US20160183366A1 - Flexible printed board - Google Patents

Flexible printed board Download PDF

Info

Publication number
US20160183366A1
US20160183366A1 US14/907,613 US201414907613A US2016183366A1 US 20160183366 A1 US20160183366 A1 US 20160183366A1 US 201414907613 A US201414907613 A US 201414907613A US 2016183366 A1 US2016183366 A1 US 2016183366A1
Authority
US
United States
Prior art keywords
wires
connection terminals
connection
wire
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/907,613
Other versions
US10219372B2 (en
Inventor
Yuki Ishida
Yusuke Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of US20160183366A1 publication Critical patent/US20160183366A1/en
Assigned to FUJIKURA LTD. reassignment FUJIKURA LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIDA, YUKI, NAKATANI, YUSUKE
Application granted granted Critical
Publication of US10219372B2 publication Critical patent/US10219372B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/147Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09063Holes or slots in insulating substrate not used for electrical connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09481Via in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive

Definitions

  • the present invention relates to a flexible printed board connected to another electronic component by thermal compression bonding.
  • a display apparatus including, for example, a structure in which a flexible printed board or COF and a liquid crystal panel are connected has been known.
  • the liquid crystal panel and a drain substrate are electrically connected by a compression bonding terminal portion inside an outline frame of the drain substrate along one side of the drain substrate being compression-bonding-connected to a flexible printed board or the like extending from the side of the liquid crystal panel via an anisotropic conductive material such as ACF.
  • FIGS. 8 and 9 are diagram showing a connection structure of a conventional flexible printed board and FIG. 9 is a B-B′ sectional view of FIG. 8 .
  • a conventional flexible printed board 110 includes front wires 114 formed on one surface of a flexible substrate 111 and rear wires 115 formed on the other surface and a cover lay 113 is provided on these wires 114 , 115 via an adhesive agent 112 .
  • a compression bonding connection portion to a panel terminal 102 provided inside a panel outline frame of a liquid crystal panel 101 is formed by removing the adhesive agent 112 and the cover lay 113 on the side of the front wires 114 to expose a connection terminal 116 .
  • the connection terminal 116 and the panel terminal 102 are electrically connected via an anisotropic conductive material 119 and the rear wire 115 and the connection terminal 116 are connected by a through wire 117 provided outside the panel outline frame outside an area to be compression-bonding-connected in a state of penetrating the connection terminal 116 , the flexible substrate 111 , and the rear wire 115 .
  • a flexible printed board in a conventional display apparatus disclosed in Patent Literature 1 and a flexible printed board used in the aforementioned connection structure have a flexible substrate, an adhesive agent, a cover lay and the like made of materials far softer than a connection terminal arranged on the opposite side of an anisotropic conductive material side of the connection terminal and thus, a poor connection may be established without a necessary predetermined pressure applied to a compression bonding connection portion during compression bonding connection, resulting in a problem of low connection reliability.
  • An object of the present invention is to provide a flexible printed board capable of improving connection reliability by solving the aforementioned problem of the conventional technology.
  • a flexible printed board according to the present invention is electrically connected to an electronic component by thermal compression bonding, and the flexible printed board includes: a flexible substrate; a terminal portion formed on one surface of the flexible substrate and having a plurality of connection terminals to be connected to the electronic component; a wire portion having a plurality of wires formed on the other surface of the flexible substrate; and a plurality of through wires formed inside through holes penetrating the flexible substrate in a compression bonding connection area of the terminal portion to the electronic component to connect the connection terminals of the terminal portion to the respective wires of the wire portion.
  • the terminal portion and the wire portion are connected by through wires that connect each connection terminal and each wire in the area of the terminal portion and therefore, the wire portion that is relatively hard is arranged on the opposite side of the terminal portion and a predetermined pressure needed for compression bonding connection can be applied to a compression bonding connection portion so that connection reliability can be improved.
  • the wire portion is formed such that the plurality of wires is arranged overall in an area corresponding to the terminal portion.
  • the wire portion extends in a direction in which the wires intersect the connection terminals and is formed such that the number of wires arranged between the connection terminals arranged adjacently is approximately equal in plane view in the area corresponding to the terminal portion. Accordingly, the wire portion can be arranged inside an outline frame of an electronic component and the arrangement space can be saved by making the overall size smaller.
  • the wire portion that is relatively hard is uniformly arranged on the opposite side of the terminal portion and therefore, a predetermined pressure needed for thermal compression bonding can uniformly be applied to the terminal portion and connection reliability can be improved by inhibiting the occurrence of poor connection.
  • the wire portion is formed so as to extend from the area corresponding to the terminal portion to both sides along an adjacent direction of arrangement of the connection terminals of the terminal portion.
  • the wire portion has the wires extending in a direction parallel to the connection terminals.
  • the terminal portion is connected to the electronic component via an anisotropic conductive material.
  • the wire portion has dummy wires in a portion of the plurality of wires.
  • connection reliability can be improved.
  • FIG. 1 is a plan view showing a flexible printed board according to a first embodiment of the present invention.
  • FIG. 2 is an A-A′ sectional view of FIG. 1 .
  • FIGS. 3( a ) to 3( c ) are plan views showing the flexible printed board according to a second embodiment of the present invention.
  • FIGS. 4( a ) to 4( c ) are plan views showing the flexible printed board according to a third embodiment of the present invention.
  • FIGS. 5( a ) to 5( c ) are plan views showing the flexible printed board according to a fourth embodiment of the present invention.
  • FIGS. 6( a ) to 6( c ) are plan views showing the flexible printed board according to a fifth embodiment of the present invention.
  • FIG. 7 is a diagram showing measurement points of a compression bonding connection area according to Examples of the second to fourth embodiments of the present invention.
  • FIG. 8 is a diagram showing a connection structure of a conventional flexible printed board.
  • FIG. 9 is a B-B′ sectional view of FIG. 8 .
  • FIG. 1 is a plan view showing a flexible printed board according to the first embodiment of the present invention.
  • FIG. 2 is an A-A′ sectional view of FIG. 1 .
  • a flexible printed board (hereinafter, referred to as “FPC”) 10 according to the first embodiment is electrically connected to a liquid crystal panel (hereinafter, referred to as “LCD”) 101 as another electronic component by, for example, thermal compression bonding.
  • LCD liquid crystal panel
  • the FPC 10 includes a flexible substrate 1 made of an insulating resin, for example, polyimide or polyamide and a terminal portion 3 formed on one surface (front surface) la of the flexible substrate 1 and having a plurality of connection terminals 3 a , 3 b , 3 c , 3 d , 3 e , 3 f , 3 g , 3 h to be connected to the LCD 101 .
  • a flexible substrate 1 made of an insulating resin, for example, polyimide or polyamide
  • a terminal portion 3 formed on one surface (front surface) la of the flexible substrate 1 and having a plurality of connection terminals 3 a , 3 b , 3 c , 3 d , 3 e , 3 f , 3 g , 3 h to be connected to the LCD 101 .
  • the FPC 10 also includes a wire portion 4 formed on the other surface (rear surface) 1 b of the flexible substrate 1 and having a plurality of wires 4 a , 4 b , 4 c , 4 d , 4 e , 4 f , 4 g , 4 h and filled through holes (hereinafter, referred to as “F-TH”) 5 a , 5 b , 5 c , 5 d , 5 e , 5 f , 5 g , 5 h as a plurality of through wires that connect the connection terminals 3 a to 3 h of the terminal portion 3 and the wires 4 a to 4 h of the wire portion 4 respectively by penetrating the flexible substrate 1 in the area of the terminal portion 3 .
  • F-TH filled through holes
  • a connector portion 6 to be connected to a connector terminal provided on a circuit board (not shown) of the LCD 101 as another board or component is formed on an edge on the opposite side of the side of the terminal portion 3 of the wire portion 4 .
  • the FPC 10 assumes the role of electrically connecting the LCD 101 and the circuit board.
  • the FPC 10 includes a cover lay 7 made of the insulating resin as described above coated via an adhesive agent 2 on the front and rear surfaces 1 a , 1 b of the flexible substrate 1 .
  • the adhesive agent 2 and the cover lay 7 are not formed in the area of the terminal portion 3 on the side of the front surface 1 a of the flexible substrate 1 and the connection terminals 3 a to 3 h are exposed.
  • the terminal portion 3 and the wire portion 4 of the FPC 10 are made of a conductor of nickel, chromium, copper or the like formed on the front surface 1 a and the rear surface 1 b of the flexible substrate 1 by, for example, sputtering or vapor deposition.
  • the F-THs 5 a to 5 h are formed by forming through holes of about 25 ⁇ m in diameter so as to penetrate the wires 4 a to 4 h by passing through the flexible substrate 1 from the connection terminals 3 a to 3 h of the terminal portion 3 respectively by, for example, YAG laser and then filling in the through hole by performing plating by the semi-additive method.
  • connection terminals 3 a to 3 h and the wires 4 a to 4 h of the terminal portion 3 and the wire portion 4 have a thickness of about 12 ⁇ m and the connection terminals 3 a to 3 h are formed in a thinly rectangular shape and arranged side by side along the width direction thereof (longitudinal direction of the FPC 10 ).
  • the connection terminals 3 a to 3 h are formed such that the width thereof and the interval therebetween are about 80 ⁇ m.
  • connection terminals 3 a to 3 h are formed in positions overlapping with LCD terminals 102 a , 102 b , 102 c , 102 d , 102 e , 102 f , 102 g , 102 h of the LCD terminal portion 102 respectively provided in an inner area of the LCD 101 (inside the outline frame of the LCD 101 ) during thermal compression bonding.
  • connection terminals 3 a to 3 h are electrically connected to the LCD terminals 102 a to 102 h respectively via an anisotropic conductive material 119 made of an anisotropic conductive paste (ACP) or an anisotropic conductive film (ACF) by thermal compression bonding.
  • ACP anisotropic conductive paste
  • ACF anisotropic conductive film
  • the connection terminals 3 a to 3 h and the LCD terminals 102 a to 102 h may be connected by thermal compression bonding without the medium of the anisotropic conductive material 119 .
  • the wires 4 a to 4 h are formed by linearly extending mainly along the longitudinal direction of the FPC 10 (width direction of the connection terminals 3 a to 3 h ) and being arranged side by side in the longitudinal direction of the connection terminals 3 a to 3 h .
  • the wires 4 a to 4 h are each formed so as to be bent near the connector portion 6 by 90° to extend toward the connector portion 6 in parallel.
  • the wires 4 a to 4 h of the wire portion 4 are formed in a state of being orthogonal to the connection terminals 3 a to 3 h in plane view in an area corresponding to the terminal portion 3 and formed such that the number of the wires 4 a to 4 h arranged between each of the connection terminals 3 a to 3 h arranged adjacently as described above is approximately equal.
  • the wire portion 4 is structured such that in the corresponding area, an equal number of eight wires of the wires 4 a to 4 h are each arranged between the connection terminals 3 a , 3 b , between the connection terminals 3 b , 3 c , between the connection terminals 3 c , 3 d , between the connection terminals 3 d , 3 e , between the connection terminals 3 e , 3 f , between the connection terminals 3 f , 3 g , and between the connection terminals 3 g , 3 h.
  • the F-THs 5 a to 5 h are each formed in different positions along the side-by-side arrangement direction of the connection terminals 3 a to 3 h and the side-by-side arrangement direction of the wires 4 a to 4 h . More specifically, if, as shown in FIG.
  • the F-TH 5 a is formed on a base end side of the connection terminal 3 a (tip side of the LCD terminal 102 a ) and the F-TH 5 h is formed on a tip side of the connection terminal 3 h (base end side of the LCD terminal 102 h ), the other F-THs 5 b to 5 g are formed in positions on a straight line connecting the F-THs 5 a , 5 h in a plane or neighboring positions of the straight line. That is, the F-THs 5 a to 5 h are formed such that a state of connecting these positions by a line is like an oblique line.
  • the terminal portion 3 , the wire portion 4 , and the F-THs 5 a to 5 h are formed as described above and thus, almost all portions of the FPC 10 excluding the connector portion 6 can be arranged to be accommodated inside the outline frame of the LCD 101 . Therefore, compared with conventional FPC, the arrangement space can be saved by making the overall size smaller.
  • the LCD terminal portion 102 and the terminal portion 3 can be thermal compression bonded by applying a predetermined pressure to the whole connection area uniformly and therefore, conductive particles of the anisotropic conductive material 119 between the LCD terminals 102 a to 102 h and the connection terminals 3 a to 3 h can reliably be brought into contact therewith and connection reliability can be improved by inhibiting poor connection.
  • FIG. 3 is a plan view showing the flexible printed board according to the second embodiment of the present invention and FIGS. 3( a ), 3( b ), and 3( c ) show mutually different formation positions of the F-THs 5 a to 5 h .
  • FIG. 3( a ) shows the formation positions of the F-THs 5 a to 5 h similar to those in the first embodiment
  • FIG. 3( b ) shows the formation positions of the F-THs 5 a to 5 h in a dogleg shape in plane view when these positions are connected by a line
  • FIG. 3( c ) shows the formation positions of the F-THs 5 a to 5 h are random.
  • the same reference signs are attached to portions already described and the description thereof may be omitted.
  • the FPC 10 according to the second embodiment is mainly different from the FPC 10 in the first embodiment in that the wire portion 4 has dummy wires 4 a ′ to 4 h ′ in a portion of the wires 4 a to 4 h .
  • the dummy wires 4 a ′ to 4 h ′ are formed like similarly extending coaxially with the wires 4 a to 4 h in the area corresponding to the terminal portion 3 , but are not connected to the connection terminals 3 a to 3 h and the wires 4 a to 4 h and are wires not electrically utilized in an unconnected state from the viewpoint of circuit.
  • the FPC 10 When compared with the FPC 10 in the first embodiment, the FPC 10 according to the second embodiment has, instead of an approximately equal number of all the wires 4 a to 4 h , an approximately equal number of wires including the dummy wires 4 a ′ to 4 h ′ arranged between each of the connection terminals 3 a to 3 h in, for example, a compression bonding connection area PA shown in FIG. 3( a ) and thus, a predetermined pressure can be applied uniformly during thermal compression bonding while noise resistance is improved with good high-frequency characteristics so that the aforementioned operation/effect can be achieved.
  • the dummy wires 4 a ′ to 4 h ′ are formed such that a gap in the horizontal direction between the end face on the side of the wires 4 a to 4 h of the dummy wires 4 a ′ to 4 h ′ and the side end face on the side of the dummy wires 4 a ′ to 4 h ′ of the connection terminals 3 a to 3 h to which the wires 4 a to 4 h are connected via the F-THs 5 a to 5 h is 5 ⁇ m or more.
  • the dummy wires 4 a ′ to 4 h ′ are formed such that the gap is not arranged below the connection terminals 3 a to 3 h via the flexible substrate 1 .
  • the wires 4 a to 4 h of the wire portion 4 are formed so as to extend from an area corresponding to the terminal portion 3 to one side (side on the opposite side of the side of the connection terminal 3 g of the connection terminal 3 h ) along an adjacent direction of arrangement of the connection terminals 3 a to 3 h of the terminal portion 3 .
  • the wires 4 a to 4 h , the dummy wires 4 a ′ to 4 h ′, the F-THs 5 a to 5 h , and the connection terminals 3 a to 3 h are formed, for example, as described below.
  • the wire 4 a is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a bypassing below the connection terminals 3 h , 3 g , 3 f , 3 e , 3 d , 3 c , 3 b .
  • the dummy wire 4 a ′ is formed so as to extend from the side end face of the connection terminal 3 a to the end of the FPC 10 across a gap along the wire 4 a without passing below any connection terminal.
  • the wires 4 b , 4 c , . . . , 4 h are similarly connected to the connection terminals 3 b , 3 c , . . . , 3 h from below the connection terminals 3 b , 3 c , . . . , 3 h via the F-THs 5 b , 5 c , . . . , 5 h bypassing below the connection terminals 3 h to 3 c , 3 h to 3 d , . . . , 3 h respectively.
  • connection terminals 3 b , 3 c , . . . , 3 h are formed so as to extend from the side end face of the connection terminals 3 b , 3 c , . . . , 3 h to the end of the FPC 10 across a gap along the wires 4 b , 4 c , . . . , 4 h by passing below the connection terminals 3 a , 3 b , . . . , 3 g respectively.
  • the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h .
  • the dummy wire 4 a ′ is formed so as to extend from the side end face of the connection terminal 3 h to the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • the wires 4 b , 4 c , . . . , 4 h are connected to the connection terminals 3 f , 3 d , 3 b , 3 a , 3 c , 3 e , 3 g from below the connection terminals 3 f , 3 d , 3 b , 3 a , 3 c , 3 e , 3 g via the F-THs 5 f , 5 d , 5 b , 5 a , 5 c , 5 e , 5 g by passing below the connection terminals 3 h to 3 g , 3 h to 3 e , 3 h to 3 c , 3 h to 3 b , 3 h to 3 d , 3 h to 3 f , 3 h respectively.
  • the dummy wires 4 b ′, 4 c ′, . . . , 4 h ′ are formed, excluding the dummy wire 4 e ′, so as to extend from the side end face of the connection terminals 3 f , 3 d , 3 b , 3 c , 3 e , 3 g to the end of the FPC 10 across a gap along the wires 4 b , 4 c , . . . , 4 h by passing below the connection terminals 3 e to 3 a , 3 c to 3 a , 3 a , 3 b to 3 a , 3 d to 3 a , 3 f to 3 a respectively.
  • the dummy wire 4 e ′ is formed so as to extend from the side end face of the connection terminal 3 a to the end of the FPC 10 across a gap along the wire 4 e without passing below any connection terminal. Therefore, the F-THs 5 a to 5 h are formed in a dogleg shape in plane view when these positions are connected by a line.
  • the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h .
  • the dummy wire 4 a ′ is formed so as to extend from the side end face of the connection terminal 3 h to the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • the wires 4 b , 4 c , . . . , 4 h are connected to the connection terminals 3 a , 3 f , 3 c , 3 e , 3 d , 3 g , 3 b from below the connection terminals 3 a , 3 f , 3 c , 3 e , 3 d , 3 g , 3 b via the F-THs 5 a , 5 f , 5 c , 5 e , 5 d , 5 g , 5 b by passing below the connection terminals 3 h to 3 b , 3 h to 3 g , 3 h to 3 d , 3 h to 3 f , 3 h to 3 e , 3 h , 3 h to 3 c respectively.
  • the dummy wires 4 b ′, 4 c ′, . . . , 4 h ′ are formed, excluding the dummy wire 4 b ′, so as to extend from the side end face of the connection terminals 3 f , 3 c , 3 e , 3 d , 3 g , 3 b to the end of the FPC 10 across a gap along the wires 4 c , 4 d , . . . , 4 h by passing below the connection terminals 3 e to 3 a , 3 b to 3 a , 3 d to 3 a , 3 c to 3 a , 3 f to 3 a , 3 a respectively.
  • the dummy wire 4 b ′ is formed so as to extend from the side end face of the connection terminal 3 a to the end of the FPC 10 across a gap along the wire 4 b without passing below any connection terminal. Therefore, the F-THs 5 a to 5 h are formed in random positions.
  • FIG. 4 is a plan view showing the flexible printed board according to the third embodiment of the present invention
  • FIGS. 4( a ), 4( b ), and 4( c ) show mutually different formation positions of the F-THs 5 a to 5 h
  • formation positions of the F-THs 5 a to 5 h in FIGS. 4( a ) to 4( c ) correspond to those in FIGS. 3( a ) to 3( c ) .
  • the FPC 10 according to the third embodiment is similar to the FPC 10 in the second embodiment in that the wires 4 a to 4 h and the dummy wires 4 a ′ to 4 h ′ are included, but is different in that, as shown in FIGS. 4( a ) to 4( c ) , the wires 4 a to 4 h of the wire portion 4 are formed so as to extend from the area corresponding to the terminal portion 3 to both sides along the adjacent direction of arrangement of the connection terminals 3 a to 3 h of the terminal portion 3 .
  • the wire 4 a extends to the side of the opposite side of the side of the connection terminal 3 g of the connection terminal 3 h and also is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a by passing below the connection terminals 3 h to 3 b .
  • the dummy wire 4 a ′ is formed so as to extend from the side end face of the connection terminal 3 a to immediately before the end of the FPC 10 across a gap along the wire 4 a without passing below any connection terminal.
  • the wires 4 c , 4 e , 4 g are similarly connected to the connection terminals 3 c , 3 e , 3 g from below the connection terminals 3 c , 3 e , 3 g via the F-THs 5 c , 5 e , 5 g bypassing below the connection terminals 3 h to 3 d , 3 h to 3 f , 3 h respectively.
  • the dummy wires 4 c ′, 4 e ′, 4 g ′ are formed so as to extend from the side end face of the connection terminals 3 c , 3 e , 3 g to immediately before the end of the FPC 10 across a gap along the wires 4 c , 4 e , 4 g without passing below the connection terminals 3 b to 3 a , 3 d to 3 a , 3 f to 3 a respectively.
  • the wire 4 b extends to the side of the opposite side of the side of the connection terminal 3 b of the connection terminal 3 a and also is connected to the connection terminal 3 b from below the connection terminal 3 b via the F-TH 5 b by passing below the connection terminal 3 a .
  • the dummy wire 4 b ′ is formed so as to extend from the side end face of the connection terminal 3 b to past the connection terminal 3 h across a gap along the wire 4 b by passing below the connection terminals 3 c to 3 h.
  • the wires 4 d , 4 f , 4 h are similarly connected to the connection terminals 3 d , 3 f , 3 h from below the connection terminals 3 d , 3 f , 3 h via the F-THs 5 d , 5 f , 5 h bypassing below the connection terminals 3 a to 3 c , 3 a to 3 e , 3 a to 3 g respectively.
  • the dummy wires 4 d ′, 4 f ′, 4 h ′ are formed, excluding the dummy wire 4 h ′, so as to extend from the side end face of the connection terminals 3 d , 3 f to past the connection terminal 3 h across a gap along the wires 4 d , 4 f by passing below the connection terminals 3 e to 3 h , 3 g to 3 h respectively.
  • the dummy wire 4 h ′ is formed so as to extend from the side end face of the connection terminal 3 h to as far as the end faces of the dummy wires 4 b ′, 4 d ′, 4 f ′ across a gap along the wire 4 h without passing below any connection terminal.
  • FIG. 4( b ) the direction in which the wires 4 a , 4 c , 4 e , 4 g extend and the direction in which the wires 4 b , 4 d , 4 f , 4 h extend are similar to those shown in FIG. 4( a ) .
  • the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h .
  • the dummy wire 4 a ′ is formed so as to extend from the side end face of the connection terminal 3 h to immediately before the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • the wires 4 c , 4 e , 4 g are similarly connected to the connection terminals 3 d , 3 a , 3 e from below the connection terminals 3 d , 3 a , 3 e via the F-THs 5 d , 5 a , 5 e bypassing below the connection terminals 3 h to 3 e , 3 h to 3 b , 3 h to 3 f respectively.
  • the dummy wires 4 c ′, 4 e ′, 4 g ′ are formed, excluding the dummy wire 4 e ′, so as to extend from the side end face of the connection terminals 3 d , 3 e to immediately before the end of the FPC 10 across a gap along the wires 4 c , 4 g by passing below the connection terminals 3 c to 3 a , 3 d to 3 a respectively.
  • the dummy wire 4 e ′ is formed so as to extend from the side end face of the connection terminal 3 a to immediately before the end of the FPC 10 across a gap along the wire 4 e without passing below any connection terminal.
  • the wire 4 b is connected to the connection terminal 3 f from below the connection terminal 3 f via the F-TH 5 f by passing below the connection terminals 3 a to 3 e .
  • the dummy wire 4 b ′ is formed so as to extend from the side end face of the connection terminal 3 f to past the connection terminal 3 h across a gap along the wire 4 b by passing below the connection terminals 3 g to 3 h.
  • connection terminals 3 b , 3 c , 3 g are similarly connected to the connection terminals 3 b , 3 c , 3 g from below the connection terminals 3 b , 3 c , 3 g via the F-THs 5 b , 5 c , 5 g bypassing below the connection terminals 3 a , 3 a to 3 b , 3 a to 3 f respectively.
  • the dummy wires 4 d ′, 4 f ′, 4 h ′ are formed so as to extend from the side end face of the connection terminals 3 b , 3 c , 3 g to past the connection terminal 3 h across a gap along the wires 4 d , 4 f , 4 h by passing below the connection terminals 3 c to 3 h , 3 d to 3 h , 3 h respectively.
  • the wire 4 a extends to the side of the opposite side of the side of the connection terminal 3 b of the connection terminal 3 a and also is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h by passing below the connection terminals 3 a to 3 g .
  • the dummy wire 4 a ′ is formed so as to extend from the side end face of the connection terminal 3 h to past the connection terminal 3 h by passing through a gap along the wire 4 a without passing below any connection terminal.
  • the wires 4 c , 4 e , 4 g are similarly connected to the connection terminals 3 f , 3 e , 3 g from below the connection terminals 3 f , 3 e , 3 g via the F-THs 5 f , 5 e , 5 g bypassing below the connection terminals 3 a to 3 e , 3 a to 3 d , 3 a to 3 f respectively.
  • the dummy wires 4 c ′, 4 e ′, 4 g ′ are formed so as to extend from the side end face of the connection terminals 3 f , 3 e , 3 g to past the connection terminal 3 h across a gap along the wires 4 c , 4 e , 4 g without passing below the connection terminals 3 g to 3 h , 3 f to 3 h , 3 h respectively.
  • the wire 4 b extends to the side of the opposite side of the side of the connection terminal 3 g of the connection terminal 3 h and also is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a by passing below the connection terminals 3 h to 3 b .
  • the dummy wire 4 b ′ is formed so as to extend from the side end face of the connection terminal 3 a to immediately before the end of the FPC 10 across a gap along the wire 4 b without passing below any connection terminal.
  • the wires 4 d , 4 f , 4 h are similarly connected to the connection terminals 3 c , 3 d , 3 b from below the connection terminals 3 c , 3 d , 3 b via the F-THs 5 c , 5 d , 5 b bypassing below the connection terminals 3 h to 3 d , 3 h to 3 e , 3 h to 3 c respectively.
  • the dummy wires 4 d ′, 4 f ′, 4 h ′ are formed so as to extend from the side end face of the connection terminals 3 c , 3 d , 3 b to immediately before the end of the FPC 10 across a gap along the wires 4 d , 4 f , 4 h bypassing below the connection terminals 3 b to 3 a , 3 c to 3 a , 3 a respectively.
  • FIG. 5 is a plan view showing the flexible printed board according to the fourth embodiment of the present invention
  • FIGS. 5( a ), 5( b ), and 5( c ) show mutually different formation positions of the F-THs 5 a to 5 h
  • formation positions of the F-THs 5 a to 5 h in FIGS. 5( a ) to 5( c ) correspond to those in FIGS. 3( a ) to 3( c ) and FIGS. 4( a ) to 4( c ) .
  • the FPC 10 according to the fourth embodiment is similar to the FPC 10 in the third embodiment in that the wires 4 a to 4 h and the dummy wires 4 a ′ to 4 h ′ are included and the wires 4 a to 4 h of the wire portion 4 are formed so as to extend from the area corresponding to the terminal portion 3 to both sides along the adjacent direction of arrangement of the connection terminals 3 a to 3 h of the terminal portion 3 , but combinations of wires extending in opposite directions are different.
  • the wires 4 a to 4 d are formed so as to extend to the opposite side of the side of the connection terminal 3 g of the connection terminal 3 h and the wires 4 e to 4 h are formed so as to extend to the opposite side of the side of the connection terminal 3 b of the connection terminal 3 a .
  • the shape of the FPC 10 is not a simple rectangular shape, but is formed in a crank shape as a whole having a width narrower than the width of the terminal portion 3 to fit to a portion of the wires 4 a to 4 h extending from the rectangular area where the terminal portion 3 is formed.
  • the wire 4 a is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a by passing below the connection terminals 3 h to 3 b .
  • the dummy wire 4 a ′ is formed so as to extend from the side end face of the connection terminal 3 a to immediately before the end of the FPC 10 across a gap along the wire 4 a without passing below any connection terminal.
  • the wires 4 b , 4 c , 4 d are similarly connected to the connection terminals 3 b , 3 c , 3 d from below the connection terminals 3 b , 3 c , 3 d via the F-THs 5 b , 5 c , 5 d bypassing below the connection terminals 3 h to 3 c , 3 h to 3 d , 3 h to 3 e respectively.
  • the dummy wires 4 b ′, 4 c ′, 4 d ′ are formed so as to extend from the side end face of the connection terminals 3 b , 3 c , 3 d to as far as the end face of the dummy wire 4 a ′ across a gap along the wires 4 b , 4 c , 4 d by passing below the connection terminals 3 a , 3 b to 3 a , 3 c to 3 a respectively.
  • the wire 4 e is connected to the connection terminal 3 e from below the connection terminal 3 e via the F-TH 5 e by passing below the connection terminals 3 a to 3 d .
  • the dummy wire 4 e ′ is formed so as to extend from the side end face of the connection terminal 3 e to as far as the end face of the dummy wires 4 f ′, 4 g ′, 4 h ′ across a gap along the wire 4 e by passing below the connection terminals 3 f to 3 h.
  • the wires 4 f , 4 g , 4 h are similarly connected to the connection terminals 3 f , 3 g , 3 h from below the connection terminals 3 f , 3 g , 3 h via the F-THs 5 f , 5 g , 5 h bypassing below the connection terminals 3 a to 3 e , 3 a to 3 f , 3 a to 3 g respectively.
  • the dummy wires 4 f ′, 4 g ′, 4 h ′ are formed, excluding the dummy wire 4 h ′, so as to extend from the side end face of the connection terminals 3 f , 3 g to as far as the end face of the dummy wire 4 h ′ across a gap along the wires 4 f , 4 g by passing below the connection terminals 3 g to 3 h , 3 h respectively.
  • the dummy wire 4 h ′ is formed so as to extend from the side end face of the connection terminal 3 h to immediately before the end of the FPC 10 across a gap along the wire 4 h without passing below any connection terminal.
  • the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h .
  • the dummy wire 4 a ′ is formed so as to extend from the side end face of the connection terminal 3 h to immediately before the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • the wires 4 b , 4 c , 4 d are similarly connected to the connection terminals 3 f , 3 d , 3 b from below the connection terminals 3 f , 3 d , 3 b via the F-THs 5 f , 5 d , 5 b bypassing below the connection terminals 3 h to 3 g , 3 h to 3 e , 3 h to 3 c respectively.
  • the dummy wires 4 b ′, 4 c ′, 4 d ′ are formed so as to extend from the side end face of the connection terminals 3 f , 3 d , 3 b to as far as the end face of the dummy wire 4 a ′ across a gap along the wires 4 b , 4 c , 4 d by passing below the connection terminals 3 e to 3 a , 3 c to 3 a , 3 a respectively.
  • the wire 4 e is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a .
  • the dummy wire 4 e ′ is formed so as to extend from the side end face of the connection terminal 3 a to as far as the end face of the dummy wires 4 f ′, 4 g ′, 4 h ′ across a gap along the wire 4 e by passing below the connection terminals 3 b to 3 h.
  • connection terminals 3 c , 3 e , 3 g are similarly connected to the connection terminals 3 c , 3 e , 3 g from below the connection terminals 3 c , 3 e , 3 g via the F-THs 5 c , 5 e , 5 g bypassing below the connection terminals 3 a to 3 b , 3 a to 3 d , 3 a to 3 f respectively.
  • the dummy wires 4 f ′, 4 g ′, 4 h ′ are formed so as to extend from the side end face of the connection terminals 3 c , 3 e , 3 g to as far as the end face of the dummy wire 4 e ′ across a gap along the wires 4 f , 4 g , 4 h by passing below the connection terminals 3 d to 3 h , 3 f to 3 h , 3 h respectively.
  • the dummy wire 4 h ′ is formed so as to extend immediately before the end of the FPC 10 .
  • the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h .
  • the dummy wire 4 a ′ is formed so as to extend from the side end face of the connection terminal 3 h to immediately before the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • the wires 4 b , 4 c , 4 d are similarly connected to the connection terminals 3 a , 3 f , 3 c from below the connection terminals 3 a , 3 f , 3 c via the F-THs 5 a , 5 f , 5 c bypassing below the connection terminals 3 h to 3 b , 3 h to 3 g , 3 h to 3 d respectively.
  • the dummy wires 4 b ′, 4 c ′, 4 d ′ are formed, excluding the dummy wire 4 b ′, so as to extend from the side end face of the connection terminals 3 f , 3 c to as far as the end face of the dummy wire 4 a ′ across a gap along the wires 4 c , 4 d by passing below the connection terminals 3 e to 3 a , 3 b to 3 a respectively.
  • the dummy wire 4 b ′ is formed so as to extend from the side end face of the connection terminal 3 a to as far as the end face of the dummy wire 4 a ′ across a gap along the wire 4 b without passing below any connection terminal.
  • the wire 4 e is connected to the connection terminal 3 e from below the connection terminal 3 e via the F-TH 5 e by passing below the connection terminals 3 a to 3 d .
  • the dummy wire 4 e ′ is formed so as to extend from the side end face of the connection terminal 3 e to as far as the end face of the dummy wires 4 f ′, 4 g ′, 4 h ′ across a gap along the wire 4 e by passing below the connection terminals 3 f to 3 h.
  • the wires 4 f , 4 g , 4 h are similarly connected to the connection terminals 3 d , 3 g , 3 b from below the connection terminals 3 d , 3 g , 3 b via the F-THs 5 d , 5 g , 5 b bypassing below the connection terminals 3 a to 3 c , 3 a to 3 f , 3 a respectively.
  • the dummy wires 4 f ′, 4 g ′, 4 h ′ are formed so as to extend from the side end face of the connection terminals 3 d , 3 g , 3 b to as far as the end face of the dummy wire 4 e ′ across a gap along the wires 4 f , 4 g , 4 h by passing below the connection terminals 3 e to 3 h , 3 h , 3 c to 3 h respectively.
  • the dummy wire 4 h ′ is formed so as to extend immediately before the end of the FPC 10 .
  • FIG. 6 is a plan view showing the flexible printed board according to the fifth embodiment of the present invention and FIGS. 6( a ), 6( b ), and 6( c ) show the F-THs 5 a to 5 h in the same formation positions. More specifically, the F-THs 5 a to 5 h are arranged linearly along the adjacent direction of arrangement (width direction) of the connection terminals 3 a to 3 h.
  • the FPC 10 according to the fifth embodiment is different from the FPC 10 in the first to fourth embodiments in that the formation positions of the F-THs 5 a to 5 h are linear along the adjacent direction of arrangement.
  • the wires 4 b to 4 h of the wire portion 4 excluding the wire 4 a are formed so as to have portions obliquely intersecting the connection terminals 3 a to 3 h in plane view in the area corresponding to the terminal portion 3 and to extend in the adjacent direction of arrangement from the area.
  • the wires 4 a to 4 h are formed so as to extend along the longitudinal direction of the connection terminals 3 a to 3 h , that is, the wires 4 a to 4 h are formed so as to extend in parallel with connection terminals 3 a to 3 h and FIG. 6( b ) shows a case in which the dummy wires 4 a ′ to 4 h ′ are included and FIG. 6( c ) shows a case in which the dummy wires are not included.
  • the wires 4 a to 4 h of the wire portion 4 are formed, as described above, so as to extend from the area corresponding to the terminal portion 3 to one side as shown in FIG. 3( a ) along the adjacent direction of arrangement of the connection terminals 3 a to 3 h of the terminal portion 3 .
  • the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h.
  • the wire 4 b extends obliquely with respect to the connection terminal 3 g by passing below the connection terminal 3 h and is connected to the connection terminal 3 g from below the connection terminal 3 g via the F-TH 5 g .
  • the wires 4 c to 4 h have similarly portions extending obliquely and are connected to the connection terminals 3 f to 3 a via the F-THs 5 f to 5 a . In this manner, the length in the longitudinal direction of the connection terminals 3 a to 3 h in the FPC 10 can be designed as short as possible.
  • the wire 4 a extends halfway through the connection terminal 3 a along the longitudinal direction of the connection terminal 3 a and is connected to the connection terminal 3 a via the F-TH 5 a . Then, the dummy wire 4 a ′ is formed below the connection terminal 3 a across a gap along the connection terminal 3 a.
  • the wires 4 b to 4 h are similarly connected to the connection terminals 3 b to 3 h via the F-THs 5 b to 5 h and the dummy wires 4 b ′ to 4 h ′ are formed below the connection terminals 3 b to 3 h across a gap along the connection terminals 3 b to 3 h respectively.
  • the flexibility of wiring can be increased by designing the length in the adjacent direction of arrangement of the connection terminals 3 a to 3 h in the FPC 10 as short as possible and also the occurrence of poor connection can be inhibited to improve connection reliability by uniformly applying a predetermined pressure to the terminal portion 3 during thermal compression bonding.
  • the wire 4 a extends over the entire area below along the longitudinal direction of the connection terminal 3 a and is connected to the connection terminal 3 a via the F-TH 5 a .
  • the wires 4 b to 4 h similarly extend over the entire area below the connection terminals 3 b to 3 h and are connected to the connection terminals 3 b to 3 h via the F-THs 5 b to 5 h . Also in this manner, the same operation/effect as that in the case of FIG. 6( b ) can be achieved.
  • the F-THs 5 a to 5 h are arranged linearly along the adjacent direction of arrangement (width direction) of the connection terminals 3 a to 3 h , but may be formed to arrange, for example, in a direction obliquely intersecting the connection terminals 3 a to 3 h in plane view.
  • the FPC 10 has a configuration in which the terminal portion 3 , the wire portion 4 , and the F-THs 5 a to 5 h can be included in a portion inside the panel outline frame in a compression bonding connection area to a component of, for example, a liquid crystal panel.
  • the FPC 10 does not need a formation portion of the terminal portion 3 and a formation portion of the wire portion 4 and the F-THs 5 a to 5 h as separate areas and therefore, the arrangement space can be saved to decrease the overall size while connection reliability is improved.
  • the FPC 10 without the dummy wires 4 a ′ to 4 h ′ from the FPC 10 shown in FIG. 3( a ) is produced as Sample A
  • the FPC 10 shown in FIGS. 3, 4, and 5 are produced as Samples B, C, D respectively
  • a flexible printed board in a conventional structure shown in FIGS. 8 and 9 is produced as Sample E.
  • Continuity tests are conducted by connecting the terminal portion of FPC of the produced Samples A to E to the terminal portion of a test component via ACF as an anisotropic conductive material.
  • the flip-chip bonder “FB30T-M” manufactured by Panasonic Corporation is used as an implementation apparatus and “FP1708E” manufactured by Sony Chemicals Corporation as ACF.
  • a test component in which all connection terminals of the terminal portion are connected and wires connected respective connection terminals of Samples A to E are connected to measuring pads is used and continuity is checked by allowing a tester to touch the measuring pad corresponding to each connection terminal.
  • FIG. 7 is a diagram showing measurement points of a compression bonding connection area PA according to Examples of the second to fourth embodiments of the present invention.
  • the measurement area of the connection terminals 3 a , 3 b in the compression bonding connection area PA is denoted as L
  • the measurement area of the connection terminals 3 d , 3 e is denoted as C
  • the measurement area of the connection terminals 3 g , 3 h is denoted as R.
  • measurement points LU, LC, LL are provided in the measurement area L
  • measurement points CU, CC, CL are provided in the measurement area C
  • measurement points RU, RC, RL are provided in the measurement area R.
  • the FPC 10 in FIG. 3 is denoted as Sample B
  • the FPC 10 in FIG. 4 is denoted as Sample C
  • the FPC 10 in FIG. 5 is denoted as Sample D and Samples B to Dare produced as samples corresponding to FIGS. 3( a ) to 5( c ) .
  • FPC including the structures of FIGS. 3( a ) to 5( a ) produce resistance values of the measurement area C lower than the average value by 10% or more and higher than the average value of resistance of the measurement areas L, R by about 5%.
  • This can be estimated to be caused by the fact that the F-THs 5 d , 5 e are formed near the connection terminals 3 d , 3 e of the measurement point CC of the measurement area C in the structure of FIGS. 3( a ) to 5( a ) and thus, the pressure during compression bonding connection does not escape the number of deformed conductive particles is five and large in the measurement point CC.
  • FPC including the structures of FIGS. 3( b ) to 5( b ) produces resistance values 10% higher or more each time of transition from the measurement area R to the measurement area L.
  • This can be estimated to be caused by the fact that with the transition from the measurement area R to the measurement area L, while the F-THs 5 g , 5 h are near the dispersed measurement points RU, RL, the F-THs 5 a , 5 b are more concentrated near the measurement point LC in the center and thus, deformed conductive particles increase only near the center of the measurement area L, instead of the entire connection terminals 3 a , 3 b.
  • FPC including the structures of FIGS. 3( c ) to 5( c ) produces resistance values of all the connection terminals 3 a , 3 b , 3 d , 3 e , 3 g , 3 h of the measurement areas L, C, R that fall within the range of ⁇ 5% of the average value.
  • This can be estimated to be caused by the fact that the F-THs 5 a , 5 b , 5 d , 5 e , 5 g , 5 h are formed and arranged uniformly in the measurement areas L, C, R the pressure during compression bonding connection is not dispersed.
  • the wires 4 a to 4 h of the FPC 10 to be connected to the LCD 101 , a touch panel or the like are signal lines that are not required to have low resistance and stable sensitivity can be obtained if the resistance value varies within the range of ⁇ 5% and therefore, the FPC 10 of the structure in which the F-THs 5 a to 5 h are randomly arranged like the structures in FIGS. 3( c ) to 5( c ) is considered to be the most desirable.
  • the FPC 10 connected to the LCD 101 , a touch panel or the like may have a structure in which, in addition to the terminal portion 3 , only one connector like the connector portion 6 is sufficient and in this case, the structure in FIG. 3( c ) in which the wires 4 a to 4 h of the wire portion 4 extend to one side of the area corresponding to the terminal portion 3 can be considered to be the most excellent.
  • the structure in FIGS. 4( c ) and 5( c ) can be considered to be excellent.
  • the array structure shown in FIG. 4 may be adopted if the inter-wire pitch of the wires 4 a to 4 h of the wire portion 4 should be relaxed and the array structure shown in FIG. 5 may be adopted if the outline of the FPC 10 should be made smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)
  • Combinations Of Printed Boards (AREA)
  • Liquid Crystal (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

A flexible printed board electrically connected to an electronic component (for example, a liquid crystal panel) by thermal compression bonding, including a flexible substrate, a terminal portion formed on one surface of the flexible substrate and having a plurality of connection terminals to be connected to the electronic component, a wire portion having a plurality of wires formed on the other surface of the flexible substrate, and a plurality of through wires formed inside through holes penetrating the flexible substrate in a compression bonding connection area to the electronic component of the terminal portion to connect the connection terminals of the terminal portion and the respective wires of the wire portion.

Description

    TECHNICAL FIELD
  • The present invention relates to a flexible printed board connected to another electronic component by thermal compression bonding.
  • BACKGROUND ART
  • A display apparatus (see, for example, Patent Literature 1 shown below) including, for example, a structure in which a flexible printed board or COF and a liquid crystal panel are connected has been known. In such a display apparatus, the liquid crystal panel and a drain substrate are electrically connected by a compression bonding terminal portion inside an outline frame of the drain substrate along one side of the drain substrate being compression-bonding-connected to a flexible printed board or the like extending from the side of the liquid crystal panel via an anisotropic conductive material such as ACF.
  • In general, a structure as shown, for example, in FIGS. 8 and 9 is used to connect a liquid crystal panel and a flexible printed board on the liquid crystal panel side. FIG. 8 is a diagram showing a connection structure of a conventional flexible printed board and FIG. 9 is a B-B′ sectional view of FIG. 8. As shown in FIGS. 8 and 9, a conventional flexible printed board 110 includes front wires 114 formed on one surface of a flexible substrate 111 and rear wires 115 formed on the other surface and a cover lay 113 is provided on these wires 114, 115 via an adhesive agent 112.
  • A compression bonding connection portion to a panel terminal 102 provided inside a panel outline frame of a liquid crystal panel 101 is formed by removing the adhesive agent 112 and the cover lay 113 on the side of the front wires 114 to expose a connection terminal 116. The connection terminal 116 and the panel terminal 102 are electrically connected via an anisotropic conductive material 119 and the rear wire 115 and the connection terminal 116 are connected by a through wire 117 provided outside the panel outline frame outside an area to be compression-bonding-connected in a state of penetrating the connection terminal 116, the flexible substrate 111, and the rear wire 115.
  • PRIOR ART DOCUMENT Patent Literature
    • Patent Literature 1: JP 2012-226058 A
    SUMMARY OF THE INVENTION Problem to be Solved by the Invention
  • However, a flexible printed board in a conventional display apparatus disclosed in Patent Literature 1 and a flexible printed board used in the aforementioned connection structure have a flexible substrate, an adhesive agent, a cover lay and the like made of materials far softer than a connection terminal arranged on the opposite side of an anisotropic conductive material side of the connection terminal and thus, a poor connection may be established without a necessary predetermined pressure applied to a compression bonding connection portion during compression bonding connection, resulting in a problem of low connection reliability.
  • An object of the present invention is to provide a flexible printed board capable of improving connection reliability by solving the aforementioned problem of the conventional technology.
  • Means for Solving the Problem
  • A flexible printed board according to the present invention is electrically connected to an electronic component by thermal compression bonding, and the flexible printed board includes: a flexible substrate; a terminal portion formed on one surface of the flexible substrate and having a plurality of connection terminals to be connected to the electronic component; a wire portion having a plurality of wires formed on the other surface of the flexible substrate; and a plurality of through wires formed inside through holes penetrating the flexible substrate in a compression bonding connection area of the terminal portion to the electronic component to connect the connection terminals of the terminal portion to the respective wires of the wire portion.
  • According to the flexible printed board in the present invention, the terminal portion and the wire portion are connected by through wires that connect each connection terminal and each wire in the area of the terminal portion and therefore, the wire portion that is relatively hard is arranged on the opposite side of the terminal portion and a predetermined pressure needed for compression bonding connection can be applied to a compression bonding connection portion so that connection reliability can be improved.
  • In an embodiment of the present invention, the wire portion is formed such that the plurality of wires is arranged overall in an area corresponding to the terminal portion.
  • In another embodiment of the present invention, the wire portion extends in a direction in which the wires intersect the connection terminals and is formed such that the number of wires arranged between the connection terminals arranged adjacently is approximately equal in plane view in the area corresponding to the terminal portion. Accordingly, the wire portion can be arranged inside an outline frame of an electronic component and the arrangement space can be saved by making the overall size smaller. In addition, the wire portion that is relatively hard is uniformly arranged on the opposite side of the terminal portion and therefore, a predetermined pressure needed for thermal compression bonding can uniformly be applied to the terminal portion and connection reliability can be improved by inhibiting the occurrence of poor connection.
  • In another embodiment of the present invention, the wire portion is formed so as to extend from the area corresponding to the terminal portion to both sides along an adjacent direction of arrangement of the connection terminals of the terminal portion.
  • In another embodiment of the present invention, the wire portion has the wires extending in a direction parallel to the connection terminals.
  • In another embodiment of the present invention, the terminal portion is connected to the electronic component via an anisotropic conductive material.
  • In another embodiment of the present invention, the wire portion has dummy wires in a portion of the plurality of wires.
  • Advantageous Effects of Invention
  • According to the present invention, connection reliability can be improved.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view showing a flexible printed board according to a first embodiment of the present invention.
  • FIG. 2 is an A-A′ sectional view of FIG. 1.
  • FIGS. 3(a) to 3(c) are plan views showing the flexible printed board according to a second embodiment of the present invention.
  • FIGS. 4(a) to 4(c) are plan views showing the flexible printed board according to a third embodiment of the present invention.
  • FIGS. 5(a) to 5(c) are plan views showing the flexible printed board according to a fourth embodiment of the present invention.
  • FIGS. 6(a) to 6(c) are plan views showing the flexible printed board according to a fifth embodiment of the present invention.
  • FIG. 7 is a diagram showing measurement points of a compression bonding connection area according to Examples of the second to fourth embodiments of the present invention.
  • FIG. 8 is a diagram showing a connection structure of a conventional flexible printed board.
  • FIG. 9 is a B-B′ sectional view of FIG. 8.
  • EMBODIMENTS FOR CARRYING OUT THE INVENTION
  • Hereinafter, flexible printed boards according to the embodiments of the present invention will be described in detail with reference to the appended drawings.
  • First Embodiment
  • FIG. 1 is a plan view showing a flexible printed board according to the first embodiment of the present invention. FIG. 2 is an A-A′ sectional view of FIG. 1. As shown in FIGS. 1 and 2, a flexible printed board (hereinafter, referred to as “FPC”) 10 according to the first embodiment is electrically connected to a liquid crystal panel (hereinafter, referred to as “LCD”) 101 as another electronic component by, for example, thermal compression bonding.
  • The FPC 10 includes a flexible substrate 1 made of an insulating resin, for example, polyimide or polyamide and a terminal portion 3 formed on one surface (front surface) la of the flexible substrate 1 and having a plurality of connection terminals 3 a, 3 b, 3 c, 3 d, 3 e, 3 f, 3 g, 3 h to be connected to the LCD 101.
  • The FPC 10 also includes a wire portion 4 formed on the other surface (rear surface) 1 b of the flexible substrate 1 and having a plurality of wires 4 a, 4 b, 4 c, 4 d, 4 e, 4 f, 4 g, 4 h and filled through holes (hereinafter, referred to as “F-TH”) 5 a, 5 b, 5 c, 5 d, 5 e, 5 f, 5 g, 5 h as a plurality of through wires that connect the connection terminals 3 a to 3 h of the terminal portion 3 and the wires 4 a to 4 h of the wire portion 4 respectively by penetrating the flexible substrate 1 in the area of the terminal portion 3.
  • A connector portion 6 to be connected to a connector terminal provided on a circuit board (not shown) of the LCD 101 as another board or component is formed on an edge on the opposite side of the side of the terminal portion 3 of the wire portion 4. Thus, the FPC 10 assumes the role of electrically connecting the LCD 101 and the circuit board.
  • Further, the FPC 10 includes a cover lay 7 made of the insulating resin as described above coated via an adhesive agent 2 on the front and rear surfaces 1 a, 1 b of the flexible substrate 1. The adhesive agent 2 and the cover lay 7 are not formed in the area of the terminal portion 3 on the side of the front surface 1 a of the flexible substrate 1 and the connection terminals 3 a to 3 h are exposed.
  • The terminal portion 3 and the wire portion 4 of the FPC 10 are made of a conductor of nickel, chromium, copper or the like formed on the front surface 1 a and the rear surface 1 b of the flexible substrate 1 by, for example, sputtering or vapor deposition. The F-THs 5 a to 5 h are formed by forming through holes of about 25 μm in diameter so as to penetrate the wires 4 a to 4 h by passing through the flexible substrate 1 from the connection terminals 3 a to 3 h of the terminal portion 3 respectively by, for example, YAG laser and then filling in the through hole by performing plating by the semi-additive method.
  • The connection terminals 3 a to 3 h and the wires 4 a to 4 h of the terminal portion 3 and the wire portion 4 have a thickness of about 12 μm and the connection terminals 3 a to 3 h are formed in a thinly rectangular shape and arranged side by side along the width direction thereof (longitudinal direction of the FPC 10). The connection terminals 3 a to 3 h are formed such that the width thereof and the interval therebetween are about 80 μm.
  • The connection terminals 3 a to 3 h are formed in positions overlapping with LCD terminals 102 a, 102 b, 102 c, 102 d, 102 e, 102 f, 102 g, 102 h of the LCD terminal portion 102 respectively provided in an inner area of the LCD 101 (inside the outline frame of the LCD 101) during thermal compression bonding.
  • Then, in the first embodiment, the connection terminals 3 a to 3 h are electrically connected to the LCD terminals 102 a to 102 h respectively via an anisotropic conductive material 119 made of an anisotropic conductive paste (ACP) or an anisotropic conductive film (ACF) by thermal compression bonding. Incidentally, the connection terminals 3 a to 3 h and the LCD terminals 102 a to 102 h may be connected by thermal compression bonding without the medium of the anisotropic conductive material 119.
  • The wires 4 a to 4 h are formed by linearly extending mainly along the longitudinal direction of the FPC 10 (width direction of the connection terminals 3 a to 3 h) and being arranged side by side in the longitudinal direction of the connection terminals 3 a to 3 h. The wires 4 a to 4 h are each formed so as to be bent near the connector portion 6 by 90° to extend toward the connector portion 6 in parallel.
  • Therefore, the wires 4 a to 4 h of the wire portion 4 are formed in a state of being orthogonal to the connection terminals 3 a to 3 h in plane view in an area corresponding to the terminal portion 3 and formed such that the number of the wires 4 a to 4 h arranged between each of the connection terminals 3 a to 3 h arranged adjacently as described above is approximately equal.
  • That is, the wire portion 4 is structured such that in the corresponding area, an equal number of eight wires of the wires 4 a to 4 h are each arranged between the connection terminals 3 a, 3 b, between the connection terminals 3 b, 3 c, between the connection terminals 3 c, 3 d, between the connection terminals 3 d, 3 e, between the connection terminals 3 e, 3 f, between the connection terminals 3 f, 3 g, and between the connection terminals 3 g, 3 h.
  • In the area of the terminal portion 3, the F-THs 5 a to 5 h are each formed in different positions along the side-by-side arrangement direction of the connection terminals 3 a to 3 h and the side-by-side arrangement direction of the wires 4 a to 4 h. More specifically, if, as shown in FIG. 1, the F-TH 5 a is formed on a base end side of the connection terminal 3 a (tip side of the LCD terminal 102 a) and the F-TH 5 h is formed on a tip side of the connection terminal 3 h (base end side of the LCD terminal 102 h), the other F-THs 5 b to 5 g are formed in positions on a straight line connecting the F- THs 5 a, 5 h in a plane or neighboring positions of the straight line. That is, the F-THs 5 a to 5 h are formed such that a state of connecting these positions by a line is like an oblique line.
  • In the FPC 10 according to the first embodiment, the terminal portion 3, the wire portion 4, and the F-THs 5 a to 5 h are formed as described above and thus, almost all portions of the FPC 10 excluding the connector portion 6 can be arranged to be accommodated inside the outline frame of the LCD 101. Therefore, compared with conventional FPC, the arrangement space can be saved by making the overall size smaller.
  • In addition, the LCD terminal portion 102 and the terminal portion 3 can be thermal compression bonded by applying a predetermined pressure to the whole connection area uniformly and therefore, conductive particles of the anisotropic conductive material 119 between the LCD terminals 102 a to 102 h and the connection terminals 3 a to 3 h can reliably be brought into contact therewith and connection reliability can be improved by inhibiting poor connection.
  • Second Embodiment
  • FIG. 3 is a plan view showing the flexible printed board according to the second embodiment of the present invention and FIGS. 3(a), 3(b), and 3(c) show mutually different formation positions of the F-THs 5 a to 5 h. FIG. 3(a) shows the formation positions of the F-THs 5 a to 5 h similar to those in the first embodiment, FIG. 3(b) shows the formation positions of the F-THs 5 a to 5 h in a dogleg shape in plane view when these positions are connected by a line, and FIG. 3(c) shows the formation positions of the F-THs 5 a to 5 h are random. Hereinafter, the same reference signs are attached to portions already described and the description thereof may be omitted.
  • The FPC 10 according to the second embodiment is mainly different from the FPC 10 in the first embodiment in that the wire portion 4 has dummy wires 4 a′ to 4 h′ in a portion of the wires 4 a to 4 h. The dummy wires 4 a′ to 4 h′ are formed like similarly extending coaxially with the wires 4 a to 4 h in the area corresponding to the terminal portion 3, but are not connected to the connection terminals 3 a to 3 h and the wires 4 a to 4 h and are wires not electrically utilized in an unconnected state from the viewpoint of circuit.
  • When compared with the FPC 10 in the first embodiment, the FPC 10 according to the second embodiment has, instead of an approximately equal number of all the wires 4 a to 4 h, an approximately equal number of wires including the dummy wires 4 a′ to 4 h′ arranged between each of the connection terminals 3 a to 3 h in, for example, a compression bonding connection area PA shown in FIG. 3(a) and thus, a predetermined pressure can be applied uniformly during thermal compression bonding while noise resistance is improved with good high-frequency characteristics so that the aforementioned operation/effect can be achieved.
  • For reasons of signal noise countermeasures, the dummy wires 4 a′ to 4 h′ are formed such that a gap in the horizontal direction between the end face on the side of the wires 4 a to 4 h of the dummy wires 4 a′ to 4 h′ and the side end face on the side of the dummy wires 4 a′ to 4 h′ of the connection terminals 3 a to 3 h to which the wires 4 a to 4 h are connected via the F-THs 5 a to 5 h is 5 μm or more. Also, the dummy wires 4 a′ to 4 h′ are formed such that the gap is not arranged below the connection terminals 3 a to 3 h via the flexible substrate 1.
  • As shown in FIGS. 3(a) to 3(c), the wires 4 a to 4 h of the wire portion 4 are formed so as to extend from an area corresponding to the terminal portion 3 to one side (side on the opposite side of the side of the connection terminal 3 g of the connection terminal 3 h) along an adjacent direction of arrangement of the connection terminals 3 a to 3 h of the terminal portion 3. The wires 4 a to 4 h, the dummy wires 4 a′ to 4 h′, the F-THs 5 a to 5 h, and the connection terminals 3 a to 3 h are formed, for example, as described below.
  • First, the example shown in FIG. 3(a) will be described. As shown in FIG. 3(a), the wire 4 a is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a bypassing below the connection terminals 3 h, 3 g, 3 f, 3 e, 3 d, 3 c, 3 b. The dummy wire 4 a′ is formed so as to extend from the side end face of the connection terminal 3 a to the end of the FPC 10 across a gap along the wire 4 a without passing below any connection terminal.
  • The wires 4 b, 4 c, . . . , 4 h are similarly connected to the connection terminals 3 b, 3 c, . . . , 3 h from below the connection terminals 3 b, 3 c, . . . , 3 h via the F- THs 5 b, 5 c, . . . , 5 h bypassing below the connection terminals 3 h to 3 c, 3 h to 3 d, . . . , 3 h respectively. The dummy wires 4 b′, 4 c′, . . . , 4 h′ are formed so as to extend from the side end face of the connection terminals 3 b, 3 c, . . . , 3 h to the end of the FPC 10 across a gap along the wires 4 b, 4 c, . . . , 4 h by passing below the connection terminals 3 a, 3 b, . . . , 3 g respectively.
  • Next, the example shown in FIG. 3(b) will be described. As shown in FIG. 3(b), the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h. The dummy wire 4 a′ is formed so as to extend from the side end face of the connection terminal 3 h to the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • The wires 4 b, 4 c, . . . , 4 h are connected to the connection terminals 3 f, 3 d, 3 b, 3 a, 3 c, 3 e, 3 g from below the connection terminals 3 f, 3 d, 3 b, 3 a, 3 c, 3 e, 3 g via the F- THs 5 f, 5 d, 5 b, 5 a, 5 c, 5 e, 5 g by passing below the connection terminals 3 h to 3 g, 3 h to 3 e, 3 h to 3 c, 3 h to 3 b, 3 h to 3 d, 3 h to 3 f, 3 h respectively. The dummy wires 4 b′, 4 c′, . . . , 4 h′ are formed, excluding the dummy wire 4 e′, so as to extend from the side end face of the connection terminals 3 f, 3 d, 3 b, 3 c, 3 e, 3 g to the end of the FPC 10 across a gap along the wires 4 b, 4 c, . . . , 4 h by passing below the connection terminals 3 e to 3 a, 3 c to 3 a, 3 a, 3 b to 3 a, 3 d to 3 a, 3 f to 3 a respectively. The dummy wire 4 e′ is formed so as to extend from the side end face of the connection terminal 3 a to the end of the FPC 10 across a gap along the wire 4 e without passing below any connection terminal. Therefore, the F-THs 5 a to 5 h are formed in a dogleg shape in plane view when these positions are connected by a line.
  • Next, the example shown in FIG. 3(c) will be described. As shown in FIG. 3(c), the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h. The dummy wire 4 a′ is formed so as to extend from the side end face of the connection terminal 3 h to the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • The wires 4 b, 4 c, . . . , 4 h are connected to the connection terminals 3 a, 3 f, 3 c, 3 e, 3 d, 3 g, 3 b from below the connection terminals 3 a, 3 f, 3 c, 3 e, 3 d, 3 g, 3 b via the F- THs 5 a, 5 f, 5 c, 5 e, 5 d, 5 g, 5 b by passing below the connection terminals 3 h to 3 b, 3 h to 3 g, 3 h to 3 d, 3 h to 3 f, 3 h to 3 e, 3 h, 3 h to 3 c respectively. The dummy wires 4 b′, 4 c′, . . . , 4 h′ are formed, excluding the dummy wire 4 b′, so as to extend from the side end face of the connection terminals 3 f, 3 c, 3 e, 3 d, 3 g, 3 b to the end of the FPC 10 across a gap along the wires 4 c, 4 d, . . . , 4 h by passing below the connection terminals 3 e to 3 a, 3 b to 3 a, 3 d to 3 a, 3 c to 3 a, 3 f to 3 a, 3 a respectively. The dummy wire 4 b′ is formed so as to extend from the side end face of the connection terminal 3 a to the end of the FPC 10 across a gap along the wire 4 b without passing below any connection terminal. Therefore, the F-THs 5 a to 5 h are formed in random positions.
  • Third Embodiment
  • FIG. 4 is a plan view showing the flexible printed board according to the third embodiment of the present invention, FIGS. 4(a), 4(b), and 4(c) show mutually different formation positions of the F-THs 5 a to 5 h, and formation positions of the F-THs 5 a to 5 h in FIGS. 4(a) to 4(c) correspond to those in FIGS. 3(a) to 3(c).
  • The FPC 10 according to the third embodiment is similar to the FPC 10 in the second embodiment in that the wires 4 a to 4 h and the dummy wires 4 a′ to 4 h′ are included, but is different in that, as shown in FIGS. 4(a) to 4(c), the wires 4 a to 4 h of the wire portion 4 are formed so as to extend from the area corresponding to the terminal portion 3 to both sides along the adjacent direction of arrangement of the connection terminals 3 a to 3 h of the terminal portion 3.
  • First, the example shown in FIG. 4(a) will be described. As shown in FIG. 4(a), the wire 4 a extends to the side of the opposite side of the side of the connection terminal 3 g of the connection terminal 3 h and also is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a by passing below the connection terminals 3 h to 3 b. The dummy wire 4 a′ is formed so as to extend from the side end face of the connection terminal 3 a to immediately before the end of the FPC 10 across a gap along the wire 4 a without passing below any connection terminal.
  • The wires 4 c, 4 e, 4 g are similarly connected to the connection terminals 3 c, 3 e, 3 g from below the connection terminals 3 c, 3 e, 3 g via the F- THs 5 c, 5 e, 5 g bypassing below the connection terminals 3 h to 3 d, 3 h to 3 f, 3 h respectively. The dummy wires 4 c′, 4 e′, 4 g′ are formed so as to extend from the side end face of the connection terminals 3 c, 3 e, 3 g to immediately before the end of the FPC 10 across a gap along the wires 4 c, 4 e, 4 g without passing below the connection terminals 3 b to 3 a, 3 d to 3 a, 3 f to 3 a respectively.
  • On the other hand, the wire 4 b extends to the side of the opposite side of the side of the connection terminal 3 b of the connection terminal 3 a and also is connected to the connection terminal 3 b from below the connection terminal 3 b via the F-TH 5 b by passing below the connection terminal 3 a. The dummy wire 4 b′ is formed so as to extend from the side end face of the connection terminal 3 b to past the connection terminal 3 h across a gap along the wire 4 b by passing below the connection terminals 3 c to 3 h.
  • The wires 4 d, 4 f, 4 h are similarly connected to the connection terminals 3 d, 3 f, 3 h from below the connection terminals 3 d, 3 f, 3 h via the F- THs 5 d, 5 f, 5 h bypassing below the connection terminals 3 a to 3 c, 3 a to 3 e, 3 a to 3 g respectively. The dummy wires 4 d′, 4 f′, 4 h′ are formed, excluding the dummy wire 4 h′, so as to extend from the side end face of the connection terminals 3 d, 3 f to past the connection terminal 3 h across a gap along the wires 4 d, 4 f by passing below the connection terminals 3 e to 3 h, 3 g to 3 h respectively. The dummy wire 4 h′ is formed so as to extend from the side end face of the connection terminal 3 h to as far as the end faces of the dummy wires 4 b′, 4 d′, 4 f′ across a gap along the wire 4 h without passing below any connection terminal.
  • Next, the example shown in FIG. 4(b) will be described. In FIG. 4(b), the direction in which the wires 4 a, 4 c, 4 e, 4 g extend and the direction in which the wires 4 b, 4 d, 4 f, 4 h extend are similar to those shown in FIG. 4(a). As shown in FIG. 4(b), the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h. The dummy wire 4 a′ is formed so as to extend from the side end face of the connection terminal 3 h to immediately before the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • The wires 4 c, 4 e, 4 g are similarly connected to the connection terminals 3 d, 3 a, 3 e from below the connection terminals 3 d, 3 a, 3 e via the F- THs 5 d, 5 a, 5 e bypassing below the connection terminals 3 h to 3 e, 3 h to 3 b, 3 h to 3 f respectively. The dummy wires 4 c′, 4 e′, 4 g′ are formed, excluding the dummy wire 4 e′, so as to extend from the side end face of the connection terminals 3 d, 3 e to immediately before the end of the FPC 10 across a gap along the wires 4 c, 4 g by passing below the connection terminals 3 c to 3 a, 3 d to 3 a respectively. The dummy wire 4 e′ is formed so as to extend from the side end face of the connection terminal 3 a to immediately before the end of the FPC 10 across a gap along the wire 4 e without passing below any connection terminal.
  • On the other hand, the wire 4 b is connected to the connection terminal 3 f from below the connection terminal 3 f via the F-TH 5 f by passing below the connection terminals 3 a to 3 e. The dummy wire 4 b′ is formed so as to extend from the side end face of the connection terminal 3 f to past the connection terminal 3 h across a gap along the wire 4 b by passing below the connection terminals 3 g to 3 h.
  • The wires 4 d, 4 f, 4 h are similarly connected to the connection terminals 3 b, 3 c, 3 g from below the connection terminals 3 b, 3 c, 3 g via the F- THs 5 b, 5 c, 5 g bypassing below the connection terminals 3 a, 3 a to 3 b, 3 a to 3 f respectively. The dummy wires 4 d′, 4 f′, 4 h′ are formed so as to extend from the side end face of the connection terminals 3 b, 3 c, 3 g to past the connection terminal 3 h across a gap along the wires 4 d, 4 f, 4 h by passing below the connection terminals 3 c to 3 h, 3 d to 3 h, 3 h respectively.
  • Next, the example shown in FIG. 4(c) will be described. As shown in FIG. 4(c), the wire 4 a extends to the side of the opposite side of the side of the connection terminal 3 b of the connection terminal 3 a and also is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h by passing below the connection terminals 3 a to 3 g. The dummy wire 4 a′ is formed so as to extend from the side end face of the connection terminal 3 h to past the connection terminal 3 h by passing through a gap along the wire 4 a without passing below any connection terminal.
  • The wires 4 c, 4 e, 4 g are similarly connected to the connection terminals 3 f, 3 e, 3 g from below the connection terminals 3 f, 3 e, 3 g via the F- THs 5 f, 5 e, 5 g bypassing below the connection terminals 3 a to 3 e, 3 a to 3 d, 3 a to 3 f respectively. The dummy wires 4 c′, 4 e′, 4 g′ are formed so as to extend from the side end face of the connection terminals 3 f, 3 e, 3 g to past the connection terminal 3 h across a gap along the wires 4 c, 4 e, 4 g without passing below the connection terminals 3 g to 3 h, 3 f to 3 h, 3 h respectively.
  • On the other hand, the wire 4 b extends to the side of the opposite side of the side of the connection terminal 3 g of the connection terminal 3 h and also is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a by passing below the connection terminals 3 h to 3 b. The dummy wire 4 b′ is formed so as to extend from the side end face of the connection terminal 3 a to immediately before the end of the FPC 10 across a gap along the wire 4 b without passing below any connection terminal.
  • The wires 4 d, 4 f, 4 h are similarly connected to the connection terminals 3 c, 3 d, 3 b from below the connection terminals 3 c, 3 d, 3 b via the F- THs 5 c, 5 d, 5 b bypassing below the connection terminals 3 h to 3 d, 3 h to 3 e, 3 h to 3 c respectively. The dummy wires 4 d′, 4 f′, 4 h′ are formed so as to extend from the side end face of the connection terminals 3 c, 3 d, 3 b to immediately before the end of the FPC 10 across a gap along the wires 4 d, 4 f, 4 h bypassing below the connection terminals 3 b to 3 a, 3 c to 3 a, 3 a respectively.
  • Fourth Embodiment
  • FIG. 5 is a plan view showing the flexible printed board according to the fourth embodiment of the present invention, FIGS. 5(a), 5(b), and 5(c) show mutually different formation positions of the F-THs 5 a to 5 h, and formation positions of the F-THs 5 a to 5 h in FIGS. 5(a) to 5(c) correspond to those in FIGS. 3(a) to 3(c) and FIGS. 4(a) to 4(c).
  • The FPC 10 according to the fourth embodiment is similar to the FPC 10 in the third embodiment in that the wires 4 a to 4 h and the dummy wires 4 a′ to 4 h′ are included and the wires 4 a to 4 h of the wire portion 4 are formed so as to extend from the area corresponding to the terminal portion 3 to both sides along the adjacent direction of arrangement of the connection terminals 3 a to 3 h of the terminal portion 3, but combinations of wires extending in opposite directions are different.
  • More specifically, in each of FIGS. 5(a) to 5(c), the wires 4 a to 4 d are formed so as to extend to the opposite side of the side of the connection terminal 3 g of the connection terminal 3 h and the wires 4 e to 4 h are formed so as to extend to the opposite side of the side of the connection terminal 3 b of the connection terminal 3 a. Correspondingly, the shape of the FPC 10 is not a simple rectangular shape, but is formed in a crank shape as a whole having a width narrower than the width of the terminal portion 3 to fit to a portion of the wires 4 a to 4 h extending from the rectangular area where the terminal portion 3 is formed.
  • First, the example shown in FIG. 5(a) will be described. As shown in FIG. 5(a), the wire 4 a is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a by passing below the connection terminals 3 h to 3 b. The dummy wire 4 a′ is formed so as to extend from the side end face of the connection terminal 3 a to immediately before the end of the FPC 10 across a gap along the wire 4 a without passing below any connection terminal.
  • The wires 4 b, 4 c, 4 d are similarly connected to the connection terminals 3 b, 3 c, 3 d from below the connection terminals 3 b, 3 c, 3 d via the F- THs 5 b, 5 c, 5 d bypassing below the connection terminals 3 h to 3 c, 3 h to 3 d, 3 h to 3 e respectively. The dummy wires 4 b′, 4 c′, 4 d′ are formed so as to extend from the side end face of the connection terminals 3 b, 3 c, 3 d to as far as the end face of the dummy wire 4 a′ across a gap along the wires 4 b, 4 c, 4 d by passing below the connection terminals 3 a, 3 b to 3 a, 3 c to 3 a respectively.
  • On the other hand, the wire 4 e is connected to the connection terminal 3 e from below the connection terminal 3 e via the F-TH 5 e by passing below the connection terminals 3 a to 3 d. The dummy wire 4 e′ is formed so as to extend from the side end face of the connection terminal 3 e to as far as the end face of the dummy wires 4 f′, 4 g′, 4 h′ across a gap along the wire 4 e by passing below the connection terminals 3 f to 3 h.
  • The wires 4 f, 4 g, 4 h are similarly connected to the connection terminals 3 f, 3 g, 3 h from below the connection terminals 3 f, 3 g, 3 h via the F- THs 5 f, 5 g, 5 h bypassing below the connection terminals 3 a to 3 e, 3 a to 3 f, 3 a to 3 g respectively. The dummy wires 4 f′, 4 g′, 4 h′ are formed, excluding the dummy wire 4 h′, so as to extend from the side end face of the connection terminals 3 f, 3 g to as far as the end face of the dummy wire 4 h′ across a gap along the wires 4 f, 4 g by passing below the connection terminals 3 g to 3 h, 3 h respectively. The dummy wire 4 h′ is formed so as to extend from the side end face of the connection terminal 3 h to immediately before the end of the FPC 10 across a gap along the wire 4 h without passing below any connection terminal.
  • Next, the example shown in FIG. 5(b) will be described. As shown in FIG. 5(b), the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h. The dummy wire 4 a′ is formed so as to extend from the side end face of the connection terminal 3 h to immediately before the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • The wires 4 b, 4 c, 4 d are similarly connected to the connection terminals 3 f, 3 d, 3 b from below the connection terminals 3 f, 3 d, 3 b via the F- THs 5 f, 5 d, 5 b bypassing below the connection terminals 3 h to 3 g, 3 h to 3 e, 3 h to 3 c respectively. The dummy wires 4 b′, 4 c′, 4 d′ are formed so as to extend from the side end face of the connection terminals 3 f, 3 d, 3 b to as far as the end face of the dummy wire 4 a′ across a gap along the wires 4 b, 4 c, 4 d by passing below the connection terminals 3 e to 3 a, 3 c to 3 a, 3 a respectively.
  • On the other hand, the wire 4 e is connected to the connection terminal 3 a from below the connection terminal 3 a via the F-TH 5 a. The dummy wire 4 e′ is formed so as to extend from the side end face of the connection terminal 3 a to as far as the end face of the dummy wires 4 f′, 4 g′, 4 h′ across a gap along the wire 4 e by passing below the connection terminals 3 b to 3 h.
  • The wires 4 f, 4 g, 4 h are similarly connected to the connection terminals 3 c, 3 e, 3 g from below the connection terminals 3 c, 3 e, 3 g via the F- THs 5 c, 5 e, 5 g bypassing below the connection terminals 3 a to 3 b, 3 a to 3 d, 3 a to 3 f respectively. The dummy wires 4 f′, 4 g′, 4 h′ are formed so as to extend from the side end face of the connection terminals 3 c, 3 e, 3 g to as far as the end face of the dummy wire 4 e′ across a gap along the wires 4 f, 4 g, 4 h by passing below the connection terminals 3 d to 3 h, 3 f to 3 h, 3 h respectively. The dummy wire 4 h′ is formed so as to extend immediately before the end of the FPC 10.
  • Next, the example shown in FIG. 5(c) will be described. As shown in FIG. 5(c), the wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h. The dummy wire 4 a′ is formed so as to extend from the side end face of the connection terminal 3 h to immediately before the end of the FPC 10 across a gap along the wire 4 a by passing below the connection terminals 3 g to 3 a.
  • The wires 4 b, 4 c, 4 d are similarly connected to the connection terminals 3 a, 3 f, 3 c from below the connection terminals 3 a, 3 f, 3 c via the F- THs 5 a, 5 f, 5 c bypassing below the connection terminals 3 h to 3 b, 3 h to 3 g, 3 h to 3 d respectively. The dummy wires 4 b′, 4 c′, 4 d′ are formed, excluding the dummy wire 4 b′, so as to extend from the side end face of the connection terminals 3 f, 3 c to as far as the end face of the dummy wire 4 a′ across a gap along the wires 4 c, 4 d by passing below the connection terminals 3 e to 3 a, 3 b to 3 a respectively. The dummy wire 4 b′ is formed so as to extend from the side end face of the connection terminal 3 a to as far as the end face of the dummy wire 4 a′ across a gap along the wire 4 b without passing below any connection terminal.
  • On the other hand, the wire 4 e is connected to the connection terminal 3 e from below the connection terminal 3 e via the F-TH 5 e by passing below the connection terminals 3 a to 3 d. The dummy wire 4 e′ is formed so as to extend from the side end face of the connection terminal 3 e to as far as the end face of the dummy wires 4 f′, 4 g′, 4 h′ across a gap along the wire 4 e by passing below the connection terminals 3 f to 3 h.
  • The wires 4 f, 4 g, 4 h are similarly connected to the connection terminals 3 d, 3 g, 3 b from below the connection terminals 3 d, 3 g, 3 b via the F- THs 5 d, 5 g, 5 b bypassing below the connection terminals 3 a to 3 c, 3 a to 3 f, 3 a respectively. The dummy wires 4 f′, 4 g′, 4 h′ are formed so as to extend from the side end face of the connection terminals 3 d, 3 g, 3 b to as far as the end face of the dummy wire 4 e′ across a gap along the wires 4 f, 4 g, 4 h by passing below the connection terminals 3 e to 3 h, 3 h, 3 c to 3 h respectively. The dummy wire 4 h′ is formed so as to extend immediately before the end of the FPC 10.
  • Fifth Embodiment
  • FIG. 6 is a plan view showing the flexible printed board according to the fifth embodiment of the present invention and FIGS. 6(a), 6(b), and 6(c) show the F-THs 5 a to 5 h in the same formation positions. More specifically, the F-THs 5 a to 5 h are arranged linearly along the adjacent direction of arrangement (width direction) of the connection terminals 3 a to 3 h.
  • Thus, the FPC 10 according to the fifth embodiment is different from the FPC 10 in the first to fourth embodiments in that the formation positions of the F-THs 5 a to 5 h are linear along the adjacent direction of arrangement. In FIG. 6(a), the wires 4 b to 4 h of the wire portion 4 excluding the wire 4 a are formed so as to have portions obliquely intersecting the connection terminals 3 a to 3 h in plane view in the area corresponding to the terminal portion 3 and to extend in the adjacent direction of arrangement from the area.
  • In FIGS. 6(b) and 6(c), the wires 4 a to 4 h are formed so as to extend along the longitudinal direction of the connection terminals 3 a to 3 h, that is, the wires 4 a to 4 h are formed so as to extend in parallel with connection terminals 3 a to 3 h and FIG. 6(b) shows a case in which the dummy wires 4 a′ to 4 h′ are included and FIG. 6(c) shows a case in which the dummy wires are not included.
  • First, the example shown in FIG. 6(a) will be described. As shown in FIG. 6(a), the wires 4 a to 4 h of the wire portion 4 are formed, as described above, so as to extend from the area corresponding to the terminal portion 3 to one side as shown in FIG. 3(a) along the adjacent direction of arrangement of the connection terminals 3 a to 3 h of the terminal portion 3. The wire 4 a is connected to the connection terminal 3 h from below the connection terminal 3 h via the F-TH 5 h.
  • The wire 4 b extends obliquely with respect to the connection terminal 3 g by passing below the connection terminal 3 h and is connected to the connection terminal 3 g from below the connection terminal 3 g via the F-TH 5 g. The wires 4 c to 4 h have similarly portions extending obliquely and are connected to the connection terminals 3 f to 3 a via the F-THs 5 f to 5 a. In this manner, the length in the longitudinal direction of the connection terminals 3 a to 3 h in the FPC 10 can be designed as short as possible.
  • Next, the example shown in FIG. 6(b) will be described. As shown in FIG. 6(b), the wire 4 a extends halfway through the connection terminal 3 a along the longitudinal direction of the connection terminal 3 a and is connected to the connection terminal 3 a via the F-TH 5 a. Then, the dummy wire 4 a′ is formed below the connection terminal 3 a across a gap along the connection terminal 3 a.
  • The wires 4 b to 4 h are similarly connected to the connection terminals 3 b to 3 h via the F-THs 5 b to 5 h and the dummy wires 4 b′ to 4 h′ are formed below the connection terminals 3 b to 3 h across a gap along the connection terminals 3 b to 3 h respectively. In this manner, the flexibility of wiring can be increased by designing the length in the adjacent direction of arrangement of the connection terminals 3 a to 3 h in the FPC 10 as short as possible and also the occurrence of poor connection can be inhibited to improve connection reliability by uniformly applying a predetermined pressure to the terminal portion 3 during thermal compression bonding.
  • Next, the example shown in FIG. 6(c) will be described. As shown in FIG. 6(c), the wire 4 a extends over the entire area below along the longitudinal direction of the connection terminal 3 a and is connected to the connection terminal 3 a via the F-TH 5 a. The wires 4 b to 4 h similarly extend over the entire area below the connection terminals 3 b to 3 h and are connected to the connection terminals 3 b to 3 h via the F-THs 5 b to 5 h. Also in this manner, the same operation/effect as that in the case of FIG. 6(b) can be achieved.
  • In the examples shown in FIG. 6, the F-THs 5 a to 5 h are arranged linearly along the adjacent direction of arrangement (width direction) of the connection terminals 3 a to 3 h, but may be formed to arrange, for example, in a direction obliquely intersecting the connection terminals 3 a to 3 h in plane view.
  • In the above embodiments, the FPC 10 has a configuration in which the terminal portion 3, the wire portion 4, and the F-THs 5 a to 5 h can be included in a portion inside the panel outline frame in a compression bonding connection area to a component of, for example, a liquid crystal panel. Thus, the FPC 10 does not need a formation portion of the terminal portion 3 and a formation portion of the wire portion 4 and the F-THs 5 a to 5 h as separate areas and therefore, the arrangement space can be saved to decrease the overall size while connection reliability is improved.
  • Example 1
  • Among the FPC 10 according to the second to fourth embodiments, the FPC 10 without the dummy wires 4 a′ to 4 h′ from the FPC 10 shown in FIG. 3(a) is produced as Sample A, the FPC 10 shown in FIGS. 3, 4, and 5 are produced as Samples B, C, D respectively, and a flexible printed board in a conventional structure shown in FIGS. 8 and 9 is produced as Sample E.
  • Continuity tests are conducted by connecting the terminal portion of FPC of the produced Samples A to E to the terminal portion of a test component via ACF as an anisotropic conductive material. The flip-chip bonder “FB30T-M” manufactured by Panasonic Corporation is used as an implementation apparatus and “FP1708E” manufactured by Sony Chemicals Corporation as ACF.
  • A test component in which all connection terminals of the terminal portion are connected and wires connected respective connection terminals of Samples A to E are connected to measuring pads is used and continuity is checked by allowing a tester to touch the measuring pad corresponding to each connection terminal. As a result, though conduction could not be confirmed for a portion of connection terminals of Sample A, conduction could be confirmed for all structures of the other Samples B to E.
  • Example 2
  • FIG. 7 is a diagram showing measurement points of a compression bonding connection area PA according to Examples of the second to fourth embodiments of the present invention. As shown in FIG. 7, for Samples B to D of above Example 1, the measurement area of the connection terminals 3 a, 3 b in the compression bonding connection area PA is denoted as L, the measurement area of the connection terminals 3 d, 3 e is denoted as C, and the measurement area of the connection terminals 3 g, 3 h is denoted as R.
  • In each of the measurement areas L, C, R, three different measurement points are provided. More specifically, measurement points LU, LC, LL are provided in the measurement area L, measurement points CU, CC, CL are provided in the measurement area C, and measurement points RU, RC, RL are provided in the measurement area R.
  • As described above, the FPC 10 in FIG. 3 is denoted as Sample B, the FPC 10 in FIG. 4 is denoted as Sample C, and the FPC 10 in FIG. 5 is denoted as Sample D and Samples B to Dare produced as samples corresponding to FIGS. 3(a) to 5(c). Then, for each of Samples B to D, resistance after connection of, among the connection terminals 3 a to 3 h, the connection terminals 3 a, 3 b in the measurement area L, the connection terminals 3 d, 3 e in the measurement area C, and the connection terminals 3 g, 3 h in the measurement area R is measured by the four-terminal method using “AC mΩ HiTESTER 3560” manufactured by Hioki E.E. Corporation. Measurement results are shown in Tables 1 to 3.
  • Cross-section observations are made in each measurement point of the measurement areas L, C, R to count the number of deformed conductive particles in ACF between connection terminals to check uniformity of pressure during compression bonding connection. Check results are also shown in Tables 1 to 3. The diameter of conductive particles of ACF is 3.5 μm and the distribution of six conductive particles in average is observed on the terminal in the measurement areas L, C, R having two connection terminals of the width of 80 μm. Among such conductive particles, the number of deformed conductive particles is counted.
  • TABLE 1
    Resistance after Number of deformed
    connection (Ω) conductive particles
    L C R L C R
    FIG. 3(a) 2.427 2.043 2.386 U 0 2 5
    C 1 5 2
    L 5 3 0
    FIG. 3(b) 2.638 2.334 2.116 U 0 2 4
    C 4 4 0
    L 0 1 5
    FIG. 3(c) 2.006 2.098 2.084 U 3 2 3
    C 1 6 1
    L 5 1 5
  • TABLE 2
    Resistance after Number of deformed
    connection (Ω) conductive particles
    L C R L C R
    FIG. 4(a) 2.351 2.037 2.369 U 0 3 6
    C 2 5 1
    L 5 2 0
    FIG. 4(b) 2.813 2.325 2.107 U 0 3 4
    C 3 3 0
    L 0 1 5
    FIG. 4(c) 2.114 1.989 2.132 U 4 2 2
    C 0 6 1
    L 5 2 6
  • TABLE 3
    Resistance after Number of deformed
    connection (Ω) conductive particles
    L C R L C R
    FIG. 5(a) 2.523 2.081 2.476 U 0 2 5
    C 1 6 1
    L 4 2 0
    FIG. 5(b) 2.636 2.347 2.035 U 0 2 4
    C 4 3 0
    L 0 2 6
    FIG. 5(c) 2.011 2.102 1.999 U 4 2 3
    C 0 6 1
    L 6 1 6
  • Similar measurements are also made using Sample E in a conventional structure for reference comparison. FPC having normal connection terminals not connected to a wire via F-TH as Sample E produces 3.208Ω as the average value of resistance after connecting each of the measurement areas L, C, R. As shown in Tables 1 to 3, this value is larger than any of Samples B to D. Also, a large variation of the resistance value of 20% or more is also confirmed.
  • In the cross-section observations, the average distribution number of conductive particles was unchanged and six, but at most one deformed conductive particle could be confirmed. Each of Samples B to E has different wire lengths of the wires 4 a to 4 h due to structure, but the wire resistance measured actually was 0.001Ω or less and was not measurable and thus, the resistance measured actually is determined to be dominated by connection resistance.
  • For Samples B to D in Tables 1 to 3, FPC including the structures of FIGS. 3(a) to 5(a) produce resistance values of the measurement area C lower than the average value by 10% or more and higher than the average value of resistance of the measurement areas L, R by about 5%. This can be estimated to be caused by the fact that the F- THs 5 d, 5 e are formed near the connection terminals 3 d, 3 e of the measurement point CC of the measurement area C in the structure of FIGS. 3(a) to 5(a) and thus, the pressure during compression bonding connection does not escape the number of deformed conductive particles is five and large in the measurement point CC.
  • On the other hand, for Samples B to D in Tables 1 to 3, FPC including the structures of FIGS. 3(b) to 5(b) produces resistance values 10% higher or more each time of transition from the measurement area R to the measurement area L. This can be estimated to be caused by the fact that with the transition from the measurement area R to the measurement area L, while the F- THs 5 g, 5 h are near the dispersed measurement points RU, RL, the F- THs 5 a, 5 b are more concentrated near the measurement point LC in the center and thus, deformed conductive particles increase only near the center of the measurement area L, instead of the entire connection terminals 3 a, 3 b.
  • For Samples B to D in Tables 1 to 3, FPC including the structures of FIGS. 3(c) to 5(c) produces resistance values of all the connection terminals 3 a, 3 b, 3 d, 3 e, 3 g, 3 h of the measurement areas L, C, R that fall within the range of ±5% of the average value. This can be estimated to be caused by the fact that the F- THs 5 a, 5 b, 5 d, 5 e, 5 g, 5 h are formed and arranged uniformly in the measurement areas L, C, R the pressure during compression bonding connection is not dispersed.
  • From the above results, the wires 4 a to 4 h of the FPC 10 to be connected to the LCD 101, a touch panel or the like are signal lines that are not required to have low resistance and stable sensitivity can be obtained if the resistance value varies within the range of ±5% and therefore, the FPC 10 of the structure in which the F-THs 5 a to 5 h are randomly arranged like the structures in FIGS. 3(c) to 5(c) is considered to be the most desirable.
  • The FPC 10 connected to the LCD 101, a touch panel or the like may have a structure in which, in addition to the terminal portion 3, only one connector like the connector portion 6 is sufficient and in this case, the structure in FIG. 3(c) in which the wires 4 a to 4 h of the wire portion 4 extend to one side of the area corresponding to the terminal portion 3 can be considered to be the most excellent. In addition, when two connectors are needed, the structure in FIGS. 4(c) and 5(c) can be considered to be excellent. Then, the array structure shown in FIG. 4 may be adopted if the inter-wire pitch of the wires 4 a to 4 h of the wire portion 4 should be relaxed and the array structure shown in FIG. 5 may be adopted if the outline of the FPC 10 should be made smaller.
  • DESCRIPTION OF REFERENCE NUMERALS
    • 1 Flexible substrate
    • 2 Adhesive agent
    • 3 Terminal portion
    • 3 a to 3 h Connection terminal
    • 4 Wire portion
    • 4 a to 4 h Wire
    • 4 a′ to 4 h′ Dummy wire
    • 5 a to 5 h Filled through hole (F-TH)
    • 6 Connector portion
    • 7 Cover lay
    • 10 Flexible printed board (FPC)
    • 101 Liquid crystal panel (LCD)
    • 102 LCD terminal portion
    • 102 a to 102 h LCD terminal

Claims (8)

1-7. (canceled)
8. A flexible printed board electrically connected to an electronic component by thermal compression bonding, the flexible printed board comprising:
a flexible substrate;
a terminal portion formed on one surface of the flexible substrate and having a plurality of connection terminals to be connected to the electronic component;
a wire portion having a plurality of wires formed on the other surface of the flexible substrate; and
a plurality of through wires formed inside through holes penetrating the flexible substrate in a compression bonding connection area of the terminal portion to the electronic component to connect the connection terminals of the terminal portion to the respective wires of the wire portion,
the through wires being arranged in mutually different positions in a direction in which the plurality of connection terminals are arranged side-by-side and a perpendicular thereto.
9. The flexible printed board according to claim 8, wherein
the wire portion is formed such that the plurality of wires is arranged mostly in an area corresponding to the terminal portion.
10. The flexible printed board according to claim 8, wherein
the wire portion is formed such that the wires extend in a direction intersecting the connection terminals and numbers of the wires arranged between the connection terminals arranged adjacently are approximately equal in plane view in the area corresponding to the terminal portion.
11. The flexible printed board according to claim 8, wherein
the wire portion is formed so as to extend from the area corresponding to the terminal portion to both sides along a direction in which the connection terminals of the terminal portion are arranged side-by-side.
12. The flexible printed board according to claim 8, wherein
the wire portion has the wires extending in a direction parallel to the connection terminals.
13. The flexible printed board according to claim 8, wherein
the terminal portion is connected to the electronic component via an anisotropic conductive material.
14. The flexible printed board according to claim 8, wherein
the wire portion has dummy wires in a portion of the plurality of wires.
US14/907,613 2013-07-26 2014-07-25 Flexible printed board Expired - Fee Related US10219372B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013155270 2013-07-26
JP2013-155270 2013-07-26
JP2013-200337 2013-09-26
JP2013200337A JP5767290B2 (en) 2013-07-26 2013-09-26 Flexible printed circuit board
PCT/JP2014/069648 WO2015012380A1 (en) 2013-07-26 2014-07-25 Flexible printed board

Publications (2)

Publication Number Publication Date
US20160183366A1 true US20160183366A1 (en) 2016-06-23
US10219372B2 US10219372B2 (en) 2019-02-26

Family

ID=52393412

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/907,613 Expired - Fee Related US10219372B2 (en) 2013-07-26 2014-07-25 Flexible printed board

Country Status (5)

Country Link
US (1) US10219372B2 (en)
JP (1) JP5767290B2 (en)
KR (1) KR101774928B1 (en)
CN (1) CN105409333B (en)
WO (1) WO2015012380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190013332A1 (en) * 2017-07-04 2019-01-10 Samsung Display Co., Ltd. Display apparatus having clock line

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473419B (en) * 2018-11-21 2020-09-04 合肥奕斯伟集成电路有限公司 Wiring structure and chip with same
CN110149759A (en) * 2019-05-14 2019-08-20 信利(惠州)智能显示有限公司 Wiring board and electronic equipment
WO2024029979A1 (en) * 2022-08-05 2024-02-08 삼성전자 주식회사 Multi-layered flexible printed circuit board and electronic device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958050A (en) * 1988-05-13 1990-09-18 Minolta Camera Kabushiki Kaisha Flexible printed circuit board
US5737053A (en) * 1995-06-05 1998-04-07 Kabushiki Kaisha Toshiba Wire substrate having branch lines perpendicular to the main lines in which the branch lines connect to driving circuits on a display device
US7109575B2 (en) * 2003-08-05 2006-09-19 Samsung Electronics Co., Ltd. Low-cost flexible film package module and method of manufacturing the same
US20070285903A1 (en) * 2006-05-25 2007-12-13 Nec Lcd Techologies, Ltd. Multilayer printed circuit board and a liquid crystal display unit
JP2010147084A (en) * 2008-12-16 2010-07-01 Fdk Module System Technology Corp Circuit board and flexible substrate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079138Y2 (en) * 1987-03-10 1995-03-06 セイコー電子工業株式会社 Structure of wiring pattern of LCD panel
JPH0440562U (en) * 1990-07-31 1992-04-07
JPH04137584A (en) * 1990-09-27 1992-05-12 Sharp Corp Connecting structure for printed circuit board
JPH06232523A (en) * 1993-01-28 1994-08-19 Casio Comput Co Ltd Flexible printed board
JPH07162120A (en) * 1993-12-09 1995-06-23 Japan Aviation Electron Ind Ltd Circuit connection method for flexible printed wiring board and flexible printed wiring board
JP2002063958A (en) * 2000-08-17 2002-02-28 Seiko Epson Corp Electro-optical device and electronic equipment
JP2002305382A (en) * 2001-02-05 2002-10-18 Denso Corp Printed board and manufacturing method thereof
JP5125062B2 (en) * 2006-11-06 2013-01-23 三菱電機株式会社 Printed wiring board
JP2012226058A (en) 2011-04-18 2012-11-15 Japan Display East Co Ltd Display device
JP2011244006A (en) * 2011-08-02 2011-12-01 Panasonic Corp Connection structure of circuit board, soft circuit board, hard circuit board, connection method of circuit board, and electronic apparatus
JP2013065657A (en) * 2011-09-16 2013-04-11 Nec Corp Printed wiring board, and method for wiring printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958050A (en) * 1988-05-13 1990-09-18 Minolta Camera Kabushiki Kaisha Flexible printed circuit board
US5737053A (en) * 1995-06-05 1998-04-07 Kabushiki Kaisha Toshiba Wire substrate having branch lines perpendicular to the main lines in which the branch lines connect to driving circuits on a display device
US7109575B2 (en) * 2003-08-05 2006-09-19 Samsung Electronics Co., Ltd. Low-cost flexible film package module and method of manufacturing the same
US20070285903A1 (en) * 2006-05-25 2007-12-13 Nec Lcd Techologies, Ltd. Multilayer printed circuit board and a liquid crystal display unit
JP2010147084A (en) * 2008-12-16 2010-07-01 Fdk Module System Technology Corp Circuit board and flexible substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190013332A1 (en) * 2017-07-04 2019-01-10 Samsung Display Co., Ltd. Display apparatus having clock line
US10453867B2 (en) * 2017-07-04 2019-10-22 Samsung Display Co., Ltd. Display apparatus having clock line

Also Published As

Publication number Publication date
JP2015043399A (en) 2015-03-05
JP5767290B2 (en) 2015-08-19
KR20160050023A (en) 2016-05-10
CN105409333B (en) 2018-12-07
CN105409333A (en) 2016-03-16
WO2015012380A1 (en) 2015-01-29
US10219372B2 (en) 2019-02-26
KR101774928B1 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
JP7177594B2 (en) Chip-on-film package, display panel, and display device
JP4450844B2 (en) Measuring board for electronic component testing equipment
US10219372B2 (en) Flexible printed board
KR102525875B1 (en) Film packages, package modules, and methods of forming packages
KR20200029640A (en) Anisotropic electroconductive film and connection structure
JP2012198189A5 (en) Wiring board for electronic component inspection apparatus and manufacturing method thereof
US10181662B2 (en) Switching device having a push button
TWI534976B (en) Electrical interconnect device
US9341648B2 (en) Probe card and manufacturing method thereof
US20090085591A1 (en) Probe tip including a flexible circuit board
JP2013182128A (en) Display device
KR20190061082A (en) Conductive particle disposing film, manufacturing method thereof, inspection probe unit, continuity inspection method
JP2018132515A (en) Probe card
JP2019219368A (en) Probe card
KR102124550B1 (en) Method of inspection of electrical properties
CN102668248A (en) Cable connecting structure
JP2016206160A (en) Probe card
JP2015226311A (en) Wiring board
US10096958B2 (en) Interface apparatus for semiconductor testing and method of manufacturing same
US9318851B2 (en) Connector and manufacturing method thereof
CN219123518U (en) SMA radio frequency connector, SMA radio frequency connector and electronic equipment
JP2011258709A (en) Interconnection structure, and interconnection method
KR102697500B1 (en) Anisotropic electroconductive film and connection structure
US7419387B2 (en) Electric connection member utilizing ansiotropically conductive sheets
US20140284092A1 (en) Split pad for circuit board

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJIKURA LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISHIDA, YUKI;NAKATANI, YUSUKE;SIGNING DATES FROM 20160512 TO 20160516;REEL/FRAME:039044/0838

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230226