US20160078120A1 - Extracting and processing metrics from system generated events - Google Patents

Extracting and processing metrics from system generated events Download PDF

Info

Publication number
US20160078120A1
US20160078120A1 US14/688,989 US201514688989A US2016078120A1 US 20160078120 A1 US20160078120 A1 US 20160078120A1 US 201514688989 A US201514688989 A US 201514688989A US 2016078120 A1 US2016078120 A1 US 2016078120A1
Authority
US
United States
Prior art keywords
system
database
user
metric
example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US14/688,989
Inventor
Aakash Pradeep
Adam Torman
Alex Warshavsky
Samarpan Jain
Soumen Bandyopadhyay
Thomas William D'Silva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
salesforce com Inc
Original Assignee
salesforce com Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201462048961P priority Critical
Application filed by salesforce com Inc filed Critical salesforce com Inc
Priority to US14/688,989 priority patent/US20160078120A1/en
Assigned to SALESFORCE.COM, INC. reassignment SALESFORCE.COM, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: D'SILVA, THOMAS WILLIAM, BANDYOPADHYAY, SOUMEN, JAIN, SAMARPAN, PRADEEP, AAKASH, TORMAN, ADAM, WARSHAVSKY, ALEX
Publication of US20160078120A1 publication Critical patent/US20160078120A1/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • G06F17/30598
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3006Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is distributed, e.g. networked systems, clusters, multiprocessor systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3438Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment monitoring of user actions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3452Performance evaluation by statistical analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3466Performance evaluation by tracing or monitoring
    • G06F11/3476Data logging
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/17Details of further file system functions
    • G06F16/173Customisation support for file systems, e.g. localisation, multi-language support, personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/242Query formulation
    • G06F16/2428Query predicate definition using graphical user interfaces, including menus and forms
    • G06F17/30528
    • G06F17/30867
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/02Network-specific arrangements or communication protocols supporting networked applications involving the use of web-based technology, e.g. hyper text transfer protocol [HTTP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/80Database-specific techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/86Event-based monitoring

Abstract

In an example, a processing system of a database system may categorize event data taken from logged interactions of users with a multi-tenant information system to provide a metric. The processing system of the database system may periodically calculate the metric for a particular one of the tenants, and electronically store the periodically calculated metrics for accessing responsive to a query of the particular tenant.

Description

    CLAIM OF PRIORITY
  • This application claims the benefit of U.S. Provisional Patent Application 62/048,961 entitled Extracting and Processing Metrics from System Generated Events, by Aakash Pradeep et al., filed Sep. 11, 2014, the entire contents of which are incorporated herein by reference.
  • COPYRIGHT NOTICE
  • A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
  • CROSS REFERENCE TO RELATED APPLICATIONS
  • The following commonly owned, co-pending non-provisional United States Patents and Patent Applications, including the present application, may be related to each other. Each of the other patents/applications are incorporated by reference herein in its entirety:
  • U.S. patent application Ser. No. 14/688,917 entitled EXTRACTION AND CAPTURE OF INFORMATION FROM CUSTOMIZABLE HEADER, filed Apr. 16, 2015.
  • FIELD OF THE INVENTION
  • One or more implementations relate generally to extracting and processing metrics from system generated events in a database network system environment.
  • BACKGROUND
  • The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
  • Many multi-tenant database system today produce system generated events such as logins, downloads, transactions, or anything that can be construed as an application event associated with a specific customer instance. These systems provide for various forms of electronic communication between customers and host system.
  • It has become common practice for institutions to extract electronic communication information from these systems. Given the affordability of data storage and the potential necessity of such information, many institutions retain electronic copies of information. For example, in industries such as financial and legal services as well as many others, it is often important to maintain a “paper trail”. Information such as what information is being accessed by whom, and when it is being accessed may be required for audits or investigations. In certain cases, electronic records may even be subpoenaed, and file storage devices that store such information may be subject to computer forensic searches.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following drawings like reference numbers are used to refer to like elements. Although the following figures depict various examples, the one or more implementations are not limited to the examples depicted in the figures.
  • The included drawings are for illustrative purposes and serve to provide examples of possible structures and operations for the disclosed inventive systems, apparatus, methods and computer-readable storage media. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of the disclosed implementations.
  • FIG. 1A shows a block diagram of an example environment in which an on-demand database service can be used according to some implementations.
  • FIG. 1B shows a block diagram of example implementations of elements of FIG. 1A and example interconnections between these elements according to some implementations.
  • FIG. 2A shows a system diagram of example architectural components of an on-demand database service environment according to some implementations.
  • FIG. 2B shows a system diagram further illustrating example architectural components of an on-demand database service environment according to some implementations.
  • FIG. 3 is an operational flow diagram illustrating a process that may be performed by a processing system of a database system for extracting and processing metrics from system generated events.
  • FIG. 4A is an example of code to define a metric.
  • FIG. 4B is an example of raw event data.
  • FIG. 4C is an example of a graphical user interface to query a platform event metric object.
  • FIG. 4D is an example of viewing a result of the query to the platform event metric object using a visualization tool.
  • DETAILED DESCRIPTION
  • Examples of systems, apparatus, computer-readable storage media, and methods according to the disclosed implementations are described in this section. These examples are being provided solely to add context and aid in the understanding of the disclosed implementations. It will thus be apparent to one skilled in the art that the disclosed implementations may be practiced without some or all of the specific details provided. In other instances, certain process or method operations, also referred to herein as “blocks,” have not been described in detail in order to avoid unnecessarily obscuring the disclosed implementations. Other implementations and applications also are possible, and as such, the following examples should not be taken as definitive or limiting either in scope or setting.
  • In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific implementations. Although these disclosed implementations are described in sufficient detail to enable one skilled in the art to practice the implementations, it is to be understood that these examples are not limiting, such that other implementations may be used and changes may be made to the disclosed implementations without departing from their spirit and scope. For example, the blocks of the methods shown and described herein are not necessarily performed in the order indicated in some other implementations. Additionally, in some other implementations, the disclosed methods may include more or fewer blocks than are described. As another example, some blocks described herein as separate blocks may be combined in some other implementations. Conversely, what may be described herein as a single block may be implemented in multiple blocks in some other implementations. Additionally, the conjunction “or” is intended herein in the inclusive sense where appropriate unless otherwise indicated; that is, the phrase “A, B or C” is intended to include the possibilities of “A,” “B,” “C,” “A and B,” “B and C,” “A and C” and “A, B and C.”
  • Some implementations described and referenced herein are directed to systems, apparatus, computer-implemented methods and computer-readable storage media for extracting and processing metrics from system generated events.
  • In some implementations, a processing system of a database system is provided. The processing system may extract and store certain content from users interacting with a multi-tenant database system. The processing system may also determine a profile as well as an authenticity of customer users accessing information of the multi-tenant database system. The processing system may also process extracted metrics to determine a profile of the user accessing the information. The profile may be used, for example, to determine whether a particular access by a purported user may be an access by a different user, based on the profile of the purported user.
  • In some embodiments, the information generated for each customer instance is captured passively. That is, the information is captured without any interruption to the user. The information may also be stored on a database and examined at a later time by an administrator. For example, a generic Application Program Interface (API) may capture the information and store it on a distributed database, such as a non-relational, distributed database. In some instances, the information may be retrieved from the database and processed. This processing of the information may help product a “fingerprint” that identifies and/or authenticates a user. In some implementations, for each user instance, information such as user identification, time stamp, browser used, version of the browser, IP address, referring URL and an assortment of other information may be collected and stored. Once collected, the processing system may categorize the information to produce a variety of metrics. A metric may be used individually or in combination with another metric in a requested query by, or for, a tenant.
  • In some embodiments, the processing system may identify an aggregate function on an event attribute for a duration. The processing system may identify a threshold according to available aggregation function results. The processing system may compare a new aggregate function result to the identified threshold. The processing system may transmit an alert responsive to a result of the comparison.
  • In some embodiments, one example metric for categorization may be the number of instances of logins per user. The instances of logins may be processed to determine an average number of login events. After an average has been determined, a graph may be produced where outliers may be easily determined based on the graphical depiction of the results. In some cases, excessive number of login events may suggest a security breach. That is, if the average number of logins per day for a user is five, and one user is determined to have logged in 15 times, an indication of a potential security breach may be suggested since there are not many instances where that many additional logins are necessary. In some embodiments the processing system may provide an alert in such an instance, where the number of logins exceeds a predetermined threshold amount based on an average number of logins.
  • Another example metric for categorization may be the hours when a user is logged in. In general, one can expect users to be logged in during work hours, typically between 9 am and 5 pm, or thereabouts. Any instances of outliers, again, may suggest a security breach that triggers an alert. However, work hours may vary from user to user. Thus, while a common trend may exist among most users, this common trend may not be representative of all users. Accordingly, it may be helpful to determine not only a trend among a set of users, but the trend of a single user over a period of time, since a single user's daily activity may be inconsistent from a group of users with which the single user is associated.
  • Another example metric for categorization may be the location of a user by way of IP addresses. Since IP addresses provide an indication of the location of a user, analyzing and graphing a user based on IP address ranges may provide an indication of the authenticity of each instance of the user login. For example, when a user is determine to have logged in from an IP address associated with a first location, and then logs in a short time later from an IP address associated with a second location that is far removed from the first location, it is likely that the login was performed by two different people using a same account, thus suggesting a security breach. Similarly, the use of two different types of browsers over a short period of time may also suggest different users logging into the same account. Typically, users have the habit of using the same browser on a personal home or work computer. Thus, a change in the type of browser, e.g. brand, or the version of the browser may suggest multiple users. Both instances may trigger an alert being provided.
  • In some implementations, the users described herein are users (or “members”) of an interactive online “enterprise social network,” also referred to herein as an “enterprise social networking system,” an “enterprise collaborative network,” or more simply as an “enterprise network.” Such online enterprise networks are increasingly becoming a common way to facilitate communication among people, any of whom can be recognized as enterprise users. One example of an online enterprise social network is Chatter®, provided by salesforce.com, inc. of San Francisco, Calif. salesforce.com, inc. is a provider of enterprise social networking services, customer relationship management (CRM) services and other database management services, any of which can be accessed and used in conjunction with the techniques disclosed herein in some implementations. These various services can be provided in a cloud computing environment as described herein, for example, in the context of a multi-tenant database system. Some of the described techniques or processes can be implemented without having to install software locally, that is, on computing devices of users interacting with services available through the cloud. While the disclosed implementations may be described with reference to Chatter® and more generally to enterprise social networking, those of ordinary skill in the art should understand that the disclosed techniques are neither limited to Chatter® nor to any other services and systems provided by salesforce.com, inc. and can be implemented in the context of various other database systems such as cloud-based systems that are not part of a multi-tenant database system or which do not provide enterprise social networking services.
  • I. Example System Overview
  • FIG. 1A shows a block diagram of an example of an environment 10 in which an on-demand database service can be used in accordance with some implementations. The environment 10 includes user systems 12, a network 14, a database system 16 (also referred to herein as a “cloud-based system”), a processor system 17, an application platform 18, a network interface 20, tenant database 22 for storing tenant data 23, system database 24 for storing system data 25, program code 26 for implementing various functions of the system 16, and process space 28 for executing database system processes and tenant-specific processes, such as running applications as part of an application hosting service. In some other implementations, environment 10 may not have all of these components or systems, or may have other components or systems instead of, or in addition to, those listed above.
  • In some implementations, the environment 10 is an environment in which an on-demand database service exists. An on-demand database service, such as that which can be implemented using the system 16, is a service that is made available to users outside of the enterprise(s) that own, maintain or provide access to the system 16. As described above, such users generally do not need to be concerned with building or maintaining the system 16. Instead, resources provided by the system 16 may be available for such users' use when the users need services provided by the system 16; that is, on the demand of the users. Some on-demand database services can store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS). The term “multi-tenant database system” can refer to those systems in which various elements of hardware and software of a database system may be shared by one or more customers or tenants. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows of data such as feed items for a potentially much greater number of customers. A database image can include one or more database objects. A relational database management system (RDBMS) or the equivalent can execute storage and retrieval of information against the database object(s).
  • Application platform 18 can be a framework that allows the applications of system 16 to execute, such as the hardware or software infrastructure of the system 16. In some implementations, the application platform 18 enables the creation, management and execution of one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 12, or third party application developers accessing the on-demand database service via user systems 12.
  • In some implementations, the system 16 implements a web-based customer relationship management (CRM) system. For example, in some such implementations, the system 16 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, renderable web pages and documents and other information to and from user systems 12 and to store to, and retrieve from, a database system related data, objects, and Web page content. In some MTS implementations, data for multiple tenants may be stored in the same physical database object in tenant database 22. In some such implementations, tenant data is arranged in the storage medium(s) of tenant database 22 so that data of one tenant is kept logically separate from that of other tenants so that one tenant does not have access to another tenant's data, unless such data is expressly shared. The system 16 also implements applications other than, or in addition to, a CRM application. For example, the system 16 can provide tenant access to multiple hosted (standard and custom) applications, including a CRM application. User (or third party developer) applications, which may or may not include CRM, may be supported by the application platform 18. The application platform 18 manages the creation and storage of the applications into one or more database objects and the execution of the applications in one or more virtual machines in the process space of the system 16.
  • According to some implementations, each system 16 is configured to provide web pages, forms, applications, data and media content to user (client) systems 12 to support the access by user systems 12 as tenants of system 16. As such, system 16 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (for example, in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (for example, one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to refer to a computing device or system, including processing hardware and process space(s), an associated storage medium such as a memory device or database, and, in some instances, a database application (for example, OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database objects described herein can be implemented as part of a single database, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and can include a distributed database or storage network and associated processing intelligence.
  • The network 14 can be or include any network or combination of networks of systems or devices that communicate with one another. For example, the network 14 can be or include any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, cellular network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. The network 14 can include a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” (with a capital “I”). The Internet will be used in many of the examples herein. However, it should be understood that the networks that the disclosed implementations can use are not so limited, although TCP/IP is a frequently implemented protocol.
  • The user systems 12 can communicate with system 16 using TCP/IP and, at a higher network level, other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, each user system 12 can include an HTTP client commonly referred to as a “web browser” or simply a “browser” for sending and receiving HTTP signals to and from an HTTP server of the system 16. Such an HTTP server can be implemented as the sole network interface 20 between the system 16 and the network 14, but other techniques can be used in addition to or instead of these techniques. In some implementations, the network interface 20 between the system 16 and the network 14 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a number of servers. In MTS implementations, each of the servers can have access to the MTS data; however, other alternative configurations may be used instead.
  • The user systems 12 can be implemented as any computing device(s) or other data processing apparatus or systems usable by users to access the database system 16. For example, any of user systems 12 can be a desktop computer, a work station, a laptop computer, a tablet computer, a handheld computing device, a mobile cellular phone (for example, a “smartphone”), or any other Wi-Fi-enabled device, wireless access protocol (WAP)-enabled device, or other computing device capable of interfacing directly or indirectly to the Internet or other network. The terms “user system” and “computing device” are used interchangeably herein with one another and with the term “computer.” As described above, each user system 12 typically executes an HTTP client, for example, a web browsing (or simply “browsing”) program, such as a web browser based on the WebKit platform, Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, Mozilla's Firefox browser, or a WAP-enabled browser in the case of a cellular phone, PDA or other wireless device, or the like, allowing a user (for example, a subscriber of on-demand services provided by the system 16) of the user system 12 to access, process and view information, pages and applications available to it from the system 16 over the network 14.
  • Each user system 12 also typically includes one or more user input devices, such as a keyboard, a mouse, a trackball, a touch pad, a touch screen, a pen or stylus or the like, for interacting with a graphical user interface (GUI) provided by the browser on a display (for example, a monitor screen, liquid crystal display (LCD), light-emitting diode (LED) display, among other possibilities) of the user system 12 in conjunction with pages, forms, applications and other information provided by the system 16 or other systems or servers. For example, the user interface device can be used to access data and applications hosted by system 16, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user. As discussed above, implementations are suitable for use with the Internet, although other networks can be used instead of or in addition to the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
  • The users of user systems 12 may differ in their respective capacities, and the capacity of a particular user system 12 can be entirely determined by permissions (permission levels) for the current user of such user system. For example, where a salesperson is using a particular user system 12 to interact with the system 16, that user system can have the capacities allotted to the salesperson. However, while an administrator is using that user system 12 to interact with the system 16, that user system can have the capacities allotted to that administrator. Where a hierarchical role model is used, users at one permission level can have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users generally will have different capabilities with regard to accessing and modifying application and database information, depending on the users' respective security or permission levels (also referred to as “authorizations”).
  • According to some implementations, each user system 12 and some or all of its components are operator-configurable using applications, such as a browser, including computer code executed using a central processing unit (CPU) such as an Intel Pentium® processor or the like. Similarly, the system 16 (and additional instances of an MTS, where more than one is present) and all of its components can be operator-configurable using application(s) including computer code to run using the processor system 17, which may be implemented to include a CPU, which may include an Intel Pentium® processor or the like, or multiple CPUs.
  • The system 16 includes tangible computer-readable media having non-transitory instructions stored thereon/in that are executable by or used to program a server or other computing system (or collection of such servers or computing systems) to perform some of the implementation of processes described herein. For example, computer program code 26 can implement instructions for operating and configuring the system 16 to intercommunicate and to process web pages, applications and other data and media content as described herein. In some implementations, the computer code 26 can be downloadable and stored on a hard disk, but the entire program code, or portions thereof, also can be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disks (DVD), compact disks (CD), microdrives, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any other type of computer-readable medium or device suitable for storing instructions or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, for example, over the Internet, or from another server, as is well known, or transmitted over any other existing network connection as is well known (for example, extranet, VPN, LAN, etc.) using any communication medium and protocols (for example, TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for the disclosed implementations can be realized in any programming language that can be executed on a server or other computing system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
  • FIG. 1B shows a block diagram of example implementations of elements of FIG. 1A and example interconnections between these elements according to some implementations. That is, FIG. 1B also illustrates environment 10, but FIG. 1B, various elements of the system 16 and various interconnections between such elements are shown with more specificity according to some more specific implementations. Additionally, in FIG. 1B, the user system 12 includes a processor system 12A, a memory system 12B, an input system 12C, and an output system 12D. The processor system 12A can include any suitable combination of one or more processors. The memory system 12B can include any suitable combination of one or more memory devices. The input system 12C can include any suitable combination of input devices, such as one or more touchscreen interfaces, keyboards, mice, trackballs, scanners, cameras, or interfaces to networks. The output system 12D can include any suitable combination of output devices, such as one or more display devices, printers, or interfaces to networks.
  • In FIG. 1B, the network interface 20 is implemented as a set of HTTP application servers 100 1-100 N. Each application server 100, also referred to herein as an “app server”, is configured to communicate with tenant database 22 and the tenant data 23 therein, as well as system database 24 and the system data 25 therein, to serve requests received from the user systems 12. The tenant data 23 can be divided into individual tenant storage spaces 112, which can be physically or logically arranged or divided. Within each tenant storage space 112, user storage 114 and application metadata 116 can similarly be allocated for each user. For example, a copy of a user's most recently used (MRU) items can be stored to user storage 114. Similarly, a copy of MRU items for an entire organization that is a tenant can be stored to tenant storage space 112.
  • The process space 28 includes system process space 102, individual tenant process spaces 104 and a tenant management process space 110. The application platform 18 includes an application setup mechanism 38 that supports application developers' creation and management of applications. Such applications and others can be saved as metadata into tenant database 22 by save routines 36 for execution by subscribers as one or more tenant process spaces 104 managed by tenant management process 110, for example. Invocations to such applications can be coded using PL/SOQL 34, which provides a programming language style interface extension to API 32. A detailed description of some PL/SOQL language implementations is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, issued on Jun. 1, 2010, and hereby incorporated by reference in its entirety and for all purposes. Invocations to applications can be detected by one or more system processes, which manage retrieving application metadata 116 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
  • The system 16 of FIG. 1B also includes a user interface (UI) 30 and an application programming interface (API) 32 to system 16 resident processes to users or developers at user systems 12. In some other implementations, the environment 10 may not have the same elements as those listed above or may have other elements instead of, or in addition to, those listed above.
  • Each application server 100 can be communicably coupled with tenant database 22 and system database 24, for example, having access to tenant data 23 and system data 25, respectively, via a different network connection. For example, one application server 100 1 can be coupled via the network 14 (for example, the Internet), another application server 100 N-1 can be coupled via a direct network link, and another application server 100 N can be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are examples of typical protocols that can be used for communicating between application servers 100 and the system 16. However, it will be apparent to one skilled in the art that other transport protocols can be used to optimize the system 16 depending on the network interconnections used.
  • In some implementations, each application server 100 is configured to handle requests for any user associated with any organization that is a tenant of the system 16. Because it can be desirable to be able to add and remove application servers 100 from the server pool at any time and for various reasons, in some implementations there is no server affinity for a user or organization to a specific application server 100. In some such implementations, an interface system implementing a load balancing function (for example, an F5 Big-IP load balancer) is communicably coupled between the application servers 100 and the user systems 12 to distribute requests to the application servers 100. In one implementation, the load balancer uses a least-connections algorithm to route user requests to the application servers 100. Other examples of load balancing algorithms, such as round robin and observed-response-time, also can be used. For example, in some instances, three consecutive requests from the same user could hit three different application servers 100, and three requests from different users could hit the same application server 100. In this manner, by way of example, system 16 can be a multi-tenant system in which system 16 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
  • In one example storage use case, one tenant can be a company that employs a sales force where each salesperson uses system 16 to manage aspects of their sales. A user can maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (for example, in tenant database 22). In an example of a MTS arrangement, because all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system 12 having little more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, when a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates regarding that customer while waiting for the customer to arrive in the lobby.
  • While each user's data can be stored separately from other users' data regardless of the employers of each user, some data can be organization-wide data shared or accessible by several users or all of the users for a given organization that is a tenant. Thus, there can be some data structures managed by system 16 that are allocated at the tenant level while other data structures can be managed at the user level. Because an MTS can support multiple tenants including possible competitors, the MTS can have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that can be implemented in the MTS. In addition to user-specific data and tenant-specific data, the system 16 also can maintain system level data usable by multiple tenants or other data. Such system level data can include industry reports, news, postings, and the like that are sharable among tenants.
  • In some implementations, the user systems 12 (which also can be client systems) communicate with the application servers 100 to request and update system-level and tenant-level data from the system 16. Such requests and updates can involve sending one or more queries to tenant database 22 or system database 24. The system 16 (for example, an application server 100 in the system 16) can automatically generate one or more Structured Query Language (SQL) statements (for example, one or more SQL queries) designed to access the desired information. System database 24 can generate query plans to access the requested data from the database. The term “query plan” generally refers to one or more operations used to access information in a database system.
  • Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined or customizable categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or element of a table can contain an instance of data for each category defined by the fields. For example, a CRM database can include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table can describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some MTS implementations, standard entity tables can be provided for use by all tenants. For CRM database applications, such standard entities can include tables for case, account, contact, lead, and opportunity data objects, each containing pre-defined fields. As used herein, the term “entity” also may be used interchangeably with “object” and “table.”
  • In some MTS implementations, tenants are allowed to create and store custom objects, or may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. Commonly assigned U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman et al., issued on Aug. 17, 2010, and hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In some implementations, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
  • FIG. 2A shows a system diagram illustrating example architectural components of an on-demand database service environment 200 according to some implementations. A client machine communicably connected with the cloud 204, generally referring to one or more networks in combination, as described herein, can communicate with the on-demand database service environment 200 via one or more edge routers 208 and 212. A client machine can be any of the examples of user systems 12 described above. The edge routers can communicate with one or more core switches 220 and 224 through a firewall 216. The core switches can communicate with a load balancer 228, which can distribute server load over different pods, such as the pods 240 and 244. The pods 240 and 244, which can each include one or more servers or other computing resources, can perform data processing and other operations used to provide on-demand services. Communication with the pods can be conducted via pod switches 232 and 236. Components of the on-demand database service environment can communicate with database storage 256 through a database firewall 248 and a database switch 252.
  • As shown in FIGS. 2A and 2B, accessing an on-demand database service environment can involve communications transmitted among a variety of different hardware or software components. Further, the on-demand database service environment 200 is a simplified representation of an actual on-demand database service environment. For example, while only one or two devices of each type are shown in FIGS. 2A and 2B, some implementations of an on-demand database service environment can include anywhere from one to several devices of each type. Also, the on-demand database service environment need not include each device shown in FIGS. 2A and 2B, or can include additional devices not shown in FIGS. 2A and 2B.
  • Additionally, it should be appreciated that one or more of the devices in the on-demand database service environment 200 can be implemented on the same physical device or on different hardware. Some devices can be implemented using hardware or a combination of hardware and software. Thus, terms such as “data processing apparatus,” “machine,” “server” and “device” as used herein are not limited to a single hardware device, rather references to these terms can include any suitable combination of hardware and software configured to provide the described functionality.
  • The cloud 204 is intended to refer to a data network or multiple data networks, often including the Internet. Client machines communicably connected with the cloud 204 can communicate with other components of the on-demand database service environment 200 to access services provided by the on-demand database service environment. For example, client machines can access the on-demand database service environment to retrieve, store, edit, or process information. In some implementations, the edge routers 208 and 212 route packets between the cloud 204 and other components of the on-demand database service environment 200. For example, the edge routers 208 and 212 can employ the Border Gateway Protocol (BGP). The BGP is the core routing protocol of the Internet. The edge routers 208 and 212 can maintain a table of IP networks or ‘prefixes’, which designate network reachability among autonomous systems on the Internet.
  • In some implementations, the firewall 216 can protect the inner components of the on-demand database service environment 200 from Internet traffic. The firewall 216 can block, permit, or deny access to the inner components of the on-demand database service environment 200 based upon a set of rules and other criteria. The firewall 216 can act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.
  • In some implementations, the core switches 220 and 224 are high-capacity switches that transfer packets within the on-demand database service environment 200. The core switches 220 and 224 can be configured as network bridges that quickly route data between different components within the on-demand database service environment. In some implementations, the use of two or more core switches 220 and 224 can provide redundancy or reduced latency.
  • In some implementations, the pods 240 and 244 perform the core data processing and service functions provided by the on-demand database service environment. Each pod can include various types of hardware or software computing resources. An example of the pod architecture is discussed in greater detail with reference to FIG. 2B. In some implementations, communication between the pods 240 and 244 is conducted via the pod switches 232 and 236. The pod switches 232 and 236 can facilitate communication between the pods 240 and 244 and client machines communicably connected with the cloud 204, for example via core switches 220 and 224. Also, the pod switches 232 and 236 may facilitate communication between the pods 240 and 244 and the database storage 256. In some implementations, the load balancer 228 can distribute workload between the pods 240 and 244. Balancing the on-demand service requests between the pods can assist in improving the use of resources, increasing throughput, reducing response times, or reducing overhead. The load balancer 228 may include multilayer switches to analyze and forward traffic.
  • In some implementations, access to the database storage 256 is guarded by a database firewall 248. The database firewall 248 can act as a computer application firewall operating at the database application layer of a protocol stack. The database firewall 248 can protect the database storage 256 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure. In some implementations, the database firewall 248 includes a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router. The database firewall 248 can inspect the contents of database traffic and block certain content or database requests. The database firewall 248 can work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.
  • In some implementations, communication with the database storage 256 is conducted via the database switch 252. The multi-tenant database storage 256 can include more than one hardware or software components for handling database queries. Accordingly, the database switch 252 can direct database queries transmitted by other components of the on-demand database service environment (for example, the pods 240 and 244) to the correct components within the database storage 256. In some implementations, the database storage 256 is an on-demand database system shared by many different organizations as described above with reference to FIGS. 1A and 1B.
  • FIG. 2B shows a system diagram further illustrating example architectural components of an on-demand database service environment according to some implementations. The pod 244 can be used to render services to a user of the on-demand database service environment 200. In some implementations, each pod includes a variety of servers or other systems. The pod 244 includes one or more content batch servers 264, content search servers 268, query servers 282, file force servers 286, access control system (ACS) servers 280, batch servers 284, and app servers 288. The pod 244 also can include database instances 290, quick file systems (QFS) 292, and indexers 294. In some implementations, some or all communication between the servers in the pod 244 can be transmitted via the switch 236.
  • In some implementations, the app servers 288 include a hardware or software framework dedicated to the execution of procedures (for example, programs, routines, scripts) for supporting the construction of applications provided by the on-demand database service environment 200 via the pod 244. In some implementations, the hardware or software framework of an app server 288 is configured to execute operations of the services described herein, including performance of the blocks of various methods or processes described herein. In some alternative implementations, two or more app servers 288 can be included and cooperate to perform such methods, or one or more other servers described herein can be configured to perform the disclosed methods.
  • The content batch servers 264 can handle requests internal to the pod. Some such requests can be long-running or not tied to a particular customer. For example, the content batch servers 264 can handle requests related to log mining, cleanup work, and maintenance tasks. The content search servers 268 can provide query and indexer functions. For example, the functions provided by the content search servers 268 can allow users to search through content stored in the on-demand database service environment. The file force servers 286 can manage requests for information stored in the Fileforce storage 298. The Fileforce storage 298 can store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using the file force servers 286, the image footprint on the database can be reduced. The query servers 282 can be used to retrieve information from one or more file systems. For example, the query system 282 can receive requests for information from the app servers 288 and transmit information queries to the NFS 296 located outside the pod.
  • The pod 244 can share a database instance 290 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by the pod 244 may call upon various hardware or software resources. In some implementations, the ACS servers 280 control access to data, hardware resources, or software resources. In some implementations, the batch servers 284 process batch jobs, which are used to run tasks at specified times. For example, the batch servers 284 can transmit instructions to other servers, such as the app servers 288, to trigger the batch jobs.
  • In some implementations, the QFS 292 is an open source file system available from Sun Microsystems® of Santa Clara, Calif. The QFS can serve as a rapid-access file system for storing and accessing information available within the pod 244. The QFS 292 can support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which can be useful for streaming applications where long disk seeks cannot be tolerated. Thus, the QFS system can communicate with one or more content search servers 268 or indexers 294 to identify, retrieve, move, or update data stored in the network file systems 296 or other storage systems.
  • In some implementations, one or more query servers 282 communicate with the NFS 296 to retrieve or update information stored outside of the pod 244. The NFS 296 can allow servers located in the pod 244 to access information to access files over a network in a manner similar to how local storage is accessed. In some implementations, queries from the query servers 282 are transmitted to the NFS 296 via the load balancer 228, which can distribute resource requests over various resources available in the on-demand database service environment. The NFS 296 also can communicate with the QFS 292 to update the information stored on the NFS 296 or to provide information to the QFS 292 for use by servers located within the pod 244.
  • In some implementations, the pod includes one or more database instances 290. The database instance 290 can transmit information to the QFS 292. When information is transmitted to the QFS, it can be available for use by servers within the pod 244 without using an additional database call. In some implementations, database information is transmitted to the indexer 294. Indexer 294 can provide an index of information available in the database 290 or QFS 292. The index information can be provided to file force servers 286 or the QFS 292.
  • II. Extracting and Processing Metrics from System Generated Events
  • Data taken from logged interactions of users with a multi-tenant information system may be raw event data. The raw event data may include data collected by logged interactions of any number of event types. One example of an event type is a login event, which occurs every time a user logs into an application of the multi-tenant information system. A login might produce raw event data indicating an Application Program Interface (API) type and version if an API is used for the login, a browser and client version if a User Interface (UI) is used for the login, a time of the login, a platform used for the login, an IP address from which the login took place, an identity of the user, whether the login was successful or not, or the like, or combinations thereof.
  • The amount of raw event data captured from just the login event type for a single user of a single tenant may be significant. For instance, a single user of a single tenant may login say 10 times in an hour, multiple times a week. This is one user of one tenant—there may be a multitude of other users of the same tenant plus a multitude of other user of another tenant all creating login events. And login events may be only one of more than one event type captured by the logging system. Manually querying the raw event data or a login event object, by a tenant (or for the tenant), may consume processing cycles of one or more machines involved with the query, possibly overwhelming computing resources or making those resources partially unavailable for other parallel tasks.
  • In an example, a group by function is applied at an interval to a login event object to create a platform event metrics object, i.e. to roll up all of the grouped events for the interval. The group by function may be applied to all raw event data available at the interval, or only to the raw event data collected since the previous occurrence of the interval. The platform event metrics object may be exposed to a tenant. The tenant may query the platform event metric object, which may consume less processing cycles than querying the login event object.
  • FIG. 3 is an operational flow diagram illustrating a process that may be performed by a processing system of a database system for extracting and processing metrics from system generated events.
  • In block 301, the processing system categorizes data taken from logged interactions of users with a multi-tenant information system to provide a metric. The metric may be used to group events of the raw event data.
  • In an example, the metric may be based on number of logins, number of logins for a particular user, number of logins from a particular browser, number of logins in a specified timeframe, login duration, login IP address, login browser type, or the like, or combinations thereof. In an example, the processing system may be configured to allow a metric to be predefined in a declarative way with reference to components or attributes. In an example, components of a metric include a metric time, e.g. an interval, and a name-value pair.
  • FIG. 4A shows an example of metric definition. The example eXtensible Markup Language (XML) code defines a metric “Number of Distinct Applications By User”. The XML code defines a Metric Name 401 (also referred to as Metric Type), as well as other attributes of the metric, e.g. in this case function, function input field, event name, and aggregation field.
  • Referring again to FIG. 3, in block 302 the processing system may associate a plurality of attributes with the metric. In one example, all of the attributes are associated with the metric in order to predefine the metric before, i.e. not responsively, to receiving a query from a tenant. The attributes may include timeframe, source object, database table, target field, or the like, or combinations thereof.
  • FIG. 4B is an example of raw event data. FIG. 4B shows an example of a Salesforce Object Query Language (SOQL) query 401 of the login event object selecting an application attribute equal to “CloudLock Compliance For Salesforce”. The login event in FIG. 4B represents raw log data where each reference to the CloudLock Compliance for Salesforce represents an individual login. This raw event data may be rolled up into a variety of aggregates or metrics as illustrated in FIG. 4C.
  • Referring again to FIG. 3, in block 303 the processing system periodically calculates the metric for a particular one of the tenants according to the associated attributes. In one example, the metric may be calculated every hour. In one example, a query by a tenant may be performed on a result of one of the periodic calculations, e.g. on the most recent periodic calculation results. In other words, the result may be pre-calculated without beforehand knowledge that a query will be received.
  • FIG. 4C shows an example of an SOQL query of the platform event metric object. The query results 421 apply an attribute for a particular user to the result of pre-calculating the metric at the interval. Rows of the table of query results 421 corresponds to events, and columns correspond to fields. Each field may correspond to one of the attributes of the metric.
  • FIG. 4C shows an example of performing a SOQL query over rolled-up aggregate information taken from the raw event data. That information may be rolled-up based on any number of attributes or fields from the raw event data. For instance, the ability to determine how many distinct applications were used in the past hour versus the total number of times a particular user logged in. Here, the query results 421 show that for the time interval, e.g. one hour, a metric value for the metric number of distinct applications by user is equal to one. The metric value for this time interval can be combined with metric values from other time intervals to determine a trend over time for the metric number of distinct applications by user. If a different metric was checked for the same raw data, e.g. the metric number of logins by user, a metric value may have a different count, say four, despite the fact that a user may have only logged into one application, e.g. CloudLock for Compliance.
  • The tool illustrated in FIG. 4C allows a tenant to select a metric or a combination of metrics, optionally select any number of attributes, and receive a result responsive to the selection (the result may be used for forensic analysis, for example). The result may be a list of relevant data from relevant logged events, or the result may be an image from a visualization tool. FIG. 4D shows an example of the query results 421 mapped to a visualization tool.
  • In an example, the processing system may be configured to, responsive to receiving a query selecting an attribute value from a particular one of the tenants, applying the attribute value to a result of a pre-calculation of the metric for the particular one of the tenants. The pre-calculation may be performed prior to receiving the query without beforehand knowledge of the query. The processing system may provide, to the particular one of the tenants, a result of the application of the attribute value to the result of the pre-calculation of the metric for the particular one of the tenants.
  • In an example, the processing system may be configured to generate a profile for a user indicated by event data taken from logged user interactions with a multi-tenant information system. The profile may be based on a result of periodic calculations of the metric. The processing system may electronically store the generated profile in a data store. The processing system may compare information taken from a most recently logged interaction to the generated profile. The processing system may determine whether to transmit an alert response to a result of the comparison.
  • In an example, the categorization by the processing system may include selecting an event type, such as login event. The processing system may be configured to filter events of the event data according to the selected event type.
  • In an example, the processing system may be configured to identify an average number of logins for a duration using a result of one of the periodic calculations, e.g. according to a most recent one of the period calculations. The processing system may be configured to identify a threshold according to the average. The processing system may be configured to count a number of logins during a time period corresponding to the duration. The processing system may be configured to determine whether the count is greater than the determined threshold, and transmit an alert responsive to the determination.
  • In an example, the processing system may be configured to identify a first trend for a time of day logged in for a group of users of the tenant. The processing system may be configured to identify a second trend for a time of day logged in for a user of the group of users. The processing system may be configured to determine whether to transmit an alert using the first and second trends.
  • In an example, the processing system may be configured to detect a change in IP address between successive logins for a user. The processing system may be configured to determine whether a first duration between logins associated with the detected change is less than a second duration, and transmit an alert response to the determination.
  • In an example, the processing system may be configured to detect a change in browser type or browser version between successive logins for a user, determining whether to transmit an alert according to the detected change.
  • In an example, the processing system may be configured to provide a declarative ability to define system generated events that can be rolled-up into an aggregated metric, which may ensure that it is easy to both create and maintain metrics over time by declaring a series of attributes about the metric. In an example, the attributes include metric name, source object or database table, aggregate function, target field, aggregation clause, interval, timeframe, or the like, or combinations thereof. In an example, a series of system generated metrics may be defined declaratively based on common and repeatable characteristics.
  • Co-pending U.S. patent application Ser. No. 14/688,917 entitled EXTRACTION AND CAPTURE OF INFORMATION FROM CUSTOMIZABLE HEADER describes features for collecting data, which in an example may include unstructured data. In an example, any of the processes/operations described herein may be combined with any of the processes/operations described in the co-pending application. For instance, in an example, a processing system periodically calculates a metric based on structured data, e.g. event data, and unstructured data collected using features described in the co-pending application. A query may be received from a particular one of the tenants, the query applying a selected attribute value to a result of a pre-calculation of the metric based on the structured and unstructured data. The pre-calculation may be performed prior to receiving the query without beforehand knowledge of the query. The processing system may provide a result of the application of the attribute value to the particular tenant.
  • The system and apparatus described above may use dedicated processor systems, micro controllers, programmable logic devices, microprocessors, or any combination thereof, to perform some or all of the operations described herein. Some of the operations described above may be implemented in software and other operations may be implemented in hardware. Any of the operations, processes, and/or methods described herein may be performed by an apparatus, a device, and/or a system substantially similar to those as described herein and with reference to the illustrated figures.
  • The processing system may execute instructions or “code” stored in memory. The memory may store data as well. The processing system may include, but may not be limited to, an analog processor, a digital processor, a microprocessor, a multi-core processor, a processor array, a network processor, or the like. The processing system may be part of an integrated control system or system manager, or may be provided as a portable electronic device configured to interface with a networked system either locally or remotely via wireless transmission.
  • The processor memory may be integrated together with the processing system, for example RAM or FLASH memory disposed within an integrated circuit microprocessor or the like. In other examples, the memory may comprise an independent device, such as an external disk drive, a storage array, a portable FLASH key fob, or the like. The memory and processing system may be operatively coupled together, or in communication with each other, for example by an I/O port, a network connection, or the like, and the processing system may read a file stored on the memory. Associated memory may be “read only” by design (ROM) by virtue of permission settings, or not. Other examples of memory may include, but may not be limited to, WORM, EPROM, EEPROM, FLASH, or the like, which may be implemented in solid state semiconductor devices. Other memories may comprise moving parts, such as a known rotating disk drive. All such memories may be “machine-readable” and may be readable by a processing system.
  • Operating instructions or commands may be implemented or embodied in tangible forms of stored computer software (also known as “computer program” or “code”). Programs, or code, may be stored in a digital memory and may be read by the processing system. “Computer-readable storage medium” (or alternatively, “machine-readable storage medium”) may include all of the foregoing types of memory, as well as new technologies of the future, as long as the memory may be capable of storing digital information in the nature of a computer program or other data, at least temporarily, and as long as the stored information may be “read” by an appropriate processing system. The term “computer-readable” may not be limited to the historical usage of “computer” to imply a complete mainframe, mini-computer, desktop or even laptop computer. Rather, “computer-readable” may comprise storage medium that may be readable by a processor, a processing system, or any computing system. Such media may be any available media that may be locally and/or remotely accessible by a computer or a processor, and may include volatile and non-volatile media, and removable and non-removable media, or any combination thereof.
  • A program stored in a computer-readable storage medium may comprise a computer program product. For example, a storage medium may be used as a convenient means to store or transport a computer program. For the sake of convenience, the operations may be described as various interconnected or coupled functional blocks or diagrams. However, there may be cases where these functional blocks or diagrams may be equivalently aggregated into a single logic device, program or operation with unclear boundaries.
  • While one or more implementations have been described by way of example and in terms of the specific embodiments, it is to be understood that one or more implementations are not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (20)

1. A database system, comprising:
a processing system; and
a memory device coupled to the processing system, the memory device having instructions stored thereon that, in response to execution by the processing system, cause the processing system to perform operations comprising:
categorizing event data taken from logged interactions of users with a multi-tenant information system to provide a metric;
associating a plurality of attributes with the metric, wherein the plurality of attributes include interval and at least one of aggregation function, aggregation clause, or aggregation filter;
periodically calculating the metric for a particular one of the tenants according to the associated attributes; and
electronically storing the periodically calculated metrics.
2. The database system of claim 1, wherein the operations further comprising:
responsive to receiving a query from the particular one of the tenants, the query selecting an attribute value, applying the selected attribute value to a result of a pre-calculation of the metric for the particular one of the tenants;
wherein the pre-calculation is performed prior to receiving the query without beforehand knowledge of the query; and
providing, to the particular one of the tenants, a result of the application of the attribute value.
3. The database system of claim 1, wherein the operations further comprise:
generating a profile for one of the users based on the periodic calculations; and
electronically storing the generated profile.
4. The database system of claim 3, wherein the operations further comprise:
comparing information taken from a most recent logged interaction to the generated profile; and
determining whether to transmit an alert responsive to a result of the comparison.
5. The database system of claim 1, wherein the categorization comprises:
selecting an event type; and
filtering events of the event data according to the selected event type.
6. The database system of claim 5, wherein the event type comprises login event.
7. The database system of claim 1, wherein the metric corresponds to at least one event attribute including at least one of number of logins, login duration, login IP address, or login browser type.
8. The database system of claim 7, wherein the operations further comprise:
identifying an average number of logins for a duration using a most recent one of the periodic calculations;
identifying a threshold according to the average;
counting a number of logins during a time period corresponding to the duration using a most recent one of the periodic calculations;
determining whether the count is greater than the determined threshold; and
transmitting an alert responsive to the determination.
9. The database system of claim 7, wherein the operations further comprise:
identifying a first trend for a time of day logged in for a group of users of the tenant;
identifying a second trend for a time of day logged in for a user of the group of users; and
determining whether to transmit an alert using the first and second trends.
10. The database system of claim 7, wherein the operations further comprise:
detecting a change in IP address between successive logins for a user;
determining whether a first duration between logins associated with the detected change is less than a second duration; and
transmitting an alert response to the determination.
11. The database system of claim 7, wherein the operations further comprise:
detecting a change in browser type or browser version between successive logins for a user; and
determining whether to transmit an alert according to the detected change.
12. The database system of claim 1, wherein the plurality of attributes include at least one of timeframe, source object, database table, or target field.
13. A method, comprising:
in a first phase:
categorizing event data taken from logged interactions of users with a multi-tenant information system to provide a metric;
associating a plurality of attributes with the metric, wherein the plurality of attributes include interval and at least one of aggregation function, aggregation clause, or aggregation filter;
periodically calculating, using a processing system of a database system, the metric for a particular one of the tenants according to the associated attributes;
electronically storing the periodically calculated metrics; and
in a second phase that is after the first phase, the second phase initiated by receipt of a query from the particular one of the tenants;
applying, using the processing system of the database system, a selected attribute value of the received query to one of the stored metrics; and
providing a result of the application of the selected attribute value of the received query to the one of the stored metrics.
14. The method of claim 13, further comprising:
generating a profile for one of the users based on the periodic calculations; and
electronically storing the generated profile.
15. The method of claim 14, further comprising:
comparing information taken from a most recent logged interaction to the generated profile; and
determining whether to transmit an alert responsive to a result of the comparison.
16. The method of claim 13, wherein the categorization comprises:
selecting an event type; and
filtering events of the event data according to the selected event type.
17. The method of claim 16, wherein the event type comprises login event.
18. The method of claim 13, wherein the metric corresponds to at least one event attribute including at least one of number of logins, login duration, login IP address, or login browser type.
19. The method of claim 18, further comprising:
identifying an average number of logins for a duration using a most recent one of the periodic calculations;
identifying a threshold according to the average;
counting a number of logins during a time period corresponding to the duration using a most recent one of the periodic calculations;
determining whether the count is greater than the determined threshold; and
transmitting an alert responsive to the determination.
20. The method of claim 18, further comprising:
identifying a first trend for a time of day logged in for a group of users of the tenant;
identifying a second trend for a time of day logged in for a user of the group of users; and
determining whether to transmit an alert using the first and second trends.
US14/688,989 2014-09-11 2015-04-16 Extracting and processing metrics from system generated events Pending US20160078120A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201462048961P true 2014-09-11 2014-09-11
US14/688,989 US20160078120A1 (en) 2014-09-11 2015-04-16 Extracting and processing metrics from system generated events

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/688,989 US20160078120A1 (en) 2014-09-11 2015-04-16 Extracting and processing metrics from system generated events

Publications (1)

Publication Number Publication Date
US20160078120A1 true US20160078120A1 (en) 2016-03-17

Family

ID=55454963

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/688,989 Pending US20160078120A1 (en) 2014-09-11 2015-04-16 Extracting and processing metrics from system generated events
US14/688,917 Active 2035-08-23 US10178156B2 (en) 2014-09-11 2015-04-16 Extraction and capture of information from customizable header

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/688,917 Active 2035-08-23 US10178156B2 (en) 2014-09-11 2015-04-16 Extraction and capture of information from customizable header

Country Status (1)

Country Link
US (2) US20160078120A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160357739A1 (en) * 2015-06-02 2016-12-08 Oracle International Corporation Techniques for tenant controlled visualizations and management of files in cloud storage systems
US20170324802A1 (en) * 2016-05-04 2017-11-09 Secureworks Corp. System and Method to Access Aggregated Metric Data in a Computer Network
US20180121678A1 (en) * 2014-10-30 2018-05-03 Pearson Education, Inc. Methods and systems for network-based analysis, intervention, and anonymization
US10182107B2 (en) 2014-09-12 2019-01-15 Oracle International Corporation Multi-tenant application using hierarchical bean factory container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277695B1 (en) * 2016-09-07 2019-04-30 CSC Holdings, LLC Identification of user-intended browsing behavior

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050188222A1 (en) * 2004-02-24 2005-08-25 Covelight Systems, Inc. Methods, systems and computer program products for monitoring user login activity for a server application
US20070143851A1 (en) * 2005-12-21 2007-06-21 Fiberlink Method and systems for controlling access to computing resources based on known security vulnerabilities
US20120005542A1 (en) * 2010-07-01 2012-01-05 LogRhythm Inc. Log collection, structuring and processing
US20140143199A1 (en) * 2011-03-07 2014-05-22 The Boeing Company Global policy framework analyzer
US20150046989A1 (en) * 2013-08-08 2015-02-12 Duo Security, Inc. System and method for verifying status of an authentication device
US20150195303A1 (en) * 2014-01-06 2015-07-09 International Business Machines Corporation Preventing application-level denial-of-service in a multi-tenant system
US20150227598A1 (en) * 2014-02-13 2015-08-13 Amazon Technologies, Inc. Log data service in a virtual environment

Family Cites Families (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608872A (en) 1993-03-19 1997-03-04 Ncr Corporation System for allowing all remote computers to perform annotation on an image and replicating the annotated image on the respective displays of other comuters
US5649104A (en) 1993-03-19 1997-07-15 Ncr Corporation System for allowing user of any computer to draw image over that generated by the host computer and replicating the drawn image to other computers
US7181758B1 (en) 1994-07-25 2007-02-20 Data Innovation, L.L.C. Information distribution and processing system
US7991347B1 (en) 1994-04-07 2011-08-02 Data Innovation Llc System and method for accessing set of digital data at a remote site
US5577188A (en) 1994-05-31 1996-11-19 Future Labs, Inc. Method to provide for virtual screen overlay
GB2300991B (en) 1995-05-15 1997-11-05 Andrew Macgregor Ritchie Serving signals to browsing clients
KR100394515B1 (en) 1995-06-09 2004-07-27 코닌클리케 필립스 일렉트로닉스 엔.브이. From a set of information items way for the user to withdraw a particular item of information and an information processing system
US5715450A (en) 1995-09-27 1998-02-03 Siebel Systems, Inc. Method of selecting and presenting data from a database using a query language to a user of a computer system
US5821937A (en) 1996-02-23 1998-10-13 Netsuite Development, L.P. Computer method for updating a network design
US5831610A (en) 1996-02-23 1998-11-03 Netsuite Development L.P. Designing networks
US6604117B2 (en) 1996-03-19 2003-08-05 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
WO1998038762A2 (en) 1997-02-26 1998-09-03 Siebel Systems, Inc. Determining visibility to a remote database client
AU6336698A (en) 1997-02-26 1998-09-29 Siebel Systems, Inc. Distributed relational database
EP1021775A4 (en) 1997-02-26 2005-05-11 Siebel Systems Inc Method of determining the visibility to a remote databaseclient of a plurality of database transactions using simplified visibility rules
AU6183698A (en) 1997-02-26 1998-09-18 Siebel Systems, Inc. Method of determining visibility to a remote database client of a plurality of database transactions having variable visibility strengths
WO1998038587A1 (en) 1997-02-26 1998-09-03 Siebel Systems, Inc. Method of using a cache to determine the visibility to a remote database client of a plurality of database transactions
WO1998040805A2 (en) 1997-02-27 1998-09-17 Siebel Systems, Inc. Method of synchronizing independently distributed software and database schema
JP2001514776A (en) 1997-02-27 2001-09-11 シーベル システムズ,インコーポレイティド The method of continuous level transport software distribution incorporating local modifications
AU6669198A (en) 1997-02-28 1998-09-18 Siebel Systems, Inc. Partially replicated distributed database with multiple levels of remote clients
US5983227A (en) 1997-06-12 1999-11-09 Yahoo, Inc. Dynamic page generator
US6169534B1 (en) 1997-06-26 2001-01-02 Upshot.Com Graphical user interface for customer information management
US6014647A (en) * 1997-07-08 2000-01-11 Nizzari; Marcia M. Customer interaction tracking
US6560461B1 (en) 1997-08-04 2003-05-06 Mundi Fomukong Authorized location reporting paging system
US5918159A (en) 1997-08-04 1999-06-29 Fomukong; Mundi Location reporting satellite paging system with optional blocking of location reporting
US5873096A (en) 1997-10-08 1999-02-16 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US6236978B1 (en) 1997-11-14 2001-05-22 New York University System and method for dynamic profiling of users in one-to-one applications
US20020059095A1 (en) 1998-02-26 2002-05-16 Cook Rachael Linette System and method for generating, capturing, and managing customer lead information over a computer network
US6732111B2 (en) 1998-03-03 2004-05-04 Siebel Systems, Inc. Method, apparatus, system, and program product for attaching files and other objects to a partially replicated database
US6161149A (en) 1998-03-13 2000-12-12 Groupserve, Inc. Centrifugal communication and collaboration method
US5963953A (en) 1998-03-30 1999-10-05 Siebel Systems, Inc. Method, and system for product configuration
WO2000013122A1 (en) 1998-08-27 2000-03-09 Upshot Corporation A method and apparatus for network-based sales force management
WO2000022551A1 (en) 1998-10-13 2000-04-20 Chris Cheah Method and system for controlled distribution of information over a network
US6601087B1 (en) 1998-11-18 2003-07-29 Webex Communications, Inc. Instant document sharing
US6728960B1 (en) 1998-11-18 2004-04-27 Siebel Systems, Inc. Techniques for managing multiple threads in a browser environment
US6393605B1 (en) 1998-11-18 2002-05-21 Siebel Systems, Inc. Apparatus and system for efficient delivery and deployment of an application
JP2002531890A (en) 1998-11-30 2002-09-24 シーベル システムズ,インコーポレイティド Development tools, methods and systems in a client-server application
WO2000033238A2 (en) 1998-11-30 2000-06-08 Siebel Systems, Inc. Assignment manager
JP2002531896A (en) 1998-11-30 2002-09-24 シーベル システムズ,インコーポレイティド Call center with a smart script
AU2034500A (en) 1998-11-30 2000-06-19 Siebel Systems, Inc. State models for monitoring processes
US7356482B2 (en) 1998-12-18 2008-04-08 Alternative Systems, Inc. Integrated change management unit
US6574635B2 (en) 1999-03-03 2003-06-03 Siebel Systems, Inc. Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components
US20020072951A1 (en) 1999-03-03 2002-06-13 Michael Lee Marketing support database management method, system and program product
US6288717B1 (en) 1999-03-19 2001-09-11 Terry Dunkle Headline posting algorithm
US6907566B1 (en) 1999-04-02 2005-06-14 Overture Services, Inc. Method and system for optimum placement of advertisements on a webpage
US7698160B2 (en) 1999-05-07 2010-04-13 Virtualagility, Inc System for performing collaborative tasks
US8095413B1 (en) 1999-05-07 2012-01-10 VirtualAgility, Inc. Processing management information
US6411949B1 (en) 1999-08-12 2002-06-25 Koninklijke Philips Electronics N.V., Customizing database information for presentation with media selections
US6621834B1 (en) 1999-11-05 2003-09-16 Raindance Communications, Inc. System and method for voice transmission over network protocols
EP1307831A4 (en) 2000-07-11 2007-05-09 Yahoo Inc Online playback system with community bias
US6535909B1 (en) 1999-11-18 2003-03-18 Contigo Software, Inc. System and method for record and playback of collaborative Web browsing session
US6671714B1 (en) 1999-11-23 2003-12-30 Frank Michael Weyer Method, apparatus and business system for online communications with online and offline recipients
US6324568B1 (en) 1999-11-30 2001-11-27 Siebel Systems, Inc. Method and system for distributing objects over a network
US6654032B1 (en) 1999-12-23 2003-11-25 Webex Communications, Inc. Instant sharing of documents on a remote server
US7136860B2 (en) 2000-02-14 2006-11-14 Overture Services, Inc. System and method to determine the validity of an interaction on a network
US6336137B1 (en) 2000-03-31 2002-01-01 Siebel Systems, Inc. Web client-server system and method for incompatible page markup and presentation languages
US6577726B1 (en) 2000-03-31 2003-06-10 Siebel Systems, Inc. Computer telephony integration hotelling method and system
US6732100B1 (en) 2000-03-31 2004-05-04 Siebel Systems, Inc. Database access method and system for user role defined access
US7266502B2 (en) 2000-03-31 2007-09-04 Siebel Systems, Inc. Feature centric release manager method and system
US7730072B2 (en) 2000-04-14 2010-06-01 Rightnow Technologies, Inc. Automated adaptive classification system for knowledge networks
US6665655B1 (en) 2000-04-14 2003-12-16 Rightnow Technologies, Inc. Implicit rating of retrieved information in an information search system
US6434550B1 (en) 2000-04-14 2002-08-13 Rightnow Technologies, Inc. Temporal updates of relevancy rating of retrieved information in an information search system
US6842748B1 (en) 2000-04-14 2005-01-11 Rightnow Technologies, Inc. Usage based strength between related information in an information retrieval system
US6763501B1 (en) 2000-06-09 2004-07-13 Webex Communications, Inc. Remote document serving
US7069231B1 (en) 2000-07-20 2006-06-27 Oracle International Corporation Methods and systems for defining, applying and executing customer care relationship plans
US6768904B2 (en) 2000-10-11 2004-07-27 Lg Electronics Inc. Data communication method using mobile terminal
US6772229B1 (en) 2000-11-13 2004-08-03 Groupserve, Inc. Centrifugal communication and collaboration method
US7581230B2 (en) 2001-02-06 2009-08-25 Siebel Systems, Inc. Adaptive communication application programming interface
USD454139S1 (en) 2001-02-20 2002-03-05 Rightnow Technologies Display screen for a computer
US7310687B2 (en) 2001-03-23 2007-12-18 Cisco Technology, Inc. Methods and systems for managing class-based condensation
US6829655B1 (en) 2001-03-28 2004-12-07 Siebel Systems, Inc. Method and system for server synchronization with a computing device via a companion device
US7174514B2 (en) 2001-03-28 2007-02-06 Siebel Systems, Inc. Engine to present a user interface based on a logical structure, such as one for a customer relationship management system, across a web site
US7363388B2 (en) 2001-03-28 2008-04-22 Siebel Systems, Inc. Method and system for direct server synchronization with a computing device
US20030018705A1 (en) 2001-03-31 2003-01-23 Mingte Chen Media-independent communication server
US20030206192A1 (en) 2001-03-31 2003-11-06 Mingte Chen Asynchronous message push to web browser
US6732095B1 (en) 2001-04-13 2004-05-04 Siebel Systems, Inc. Method and apparatus for mapping between XML and relational representations
US6961766B2 (en) * 2001-04-24 2005-11-01 Oracle International Corp. Method for extracting personalization information from web activity
US7761288B2 (en) 2001-04-30 2010-07-20 Siebel Systems, Inc. Polylingual simultaneous shipping of software
US6728702B1 (en) 2001-06-18 2004-04-27 Siebel Systems, Inc. System and method to implement an integrated search center supporting a full-text search and query on a database
US6782383B2 (en) 2001-06-18 2004-08-24 Siebel Systems, Inc. System and method to implement a persistent and dismissible search center frame
US6711565B1 (en) 2001-06-18 2004-03-23 Siebel Systems, Inc. Method, apparatus, and system for previewing search results
US6763351B1 (en) 2001-06-18 2004-07-13 Siebel Systems, Inc. Method, apparatus, and system for attaching search results
US20030004971A1 (en) 2001-06-29 2003-01-02 Gong Wen G. Automatic generation of data models and accompanying user interfaces
US6724399B1 (en) 2001-09-28 2004-04-20 Siebel Systems, Inc. Methods and apparatus for enabling keyboard accelerators in applications implemented via a browser
US6993712B2 (en) 2001-09-28 2006-01-31 Siebel Systems, Inc. System and method for facilitating user interaction in a browser environment
US6826582B1 (en) 2001-09-28 2004-11-30 Emc Corporation Method and system for using file systems for content management
US7761535B2 (en) 2001-09-28 2010-07-20 Siebel Systems, Inc. Method and system for server synchronization with a computing device
US6978445B2 (en) 2001-09-28 2005-12-20 Siebel Systems, Inc. Method and system for supporting user navigation in a browser environment
US8359335B2 (en) 2001-09-29 2013-01-22 Siebel Systems, Inc. Computing system and method to implicitly commit unsaved data for a world wide web application
US6901595B2 (en) 2001-09-29 2005-05-31 Siebel Systems, Inc. Method, apparatus, and system for implementing a framework to support a web-based application
US7146617B2 (en) 2001-09-29 2006-12-05 Siebel Systems, Inc. Method, apparatus, and system for implementing view caching in a framework to support web-based applications
US7962565B2 (en) 2001-09-29 2011-06-14 Siebel Systems, Inc. Method, apparatus and system for a mobile web client
US7289949B2 (en) 2001-10-09 2007-10-30 Right Now Technologies, Inc. Method for routing electronic correspondence based on the level and type of emotion contained therein
US7062502B1 (en) 2001-12-28 2006-06-13 Kesler John N Automated generation of dynamic data entry user interface for relational database management systems
US6804330B1 (en) 2002-01-04 2004-10-12 Siebel Systems, Inc. Method and system for accessing CRM data via voice
US7058890B2 (en) 2002-02-13 2006-06-06 Siebel Systems, Inc. Method and system for enabling connectivity to a data system
US7672853B2 (en) 2002-03-29 2010-03-02 Siebel Systems, Inc. User interface for processing requests for approval
US7131071B2 (en) 2002-03-29 2006-10-31 Siebel Systems, Inc. Defining an approval process for requests for approval
US6850949B2 (en) 2002-06-03 2005-02-01 Right Now Technologies, Inc. System and method for generating a dynamic interface via a communications network
US7437720B2 (en) 2002-06-27 2008-10-14 Siebel Systems, Inc. Efficient high-interactivity user interface for client-server applications
US8639542B2 (en) 2002-06-27 2014-01-28 Siebel Systems, Inc. Method and apparatus to facilitate development of a customer-specific business process model
US7594181B2 (en) 2002-06-27 2009-09-22 Siebel Systems, Inc. Prototyping graphical user interfaces
US20040010489A1 (en) 2002-07-12 2004-01-15 Rightnow Technologies, Inc. Method for providing search-specific web pages in a network computing environment
US7251787B2 (en) 2002-08-28 2007-07-31 Siebel Systems, Inc. Method and apparatus for an integrated process modeller
US7069497B1 (en) 2002-09-10 2006-06-27 Oracle International Corp. System and method for applying a partial page change
US9448860B2 (en) 2003-03-21 2016-09-20 Oracle America, Inc. Method and architecture for providing data-change alerts to external applications via a push service
US7711680B2 (en) 2003-03-24 2010-05-04 Siebel Systems, Inc. Common common object
US7406501B2 (en) 2003-03-24 2008-07-29 Yahoo! Inc. System and method for instant messaging using an e-mail protocol
JP2006521641A (en) 2003-03-24 2006-09-21 シーベル システムズ,インコーポレイティド Custom common object
US7904340B2 (en) 2003-03-24 2011-03-08 Siebel Systems, Inc. Methods and computer-readable medium for defining a product model
US8762415B2 (en) 2003-03-25 2014-06-24 Siebel Systems, Inc. Modeling of order data
US7685515B2 (en) 2003-04-04 2010-03-23 Netsuite, Inc. Facilitating data manipulation in a browser-based user interface of an enterprise business application
US7412455B2 (en) 2003-04-30 2008-08-12 Dillon David M Software framework that facilitates design and implementation of database applications
US7620655B2 (en) 2003-05-07 2009-11-17 Enecto Ab Method, device and computer program product for identifying visitors of websites
US7409336B2 (en) 2003-06-19 2008-08-05 Siebel Systems, Inc. Method and system for searching data based on identified subset of categories and relevance-scored text representation-category combinations
US20040260659A1 (en) 2003-06-23 2004-12-23 Len Chan Function space reservation system
US7237227B2 (en) 2003-06-30 2007-06-26 Siebel Systems, Inc. Application user interface template with free-form layout
US7694314B2 (en) 2003-08-28 2010-04-06 Siebel Systems, Inc. Universal application network architecture
US7269590B2 (en) 2004-01-29 2007-09-11 Yahoo! Inc. Method and system for customizing views of information associated with a social network user
US7779039B2 (en) 2004-04-02 2010-08-17 Salesforce.Com, Inc. Custom entities and fields in a multi-tenant database system
US7293006B2 (en) * 2004-04-07 2007-11-06 Integrated Project Solutions Llc Computer program for storing electronic files and associated attachments in a single searchable database
US7289976B2 (en) 2004-12-23 2007-10-30 Microsoft Corporation Easy-to-use data report specification
US7747648B1 (en) 2005-02-14 2010-06-29 Yahoo! Inc. World modeling using a relationship network with communication channels to entities
US8209308B2 (en) 2006-05-01 2012-06-26 Rueben Steven L Method for presentation of revisions of an electronic document
US8566301B2 (en) 2006-05-01 2013-10-22 Steven L. Rueben Document revisions in a collaborative computing environment
US9135228B2 (en) 2006-05-01 2015-09-15 Domo, Inc. Presentation of document history in a web browsing application
US7853881B1 (en) 2006-07-03 2010-12-14 ISQ Online Multi-user on-line real-time virtual social networks based upon communities of interest for entertainment, information or e-commerce purposes
US7779475B2 (en) 2006-07-31 2010-08-17 Petnote Llc Software-based method for gaining privacy by affecting the screen of a computing device
US7827208B2 (en) 2006-08-11 2010-11-02 Facebook, Inc. Generating a feed of stories personalized for members of a social network
US8095531B2 (en) 2006-10-03 2012-01-10 Salesforce.Com, Inc. Methods and systems for controlling access to custom objects in a database
US7730478B2 (en) 2006-10-04 2010-06-01 Salesforce.Com, Inc. Method and system for allowing access to developed applications via a multi-tenant on-demand database service
US7945653B2 (en) 2006-10-11 2011-05-17 Facebook, Inc. Tagging digital media
US8082301B2 (en) 2006-11-10 2011-12-20 Virtual Agility, Inc. System for supporting collaborative activity
US8073850B1 (en) 2007-01-19 2011-12-06 Wordnetworks, Inc. Selecting key phrases for serving contextually relevant content
US8161045B2 (en) * 2007-02-01 2012-04-17 The Boeing Company Use of associate memory learning agent technology to identify interchangeable parts in parts catalogs
JP4430091B2 (en) * 2007-08-17 2010-03-10 富士通株式会社 Packet routing control method, packet routing control program, terminal apparatus, and vpn server
US8719287B2 (en) 2007-08-31 2014-05-06 Business Objects Software Limited Apparatus and method for dynamically selecting componentized executable instructions at run time
US20090100342A1 (en) 2007-10-12 2009-04-16 Gabriel Jakobson Method and system for presenting address and mapping information
US8566807B1 (en) * 2007-11-23 2013-10-22 Appcelerator, Inc. System and method for accessibility of document object model and JavaScript by other platforms
US8954500B2 (en) 2008-01-04 2015-02-10 Yahoo! Inc. Identifying and employing social network relationships
US8490025B2 (en) 2008-02-01 2013-07-16 Gabriel Jakobson Displaying content associated with electronic mapping systems
US8504945B2 (en) 2008-02-01 2013-08-06 Gabriel Jakobson Method and system for associating content with map zoom function
US9449333B2 (en) 2008-02-01 2016-09-20 Gabriel Jakobson Online advertising associated with electronic mapping systems
US8014943B2 (en) 2008-05-08 2011-09-06 Gabriel Jakobson Method and system for displaying social networking navigation information
US8032297B2 (en) 2008-05-08 2011-10-04 Gabriel Jakobson Method and system for displaying navigation information on an electronic map
US8646103B2 (en) 2008-06-30 2014-02-04 Gabriel Jakobson Method and system for securing online identities
US8510664B2 (en) 2008-09-06 2013-08-13 Steven L. Rueben Method and system for displaying email thread information
US8661056B1 (en) 2008-11-03 2014-02-25 Salesforce.Com, Inc. System, method and computer program product for publicly providing web content of a tenant using a multi-tenant on-demand database service
TWI393861B (en) * 2009-01-21 2013-04-21 Htc Corp Method, system and computer program product for sharing location information
US8638793B1 (en) * 2009-04-06 2014-01-28 Marvell Israle (M.I.S.L) Ltd. Enhanced parsing and classification in a packet processor
US8504411B1 (en) * 2009-09-14 2013-08-06 Aol Advertising Inc. Systems and methods for online user profiling and segmentation
US8510045B2 (en) 2009-12-22 2013-08-13 Steven L. Rueben Digital maps displaying search-resulting points-of-interest in user delimited regions
US8583587B2 (en) 2010-03-08 2013-11-12 Salesforce.Com, Inc. System, method and computer program product for performing one or more actions utilizing a uniform resource locator
US8925041B2 (en) 2010-04-01 2014-12-30 Salesforce.Com, Inc. System, method and computer program product for performing one or more actions based on a determined access permissions for a plurality of users
US8566654B2 (en) 2010-08-13 2013-10-22 Salesforce.Com, Inc. Debugging site errors by an admin as a guest user in a multi-tenant database environment
US8943002B2 (en) 2012-02-10 2015-01-27 Liveperson, Inc. Analytics driven engagement
US9571342B2 (en) * 2012-02-14 2017-02-14 Inetco Systems Limited Method and system for generating transaction data from network traffic data for an application system
US8769017B2 (en) 2012-02-17 2014-07-01 Zebedo Collaborative web browsing system having document object model element interaction detection
US8756275B2 (en) 2012-02-17 2014-06-17 Zebedo Variable speed collaborative web browsing system
US8769004B2 (en) 2012-02-17 2014-07-01 Zebedo Collaborative web browsing system integrated with social networks
US9848068B2 (en) * 2013-04-16 2017-12-19 Telefonaktiebolaget L M Ericsson (Publ) Method for providing a parser to extract information from fields of a data packet header
US20150066873A1 (en) * 2013-08-30 2015-03-05 Kaladhar Voruganti Policy based deduplication techniques

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050188222A1 (en) * 2004-02-24 2005-08-25 Covelight Systems, Inc. Methods, systems and computer program products for monitoring user login activity for a server application
US20070143851A1 (en) * 2005-12-21 2007-06-21 Fiberlink Method and systems for controlling access to computing resources based on known security vulnerabilities
US20120005542A1 (en) * 2010-07-01 2012-01-05 LogRhythm Inc. Log collection, structuring and processing
US20140143199A1 (en) * 2011-03-07 2014-05-22 The Boeing Company Global policy framework analyzer
US20150046989A1 (en) * 2013-08-08 2015-02-12 Duo Security, Inc. System and method for verifying status of an authentication device
US20150195303A1 (en) * 2014-01-06 2015-07-09 International Business Machines Corporation Preventing application-level denial-of-service in a multi-tenant system
US20150227598A1 (en) * 2014-02-13 2015-08-13 Amazon Technologies, Inc. Log data service in a virtual environment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182107B2 (en) 2014-09-12 2019-01-15 Oracle International Corporation Multi-tenant application using hierarchical bean factory container
US20180121678A1 (en) * 2014-10-30 2018-05-03 Pearson Education, Inc. Methods and systems for network-based analysis, intervention, and anonymization
US10083321B2 (en) * 2014-10-30 2018-09-25 Pearson Education, Inc. Methods and systems for network-based analysis, intervention, and anonymization
US20160357739A1 (en) * 2015-06-02 2016-12-08 Oracle International Corporation Techniques for tenant controlled visualizations and management of files in cloud storage systems
US20170324802A1 (en) * 2016-05-04 2017-11-09 Secureworks Corp. System and Method to Access Aggregated Metric Data in a Computer Network

Also Published As

Publication number Publication date
US20160080461A1 (en) 2016-03-17
US10178156B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
US8566654B2 (en) Debugging site errors by an admin as a guest user in a multi-tenant database environment
US8271641B2 (en) Method and system for governing resource consumption in a multi-tenant system
US9294719B2 (en) Systems, methods, and apparatuses for implementing in-app live support functionality
US9785782B2 (en) Monitoring system and shared access permissions for a plurality of users
US8370848B2 (en) Method and system for providing a client access to an external service via an application services platform
US8326674B2 (en) Method and system for load balancing for determining a sales forecast by selecting a synchronous or asynchronous process based on a type of event affecting the sales forecast
US8370849B2 (en) API method and system for providing access to an external service via an application services platform
US9268605B2 (en) Mechanism for facilitating sliding window resource tracking in message queues for fair management of resources for application servers in an on-demand services environment
US8738970B2 (en) Generating performance alerts
US9628493B2 (en) Computer implemented methods and apparatus for managing permission sets and validating user assignments
US8903943B2 (en) Integrating cloud applications and remote jobs
US9264391B2 (en) Computer implemented methods and apparatus for providing near real-time predicted engagement level feedback to a user composing a social media message
US9438615B2 (en) Security risk management
US8417723B1 (en) System, method and computer program product for enabling access to a resource of a multi-tenant on-demand database service utilizing a token
US20140304054A1 (en) System and method for handling gamification fraud
US8713165B2 (en) Method and system for providing status of a machine
US20100235495A1 (en) Methods and systems for reducing a load on a multi-tenant database
US20170139992A1 (en) Dynamic data management
US20130254397A1 (en) Social network communities
US8973106B2 (en) Computer implemented methods and apparatus for providing permissions to users in an on-demand service environment
US20130007049A1 (en) Computer implemented systems and methods for providing a mobile social enterprise interface
US20130007126A1 (en) Computer implemented systems and methods for visualizing social connections
US20120041921A1 (en) Mechanism for facilitating efficient business rules management and data processing
US20190042353A1 (en) Automatic anomaly detection and resolution system
US8738603B2 (en) Metrics-based accessing of social threads

Legal Events

Date Code Title Description
AS Assignment

Owner name: SALESFORCE.COM, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRADEEP, AAKASH;TORMAN, ADAM;WARSHAVSKY, ALEX;AND OTHERS;SIGNING DATES FROM 20150402 TO 20150404;REEL/FRAME:035431/0028

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER