US20160365227A1 - Semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing apparatus Download PDF

Info

Publication number
US20160365227A1
US20160365227A1 US14/837,167 US201514837167A US2016365227A1 US 20160365227 A1 US20160365227 A1 US 20160365227A1 US 201514837167 A US201514837167 A US 201514837167A US 2016365227 A1 US2016365227 A1 US 2016365227A1
Authority
US
United States
Prior art keywords
optical
mount part
optical transmitter
generation region
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/837,167
Inventor
Ryo SUEMITSU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to US14/837,167 priority Critical patent/US20160365227A1/en
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUEMITSU, RYO
Publication of US20160365227A1 publication Critical patent/US20160365227A1/en
Assigned to TOSHIBA MEMORY CORPORATION reassignment TOSHIBA MEMORY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KABUSHIKI KAISHA TOSHIBA
Priority to US16/264,884 priority patent/US10741369B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32963End-point detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the embodiments of the present invention relate to a semiconductor manufacturing apparatus.
  • deposits adhere to an inner wall of a reaction chamber when a substrate is processed. When these deposits are accumulated, the deposits may adhere as particles onto substrates that are subsequently processed. If the deposits adhere onto the substrates, patterns as designed are not formed on the substrates, thereby becoming a cause of a malfunction.
  • RIE Reactive Ion Etching
  • a confinement ring that separates between a plasma generation region in the reaction chamber and the inner wall of the reaction chamber is sometimes provided.
  • the confinement ring suppresses the adherence of deposits to the inner wall of the reaction chamber and also suppresses deposits having adhered to the inner wall of the reaction chamber from inversely penetrating into the plasma generation region to adhere onto the substrate.
  • the confinement ring becomes an obstruction while light of plasma emission is collected, and thus becomes a cause of interference to detection of the plasma emission intensity. Therefore, it is sometimes difficult for an etching apparatus having the confinement ring to accurately detect the end point of etching processing.
  • FIG. 1 shows an example of a configuration of a dry etching apparatus 1 according to a first embodiment
  • FIG. 2 shows the ends E 40 of the confinement rings 40 and the ends E 50 of the optical transmitters 50 in more detail
  • FIG. 3 is a graph showing the plasma emission intensity of a COx component in etching processing of a silicon dioxide film
  • FIG. 4 shows an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a first modification of the first embodiment
  • FIG. 5 shows an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a second modification of the first embodiment
  • FIG. 6 is a plan view showing an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a third modification of the first embodiment
  • FIG. 7 shows an example of a configuration of a dry etching apparatus 2 according to a second embodiment
  • FIG. 8 shows an example of a configuration of a dry etching apparatus 3 according to a third embodiment.
  • a semiconductor manufacturing apparatus comprises a chamber capable of containing a substrate therein.
  • a mount part can have the substrate mounted thereon.
  • a first member is provided between an inner wall of the chamber and a plasma generation region above the mount part.
  • An optical transmitter is provided in an opening that is provided in the first member to extend from a side of the inner wall of the chamber to the plasma generation region or provided in gaps between a plurality of the first members.
  • FIG. 1 shows an example of a configuration of a dry etching apparatus 1 (hereinafter, also simply “apparatus 1 ”) according to a first embodiment.
  • the apparatus 1 includes a reaction chamber 10 , a stage 20 , an upper electrode 30 , confinement rings 40 , optical transmitters 50 , and an optical analyzer 60 . Illustrations of a vacuum pump, an etching gas supplier, and a gas discharger are omitted.
  • the apparatus 1 is a semiconductor manufacturing apparatus that processes a semiconductor substrate W using plasma, such as a RIE apparatus or a plasma CVD (Chemical Vapor Deposition) apparatus.
  • plasma such as a RIE apparatus or a plasma CVD (Chemical Vapor Deposition) apparatus.
  • the reaction chamber 10 serving as a holder holds therein the stage 20 , the upper electrode 30 , and the confinement rings 40 and the inside of the reaction chamber 10 is in a reduced pressure state.
  • the reaction chamber 10 can hold therein the semiconductor substrate W when the semiconductor substrate W is to be processed.
  • the stage 20 serving as a mount part is configured to be capable of having the semiconductor substrate W mounted thereon when the semiconductor substrate W is to be processed.
  • the stage 20 functions also as one of electrodes for generating plasma.
  • the upper electrode 30 functions as the other electrode for generating plasma.
  • Plasma is generated by ionizing etching gas with power applied by the stage 20 and the upper electrode 30 . Therefore, plasma is generated in a plasma generation region Rp between the stage 20 and the upper electrode 30 .
  • the confinement rings 40 serving as first members are provided between an inner wall of the reaction chamber 10 and the plasma generation region Rp above the stage 20 .
  • the confinement rings 40 are provided to suppress deposits generated due to etching processing from adhering to the inner wall of the reaction chamber 10 . Therefore, the confinement rings 40 are provided around the plasma generation region Rp along the inner wall of the reaction chamber 10 or along an outer circumference of the stage 20 in planes substantially parallel to the surface of the stage 20 . While having a ring shape in the planes substantially parallel to the surface of the stage 20 in the first embodiment, the confinement rings 40 do not always need to have a ring shape. It suffices that the confinement rings 40 can suppress adherence of deposits to the inner wall of the reaction chamber 10 and also can suppress penetration of deposits on the inner wall of the reaction chamber 10 into the plasma generation region Rp.
  • the confinement rings 40 are arrayed in a direction D 1 substantially perpendicular to the surface of the stage 20 .
  • the confinement rings 40 are configured to be movable in the direction D 1 . Accordingly, a distance Dg between the confinement rings 40 can be changed according to the pressure of the etching gas and the flow rate thereof. For example, when the pressure and the flow rate of the etching gas are relatively high, the confinement rings 40 are moved in the direction D 1 to cause the distance Dg therebetween to be relatively large. A large amount of gas having been used for etching and being no longer needed can be thereby easily discharged from gaps G between the confinement rings 40 .
  • the confinement rings 40 do not interfere with discharge of gas.
  • the confinement rings 40 are moved in the direction D 1 to cause the distance Dg therebetween to be relatively small.
  • the amount of gas having been used for etching and being no longer needed is relatively small and thus can be sufficiently discharged from the gaps G.
  • the distance Dg between the confinement rings 40 can be changed according to the pressure and the flow rate of the etching gas.
  • the optical transmitters 50 are attached to (embedded in) openings provided in the confinement rings 40 from the side of the inner wall of the reaction chamber 10 toward the plasma generation region Rp, respectively. Ends (end faces) E 50 of the optical transmitters 50 face the plasma generation region Rp and are positioned to be substantially flush with ends E 40 of the confinement rings 40 on the side of the plasma generation region Rp, respectively.
  • the optical transmitters 50 extend from the ends E 40 of the confinement rings 40 toward the reaction chamber 10 and pass through the reaction chamber 10 to be connected to the optical analyzer 60 .
  • the optical transmitters 50 are constituted of optical fibers, for example, and can collect light of plasma emission generated in the plasma generation region Rp to transmit the light to the optical analyzer 60 .
  • the optical transmitters 50 are provided in the confinement rings 40 , respectively, and are placed at different positions in the direction D 1 , respectively. Accordingly, the optical transmitters 50 can transmit the light of plasma emission at different positions (heights) in the direction D 1 above the semiconductor substrate W.
  • a dielectric film 55 can be provided on the surfaces of the ends E 50 of the optical transmitters 50 as shown in FIG. 2 .
  • FIG. 2 shows the ends E 40 of the confinement rings 40 and the ends E 50 of the optical transmitters 50 in more detail.
  • the dielectric film 55 functions as a protection film and/or an antireflection film for the optical transmitters 50 and can be, for example, Al 2 O 3 , sapphire, or a silicon nitride film.
  • the dielectric film 55 can suppress damage of the optical transmitters 50 due to plasma. Furthermore, even when deposits adhere to the dielectric film 55 , the deposits can be removed from the dielectric film 55 by ashing.
  • the optical analyzer 60 is connected to the optical transmitters 50 and analyzes plasma emission generated in the plasma generation region Rp.
  • the optical analyzer 60 includes a spectrometry part 61 and a computing part 62 .
  • the spectrometry part 61 splits the plasma emission according to wavelength bands using a diffraction grating and detects plasma emission of the respective wavelength bands using photodetection elements such as CCD (Charge Coupled Device) elements.
  • the spectrometry part 61 can be, for example, an OES (Optical Emission Spectrometry) apparatus.
  • the computing part 62 analyzes components of gas in the plasma generation region Rp based on emission intensities of the plasma emission of the respective wavelength bands detected by the spectrometry part 61 .
  • the computing part 62 can be a personal computer.
  • the computing part 62 detects end of etching based on changes in the gas components in the plasma generation region Rp (end point detection). For example, when a silicon dioxide film is to be etched, CF-based etching gas is used and thus the amount of COx (x is an integer) is reduced when almost the entire silicon dioxide film is etched. Therefore, it suffices that the computing part 62 monitors a gas component of COx via the plasma emission and determines that etching is ended when the amount of COx falls below a predetermined value. This enables the silicon dioxide film to be etched in just proportion.
  • the optical transmitters 50 are incorporated (embedded) inside the confinement rings 40 in the reaction chamber 10 rather than outside the reaction chamber 10 .
  • the ends E 50 of the optical transmitters 50 face from the confinement rings 40 toward the plasma emission region Rp. Accordingly, the optical transmitters 50 can receive plasma emission generated in the plasma generation region Rp without being interrupted by the confinement rings 40 .
  • the optical transmitters 50 are provided outside the reaction chamber 10 , there are cases where plasma emission is interrupted by the confinement rings 40 and thus the optical transmitters 50 cannot receive sufficient emission to detect the end point of etching.
  • the pressure and the flow rate of etching gas are relative high and the distance Dg between the confinement rings 40 is relatively large, plasma emission reaches from the gaps G between the confinement rings 40 to the optical transmitters 50 at a relatively high intensity.
  • the pressure and the flow rate of the etching gas are relatively low and the distance Dg between the confinement rings 40 is relatively small, plasma emission reaches from the gaps G between the confinement rings 40 to the optical transmitters 50 only at a relatively low intensity. In this case, it is difficult for the optical analyzer 60 to catch changes in the gas components in the plasma generation region Rp and may affect detection of the end point of etching.
  • FIG. 3 is a graph showing the plasma emission intensity of a COx component in etching processing of a silicon dioxide film.
  • the vertical axis represents the plasma emission intensity of the COx component and the horizontal axis represents the time.
  • Lines La and Lb indicate plasma emission intensities in a case where the optical transmitters 50 are provided outside the reaction chamber 10 .
  • the line La indicates a plasma emission intensity in a case where the pressure and the flow rate of etching gas are relatively high and the line Lb indicates a plasma emission intensity in a case where the pressure and the flow rate of etching gas are relatively low.
  • the distance Dg between the confinement rings 40 is widened and thus the plasma emission intensity is relatively high, which enables the optical analyzer 60 to catch a change in the COx component at a time te.
  • the distance Dg between the confinement rings 40 is narrowed and thus the plasma emission intensity is relative low as indicated by the line Lb, so that it becomes difficult for the optical analyzer 60 to catch changes in the COx component. In this case, detection of the end point of etching becomes difficult.
  • a line L 1 is a graph obtained by using the apparatus 1 according to the first embodiment.
  • the optical transmitters 50 because the optical transmitters 50 are incorporated (embedded) inside the confinement rings 40 , the optical transmitters 50 can receive plasma emission at positions quite close to the plasma generation region Rp regardless of the positions of the confinement rings 40 . Therefore, the optical transmitters 50 can receive the plasma emission at intensities having sufficiently high absolute values and thus can obtain changes in the intensity of the plasma emission reliably (at a high sensitivity).
  • the line L 1 shows that the plasma emission intensity is greatly reduced at the time te.
  • the optical analyzer 60 can easily determine that the time te is the end point of the etching processing.
  • the optical transmitters 50 are provided in the confinement rings 40 , respectively.
  • the optical transmitters 50 can thereby receive plasma emission at positions (heights) different in the direction D 1 .
  • This enables the optical analyzer 60 to perform detection of the end point of etching based on an analysis result of the plasma emission at the positions different in heights. For example, as shown in FIG.
  • an optical transmitter that is the closest to the stage 20 (the semiconductor substrate W) is referred to as “first optical transmitter 50 a ”
  • an optical transmitter that is the next closest to the stage 20 after the first optical transmitter 50 a is referred to as “optical transmitter 50 b ”
  • an optical transmitter that is the next closest to the stage 20 after the optical transmitter 50 b is referred to as “optical transmitter 50 c ”
  • an optical transmitter that is the farthest from the stage 20 (the semiconductor substrate W) is referred to as “second optical transmitter 50 d ”.
  • plasma emission received by the first optical transmitter 50 a changes the earliest after the end of etching.
  • Plasma emission received by the optical transmitters 50 b and 50 c subsequently changes and plasma emission received by the second optical transmitter 50 d changes last.
  • the optical analyzer 60 can perform detection of the end point of etching processing based on the difference between the intensity of plasma emission obtained from the first optical transmitter 50 a and the intensity of plasma emission obtained from the second optical transmitter 50 d. This enables noise or background components (BG in FIG. 3 ) to be removed from the plasma emission obtained from the first optical transmitter 50 a, thereby prominently detecting changes in the plasma emission intensity.
  • the optical analyzer 60 can detect the end point of etching processing using the difference between intensities of plasma emission obtained from any two of the optical transmitters 50 a to 50 d, rather than only the difference between the intensities of plasma emission obtained from the optical transmitters 50 a and 50 d.
  • the optical analyzer 60 can determine that etching processing has ended when the intensity or the intensities of plasma emission obtained from one or a plurality of the optical transmitters 50 a to 50 d have fallen below a predetermined value. For example, the optical analyzer 60 can determine that etching processing has ended when the intensity of plasma emission from the optical transmitter 50 a has fallen below the predetermined value. Alternatively, the optical analyzer 60 can determine that etching processing has ended when the intensities of plasma emission obtained from any two of the optical transmitters 50 a to 50 d have fallen below the predetermined value.
  • FIG. 4 shows an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a first modification of the first embodiment.
  • the ends E 50 of the optical transmitters 50 are positioned on the side nearer the reaction chamber 10 than the ends E 40 of the confinement rings 40 . Accordingly, the optical transmitters 50 become less likely to be subject to plasma damage. Furthermore, deposits are less likely to adhere to the ends E 50 of the optical transmitters 50 .
  • the dielectric film 55 does not always need to be provided.
  • the optical transmitters 50 because the ends E 50 of the optical transmitters 50 are retracted behind the ends E 40 of the confinement rings 40 , the intensities of plasma emission received by the optical transmitters 50 are somewhat reduced. However, as compared to a case where the optical transmitters 50 are provided outside the reaction chamber 10 , the optical transmitters 50 according to the first modification can receive relatively intense plasma emission. Therefore, the first modification can achieve effects identical to those of the first embodiment.
  • FIG. 5 shows an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a second modification of the first embodiment.
  • the optical transmitters 50 are provided in the gaps G between the confinement rings 40 , respectively. Also when the optical transmitters 50 are thus provided in the gaps G between the confinement rings 40 , respectively, the effects according to the first embodiment can be achieved. Furthermore, there is no need to embed the optical transmitters 50 in the confinement rings 40 in the second modification and thus manufacturing of the apparatus 1 is facilitated.
  • FIG. 6 is a plan view showing an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a third modification of the first embodiment.
  • the optical transmitters 50 are arranged in a certain one of the confinement rings 40 at different positions (orientations) in directions substantially horizontal to the surface of the stage 20 , respectively.
  • the optical transmitters 50 are arranged at positions (orientations) around the plasma generation region Rp, respectively. Accordingly, the optical transmitters 50 can receive plasma emission from various directions. This enables more accurate detection of the end point of etching processing.
  • the third modification can be combined with the first embodiment. That is, the optical transmitters 50 can be arranged at different positions (heights) in the direction D 1 substantially perpendicular to the surface of the stage 20 and arranged at different positions (orientations) in directions substantially horizontal to the surface of the stage 20 . This enables still more accurate detection of the end point of etching processing.
  • FIG. 7 shows an example of a configuration of a dry etching apparatus 2 (hereinafter, also simply “apparatus 2 ”) according to a second embodiment.
  • the confinement rings 40 are formed of a material that transmits therethrough plasma emission. Therefore, the optical transmitters 50 can be provided outside the reaction chamber 10 .
  • the reaction chamber 10 has windows (OES windows) 57 for taking in plasma emission and the optical transmitters 50 receive the plasma emission from the windows 57 .
  • Other configurations of the apparatus 2 according to the second embodiment can be identical to corresponding configurations of the apparatus 1 according to the first embodiment.
  • the confinement rings 40 are formed of a material that transmits therethrough plasma emission (light larger than 0 nanometer and equal to or smaller than 1000 nanometers, for example).
  • a material that transmits therethrough plasma emission for example, borosilicate glass or sapphire is used for the confinement rings 40 . Accordingly, the confinement rings 40 can transmit therethrough plasma emission without blocking the plasma emission.
  • the optical transmitters 50 can receive the plasma emission through the windows 57 .
  • the confinement rings 40 do not interrupt detection of the plasma emission intensities and thus the end point of etching processing can be detected accurately.
  • FIG. 8 shows an example of a configuration of a dry etching apparatus 3 (hereinafter, also simply “apparatus 3 ”) according to a third embodiment.
  • a dielectric film 45 is provided on side surfaces of the confinement rings 40 on the side of the plasma generation region Rp.
  • the dielectric film 45 is made of a material being lower in the reflectance of plasma emission than the confinement rings 40 . That is, the dielectric film 45 functions as an antireflection film.
  • Al 2 O 3 , sapphire, or a silicon nitride film is used for the dielectric film 45 .
  • Other configurations of the third embodiment can be identical to corresponding configurations of the second embodiment.
  • the confinement rings 40 can transmit therethrough plasma emission without reflecting or blocking the plasma emission.
  • the optical transmitters 50 can receive the plasma emission through the windows 57 .
  • the confinement rings 40 do not interfere detection of the plasma emission intensities, and thus can accurately detect the end point of etching processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

A semiconductor manufacturing apparatus according to an embodiment comprises a chamber capable of containing a substrate therein. A mount part can have the substrate mounted thereon. A first member is provided between an inner wall of the chamber and a plasma generation region above the mount part. An optical transmitter is provided in an opening that is provided in the first member to extend from a side of the inner wall of the chamber to the plasma generation region or provided in gaps between a plurality of the first members.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of priority from the prior U.S. Provisional Patent Application No. 62/172, 983, filed on Jun. 9, 2015, the entire contents of which are incorporated herein by reference.
  • FIELD
  • The embodiments of the present invention relate to a semiconductor manufacturing apparatus.
  • BACKGROUND
  • In a dry etching apparatus using plasma such as a RIE (Reactive Ion Etching) apparatus, deposits adhere to an inner wall of a reaction chamber when a substrate is processed. When these deposits are accumulated, the deposits may adhere as particles onto substrates that are subsequently processed. If the deposits adhere onto the substrates, patterns as designed are not formed on the substrates, thereby becoming a cause of a malfunction.
  • To suppress adherence of these deposits to the inner wall of the reaction chamber, a confinement ring that separates between a plasma generation region in the reaction chamber and the inner wall of the reaction chamber is sometimes provided. The confinement ring suppresses the adherence of deposits to the inner wall of the reaction chamber and also suppresses deposits having adhered to the inner wall of the reaction chamber from inversely penetrating into the plasma generation region to adhere onto the substrate.
  • However, when an end point of etching processing is to be detected based on a plasma emission intensity, the confinement ring becomes an obstruction while light of plasma emission is collected, and thus becomes a cause of interference to detection of the plasma emission intensity. Therefore, it is sometimes difficult for an etching apparatus having the confinement ring to accurately detect the end point of etching processing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an example of a configuration of a dry etching apparatus 1 according to a first embodiment;
  • FIG. 2 shows the ends E40 of the confinement rings 40 and the ends E50 of the optical transmitters 50 in more detail;
  • FIG. 3 is a graph showing the plasma emission intensity of a COx component in etching processing of a silicon dioxide film;
  • FIG. 4 shows an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a first modification of the first embodiment;
  • FIG. 5 shows an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a second modification of the first embodiment;
  • FIG. 6 is a plan view showing an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a third modification of the first embodiment;
  • FIG. 7 shows an example of a configuration of a dry etching apparatus 2 according to a second embodiment; and
  • FIG. 8 shows an example of a configuration of a dry etching apparatus 3 according to a third embodiment.
  • DETAILED DESCRIPTION
  • Embodiments will now be explained with reference to the accompanying drawings. The present invention is not limited to the embodiments.
  • A semiconductor manufacturing apparatus according to an embodiment comprises a chamber capable of containing a substrate therein. A mount part can have the substrate mounted thereon. A first member is provided between an inner wall of the chamber and a plasma generation region above the mount part. An optical transmitter is provided in an opening that is provided in the first member to extend from a side of the inner wall of the chamber to the plasma generation region or provided in gaps between a plurality of the first members.
  • First Embodiment
  • FIG. 1 shows an example of a configuration of a dry etching apparatus 1 (hereinafter, also simply “apparatus 1”) according to a first embodiment. The apparatus 1 includes a reaction chamber 10, a stage 20, an upper electrode 30, confinement rings 40, optical transmitters 50, and an optical analyzer 60. Illustrations of a vacuum pump, an etching gas supplier, and a gas discharger are omitted.
  • The apparatus 1 is a semiconductor manufacturing apparatus that processes a semiconductor substrate W using plasma, such as a RIE apparatus or a plasma CVD (Chemical Vapor Deposition) apparatus.
  • The reaction chamber 10 serving as a holder holds therein the stage 20, the upper electrode 30, and the confinement rings 40 and the inside of the reaction chamber 10 is in a reduced pressure state. The reaction chamber 10 can hold therein the semiconductor substrate W when the semiconductor substrate W is to be processed.
  • The stage 20 serving as a mount part is configured to be capable of having the semiconductor substrate W mounted thereon when the semiconductor substrate W is to be processed. The stage 20 functions also as one of electrodes for generating plasma.
  • The upper electrode 30 functions as the other electrode for generating plasma. Plasma is generated by ionizing etching gas with power applied by the stage 20 and the upper electrode 30. Therefore, plasma is generated in a plasma generation region Rp between the stage 20 and the upper electrode 30.
  • The confinement rings 40 serving as first members are provided between an inner wall of the reaction chamber 10 and the plasma generation region Rp above the stage 20. The confinement rings 40 are provided to suppress deposits generated due to etching processing from adhering to the inner wall of the reaction chamber 10. Therefore, the confinement rings 40 are provided around the plasma generation region Rp along the inner wall of the reaction chamber 10 or along an outer circumference of the stage 20 in planes substantially parallel to the surface of the stage 20. While having a ring shape in the planes substantially parallel to the surface of the stage 20 in the first embodiment, the confinement rings 40 do not always need to have a ring shape. It suffices that the confinement rings 40 can suppress adherence of deposits to the inner wall of the reaction chamber 10 and also can suppress penetration of deposits on the inner wall of the reaction chamber 10 into the plasma generation region Rp.
  • The confinement rings 40 are arrayed in a direction D1 substantially perpendicular to the surface of the stage 20. The confinement rings 40 are configured to be movable in the direction D1. Accordingly, a distance Dg between the confinement rings 40 can be changed according to the pressure of the etching gas and the flow rate thereof. For example, when the pressure and the flow rate of the etching gas are relatively high, the confinement rings 40 are moved in the direction D1 to cause the distance Dg therebetween to be relatively large. A large amount of gas having been used for etching and being no longer needed can be thereby easily discharged from gaps G between the confinement rings 40. That is, even when the pressure and the flow rate of the etching gas are relatively high, the confinement rings 40 do not interfere with discharge of gas. On the other hand, when the pressure and the flow rate of the etching gas are relatively low, the confinement rings 40 are moved in the direction D1 to cause the distance Dg therebetween to be relatively small. In this case, the amount of gas having been used for etching and being no longer needed is relatively small and thus can be sufficiently discharged from the gaps G. By causing the distance Dg to be relatively small, deposits become more likely to adhere to the confinement rings 40 and less likely to adhere to the inner wall of the reaction chamber 10. Furthermore, by causing the distance Dg to be relatively small, deposits having adhered to the inner wall of the reaction chamber 10 become less likely to penetrate into the plasma generation region Rp in which the semiconductor substrate W is placed. In this way, the distance Dg between the confinement rings 40 can be changed according to the pressure and the flow rate of the etching gas.
