US20160223196A1 - Crude Oil Spray Combustor - Google Patents

Crude Oil Spray Combustor Download PDF

Info

Publication number
US20160223196A1
US20160223196A1 US15/013,274 US201615013274A US2016223196A1 US 20160223196 A1 US20160223196 A1 US 20160223196A1 US 201615013274 A US201615013274 A US 201615013274A US 2016223196 A1 US2016223196 A1 US 2016223196A1
Authority
US
United States
Prior art keywords
shroud
combustor
base
crude oil
atomizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/013,274
Inventor
Steven G. Tuttle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Secretary of Navy
Original Assignee
US Secretary of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201562110890P priority Critical
Application filed by US Secretary of Navy filed Critical US Secretary of Navy
Priority to US15/013,274 priority patent/US20160223196A1/en
Assigned to U.S. GOVERNMENT AS REPRESENTED BY THE SECRETARY OF THE NAVY reassignment U.S. GOVERNMENT AS REPRESENTED BY THE SECRETARY OF THE NAVY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TUTTLE, STEVEN G.
Publication of US20160223196A1 publication Critical patent/US20160223196A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/05Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste oils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/02Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the combustion space being a chamber substantially at atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/404Flame tubes

Abstract

The disclosure describes a combustor suitable for burning emulsified crude oil and seawater, a flow-blurring atomizer positioned at first end configured for introducing atomized crude oil spray into an interior of the combustor. A shroud or combustion duct surrounds a portion of a burning plume of atomized crude oil. The shroud is connected to a base at the first end and is open at the opposite second end. Dilution holes extend through the base and/or the shroud, allow the aspiration and entrainment of air into the plume, and assist in the flame anchoring and propagation, and reduce the amount of soot produced by burning the emulsified oil. At least one ignition port directs an ignition flame or plasma toward the atomized crude oil spray. One or more abrupt expansions at the nozzle or at the shroud sidewalls form toroidal recirculation zones surrounding the atomized crude oil spray.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This Application is a non-provisional application under 35 USC 119(e) of, and claims the benefit of U.S. Provisional Application 62/110,890 filed on Feb. 2, 2015, the entire disclosure of which incorporated herein.
  • BACKGROUND
  • 1. Technical Field
  • The disclosure is related to combustion systems, and more particularly, is related to portable burners for in-situ burning of crude oil and other fuels.
  • 2. Related Technology
  • Oil spills in the marine environment can cause major environmental problems. The spilled oil and the resulting oil/water emulsions can be difficult to clean up. One method is to burn the oil in place, generally known as “in situ burning”.
  • In-situ burning with a mechanically atomized and swirled burner is discussed in Buist, I. A., “Disposal of Spilled Hibernia Crude Oils and Emulsions: In-Situ Burning and the “Swirlfire” Burner,” 12th Arctic and Marine Oil Spill Program Technical Seminar, Environment Canada, 1989. Flare burners for in-situ burning are discussed in Tebeau, P. et al., “Technology Assessment and Concept Evaluation for Alternative Approaches to In-Situ Burning of Oil Spills in the Marine Environment,” Final Project Report for U.S. Minerals Management Service, Sept. 1998 and in Tebeau, P. A., “Alternative Approaches to In Situ Burning Operations,” In Situ Burning of Oil Spills Workshop, Building and Fire Research Laboratory, National Institute of Standards and Technology, 1998.
  • Expro Group flame burners operated on oil platforms require large oil pumps and air compressors that operate at about 1500 psig, and are suitable for operation on large ships, off-shore oil platforms, and land-based oil extraction and processing facilities. Large combustion systems are not suitable for small fishing boats and small oil skimmers.
  • Some burner designs are also disclosed in U.S. Pat. No. 5,295,817 to Young, U.S. Pat. No. 5,472,341 to Meeks, U.S. Pat. No. 6,237,512 to Inoue, U.S. Pat. No. 7,677,882 to Harless, U.S. Patent No 8,550,812 to Moneyhun et al.
  • BRIEF SUMMARY
  • The disclosure describes a combustor suitable for burning emulsified crude oil and seawater, a flow-blurring atomizer positioned at first end configured for introducing atomized crude oil spray into an interior of the combustor. A shroud or combustion duct surrounds a portion of a burning plume of atomized crude oil. The shroud is connected to a base at the first end and is open at the opposite second end. Dilution holes extend through the base and/or the shroud, allow the aspiration and entrainment of air into the plume, assist in the flame anchoring and propagation, and reduce the amount of soot produced by burning the emulsified oil. At least one ignition port directs an ignition flame or plasma toward the atomized crude oil spray. One or more abrupt expansions at the nozzle or at the shroud sidewalls form toroidal recirculation zones surrounding the atomized crude oil spray.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Many aspects of the present disclosure can be better understood with reference to the following diagrams. The drawings are not necessarily to scale. Instead, emphasis is placed upon clearly illustrating certain features of the disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
  • FIG. 1A-1D illustrate a burner for use in a combustion system for burning emulsified crude oil.
  • FIG. 1E illustrates air entry into the burner through the shroud and recirculation zones.
  • FIG. 2A-2B are cross sectional views of a low pressure spray atomizer positioned within the base of the burner.
  • FIG. 3A and 3B illustrate another example of a burner for use in a crude oil burning system.
  • Additional details will be apparent from the following Detailed Description.
  • DETAILED DESCRIPTION Overview
  • The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same or similar elements. While embodiments of the disclosure may be described, modifications, adaptations, and other implementations are possible. For example, substitutions, additions, or modifications may be made to the elements illustrated in the drawings, and the methods described herein may be modified by substituting, reordering, or adding stages to the disclosed methods. Accordingly, the following detailed description does not limit the disclosure. Instead, the proper scope of the disclosure is defined by the appended claims.
  • The system described herein is a combustor useful for in-situ burning of crude oil, emulsified crude oil, and waste liquid. The system provides low-pressure atomization and combustion of these liquids. Because the system can operate at low liquid and air pressures (e.g., between about 10 psig and 100 psig), the system can use small pumps and compressors, and can be carried on fishing boats and other small watercraft typically deployed for spill remediation. The US
  • Navy's spill response community, for example, can clean up oil spills using vessels of opportunity such as barges, utility boats, or fishing boats, with various skimming systems including vessel of opportunity skimming systems, the Marco class V skimmer, or other oil skimmers, supplemented with oil containment booms, oil storage tanks and bladders, towing vessels, and other equipment.
  • Examples
  • FIG. 1A-1D show a combustor or burner 100 useful for burning crude oil, emulsified crude oil, and waste liquid fuel. The combustor 100 includes an air-assisted atomizer 120 designed for high viscosity fluids at low pressure. In this example, the atomizer 120 is a flow blurring atomizer. The atomizer receives oil via an oil inlet line 160 and receives compressed air via an inlet line 150, and discharges a crude oil spray into the combustor duct. The combustor duct is formed of a base or bulkhead 140 and a shroud 110. The combustor components are formed of materials that tolerate the high temperatures, such as, for example, metals and ceramics.
  • In the example shown in FIG. 1A-1D, the atomizer 120 is located in the center of a base 140, which is generally circular and flat. In this example, the shroud or combustion duct 110 has a circular cross sectional area that increases from the base 140 to the far end 111, with the shroud sidewall taking on the shape of a truncated cone. The shape of the shroud above the base can be a truncated cone. In operation, the shroud surrounds a portion of the burning plume, which extends past the far end 111 of the shroud.
  • The shroud 110 includes a plurality of dilution holes 112, 113 that can extend over the length of the shroud (from the base to the far end) or over a lesser part of the shroud. Dilution holes 141 can also be located in the base itself, in the region surrounding the atomizer. The size and position of the holes can be selected to produce a desired combustion effect. In this example, holes in the shroud 113 near the base are larger than the holes 141 through the base 140, and the holes 112 near the far end 111 of the shroud 110 are larger than the holes 113 near the base. The dilution holes allow the aspiration and entrainment of air into the plume and assist in the flame anchoring and propagation, and reduce the amount of soot produced by burning the emulsified oil. The dilution holes through the base allow a limited amount of air to mix with recirculated combustion products without quenching combustion. The dilution holes illustrated in FIG. 1A-1D are circular in shape, although they may be of other shape, for example, oval, square, triangular, or slot shaped. The size and number of the dilution holes should be sufficient to allow entrainment of surrounding air, but not so large as to prevent the shroud from shielding the plume from the wind.
  • As seen in FIG. 1D, ports 130, 131, 132, and 133 are positioned in the base. In operation, the ports introduce ignition and flame holding jets into the combustor and direct the jets toward the atomized crude oil spray. The ports are located symmetrically around the atomizer 120, and are positioned at a common distance from the atomizer. However, the design is not limited to four symmetrical ports located in the base. It may also be suitable to have more, or fewer ports, and to have ports located in the shroud sidewall, or in both the shroud sidewall and the base.
  • The shroud allows the spray plume flames to anchor by shielding the plume from any wind while reflecting radiant heat back to the plume and preventing errant droplets from falling to the ground. These droplets cling to the inside surface of the shroud, where they evaporate and burn, providing additional heat to the plume.
  • The notional cross sectional view of the combustion system shown in FIG. 1E shows a broad, sudden expansion 170 around the nozzle exit that provides a region for the formation of a toroidal recirculation zone where the flame anchors and then propagates along the length of the plume. The abrupt expansion at the nozzle together with the wall of the shroud create a toroidal recirculation zone 171 surrounding the atomized crude oil spray. FIG. 1E also shows air 180 entering the dilution holes in the shroud.
  • The width of the shroud at the base is determined based on the ignition and evaporation time scales. If the shroud is too wide, the atomized liquid fuel within the shroud will cool too much to ignite. If the shroud is too narrow, the atomized liquid fuel will not remain airborne within the shroud long enough to ignite.
  • FIG. 2A and 2B illustrate a flow blurring atomizer 120 in more detail. An oil line or “liquid feed tube” 210 is positioned in the center of a cylindrical atomizer body 250. The atomizer body includes an outer cylinder that surrounds the oil line, with the space between the oil line and the outer cylinder defining an axial air flow passage. The shape of the exit orifice through the atomizer body end forms a nozzle 253. The end of the liquid feed tube 210 is sharpened, and directs the crude oil 220 to the atomizer nozzle 253. The liquid feed tube 210 has an inner diameter D equal to the diameter of the exit orifice 251, with the sharpened outlet end 211 being spaced apart from the exit orifice at an offset distance H. The atomizer body has an end 254 that is closed except for an exit orifice 251 aligned with the outlet of the liquid feed tube, and an inner surface 252. A lateral cylindrical passageway 240 is formed by the gap between the tube end 211 and the exit orifice 251. Referring next to FIG. 2B, air flows through axially through the air passageway that surrounds the liquid feed tube and deflected inward by the inner surface 252 of the end 254 of the atomizer body 250 inward across the oil flow stream as the oil 220 exits the liquid feed tube 210. The atomizing air 241 atomizes the stream of oil 220 leaving the liquid feed tube 210.
  • The nozzle outlet is approximately flush with the surface of the base, as shown in FIG. 2A. However, the nozzle may be positioned with its outlet slightly above or below the surface of the base.
  • Although details of the design shown in FIG. 2A and 2B can vary, a flow-blurring atomizer is one that has a liquid feed tube with an exit end that is spaced apart from a nozzle. The smallest diameter of the exit nozzle 251 is approximately equal to that of the fuel tube. The nozzle surface flares out, so the larger diameter faces the inside of the combustor. The atomizer is configured such that air flows laterally inward toward the fluid flow leaving the liquid feed tube, atomizing the liquid. In this example, the material of the combustor base that surrounds the nozzle redirects the axial air flow inward toward the oil flow stream.
  • The flow blurring atomizer is believed to operate by forming a turbulent, high shear stagnation zone at the surface of the liquid. As the liquid flows out of the liquid feed tube, the air cross streams fragment the liquid surface, then entrain and carry the atomized liquid out of the nozzle. The flow blurring atomizer relies on high speed air, rather than high pressure air. This allows the system to use an air compressor that produces low pressure, moderate flow air to effectively atomize the crude oil.
  • In contrast, air blast and effervescent atomizers rely on a high pressure air source. Effervescent atomizers have been considered for use in the emulsified crude oil combustion system discussed herein. However, effervescent atomizers demonstrated a very high pressure drop across the nozzle orifice, resulting in a very low flow rate. To overcome the high pressure drop across the nozzle and resulting low flow rate, very high fluid and air pressure would be required, which would increase the size and weight of the pumps, air compressors, and associated infrastructure. As a result, flow blurring atomizers, with their low pressure drop, operate at lower air and fluid pressures, and are considered more suitable for such portable combustion systems.
  • Additional details of some flow-blurring atomizers are disclosed in Gañan-Calvo, A. M.,
  • “Enhanced liquid atomization: From flow-focusing to flow blurring”, Applied Physics Letters, Vol. 86, No. 21, 2005, and in Simmons, B. M. and Agrawal, A. K., “Flow-Blurring Atomization for Low-Emission Combustion of Liquid Biofuels”, Combustion Science and Technology, Vol. 184, No. 5, 2012, pp. 660-675, the disclosure of each of which is incorporated herein in its entirety.
  • Referring again to FIG. 1A-1D, ignition and flame holding jets composed of hot plasma gas, enter the combustor via the ports 130, 131, 132, and 133. The ignition and flame holding jets evaporate and ignite the base of the jet to initiate combustion, and evaporates and ionizes the emulsified crude oil. A plasma torch (not shown) generates the hot plasma. The plasma torch requires a supply of air and a source of electricity, and because the plasma torch does not require another fuel source (e.g., propane), it is well suited for a portable shipboard or remote combustion system.
  • In other applications in which other fuel sources are available, it may be suitable to use a different flame-ignition system, for example, a propane-based flame ignition system.
  • FIGS. 3A and 3B illustrate a combustor 300 with another shroud and port configuration. In this example, the combustion duct or shroud 310 is formed of a smaller diameter cylindrical duct section 312 and a larger diameter cylindrical duct section 311, joined together by an annular shroud member that extends outward from the small diameter section 312 to the larger diameter section 311. The shroud shape has a first abrupt expansion 371 around the atomizer 320, and a second abrupt expansion 370 where the first and second duct sections 311, 312 meet. The abrupt expansions 370, 371 produce toroidal recirculation zones 360, 361 around the spray plume, as seen in FIG. 3B.
  • The sections could also be joined together by bending one of the cylindrical sections 312, 311 inward or outward so it is in direct contact with the other duct section. It may also be suitable to form the shroud as a single unitary component, or the shroud and base as a single unitary component.
  • In this example, two ignition ports 331 and 332 are located in the base or bulkhead 340. However, it may also be suitable to position ignition ports in the smaller diameter cylindrical shroud section 312. The ports direct the ignition and flame-holding jets toward the base of the atomized crude oil spray plume. Many dilution through-holes 313 and 314 extend through both of the shroud sections 311, 312 to allow aspiration and entrainment of air into the plume and to assist in the flame anchoring and propagation. As discussed above, number, size, and shape of the dilution holes should be sufficient to allow entrainment of surrounding air, but not so large as to prevent the shroud from shielding the plume from the wind.
  • As in the example shown in FIG. 1, air inlet 350 and an oil inlet line 360 provide air and emulsified crude oil or other liquid fuel to the flow-blurring atomizer 320. The flow blurring atomizer and nozzle configuration is as described above in the discussion related to FIG. 1A-1D.
  • In operation, a system with a 1 in-diameter (25 mm) nozzle will support combustion with the air and oil flow rates of 0.128 kg/s (0.282 lbm/s) air, and 8.0 L/min (2.11 gal/min) oil, using a burner with a first stage burner with a diameter of 800 mm and a length of 800 mm, and a second stage with a diameter of 1000 mm in diameter and a length of 1000 mm.
  • It may also be suitable to add one or more additional shroud sections above the larger diameter cylindrical shroud section, to shield more of the plume from the wind and to add toroidal recirculation zones at the abrupt expansions at the joints between the shroud sections. It may also be suitable to include dilution holes through the base 340 in addition to the holes through the shroud.
  • It is noted that effervescent atomizers have also been considered for use in the emulsified crude oil combustion systems described herein. However, effervescent atomizers demonstrate a very high pressure drop across the nozzle orifice. To overcome the high pressure drop across the nozzle and resulting low flow rate, very high fluid and air pressure are required, which increases the size and weight of the pumps, air compressors, and associated infrastructure. In contrast, flow blurring atomizers, with their low pressure drop, operate at lower air and fluid pressures, and are considered more suitable for such portable combustion systems.
  • In operation, the burner shown in FIG. 1A-1D or 3A-3B is typically oriented vertically, with the atomizer at the bottom and the far end of the shroud at the top. The crude oil/seawater emulsion is pumped via a pump and hose from a storage tank or bladder into the atomizer. In The oil/water emulsion can be collected by an oil skimmer, such as the US Navy's Class V oil skimmer. Compressed air is introduced through the air inlet line into the atomizer. The abrupt expansion around the atomizer at the base of the shroud produces a toroidal recirculation zone around the spray plume.
  • SUMMARY
  • The combustion system described herein can reliably ignite and burn emulsified oil. A prototype system demonstrated stable combustion of an oil/water emulsion with a seawater content range of 0 to 50%, providing nearly complete combustion of both heavy and light components of the crude oil, with little or no unevaporated or unburned spray. The shroud protects the plume from the wind, and the holes through the shroud provide additional air, reducing soot. The prototype combustion system produced approximately 30% less soot and CO than burning the crude oil/seawater emulsions with surface pool fires. The low air and oil pressure requirements permit low power compressors and pumps with a minimal infrastructure footprint. This allows a combustion system to be skid mounted and carried on a vessel of opportunity (e.g., a fishing vessel) to assist in disposal of emulsified crude oil. The system size and capacity can be scaled up or down for larger or smaller vessels, respectively. This technology can be a scalable, effective, and fieldable remediation method for benthic spills or crude oil that is too emulsified for traditional in situ burning.
  • While the specification includes examples, the disclosure's scope is indicated by the following claims. Furthermore, while the specification has been described in language specific to structural features and/or methods, the claims are not limited to the features and methods described above. Rather, the specific features and methods described above are disclosed as examples that illustrate aspects of the disclosure.

Claims (10)

What is claimed as new and desired to be protected by Letters Patent of the United States is:
1. A combustor suitable for burning emulsified crude oil and seawater or other liquid fuel, comprising:
a base at a first end;
a flow blurring atomizer positioned at the first end configured for introducing atomized crude oil spray into an interior of the combustor;
a shroud configured to surround a portion of a burning plume of atomized crude oil, the shroud connected to the base at the first end, the shroud being open at an opposite second end,
at least one of the shroud or the base having a plurality of dilution holes therethrough for introducing diluent air; and
a port configured to direct an ignition flame or plasma toward the atomized crude oil spray.
2. The combustor according to claim 1, wherein the shroud has a cylindrical cross section.
3. The combustor according to claim 1, wherein the shroud is shaped as a truncated cone with a smaller end of the truncated cone connected to the base.
4. The combustor according to claim 1, wherein the at least one port is a plurality of ports arranged symmetrically in the base surrounding the atomizer.
5. The combustor according to claim 1, wherein the at least one port includes a plurality of ports arranged in the shroud.
6. The combustor according to claim 1, wherein the at least one port is a plurality of ports arranged in the base and a plurality of ports arranged in the shroud.
7. The combustor according to claim 1, wherein the plurality of dilution holes therethrough for introducing diluent air include holes of at least two different diameters, with larger holes positioned farther from the base and smaller holes positioned closer to the base.
8. The combustor according to claim 7, wherein the plurality of dilution holes therethrough includes holes through the base surrounding the atomizer.
9. The combustor according to claim 1, wherein the flow-blurring atomizer has a liquid feed tube with an exit end, a nozzle spaced apart from the exit end of the liquid feed tube, the nozzle being tapered outward with a smallest diameter end of the nozzle facing the liquid feed tube and a larger diameter end of the nozzle facing the inside of the combustor.
10. The combustor according to claim 9, wherein the smallest diameter end of the nozzle has a diameter approximately equal to the inner diameter of the exit end of the liquid flow tube.
US15/013,274 2015-02-02 2016-02-02 Crude Oil Spray Combustor Abandoned US20160223196A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201562110890P true 2015-02-02 2015-02-02
US15/013,274 US20160223196A1 (en) 2015-02-02 2016-02-02 Crude Oil Spray Combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/013,274 US20160223196A1 (en) 2015-02-02 2016-02-02 Crude Oil Spray Combustor

Publications (1)

Publication Number Publication Date
US20160223196A1 true US20160223196A1 (en) 2016-08-04

Family

ID=56552974

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/013,274 Abandoned US20160223196A1 (en) 2015-02-02 2016-02-02 Crude Oil Spray Combustor

Country Status (1)

Country Link
US (1) US20160223196A1 (en)

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB111249A (en) * 1917-06-05 1917-11-22 Jean Baptiste Steurs Improvements in Burners for Heavy Oils for use in Oil Furnaces.
GB620343A (en) * 1947-01-09 1949-03-23 Power Jets Res & Dev Ltd Improvements in or relating to diffusion systems for operation in high velocity air streams
GB715909A (en) * 1952-02-01 1954-09-22 Rolls Royce Improvements in or relating to combustion equipment of gas-turbine engines
GB757871A (en) * 1953-12-07 1956-09-26 Gen Electric Improvements in and relating to combustion chambers
GB818634A (en) * 1955-09-29 1959-08-19 Birmingham Small Arms Co Ltd Improvements in or relating to combustion chambers for gas turbines
GB872600A (en) * 1957-08-30 1961-07-12 Bristol Siddeley Engines Ltd Improvements in combustion ducts
GB911759A (en) * 1958-06-02 1962-11-28 Gen Electric Improvements in fluid fuel combustion apparatus
GB1018423A (en) * 1962-01-15 1966-01-26 Bendix Corp Combustion chamber and combustion process
DE1917666A1 (en) * 1969-04-05 1970-10-15 Wintershall Ag Combustion of oil-containing sludges - with primary air introduced at adjustable over -pressure at back of burner-tube
GB1292705A (en) * 1969-09-19 1972-10-11 Schmitz & Apelt Industrieofenb Oil and gas burners
US3767122A (en) * 1971-08-10 1973-10-23 Lucas Aerospace Ltd Flame tubes
US3814574A (en) * 1972-09-22 1974-06-04 Scheu Mfg Co Heater
US3946553A (en) * 1975-03-10 1976-03-30 United Technologies Corporation Two-stage premixed combustor
US4023921A (en) * 1975-11-24 1977-05-17 Electric Power Research Institute Oil burner for NOx emission control
US4419071A (en) * 1981-08-03 1983-12-06 John Zink Company Portable high-flow rate flare for smokeless burning of viscous liquid fuels
US4576569A (en) * 1984-11-29 1986-03-18 Ocean Ecology Ltd. Apparatus to remove oil slicks
US4669972A (en) * 1984-07-26 1987-06-02 Ocean Ecology Ltd. Method of removing an oil slick by atomizing and burning
US4803932A (en) * 1978-07-31 1989-02-14 Ab Scaniainventor Burner for a suspension of fine-grained coal in liquid
US5057004A (en) * 1990-07-17 1991-10-15 Mcallister Ian R Spray burn floating combustible material burner
US5470225A (en) * 1992-07-14 1995-11-28 Create Ishikawa Co., Ltd. Atomizing type burner
JPH1144411A (en) * 1997-07-24 1999-02-16 Babcock Hitachi Kk Pulverized coal combustion burner
US6027332A (en) * 1995-11-17 2000-02-22 Schlumberger Technology Corporation Low pollution burner for oil-well tests
US6102687A (en) * 1998-09-28 2000-08-15 U.S. Department Of Energy Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle
JP2001201019A (en) * 2000-01-20 2001-07-27 Sanyo Electric Co Ltd Combustion device for fuel cell system and hydrogen generating device using the same
JP2002286206A (en) * 2001-03-27 2002-10-03 Babcock Hitachi Kk Heavy oil burner cooling apparatus
JP2002372210A (en) * 2001-06-19 2002-12-26 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for starting pulverized coal burning boiler
DE10156376A1 (en) * 2001-11-16 2003-06-05 Messer Griesheim Gmbh Rotary furnace burner nozzle contains coaxial fuel and oxygen feeds and connects flowably to variable vorticizer to permit air or oxygen or mixed work.
JP2003247425A (en) * 2002-02-25 2003-09-05 Mitsubishi Heavy Ind Ltd Fuel nozzle, combustion chamber, and gas turbine
WO2004027318A1 (en) * 2002-09-17 2004-04-01 Atlas Incinerators A/S A plant for combustion a waste oil
US20040083737A1 (en) * 2002-10-31 2004-05-06 Honeywell International Inc. Airflow modulation technique for low emissions combustors
US20060169800A1 (en) * 1999-06-11 2006-08-03 Aradigm Corporation Aerosol created by directed flow of fluids and devices and methods for producing same
WO2008020299A2 (en) * 2006-08-18 2008-02-21 Holcim Technology Ltd. Device for spraying slurries in kilns
US20100209858A1 (en) * 2006-01-26 2010-08-19 Frenette Henry E Combustion system for atomizing fuel mixture in burner box
US8105075B2 (en) * 2006-03-31 2012-01-31 Christian Bernard Huau Hollow flame versatile burner for hydrocarbons
US20150007571A1 (en) * 2012-03-29 2015-01-08 Alstom Technology Ltd Gas turbine combustor
US20150144567A1 (en) * 2013-11-26 2015-05-28 Timothy J. Nedwed Method and System for Oil Release Management
JP2016114316A (en) * 2014-12-16 2016-06-23 三菱日立パワーシステムズ株式会社 Method for igniting heavy fuel oil burning boiler and heavy fuel oil burning boiler

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB111249A (en) * 1917-06-05 1917-11-22 Jean Baptiste Steurs Improvements in Burners for Heavy Oils for use in Oil Furnaces.
GB620343A (en) * 1947-01-09 1949-03-23 Power Jets Res & Dev Ltd Improvements in or relating to diffusion systems for operation in high velocity air streams
GB715909A (en) * 1952-02-01 1954-09-22 Rolls Royce Improvements in or relating to combustion equipment of gas-turbine engines
GB757871A (en) * 1953-12-07 1956-09-26 Gen Electric Improvements in and relating to combustion chambers
GB818634A (en) * 1955-09-29 1959-08-19 Birmingham Small Arms Co Ltd Improvements in or relating to combustion chambers for gas turbines
GB872600A (en) * 1957-08-30 1961-07-12 Bristol Siddeley Engines Ltd Improvements in combustion ducts
GB911759A (en) * 1958-06-02 1962-11-28 Gen Electric Improvements in fluid fuel combustion apparatus
GB1018423A (en) * 1962-01-15 1966-01-26 Bendix Corp Combustion chamber and combustion process
DE1917666A1 (en) * 1969-04-05 1970-10-15 Wintershall Ag Combustion of oil-containing sludges - with primary air introduced at adjustable over -pressure at back of burner-tube
GB1292705A (en) * 1969-09-19 1972-10-11 Schmitz & Apelt Industrieofenb Oil and gas burners
US3767122A (en) * 1971-08-10 1973-10-23 Lucas Aerospace Ltd Flame tubes
US3814574A (en) * 1972-09-22 1974-06-04 Scheu Mfg Co Heater
US3946553A (en) * 1975-03-10 1976-03-30 United Technologies Corporation Two-stage premixed combustor
US4023921A (en) * 1975-11-24 1977-05-17 Electric Power Research Institute Oil burner for NOx emission control
US4803932A (en) * 1978-07-31 1989-02-14 Ab Scaniainventor Burner for a suspension of fine-grained coal in liquid
US4419071A (en) * 1981-08-03 1983-12-06 John Zink Company Portable high-flow rate flare for smokeless burning of viscous liquid fuels
US4669972A (en) * 1984-07-26 1987-06-02 Ocean Ecology Ltd. Method of removing an oil slick by atomizing and burning
US4576569A (en) * 1984-11-29 1986-03-18 Ocean Ecology Ltd. Apparatus to remove oil slicks
US5057004A (en) * 1990-07-17 1991-10-15 Mcallister Ian R Spray burn floating combustible material burner
US5470225A (en) * 1992-07-14 1995-11-28 Create Ishikawa Co., Ltd. Atomizing type burner
US6027332A (en) * 1995-11-17 2000-02-22 Schlumberger Technology Corporation Low pollution burner for oil-well tests
JPH1144411A (en) * 1997-07-24 1999-02-16 Babcock Hitachi Kk Pulverized coal combustion burner
US6102687A (en) * 1998-09-28 2000-08-15 U.S. Department Of Energy Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle
US20060169800A1 (en) * 1999-06-11 2006-08-03 Aradigm Corporation Aerosol created by directed flow of fluids and devices and methods for producing same
JP2001201019A (en) * 2000-01-20 2001-07-27 Sanyo Electric Co Ltd Combustion device for fuel cell system and hydrogen generating device using the same
JP2002286206A (en) * 2001-03-27 2002-10-03 Babcock Hitachi Kk Heavy oil burner cooling apparatus
JP2002372210A (en) * 2001-06-19 2002-12-26 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for starting pulverized coal burning boiler
DE10156376A1 (en) * 2001-11-16 2003-06-05 Messer Griesheim Gmbh Rotary furnace burner nozzle contains coaxial fuel and oxygen feeds and connects flowably to variable vorticizer to permit air or oxygen or mixed work.
JP2003247425A (en) * 2002-02-25 2003-09-05 Mitsubishi Heavy Ind Ltd Fuel nozzle, combustion chamber, and gas turbine
WO2004027318A1 (en) * 2002-09-17 2004-04-01 Atlas Incinerators A/S A plant for combustion a waste oil
US20040083737A1 (en) * 2002-10-31 2004-05-06 Honeywell International Inc. Airflow modulation technique for low emissions combustors
US20100209858A1 (en) * 2006-01-26 2010-08-19 Frenette Henry E Combustion system for atomizing fuel mixture in burner box
US8105075B2 (en) * 2006-03-31 2012-01-31 Christian Bernard Huau Hollow flame versatile burner for hydrocarbons
WO2008020299A2 (en) * 2006-08-18 2008-02-21 Holcim Technology Ltd. Device for spraying slurries in kilns
US20150007571A1 (en) * 2012-03-29 2015-01-08 Alstom Technology Ltd Gas turbine combustor
US20150144567A1 (en) * 2013-11-26 2015-05-28 Timothy J. Nedwed Method and System for Oil Release Management
JP2016114316A (en) * 2014-12-16 2016-06-23 三菱日立パワーシステムズ株式会社 Method for igniting heavy fuel oil burning boiler and heavy fuel oil burning boiler

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. Oyediran, D. Darling & K. Radhakrishnan; "Review of Combustion-Acoustic Instabilities", 12 July 1995, NASA Technical Memorandum 107020, AIAA-95-2469 *
Experimental Thermal and Fluid Science Vol. 57 (2014), pgs 275-284 "Clean combustion of different liquid fuels using a novel injector", Lulin Jiang, Ajay K. Agrawal ⇑, Robert P. Taylor *
J. Seth, R. Ellis & P. Grimes; "Emulsified Fuels Improved Combustion of Heavy Oils & Emission Control for Sustainable Fuels", 2011, Alternative Petroleum Technologies S.A.; pg 2-21 *
T. Kadota, & H. Yamasaki; "Recent advances in the combustion of water fuel emulsion", May 2002, Elsevier Science Ltd, Abstract *

Similar Documents

Publication Publication Date Title
JP5905044B2 (en) Fluid activation device
US20160319209A1 (en) Apparatus and process for production of nanobubble liquid
US9909549B2 (en) Ducted fuel injection
Jedelsky et al. Development of an effervescent atomizer for industrial burners
US4842509A (en) Process for fuel combustion with low NOx soot and particulates emission
US20150202640A1 (en) Method and apparatus for generating a mist
CN103776061B (en) For reducing the muffler assembly of combustor pulsation
DE19536837B4 (en) Apparatus and method for injecting fuels into compressed gaseous media
ES2244766T3 (en) Liquid sprayers.
JP2795444B2 (en) Flame control method and apparatus
CA2064297C (en) Supercritical fluids as diluents in combustion of liquid fuels and waste materials
CN1230650C (en) Aerodynamic injector system with one way cyclone
US5974780A (en) Method for reducing the production of NOX in a gas turbine
KR100234572B1 (en) Narrow spray angle liquid fuel atomizers for combustion
US10507480B2 (en) Method and apparatus for generating a mist
Tambe et al. Liquid jets in subsonic crossflow
US4094625A (en) Method and device for evaporation and thermal oxidation of liquid effluents
US4103827A (en) Method of and apparatus for generating mixed and atomized fluids
CN1769655B (en) Gas turbine power generating plant
KR100234569B1 (en) Burner arrangement especially for gas turbines for the low-pollutant combustion of coal gas and other fuels
CA2556673C (en) Method and apparatus for generating a mist
RU2126114C1 (en) Liquid or suspension spraying device
US7926282B2 (en) Pure air blast fuel injector
US10309651B2 (en) Injectors for multipoint injection
CA1170176A (en) Downhole steam injector

Legal Events

Date Code Title Description
AS Assignment

Owner name: U.S. GOVERNMENT AS REPRESENTED BY THE SECRETARY OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TUTTLE, STEVEN G.;REEL/FRAME:037872/0475

Effective date: 20160225

STCB Information on status: application discontinuation

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION