US20160369152A1 - Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations - Google Patents

Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations Download PDF

Info

Publication number
US20160369152A1
US20160369152A1 US15251874 US201615251874A US2016369152A1 US 20160369152 A1 US20160369152 A1 US 20160369152A1 US 15251874 US15251874 US 15251874 US 201615251874 A US201615251874 A US 201615251874A US 2016369152 A1 US2016369152 A1 US 2016369152A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
fluid
settable spacer
spacer fluid
present disclosure
pumicite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15251874
Inventor
Gunnar Lende
Jeffery Dwane Karcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/424Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells using "spacer" compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/40Spacer compositions, e.g. compositions used to separate well-drilling from cementing masses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like

Abstract

Methods and compositions for the treatment of subterranean formations, and more specifically, treatment fluids containing pumicite and methods of using these treatment fluids in subterranean formations, are provided. An example of a method is a method of displacing a fluid in a well bore. Another example of a method is a method of separating fluids in a well bore in a subterranean formation. An example of a composition is a settable spacer fluid comprising pumicite, an activating agent, and a base fluid.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 13/630,507, entitled “Settable Spacer Fluids Comprising Pumicite and Methods of Using Such Fluids in Subterranean Formations,” filed Sep. 28, 2012, which is a continuation-in-part of U.S. patent application Ser. No. 12/613,788, entitled “Improved Treatment Fluids Comprising Pumicite and Methods of Using Such Fluids in Subterranean Formations,” filed Nov. 6, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 11/844,188, entitled “Treatment Fluids Comprising Vitrified Shale and Methods of Using Such Fluids in Subterranean Formations,” filed Aug. 23, 2007, which is a divisional application of U.S. Pat. No. 7,293,609, entitled “Treatment Fluids Comprising Vitrified Shale and Methods of Using Such Fluids in Subterranean Formations,” filed Oct. 20, 2004, the entireties of which are herein incorporated by reference.
  • BACKGROUND
  • The present disclosure relates to subterranean treatment operations, and more particularly, to improved treatment fluids comprising pumicite, and methods of using these improved treatment fluids in subterranean formations.
  • Treatment fluids are used in a variety of operations that may be performed in subterranean formations. As referred to herein, the term “treatment fluid” will be understood to mean any fluid that may be used in a subterranean application in conjunction with a desired function and/or for a desired purpose. The term “treatment fluid” does not imply any particular action by the fluid. Treatment fluids often are used in, e.g., well drilling, completion, and stimulation operations. Examples of such treatment fluids include, inter alia, drilling fluids, well cleanup fluids, workover fluids, conformance fluids, gravel pack fluids, acidizing fluids, fracturing fluids, spacer fluids, and the like.
  • Spacer fluids often are used in oil and gas wells to facilitate improved displacement efficiency when displacing multiple fluids into a well bore. For example, spacer fluids often may be placed within a subterranean formation so as to physically separate incompatible fluids. Spacer fluids also may be placed between different drilling fluids during drilling-fluid changeouts, or between a drilling fluid and a completion brine.
  • Spacer fluids also may be used in primary or remedial cementing operations to separate, inter alia, a drilling fluid from a cement composition that may be placed in an annulus between a casing string and the subterranean formation, or in the wellbore or inside a casing string, whether the cement composition is placed in the annulus in either the conventional or reverse-circulation direction. The cement composition often is intended, inter alia, to set in the annulus, supporting and positioning the casing string, and bonding to both the casing string and the formation to form a substantially impermeable barrier, or cement sheath, which facilitates zonal isolation. The cement composition may also set inside the casing or inside the wellbore. If the spacer fluid does not adequately displace the drilling fluid from the annulus, or the cement slurry does not adequately displace the spacer from the annulus, the cement composition may fail to bond to the casing string and/or the formation to the desired extent, or pockets of drilling fluid and/or spacer fluid may be left which could compromise the hydraulic isolation. In certain circumstances, spacer fluids also may be placed in subterranean formations to ensure that all down hole surfaces are water-wetted before the subsequent placement of a cement composition, which may enhance the bonding that occurs between the cement composition and the water-wetted surfaces.
  • Conventional treatment fluids, including spacer fluids, often comprise materials that are costly and that, in certain circumstances, may become unstable at elevated temperatures. This is problematic, inter alia, because it may increase the cost of subterranean operations involving the treatment fluid.
  • Treatment fluids comprising vitrified shale may contain crystalline silica. For example, vitrified shale may contain about 16% crystalline silica and amorphous silica Crystalline silica is an inhalation hazard and can lead to health problems, such as silicosis, with extended exposure.
  • SUMMARY OF THE DISCLOSURE
  • The present disclosure relates to subterranean treatment operations, and more particularly, to improved treatment fluids comprising pumicite, and methods of using these improved treatment fluids in subterranean formations.
  • In one embodiment, the present disclosure provides a settable spacer fluid comprising pumicite, an activating agent, and a base fluid.
  • In another embodiment, the present disclosure provides a method of using a settable fluid in a well bore, comprising: providing a well bore having a first fluid disposed therein; placing a second fluid into the well bore to displace at least a portion of the first fluid therefrom, wherein the second fluid comprises pumicite, an activating agent, and a base fluid; and allowing the second fluid to a least partially set in the well bore.
  • In another embodiment, the present disclosure provides a method of displacing a fluid in a well bore, comprising: providing a well bore having a first fluid disposed therein; placing a second fluid into the well bore to displace at least a portion of the first fluid therefrom, wherein the second fluid comprises pumicite, an activating agent, and a base fluid; placing a cement composition into the well bore to displace at least a first portion of the second fluid therefrom, wherein at least a second portion of the first fluid remains therein; allowing the cement composition to at least partially set in the well bore; and allowing the second portion of second fluid to at least partially set in the well bore.
  • The features and advantages of the present disclosure will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments that follows.
  • DETAILED DESCRIPTION
  • The present disclosure relates to subterranean treatment operations, and more particularly, to improved treatment fluids comprising pumicite, and methods of using these improved treatment fluids in subterranean formations. The treatment fluids of the present disclosure are suitable for use in a variety of subterranean treatment applications, including well drilling, cementing, completion, and stimulation operations.
  • The treatment fluids of the present disclosure generally comprise pumicite and a base fluid. Optionally, the treatment fluids of the present disclosure may comprise additional additives as may be required or beneficial for a particular use. For example, the treatment fluids of the present disclosure may include other additives such as viscosifying agents, organic polymers, dispersants, surfactants, weighting agents, vitrified shale, and any combinations thereof.
  • The pumicite utilized in the treatment fluids of the present disclosure generally comprises any volcanic or similar material full of cavities and very light in weight. The term “pumicite” as used herein refers to a volcanic rock such as solidified frothy lava. In some embodiments of the present disclosure, the pumicite may be an amorphous aluminum silicate, containing less crystalline silica than vitrified shale. In certain embodiments, the pumicite may contain less than 1% crystalline silica. In certain embodiments of the present disclosure, the pumicite is sized to pass through a 200 mesh screen (DS-200). The pumicite may be cheaper and/or safer than vitrified shale, and may be useful in environmentally sensitive regions.
  • In certain embodiments of the present disclosure, pumicite is present in the treatment fluids of the present disclosure in an amount in the range of from about 0.01% to about 90% by weight of the treatment fluid. In other embodiments of the present disclosure, the pumicite is present in the treatment fluids of the present disclosure in an amount in the range of from about 1% to about 20% by weight of the treatment fluid. In other embodiments of the present disclosure, the pumicite is present in the treatment fluids of the present disclosure in an amount in the range of from about 10% to about 40% by weight of the treatment fluid. One skilled in the art, with the benefit of this disclosure, will recognize a suitable amount of pumicite for a particular application.
  • The base fluid utilized in the treatment fluids of the present disclosure may comprise an aqueous-based fluid, an oil-based fluid, a synthetic fluid, or an emulsion. In certain embodiments of the present disclosure, the base fluid may be an aqueous-based fluid that comprises fresh water, salt water, brine, sea water, or a mixture thereof. In certain embodiments of the present disclosure, the base fluid may be an aqueous-based fluid that may comprise cesium and/or potassium formate. The base fluid can be from any source provided that it does not contain compounds that may adversely affect other components in the treatment fluid. The base fluid may be from a natural or synthetic source. In certain embodiments of the present disclosure, the base fluid may comprise a synthetic fluid such as, but not limited to, esters, ethers, and olefins. Generally, the base fluid will be present in the treatment fluids of the present disclosure in an amount sufficient to form a pumpable slurry. In certain embodiments, the base fluid will be present in the treatment fluids of the present disclosure in an amount in the range of from about 15% to about 95% by weight of the treatment fluid. In other embodiments, the base fluid will be present in the treatment fluids of the present disclosure in an amount in the range of from about 25% to about 85% by weight of the treatment fluid. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of base fluid to use for a chosen application.
  • Optionally, the treatment fluids of the present disclosure further may comprise a viscosifying agent. The viscosifying agent may be any component suitable for providing a desired degree of solids suspension. The choice of a viscosifying agent depends upon factors such as the desired viscosity and the desired chemical compatibility with other fluids (e.g., drilling fluids, cement compositions, and the like). In certain embodiments of the present disclosure, the viscosifying agent may be easily flocculated and filtered out of the treatment fluids of the present disclosure. Suitable viscosifying agents may include, but are not limited to, colloidal agents (e.g., clays, polymers, guar gum), emulsion forming agents, diatomaceous earth, starches, biopolymers, synthetic polymers, or mixtures thereof. Suitable viscosifying agents often are hydratable polymers that have one or more functional groups. These functional groups include, but are not limited to, hydroxyl groups, carboxyl groups, carboxylic acids, derivatives of carboxylic acids, sulfate groups, sulfonate groups, phosphate groups, phosphonate groups, and amino groups. In certain embodiments of the present disclosure, viscosifying agents may be used that comprise hydroxyl groups and/or amino groups. In certain embodiments of the present disclosure, the viscosifying agents may be biopolymers, and derivatives thereof, that have one or more of these monosaccharide units: galactose, mannose, glucoside, glucose, xylose, arabinose, fructose, glucuronic acid, or pyranosyl sulfate. Examples of suitable biopolymers include, but are not limited to, guar gum and derivatives thereof, such as hydroxypropyl guar and carboxymethyl hydroxypropyl guar, and cellulose derivatives, such as hydroxyethyl cellulose, welan gums, and xanthan gums. Additionally, synthetic polymers that contain the above-mentioned functional groups may be used. Examples of such synthetic polymers include, but are not limited to, poly(acrylate), poly(methacrylate), poly(ethylene imine), poly(acrylamide), poly(vinyl alcohol), and poly(vinylpyrrolidone). Other suitable viscosifying agents include chitosans, starches and gelatins. Suitable clays include kaolinites, montmorillonite, bentonite, hydrous micas, attapulgite, sepiolite, and the like, as well as synthetic clays, such as laponite. An example of a suitable viscosifying agent is a hydroxyethyl cellulose that is commercially available under the trade name “WG-17” from Halliburton Energy Services, Inc., of Duncan, Okla. Another example of a suitable viscosifying agent is a welan gum that is commercially available under the trade name “BIOZAN” from Kelco Oilfield Services, Inc. Where included, the viscosifying agent may be present in the treatment fluids of the present disclosure in an amount sufficient to provide a desired degree of solids suspension. In certain embodiments, the viscosifying agent may be present in an amount in the range from about 0.01% to about 35% by weight of the treatment fluid. In other embodiments, the viscosifying agent may be present in an amount in the range from about 0.5% to about 2% by weight of the treatment fluid. In certain embodiments of the present disclosure wherein the treatment fluids will be exposed to elevated pH conditions (e.g., when the treatment fluids will be contacted with cement compositions), viscosifying agents such as welan gum, cellulose (and cellulose derivatives), and xanthan gum may be particularly suitable. One of ordinary skill in the art, with the benefit of this disclosure, will be able to identify a suitable viscosifying agent, as well as the appropriate amount to include, for a particular application.
  • Optionally, the treatment fluids of the present disclosure further may comprise a fluid loss control additive. Any fluid loss control additive suitable for use in a subterranean application may be suitable for use in the compositions and methods of the present disclosure. In certain embodiments, the fluid loss control additive may comprise organic polymers, starches, or fine silica. An example of a fine silica that may be suitable is commercially available from Halliburton Energy Services, Inc. under the trade name “WAC-9.” An example of a starch that may be suitable is commercially available from Halliburton Energy Services, Inc. under the trade name “DEXTRID.” In certain embodiments where the treatment fluids of the present disclosure comprise a fluid loss control additive, the fluid loss control additive may be present in the treatment fluids of the present disclosure in an amount in the range from about 0.01% to about 6% by weight of the treatment fluid. In other embodiments, the fluid loss control additive may be present in the treatment fluids of the present disclosure in an amount in the range from about 0.05% to about 1% by weight of the treatment fluid. One skilled in the art, with the benefit of this disclosure, will recognize the appropriate amount of a fluid loss control additive to use for a particular application.
  • Optionally, the treatment fluids of the present disclosure may comprise a dispersant. Suitable examples of dispersants include, but are not limited to, sulfonated styrene maleic anhydride copolymer, sulfonated vinyl toluene maleic anhydride copolymer, sodium naphthalene sulfonate condensed with formaldehyde, sulfonated acetone condensed with formaldehyde, lignosulfonates (e.g., modified sodium lignosulfonate), allyloxybenzene sulfonate, allyl sulfonate and non-ionic monomers, and interpolymers of acrylic acid. An example of a dispersant that may be suitable is commercially available from National Starch & Chemical Company of Newark, N.J. under the trade name “Alcosperse 602 ND,” and is a mixture of 6 parts sulfonated styrene maleic anhydride copolymer to 3.75 parts interpolymer of acrylic acid. Another example of a dispersant that may be suitable is a modified sodium lignosulfonate that is commercially available from Halliburton Energy Services, Inc., of Duncan, Okla., under the trade name “HR®-5. ” Where included, the dispersant may be present in an amount in the range from about 0.0001% to about 4% by weight of the treatment fluid. In other embodiments, the dispersant may be present in an amount in the range from about 0.0003% to about 1% by weight of the treatment fluid. One skilled in the art, with the benefit of this disclosure, will recognize the appropriate amount of dispersant for inclusion in the treatment fluids of the present disclosure for a particular application.
  • Optionally, the treatment fluids of the present disclosure may comprise surfactants. Suitable examples of surfactants include, but are not limited to, nonylphenol ethoxylates, alcohol ethoxylates, sugar lipids, a-olefinsulfonates, alkylpolyglycosides, alcohol sulfates, salts of ethoxylated alcohol sulfates, alkyl amidopropyl dimethylamine oxides, and alkene amidopropyl dimethylamine oxides. An example of a surfactant that may be suitable comprises an oxyalkylatedsulfonate, and is commercially available from Halliburton Energy Services, Inc. under the trade name “STABILIZER 434C.” Another surfactant that may be suitable comprises an alkylpolysaccharide, and is commercially available from Seppic, Inc. of Fairfield, N.J. under the trade designation “SIMUSOL-10.” Another surfactant that may be suitable comprises ethoxylated nonylphenols, and is commercially available under the trade name “DUAL SPACER SURFACTANT A” from Halliburton Energy Services, Inc. Where included, the surfactant may be present in an amount in the range from about 0.01% to about 10% by weight of the treatment fluid. In other embodiments of the present disclosure, the surfactant may be present in an amount in the range from about 0.01% to about 6% by weight of the treatment fluid. One skilled in the art, with the benefit of this disclosure will recognize the appropriate amount of surfactant for a particular application.
  • Optionally, the treatment fluids of the present disclosure may comprise weighting agents. Generally, any weighting agent may be used with the treatment fluids of the present disclosure. Suitable weighting materials may include barium sulfate, hematite, manganese tetraoxide, ilmenite, calcium carbonate, and the like. An example of a suitable hematite is commercially available under the trade name “Hi-Dense® No. 4” from Halliburton Energy Services, Inc. Where included, the weighting agent may be present in the treatment fluid in an amount sufficient to provide a desired density to the treatment fluid. In certain embodiments, the weighting agent may be present in the treatment fluids of the present disclosure in the range from about 0.01% to about 85% by weight. In other embodiments, the weighting agent may be present in the treatment fluids of the present disclosure in the range from about 15% to about 70% by weight. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of weighting agent to use for a chosen application.
  • Optionally, other additives may be added to the treatment fluids of the present disclosure as deemed appropriate by one skilled in the art with the benefit of this disclosure. Examples of such additives include, inter alia, defoamers, curing agents, salts, corrosion inhibitors, scale inhibitors, and formation conditioning agents. One of ordinary skill in the art with the benefit of this disclosure will recognize the appropriate type of additive for a particular application.
  • Certain embodiments of the fluids of the present disclosure may demonstrate improved “300/3” ratios. As referred to herein, the term “300/3” ratio will be understood to mean the value that results from dividing the shear stress that a fluid demonstrates at 300 rpm by the shear stress that the same fluid demonstrates at 3 rpm. When treatment fluids are used as spacer fluids, an ideal “300/3” ratio would closely approximate 1.0, indicating that the rheology of such fluid is flat. Flat rheology will facilitate, inter alia, maintenance of nearly uniform fluid velocities across a subterranean annulus, and also may result in a near-constant shear stress profile. In certain embodiments, flat rheology may reduce the volume of a spacer fluid that is required to effectively clean a subterranean well bore. Certain embodiments of the fluids of the present disclosure may demonstrate 300/3 ratios in the range of from about 1 to about 9. In some embodiments, the range may be from about 2 to about 5. Certain embodiments of the fluids of the present disclosure may maintain a nearly flat rheology across a wide temperature range.
  • The fluids of the present disclosure may be prepared in a variety of ways. In certain embodiments of the present disclosure, the well fluids of the present disclosure may be prepared by first pre-blending the pumicite with certain optional dry additives. Next, the blended dry materials may be mixed with base fluid in the field, either by batch mixing or continuous (“on-the-fly”) mixing. In certain embodiments of the present disclosure wherein the blended dry materials are mixed with base fluid by batch mixing, a weak organic acid and defoamers typically will be premixed into the base fluid. The dry blend then may be added to the base fluid using, e.g., an additive hopper with venturi effects; the mixture of the dry blend and the base fluid also may be agitated, after which the weighting material may be added and agitated. Surfactants may be added to the spacer fluid shortly before it is placed down hole. In certain embodiments of the present disclosure wherein the blended dry materials are mixed with base fluid by continuous mixing, the blended dry materials typically will be further blended with a weighting material, and the resulting mixture may be metered into, e.g., recirculating cement mixing equipment while the base fluid is metered in separately. The base fluid typically will comprise defoamers pre-blended therein. Shortly before the spacer fluid is placed down hole, surfactants may be added to the spacer fluid. In other embodiments, the fluid may be prepared my mixing all but one or some of the components at a first location (for example at a suitable operations base) and then the remaining components may be added at a second location (such as the well location) before the fluid is pumped into the well bore.
  • An example of a method of the present disclosure is a method of displacing a fluid in a well bore, comprising: providing a well bore having a first fluid disposed therein; and placing a second fluid into the well bore to at least partially displace the first fluid therefrom, wherein the second fluid comprises pumicite and a base fluid.
  • Another example of a method of the present disclosure is a method of separating fluids in a well bore in a subterranean formation, comprising: providing a well bore having a first fluid disposed therein; placing a spacer fluid in the well bore to separate the first fluid from a second fluid, the spacer fluid comprising a pumicite and a base fluid; and placing a second fluid in the well bore.
  • An example of a composition of the present disclosure comprises 60.44% barite by weight, 36.26% water by weight, 3.08% pumicite by weight, and 0.22% Fe2 by weight. Another example of a composition of the present disclosure comprises 51.51% water by weight, 42.67% barite by weight, 5.65% pumicite by weight, and 0.17% Fe2 by weight. Yet another example of a composition of the present disclosure comprises 75.93% water by weight, 14.24% barite by weight, 9.74% pumicite by weight, and 0.08% Fe2 by weight.
  • In certain embodiments, the present disclosure provides settable spacer fluids. In other embodiments, the present disclosure provides methods of forming settable spacer fluids by adding an activating agent to the treatment fluids discussed herein. In other embodiments, the present disclosure provides methods of using settable spacer fluids in subterranean formations.
  • The settable spacer fluids may generally comprise pumicite, a base fluid, and an activating agent. Optionally, the settable spacer fluids of the present disclosure may comprise additional additives as may be required or beneficial for a particular use. For example, the settable spacer fluids of the present disclosure may include other additives such as accelerators, viscosifying agents, organic polymers, dispersants, surfactants, weighting agents, vitrified shale, and any combinations thereof.
  • The pumicite utilized in the settable spacer fluids of the present disclosure generally comprises any volcanic or similar material full of cavities and very light in weight. In some embodiments of the present disclosure, the pumicite present in the settable spacer fluids may be an amorphous aluminum silicate, containing less crystalline silica than vitrified shale. In certain embodiments, the pumicite present in the settable spacer fluids may contain less than 1% crystalline silica. In certain embodiments of the present disclosure, the pumicite present in the settable spacer fluids is sized to pass through a 200 mesh screen (DS-200). In other embodiments, the pumicite is sized to pass through a 20 mesh screen or a 325 mesh screen.
  • In certain embodiments of the present disclosure, pumicite may be present in the settable spacer fluids of the present disclosure in an amount in the range of from about 0.01% to about 90% by weight of the settable spacer fluid. In other embodiments of the present disclosure, the pumicite is present in the settable spacer fluids of the present disclosure in an amount in the range of from about 1% to about 80% by weight of the settable spacer fluid. In other embodiments of the present disclosure, the pumicite is present in the settable spacer fluids of the present disclosure in an amount in the range of from about 10% to about 60% by weight of the settable spacer fluid. In other embodiments of the present disclosure, the pumicite is present in the settable spacer fluids of the present disclosure in an amount in the range of from about 20% to about 40% by weight of the settable spacer fluid. In other embodiments of the present disclosure, the pumicite is present in the settable spacer fluids of the present disclosure in an amount in the range of from about 30% to about 35% by weight of the settable spacer fluid. One skilled in the art, with the benefit of this disclosure, will recognize a suitable amount of pumicite for a particular application.
  • The base fluid utilized in the settable spacer fluids of the present disclosure may comprise an aqueous-based fluid, an oil-based fluid, a synthetic fluid, or an emulsion. In certain embodiments of the present disclosure, the base fluid may be an aqueous-based fluid that comprises fresh water, salt water, brine, sea water, or a mixture thereof. In certain embodiments of the present disclosure, the base fluid may be an aqueous-based fluid that may comprise cesium and/or potassium formate. The base fluid can be from any source provided that it does not contain compounds that may adversely affect other components in the settable spacer fluid. The base fluid may be from a natural or synthetic source. In certain embodiments of the present disclosure, the base fluid may comprise a synthetic fluid such as, but not limited to, esters, ethers, and olefins. Generally, the base fluid will be present in the settable spacer fluids of the present disclosure in an amount sufficient to form a pumpable slurry. In certain embodiments, the base fluid will be present in the settable spacer fluids of the present disclosure in an amount in the range of from about 10% to about 95% by weight of the settable spacer fluid. In other embodiments, the base fluid will be present in the settable spacer fluids of the present disclosure in an amount in the range of from about 25% to about 85% by weight of the settable spacer fluid. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of base fluid to use for a chosen application.
  • In certain embodiments, the activating agent may be any material that allows the settable spacer fluids to set in the well bore. In certain embodiments, the activating agent may be a material that comprises a source of calcium or a source of hydroxide. In certain embodiments, the activating agent may comprise lime, calcium chloride, cement, calcium bromide, sodium hexametaphosphate, sodium silicate, or other calcium sources. In certain embodiments, the activating agent may comprise hydrated lime.
  • In certain embodiments, the activating agent may be present in the settable spacer fluids of the present disclosure in an amount sufficient to allow for the settable spacer fluids to set in the well bore. In certain embodiments, the activating agent will be present in the settable spacer fluids of the present disclosure in an amount in the range of from about 0.01% to about 35% by weight of the settable spacer fluid. In certain embodiments, the activating agent will be present in the settable spacer fluids of the present disclosure in an amount in the range of from about 5% to about 10% by weight of the settable spacer fluid. In other embodiments, the mass ratio of activating agent to pumicite may be from about to 1:10 to about 1:2. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of activating agent to use for a chosen application.
  • Optionally, the settable spacer fluids of the present disclosure may further comprise a set accelerator. Generally, any set accelerator may be used with the settable spacer fluids of the present disclosure. One of ordinary skill in the art, with the benefit of this disclosure, will be able to identify a suitable set accelerator for a particular application. Where used, the set accelerator generally will be present in the settable spacer fluid in an amount in the range of from about 0.5% to about 8% by weight of the settable spacer fluid.
  • Optionally, the settable spacer fluids of the present disclosure further may comprise a viscosifying agent. The viscosifying agent may be any component suitable for providing a desired degree of solids suspension. The choice of a viscosifying agent depends upon factors such as the desired viscosity and the desired chemical compatibility with other fluids (e.g., drilling fluids, cement compositions, and the like). In certain embodiments of the present disclosure, the viscosifying agent may be easily flocculated and filtered out of the settable spacer fluids of the present disclosure. Suitable viscosifying agents may include, but are not limited to, colloidal agents (e.g., clays, polymers, guar gum), emulsion forming agents, diatomaceous earth, starches, biopolymers, synthetic polymers, or mixtures thereof. Suitable viscosifying agents often are hydratable polymers that have one or more functional groups. These functional groups include, but are not limited to, hydroxyl groups, carboxyl groups, carboxylic acids, derivatives of carboxylic acids, sulfate groups, sulfonate groups, phosphate groups, phosphonate groups, and amino groups. In certain embodiments of the present disclosure, viscosifying agents may be used that comprise hydroxyl groups and/or amino groups. In certain embodiments of the present disclosure, the viscosifying agents may be biopolymers, and derivatives thereof, that have one or more of these monosaccharide units: galactose, mannose, glucoside, glucose, xylose, arabinose, fructose, glucuronic acid, or pyranosyl sulfate. Examples of suitable biopolymers include, but are not limited to, guar gum and derivatives thereof, such as hydroxypropyl guar and carboxymethyl hydroxypropyl guar, and cellulose derivatives, such as hydroxyethyl cellulose, welan gums, and xanthan gums. Additionally, synthetic polymers that contain the above-mentioned functional groups may be used. Examples of such synthetic polymers include, but are not limited to, poly(acrylate), poly(methacrylate), poly(ethylene imine), poly(acrylamide), poly(vinyl alcohol), and poly(vinylpyrrolidone). Other suitable viscosifying agents include chitosans, starches and gelatins. Suitable clays include kaolinites, montmorillonite, bentonite, hydrous micas, attapulgite, sepiolite, and the like, as well as synthetic clays, such as laponite. An example of a suitable viscosifying agent is a hydroxyethyl cellulose that is commercially available under the trade name “WG-17” from Halliburton Energy Services, Inc., of Duncan, Okla. Another example of a suitable viscosifying agent is a welan gum that is commercially available under the trade name “BIOZAN” from Kelco Oilfield Services, Inc. Where included, the viscosifying agent may be present in the settable spacer fluids of the present disclosure in an amount sufficient to provide a desired degree of solids suspension. In certain embodiments, the viscosifying agent may be present in an amount in the range from about 0.01% to about 35% by weight of the settable spacer fluid. In other embodiments, the viscosifying agent may be present in an amount in the range from about 0.5% to about 2% by weight of the settable spacer fluid. In certain embodiments of the present disclosure wherein the treatment fluids will be exposed to elevated pH conditions (e.g., when the treatment fluids will be contacted with cement compositions), viscosifying agents such as welan gum, cellulose (and cellulose derivatives), and xanthan gum may be particularly suitable. One of ordinary skill in the art, with the benefit of this disclosure, will be able to identify a suitable viscosifying agent, as well as the appropriate amount to include, for a particular application.
  • Optionally, the settable spacer fluids of the present disclosure further may comprise a fluid loss control additive. Any fluid loss control additive suitable for use in a subterranean application may be suitable for use in the compositions and methods of the present disclosure. In certain embodiments, the fluid loss control additive may comprise organic polymers, starches, or fine silica. An example of a fine silica that may be suitable is commercially available from Halliburton Energy Services, Inc. under the trade name “WAC-9.” An example of a starch that may be suitable is commercially available from Halliburton Energy Services, Inc. under the trade name “N-Dril HT Plus.” In certain embodiments where the settable spacer fluids of the present disclosure comprise a fluid loss control additive, the fluid loss control additive may be present in the settable spacer fluids of the present disclosure in an amount in the range from about 0.01% to about 6% by weight of active ingredient. In other embodiments, the fluid loss control additive may be present in the settable spacer fluids of the present disclosure in an amount in the range from about 0.05% to about 2% by weight active ingredient. One skilled in the art, with the benefit of this disclosure, will recognize the appropriate amount of a fluid loss control additive to use for a particular application.
  • Optionally, the settable spacer fluids of the present disclosure may comprise a dispersant. Suitable examples of dispersants include, but are not limited to, sulfonated styrene maleic anhydride copolymer, sulfonated vinyl toluene maleic anhydride copolymer, sodium naphthalene sulfonate condensed with formaldehyde, sulfonated acetone condensed with formaldehyde, lignosulfonates (e.g., modified sodium lignosulfonate), allyloxybenzene sulfonate, allyl sulfonate and non-ionic monomers, and interpolymers of acrylic acid. An example of a dispersant that may be suitable is commercially available from National Starch & Chemical Company of Newark, N.J. under the trade name “Alcosperse 602 ND,” and is a mixture of 6 parts sulfonated styrene maleic anhydride copolymer to 3.75 parts interpolymer of acrylic acid. Another example of a dispersant that may be suitable is a modified sodium lignosulfonate that is commercially available from Halliburton Energy Services, Inc., of Duncan, Okla., under the trade name “CFR-3.” Where included, the dispersant may be present in an amount in the range from about 0.0001% to about 4% by weight of active ingredient. In other embodiments, the dispersant may be present in an amount in the range from about 0.0003% to about 1% by weight of active ingredient. One skilled in the art, with the benefit of this disclosure, will recognize the appropriate amount of dispersant for inclusion in the treatment fluids of the present disclosure for a particular application.
  • Optionally, the settable spacer fluids of the present disclosure may comprise surfactants. Suitable examples of surfactants include, but are not limited to, nonylphenol ethoxylates, alcohol ethoxylates, sugar lipids, a-olefinsulfonates, alkylpolyglycosides, alcohol sulfates, salts of ethoxylated alcohol sulfates, alkyl amidopropyl dimethylamine oxides, and alkene amidopropyl dimethylamine oxides. An example of a surfactant that may be suitable comprises an oxyalkylatedsulfonate, and is commercially available from Halliburton Energy Services, Inc. under the trade name “SEM-8.” Another surfactant that may be suitable comprises an alkylpolysaccharide, and is commercially available from Seppic, Inc. of Fairfield, N.J. under the trade designation “SIMUSOL-10.” Another surfactant that may be suitable comprises ethoxylated nonylphenols, and is commercially available under the trade name “DUAL SPACER SURFACTANT A” from Halliburton Energy Services, Inc. Where included, the surfactant may be present in an amount in the range from about 0.01% to about 10% by weight of the settable spacer fluid. In other embodiments of the present disclosure, the surfactant may be present in an amount in the range from about 0.01% to about 6% by weight of the settable spacer fluid. One skilled in the art, with the benefit of this disclosure will recognize the appropriate amount of surfactant for a particular application.
  • Optionally, the settable spacer fluids of the present disclosure may comprise weighting agents. Generally, any weighting agent may be used with the settable spacer fluids of the present disclosure. Suitable weighting materials may include barite, hematite, manganese tetraoxide, ilmenite, calcium carbonate, crushed rock, silica, cement kiln dust, silica, and the like. An example of a suitable hematite is commercially available under the trade name “Hi-Dense® No. 4” from Halliburton Energy Services, Inc. Where included, the weighting agent may be present in the settable spacer fluid in an amount sufficient to provide a desired density to the settable spacer fluid. In certain embodiments, the weighting agent may be present in the settable spacer fluids of the present disclosure in the range from about 0.01% to about 85% by weight. In other embodiments, the weighting agent may be present in the settable spacer fluids of the present disclosure in the range from about 15% to about 70% by weight. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of weighting agent to use for a chosen application.
  • Optionally, other additives may be added to the settable spacer fluids of the present disclosure as deemed appropriate by one skilled in the art with the benefit of this disclosure. Examples of such additives include, inter alia, strength restoration additives, lost circulation materials, weight reducing additives, friction reducing materials, defoamers, curing agents, salts, corrosion inhibitors, scale inhibitors, and formation conditioning agents. One of ordinary skill in the art with the benefit of this disclosure will recognize the appropriate type of additive for a particular application.
  • Certain embodiments of the settable spacer fluids of the present disclosure may demonstrate improved “300/3” ratios, as defined in paragraph [0024] above. In certain embodiments, the “300/3” ratio for the settable spacer fluids discussed herein may be in the range from about 1 to about 50. In some embodiments, the range may be from about 5 to about 20. In other embodiments, the range may be from about 10 to about 15.
  • The settable spacer fluids of the present disclosure may be prepared in a variety of ways. In certain embodiments of the present disclosure, the settable spacer fluids of the present disclosure may be prepared by first pre-blending the pumicite with certain optional dry additives. Next, the blended dry materials may be mixed with base fluid in the field, either by batch mixing or continuous (“on-the-fly”) mixing. In certain embodiments of the present disclosure wherein the blended dry materials are mixed with base fluid by batch mixing, a weak organic acid and defoamers typically will be premixed into the base fluid. The dry blend then may be added to the base fluid using, e.g., an additive hopper with venturi effects; the mixture of the dry blend and the base fluid also may be agitated, after which the weighting material may be added and agitated. Surfactants may be added to the spacer fluid shortly before it is placed down hole. In certain embodiments of the present disclosure wherein the blended dry materials are mixed with base fluid by continuous mixing, the blended dry materials typically will be further blended with a weighting material, and the resulting mixture may be metered into, e.g., recirculating cement mixing equipment while the base fluid is metered in separately. The base fluid typically will comprise defoamers pre-blended therein. Shortly before the settable spacer fluid is placed down hole, surfactants may be added to the spacer fluid. In other embodiments, the fluid may be prepared my mixing all but one or some of the components at a first location (for example at a suitable operations base) and then the remaining components (such as the activating agent) may be added at a second location (such as the well location) before the fluid is pumped into the well bore.
  • In another embodiment, a settable spacer fluid may be prepared by adding the activating agent and/or the pumicite to an existing well bore fluid. In certain embodiments, the activating agent and/or the pumicite may be added to the existing well bore fluid while it is present in the well bore or after it has been removed from the well bore. For example, in certain embodiments a settable spacer fluid may be prepared by adding an activating agent and/or pumicite to a drilling fluid present in the well bore after a drilling operation has been performed. In other embodiments, a settable spacer fluid may be prepared by adding an activating agent and/or pumicite to a drilling fluid that has been removed from well bore after a drilling operation has been performed. In certain embodiments, the drilling fluid may comprise pumicite.
  • An example of a method of the present disclosure is a method of displacing a fluid in a well bore, comprising: providing a well bore having a first fluid disposed therein; placing a second fluid into the well bore to at least partially displace the first fluid therefrom, wherein the second fluid comprises pumicite, a base fluid, and an activating agent; and allowing the second fluid to set in the well bore.
  • Another example of a method of the present disclosure is a method of separating fluids in a well bore in a subterranean formation, comprising: providing a well bore having a first fluid disposed therein; placing a second fluid into the well bore to displace at least a portion of the first fluid therefrom, wherein the second fluid comprises pumicite, an activating agent, and a base fluid; and allowing the second fluid to a least partially set in the well bore.
  • Another example of a method of the present disclosure is a method of separating fluids in a well bore in a subterranean formation, comprising: providing a well bore having a first fluid disposed therein; placing a second fluid into the well bore to displace at least a portion of the first fluid therefrom, wherein the second fluid comprises pumicite, an activating agent, and a base fluid; placing a cement composition into the well bore to displace at least a first portion of the second fluid therefrom, wherein at least a second portion of the first fluid remains therein; allowing the cement composition to at least partially set in the well bore; and allowing the second portion of second fluid to at least partially set in the well bore.
  • To facilitate a better understanding of the present disclosure, the following examples of preferred embodiments are given. In no way should the following examples be read to limit, or to define, the scope of the disclosure.
  • EXAMPLES Example 1
  • Rheological testing was performed on a variety of sample compositions that were prepared as follows. First, all dry components (e.g., pumicite, or vitrified shale, or zeolite, or fumed silica, plus dry additives such as, for example, hydroxyethylcellulose, BIOZAN, citric acid, barite, and sodium lignosulfonate) were weighed into a glass container having a clean lid, and thoroughly agitated by hand until well blended. Tap water then was weighed into a Waring blender jar, and the blender turned on at 3,000-4,000 rpm. While the blender continued to turn, the blended dry components were added along with 2 drops of a standard, glycol-based defoamer. The blender speed then was maintained at 3,000-4,000 rpm for about 5 minutes.
  • Rheological values then were determined using a Chan model 35 viscometer. Dial readings were recorded at speeds of 3, 6, 30, 60, 100, 200, and 300 RPM with a B1 bob, an R1 rotor, and a 1.0 spring.
  • Sample Composition No. 1 comprised a 16 pound per gallon slurry of shale, 29.6 grams Tuned Spacer III (“TS III”) blend, 580.9 grams barite, 348.5 grams water, and 2.13 grams Fe2.
  • Sample Composition No. 2 replaced the shale with DS-200 pumicite, and comprised a 16 pound per gallon slurry of DS-200 pumicite, 29.6 grams TS III blend, 580.9 grams barite, 348.5 grams water, and 2.13 grams Fe2.
  • Sample Composition No. 3 comprised a 13 pound per gallon slurry of shale, 44.1 grams TS III blend, 333.2 grams barite, 402.2 grams water, and 1.32 grams Fe2.
  • Sample Composition No. 4 replaced the shale with DS-200 pumicite, and comprised a 13 pound per gallon slurry of DS-200 pumicite, 44.1 grams TS III blend, 333.2 grams barite, 402.2 grams water, and 1.32 grams Fe2.
  • Sample Composition No. 5 comprised a 10 pound per gallon slurry of shale, 58.5 grams TS III blend, 85.5 grams barite, 455.9 grams water, and 0.5 grams Fe2.
  • Sample Composition No. 6 replaced the shale with DS-200 pumicite, and comprised a 10 pound per gallon slurry of DS-200 pumicite, 58.5 grams TS III blend, 85.5 grams barite, 455.9 grams water, and 0.5 grams Fe2.
  • The results of the testing are set forth in Table 1 below. The abbreviation “PV” stands for plastic viscosity, while the abbreviation “YP” refers to yield point.
  • TABLE 1
    Temp. Cement Viscometer RPM 300/3
    Sample (F.) Contamination 300 200 100 60 30 6 3 ratio PV YP
    1 80 none 60 50 38 32.5 27 20 18 3.33 33 27
    2 80 none 68 57 43 36 30 23 21.5 3.16 37.5 30.5
    3 80 none 57 49 39 34 29 21 20 2.85 27 30
    4 80 none 55 44 35 38 23 16 14 3.93 30 25
    5 80 none 39 33 26 23 19 13 12.5 3.12 19.5 19.5
    6 80 none 38 33 27 24 20.5 15 13.5 2.81 16.5 21.5
    1 180 none 51 41.5 31 26 22 15 14 3.64 30 21
    2 180 none 45 38 29 24.5 20.5 15 14.5 3.10 24 21
    3 180 none 50 42.5 34 30.5 26 20.5 19 2.63 24 26
    4 180 none 40 34 27 23 19 14 13 3.08 18.5 21.5
    5 180 none 38 32 27 24 20 17 15 2.53 16.5 21.5
    6 180 none 37 32 26 23.5 20.5 15.5 14 2.64 16.5 20.5
    1 80 0.50% 73 62 49 42 36 27 26 2.81 36 37
    2 80 0.50% 77 66 51 46 38 30 28 2.75 39 38
    4 80 0.50% 52 45 37 33.5 29 21 20 2.6 22.5 29.5
    1 180 0.50% 100 82 66 58 52 45 44 2.27 51 49
    2 180 0.50% 110 92 74 66 61 50 50 2.20 54 56
    4 180 0.50% 60 52 42 36 30.5 22 20 3.00 27 33
    1 80   1% 72 60 46 39 32 24 22 3.27 39 33
    1 180   1% 77 63 48 41 35 28 26 2.96 43.5 33.5
    1 80   2% 67 56 41 34 27 19 17 3.94 39 28
    1 180   2% 85 69 51 43 36 27 25.5 3.33 49.5 30.5
    1 80   3% 68 56 41 34 27 18 16 4.25 40.5 27.5
    2 80   3% 60 50 37 30 24 15.5 13 4.62 34.5 25.5
    1 180   3% 80 64 47 38.5 21 22 21 3.81 49.5 30.5
    2 180   3% 76 62 45 36 29 18 17 4.47 46.5 29.5
    1 80   5% 65 53 39 31.5 26 17 15 4.33 39 26
    1 180   5% 78 63 46 37.5 31 21 19 4.10 48 30
  • Example 2
  • A series of various tests were performed on a variety of sample compositions that were prepared as follows. First, all dry components (e.g., pumicite and lime, plus dry additives) were weighed into a glass container having a clean lid, and thoroughly agitated by hand until well blended. The liquid additives were measured out in suitable syringes. Tap water then was weighed into a Waring blender jar, and the blender turned on at 3,000-4,000 rpm. While the blender continued to turn, the liquid and blended dry components were added along with 2 drops of a standard, glycol-based defoamer. The blender speed then was maintained at 3,000-4,000 rpm for about 5 minutes. This mixing sequence was repeated for the number of times it took to allow for the testing that was necessary.
  • Rheological values then were determined using a Chan model 35 viscometer. Dial readings were recorded at speeds of 3, 6, 30, 60, 100, 200, and 300 RPM with a B1 bob, an R1 rotor, and a 1.0 spring.
  • A sample composition comprised 600 kg/m3 of pumicite, 504.6 l/m3 water, 367.95 kg/m3 barite, 50 l/m3 of fluid loss control agent, 100 kg/m3 of KCl, 167 kg/m3 of lime, 3 l/m3 of defoamer, and 24 l/m3 of surfactant. The measured thickening time for this composition was 48 hours and 47 minutes at 118° F. The measured thickening time for the composition was then determined to be 20 hours and 2 minutes at 200° F. The composition was tested for strength development using an ultrasonic cement analyzer. A value of 523 psi at 48 hours was measured. After a 7 day cure, some mechanical properties were measured by using a destructive test method. The composition had a tensile strength of 208 psi, a Young's Modulus of 413,000 psi, a Poissons Ratio of 0.179, and a compressive strength of 1,091 psi.
  • The results of the rheology testing for the sample composition at 68° F. and 118° F. in units of centipoise are set forth in Table 2 below.
  • TABLE 2
    RPM Viscosity at 68° F. (cp) Viscosity at 118° F. (cp)
    600
    300 141 92
    200 104 64.5
    100 60 38.5
    60 43 28
    30 27 21
    6 14 10.5
    3 4 6.5
  • The above Examples demonstrates, inter alia, that the improved treatment fluids of the present disclosure comprising pumicite and a base fluid may be suitable for use in treating subterranean formations. One having ordinary skill in the art will appreciate that vitrified shale may be used in conjunction with the pumicite disclosed herein.
  • Therefore, the present disclosure is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present disclosure. While compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an”, as used in the claims, are defined herein to mean one or more than one of the element that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.

Claims (20)

    What is claimed is:
  1. 1. A settable spacer fluid comprising pumicite, an activating agent, and a base fluid.
  2. 2. The settable spacer fluid of claim 1, wherein the activating agent comprises at least one activating agent selected from the group consisting of: lime;
    calcium chloride; calcium bromide; sodium hexametaphosphate; sodium silicate; sodium sulfate; and any combination thereof.
  3. 3. The settable spacer fluid of claim 1, further comprising a set accelerator.
  4. 4. The settable spacer fluid of claim 1, wherein the pumicite is present in an amount from about 0.01% to about 90% by weight of the settable spacer fluid.
  5. 5. The settable spacer fluid of claim 1, wherein the pumicite is present in an amount from about 1% to 20% by weight of the settable spacer fluid.
  6. 6. The settable spacer fluid of claim 1, wherein the pumicite is present in an amount from about 10% to 40% by weight of the settable spacer fluid.
  7. 7. The settable spacer fluid of claim 1, wherein the activating agent is present in an amount from about 0.01% to about 35% by weight of the settable spacer fluid.
  8. 8. The settable spacer fluid of claim 1, wherein the activating agent is present in an amount from about 5% to about 10% by weight of the settable spacer fluid
  9. 9. The settable spacer fluid of claim 1, wherein the base fluid comprises at least one fluid selected from the group consisting of: an aqueous-based fluid, an emulsion, a synthetic fluid, an oil-based fluid, and any combination thereof.
  10. 10. The settable spacer fluid of claim 1, wherein the 300/3 ratio of the settable spacer fluid is from about 1 to about 50.
  11. 11. The settable spacer fluid of claim 1, wherein the 300/3 ratio of the settable spacer fluid is from about 5 to about 20.
  12. 12. The settable spacer fluid of claim 1, wherein the 300/3 ratio of the settable spacer fluid is from about 10 to about 15.
  13. 13. The settable spacer fluid of claim 1, wherein the pumicite comprises less than 1% crystalline silica by weight.
  14. 14. The settable spacer fluid of claim 1, wherein the pumicite comprises particulates that are sized to pass through a 20 mesh screen.
  15. 15. The settable spacer fluid of claim 1, wherein the pumicite comprises particulates that are sized to pass through a 200 mesh screen.
  16. 16. The settable spacer fluid of claim 1, wherein the pumicite comprises particulates that are sized to pass through a 325 mesh screen.
  17. 17. The settable spacer fluid of claim 1, wherein the base fluid is present in an amount from about 15% to about 95% by weight of the settable spacer fluid.
  18. 18. The settable spacer fluid of claim 1, wherein the base fluid is present in an amount from about 25% to about 85% by weight of the settable spacer fluid.
  19. 19. The settable spacer fluid of claim 1, wherein the settable spacer fluid additionally comprises a set accelerator.
  20. 20. The settable spacer fluid of claim 1, wherein the settable spacer fluid additionally comprises a weighting agent.
US15251874 2004-10-20 2016-08-30 Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations Abandoned US20160369152A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10969570 US7293609B2 (en) 2004-10-20 2004-10-20 Treatment fluids comprising vitrified shale and methods of using such fluids in subterranean formations
US11844188 US20070284103A1 (en) 2004-10-20 2007-08-23 Treatment Fluids Comprising Vitrified Shale and Methods of Using Such Fluids in Subterranean Formations
US12613788 US20100044057A1 (en) 2004-10-20 2009-11-06 Treatment Fluids Comprising Pumicite and Methods of Using Such Fluids in Subterranean Formations
US13630507 US9512345B2 (en) 2004-10-20 2012-09-28 Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations
US15251874 US20160369152A1 (en) 2004-10-20 2016-08-30 Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15251874 US20160369152A1 (en) 2004-10-20 2016-08-30 Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13630507 Division US9512345B2 (en) 2004-10-20 2012-09-28 Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations

Publications (1)

Publication Number Publication Date
US20160369152A1 true true US20160369152A1 (en) 2016-12-22

Family

ID=48779178

Family Applications (2)

Application Number Title Priority Date Filing Date
US13630507 Active US9512345B2 (en) 2004-10-20 2012-09-28 Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations
US15251874 Abandoned US20160369152A1 (en) 2004-10-20 2016-08-30 Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13630507 Active US9512345B2 (en) 2004-10-20 2012-09-28 Settable spacer fluids comprising pumicite and methods of using such fluids in subterranean formations

Country Status (1)

Country Link
US (2) US9512345B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2533704A (en) * 2013-09-09 2016-06-29 Halliburton Energy Services Inc Yielding of hydrated lime in set-delayed and other settable compositions
WO2018136032A1 (en) * 2017-01-17 2018-07-26 Halliburton Energy Services, Inc. Treatment fluids comprising synthetic silicates and methods for use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689208B1 (en) * 2003-06-04 2004-02-10 Halliburton Energy Services, Inc. Lightweight cement compositions and methods of cementing in subterranean formations
US6776237B2 (en) * 2000-09-18 2004-08-17 Halliburton Energy Services, Inc. Lightweight well cement compositions and methods
US20090266543A1 (en) * 2008-04-28 2009-10-29 Halliburton Energy Services, Inc. Gelation Inhibiting Retarders for Highly Reactive Calcium Silicate Based Binder Compositions and Methods of Making and Using Same
US7867954B2 (en) * 2007-10-22 2011-01-11 Sanjel Limited Partnership Pumice containing compositions for cementing a well

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848051A (en) * 1954-03-22 1958-08-19 Atlantic Refining Co Method for improving well cementing jobs
US2987411A (en) 1957-11-19 1961-06-06 Corson G & W H Light weight aggregate and method of making same
US3220863A (en) 1958-07-07 1965-11-30 Halliburton Co Well cementing compositions
US3042608A (en) 1961-04-17 1962-07-03 George R Morris Additive for a well servicing composition
US3360040A (en) 1965-07-30 1967-12-26 Peerless Of America Heat exchanger elements
US3557876A (en) * 1969-04-10 1971-01-26 Western Co Of North America Method and composition for drilling and cementing of wells
US3798836A (en) 1972-12-04 1974-03-26 Dow Chemical Co A hydroponic bed for growing plants
US3896031A (en) 1973-04-20 1975-07-22 Halliburton Co Preparation of colloidal solid suspensions in aqueous solutions
CA1023239A (en) 1973-05-01 1977-12-27 Leroy L. Carney Water-in-oil emulsions and emulsifiers for preparing the same
US3850248A (en) 1973-11-19 1974-11-26 Halliburton Co Method of using a spacer fluid for spacing drilling muds and cement
US4217229A (en) 1976-09-20 1980-08-12 Halliburton Company Oil well spacer fluids
US4141843A (en) 1976-09-20 1979-02-27 Halliburton Company Oil well spacer fluids
US4233162A (en) 1978-02-07 1980-11-11 Halliburton Company Oil well fluids and dispersants
US4276182A (en) 1978-05-19 1981-06-30 The Western Company Of North America High temperature cement mud spacer
US4498995A (en) 1981-08-10 1985-02-12 Judith Gockel Lost circulation drilling fluid
US4536297A (en) 1982-01-28 1985-08-20 Halliburton Company Well drilling and completion fluid composition
US4530402A (en) 1983-08-30 1985-07-23 Standard Oil Company Low density spacer fluid
US4524828A (en) 1983-10-11 1985-06-25 Halliburton Company Method of using thixotropic cements for combating gas migration problems
US4588032A (en) 1984-08-09 1986-05-13 Halliburton Company Fluid spacer composition for use in well cementing
US4717488A (en) 1986-04-23 1988-01-05 Merck Co., Inc. Spacer fluid
GB8926885D0 (en) 1989-11-28 1990-01-17 Albright & Wilson Drilling fluids
US5515921A (en) 1989-12-27 1996-05-14 Shell Oil Company Water-base mud conversion for high tempratice cementing
US5309999A (en) 1992-10-22 1994-05-10 Shell Oil Company Cement slurry composition and method to cement wellbore casings in salt formations
US5361842A (en) 1993-05-27 1994-11-08 Shell Oil Company Drilling and cementing with blast furnace slag/silicate fluid
US5566760A (en) 1994-09-02 1996-10-22 Halliburton Company Method of using a foamed fracturing fluid
US5716910A (en) 1995-09-08 1998-02-10 Halliburton Company Foamable drilling fluid and methods of use in well drilling operations
US5789352A (en) 1996-06-19 1998-08-04 Halliburton Company Well completion spacer fluids and methods
US5866517A (en) 1996-06-19 1999-02-02 Atlantic Richfield Company Method and spacer fluid composition for displacing drilling fluid from a wellbore
US6180571B1 (en) 1997-07-28 2001-01-30 Monsanto Company Fluid loss control additives and subterranean treatment fluids containing the same
US5904208A (en) 1998-01-21 1999-05-18 Deep South Chemical Method of cleaning a well bore prior to cementing
US5996692A (en) 1998-02-13 1999-12-07 Atlantic Richfield Company Surfactant composition and method for cleaning wellbore and oil field surfaces using the surfactant composition
US6489270B1 (en) 1999-01-07 2002-12-03 Daniel P. Vollmer Methods for enhancing wellbore treatment fluids
US6063738A (en) 1999-04-19 2000-05-16 Halliburton Energy Services, Inc. Foamed well cement slurries, additives and methods
US6283213B1 (en) 1999-08-12 2001-09-04 Atlantic Richfield Company Tandem spacer fluid system and method for positioning a cement slurry in a wellbore annulus
US6908888B2 (en) 2001-04-04 2005-06-21 Schlumberger Technology Corporation Viscosity reduction of viscoelastic surfactant based fluids
US6367550B1 (en) 2000-10-25 2002-04-09 Halliburton Energy Service, Inc. Foamed well cement slurries, additives and methods
US7456135B2 (en) 2000-12-29 2008-11-25 Halliburton Energy Services, Inc. Methods of drilling using flat rheology drilling fluids
US6508306B1 (en) 2001-11-15 2003-01-21 Halliburton Energy Services, Inc. Compositions for solving lost circulation problems
US7066285B2 (en) 2002-01-16 2006-06-27 Halliburton Energy Services, Inc. Method and composition for preventing or treating lost circulation
US6861392B2 (en) 2002-03-26 2005-03-01 Halliburton Energy Services, Inc. Compositions for restoring lost circulation
US6964302B2 (en) 2002-12-10 2005-11-15 Halliburton Energy Services, Inc. Zeolite-containing cement composition
US7150321B2 (en) 2002-12-10 2006-12-19 Halliburton Energy Services, Inc. Zeolite-containing settable spotting fluids
US7544640B2 (en) 2002-12-10 2009-06-09 Halliburton Energy Services, Inc. Zeolite-containing treating fluid
US6989057B2 (en) 2002-12-10 2006-01-24 Halliburton Energy Services, Inc. Zeolite-containing cement composition
US7048053B2 (en) 2002-12-10 2006-05-23 Halliburton Energy Services, Inc. Zeolite compositions having enhanced compressive strength
US20040171499A1 (en) 2003-01-24 2004-09-02 Halliburton Energy Services, Inc. Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
US6619399B1 (en) 2003-03-12 2003-09-16 Halliburton Energy Services, Inc. Foamed compositions and methods of use in subterranean zones
US6668927B1 (en) 2003-03-21 2003-12-30 Halliburton Energy Services, Inc. Well completion foamed spacer fluids and methods
US6904971B2 (en) 2003-04-24 2005-06-14 Halliburton Energy Services, Inc. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US6908508B2 (en) * 2003-06-04 2005-06-21 Halliburton Energy Services, Inc. Settable fluids and methods for use in subterranean formations
US6739806B1 (en) 2003-06-13 2004-05-25 Halliburton Energy Services, Inc. Cement compositions with improved fluid loss characteristics and methods of cementing in subterranean formations
US7073585B2 (en) 2003-06-27 2006-07-11 Halliburton Energy Services, Inc. Cement compositions with improved fluid loss characteristics and methods of cementing in surface and subterranean applications
US7021380B2 (en) 2003-06-27 2006-04-04 Halliburton Energy Services, Inc. Compositions comprising set retarder compositions and associated methods
US20050034864A1 (en) 2003-06-27 2005-02-17 Caveny William J. Cement compositions with improved fluid loss characteristics and methods of cementing in surface and subterranean applications
US7055603B2 (en) 2003-09-24 2006-06-06 Halliburton Energy Services, Inc. Cement compositions comprising strength-enhancing lost circulation materials and methods of cementing in subterranean formations
US6983800B2 (en) 2003-10-29 2006-01-10 Halliburton Energy Services, Inc. Methods, cement compositions and oil suspensions of powder
US6902002B1 (en) 2004-03-17 2005-06-07 Halliburton Energy Services, Inc. Cement compositions comprising improved lost circulation materials and methods of use in subterranean formations
US7293609B2 (en) 2004-10-20 2007-11-13 Halliburton Energy Services, Inc. Treatment fluids comprising vitrified shale and methods of using such fluids in subterranean formations
US20100044057A1 (en) * 2004-10-20 2010-02-25 Dealy Sears T Treatment Fluids Comprising Pumicite and Methods of Using Such Fluids in Subterranean Formations
US7655603B2 (en) 2005-05-13 2010-02-02 Baker Hughes Incorported Clean-up additive for viscoelastic surfactant based fluids
US7493957B2 (en) 2005-07-15 2009-02-24 Halliburton Energy Services, Inc. Methods for controlling water and sand production in subterranean wells
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US7213646B2 (en) 2005-09-09 2007-05-08 Halliburton Energy Services, Inc. Cementing compositions comprising cement kiln dust, vitrified shale, zeolite, and/or amorphous silica utilizing a packing volume fraction, and associated methods
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US7743828B2 (en) 2005-09-09 2010-06-29 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US7441598B2 (en) 2005-11-22 2008-10-28 Halliburton Energy Services, Inc. Methods of stabilizing unconsolidated subterranean formations
US7576042B2 (en) 2006-02-28 2009-08-18 Halliburton Energy Services, Inc. Salt water stable latex cement slurries
US7776796B2 (en) 2006-03-20 2010-08-17 Schlumberger Technology Corporation Methods of treating wellbores with recyclable fluids
US8240385B2 (en) 2006-03-21 2012-08-14 Halliburton Energy Services Inc. Low heat of hydration cement compositions and methods of using same
US20080060811A1 (en) 2006-09-13 2008-03-13 Halliburton Energy Services, Inc. Method to control the physical interface between two or more fluids
US7833344B2 (en) 2006-11-03 2010-11-16 Halliburton Energy Services Inc. Ultra low density cement compositions and methods of making same
US8163826B2 (en) 2006-11-21 2012-04-24 Schlumberger Technology Corporation Polymeric acid precursor compositions and methods
US7431086B2 (en) 2007-01-11 2008-10-07 Halliburton Energy Services, Inc. Methods of servicing a wellbore with compositions comprising quaternary material and sorel cements
US7763572B2 (en) 2007-01-11 2010-07-27 Halliburton Energy Services, Inc. Compositions comprising quaternary material and sorel cements
US7350575B1 (en) 2007-01-11 2008-04-01 Halliburton Energy Services, Inc. Methods of servicing a wellbore with compositions comprising Sorel cements and oil based fluids
US7893011B2 (en) 2007-01-11 2011-02-22 Halliburton Energy Services Inc. Compositions comprising Sorel cements and oil based fluids
US8871695B2 (en) 2007-04-25 2014-10-28 Baker Hughes Incorporated In situ microemulsions used as spacer fluids
US7784542B2 (en) 2007-05-10 2010-08-31 Halliburton Energy Services, Inc. Cement compositions comprising latex and a nano-particle and associated methods
US7631541B2 (en) 2007-10-08 2009-12-15 Halliburton Energy Services, Inc. Method of measuring a set cement density and settling properties
US7654326B1 (en) 2008-07-10 2010-02-02 Halliburton Energy Services, Inc. Sorel cements and methods of making and using same
US7902124B2 (en) 2008-08-29 2011-03-08 Schlumberger Technology Corporation Self-diverting acid treatment with formic-acid-free corrosion inhibitor
US7992656B2 (en) 2009-07-09 2011-08-09 Halliburton Energy Services, Inc. Self healing filter-cake removal system for open hole completions
US8450391B2 (en) 2009-07-29 2013-05-28 Halliburton Energy Services, Inc. Weighted elastomers, cement compositions comprising weighted elastomers, and methods of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776237B2 (en) * 2000-09-18 2004-08-17 Halliburton Energy Services, Inc. Lightweight well cement compositions and methods
US6689208B1 (en) * 2003-06-04 2004-02-10 Halliburton Energy Services, Inc. Lightweight cement compositions and methods of cementing in subterranean formations
US7867954B2 (en) * 2007-10-22 2011-01-11 Sanjel Limited Partnership Pumice containing compositions for cementing a well
US20090266543A1 (en) * 2008-04-28 2009-10-29 Halliburton Energy Services, Inc. Gelation Inhibiting Retarders for Highly Reactive Calcium Silicate Based Binder Compositions and Methods of Making and Using Same

Also Published As

Publication number Publication date Type
US9512345B2 (en) 2016-12-06 grant
US20130180716A1 (en) 2013-07-18 application

Similar Documents

Publication Publication Date Title
US3499491A (en) Method and composition for cementing oil well casing
US6561273B2 (en) Oil based compositions and method for temporarily sealing subterranean zones
US7199086B1 (en) Settable spotting compositions comprising cement kiln dust
US5547506A (en) Storable liquid cementitious slurries for cementing oil and gas wells
US6457523B1 (en) Delayed thixotropic cement compositions and methods
US6739806B1 (en) Cement compositions with improved fluid loss characteristics and methods of cementing in subterranean formations
US7284609B2 (en) Methods of using settable spotting compositions comprising cement kiln dust
US7863224B2 (en) Wellbore servicing compositions comprising a set retarding agent and methods of making and using same
US7303019B2 (en) Viscoelastic surfactant fluids and associated diverting methods
US7147055B2 (en) Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US7299874B2 (en) Viscoelastic surfactant fluids and associated methods
US4569395A (en) Matrix control cementing slurry
US6902002B1 (en) Cement compositions comprising improved lost circulation materials and methods of use in subterranean formations
US20060183646A1 (en) Viscoelastic surfactant fluids and associated methods
US4997487A (en) High temperature set retarded well cement compositions and methods
US20100044043A1 (en) Methods of Cementing in Subterranean Formations Using Cement Kiln Dust in Compositions Having Reduced Portland Cement Content
US8851173B2 (en) Set-delayed cement compositions comprising pumice and associated methods
US6776237B2 (en) Lightweight well cement compositions and methods
US20110162845A1 (en) Lost Circulation Compositions and Associated Methods
US6908508B2 (en) Settable fluids and methods for use in subterranean formations
US20120318506A1 (en) Acid-Soluble Cement Compositions Comprising Cement Kiln Dust and Methods of Use
US4083407A (en) Spacer composition and method of use
US20040221990A1 (en) Methods and compositions for compensating for cement hydration volume reduction
US20050034864A1 (en) Cement compositions with improved fluid loss characteristics and methods of cementing in surface and subterranean applications
US7784542B2 (en) Cement compositions comprising latex and a nano-particle and associated methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LENDE, GUNNAR;KARCHER, JEFFERY DWANE;SIGNING DATES FROM 20121023 TO 20121025;REEL/FRAME:039588/0812