  • The optical transmitters 50 are attached to (embedded in) openings provided in the confinement rings 40 from the side of the inner wall of the reaction chamber 10 toward the plasma generation region Rp, respectively. Ends (end faces) E50 of the optical transmitters 50 face the plasma generation region Rp and are positioned to be substantially flush with ends E40 of the confinement rings 40 on the side of the plasma generation region Rp, respectively. The optical transmitters 50 extend from the ends E40 of the confinement rings 40 toward the reaction chamber 10 and pass through the reaction chamber 10 to be connected to the optical analyzer 60. The optical transmitters 50 are constituted of optical fibers, for example, and can collect light of plasma emission generated in the plasma generation region Rp to transmit the light to the optical analyzer 60.
  • The optical transmitters 50 are provided in the confinement rings 40, respectively, and are placed at different positions in the direction D1, respectively. Accordingly, the optical transmitters 50 can transmit the light of plasma emission at different positions (heights) in the direction D1 above the semiconductor substrate W.
  • A dielectric film 55 can be provided on the surfaces of the ends E50 of the optical transmitters 50 as shown in FIG. 2. FIG. 2 shows the ends E40 of the confinement rings 40 and the ends E50 of the optical transmitters 50 in more detail. The dielectric film 55 functions as a protection film and/or an antireflection film for the optical transmitters 50 and can be, for example, Al2O3, sapphire, or a silicon nitride film. The dielectric film 55 can suppress damage of the optical transmitters 50 due to plasma. Furthermore, even when deposits adhere to the dielectric film 55, the deposits can be removed from the dielectric film 55 by ashing.
  • The optical analyzer 60 is connected to the optical transmitters 50 and analyzes plasma emission generated in the plasma generation region Rp. The optical analyzer 60 includes a spectrometry part 61 and a computing part 62. The spectrometry part 61 splits the plasma emission according to wavelength bands using a diffraction grating and detects plasma emission of the respective wavelength bands using photodetection elements such as CCD (Charge Coupled Device) elements. The spectrometry part 61 can be, for example, an OES (Optical Emission Spectrometry) apparatus. The computing part 62 analyzes components of gas in the plasma generation region Rp based on emission intensities of the plasma emission of the respective wavelength bands detected by the spectrometry part 61. For example, the computing part 62 can be a personal computer. The computing part 62 detects end of etching based on changes in the gas components in the plasma generation region Rp (end point detection). For example, when a silicon dioxide film is to be etched, CF-based etching gas is used and thus the amount of COx (x is an integer) is reduced when almost the entire silicon dioxide film is etched. Therefore, it suffices that the computing part 62 monitors a gas component of COx via the plasma emission and determines that etching is ended when the amount of COx falls below a predetermined value. This enables the silicon dioxide film to be etched in just proportion.
  • In this example, in the apparatus 1 according to the first embodiment, the optical transmitters 50 are incorporated (embedded) inside the confinement rings 40 in the reaction chamber 10 rather than outside the reaction chamber 10. The ends E50 of the optical transmitters 50 face from the confinement rings 40 toward the plasma emission region Rp. Accordingly, the optical transmitters 50 can receive plasma emission generated in the plasma generation region Rp without being interrupted by the confinement rings 40.
  • If the optical transmitters 50 are provided outside the reaction chamber 10, there are cases where plasma emission is interrupted by the confinement rings 40 and thus the optical transmitters 50 cannot receive sufficient emission to detect the end point of etching. For example, when the pressure and the flow rate of etching gas are relative high and the distance Dg between the confinement rings 40 is relatively large, plasma emission reaches from the gaps G between the confinement rings 40 to the optical transmitters 50 at a relatively high intensity. However, when the pressure and the flow rate of the etching gas are relatively low and the distance Dg between the confinement rings 40 is relatively small, plasma emission reaches from the gaps G between the confinement rings 40 to the optical transmitters 50 only at a relatively low intensity. In this case, it is difficult for the optical analyzer 60 to catch changes in the gas components in the plasma generation region Rp and may affect detection of the end point of etching.
  • For example, FIG. 3 is a graph showing the plasma emission intensity of a COx component in etching processing of a silicon dioxide film. The vertical axis represents the plasma emission intensity of the COx component and the horizontal axis represents the time. Lines La and Lb indicate plasma emission intensities in a case where the optical transmitters 50 are provided outside the reaction chamber 10. The line La indicates a plasma emission intensity in a case where the pressure and the flow rate of etching gas are relatively high and the line Lb indicates a plasma emission intensity in a case where the pressure and the flow rate of etching gas are relatively low. As indicated by the line La, when the pressure and the flow rate of the etching gas are high, the distance Dg between the confinement rings 40 is widened and thus the plasma emission intensity is relatively high, which enables the optical analyzer 60 to catch a change in the COx component at a time te. However, when the pressure and the flow rate of the etching gas are low, the distance Dg between the confinement rings 40 is narrowed and thus the plasma emission intensity is relative low as indicated by the line Lb, so that it becomes difficult for the optical analyzer 60 to catch changes in the COx component. In this case, detection of the end point of etching becomes difficult.
  • On the other hand, a line L1 is a graph obtained by using the apparatus 1 according to the first embodiment. In the apparatus 1 according to the first embodiment, because the optical transmitters 50 are incorporated (embedded) inside the confinement rings 40, the optical transmitters 50 can receive plasma emission at positions quite close to the plasma generation region Rp regardless of the positions of the confinement rings 40. Therefore, the optical transmitters 50 can receive the plasma emission at intensities having sufficiently high absolute values and thus can obtain changes in the intensity of the plasma emission reliably (at a high sensitivity). For example, in FIG. 3, the line L1 shows that the plasma emission intensity is greatly reduced at the time te. That is, the amount of COx in the plasma generation region Rp is greatly reduced at the time te and it is clearly known that almost the entire silicon dioxide film has been etched. Therefore, the optical analyzer 60 can easily determine that the time te is the end point of the etching processing.
  • Furthermore, according to the first embodiment, the optical transmitters 50 are provided in the confinement rings 40, respectively. The optical transmitters 50 can thereby receive plasma emission at positions (heights) different in the direction D1. This enables the optical analyzer 60 to perform detection of the end point of etching based on an analysis result of the plasma emission at the positions different in heights. For example, as shown in FIG. 2, among the optical transmitters 50, an optical transmitter that is the closest to the stage 20 (the semiconductor substrate W) is referred to as “first optical transmitter 50 a”, an optical transmitter that is the next closest to the stage 20 after the first optical transmitter 50 a is referred to as “optical transmitter 50 b”, an optical transmitter that is the next closest to the stage 20 after the optical transmitter 50 b is referred to as “optical transmitter 50 c”, and an optical transmitter that is the farthest from the stage 20 (the semiconductor substrate W) is referred to as “second optical transmitter 50 d”. In this case, plasma emission received by the first optical transmitter 50 a changes the earliest after the end of etching. Plasma emission received by the optical transmitters 50 b and 50 c subsequently changes and plasma emission received by the second optical transmitter 50 d changes last. Accordingly, the optical analyzer 60 can perform detection of the end point of etching processing based on the difference between the intensity of plasma emission obtained from the first optical transmitter 50 a and the intensity of plasma emission obtained from the second optical transmitter 50 d. This enables noise or background components (BG in FIG. 3) to be removed from the plasma emission obtained from the first optical transmitter 50 a, thereby prominently detecting changes in the plasma emission intensity. Needless to say, the optical analyzer 60 can detect the end point of etching processing using the difference between intensities of plasma emission obtained from any two of the optical transmitters 50 a to 50 d, rather than only the difference between the intensities of plasma emission obtained from the optical transmitters 50 a and 50 d.
  • The optical analyzer 60 can determine that etching processing has ended when the intensity or the intensities of plasma emission obtained from one or a plurality of the optical transmitters 50 a to 50 d have fallen below a predetermined value. For example, the optical analyzer 60 can determine that etching processing has ended when the intensity of plasma emission from the optical transmitter 50 a has fallen below the predetermined value. Alternatively, the optical analyzer 60 can determine that etching processing has ended when the intensities of plasma emission obtained from any two of the optical transmitters 50 a to 50 d have fallen below the predetermined value.
  • First Modification
  • FIG. 4 shows an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a first modification of the first embodiment. In the first modification, the ends E50 of the optical transmitters 50 are positioned on the side nearer the reaction chamber 10 than the ends E40 of the confinement rings 40. Accordingly, the optical transmitters 50 become less likely to be subject to plasma damage. Furthermore, deposits are less likely to adhere to the ends E50 of the optical transmitters 50. When the optical transmitters 50 are sufficiently protected from plasma damage by the ends E40 of the confinement rings 40, the dielectric film 55 does not always need to be provided.
  • In the first modification, because the ends E50 of the optical transmitters 50 are retracted behind the ends E40 of the confinement rings 40, the intensities of plasma emission received by the optical transmitters 50 are somewhat reduced. However, as compared to a case where the optical transmitters 50 are provided outside the reaction chamber 10, the optical transmitters 50 according to the first modification can receive relatively intense plasma emission. Therefore, the first modification can achieve effects identical to those of the first embodiment.
  • Second Modification
  • FIG. 5 shows an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a second modification of the first embodiment. In the second modification, the optical transmitters 50 are provided in the gaps G between the confinement rings 40, respectively. Also when the optical transmitters 50 are thus provided in the gaps G between the confinement rings 40, respectively, the effects according to the first embodiment can be achieved. Furthermore, there is no need to embed the optical transmitters 50 in the confinement rings 40 in the second modification and thus manufacturing of the apparatus 1 is facilitated.
  • Third Modification
  • FIG. 6 is a plan view showing an example of a configuration of the confinement rings 40 and the optical transmitters 50 according to a third modification of the first embodiment. In the third modification, the optical transmitters 50 are arranged in a certain one of the confinement rings 40 at different positions (orientations) in directions substantially horizontal to the surface of the stage 20, respectively. The optical transmitters 50 are arranged at positions (orientations) around the plasma generation region Rp, respectively. Accordingly, the optical transmitters 50 can receive plasma emission from various directions. This enables more accurate detection of the end point of etching processing.
  • The third modification can be combined with the first embodiment. That is, the optical transmitters 50 can be arranged at different positions (heights) in the direction D1 substantially perpendicular to the surface of the stage 20 and arranged at different positions (orientations) in directions substantially horizontal to the surface of the stage 20. This enables still more accurate detection of the end point of etching processing.
  • Second Embodiment
  • FIG. 7 shows an example of a configuration of a dry etching apparatus 2 (hereinafter, also simply “apparatus 2”) according to a second embodiment. In the second embodiment, the confinement rings 40 are formed of a material that transmits therethrough plasma emission. Therefore, the optical transmitters 50 can be provided outside the reaction chamber 10. The reaction chamber 10 has windows (OES windows) 57 for taking in plasma emission and the optical transmitters 50 receive the plasma emission from the windows 57. Other configurations of the apparatus 2 according to the second embodiment can be identical to corresponding configurations of the apparatus 1 according to the first embodiment.
  • In the second embodiment, the confinement rings 40 are formed of a material that transmits therethrough plasma emission (light larger than 0 nanometer and equal to or smaller than 1000 nanometers, for example). For example, borosilicate glass or sapphire is used for the confinement rings 40. Accordingly, the confinement rings 40 can transmit therethrough plasma emission without blocking the plasma emission. The optical transmitters 50 can receive the plasma emission through the windows 57.
  • According to the second embodiment, the confinement rings 40 do not interrupt detection of the plasma emission intensities and thus the end point of etching processing can be detected accurately.
  • Third Embodiment
  • FIG. 8 shows an example of a configuration of a dry etching apparatus 3 (hereinafter, also simply “apparatus 3”) according to a third embodiment. In the third embodiment, a dielectric film 45 is provided on side surfaces of the confinement rings 40 on the side of the plasma generation region Rp. The dielectric film 45 is made of a material being lower in the reflectance of plasma emission than the confinement rings 40. That is, the dielectric film 45 functions as an antireflection film. For example, Al2O3, sapphire, or a silicon nitride film is used for the dielectric film 45. Other configurations of the third embodiment can be identical to corresponding configurations of the second embodiment.
  • Accordingly, the confinement rings 40 can transmit therethrough plasma emission without reflecting or blocking the plasma emission. The optical transmitters 50 can receive the plasma emission through the windows 57.
  • According to the third embodiment, the confinement rings 40 do not interfere detection of the plasma emission intensities, and thus can accurately detect the end point of etching processing.
  • While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Claims (19)

1. A semiconductor manufacturing apparatus comprising:
a chamber capable of containing a substrate therein;
a mount part capable of having the substrate mounted thereon;
a first member provided between an inner wall of the chamber and a plasma generation region above the mount part; and
an optical transmitter provided in an opening that is provided in the first member to extend from a side of the inner wall of the chamber to the plasma generation region or provided in gaps between a plurality of the first members.
2. The apparatus of claim 1, further comprising an optical analyzer connected to the optical transmitter and analyzing plasma emission in the plasma generation region.
3. The apparatus of claim 1, wherein an end of the optical transmitter is located to be substantially flush with an end of the first member on a side of the plasma generation region.
4. The apparatus of claim 1, wherein an end of the optical transmitter is located nearer the chamber than an end of the first member on a side of the plasma generation region.
5. The apparatus of claim 1, further comprising a dielectric film provided on a surface of an end of the optical transmitter.
6. The apparatus of claim 3, further comprising a dielectric film provided on a surface of an end of the optical transmitter.
7. The apparatus of claim 4, further comprising a dielectric film provided on a surface of an end of the optical transmitter.
8. The apparatus of claim 1, wherein a plurality of the optical transmitters are arranged at different positions in a direction substantially perpendicular to a surface of the mount part, respectively.
9. The apparatus of claim 8, further comprising an optical analyzer connected to the optical transmitters and detecting an end of processing of the substrate based on a difference between an intensity of light obtained from a first optical transmitter that is closest to the mount part among the optical transmitters and an intensity of light obtained from a second optical transmitter that is farther from the mount part than the first optical transmitter.
10. The apparatus of claim 1, wherein a plurality of the optical transmitters are arranged at different positions in directions substantially horizontal to a surface of the mount part, respectively.
11. The apparatus of claim 8, wherein a plurality of the optical transmitters are arranged at different positions in directions substantially horizontal to a surface of the mount part, respectively.
12. The apparatus of claim 9, wherein a plurality of the optical transmitters are arranged at different positions in directions substantially horizontal to a surface of the mount part, respectively.
13. A semiconductor manufacturing apparatus comprising:
a chamber capable of containing a substrate therein;
a mount part capable of having the substrate mounted thereon;
a first member provided between an inner wall of the chamber and a plasma generation region above the mount part, the first member transmitting plasma emission from the plasma generation region; and
an optical transmitter provided outside the chamber and transmitting the plasma emission.
14. The apparatus of claim 13, wherein the first member transmits light larger than 0 nanometer and equal to or smaller than 1000 nanometers.
15. The apparatus of claim 13, wherein borosilicate glass or sapphire is used for the first member.
16. A semiconductor manufacturing apparatus comprising:
a chamber capable of containing a substrate therein;
a mount part capable of having the substrate mounted thereon;
a first member provided between an inner wall of the chamber and a plasma generation region above the mount part;
a dielectric film provided on a side surface of the first member on a side of the mount part; and
an optical transmitter provided outside the chamber and transmitting plasma emission.
17. The apparatus of claim 16, wherein the dielectric film has a lower reflectance of the plasma emission than the first member.
18. The apparatus of claim 16, wherein Al2O3, sapphire, or a silicon nitride film is used for the dielectric film.
19. The apparatus of claim 17, wherein Al2O3, sapphire, or a silicon nitride film is used for the dielectric film.
US14/837,167 2015-06-09 2015-08-27 Semiconductor manufacturing apparatus Abandoned US20160365227A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/837,167 US20160365227A1 (en) 2015-06-09 2015-08-27 Semiconductor manufacturing apparatus
US16/264,884 US10741369B2 (en) 2015-06-09 2019-02-01 Semiconductor manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562172983P 2015-06-09 2015-06-09
US14/837,167 US20160365227A1 (en) 2015-06-09 2015-08-27 Semiconductor manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/264,884 Continuation US10741369B2 (en) 2015-06-09 2019-02-01 Semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
US20160365227A1 true US20160365227A1 (en) 2016-12-15

Family

ID=57516034

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/837,167 Abandoned US20160365227A1 (en) 2015-06-09 2015-08-27 Semiconductor manufacturing apparatus
US16/264,884 Expired - Fee Related US10741369B2 (en) 2015-06-09 2019-02-01 Semiconductor manufacturing apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/264,884 Expired - Fee Related US10741369B2 (en) 2015-06-09 2019-02-01 Semiconductor manufacturing apparatus

Country Status (1)

Country Link
US (2) US20160365227A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11854774B2 (en) 2021-03-17 2023-12-26 Psk Holdings Inc. Plasma detecting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290383A (en) 1991-03-24 1994-03-01 Tokyo Electron Limited Plasma-process system with improved end-point detecting scheme
US6908529B2 (en) * 2002-03-05 2005-06-21 Hitachi High-Technologies Corporation Plasma processing apparatus and method
US20050020073A1 (en) * 2003-07-22 2005-01-27 Lam Research Corporation Method and system for electronic spatial filtering of spectral reflectometer optical signals
US20080003702A1 (en) 2006-06-28 2008-01-03 Cruse James P Low Power RF Tuning Using Optical and Non-Reflected Power Methods
TWI501704B (en) 2008-02-08 2015-09-21 Lam Res Corp Methods and apparatus for changing area ratio in a plasma processing system
US9017526B2 (en) 2013-07-08 2015-04-28 Lam Research Corporation Ion beam etching system
US9123661B2 (en) 2013-08-07 2015-09-01 Lam Research Corporation Silicon containing confinement ring for plasma processing apparatus and method of forming thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11854774B2 (en) 2021-03-17 2023-12-26 Psk Holdings Inc. Plasma detecting device

Also Published As

Publication number Publication date
US10741369B2 (en) 2020-08-11
US20190164732A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP7398423B2 (en) Processing tools with monitoring devices
US11183405B2 (en) Semiconductor manufacturing apparatus
US20090229348A1 (en) Real time leak detection system of process chamber
JP5629762B2 (en) Apparatus and method for improving bevel etching reproducibility between substrates
CN106461460A (en) An optical filter and spectrometer
WO2007022144A1 (en) Optical emission interferometry for pecvd using a gas injection hole
KR20100125370A (en) Advanced process sensing and control using near infrared spectral reflectometry
US12308217B2 (en) Apparatus for preventing contamination of self-plasma chamber
US20160141148A1 (en) Plasma process apparatus having view port
US10741369B2 (en) Semiconductor manufacturing apparatus
KR102161373B1 (en) Plasma Monitoring Device Having Multiple Light Receiving Parts And Plasma Monitoring Method Using The Same
KR101591961B1 (en) Device and method for plasma status measuring of plasma processing chamber
JP6329790B2 (en) Plasma processing equipment
JP2016197020A (en) Optical sensor
JP2010223715A (en) Photodetector and spectrum detector
KR20120026872A (en) Process monitoring device and semiconductor process apparatus with the same, and process monitoring method
CN106816373B (en) Method of manufacturing semiconductor device
JP2006032959A (en) Plasma processing apparatus and the photodetection method of plasma treatment
KR20180082185A (en) Method and apparatus of detecting an end point in the same
TW202232573A (en) Htcc antenna for generation of plasma
US20180166301A1 (en) Semiconductor manufacturing system
EP3899087B1 (en) Backside coating for transparent substrate
KR20150049636A (en) Plasma shielding member, Structure for detecting plasma, and Plasma reaction appatus
CN110517945A (en) Method for manufacturing semiconductor device and semiconductor device
KR20250010358A (en) Substrate insepction appapratus and substrate inspection method using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUEMITSU, RYO;REEL/FRAME:036436/0882

Effective date: 20150820

AS Assignment

Owner name: TOSHIBA MEMORY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KABUSHIKI KAISHA TOSHIBA;REEL/FRAME:043052/0218

Effective date: 20170614

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION