composition of claim 10 comprising melanotan II.
12. The pharmaceutical composition of claim 10 wherein said p450 3A4 promoter is 5,5-diphenylhydantoin.
13. The pharmaceutical composition of claim 10 wherein said leucine aminopeptidase inhibitor is rapamycin or N-[(2S,3R)-3-amino-2-hydroxy-4-phenylbutyryl]-L-leucine.
14. A kit comprising a pharmaceutical composition of claim 1 and a pharmaceutical composition according to claim 4.
15. The kit of claim 14 further comprising a pharmaceutical composition of claim 7.
16. The kit of claim 15 further comprising a pharmaceutical composition of claim 10.
17. The kit of claim 16 further comprising a pharmaceutical composition comprising a tyrosine hydroxylase inhibitor that is methyl (2R)-2-amino-3-(2-chloro-4-hydroxyphenyl) propanoate, D-tyrosine ethyl ester hydrochloride, methyl (2R)-2-amino-3-(2,6-dichloro-3,4-dimethoxyphenyl) propanoate H-D-Tyr(TBU)-allyl ester HCl, methyl (2R)-2-amino-3-(3-chloro-4,5-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(4-[(2-chloro-6-fluorophenyl)methoxy]phenyl) propanoate, methyl (2R)-2-amino-3-(2-chloro-3,4-dimethoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-5-fluoro-4-hydroxyphenyl) propanoate, diethyl 2-(acetylamino)-2-(4-[(2-chloro-6-fluorobenzyl)oxy]benzyl malonate, methyl (2R)-2-amino-3-(3-chloro-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxy-5-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(2,6-dichloro-3-hydroxy-4-methoxyphenyl) propanoate, methyl (2R)-2-amino-3-(3-chloro-4-hydroxyphenyl) propanoate, H-DL-tyr-OME HCl, H-3,5-diiodo-tyr-OME HCl, H-D-3,5-diiodo-tyr-OME HCl, H-D-tyr-OME HCl, D-tyrosine methyl ester hydrochloride, D-tyrosine-ome HCl, methyl D-tyrosinate hydrochloride, H-D-tyr-OMe.HCl, D-tyrosine methyl ester HCl, H-D-Tyr-OMe-HCl, (2R)-2-amino-3-(4-hydroxyphenyl) propionic acid, (2R)-2-amino-3-(4-hydroxyphenyl) methyl ester hydrochloride, methyl (2R)-2-amino-3-(4-hydroxyphenyl) propanoate hydrochloride, methyl (2R)-2-azanyl-3-(4-hydroxyphenyl) propanoate hydrochloride, 3-chloro-L-tyrosine, 3-nitro-L-tyrosine, 3-nitro-L-tyrosine ethyl ester hydrochloride, DL-m-tyrosine, DL-o-tyrosine, Boc-Tyr (3,5I2)-OSu, Fmoc-tyr(3-NO2)-OH, or α-methyl-DL-tyrosine.
18. A method for treating cancer comprising administering to a patient in need thereof a pharmaceutical composition of claim 1, and a pharmaceutical composition of claim 10.
19. The method of claim 18 wherein said pharmaceutical compositions are administered to said patient within a 24 hour period.
20. The method of claim 18 wherein said pharmaceutical compositions are administered to said patient five days per week for six weeks.
US14/750,877 2012-01-17 2015-06-25 Pharmaceutical compositions and methods Active US9549969B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US14/750,877 US9549969B2 (en) 2012-01-17 2015-06-25 Pharmaceutical compositions and methods
US15/158,712 US9895425B2 (en) 2012-01-17 2016-05-19 Pharmaceutical compositions and methods
US15/158,679 US10010590B2 (en) 2012-01-17 2016-05-19 Pharmaceutical compositions and methods
US15/351,966 US10272068B2 (en) 2012-01-17 2016-11-15 Pharmaceutical compositions and methods
US15/618,344 US10307465B2 (en) 2012-01-17 2017-06-09 Pharmaceutical compositions and methods
US16/298,504 US10507198B2 (en) 2012-01-17 2019-03-11 Pharmaceutical compositions and methods
US16/420,900 US10646552B2 (en) 2012-01-17 2019-05-23 Pharmaceutical compositions and methods
US16/710,043 US11052068B2 (en) 2012-01-17 2019-12-11 Pharmaceutical compositions and methods
US16/845,229 US11103559B2 (en) 2012-01-17 2020-04-10 Pharmaceutical compositions and methods
US17/366,650 US20210379014A1 (en) 2012-01-17 2021-07-02 Pharmaceutical compositions and methods
US17/460,772 US20210386832A1 (en) 2012-01-17 2021-08-30 Pharmaceutical Compositions And Methods

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261587420P 2012-01-17 2012-01-17
US13/371,076 US8481498B1 (en) 2012-01-17 2012-02-10 Pharmaceutical compositions and methods
US201261702994P 2012-09-19 2012-09-19
US13/742,865 US20130183263A1 (en) 2012-01-17 2013-01-16 Pharmaceutical compositions and methods
US14/750,877 US9549969B2 (en) 2012-01-17 2015-06-25 Pharmaceutical compositions and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/742,865 Continuation US20130183263A1 (en) 2012-01-17 2013-01-16 Pharmaceutical compositions and methods

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/158,679 Continuation US10010590B2 (en) 2012-01-17 2016-05-19 Pharmaceutical compositions and methods
US15/158,712 Continuation US9895425B2 (en) 2012-01-17 2016-05-19 Pharmaceutical compositions and methods
US15/351,966 Continuation-In-Part US10272068B2 (en) 2012-01-17 2016-11-15 Pharmaceutical compositions and methods

Publications (3)

Publication Number Publication Date
US20150290279A1 US20150290279A1 (en) 2015-10-15
US20160375093A9 true US20160375093A9 (en) 2016-12-29
US9549969B2 US9549969B2 (en) 2017-01-24

Family

ID=48780112

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/742,865 Abandoned US20130183263A1 (en) 2012-01-17 2013-01-16 Pharmaceutical compositions and methods
US14/750,877 Active US9549969B2 (en) 2012-01-17 2015-06-25 Pharmaceutical compositions and methods
US15/158,679 Active US10010590B2 (en) 2012-01-17 2016-05-19 Pharmaceutical compositions and methods
US15/158,712 Active US9895425B2 (en) 2012-01-17 2016-05-19 Pharmaceutical compositions and methods
US15/618,344 Active US10307465B2 (en) 2012-01-17 2017-06-09 Pharmaceutical compositions and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/742,865 Abandoned US20130183263A1 (en) 2012-01-17 2013-01-16 Pharmaceutical compositions and methods

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/158,679 Active US10010590B2 (en) 2012-01-17 2016-05-19 Pharmaceutical compositions and methods
US15/158,712 Active US9895425B2 (en) 2012-01-17 2016-05-19 Pharmaceutical compositions and methods
US15/618,344 Active US10307465B2 (en) 2012-01-17 2017-06-09 Pharmaceutical compositions and methods

Country Status (1)

Country Link
US (5) US20130183263A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10646552B2 (en) 2012-01-17 2020-05-12 Tyme, Inc. Pharmaceutical compositions and methods
US20130183263A1 (en) 2012-01-17 2013-07-18 Steven Hoffman Pharmaceutical compositions and methods
US10272068B2 (en) 2012-01-17 2019-04-30 Tyme, Inc. Pharmaceutical compositions and methods
US9763903B2 (en) 2013-10-22 2017-09-19 Steven Hoffman Compositions and methods for treating intestinal hyperpermeability
US10751313B2 (en) 2013-10-22 2020-08-25 Yamo Pharmaceuticals Llc Compositions and methods for treating autism
US9326962B2 (en) 2013-10-22 2016-05-03 Steven Hoffman Compositions and methods for treating intestinal hyperpermeability
US9724657B2 (en) * 2013-10-22 2017-08-08 Tyme, Inc. High-speed centrifugal mixing devices and methods of use
US10813901B2 (en) 2013-10-22 2020-10-27 Yamo Pharmaceuticals Llc Compositions and methods for treating autism
JP6641280B2 (en) 2014-01-09 2020-02-05 サノフイSanofi Stabilized pharmaceutical formulations of insulin analogues and / or insulin derivatives
CN107835695B (en) * 2015-04-14 2021-07-09 史蒂文·霍夫曼 Compositions and methods for treating autism
US20170181993A1 (en) * 2015-12-28 2017-06-29 Steven Hoffman Methods of Treating Amyotrophic Lateral Sclerosis and Symptoms
US10117859B2 (en) * 2016-06-27 2018-11-06 Southwest Research Institute Dosage suspensions of active pharmaceutical ingredients
EA201991192A1 (en) * 2016-11-15 2019-10-31 PHARMACEUTICAL COMPOSITIONS AND METHODS OF TREATING CANCER
JP7170722B2 (en) 2017-07-19 2022-11-14 ホフマン・テクノロジーズ・エルエルシー Compositions for treating stress-related disorders
US10925851B2 (en) 2018-03-15 2021-02-23 Regents Of The University Of Minnesota Use of Tosedostat and related compounds as analgesics
CN109576234B (en) * 2018-12-26 2021-05-07 天津科技大学 Leucine-5-hydroxylase mutant and application thereof
CN114173578A (en) 2019-05-14 2022-03-11 迪美公司 Compositions and methods for treating cancer
EP4090329A2 (en) * 2020-01-17 2022-11-23 Tyme, Inc. Tyrosine derivatives for modulating cancer
US10905698B1 (en) 2020-05-14 2021-02-02 Tyme, Inc. Methods of treating SARS-COV-2 infections

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189604A (en) 1975-07-22 1980-02-19 Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai Bestatin
CA1108180A (en) 1976-07-21 1981-09-01 Hamao Umezawa Analogs of bestatin
US4117161A (en) 1977-05-16 1978-09-26 Jose Pozuelo Method of pharmacologically treating drug addiction with alpha-methyl-para-tyrosine
US4165382A (en) 1977-10-17 1979-08-21 Jose Pozuelo Method of pharmacologically treating schizophrenia with alpha-methyl-para-tyrosine
US4389415A (en) 1978-01-24 1983-06-21 Merck & Co., Inc. Method of treating hypertension
US5206018A (en) 1978-11-03 1993-04-27 Ayerst, Mckenna & Harrison, Inc. Use of rapamycin in treatment of tumors
US4748929A (en) 1987-03-23 1988-06-07 Payne Peter R Planing catamaran
US5674839A (en) 1987-05-22 1997-10-07 Competitive Technologies, Inc. Cyclic analogs of alpha-MSH fragments
US5683981A (en) 1987-05-22 1997-11-04 Competitive Technologies, Inc. Cyclic bridged analogs of α-MSH and methods thereof
US5073541A (en) 1987-11-18 1991-12-17 Administrators Of The Tulane Educational Fund Treatment of small cell lung cancer with somatostatin analogs
DE3823735A1 (en) 1988-07-13 1989-03-02 Ernst Hajek Use of D-leucine (dextrorotatory alpha -amino isocaproic acid) as active substance for controlling malignant tumours of the mucosal epithelium of the entire intestinal tract including the pancreas and gall bladder
US5225435A (en) 1990-05-18 1993-07-06 Yale University Soluble melanin
US5310539A (en) 1991-04-15 1994-05-10 Board Of Regents, The University Of Texas System Melanin-based agents for image enhancement
WO1994010968A1 (en) 1992-11-19 1994-05-26 Bristol-Myers Squibb Company Compositions and methods for temporarily coloring hair using solubilized melanin
EP0696919B1 (en) 1993-04-05 2002-01-30 Competitive Technologies, Inc. Diagnosis and treatment of erectile dysfunction
IT1291633B1 (en) 1997-04-22 1999-01-11 Pharmaconsult S A S USE OF ALPHA-METHYL-P-THYROSINE TO INHIBIT THE PRODUCTION OF MELANIN IN THE MELANOCYTES OF THE IRIS
US20030059471A1 (en) 1997-12-15 2003-03-27 Compton Bruce Jon Oral delivery formulation
EP1950223A3 (en) 1998-03-09 2009-05-13 Zealand Pharma A/S Pharmacologically active peptide conjugates having a reduced tendency towards enzymatic hydrolysis
WO2000010507A2 (en) * 1998-08-21 2000-03-02 The Children's Medical Center Corporation Use of melanin for inhibition of angiogenesis and macular degeneration
WO2001074346A2 (en) 2000-04-03 2001-10-11 Hybridon, Inc. Sensitization of cells to cytotoxic agents using oligonucleotides directed to nucleotide excision repair or transcritpion coupled repair genes
US20030114362A1 (en) 2001-06-08 2003-06-19 Novaspin Biotech Gmbh Penta-or tetrapeptide binding to somatostatin receptors and the use of the same
US7985422B2 (en) * 2002-08-05 2011-07-26 Torrent Pharmaceuticals Limited Dosage form
US8620406B2 (en) 2004-01-23 2013-12-31 Boston Scientific Scimed, Inc. Medical devices visible by magnetic resonance imaging
EP1718145A4 (en) 2004-02-02 2012-03-07 Biosight Ltd Conjugates for cancer therapy and diagnosis
EP2455072A1 (en) 2005-03-11 2012-05-23 Endo Pharmaceuticals Solutions Inc. Controlled release formulations of octreotide
DE602005014442D1 (en) 2005-03-11 2009-06-25 Gpc Biotech Ag Antiproliferative combination therapy with satraplatin or JM118 and docetaxel
JP2009536186A (en) 2006-05-08 2009-10-08 アステックス・セラピューティクス・リミテッド Pharmaceutical combinations of diazole derivatives for cancer treatment
WO2008027837A2 (en) 2006-08-28 2008-03-06 The Regents Of The University Of California Small molecule potentiator of hormonal therapy for breast cancer
CN101138634A (en) 2006-09-07 2008-03-12 于保法 Composition for treating tumour
CN101045041A (en) 2007-04-29 2007-10-03 武汉兵兵药业有限公司 Cataplasma containing ibuprofen its preparing method and application
WO2009040022A2 (en) 2007-09-11 2009-04-02 Mondobiotech Laboratories Ag Use of a peptide as a therapeutic agent
WO2009054001A1 (en) 2007-10-22 2009-04-30 Biocon Limited A pharmaceutical composition and a process thereof
CN101965192A (en) 2008-03-07 2011-02-02 法马马有限公司 Antitumoral treatments
WO2009131631A1 (en) 2008-04-14 2009-10-29 Poniard Pharmaceuticals, Inc. Rapamycin analogs as anti-cancer agents
WO2010022243A1 (en) 2008-08-20 2010-02-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Chemoprevention of head and neck squamous cell carcinomas
US8110578B2 (en) 2008-10-27 2012-02-07 Signal Pharmaceuticals, Llc Pyrazino[2,3-b]pyrazine mTOR kinase inhibitors for oncology indications and diseases associated with the mTOR/PI3K/Akt pathway
CN102612564B (en) 2009-04-10 2015-08-26 齐海燕 New anti-ageing reagent and discrimination method thereof
WO2011112576A1 (en) 2010-03-10 2011-09-15 Ambrilia Biopharma Inc. Microspheres for sustained release of octreotide acetate
JP2013527155A (en) 2010-04-16 2013-06-27 ダボス ライフ サイエンス ピーティーイー. リミテッド Synergistic interaction of at least one vitamin E component and tyrosinase inhibitor for dermatological applications
US20130183263A1 (en) * 2012-01-17 2013-07-18 Steven Hoffman Pharmaceutical compositions and methods
US8481498B1 (en) 2012-01-17 2013-07-09 Steven Hoffman Pharmaceutical compositions and methods
ES2706070T3 (en) 2012-01-17 2019-03-27 Tyme Inc Combination therapy for cancer treatment
CA2968046A1 (en) 2014-12-23 2016-06-30 Steven Hoffman Transdermal formulations

Also Published As

Publication number Publication date
US20130183263A1 (en) 2013-07-18
US10307465B2 (en) 2019-06-04
US9549969B2 (en) 2017-01-24
US20170274051A1 (en) 2017-09-28
US20160263149A1 (en) 2016-09-15
US9895425B2 (en) 2018-02-20
US10010590B2 (en) 2018-07-03
US20160263198A1 (en) 2016-09-15
US20150290279A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
US10307465B2 (en) Pharmaceutical compositions and methods
EP2804599B1 (en) Combination therapy for the treatment of cancer
US11052068B2 (en) Pharmaceutical compositions and methods
US20130184214A1 (en) Pharmaceutical compositions and methods
CA3040922A1 (en) Pharmaceutical compositions and methods for the treatment of cancer
US20210386832A1 (en) Pharmaceutical Compositions And Methods
US11103559B2 (en) Pharmaceutical compositions and methods
EA042139B1 (en) PHARMACEUTICAL COMPOSITIONS AND METHODS FOR CANCER TREATMENT

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

AS Assignment

Owner name: TYME, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOFFMAN, STEVEN;REEL/FRAME:059892/0866

Effective date: 20140703