US20160134229A1 - Water resistant roof assembly structure integrated with solar panels - Google Patents

Water resistant roof assembly structure integrated with solar panels Download PDF

Info

Publication number
US20160134229A1
US20160134229A1 US14/816,552 US201514816552A US2016134229A1 US 20160134229 A1 US20160134229 A1 US 20160134229A1 US 201514816552 A US201514816552 A US 201514816552A US 2016134229 A1 US2016134229 A1 US 2016134229A1
Authority
US
United States
Prior art keywords
assembly structure
water resistant
solar panels
roof assembly
clamping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/816,552
Inventor
Lien-Feng Hsueh
Min-Lang Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hsueh Lien-Feng
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to HSUEH, LIEN-FENG reassignment HSUEH, LIEN-FENG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSUEH, LIEN-FENG, WANG, MIN-LANG
Publication of US20160134229A1 publication Critical patent/US20160134229A1/en
Priority to US15/980,017 priority Critical patent/US10574176B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D11/00Roof covering, as far as not restricted to features covered by only one of groups E04D1/00 - E04D9/00; Roof covering in ways not provided for by groups E04D1/00 - E04D9/00, e.g. built-up roofs, elevated load-supporting roof coverings
    • E04D11/005Supports for elevated load-supporting roof coverings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage; Sky-lights
    • E04D13/04Roof drainage; Drainage fittings in flat roofs, balconies or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage; Sky-lights
    • E04D13/15Trimming strips; Edge strips; Fascias; Expansion joints for roofs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a water resistant roof assembly structure integrated with solar panels, and particularly to a water resistant roof assembly structure having functions of both solar power generation and water resistance.
  • a trellis is set up at a rooftop, a lattice is formed at an upper surface of the trellis, and solar panels are mounted into the lattice on the trellis.
  • rainwater may seep through gaps between the solar panels and the trellis, and gaps in the trellis may gradually corrodes due to the moisture.
  • Taiwan Patent No. M464492 discloses a water resistant structure for a trellis for solar photoelectric panels.
  • the above disclosure mainly includes a trellis formed by multiple steel frames.
  • a plurality of lattice holes are formed at an upper surface of the trellis, and multiple solar panels may be laid out on the trellis.
  • a water resistant isolation layer is provided below the solar panels.
  • the water resistant isolation layer is formed by a watertight laminate to achieve an effect of preventing rainwater from seeping through.
  • the present invention provides a water resistant roof assembly structure integrated with solar panels.
  • the water resistant roof assembly structure is for constructing a roof of a building, and includes a plurality of support units disposed at an upper surface of the building and arranged at a distance from one another, a plurality of solar modules disposed across two adjacent support units, and a plurality of clamping units.
  • Each of the support units includes two carrying sections, a connecting section connected between the two carrying sections and located closer to the building than the two carrying sections, and two water discharging sections each connected to one side of each of the carrying sections away from the connecting section.
  • Each of the water discharging section includes a valley portion connected to the carry section, and a peak potion connected to the valley portion and has a height equal to that of each of the carrying sections.
  • Each of the solar modules has two sides thereof leaned against one of the carrying sections of the two support units, and covers one of the water discharging sections of the two support units to form a water discharging channel for rainwater to flow towards two sides of the building.
  • Each of the clamping units is disposed on one of the support units, and clamps the two solar modules adjacent to two sides of the support unit.
  • Each of the clamping units includes a fixing portion corresponding to the connecting section of the support unit, two extension portions respectively extending from two ends of the fixing portion to upper surfaces of the two solar modules, and two pressing portions respectively extending from the extension portions along the upper surfaces of the two solar panels and pressing against the solar modules.
  • each of the solar modules includes a plurality of photovoltaic cells in a cascade arrangement.
  • Each of the photovoltaic cells includes a photoelectric converting unit, and an outer frame disposed around the photoelectric converting unit.
  • the water resistant roof assembly structure integrated with solar panels further includes a plurality of insulating bodies each disposed between every two adjacent protrusion portions, and a plurality of connecting members each covering every two adjacent protrusion portions.
  • a clamping space is formed between every two solar panels.
  • the clamping units are in a cascade arrangement in the clamping spaces.
  • a clearance space exists between every two adjacent clamping units, and each of the clearance spaces corresponds between every two adjacent photovoltaic cells.
  • each of the outer frames includes a side frame plane that faces the clamping unit after the side frame is assembled, and a water blocking section that extends along the side frame plane towards the direction of the building.
  • the water resistant roof assembly structure integrated with solar panels further includes a plurality of beam frames mounted between each of the support units and the building.
  • Each of the beam frames includes a guiding track, two positioning members respectively disposed at two ends of the guiding track and capable of appropriately sliding on the guiding track, and two abutting plates respectively connected to the positioning members.
  • Each of the abutting plates abuts against the two support units at two opposite sides of the water resistant roof assembly structure integrated with solar panels.
  • each of the positioning members is a spring channel nut.
  • the water resistant roof assembly structure integrated with solar panels further includes a plurality of pressing members.
  • the pressing members penetrate through the connecting sections and the fixing portions to fasten and join the support unit and the clamping unit.
  • each of the support units includes a blocking section disposed at one side of the connecting section opposite the clamping unit.
  • a flow guiding channel is formed between the connecting section and the blocking section to guide rainwater to flow towards the two sides of the building.
  • the present invention provides following effects.
  • the solar modules are clamped by the support units and the clamping units.
  • the present invention provides a thorough water resistant effect while also featuring the advantage of saving materials and processing steps.
  • FIG. 1A is a perspective view of an assembly according to a first embodiment of the present invention.
  • FIG. 1B is a section view at a position along 1 B- 1 B of FIG. 1A .
  • FIG. 2 is an exploded perspective view according to the first embodiment of the present invention.
  • FIG. 3 is a side view of the present invention combined with a building.
  • FIG. 4A is a planar top view of the present invention from above a building.
