US20160193498A1 - Portable launch monitor - Google Patents
Portable launch monitor Download PDFInfo
- Publication number
- US20160193498A1 US20160193498A1 US15/067,256 US201615067256A US2016193498A1 US 20160193498 A1 US20160193498 A1 US 20160193498A1 US 201615067256 A US201615067256 A US 201615067256A US 2016193498 A1 US2016193498 A1 US 2016193498A1
- Authority
- US
- United States
- Prior art keywords
- golf ball
- trajectory
- flight characteristics
- augmented reality
- smart device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims abstract description 36
- 230000003190 augmentative effect Effects 0.000 claims description 21
- 238000013519 translation Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 5
- 240000007320 Pinus strobus Species 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000004984 smart glass Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000208140 Acer Species 0.000 description 1
- 101100514842 Xenopus laevis mtus1 gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0003—Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/36—Training appliances or apparatus for special sports for golf
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/36—Training appliances or apparatus for special sports for golf
- A63B69/3623—Training appliances or apparatus for special sports for golf for driving
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/36—Training appliances or apparatus for special sports for golf
- A63B69/3658—Means associated with the ball for indicating or measuring, e.g. speed, direction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/04—Supports for telephone transmitters or receivers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/06—Indicating or scoring devices for games or players, or for other sports activities
- A63B71/0619—Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
- A63B2071/0658—Position or arrangement of display
- A63B2071/0661—Position or arrangement of display arranged on the user
- A63B2071/0666—Position or arrangement of display arranged on the user worn on the head or face, e.g. combined with goggles or glasses
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2208/00—Characteristics or parameters related to the user or player
- A63B2208/02—Characteristics or parameters related to the user or player posture
- A63B2208/0204—Standing on the feet
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/30—Speed
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2225/00—Miscellaneous features of sport apparatus, devices or equipment
- A63B2225/20—Miscellaneous features of sport apparatus, devices or equipment with means for remote communication, e.g. internet or the like
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2250/00—Details of telephonic subscriber devices
- H04M2250/52—Details of telephonic subscriber devices including functional features of a camera
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/63—Control of cameras or camera modules by using electronic viewfinders
Definitions
- the present invention relates to a system and process for determining the flight characteristics of a golf ball using a smart device, and, optionally, displaying the flight characteristics and/or computed trajectory of the golf ball on a wearable, hands-free device.
- U.S. Pat. No. 6,241,622 to Gobush et al. discloses a method and apparatus for measuring the speed, direction, and orientation of a golf ball and from such data computing the flight path of the ball.
- Wireless mobile device systems that capture and display data related to golf shots are also known.
- U.S. Patent Application Publication No. 2012/0088544 to Bentley et al. discloses a portable wireless mobile device motion capture data mining system and method configured to display motion capture/analysis data on a mobile device
- U.S. Patent Application Publication 2014/0300745 to Kirk et al. which discloses methods for determining a property of a trajectory of a ball with a mobile computer device.
- Pocket Pro Golf Designs' PocketPro device transfers golf swing data to an iOS device for analyzing a golfer's swing, including calculating the initial direction of the ball relative to the target line and its vertical angle off the ground based on the acceleration and rotation rate of a golf club.
- the present invention is directed to a launch monitor system for measuring flight characteristics of a golf ball moving in a predetermined field-of-view.
- the launch monitor system comprises a support structure and a smart device secured thereto.
- the smart device has an onboard camera positioned to capture one or more images of the golf ball.
- the launch monitor systems also comprises an application configured to execute on the smart device, which processes the images and determines one or more flight characteristics of the golf ball, such as translation, rotation, initial velocity, backspin, side spin, rifle spin, and launch angle.
- the present invention is directed to a method for measuring flight characteristics of a golf ball moving in a predetermined field-of-view.
- the method comprises securing a smart device having an onboard camera to a support structure, positioning the support structure in a known location relative to the golf ball, executing an application on the smart device, capturing one or more images of the golf ball using the onboard camera and optionally a flash source, and processing the images of the golf ball using the software application to determine one or more flight characteristics of the golf ball, such as translation, rotation, initial velocity, backspin, side spin, rifle spin, and launch angle.
- the present invention is directed to a launch monitor system for measuring and displaying flight characteristics of a golf ball moving in a predetermined field-of-view.
- the system comprises a support structure, a smart device secured to the support structure, a software application configured to execute on the smart device, and a wearable hands-free device, such as an augmented reality device.
- the system optionally comprises a trajectory model software program to compute a trajectory for the golf ball.
- the smart device optionally comprises a flash source contained therein.
- the software application captures one or more images of the golf ball, processes the images, and determines one or more flight characteristics of the golf ball, such as translation, rotation, initial velocity, backspin, side spin, rifle spin, and launch angle.
- the wearable hands-free device displays one or more of the flight characteristics, and, optionally, the trajectory of the golf ball.
- the present invention is directed to a method for measuring flight characteristics of a golf ball moving in a predetermined field-of-view.
- the method comprises securing a smart device having an onboard camera to a support structure, positioning the support structure in a known location relative to the golf ball, executing a software application on the smart device, capturing one or more images of the golf ball using the onboard camera and optionally a flash source, processing the images of the golf ball to determine one or more flight characteristics of the golf ball, and transmitting one or more of the flight characteristics to a wearable hands-free device, such as an augmented reality device.
- a wearable hands-free device such as an augmented reality device.
- FIG. 1 is a perspective view of a peripheral camera and strobe device according to an embodiment of the present invention
- FIG. 2 is a perspective view of a support structure according to an embodiment of the present invention.
- FIG. 3 is a perspective view of a support structure according to another embodiment of the present invention.
- FIG. 4 is a perspective view of a support structure according to another embodiment of the present invention.
- FIG. 5 is a perspective view of a support structure according to another embodiment of the present invention.
- FIG. 6 is a perspective view of a support structure according to another embodiment of the present invention.
- FIG. 7 is a perspective view of a support structure according to another embodiment of the present invention.
- Portable launch monitors of the present invention are used to determine one or more flight characteristics of a golf ball by capturing and analyzing one or more images of the ball.
- the novel systems disclosed herein comprise a smart device, a support structure, and an optional external light source.
- the term “smart device” is used herein to mean an electronic device that is cordless when not being charged, easily transportable, readily connected to WiFi, 3G, 4G, etc., and is capable of data communication.
- suitable smart devices include, but are not limited to, smartphones, such as the Apple iPhone phones, Blackberry devices, Android-operated smartphones, and the Microsoft Windows phone; phablets, such as the Samsung Galaxy Note and Samsung Galaxy Player phablets, the LG Optimus Vu phablet, the Acer Iconia Smart phablet, and the Dell Streak phablet; and tablets, such as the Apple iPad tablets, the Samsung Galaxy Pad tablet, the Nook tablet, the Kindle Fire tablet, and the Blackberry Playbook tablet.
- smartphones such as the Apple iPhone phones, Blackberry devices, Android-operated smartphones, and the Microsoft Windows phone
- phablets such as the Samsung Galaxy Note and Samsung Galaxy Player phablets, the LG Optimus Vu phablet, the Acer Iconia Smart phablet, and the Dell Streak phablet
- tablets such as the Apple iPad tablets, the Samsung Galaxy Pad tablet, the Nook tablet, the Kindle Fire tablet, and the Blackberry Playbook tablet.
- Suitable smart devices include an onboard camera capable of being activated using an auditory or visual trigger.
- the camera is capable of strobe times from 10 microseconds to 0.01 seconds and flash times from 0.7 microseconds to 100 microseconds.
- an external flash or steady light source such as a strobe peripheral device, and/or an external camera, are used to aid in capturing images of the golf ball.
- FIG. 1 illustrates a non-limiting example of a peripheral device 10 including two cameras 12 and two camera strobes 14 .
- Smart devices are equipped with an internal computer, including a processor that executes software modules, commonly known as applications.
- a software application for processing and analyzing images is configured to execute thereon.
- the software application uses algorithms to calculate one or more flight characteristics of a golf ball based on images of the ball.
- FIG. 2 illustrates a non-limiting example of a support structure 20 with a smart device 22 secured thereto.
- Support structure 20 is teed into the ground at a distance from a golf ball 30 .
- the distance from smart device 22 to golf ball 30 can be measured by hand, or the software application can be configured to calculate the distance using a distance algorithm assuming a known diameter of the golf ball.
- Support structure 20 optionally has a plurality of markings thereon to indicate the optimal height for capturing images of various types of golf shots, e.g., driver-type shots, wedge-type shots, etc.
- Smart device 22 may use two separate exposures, each with its own flash, or may flash twice during a single exposure, in order to acquire two images. Alternatively, smart device 22 can take a single exposure and a streak analysis can be used for computing flight characteristics.
- FIG. 3 illustrates a non-limiting example of a support structure 34 including an appendage 32 with a smart device 22 secured thereto.
- Golf ball 30 is located in a known location on or near support structure 34 .
- Support structure 34 optionally includes markings such that appendage 32 can be moved to a position that is located at a known distance from golf ball 30 .
- the software application can be configured to calculate the distance using a distance algorithm assuming a known diameter of the golf ball.
- support structure 34 may include one or more external flash sources 36 attached thereto, such that the flash of the smart device, if it is equipped with one, is not used.
- FIG. 5 illustrates a non-limiting example of a support structure 34 including multiple appendages 32 with smart devices 22 attached thereto.
- Each smart device is equipped to capture one or more images of golf ball 30 , and, in a particular embodiment, the images are captured using a camera located on the same side of the smart device as the display screen.
- the smart devices can communicate with each other via hardwiring, Bluetooth, or other wireless methods, to determine the relationships between captured images.
- FIG. 6 illustrates a non-limiting example of a support structure 34 including multiple appendages 32 with a first smart device 22 a and a second smart device 22 b attached thereto.
- first smart device 22 a is a tablet-style smart device
- second smart device 22 b is a smartphone-style smart device.
- FIG. 7 illustrates a non-limiting example of a support structure 34 including multiple appendages 32 with smart devices 22 attached thereto.
- images of golf ball 30 are captured using a camera located on the side of the smart device opposite the display screen.
- Preferred methods for determining one or more flight characteristics of a golf ball using a portable launch monitor of the present invention comprise the following steps: connecting an optional external flash source and/or an optional external camera to a smart device, for example, by a Universal Serial Bus (USB), FireWire, Wi-Fi, Bluetooth technology, Lightning connector, or other similar data transfer means; executing a software application on the smart device; securing the smart device having an onboard camera to a support structure; positioning the support structure in a known location relative to a golf ball; capturing at least one image of the ball, one or more images being captured after striking the ball with a golf club; and processing the images using the software application to determine one or more flight characteristics of the ball.
- USB Universal Serial Bus
- the smart device is secured to the support structure and positioned in a known location relative to a golf ball.
- the golf ball should be oriented such that one or more markings, such as a sidestamp, nameplate, dots, or other marking suitable as a reference point for detecting rotation of the ball, are facing the camera.
- One or more photos are then taken, and the images of the golf ball captured therein are processed.
- one or more videos are taken, and the images of the golf ball captured in individual frames of the video are processed.
- one photo is taken capturing a single image of the ball after being struck by the club and a streak analysis is used for computing flight characteristics.
- At least two photos are taken, including a first photo capturing a still first image of the ball sitting on the tee, and a second photo capturing a second image of the ball after being struck by the club.
- the second photo is taken when an impact between the club and the ball is detected using an auditory or visual sensor of the smart device or peripheral device, including, but not limited to microphone or laser.
- At least two photos are taken, including a first photo capturing a first image of the ball after being struck by the club at a first moment in time, and a second photo capturing a second image of the ball after being struck by the club at a second moment in time.
- the first photo is taken at the first moment in time when an impact between the club and the ball is detected using an auditory or visual sensor of the smart device or peripheral device.
- the second photo is taken at the second moment in time.
- photo capture and flash occur simultaneously, resulting in one photo taken during each flash.
- the shutter opens and closes multiple times during a single flash, resulting in two or more photos taken during a single flash.
- a single photo capturing two or more images of the golf ball in different positions is taken by causing the camera strobe to flash multiple times while the camera shutter is open.
- Flight characteristics of the golf ball including, but not limited to, translation and rotation, are then measured using the acquired images.
- a point is selected that repeats itself in each image.
- the software application uses an edge detection method to calculate the center of mass of the ball in each image.
- a midpoint of the reference marking e.g., dots, sidestamp arrows, nameplate, and the like, is used to represent the center of the ball in each image.
- Translation is then measured as the distance between the repeating points.
- a three dimensional coordinate system is defined prior to acquiring images, and translation is recorded by determining the location of the ball with the coordinate system at two points in time. In another embodiment, translation is determined based on a relative measure to the assumed diameter of the ball.
- Rotation is measured as the change in angle of a defined reference marking from one image to another.
- reference markings are sidestamps, nameplates, rows of dimples, retro reflective stripes, retro reflective dots, hand drawn markings, custom printings, and the like.
- Translation and rotation can then be used to calculate additional flight characteristics of the golf ball, including, but not limited to, initial velocity, backspin, side spin, rifle spin, elevation angle, azimuthal angle, and launch angle.
- Velocity can be determined using the translation and the amount of time between image acquisitions.
- Backspin can be determined using the rotation and the amount of time between image acquisitions.
- Launch angle can be determined using translation, specifically the change in distance down range, and the change in elevation between images.
- the algorithms used to compute the trajectory of the ball are part of a trajectory model software program installed locally on the smart device.
- the algorithms used to compute the trajectory of the ball are part of a trajectory model software program installed locally on a wearable, hands-free device, such as an augmented reality device.
- the hands-free device receives initial launch conditions from the smart device, preferably over a wireless communication, and the trajectory model software program computes the trajectory of the ball.
- the algorithms used to compute the trajectory of the ball are part of a trajectory model software program installed on a remote server.
- the remote server receives initial launch conditions from the smart device over a wireless communication.
- the trajectory model software program computes the trajectory of the ball, and then communicates the computed trajectory back to the smart device and/or a wearable, hands-free device.
- Atmospheric conditions including, but not limited to, temperature, barometric pressure, humidity, wind speed, and wind direction, are optionally taken into account in the trajectory computation.
- the software application uses a weather-related application installed on the smart device to determine atmospheric conditions.
- the software application uses information from a website to determine atmospheric conditions.
- the smart device is equipped with weather sensors that the software application uses to determine atmospheric conditions.
- flight characteristics and/or ball trajectory are then communicated to the user.
- one or more flight characteristics and/or ball trajectory are displayed on the smart device.
- one or more flight characteristics and/or ball trajectory are displayed on a wearable, hands-free device.
- one or more flight characteristics and/or ball trajectory are displayed on the smart device and one or more flight characteristics and/or ball trajectory are displayed on a wearable, hands-free device.
- Wearable, hands-free devices suitable for use in the present invention are similar to smart devices, but are in the form of eyeglasses, goggles, and the like, and must be capable of displaying images and data on a user's real world view.
- Suitable examples of commercially available wearable, hands-free devices include, but are not limited to, HoloLens devices, commercially available from Microsoft; Moverio devices, commercially available from Epson America, Inc.; Google glass devices, commercially available from Google; M100 smart glasses, commercially available from Vuzix; Meta augmented reality devices, commercially available from Meta Company; Ora augmented reality devices, commercially available from Optinvent; GlassUp eyeglasses, commercially available from GlassUp; castAR augmented reality glasses, commercially available from Cast AR; Laster SeeThru devices, commercially available from Laster Technologies; Icis augmented reality glasses, commercially available from Laforge Optical; Atheer augmented reality devices, commercially available from Atheer, Inc.; Mirama smartglasses, commercial
- the process disclosed herein optionally includes one or more of the following steps: automatic identification of the golf ball type/model using image recognition of the side stamp, dimple pattern, etc., which may yield more accurate results based on the particular model's known aerodynamic performance properties; limiting the functionality of the system based on the brand of the ball; and providing an option for the user to upload data to one or more media networks, including, but not limited to, social media sites.
- the data generated in the processes disclosed herein are used in a virtual golf game, wherein the golf shots previously captured become the options from which a player can choose for shots on a virtual golf course.
- the data generated in the processes disclosed herein are communicated to a party other than the user for marketing and research and development purposes.
- the data generated in the processes disclosed herein are stored such that an average flight characteristic and/or an average ball trajectory can be computed and, optionally, displayed on the smart device and/or augmented reality device in addition to or instead of individual shot data.
- the data can be stored locally on the smart device and/or augmented reality device, or on a remote server.
Landscapes
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computer Graphics (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Human Computer Interaction (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
- The present application is a continuation-in-part of U.S. patent application Ser. No. 14/568,215, filed Dec. 12, 2014, the entire disclosure of which is hereby incorporated herein by reference.
- The present invention relates to a system and process for determining the flight characteristics of a golf ball using a smart device, and, optionally, displaying the flight characteristics and/or computed trajectory of the golf ball on a wearable, hands-free device.
- Apparatus for measuring golf ball flight characteristics are known. For example, U.S. Pat. No. 6,241,622 to Gobush et al. discloses a method and apparatus for measuring the speed, direction, and orientation of a golf ball and from such data computing the flight path of the ball.
- Wireless mobile device systems that capture and display data related to golf shots are also known. For example, U.S. Patent Application Publication No. 2012/0088544 to Bentley et al. discloses a portable wireless mobile device motion capture data mining system and method configured to display motion capture/analysis data on a mobile device, and U.S. Patent Application Publication 2014/0300745 to Kirk et al., which discloses methods for determining a property of a trajectory of a ball with a mobile computer device. Also, according to pocketpro.org/howitworks.html, Pocket Pro Golf Designs' PocketPro device transfers golf swing data to an iOS device for analyzing a golfer's swing, including calculating the initial direction of the ball relative to the target line and its vertical angle off the ground based on the acceleration and rotation rate of a golf club.
- However, there is no known portable, low-cost system that accurately determines the flight characteristics and predicts the trajectory of a golf ball based on images of the ball. Thus, the present invention provides such system.
- In one embodiment, the present invention is directed to a launch monitor system for measuring flight characteristics of a golf ball moving in a predetermined field-of-view. The launch monitor system comprises a support structure and a smart device secured thereto. The smart device has an onboard camera positioned to capture one or more images of the golf ball. The launch monitor systems also comprises an application configured to execute on the smart device, which processes the images and determines one or more flight characteristics of the golf ball, such as translation, rotation, initial velocity, backspin, side spin, rifle spin, and launch angle.
- In another embodiment, the present invention is directed to a method for measuring flight characteristics of a golf ball moving in a predetermined field-of-view. The method comprises securing a smart device having an onboard camera to a support structure, positioning the support structure in a known location relative to the golf ball, executing an application on the smart device, capturing one or more images of the golf ball using the onboard camera and optionally a flash source, and processing the images of the golf ball using the software application to determine one or more flight characteristics of the golf ball, such as translation, rotation, initial velocity, backspin, side spin, rifle spin, and launch angle.
- In another embodiment, the present invention is directed to a launch monitor system for measuring and displaying flight characteristics of a golf ball moving in a predetermined field-of-view. The system comprises a support structure, a smart device secured to the support structure, a software application configured to execute on the smart device, and a wearable hands-free device, such as an augmented reality device. The system optionally comprises a trajectory model software program to compute a trajectory for the golf ball. The smart device optionally comprises a flash source contained therein. The software application captures one or more images of the golf ball, processes the images, and determines one or more flight characteristics of the golf ball, such as translation, rotation, initial velocity, backspin, side spin, rifle spin, and launch angle. The wearable hands-free device displays one or more of the flight characteristics, and, optionally, the trajectory of the golf ball.
- In another embodiment, the present invention is directed to a method for measuring flight characteristics of a golf ball moving in a predetermined field-of-view. The method comprises securing a smart device having an onboard camera to a support structure, positioning the support structure in a known location relative to the golf ball, executing a software application on the smart device, capturing one or more images of the golf ball using the onboard camera and optionally a flash source, processing the images of the golf ball to determine one or more flight characteristics of the golf ball, and transmitting one or more of the flight characteristics to a wearable hands-free device, such as an augmented reality device.
- In the accompanying drawings which form a part of the specification and are to be read in conjunction therewith and in which like reference numerals are used to indicate like parts in the various views:
-
FIG. 1 is a perspective view of a peripheral camera and strobe device according to an embodiment of the present invention; -
FIG. 2 is a perspective view of a support structure according to an embodiment of the present invention; -
FIG. 3 is a perspective view of a support structure according to another embodiment of the present invention; -
FIG. 4 is a perspective view of a support structure according to another embodiment of the present invention; -
FIG. 5 is a perspective view of a support structure according to another embodiment of the present invention; -
FIG. 6 is a perspective view of a support structure according to another embodiment of the present invention; and -
FIG. 7 is a perspective view of a support structure according to another embodiment of the present invention. - Portable launch monitors of the present invention are used to determine one or more flight characteristics of a golf ball by capturing and analyzing one or more images of the ball. The novel systems disclosed herein comprise a smart device, a support structure, and an optional external light source. For purposes of the present invention, the term “smart device” is used herein to mean an electronic device that is cordless when not being charged, easily transportable, readily connected to WiFi, 3G, 4G, etc., and is capable of data communication. Examples of suitable smart devices include, but are not limited to, smartphones, such as the Apple iPhone phones, Blackberry devices, Android-operated smartphones, and the Microsoft Windows phone; phablets, such as the Samsung Galaxy Note and Samsung Galaxy Player phablets, the LG Optimus Vu phablet, the Acer Iconia Smart phablet, and the Dell Streak phablet; and tablets, such as the Apple iPad tablets, the Samsung Galaxy Pad tablet, the Nook tablet, the Kindle Fire tablet, and the Blackberry Playbook tablet.
- Suitable smart devices include an onboard camera capable of being activated using an auditory or visual trigger. In a particular embodiment, the camera is capable of strobe times from 10 microseconds to 0.01 seconds and flash times from 0.7 microseconds to 100 microseconds. In some embodiments, particularly embodiments wherein the camera of the smart device lacks ideal strobe and/or flash capabilities, an external flash or steady light source, such as a strobe peripheral device, and/or an external camera, are used to aid in capturing images of the golf ball.
FIG. 1 illustrates a non-limiting example of aperipheral device 10 including twocameras 12 and twocamera strobes 14. - Smart devices are equipped with an internal computer, including a processor that executes software modules, commonly known as applications. In smart devices of the present invention, a software application for processing and analyzing images is configured to execute thereon. As further discussed below, in one embodiment, the software application uses algorithms to calculate one or more flight characteristics of a golf ball based on images of the ball.
- In order to keep the smart device stable during image acquisition and provide ideal positioning of the onboard camera relative to the golf ball and to the plane of the ground, a support structure can be used.
FIG. 2 illustrates a non-limiting example of asupport structure 20 with asmart device 22 secured thereto.Support structure 20 is teed into the ground at a distance from agolf ball 30. The distance fromsmart device 22 togolf ball 30 can be measured by hand, or the software application can be configured to calculate the distance using a distance algorithm assuming a known diameter of the golf ball.Support structure 20 optionally has a plurality of markings thereon to indicate the optimal height for capturing images of various types of golf shots, e.g., driver-type shots, wedge-type shots, etc.Smart device 22 may use two separate exposures, each with its own flash, or may flash twice during a single exposure, in order to acquire two images. Alternatively,smart device 22 can take a single exposure and a streak analysis can be used for computing flight characteristics. -
FIG. 3 illustrates a non-limiting example of asupport structure 34 including anappendage 32 with asmart device 22 secured thereto.Golf ball 30 is located in a known location on ornear support structure 34.Support structure 34 optionally includes markings such thatappendage 32 can be moved to a position that is located at a known distance fromgolf ball 30. Alternatively, the software application can be configured to calculate the distance using a distance algorithm assuming a known diameter of the golf ball. In one embodiment, as shown inFIG. 4 ,support structure 34 may include one or moreexternal flash sources 36 attached thereto, such that the flash of the smart device, if it is equipped with one, is not used. -
FIG. 5 illustrates a non-limiting example of asupport structure 34 includingmultiple appendages 32 withsmart devices 22 attached thereto. Each smart device is equipped to capture one or more images ofgolf ball 30, and, in a particular embodiment, the images are captured using a camera located on the same side of the smart device as the display screen. The smart devices can communicate with each other via hardwiring, Bluetooth, or other wireless methods, to determine the relationships between captured images. -
FIG. 6 illustrates a non-limiting example of asupport structure 34 includingmultiple appendages 32 with a firstsmart device 22 a and a secondsmart device 22 b attached thereto. In a particular embodiment, firstsmart device 22 a is a tablet-style smart device, and secondsmart device 22 b is a smartphone-style smart device. -
FIG. 7 illustrates a non-limiting example of asupport structure 34 includingmultiple appendages 32 withsmart devices 22 attached thereto. In a particular embodiment, images ofgolf ball 30 are captured using a camera located on the side of the smart device opposite the display screen. - Preferred methods for determining one or more flight characteristics of a golf ball using a portable launch monitor of the present invention comprise the following steps: connecting an optional external flash source and/or an optional external camera to a smart device, for example, by a Universal Serial Bus (USB), FireWire, Wi-Fi, Bluetooth technology, Lightning connector, or other similar data transfer means; executing a software application on the smart device; securing the smart device having an onboard camera to a support structure; positioning the support structure in a known location relative to a golf ball; capturing at least one image of the ball, one or more images being captured after striking the ball with a golf club; and processing the images using the software application to determine one or more flight characteristics of the ball.
- The smart device is secured to the support structure and positioned in a known location relative to a golf ball. The golf ball should be oriented such that one or more markings, such as a sidestamp, nameplate, dots, or other marking suitable as a reference point for detecting rotation of the ball, are facing the camera. One or more photos are then taken, and the images of the golf ball captured therein are processed. Alternatively, one or more videos are taken, and the images of the golf ball captured in individual frames of the video are processed.
- In a first embodiment, one photo is taken capturing a single image of the ball after being struck by the club and a streak analysis is used for computing flight characteristics.
- In a second embodiment, at least two photos are taken, including a first photo capturing a still first image of the ball sitting on the tee, and a second photo capturing a second image of the ball after being struck by the club. The second photo is taken when an impact between the club and the ball is detected using an auditory or visual sensor of the smart device or peripheral device, including, but not limited to microphone or laser.
- In a third embodiment, at least two photos are taken, including a first photo capturing a first image of the ball after being struck by the club at a first moment in time, and a second photo capturing a second image of the ball after being struck by the club at a second moment in time. The first photo is taken at the first moment in time when an impact between the club and the ball is detected using an auditory or visual sensor of the smart device or peripheral device. Immediately after acquisition of the first photo is complete, the second photo is taken at the second moment in time. In a particular aspect of this embodiment, photo capture and flash occur simultaneously, resulting in one photo taken during each flash. In another particular aspect of this embodiment, the shutter opens and closes multiple times during a single flash, resulting in two or more photos taken during a single flash.
- In a fourth embodiment, a single photo capturing two or more images of the golf ball in different positions is taken by causing the camera strobe to flash multiple times while the camera shutter is open.
- Flight characteristics of the golf ball, including, but not limited to, translation and rotation, are then measured using the acquired images. First, a point is selected that repeats itself in each image. In one embodiment, the software application uses an edge detection method to calculate the center of mass of the ball in each image. In another embodiment, a midpoint of the reference marking, e.g., dots, sidestamp arrows, nameplate, and the like, is used to represent the center of the ball in each image.
- Translation is then measured as the distance between the repeating points. In one embodiment, a three dimensional coordinate system is defined prior to acquiring images, and translation is recorded by determining the location of the ball with the coordinate system at two points in time. In another embodiment, translation is determined based on a relative measure to the assumed diameter of the ball.
- Rotation is measured as the change in angle of a defined reference marking from one image to another. Non-limiting examples of reference markings are sidestamps, nameplates, rows of dimples, retro reflective stripes, retro reflective dots, hand drawn markings, custom printings, and the like.
- Translation and rotation can then be used to calculate additional flight characteristics of the golf ball, including, but not limited to, initial velocity, backspin, side spin, rifle spin, elevation angle, azimuthal angle, and launch angle. Velocity can be determined using the translation and the amount of time between image acquisitions. Backspin can be determined using the rotation and the amount of time between image acquisitions. Launch angle can be determined using translation, specifically the change in distance down range, and the change in elevation between images.
- A computer algorithm can then be used to compute the trajectory of the ball using the calculated flight characteristics, optionally taking into account atmospheric conditions. For each time increment, the forces on the golf ball at time T are interpolated and the velocity at time T+1 is calculated from the velocity of the golf ball and the forces on the golf ball at time T. The mean velocity and the Reynolds number during the time interval from time T to time T+1 are calculated. The mean forces are then interpolated and used to calculate the velocity at time T+1. The forces include the drag force, the lift due to the spin of the ball, and gravitational forces. Using the velocity at time T+1, the position at time T+1 is computed, and spin rate at time T+1 is then computed. The length of the time interval is preferably 0.1 seconds. This calculation is performed until the golf ball reaches the ground. The equations used to perform these calculations are further disclosed, for example, in U.S. Pat. No. 6,533,674, the entire disclosure of which is hereby incorporated herein by reference.
- In one embodiment, the algorithms used to compute the trajectory of the ball are part of a trajectory model software program installed locally on the smart device.
- In another embodiment, the algorithms used to compute the trajectory of the ball are part of a trajectory model software program installed locally on a wearable, hands-free device, such as an augmented reality device. The hands-free device receives initial launch conditions from the smart device, preferably over a wireless communication, and the trajectory model software program computes the trajectory of the ball.
- In another embodiment, the algorithms used to compute the trajectory of the ball are part of a trajectory model software program installed on a remote server. The remote server receives initial launch conditions from the smart device over a wireless communication. The trajectory model software program computes the trajectory of the ball, and then communicates the computed trajectory back to the smart device and/or a wearable, hands-free device.
- Atmospheric conditions, including, but not limited to, temperature, barometric pressure, humidity, wind speed, and wind direction, are optionally taken into account in the trajectory computation. In one embodiment, the software application uses a weather-related application installed on the smart device to determine atmospheric conditions. In another embodiment, the software application uses information from a website to determine atmospheric conditions. In another embodiment, the smart device is equipped with weather sensors that the software application uses to determine atmospheric conditions.
- The flight characteristics and/or ball trajectory are then communicated to the user. In one embodiment, one or more flight characteristics and/or ball trajectory are displayed on the smart device. In another embodiment, one or more flight characteristics and/or ball trajectory are displayed on a wearable, hands-free device. In another embodiment, one or more flight characteristics and/or ball trajectory are displayed on the smart device and one or more flight characteristics and/or ball trajectory are displayed on a wearable, hands-free device.
- Wearable, hands-free devices suitable for use in the present invention are similar to smart devices, but are in the form of eyeglasses, goggles, and the like, and must be capable of displaying images and data on a user's real world view. Suitable examples of commercially available wearable, hands-free devices include, but are not limited to, HoloLens devices, commercially available from Microsoft; Moverio devices, commercially available from Epson America, Inc.; Google glass devices, commercially available from Google; M100 smart glasses, commercially available from Vuzix; Meta augmented reality devices, commercially available from Meta Company; Ora augmented reality devices, commercially available from Optinvent; GlassUp eyeglasses, commercially available from GlassUp; castAR augmented reality glasses, commercially available from Cast AR; Laster SeeThru devices, commercially available from Laster Technologies; Icis augmented reality glasses, commercially available from Laforge Optical; Atheer augmented reality devices, commercially available from Atheer, Inc.; Mirama smartglasses, commercially available from Brilliantservice Co., Ltd; K-Glass smart glasses, commercially available from KAIST; and Infolinker glasses-type information device, commercially available from Westunitis Co., Ltd.
- In addition to determining flight characteristics and trajectory of a golf ball, the process disclosed herein optionally includes one or more of the following steps: automatic identification of the golf ball type/model using image recognition of the side stamp, dimple pattern, etc., which may yield more accurate results based on the particular model's known aerodynamic performance properties; limiting the functionality of the system based on the brand of the ball; and providing an option for the user to upload data to one or more media networks, including, but not limited to, social media sites.
- In one embodiment, the data generated in the processes disclosed herein are used in a virtual golf game, wherein the golf shots previously captured become the options from which a player can choose for shots on a virtual golf course.
- In another embodiment, the data generated in the processes disclosed herein are communicated to a party other than the user for marketing and research and development purposes.
- In another embodiment, the data generated in the processes disclosed herein are stored such that an average flight characteristic and/or an average ball trajectory can be computed and, optionally, displayed on the smart device and/or augmented reality device in addition to or instead of individual shot data. The data can be stored locally on the smart device and/or augmented reality device, or on a remote server.
- When numerical lower limits and numerical upper limits are set forth herein, it is contemplated that any combination of these values may be used.
- All patents, publications, test procedures, and other references cited herein, including priority documents, are fully incorporated by reference to the extent such disclosure is not inconsistent with this invention and for all jurisdictions in which such incorporation is permitted.
- While the illustrative embodiments of the invention have been described with particularity, it will be understood that various other modifications will be apparent to and can be readily made by those of ordinary skill in the art without departing from the spirit and scope of the invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the examples and descriptions set forth herein, but rather that the claims be construed as encompassing all of the features of patentable novelty which reside in the present invention, including all features which would be treated as equivalents thereof by those of ordinary skill in the art to which the invention pertains.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/067,256 US20160193498A1 (en) | 2014-12-12 | 2016-03-11 | Portable launch monitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/568,215 US20160173739A1 (en) | 2014-12-12 | 2014-12-12 | Portable launch monitor |
US15/067,256 US20160193498A1 (en) | 2014-12-12 | 2016-03-11 | Portable launch monitor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/568,215 Continuation-In-Part US20160173739A1 (en) | 2014-12-12 | 2014-12-12 | Portable launch monitor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160193498A1 true US20160193498A1 (en) | 2016-07-07 |
Family
ID=56285937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/067,256 Abandoned US20160193498A1 (en) | 2014-12-12 | 2016-03-11 | Portable launch monitor |
Country Status (1)
Country | Link |
---|---|
US (1) | US20160193498A1 (en) |
-
2016
- 2016-03-11 US US15/067,256 patent/US20160193498A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10902612B2 (en) | Launch monitor | |
US11351436B2 (en) | Hybrid golf launch monitor | |
KR101898782B1 (en) | Apparatus for tracking object | |
US9962591B2 (en) | Motion analysis method, program, and motion analysis device | |
US8734264B2 (en) | System and method for measurement and analysis of behavior of golf club head in golf swing | |
US9285189B1 (en) | Integrated electronic sight and method for calibrating the reticle thereof | |
CN108416285A (en) | Rifle ball linkage surveillance method, apparatus and computer readable storage medium | |
US9897416B2 (en) | Photoelectric sighting device | |
US20150038249A1 (en) | System, method, and apparatus for measuring golf club deformation | |
JP2016540185A (en) | Method and launch monitoring system for measurement of launch object launch parameters | |
JP5975711B2 (en) | Golf swing classification method, classification system, classification device, and program | |
KR101803312B1 (en) | Apparatus for mornitoring trajectory of bowling ball based on radar and method thereof | |
US20200279503A1 (en) | Advancing Predicted Feedback for Improved Motor Control | |
US10286285B2 (en) | Display method, display apparatus, motion analysis system, motion analysis program, and recording medium | |
JP2015080186A (en) | Automatic positioning tracking photographing system and automatic positioning tracking photographing method | |
CN104994273A (en) | System of maintaining real-time shooting image to be vertical and method thereof | |
US20170354844A1 (en) | Detection apparatus, detection system, motion analysis system, recording medium, and analysis method | |
CN107560637A (en) | Wear display device calibration result verification method and wear display device | |
KR20150062998A (en) | Method for providing caddy service, storage medium storing the method and method for operating caddy service system | |
KR20210094878A (en) | Method and system for providing a golf image | |
US20160173739A1 (en) | Portable launch monitor | |
US20160193498A1 (en) | Portable launch monitor | |
US20210008430A1 (en) | Trajectory assistance systems and methods thereof | |
KR101974364B1 (en) | Method of providing golf putting line information using mobile device with lidar | |
US11752414B2 (en) | System and method for tracking a projectile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACUSHNET COMPANY, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIXENBAUGH, CHRIS;HIGHTOWER, CHARLES;AMARANT, LEONIDAS;AND OTHERS;SIGNING DATES FROM 20160309 TO 20160311;REEL/FRAME:037952/0247 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:ACUSHNET COMPANY;REEL/FRAME:039506/0030 Effective date: 20160728 Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINIS Free format text: SECURITY INTEREST;ASSIGNOR:ACUSHNET COMPANY;REEL/FRAME:039506/0030 Effective date: 20160728 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS SUCCESSOR ADMINISTRATIVE AGENT, ILLINOIS Free format text: ASSIGNMENT OF SECURITY INTEREST IN PATENTS (ASSIGNS 039506-0030);ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS RESIGNING ADMINISTRATIVE AGENT;REEL/FRAME:061521/0414 Effective date: 20220802 |