  • FIG. 4B is a section view at a position along 4 B- 4 B of FIG. 4A .
  • FIG. 5A is a perspective view of a photovoltaic cell of the present invention.
  • FIG. 5B is an enlarged partial view of FIG. 5A .
  • FIG. 6 is an exploded perspective view according to another embodiment of the present invention.
  • a water resistant roof assembly structure 1 integrated with solar panels of the present invention is for constructing a roof of a building 400 .
  • the building 400 is a farmhouse, a greenhouse, or a common home.
  • the water resistant roof assembly structure 1 integrated with solar panels simultaneously provides the function of solar power generation.
  • the water resistant roof assembly structure 1 integrated with solar panels of the present invention includes a plurality of support units 10 disposed at an upper surface of the building 400 and arranged at a distant from one another, a plurality of solar modules 20 disposed across every two adjacent support units 10 , and a plurality of clamping units 30 .
  • the horizontal direction in the drawings of the present invention are aligned with an arrangement direction of the solar modules 20 .
  • the water resistant roof assembly structure 1 integrated with solar panels may be applied for constructing a roof formed by flat planes, inclined planes or irregular planes.
  • each of the support units 10 includes two carrying sections 11 , a connecting section 12 connected between the two carrying sections 11 and located closer to the building 400 than the two carrying sections 11 , and two water discharging sections 13 each connected to one side of each of the carrying sections 11 away from the connecting section 12 .
  • Each of the water discharging section 13 includes a valley portion 131 connected to the carrying section 11 , and a peak portion 132 connected to the valley portion 131 and having a height equal to that of the carrying section 11 .
  • Each of the solar modules 20 has two sides thereof leaned against onto one of the carrying sections 11 of the two support units 10 , and covers one of the water discharging sections 13 of the two support units 10 to form a water discharging channel 14 for rainwater to flow towards two sides of the building 400 .
  • the rainwater is guided to the water discharging channel 14 and becomes discharged towards the two sides of the building 400 , thereby providing an ideal water resistant effect.
  • Each of the clamping units 30 is disposed on one of the support units 10 and clamps the two solar modules 20 adjacent to two sides of the support unit 10 . Further, each of the clamping units 30 includes a fixing portion 31 corresponding to the connecting section 12 of the support unit 10 , two extension portions 32 respectively extending from two ends of the fixing portion 31 to positions at the upper surfaces of the two solar modules 20 , and two pressing portions 33 respectively extending from the extension portions 32 along the upper surfaces of the two solar modules 20 and pressing against the solar modules 20 .
  • the clamping force for clamping the solar modules 20 is further reinforced, so as to achieve the effect of reliably securing the water resistant assembly structure 1 integrated with solar panels of the present invention.
  • the water resistant assembly structure 1 integrated with solar panels of the present invention further includes a plurality of pressing members 40 .
  • the pressing members 40 penetrate through the connecting sections 12 and the fixing portions 31 to fasten and join the support unit 10 and the clamping unit 30 .
  • the pressing members 40 may be self-tapping screws.
  • Each of the support units 10 further includes a blocking section 15 disposed at one side of the connecting section 12 opposite the clamping unit 30 .
  • a flow guiding channel 16 is formed between the connecting section 12 and the blocking section 15 to guide the rainwater seeped via joining gaps of the pressing members 40 and the connecting section 12 to flow towards the two sides of the building 400 , thereby further enhancing the water resistant effect.
  • each of the solar modules 20 includes a plurality of photovoltaic cells 21 in a cascade arrangement.
  • a clamping space 500 is formed between every two adjacent solar modules 20 , and the clamping units 30 are disposed in a cascade arrangement in the clamping spaces 500 .
  • a clearance space 510 exists between every two adjacent clamping units 30 .
  • each clearance space 510 corresponds between every two adjacent photovoltaic cells 21 , so as to guide the rainwater fallen into the joining gap between the two adjacent photovoltaic cells 21 to the connecting section 12 (referring to FIG. 2 ), and to allow the rainwater to be discharged from the two sides of the building 400 .
  • each of the photovoltaic cells 21 includes a photoelectric converting unit 211 , and an outer frame 212 disposed around the photoelectric converting unit 211 .
  • a protrusion portion 213 is disposed at one side of the outer frame 212 near another photovoltaic cell 21 .
  • the water resistant roof assembly structure 1 integrated with solar panels further includes a plurality of insulating bodies 50 each disposed between every two adjacent protrusion portions 213 , and a plurality of connecting members 60 each covering every two adjacent protrusion portions 213 .
  • the photoelectric converting unit 211 is formed by assembling multiple photoelectric chips provided with electrodes, and converts received light energy into electric energy.
  • the connecting member 60 is an aluminum extrusion member
  • the insulating body 50 is a rubber strip. Rubber paint providing a water resistant function is applied on surfaces of the connecting member 60 and the insulating body 50 , and thus every two adjacent photovoltaic cells 21 may be mutually assembled via each of the connecting members 60 and each of the protrusion portions 213 .
  • the insulating body 50 is tightly clamped to prevent the two photovoltaic cells 21 from coupling.
  • the gap between every two adjacent photovoltaic cells 21 can be completely sealed to prevent rainwater between the two adjacent photovoltaic cells 21 from seeping into the building 400 .
  • each of the outer frames 212 includes a side frame plane 214 that faces the clamping unit 30 after the outer frame 212 is assembled, and a water blocking section 215 that extends along the side frame plane 214 towards the direction of the building 400 .
  • the water blocking section 215 extends from the side frame plane 214 towards an interior of the building 400 .
  • the water resistant roof assembly structure 1 integrated with solar panels further includes a plurality of beam frames 410 mounted between each of the support units 10 and the building 400 .
  • Each of the beam frames 410 includes a guiding track 411 , two positioning members 70 respectively disposed at two ends of the guiding track 411 and capable of appropriately sliding on the guiding track 411 , and two abutting plates 420 respectively connected to the positioning members 70 .
  • Each of the abutting plates 420 abuts against the two support units 10 at two opposite sides of the water resistant roof assembly structure 1 integrated with solar panels.
  • Each of the positioning members 70 may be a spring channel nut, and is screw fastened onto the beam frame 410 by an element such as a screw, so as to allow the abutting plates 420 to abut against the two outermost support units 10 at the two sides to provide support for preventing the support units 10 from being disengaged.
  • an element such as a screw

Abstract

A water resistant roof assembly structure integrated with solar panels, for constructing a roof of a building, includes multiple support units arranged at a distance from one another, multiple solar modules disposed across every two adjacent support units, and multiple clamping units. Each support unit includes two carrying sections, a connecting section and two water discharging sections. Each water discharging section includes a valley portion adjacent to the carrying section, and a peak portion away from and having a height as the carrying section. Two sides of each solar module are respectively leaned against the carrying section and the water discharging section of one of the support units. A water discharging channel is formed between the solar module and the water discharging section to limit rainwater to flow towards two sides of the building. Each clamping unit includes a fixing portion, two extension portions and two pressing portions.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a water resistant roof assembly structure integrated with solar panels, and particularly to a water resistant roof assembly structure having functions of both solar power generation and water resistance.
  • BACKGROUND OF THE INVENTION
  • With the gradual rise of international global awareness, in order to reduce environmental pollution caused by thermal power and nuclear power generation, research organizations of different nations have advocated replacing high-pollution energy by renewable energy. Among different types of renewable energy, solar power that features lower production costs and simple application is a focus receiving much attention. In one current common solar power generation method, solar panels are installed at idle areas at a rooftop of a building. Light is converted into electric energy by photoelectric semiconductor, and the electric energy is stored for adequately satisfying general use of common households, thereby achieving the object of energy saving. More specifically, in a conventional method for installing solar panels, a trellis is set up at a rooftop, a lattice is formed at an upper surface of the trellis, and solar panels are mounted into the lattice on the trellis. However, rainwater may seep through gaps between the solar panels and the trellis, and gaps in the trellis may gradually corrodes due to the moisture. As a result, it s necessary that the entire trellis be removed and replaced during maintenance, hence wasting not only time but also building materials.
  • Taiwan Patent No. M464492 discloses a water resistant structure for a trellis for solar photoelectric panels. The above disclosure mainly includes a trellis formed by multiple steel frames. A plurality of lattice holes are formed at an upper surface of the trellis, and multiple solar panels may be laid out on the trellis. Further, a water resistant isolation layer is provided below the solar panels. The water resistant isolation layer is formed by a watertight laminate to achieve an effect of preventing rainwater from seeping through.
  • In the above prior art, an entire rooftop is covered by the trellis, and a large-area water proof isolation layer is also required. As the water resistant isolation layer is a flat plate, whose flatness may become more difficult to maintain after construction as the area of the water resistant isolation layer gets larger. Further, not only a large-area trellis involves a complicated construction process, but also the trellis after construction is prone to corrosion when exposed in the sun and rain for an extended period of time. With the large planar areas of the trellis and the water proof isolation layer, the level of warping and deformation is hard to predict. Such issues indirectly increase the installation costs of solar panels. If water resistant elements are additionally provided between the solar panels and trellis, extra materials as well as inevitable construction complications are further caused. Thus, the above prior art is a non-ideal solution and needs to be improved.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to solve issues of corrosion due to the lack of water resistance of a conventional metal trellis, and construction complications caused by warping and deformation of a large-area planar workpiece.
  • To achieve the above object, the present invention provides a water resistant roof assembly structure integrated with solar panels. The water resistant roof assembly structure is for constructing a roof of a building, and includes a plurality of support units disposed at an upper surface of the building and arranged at a distance from one another, a plurality of solar modules disposed across two adjacent support units, and a plurality of clamping units. Each of the support units includes two carrying sections, a connecting section connected between the two carrying sections and located closer to the building than the two carrying sections, and two water discharging sections each connected to one side of each of the carrying sections away from the connecting section. Each of the water discharging section includes a valley portion connected to the carry section, and a peak potion connected to the valley portion and has a height equal to that of each of the carrying sections. Each of the solar modules has two sides thereof leaned against one of the carrying sections of the two support units, and covers one of the water discharging sections of the two support units to form a water discharging channel for rainwater to flow towards two sides of the building. Each of the clamping units is disposed on one of the support units, and clamps the two solar modules adjacent to two sides of the support unit. Each of the clamping units includes a fixing portion corresponding to the connecting section of the support unit, two extension portions respectively extending from two ends of the fixing portion to upper surfaces of the two solar modules, and two pressing portions respectively extending from the extension portions along the upper surfaces of the two solar panels and pressing against the solar modules.
  • Further, each of the solar modules includes a plurality of photovoltaic cells in a cascade arrangement. Each of the photovoltaic cells includes a photoelectric converting unit, and an outer frame disposed around the photoelectric converting unit.
  • Further, a protrusion portion is provided at one side of the outer frame near another photovoltaic cell. The water resistant roof assembly structure integrated with solar panels further includes a plurality of insulating bodies each disposed between every two adjacent protrusion portions, and a plurality of connecting members each covering every two adjacent protrusion portions.
  • Further, a clamping space is formed between every two solar panels. The clamping units are in a cascade arrangement in the clamping spaces. A clearance space exists between every two adjacent clamping units, and each of the clearance spaces corresponds between every two adjacent photovoltaic cells.
  • Further, each of the outer frames includes a side frame plane that faces the clamping unit after the side frame is assembled, and a water blocking section that extends along the side frame plane towards the direction of the building.
  • Further, the water resistant roof assembly structure integrated with solar panels further includes a plurality of beam frames mounted between each of the support units and the building. Each of the beam frames includes a guiding track, two positioning members respectively disposed at two ends of the guiding track and capable of appropriately sliding on the guiding track, and two abutting plates respectively connected to the positioning members. Each of the abutting plates abuts against the two support units at two opposite sides of the water resistant roof assembly structure integrated with solar panels.
  • Further, each of the positioning members is a spring channel nut.
  • Further, the water resistant roof assembly structure integrated with solar panels further includes a plurality of pressing members. The pressing members penetrate through the connecting sections and the fixing portions to fasten and join the support unit and the clamping unit.
  • Further, each of the support units includes a blocking section disposed at one side of the connecting section opposite the clamping unit. A flow guiding channel is formed between the connecting section and the blocking section to guide rainwater to flow towards the two sides of the building.
  • Therefore, compared to the prior art, the present invention provides following effects.
  • 1. In the present invention, the solar modules are clamped by the support units and the clamping units. Thus, the issue of construction and maintenance complications caused by a trellis made of a large-area steel plate for solar panels of the prior art is solved.
  • 2. In the present invention, with the water discharging channels formed by the recessed water discharging sections on the support units, rainwater fallen on the roof can be naturally discharged along the water discharging channels without involving additional water resistant components such as rubber strips and sealing rings. Therefore, the present invention provides a thorough water resistant effect while also featuring the advantage of saving materials and processing steps.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a perspective view of an assembly according to a first embodiment of the present invention.
  • FIG. 1B is a section view at a position along 1B-1B of FIG. 1A.
  • FIG. 2 is an exploded perspective view according to the first embodiment of the present invention.
  • FIG. 3 is a side view of the present invention combined with a building.
  • FIG. 4A is a planar top view of the present invention from above a building.
  • FIG. 4B is a section view at a position along 4B-4B of FIG. 4A.
  • FIG. 5A is a perspective view of a photovoltaic cell of the present invention.
  • FIG. 5B is an enlarged partial view of FIG. 5A.
  • FIG. 6 is an exploded perspective view according to another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 1A and FIG. 3 showing technical features of the present invention, a water resistant roof assembly structure 1 integrated with solar panels of the present invention is for constructing a roof of a building 400. For example, the building 400 is a farmhouse, a greenhouse, or a common home. In addition to blocking rainwater from the building 400, the water resistant roof assembly structure 1 integrated with solar panels simultaneously provides the function of solar power generation. The water resistant roof assembly structure 1 integrated with solar panels of the present invention includes a plurality of support units 10 disposed at an upper surface of the building 400 and arranged at a distant from one another, a plurality of solar modules 20 disposed across every two adjacent support units 10, and a plurality of clamping units 30. It should be noted that, the horizontal direction in the drawings of the present invention are aligned with an arrangement direction of the solar modules 20. In practice, for example but not limited to, the water resistant roof assembly structure 1 integrated with solar panels may be applied for constructing a roof formed by flat planes, inclined planes or irregular planes.
  • More specifically, referring to FIG. 1B and FIG. 2, each of the support units 10 includes two carrying sections 11, a connecting section 12 connected between the two carrying sections 11 and located closer to the building 400 than the two carrying sections 11, and two water discharging sections 13 each connected to one side of each of the carrying sections 11 away from the connecting section 12. Each of the water discharging section 13 includes a valley portion 131 connected to the carrying section 11, and a peak portion 132 connected to the valley portion 131 and having a height equal to that of the carrying section 11. Thus, when it rains, rainwater is allowed to more easily flow into the connecting section 12 and the water discharging sections 13 located at a lower position.
  • Each of the solar modules 20 has two sides thereof leaned against onto one of the carrying sections 11 of the two support units 10, and covers one of the water discharging sections 13 of the two support units 10 to form a water discharging channel 14 for rainwater to flow towards two sides of the building 400. Thus, when it rains, if rainwater seeps and enters a gap between the solar module 20 and the support unit 10 along an outer edge of the solar module 20, instead of seeping into the building 400 via the gaps of the roof, the rainwater is guided to the water discharging channel 14 and becomes discharged towards the two sides of the building 400, thereby providing an ideal water resistant effect.
  • Each of the clamping units 30 is disposed on one of the support units 10 and clamps the two solar modules 20 adjacent to two sides of the support unit 10. Further, each of the clamping units 30 includes a fixing portion 31 corresponding to the connecting section 12 of the support unit 10, two extension portions 32 respectively extending from two ends of the fixing portion 31 to positions at the upper surfaces of the two solar modules 20, and two pressing portions 33 respectively extending from the extension portions 32 along the upper surfaces of the two solar modules 20 and pressing against the solar modules 20. Thus, through the clamping units 30, the clamping force for clamping the solar modules 20 is further reinforced, so as to achieve the effect of reliably securing the water resistant assembly structure 1 integrated with solar panels of the present invention.
  • In one embodiment, the water resistant assembly structure 1 integrated with solar panels of the present invention further includes a plurality of pressing members 40. The pressing members 40 penetrate through the connecting sections 12 and the fixing portions 31 to fasten and join the support unit 10 and the clamping unit 30.
  • For example, the pressing members 40 may be self-tapping screws. Each of the support units 10 further includes a blocking section 15 disposed at one side of the connecting section 12 opposite the clamping unit 30. A flow guiding channel 16 is formed between the connecting section 12 and the blocking section 15 to guide the rainwater seeped via joining gaps of the pressing members 40 and the connecting section 12 to flow towards the two sides of the building 400, thereby further enhancing the water resistant effect.
  • Referring to FIG. 4A, in one embodiment, each of the solar modules 20 includes a plurality of photovoltaic cells 21 in a cascade arrangement. A clamping space 500 is formed between every two adjacent solar modules 20, and the clamping units 30 are disposed in a cascade arrangement in the clamping spaces 500. A clearance space 510 exists between every two adjacent clamping units 30. Preferably, each clearance space 510 corresponds between every two adjacent photovoltaic cells 21, so as to guide the rainwater fallen into the joining gap between the two adjacent photovoltaic cells 21 to the connecting section 12 (referring to FIG. 2), and to allow the rainwater to be discharged from the two sides of the building 400.
  • Referring to FIG. 4B, FIG. 5A and FIG. 5B, each of the photovoltaic cells 21 includes a photoelectric converting unit 211, and an outer frame 212 disposed around the photoelectric converting unit 211. A protrusion portion 213 is disposed at one side of the outer frame 212 near another photovoltaic cell 21. The water resistant roof assembly structure 1 integrated with solar panels further includes a plurality of insulating bodies 50 each disposed between every two adjacent protrusion portions 213, and a plurality of connecting members 60 each covering every two adjacent protrusion portions 213. The photoelectric converting unit 211 is formed by assembling multiple photoelectric chips provided with electrodes, and converts received light energy into electric energy. The connecting member 60 is an aluminum extrusion member, and the insulating body 50 is a rubber strip. Rubber paint providing a water resistant function is applied on surfaces of the connecting member 60 and the insulating body 50, and thus every two adjacent photovoltaic cells 21 may be mutually assembled via each of the connecting members 60 and each of the protrusion portions 213. Hence, the insulating body 50 is tightly clamped to prevent the two photovoltaic cells 21 from coupling. Further, the gap between every two adjacent photovoltaic cells 21 can be completely sealed to prevent rainwater between the two adjacent photovoltaic cells 21 from seeping into the building 400.
  • Further, considering that rainwater may seep into the building 400 through the joining gaps between the photovoltaic cells 21, in one embodiment, each of the outer frames 212 includes a side frame plane 214 that faces the clamping unit 30 after the outer frame 212 is assembled, and a water blocking section 215 that extends along the side frame plane 214 towards the direction of the building 400. The water blocking section 215 extends from the side frame plane 214 towards an interior of the building 400. Hence, even if rainwater seeps into between the clamping unit 30 and the support unit 10 (referring to FIG. 1A), the rainwater is still blocked by the water blocking section 215, flows onto the connecting section 12 and then becomes discharged from the water resistant roof assembly structure 1 integrated with solar panels. That is, rainwater is prevented from seeping into the interior of the building 400 below.
  • To allow working staff to easily fine tune the position of the water resistant roof assembly structure 1 integrated with solar panels during a construction process, or to eliminate errors of the components, referring to FIG. 6, in one embodiment, the water resistant roof assembly structure 1 integrated with solar panels further includes a plurality of beam frames 410 mounted between each of the support units 10 and the building 400. Each of the beam frames 410 includes a guiding track 411, two positioning members 70 respectively disposed at two ends of the guiding track 411 and capable of appropriately sliding on the guiding track 411, and two abutting plates 420 respectively connected to the positioning members 70. Each of the abutting plates 420 abuts against the two support units 10 at two opposite sides of the water resistant roof assembly structure 1 integrated with solar panels. Each of the positioning members 70 may be a spring channel nut, and is screw fastened onto the beam frame 410 by an element such as a screw, so as to allow the abutting plates 420 to abut against the two outermost support units 10 at the two sides to provide support for preventing the support units 10 from being disengaged. When positions need to be adjusted, only the screw on one of the positioning members 70 needs to be loosened, and the positioning member 70 and the abutting plate 420 are slid to the appropriate positions and then screwed and positioned.

Claims (9)

What is claimed is:
1. A water resistant roof assembly structure integrated with solar panels, comprising:
a plurality of support units, disposed at an upper surface of a building and arranged at a distance from one another, each of the support units comprising two carrying sections, a connecting section connected between the two carrying sections and located closer to the building than the two carrying sections, and two water discharging sections each connected to one side of each of the carrying sections away from the connecting section, each of the water discharging sections comprising a valley portion connected to the carrying section, and a peak portion connected to the valley portion and having a height equal to that of the carrying sections;
a plurality of solar modules, disposed across two adjacent support units, each of the solar modules having two sides thereof leaned against onto one of the carrying sections of the two support units, and covering one of the water discharging sections of the two support units to form a water discharging channel for rainwater to flow towards two sides of the building; and
a plurality of clamping units, each of the clamping units disposed on one of the support units and clamping the two solar modules adjacent to two sides of the support unit, each of the clamping units comprising a fixing portion corresponding to the connecting section of the support unit, two extension portions respectively extending from two ends of the fixing portion to positions at upper surfaces of the solar modules, and two pressing portions respectively extending from the extension portions along the upper surfaces of the two solar modules and pressing against the solar modules.
2. The water resistant roof assembly structure integrated with solar panels of claim 1, wherein each of the solar modules comprises a plurality of photovoltaic cells in a cascade arrangement, and each of the photovoltaic cells comprises a photoelectric converting unit and an outer frame disposed around the photoelectric converting unit.
3. The water resistant roof assembly structure integrated with solar panels of claim 2, wherein a protrusion portion is disposed at one side of the outer frame near another photovoltaic cell, and the water resistant roof assembly structure further comprises a plurality of insulating bodies each disposed between every two adjacent protrusion portions and a plurality of connecting members each covering every two adjacent protrusion portions.
4. The water resistant roof assembly structure integrated with solar panels of claim 2, wherein a clamping space is formed between every two adjacent solar modules, the clamping units are disposed in a cascade arrangement in the clamping space, a clearance space exists between every two adjacent clamping units, and each of the clearance spaces corresponds between every two adjacent photovoltaic cells.
5. The water resistant roof assembly structure integrated with solar panels of claim 2, wherein each of the outer frames comprises a side frame plane that faces the clamping unit after being assembled, and a water blocking section that extends along the side frame plane towards a direction of the building.
6. The water resistant roof assembly structure integrated with solar panels of claim 1, further comprising:
a plurality of beam frames, disposed between each of the support units and the building, each of the beam frames comprising a guiding track, two positioning members respectively disposed at two ends of the guiding track and capable of appropriate sliding on the guiding track, and two abutting plates respectively connected to the positioning members, each of the abutting plates abutting against two support units at two opposite sides of the water resistant roof assembly structure integrated with solar panels.
7. The water resistant roof assembly structure integrated with solar panels of claim 6, wherein each of the positioning members is a spring channel nut.
8. The water resistant roof assembly structure integrated with solar panels of claim 1, further comprising:
a plurality of pressing members, penetrating through the connecting sections and the fixing portions to fasten and join the support unit and the clamping unit.
9. The water resistant roof assembly structure integrated with solar panels of claim 1, wherein each of the support units comprises a blocking section disposed at one side of the connecting section opposite the clamping unit, and a flow guiding channel is formed between the connecting section and the blocking section to guide rainwater to flow towards the two sides of the building.
US14/816,552 2014-08-05 2015-08-03 Water resistant roof assembly structure integrated with solar panels Abandoned US20160134229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/980,017 US10574176B2 (en) 2014-11-11 2018-05-15 Waterproof connecting structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW103126732 2014-08-05
TW103139018A TWI567275B (en) 2014-08-05 2014-11-11 Integration of solar panels with waterproof roof assembly structure
TW103139018 2014-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/980,017 Continuation-In-Part US10574176B2 (en) 2014-11-11 2018-05-15 Waterproof connecting structure

Publications (1)

Publication Number Publication Date
US20160134229A1 true US20160134229A1 (en) 2016-05-12

Family

ID=54340090

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/520,718 Active 2034-11-17 US9496819B2 (en) 2014-08-05 2014-10-22 Watertight roof assembly integrated with solar panels
US14/816,552 Abandoned US20160134229A1 (en) 2014-08-05 2015-08-03 Water resistant roof assembly structure integrated with solar panels

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/520,718 Active 2034-11-17 US9496819B2 (en) 2014-08-05 2014-10-22 Watertight roof assembly integrated with solar panels

Country Status (3)

Country Link
US (2) US9496819B2 (en)
CN (1) CN105322869B (en)
TW (2) TWI567275B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10205419B2 (en) * 2017-03-30 2019-02-12 Sunrun South Llc Railless solar module installation systems and devices
US20190158012A1 (en) * 2016-07-05 2019-05-23 Solar Frontier K.K. Securing Fixture for Photovoltaic Cell Module
KR102301224B1 (en) * 2020-08-27 2021-09-10 주식회사 일강케이스판 A seismic isolator for a solar panel roof that has a joint and prevents collision between insulation materials, and a solar panel roof including the same;
US11177764B2 (en) 2017-08-31 2021-11-16 ShadePower Group Pty Ltd Solar roof structure
US20220399852A1 (en) * 2021-06-10 2022-12-15 Steve Leslie Frame for a solar panel

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9082913B2 (en) * 2011-04-12 2015-07-14 Rajul R. Patel Solar panel housing
US10574176B2 (en) * 2014-11-11 2020-02-25 Lien-Feng Hsueh Waterproof connecting structure
US10158321B2 (en) * 2017-01-03 2018-12-18 Solarcity Corporation Photovoltaic mounting system
US10985688B2 (en) 2017-06-05 2021-04-20 Tesla, Inc. Sidelap interconnect for photovoltaic roofing modules
TWI658689B (en) * 2017-06-09 2019-05-01 邱澄義 The solar panels having a waterproof effect and the application components thereof
US10734938B2 (en) * 2017-07-21 2020-08-04 Tesla, Inc. Packaging for solar roof tiles
US10862420B2 (en) 2018-02-20 2020-12-08 Tesla, Inc. Inter-tile support for solar roof tiles
US11245354B2 (en) 2018-07-31 2022-02-08 Tesla, Inc. Solar roof tile spacer with embedded circuitry
AU2019318770A1 (en) * 2018-08-06 2021-03-18 Solar Hardscapes Llc Landscape pavers for ground installation of photovoltaic panels, landscape paver installations, and installation methods
US11245355B2 (en) 2018-09-04 2022-02-08 Tesla, Inc. Solar roof tile module
TWI695576B (en) * 2019-09-16 2020-06-01 王貞祿 Ceiling mount
TWI729728B (en) * 2020-03-11 2021-06-01 許俊吉 Drainage device
TWI769472B (en) * 2020-07-03 2022-07-01 上銀光電股份有限公司 Drainable solar tile
TWI758785B (en) * 2020-07-16 2022-03-21 王家壽 solar panel frame set
TWI725926B (en) * 2020-10-29 2021-04-21 王貞祿 Solar panel installation structure
US11245356B1 (en) * 2020-11-18 2022-02-08 Xiangzheng Energy Technology Ranch Co., Ltd. Water-proof connection structure of solar power generation device
CN112726970A (en) * 2020-12-26 2021-04-30 焦作大学 Civil construction structure economizer
US20220216823A1 (en) * 2021-01-06 2022-07-07 Chen Lu Wang Fixed structure of solar panels and c-shaped steel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1812009A (en) * 1928-06-04 1931-06-30 George H Lenke Skylight construction
US3443350A (en) * 1966-05-13 1969-05-13 Herbert L Birum Jr Exterior wall accessories
US4114595A (en) * 1977-07-06 1978-09-19 Harold Reed Barker Solar energy collector and glazing system
US5163257A (en) * 1991-01-18 1992-11-17 James Crowell Glazing bar system
US5571338A (en) * 1993-11-26 1996-11-05 Sanyo Electric Co., Ltd. Photovoltaic module and a photovoltaic apparatus
US6105317A (en) * 1997-09-24 2000-08-22 Matsushita Electric Works, Ltd. Mounting system for installing an array of solar battery modules of a panel-like configuration on a roof
US20030094193A1 (en) * 2001-11-16 2003-05-22 First Solar, Llc Photovoltaic array
US6672018B2 (en) * 2001-10-12 2004-01-06 Jefferson Shingleton Solar module mounting method and clip
US20100276558A1 (en) * 2009-05-01 2010-11-04 Applied Energy Technologies Mounting systems for solar panels
US8181402B2 (en) * 2010-04-01 2012-05-22 Yanegijutsukenkyujo Co., Ltd. Building-integrated photovoltaic power unit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239555A (en) * 1979-07-30 1980-12-16 Mobil Tyco Solar Energy Corporation Encapsulated solar cell array
US20030101662A1 (en) * 2000-01-14 2003-06-05 Ullman Stanley A. Mounting system for supporting objects
US7434362B2 (en) * 2001-07-20 2008-10-14 Unirac, Inc. System for removably and adjustably mounting a device on a surface
EP1449262B1 (en) * 2001-11-16 2012-10-03 First Solar, Inc Photovoltaic array
US8344239B2 (en) * 2004-02-13 2013-01-01 Pvt Solar, Inc. Mechanism for mounting solar modules
TWM291984U (en) * 2005-12-23 2006-06-11 Tang Tsai Yi Entpr Co Ltd Improved structure of roof eaves
WO2007103882A2 (en) * 2006-03-09 2007-09-13 Powerlight Corporation Photovoltaic module mounting clip with integral grounding
US7557291B2 (en) * 2006-12-22 2009-07-07 Lumeta, Inc. Photovoltaic module for roofs
CN101387151B (en) * 2008-09-18 2011-05-11 吴文强 Flat-plate fastening system
US20100275549A1 (en) * 2009-04-30 2010-11-04 Roofscreen Manufacturing Clips for connecting panels and cross members without visual reference
AU2011215284B2 (en) * 2010-02-13 2014-12-11 Kaneka Corporation Roof structure, fixture for solar cell module, and method for installing solar cell module
US20110260027A1 (en) * 2010-04-23 2011-10-27 Daetwyler-Clean Energy LLC Solar panel mounting assembly with locking cap
TWM455747U (en) * 2012-05-11 2013-06-21 Tileron Entpr Co Ltd Improved structure for sunshade
TWM464492U (en) 2013-01-17 2013-11-01 Xuan-Fu Guo Water-resistant structure of solar panel scaffolding
CN203590127U (en) * 2013-11-29 2014-05-07 常州天合光能有限公司 Drainage type roof photovoltaic component waterproof installation structure
TWM487331U (en) * 2014-02-21 2014-10-01 Shih-Chin Chou Installation fixing structure of solar panel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1812009A (en) * 1928-06-04 1931-06-30 George H Lenke Skylight construction
US3443350A (en) * 1966-05-13 1969-05-13 Herbert L Birum Jr Exterior wall accessories
US4114595A (en) * 1977-07-06 1978-09-19 Harold Reed Barker Solar energy collector and glazing system
US5163257A (en) * 1991-01-18 1992-11-17 James Crowell Glazing bar system
US5571338A (en) * 1993-11-26 1996-11-05 Sanyo Electric Co., Ltd. Photovoltaic module and a photovoltaic apparatus
US6105317A (en) * 1997-09-24 2000-08-22 Matsushita Electric Works, Ltd. Mounting system for installing an array of solar battery modules of a panel-like configuration on a roof
US6672018B2 (en) * 2001-10-12 2004-01-06 Jefferson Shingleton Solar module mounting method and clip
US20030094193A1 (en) * 2001-11-16 2003-05-22 First Solar, Llc Photovoltaic array
US20100276558A1 (en) * 2009-05-01 2010-11-04 Applied Energy Technologies Mounting systems for solar panels
US8181402B2 (en) * 2010-04-01 2012-05-22 Yanegijutsukenkyujo Co., Ltd. Building-integrated photovoltaic power unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190158012A1 (en) * 2016-07-05 2019-05-23 Solar Frontier K.K. Securing Fixture for Photovoltaic Cell Module
US10648698B2 (en) * 2016-07-05 2020-05-12 Solar Frontier K.K. Securing fixture for photovoltaic cell module
US10205419B2 (en) * 2017-03-30 2019-02-12 Sunrun South Llc Railless solar module installation systems and devices
US11177764B2 (en) 2017-08-31 2021-11-16 ShadePower Group Pty Ltd Solar roof structure
KR102301224B1 (en) * 2020-08-27 2021-09-10 주식회사 일강케이스판 A seismic isolator for a solar panel roof that has a joint and prevents collision between insulation materials, and a solar panel roof including the same;
US20220399852A1 (en) * 2021-06-10 2022-12-15 Steve Leslie Frame for a solar panel

Also Published As

Publication number Publication date
US9496819B2 (en) 2016-11-15
TWI567275B (en) 2017-01-21
US20160043686A1 (en) 2016-02-11
CN105322869A (en) 2016-02-10
TW201606168A (en) 2016-02-16
TWM506859U (en) 2015-08-11
CN105322869B (en) 2017-07-07

Similar Documents

Publication Publication Date Title
US20160134229A1 (en) Water resistant roof assembly structure integrated with solar panels
JP6486415B2 (en) Improved structure of solar cell roof
US20200403562A1 (en) Waterproof assembly structure for solar panels
KR20100024989A (en) Solar module with a frame for mounting a solar panel
US9239173B2 (en) Photovoltaic module support with interface strips
US10050581B2 (en) Frame profile moulding for solar cell laminate, framed solar module and fastening system for solar modules
JP6363774B2 (en) Solar cell device
CN105587080A (en) Water resistant roof assembly structure integrated with solar panels
US11824485B2 (en) Photovoltaic roof covering and method of manufacture
US9813014B2 (en) Solar cell array
CN110086412B (en) Sun tile set
US20190222170A1 (en) Photovoltaic power generation device
CN210857772U (en) Solar photovoltaic roof subassembly of waterproof concatenation formula
US11894797B1 (en) Solar support structures and methods
JP4776087B2 (en) Roof panel and roof array using the same
TWM492933U (en) Waterproof roof assembly structure having integrated solar panel
US20240084591A1 (en) Roofing systems, roofing systems with integrated solar racking systems, roofing system components, and related methods
JP2015074903A (en) Building plate material and solar cell module fixing structure using building plate material
RU172008U1 (en) Support structure for attaching photovoltaic panels to the bearing surface of a building or structure
CN216239426U (en) BIPV photovoltaic roof
CN216196121U (en) Integrative roofing of photovoltaic building
CN211499531U (en) Roof structure
JP2018162575A (en) Frame for solar power generator
CN115822188A (en) Frameless photovoltaic module building integration mounting structure
CN110565879A (en) Solar power generation tile, power generation roof and fixing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: HSUEH, LIEN-FENG, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HSUEH, LIEN-FENG;WANG, MIN-LANG;REEL/FRAME:036757/0654

Effective date: 20150702

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION