US20150344220A1 - Pad for use in a coffee maker - Google Patents

Pad for use in a coffee maker Download PDF

Info

Publication number
US20150344220A1
US20150344220A1 US14/586,159 US201414586159A US2015344220A1 US 20150344220 A1 US20150344220 A1 US 20150344220A1 US 201414586159 A US201414586159 A US 201414586159A US 2015344220 A1 US2015344220 A1 US 2015344220A1
Authority
US
United States
Prior art keywords
sheet
pad
fluid
plastic
beverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/586,159
Other versions
US11000146B2 (en
Inventor
Johannes Cornelis Sanders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Douwe Egberts BV
Original Assignee
Koninklijke Douwe Egberts BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Douwe Egberts BV filed Critical Koninklijke Douwe Egberts BV
Assigned to KONINKLIJKE DOUWE EGBERTS B.V. reassignment KONINKLIJKE DOUWE EGBERTS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANDERS, JOHANNES CORNELIS
Publication of US20150344220A1 publication Critical patent/US20150344220A1/en
Application granted granted Critical
Publication of US11000146B2 publication Critical patent/US11000146B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/804Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package
    • B65D85/8043Packages adapted to allow liquid to pass through the contents
    • B65D85/8046Pods, i.e. closed containers made only of filter paper or similar material
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/06Filters or strainers for coffee or tea makers ; Holders therefor
    • A47J31/0657Filters or strainers for coffee or tea makers ; Holders therefor for brewing coffee under pressure, e.g. for espresso machines
    • A47J31/0668Filters or strainers for coffee or tea makers ; Holders therefor for brewing coffee under pressure, e.g. for espresso machines specially adapted for cartridges
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/40Beverage-making apparatus with dispensing means for adding a measured quantity of ingredients, e.g. coffee, water, sugar, cocoa, milk, tea
    • A47J31/407Beverage-making apparatus with dispensing means for adding a measured quantity of ingredients, e.g. coffee, water, sugar, cocoa, milk, tea with ingredient-containing cartridges; Cartridge-perforating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/804Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package
    • B65D85/8043Packages adapted to allow liquid to pass through the contents
    • B65D85/8061Filters

Definitions

  • the invention relates to a pad for use in a coffee-maker for preparing 1 or 2 cups of beverage, provided with an envelope with an inner space which is filled with a beverage preparation product for preparing the beverage, wherein the beverage preparation product comprises a product to be extracted with a fluid and/or possibly a product soluble in a fluid, wherein the envelope is formed by a first disc-shaped sheet and a second disc-shaped sheet which are interconnected adjacent their longitudinal edges, wherein the interconnected parts of the first sheet and the second sheet form a sealing seam and wherein the first sheet and the second sheet each form a filter which can pass the fluid and which forms a barrier to the beverage preparation product, wherein, in use, with the coffee-maker a fluid such as water is supplied, under pressure, to the pad so that the fluid is pressed through the pad for obtaining a beverage which thereupon leaves the pad.
  • the invention further relates to a method for manufacturing such a pad.
  • the invention furthermore relates to a system provided with a coffee-maker and such a pad, wherein the coffee-maker is provided with a holder for receiving the pad, a cover for closing off the holder, and fluid means for generating a fluid flow under pressure, wherein the holder is provided with at least one beverage outflow opening and the cover is provided with at least one fluid inflow opening which are in fluid communication with the fluid means for supplying the fluid flow to the fluid inflow openings so that the fluid is supplied under pressure to the first sheet of the pad so that the fluid is pressed through the pad for the preparation of the beverage in the pad, wherein the beverage leaves the pad via the second sheet to proceed to leave the holder via the at least one beverage outflow opening.
  • the invention relates to the use of such a pad and a method for preparing a beverage with the pad.
  • a pad such a system and such a use and method are known per se from EP 0 904 717 A1.
  • the beverage preparation product consists of ground coffee.
  • the first sheet and the second sheet are each made of filtering paper. The invention contemplates the provision of an improved pad.
  • the second sheet is of form-retaining design.
  • the invention is based on the insight that the known pad, when it has been placed in a holder of the coffee-maker by a user, may sometimes be slightly deformed. This can happen because the known pad is of flexible and supple design and, for instance, may be taken from its package in slightly deformed condition. If the known pad has been placed in the holder, a user should take care that the pad in the holder has its original shape so that the second sheet of the pad extends over a bottom of the holder up to the upstanding sidewall of the holder. If he doesn't, the risk of bypass is increased.
  • Bypass means that the fluid being supplied under pressure to the first sheet of the pad will flow in part around the pad to a beverage outflow opening which is provided in a bottom of the holder on which the pad rests. All this has as a consequence that not the complete amount of fluid being supplied to the first sheet of the pad will flow to the beverage outflow opening of the holder via the pad. A consequence is that the beverage which is received in, for example, a cup, is diluted with the fluid.
  • the invention contemplates facilitating the use of a pad.
  • the second sheet is of form-retaining design, the pad can be placed in the holder without relevant deformation which increases the risk of bypass.
  • the fluid being forced through the pad will choose the path of least resistance, the fluid will preferentially flow through the pad precisely in this area, with the result that fewer ingredients of the beverage preparation product will be incorporated in the finished beverage than if the thickness of the layer of the beverage preparation product extending between the first and second sheet were more uniform.
  • an anti-drip effect occurs. That is, directly after use the pad can be taken from a machine while the chance that drops fall off the pad has been reduced.
  • the second sheet also remains form-retaining when a fluid such as the beverage is flowing through it, while the fluid can have a temperature of at most 80 degrees Celsius, more particularly at most 90 degrees Celsius, and preferably at most 99 degrees Celsius.
  • a fluid such as the beverage is flowing through it
  • the fluid can have a temperature of at most 80 degrees Celsius, more particularly at most 90 degrees Celsius, and preferably at most 99 degrees Celsius.
  • the pad can more easily be removed from the holder by the user in that the user has a better grip of the pad.
  • the second sheet is made of a thermoplastic material.
  • thermoplastic material is a material that becomes more plastic as the temperature rises. Preferably, it holds then that the second sheet also remains form-retaining when it comes into contact with a fluid having a temperature of 80 degrees Celsius, more particularly of 90 degrees Celsius and preferably of 99 degrees Celsius.
  • the second sheet is made of a nonwoven material.
  • the nonwoven material consists of a plastic for at least 50-70 percent by weight, excluding 70 percent by weight or for at least 70 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments.
  • the nonwoven material in order for the second sheet to be form-retaining, it holds here on balance, in particular, that the nonwoven material consists of a plastic for at least 50 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments.
  • the nonwoven material consists of a plastic for at least 60-70 percent by weight, excluding 70 percent by weight, or for at least 70 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments.
  • the nonwoven material in order for the second sheet to be form-retaining, it holds here on balance, more in particular, that the nonwoven material consists of a plastic for at least 60 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments.
  • the nonwoven material consists of a plastic for at least 70 percent by weight, preferably for at least 80 percent by weight, and more preferably for at least 90 percent by weight.
  • the nonwoven material can here be present in a form of fibers and/or in a form of filaments.
  • the second sheet consists of a plastic for 50-70 percent by weight excluding 70 percent by weight or for 70-100 percent by weight.
  • the second sheet consists of a plastic for 50-100 percent by weight.
  • the plastic consists of plastic fibers and/or plastic filaments.
  • the second sheet consists of a plastic for 60-70 percent by weight excluding 70 percent by weight or for 70-100 percent by weight. On balance it holds therefore that more preferably the second sheet consists of a plastic for 60-100 percent by weight.
  • the plastic consists of plastic fibers and/or plastic filaments.
  • the second sheet consists of a plastic for 70-100 percent by weight, in particular consists of plastic for 75-95 percent by weight and more in particular consists of plastic for 80-95 percent by weight.
  • the plastic consists of plastic fibers and/or plastic filaments.
  • nonwoven material can form a good fluid sealing with the holder when the nonwoven material is moist as a result of the supply of the fluid.
  • the nonwoven material is made of a plastic at least for a part, it may typically have been made form-retaining through a heat treatment.
  • the plastic can consist, for example, of polymers which comprise PE, PET, PETP, coPET, LLDPE, CPP, PLA and/or PP.
  • the plastic is present in the nonwoven material in the form of, for instance, plastic fibers and/or plastic filaments.
  • the second sheet is furthermore provided with cellulose fibers and/or cellulose filaments.
  • the second sheet consists of the above-mentioned plastic fibers and/or plastic filaments and the cellulose fibers and/or cellulose filaments.
  • the nonwoven material can thus consist of a combination of plastic fibers and/or plastic filaments and cellulose fibers and/or cellulose filaments.
  • the cellulose fibers are covered with a plastic coating.
  • An advantage of the embodiments mentioned is that the second sheet has the optical properties of filtering paper more, while yet being form-retaining. This last may be so because, measured in percents by weight, more plastic or plastic fibers and/or plastic filaments are present than cellulose fibers and/or cellulose filaments, while, in particular, the nonwoven material has undergone a heat treatment to increase form retention.
  • the density of the second sheet is in the range of 15-60 g/m2 or in the range of 60-200 g/m2 excluding 60 g/m2, preferably 70-150 g/m2 and more preferably 90-120 g/m2. At these densities, the form retention concerned can be realized well.
  • the second sheet is made of a polyester fiber, in particular of SmashTM material.
  • the second sheet is made of SMASHTM 150 g/m2.
  • the second sheet is made of Polylactic Acid (PLA) fibers.
  • PLA Polylactic Acid
  • the second sheet is made of PLA 70-100 g/m2.
  • the second material is made of 100% Polylactic Acid (PLA) fibers and possibly derivatives. Owing to this, the second sheet is at least substantially completely biodegradable after use.
  • PLA Polylactic Acid
  • a form retention can for instance be defined as follows.
  • the form retention of the second sheet according to a test is expressed in a force, measured during the test, that is exerted on the second sheet, while the test is carried out on the second sheet as such, that is, on the pad without the first sheet and the beverage preparation product but with preservation of its shape such as when the second sheet forms part of the pad.
  • the second sheet as such that is, the pad without the first sheet and the beverage preparation product, is laid on a horizontal surface, such that the second sheet is supported by its longitudinal edge on the horizontal surface, the horizontal surface provided with an elongated groove having a width of 30 mm and the second sheet, symmetrically with respect to the groove, overlying the groove and supported on opposite sides of the groove on the horizontal surface, while in carrying out the test use is made of a knife having a length corresponding to the diameter of the pad, a cutting face of the knife having a thickness of 3 mm and a length direction of the cutting face extending in horizontal direction in a length direction of the groove, wherein for testing, the knife from a position above the pad is moved down in vertical direction with a constant speed of 100 mm/minute, a center of the cutting face situated, viewed in vertical direction, above a center of gravity of the second sheet, and wherein from the moment that the knife touches the second sheet the resistance in units Newton is measured that the knife experiences as a result of the de
  • the highest resistance measured according to the test that is, the highest measured force in Newton, is in the range of 0.2-4 Newton, and/or the highest measured force in the test is greater than 1 Newton.
  • the thickness of a sheet is defined according to NEN-EN-ISO 53-2011.
  • the thickness of the second sheet is in the range of 50-400 or 400-500 micrometer ( ⁇ m) excluding 400 micrometer, hence on balance in the range of 50-500 micrometer, preferably in the range of 100-500 micrometer, preferably in the range of 110-350 micrometer, more preferably in the range of 150-300 micrometer.
  • the second sheet is not too heavy and on the other hand also that the second sheet is well permeable to the fluid.
  • a pressure drop across the beverage preparation product is greater than a pressure drop across the second sheet, in particular 10 times greater, more particularly 20 times greater.
  • the thickness of the first sheet can be, for example, 1.4-10 times smaller than the thickness of the second sheet.
  • the first sheet is of flexible design.
  • the first sheet may be made of filtering paper known per se.
  • the first sheet is provided with at least 70% of cellulose fibers and/or cellulose filaments, more preferably with at least 80% of cellulose fibers and/or cellulose filaments, still more preferably with at least 90% of cellulose fibers and/or cellulose filaments, while possibly for the rest the first sheet is made of plastic polymers of a kind as mentioned above, in particular in the form of plastic fibers and/or plastic filaments.
  • the first sheet preferably comprises less than 30 percent of plastic polymers.
  • the first sheet may also be made from PLA for 100%.
  • the first sheet can consist of PLA and Paper, for example, 25% PLA and 75% Paper. These polymers may be of a same kind as has been discussed for the second sheet. It is also possible, however, that the first sheet is of form-retaining design and is preferably made of a same material as the second sheet.
  • first sheet and the second sheet are manufactured from a same sheet or same sheets. If the first sheet and the second sheet have undergone a heat treatment for making the sheet form-retaining, in that case, preferably, the heat treatment will also be the same, so that the first sheet and the second sheet have the same properties.
  • the part of the second sheet that is situated within the contours of the sealing seam is of dish-shaped design, while, in particular, the first sheet is of flat design.
  • the system according to the invention is, to that end, provided with a coffee-maker which is provided with a holder for receiving the pad, a cover for closing off the holder, and fluid means for generating a fluid flow under pressure, wherein the holder is provided with at least one beverage outflow opening and the cover is provided with at least one fluid inflow opening which are in fluid communication with the fluid means for supplying the fluid flow to the fluid openings so that the fluid is supplied under pressure to the first sheet of the pad so that the fluid is pressed through the pad for the preparation of the beverage in the pad, the beverage leaving the pad via the second sheet to proceed to leave the holder via the at least one beverage outflow opening.
  • the holder is provided with a bowl-shaped inner space, which is bounded by the bottom and an upstanding sidewall of the holder, wherein the bottom consists of an outer horizontally directed ring-shaped bottom part which adjoins the sidewall and an inner dish-shaped bottom part, wherein the dish-shaped bottom part adjacent the ring-shaped bottom part slopes downwards in a direction directed away from the sidewall and wherein the at least one outflow opening is provided in the dish-shaped bottom part.
  • the pad rests on the bottom, while the second sheet extends along the bottom to near the upstanding edge.
  • the sealing seam of the pad then rests on the ring-shaped bottom part.
  • grooves are provided which form a fluid path to the at least one beverage outflow opening, while the grooves extend exclusively under the beverage preparation product in the pad.
  • the portion of the bottom that is not provided with grooves, more particularly the ring-shaped bottom part, can then form a fluid sealing with that portion of the second sheet that rests on said areas of the bottom when the pad becomes moist through the fluid.
  • the at least one outflow opening is provided with a nozzle for generating a jet of the beverage.
  • air can be beaten into the prepared beverage for obtaining a beverage with a fine-bubble foam layer when it has been received in, for example, a cup.
  • the system may for instance be provided with an impact surface impacted by the jet for beating air into the beverage to obtain a beverage with a fine-bubble foam layer.
  • the fluid is supplied to the first sheet with a pressure of 0.9 to 1.5 bar above atmospheric pressure.
  • a beverage with a good fine-bubble foam layer can be obtained that is comparable to beverages that are prepared under high pressure, as is the case with a coffee bed through which hot water is caused to flow under a pressure in excess of 10 bar.
  • the pad according to the invention is filled with a beverage preparation product for preparing beverage, the beverage preparation product comprising a product to be extracted with a fluid (and/or a product soluble in a fluid).
  • the product to be extracted with a fluid can consist of, for example, ground coffee or tea-leaves.
  • a product soluble in a fluid can consist of, for example, milk powder, chocolate milk powder and the like.
  • the system is further provided with a known coffee pad (such as a prior art coffee pad as defined in EP 904 717 A1) provided with an inner space which is filled with ground coffee, wherein the inner space is formed by a top sheet and a bottom sheet which are interconnected adjacent their longitudinal edges, wherein the top sheet and the bottom sheet also form an outer side of the pad and are each made of flexible filtering paper and wherein the coffee pad and the holder are tailored to each other so that the coffee pad can be received in the holder for preparing coffee, such that, in use, the fluid is supplied under pressure to the top side of the pad and is pressed through the pad so that the fluid flows through the top sheet, whereby in the pad a coffee extract is formed which proceeds to leave the pad via the bottom sheet and wherein the coffee extract proceeds to flow out of the holder via the beverage outflow opening of the holder.
  • a user can therefore use, as desired, the known coffee pad and the pad with the form-retaining second sheet in one and
  • FIG. 1 shows a possible embodiment of a pad according to the invention
  • FIG. 2 shows an embodiment of a system according to the invention which is provided with the pad according to FIG. 1 and a coffee-maker;
  • FIG. 3 shows a top plan view of a holder of the coffee-maker according to FIG. 2 ;
  • FIG. 4 shows an embodiment of the system according to FIG. 2 which is further provided with a flexible pad of filtering paper;
  • FIGS. 5 a - 5 f show schematically a method for making the pad as discussed above;
  • FIG. 6 shows an elevational view of the second sheet of a possible embodiment of the pad according to the invention.
  • FIG. 7.1 shows a side elevational view of an apparatus for determining a form retention of a second sheet of a pad
  • FIG. 7.2 shows a view according to 7 . 2 of FIG. 7.1 ;
  • FIG. 7.3 shows a view according to 7 . 3 of FIG. 7.1 ;
  • FIG. 7.4 shows a side elevational view similar to FIG. 7.1 at the moment that a knife is just beginning to touch the pad;
  • FIG. 7.5 shows a side elevational view similar to FIG. 7.1 when the knife has reached a lowest position
  • FIG. 7.6 shows a curve of a measured force during the test.
  • a pad for use in a coffee-maker is shown.
  • the pad is of a type intended for preparing one or two cups of beverage.
  • a cup of beverage can consist, for instance, of 20-200 ml of beverage, more particularly of 20-180 ml of beverage.
  • the pad 1 is provided with an envelope 2 A, 2 B with an inner space 4 which is filled with a beverage preparation product 6 which is shown in hatched representation in the drawing. In this example, it holds that the envelope bounds the inner space.
  • the beverage preparation product is intended for preparing a beverage.
  • the beverage preparation product comprises a product to be extracted with a fluid and/or possibly a product soluble in a fluid.
  • the beverage preparation product comprises exclusively a product to be extracted with a fluid, more particularly, this concerns ground coffee.
  • the envelope is formed by a first disc-shaped sheet 2 A and a second disc-shaped sheet 2 B which are interconnected adjacent their longitudinal edges 8 .
  • the interconnected parts of the first sheet 2 A and the second sheet 2 B form a sealing seam 10 .
  • the sealing seam therefore has the shape of a ring.
  • the first sheet and the second sheet each form a filter which can pass a fluid and which forms a barrier to the beverage preparation product.
  • the second sheet 2 B is of form-retaining design.
  • the form retention of the second sheet, according to a test, is expressed in a force, measured during the test, which is exerted on the second sheet, while the test is carried out on the second sheet as such, that is, on the pad without the first sheet and the beverage preparation product; see FIGS. 7 . 1 - 7 . 3 .
  • the second sheet 2 B as such that is, the pad without the first sheet and the beverage preparation product, but with preservation of its shape such as when the second sheet forms part of the pad, is laid on a horizontal surface 100 , such that the second sheet is supported by its longitudinal edge 8 on the horizontal surface, while the horizontal surface is provided with an elongated groove 102 which has a width a of 30 mm, and while the second sheet, symmetrically with respect to the groove, overlies the groove and on opposite sides of the groove is supported on the horizontal surface.
  • a knife 104 having a length/which corresponds to the diameter D of the pad.
  • a cutting face 106 of the knife has a thickness of 3 mm.
  • a length direction L of the cutting face 106 extends in horizontal direction in a length direction L of the groove.
  • the knife from a position above the pad, is moved down in vertical direction V with a constant speed v of 100 mm/minute, while a center M of the cutting face is situated, viewed in vertical direction, above a center of gravity Z of the second sheet. Because the second sheet has the shape of a disc with a center P, this center P corresponds to the center of gravity mentioned. Moving the knife down is carried out with a load cell 108 . Prior to carrying out the test, the longitudinal edge 8 lies wholly fittingly against the surface 100 . From the moment that the knife touches the second sheet ( FIG.
  • the resistance in units Newton is measured that the knife experiences as a result of the deforming of the pad by the knife as the knife moves down.
  • the force is measured that the knife experiences from the second sheet as the knife moves down. Before the knife touches the second sheet, this force is zero. Thereupon this force starts to run up. Moving down is continued until the cutting face of the knife is in the groove at 12 mm depth b with respect to the horizontal surface (see FIG. 7.5 ).
  • a highest resistance or force measured with the load cell 108 is the measure of the bending stiffness of the second sheet. This highest resistance Fmax is measured in Newton.
  • the second sheet will first deform elastically. Thereafter, upon further downward movement, the second sheet is deformed.
  • the measured greatest force typically corresponds with the moment just before which the second sheet buckles and hence yields under the load of the knife. After buckling the force can decrease again.
  • the force is measured that the knife experiences as a result of the pad deforming.
  • the measured greatest force is preferably in the range of 0.2-4 Newton, and/or is preferably greater than 1 Newton.
  • the second sheet also remains form-retaining when a fluid such as the beverage and/or water is caused to flow through it, while the fluid can have a temperature of at most 80 degrees Celsius. In other words, when the fluid has a temperature that can run up to 80 degrees Celsius, the second sheet keeps the form-retaining properties mentioned.
  • the second sheet remains form-retaining when a fluid is caused to flow through it, while the fluid can have a temperature of at most 90 degrees Celsius and preferably at most 99 degrees Celsius.
  • the second sheet is made of a thermoplastic material.
  • a thermoplastic material is a material that becomes more plastic as the temperature rises. Accordingly, it holds in this example that the second sheet also remains form-retaining when it comes into contact with a fluid such as a beverage and/or hot water that has a temperature of 80 degrees Celsius. Because a thermoplastic material is involved here, it will also hold that the sheet remains form-retaining when it comes into contact with a fluid having a temperature that is lower than 80 degrees Celsius.
  • the second sheet also remains form-retaining when it comes into contact with a fluid of 90 degrees Celsius and preferably of 99 degrees Celsius.
  • a fluid of 90 degrees Celsius and preferably of 99 degrees Celsius is a second sheet that is made of a thermoplastic material.
  • the second sheet is made of a nonwoven material.
  • This nonwoven material in this example, is made of a plastic for at least 50 percent by weight and preferably for at least 60 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments. More preferably, it holds that the nonwoven material is made from a plastic for at least 70 percent by weight. In particular, it holds that the nonwoven material consists of the plastic for at least 80 percent by weight, and more preferably for at least 90 percent by weight. On the other hand, it holds preferably that the nonwoven material consists of a plastic for 50-100 percent by weight, more preferably for 60-100 percent by weight. Still more preferably, it holds that the nonwoven material consists of the plastic for 70-100 percent by weight, in particular consists of a plastic for 75-95 percent by weight and still more in particular consists of plastic for 80-95 percent by weight.
  • the plastic comprises polymers of PLA, PETP and/or LLDPE. More in general, it holds that plastics and combinations thereof are possible such as PE, PET, PETP, coPET, LLDPE, CPP, PLA and/or PP.
  • the nonwoven material has been made form-retaining through a heat treatment.
  • the sheet-form material that has been made of the respective plastic is brought into the required shape such as it is shown for the second sheet 2 B, after which the second sheet undergoes a heat treatment so that the second sheet after cooling becomes form-retaining.
  • the second sheet is provided with cellulose fibers and/or cellulose filaments.
  • the second sheet comprises a combination of the above-mentioned plastics and cellulose fibers and/or filaments.
  • the nonwoven material is provided with the cellulose fibers and/or the cellulose filaments.
  • this nonwoven material consists of the plastic mentioned for at least 50 percent by weight, it will hold that the nonwoven material furthermore consists of cellulose for at most 50 percent by weight. If this nonwoven material, as discussed above, consists of the above-mentioned plastic for at least 60 or at least 70 percent by weight, it will hold that the nonwoven material furthermore consists of cellulose for at most 40 or 30 percent by weight, respectively.
  • the nonwoven material therefore comprises preferably a combination of plastic and cellulose fibers and/or filaments.
  • the plastic according to the invention, preferably consists of plastic fibers and/or filaments. In this example, these plastic fibers and/or plastic filaments are part of the nonwoven material.
  • the plastic is present in the second sheet in the form of a coating on the cellulose fibers and/or the cellulose filaments.
  • these plastic-coated fibers and/or plastic-coated filaments are then part of the nonwoven material.
  • the nonwoven material consists for a greater proportion of percents by weight of the plastic mentioned than of cellulose fibers and/or filaments.
  • the density of the second sheet is in the range of 15-60 g/m2 or in the range of 60-150 g/m2 excluding 60 g/m2, that is, on balance in the range of 15-150 g/m2.
  • the density of the second sheet is in the range of 70-130 g/m2, more preferably in the range of 90-120 g/m2.
  • the thickness of the second sheet in this example is in the range of 50-600 micrometer.
  • the thickness is in the range of 100-500 micrometer, more particularly in the range of 150-300 micrometer.
  • the thickness mentioned is schematically denoted in FIG. 1 and in FIG. 4A with the letter h.
  • the second sheet within the contours of the sealing seam is designed to be homogeneously permeable to a fluid such as water. Also, it holds in this example that the second sheet within the contours of the sealing seam comprises a smoothly running inner and outer surface.
  • the first sheet is of flexible design.
  • the first sheet is made of filtering paper known per se.
  • the first sheet is provided with at least 70 percent of cellulose fibers and/or cellulose filaments.
  • the residual portion of the first sheet may again be made of the plastics and/or plastic fibers and/or plastic filaments and/or plastic coatings mentioned in the context of the second sheet.
  • the first sheet is provided with at least 80 percent by weight of cellulose, more preferably with at least 90 percent by weight of cellulose.
  • the first sheet comprises less than 30 percent by weight of plastic polymers, preferably of a same kind as mentioned in the context of the second sheet.
  • the thickness of the first sheet is, for example, 1.4-10 times smaller than the thickness of the second sheet.
  • the thickness mentioned is schematically denoted in FIG. 1 with the letter h′.
  • the part of the second sheet that is within the contours of the sealing seam is of dish-shaped design.
  • the first sheet is of flat design.
  • the part of the second sheet that is within the contours of the sealing seam has a diameter denoted with d.
  • the diameter of the whole pad is denoted with D in FIG. 2 .
  • the ring-shaped sealing seam 10 has a diameter of (D ⁇ d)/2.
  • D is approximately 74.4 mm and d is approximately 61 mm.
  • Other dimensions are conceivable for D.
  • D can be, for instance, in the range of 45-90 mm, preferably 70-80 mm, more preferably 73-76 mm, in particular approximately 74.4 mm.
  • the second sheet can comprise a foil and/or consist of a foil which is provided with a multiplicity of outflow openings and is made of a plastic, comprising plastic polymers.
  • the plastic polymers can comprise PE, PET, PETP, coPET, LLDPE, CPP, PLA and/or PP.
  • the second sheet can then comprise a first layer which consists at least substantially of PETP and a second layer which consists at least substantially of CPP.
  • FIG. 2 a system is shown in which the pad of FIG. 1 is used.
  • the system is provided with a coffee-maker 14 which is provided with a holder 16 for receiving the pad 1 . Further, the coffee-maker is provided with a cover 18 for closing off the holder 16 .
  • the coffee-maker is furthermore provided with fluid means 20 , 22 for generating a fluid flow under pressure.
  • these fluid means consist of a pump 20 and a storage vessel 22 which is filled with a fluid, in this example with hot water.
  • the temperature of the water can be, for example, 70-98 degrees Celsius.
  • the storage vessel 22 is provided with a heating element 24 .
  • the storage vessel 22 itself in turn may be filled from a larger storage vessel, which comprises cold water.
  • the pump 20 in use, supplies hot water via a duct 26 to an inner space 28 of the cover 18 .
  • a bottom 30 of the cover is provided with a multiplicity of inflow openings 32 .
  • the holder 16 is provided with a bowl-shaped inner space 36 which is bounded by a bottom 34 of the holder and an upstanding sidewall 38 of the holder.
  • the bottom consists of an outer horizontally directed ring-shaped bottom part 40 which adjoins the sidewall 38 .
  • the bottom comprises an inner dish-shaped bottom part 42 , while the dish-shaped bottom part adjacent the ring-shaped bottom part slopes downwards in a direction directed away from the sidewall, to the inside of the holder.
  • the ring-shaped bottom part is provided with an outer edge 41 which adjoins the sidewall 38 and an inner edge 43 which adjoins the dish-shaped bottom part 42 .
  • the bottom is provided with at least one outflow opening 44 .
  • This outflow opening in this example is located in the dish-shaped bottom part 42 .
  • FIG. 2 it holds that the pad 1 rests on the bottom 34 , with the second sheet extending along the bottom to near the upstanding sidewall 38 .
  • the sealing seam 10 of the pad then rests on the ring-shaped bottom part 40 .
  • the second sheet has a shape that corresponds to the shape of the bottom of the holder.
  • the second sheet here has a smoothly running inner and outer surface within the sealing seam.
  • grooves 46 are provided in the dish-shaped bottom part 42 .
  • the grooves extend exclusively under the beverage preparation product 6 in the pad.
  • the grooves 46 are formed by a multiplicity of projections 54 of the bottom. Between the upstanding projections 54 , the respective grooves are formed.
  • the grooves may also be differently formed, for instance as slots provided in the bottom and extending, for instance, in radial direction towards the outflow opening 44 .
  • the bottom is at least partly of smooth design and is made of a plastic and/or metal.
  • the upper side of the tops are smooth, just like the rest of the bottom.
  • the beverage preparation product is ground coffee. As can be properly seen, the ground coffee 6 forms a coffee bed.
  • the grooves are under the coffee bed but also within the contours of the coffee bed, i.e., within the contours of the positions where the beverage preparation product is situated in the pad.
  • the dish-shaped bottom part comprises an inner flat bottom part which is denoted with d′ in FIG. 2 .
  • the grooves extend exclusively in this inner bottom part d′ which is flat.
  • the at least one outflow opening 44 is provided with a nozzle 46 for generating a jet of the beverage as will be further elucidated hereinafter.
  • the system is further provided with an impact member 50 which, in use, is impacted by a jet of the beverage made. The working of the system described up to this point is as follows.
  • a user will first of all remove the cover 18 for placing the pad 1 of FIG. 1 in the holder 16 of FIG. 2 . Because the pad is provided with the second sheet 2 B which is form-retaining, the pad will of itself slide into the right position as the pad is positioned in the bottom. The pad is, as it were, self-locating and ends up in the position as shown in FIG. 2 . After this, the holder can be closed off with the cover as shown in FIG. 2 . Thereupon a user operates the control unit 52 of the coffee-maker 14 . The result is that the control unit 52 activates the pump 20 . As a result, hot water is supplied from the storage vessel 22 via the duct 26 to the inner space 28 of the cover 18 .
  • This water will leave the cover 18 and flow into the holder via the inflow openings 32 .
  • the consequence is that the water is supplied under pressure from the upper side of the pad to the first sheet of the pad.
  • the pressure in this example is 1.1 bar above atmospheric pressure.
  • the hot water will then penetrate via the first sheet 2 A into the inner space of the pad.
  • the hot water comes into contact with the ground coffee so that the coffee beverage is formed.
  • the coffee beverage leaves the coffee pad via the second sheet 2 B.
  • the second sheet 2 B becoming moist, it will form a sealing with the bottom 34 , there where there are no grooves. There where the grooves are, the beverage will leave the pad.
  • bypass is avoided.
  • the hot water forms channels extending in vertical direction through the coffee bed. Such channels would preclude an optimal and efficient extraction of the ground coffee. Since, in addition, the grooves extend in a flat part of the bottom, this enables the second sheet to properly abut the bottom, so that it's the grooves that determine where the beverage can flow out of the pad.
  • the beverage proceeds to flow via the grooves to the outflow opening 44 . Because the outflow opening 44 is provided with a nozzle 47 , while moreover it holds that the fluid is supplied to the pad under pressure, the coffee beverage will be formed into a jet that impacts the impact surface 50 . As a result, the beverage will be atomized in a chamber 62 of the holder which is open at its underside 64 .
  • the cover is provided with a sealing ring 60 which seals fluid-tightly against the upstanding sidewall 38 of the holder. It is also possible, however, that the upstanding sidewall 38 is provided with the sealing ring, this sealing ring then sealing against the cover 18 .
  • the second sheet is of form-retaining design. It is also possible, however, that the first sheet is also of form-retaining design. Preferably, it holds here that the first sheet is made of a same material as the second sheet. More particularly, it holds here that the first sheet and the second sheet are made from a same sheet or same sheets.
  • the beverage preparation product consists of ground coffee. It is also conceivable, however, that the beverage preparation product consists of, for example, tea.
  • the beverage preparation product consists of a product soluble in fluid or a product that forms a dispersion such as milk powder and/or cacao for preparing milk or chocolate milk.
  • the beverage preparation product is provided with one of the extractable products mentioned or a different type of extractable product in combination with a fluid-soluble product.
  • the fluid-soluble product in turn may consist of milk powder or a flavor enhancer.
  • the pad is used in a different type of coffee-maker. Further, in the holder of the coffee-maker of FIG. 2 , also a coffee pad 1 ′ according to FIG.
  • the coffee pad 1 ′ and the holder 16 are tailored to each other so that the coffee pad can be received in the holder for preparing coffee, such that, in use, the fluid is supplied under pressure to the upper side of the pad and is pressed through the pad so that the fluid flows through the top sheet whereby in the pad a coffee extract is formed which proceeds to leave the pad via the bottom sheet and wherein the coffee extract proceeds to flow out of the holder via the beverage outflow opening of the holder.
  • the bottom sheet of the pad here extends over the bottom 34 of the holder up to the upstanding sidewall 38 of the holder, thereby also forming a sealing with the holder to prevent bypass.
  • the beverage can leave the pad there where the grooves are.
  • the invention also concerns a system provided with the coffee-maker, the pad 1 and the pad 1 ′, allowing a user, as desired, to use the pad 1 or the pad 1 ′ for preparing the beverage.
  • FIGS. 5 a - 5 f schematically show a method for making the pad as discussed above.
  • a fourth sheet 50 is placed above a mold 52 made of metal. Through, for instance, vacuum suction of the mold cavity 54 , the fourth sheet takes the shape of the mold cavity ( FIG. 5 b ). Also, alternatively, the fourth sheet may be mechanically pressed into the mold cavity with a stamp 56 (represented in broken lines). Then, in FIG. 5 c , the fourth sheet is heated with a stamp 58 . The fourth sheet is heated to, for example, 200-400 degrees Celsius. (The fourth sheet may also be heated in step c. to a temperature of 90-200 degrees Celsius, in particular when the second sheet is made of PLA.) The plastics in the sheet will thereby liquefy and/or soften.
  • the stamp 58 is removed and the fourth sheet is cooled.
  • the sheet has now become form-retaining.
  • the second sheet in this example will now already have a smoothly running inner and outer surface within the sealing seam to be formed.
  • the beverage preparation product 6 is positioned on the fourth sheet ( FIG. 5 d ).
  • a third sheet 60 is placed above the fourth sheet 50 and the beverage preparation product.
  • the fourth sheet and the third sheet are welded together ( FIG. 5 f ), whereby the sealing seam 10 is formed.
  • the pad 1 is cut out.
  • the cut-out part of the fourth sheet 50 then constitutes the second disc-shaped sheet 2 B and the cut-out part of the third sheet 60 then constitutes the first disc-shaped sheet 2 A. Accordingly, it holds that in a step a. a set-up of a third sheet, fourth sheet and the beverage preparation product is made, with the beverage preparation product situated between the third sheet and the fourth sheet ( FIG. 5 e ), and then in a step b. the third sheet and the fourth sheet are joined together ( FIG. 5 f ). Further, it holds that the fourth sheet is heated in a step c. ( FIG. 5 c ) and then is cooled in a step d. for increasing the bending stiffness of the fourth sheet.
  • step c. the fourth sheet is heated in step c. to a temperature of 200-400 degrees Celsius or for instance 90-200 degrees Celsius.
  • step e. the fourth sheet is placed in a mold so that the fourth sheet obtains a predetermined shape ( FIG. 5 b ), while thereupon step c. ( FIG. 5 c ) is carried out.
  • step f. the beverage preparation product is placed on the fourth sheet, preferably while the fourth sheet is already in the mold ( FIG. 5 d ), whereby step b. is carried out after step f.
  • step c. FIG. 5 c
  • step f. the fourth sheet is carried out before step f. ( FIG. 5 d ).
  • the third sheet and/or the fourth sheet may during the execution of step b. be heated to 90-400 degrees Celsius, in particular 90-200 degrees Celsius. Also, it holds that the fourth sheet and possibly the third sheet is cooled after carrying out step b.
  • step b. and step c. are carried out at the same time. This can be done by leaving out the step of FIG. 5 c while in FIG. 5 f the mold is heated for carrying out step c.
  • step g. before the step according to FIG. 5 a is carried out.
  • the method can be continued as has been discussed with reference to FIGS. 5 a - 5 f .
  • step g. is carried out before step a. and step b.
  • step c. of heating and the step d. of cooling are then omitted.
  • the second sheet can also comprise a foil and/or consist of a foil which is provided with a multiplicity of outflow openings and is made of a plastic.
  • the outflow openings can for instance be circular and have a diameter of 0.15-0.6 mm.
  • the plastic may be of a kind as discussed above.
  • the second sheet comprises a first layer which consists at least substantially of PETP and a second layer which consists at least substantially of CPP.
  • the second sheet may be composed from such a foil and a layer of nonwoven material, such as, for example, filtering paper.
  • This layer of nonwoven material can also consist of the nonwoven material which has been discussed above for the second sheet of the pad according to FIG. 1 .
  • This layer may be bonded to the foil by, for instance, heating.
  • the beverage preparation product may be tamped down and/or condensed, and thereby contributes to the form retention of the pad. Such tamping down and/or compaction may be carried out, for instance, in the situation of FIG. 5 d , after which the pad is closed with the first sheet as discussed for FIGS. 5 e and 5 f .
  • the beverage preparation product may be provided with ground coffee.
  • the second sheet may also be designed of different materials.
  • the second sheet may be made of a polyester fiber, in particular of SmashTM material.
  • the second sheet is made of SMASHTM 150 g/m2.
  • the thickness of the second sheet is 250-450 ⁇ m, preferably 300-400 ⁇ m, more preferably 350 ⁇ m.
  • the second sheet is made of Polylactic Acid (PLA) fibers.
  • PLA fibers are for instance described in WO 2012/027539.
  • the second sheet is made of PLA 60-120 g/m2, more preferably PLA 90 or 100 g/m2.
  • the thickness of the sheet made of PLA is 100-600 ⁇ m (micrometer).
  • the second sheet is made of 100% Polylactic Acid (PLA) fibers and derivatives so that the second sheet is completely biodegradable after use. It preferably holds here that the second sheet is made of PLA fibers having a melting point of 145-175 degrees Celsius and PLA fibers having a melting point of 105-165 degrees Celsius. A combination of these two types of fibers provides on the one hand form retention of the second sheet and on the other coherence between the fibers.
  • PLA Polylactic Acid
  • the second sheet consists for x % of Polylactic Acid (PLA) fibers and for (1 ⁇ x)% of paper, with x being in the range of 50-80, preferably in the range of 60-70, more preferably approximately equal to 65.
  • PLA fibers have a melting point of 105-165 degrees Celsius.
  • the fibers can have a length of 2-90 mm. Also, the fibers may be 0.6-6.0 denier. In particular, it holds that the first sheet is of more transparent design than the second sheet. The first sheet can then have the properties of the top sheet as discussed in EP 2 424 794. Also, it may hold that the second sheet is of at least substantially opaque design.
  • the second sheet may have a smoothly running inner and outer surface within the sealing seam.
  • the second sheet may also be so configured as to be provided with at least one groove or a multiplicity of grooves to increase form retention of the second sheet, with the grooves 80 extending, for instance, in radial direction of the pad and/or with the at least one groove 90 constituting a circumferential groove closed upon itself, extending around an axial axis of the pad, for example in the sealing seam (groove 90 . 1 ) or in the second sheet outside the sealing seam so that the groove ( 90 . 2 ) has a smaller diameter than the sealing seam.
  • FIG. 6 shows a view of the second sheet is shown.
  • the radial grooves 80 extend to near the sealing seam 10 . It is also conceivable, however, that the radial grooves extend into the sealing seam 10 (indicated for one groove 80 . 1 ).
  • the grooves in this example have a V-shaped cross section. Other shapes, such as a U-shaped cross section, are also possible.

Abstract

A pad, for use in a coffee-maker for preparing 1 or 2 cups of beverage, includes an envelope with an inner space which is filled with a beverage preparation product for preparing the beverage. The beverage preparation product comprises a product to be extracted with a fluid (and/or a product soluble in a fluid). The envelope is formed by a first disc-shaped sheet and a second disc-shaped sheet which are interconnected adjacent their longitudinal edges. The interconnected parts of the first sheet and the second sheet form a sealing seam wherein the first sheet and the second sheet each form a filter which can pass a fluid and which forms a barrier to the product to be extracted. The second sheet is of form-retaining design. In use with the coffee-maker, a fluid such as water is supplied under pressure to the pad so that the fluid is pressed through the pad for obtaining a beverage which thereupon leaves the pad.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This Application is a continuation of International Patent Application No. PCT/NL2013/050510, filed on Jul. 5, 2013, which claims the benefit of priority to Netherlands Application No. NL2009133, filed on Jul. 5, 2012, all of which are hereby incorporated herein by reference in their entireties.
  • SUMMARY
  • The invention relates to a pad for use in a coffee-maker for preparing 1 or 2 cups of beverage, provided with an envelope with an inner space which is filled with a beverage preparation product for preparing the beverage, wherein the beverage preparation product comprises a product to be extracted with a fluid and/or possibly a product soluble in a fluid, wherein the envelope is formed by a first disc-shaped sheet and a second disc-shaped sheet which are interconnected adjacent their longitudinal edges, wherein the interconnected parts of the first sheet and the second sheet form a sealing seam and wherein the first sheet and the second sheet each form a filter which can pass the fluid and which forms a barrier to the beverage preparation product, wherein, in use, with the coffee-maker a fluid such as water is supplied, under pressure, to the pad so that the fluid is pressed through the pad for obtaining a beverage which thereupon leaves the pad. The invention further relates to a method for manufacturing such a pad.
  • The invention furthermore relates to a system provided with a coffee-maker and such a pad, wherein the coffee-maker is provided with a holder for receiving the pad, a cover for closing off the holder, and fluid means for generating a fluid flow under pressure, wherein the holder is provided with at least one beverage outflow opening and the cover is provided with at least one fluid inflow opening which are in fluid communication with the fluid means for supplying the fluid flow to the fluid inflow openings so that the fluid is supplied under pressure to the first sheet of the pad so that the fluid is pressed through the pad for the preparation of the beverage in the pad, wherein the beverage leaves the pad via the second sheet to proceed to leave the holder via the at least one beverage outflow opening. Also, the invention relates to the use of such a pad and a method for preparing a beverage with the pad. Such a pad, such a system and such a use and method are known per se from EP 0 904 717 A1. In EP 0 904 717 A1 the beverage preparation product consists of ground coffee. Furthermore, the first sheet and the second sheet are each made of filtering paper. The invention contemplates the provision of an improved pad.
  • According to the invention, it holds that the second sheet is of form-retaining design. The invention is based on the insight that the known pad, when it has been placed in a holder of the coffee-maker by a user, may sometimes be slightly deformed. This can happen because the known pad is of flexible and supple design and, for instance, may be taken from its package in slightly deformed condition. If the known pad has been placed in the holder, a user should take care that the pad in the holder has its original shape so that the second sheet of the pad extends over a bottom of the holder up to the upstanding sidewall of the holder. If he doesn't, the risk of bypass is increased. Bypass means that the fluid being supplied under pressure to the first sheet of the pad will flow in part around the pad to a beverage outflow opening which is provided in a bottom of the holder on which the pad rests. All this has as a consequence that not the complete amount of fluid being supplied to the first sheet of the pad will flow to the beverage outflow opening of the holder via the pad. A consequence is that the beverage which is received in, for example, a cup, is diluted with the fluid. The invention contemplates facilitating the use of a pad. As according to the invention the second sheet is of form-retaining design, the pad can be placed in the holder without relevant deformation which increases the risk of bypass. Moreover, it appears that owing to the second sheet being form-retaining, a distribution of the beverage preparation product in the envelope of the pad varies little from one pad to another. This in turn has as an advantage that upon forcing the fluid through the pad a beverage is obtained whose properties are well-defined in advance. In fact, if the distribution of the beverage preparation product were not uniform, but, for instance, at a particular position inside of the pad a relatively thin layer were formed between the first sheet and the second sheet, then at this position a reduced flow resistance to the fluid will occur. As the fluid being forced through the pad will choose the path of least resistance, the fluid will preferentially flow through the pad precisely in this area, with the result that fewer ingredients of the beverage preparation product will be incorporated in the finished beverage than if the thickness of the layer of the beverage preparation product extending between the first and second sheet were more uniform. Also, it appears in many variants of the form-retaining pad according to the invention that an anti-drip effect occurs. That is, directly after use the pad can be taken from a machine while the chance that drops fall off the pad has been reduced.
  • Preferably, it holds that the second sheet also remains form-retaining when a fluid such as the beverage is flowing through it, while the fluid can have a temperature of at most 80 degrees Celsius, more particularly at most 90 degrees Celsius, and preferably at most 99 degrees Celsius. This has as a consequence that also after use, hence after the pad has been subject to flow-through of fluid that will generally have a high temperature, when, for example, coffee or tea is being prepared, it will still be form-retaining. If the second sheet after use is still form-retaining, the pad can more easily be removed from the holder by the user in that the user has a better grip of the pad. Preferably, it holds, to this end, that the second sheet is made of a thermoplastic material. A thermoplastic material is a material that becomes more plastic as the temperature rises. Preferably, it holds then that the second sheet also remains form-retaining when it comes into contact with a fluid having a temperature of 80 degrees Celsius, more particularly of 90 degrees Celsius and preferably of 99 degrees Celsius.
  • In particular, it holds that the second sheet is made of a nonwoven material. In order for the second sheet to be form-retaining, it holds here in particular that the nonwoven material consists of a plastic for at least 50-70 percent by weight, excluding 70 percent by weight or for at least 70 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments. To put it differently, in order for the second sheet to be form-retaining, it holds here on balance, in particular, that the nonwoven material consists of a plastic for at least 50 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments.
  • More particularly, it holds here that the nonwoven material consists of a plastic for at least 60-70 percent by weight, excluding 70 percent by weight, or for at least 70 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments. Stated differently, in order for the second sheet to be form-retaining, it holds here on balance, more in particular, that the nonwoven material consists of a plastic for at least 60 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments.
  • More preferably, it holds that the nonwoven material consists of a plastic for at least 70 percent by weight, preferably for at least 80 percent by weight, and more preferably for at least 90 percent by weight. The nonwoven material can here be present in a form of fibers and/or in a form of filaments.
  • Preferably, it holds that the second sheet consists of a plastic for 50-70 percent by weight excluding 70 percent by weight or for 70-100 percent by weight. On balance it holds therefore that preferably the second sheet consists of a plastic for 50-100 percent by weight. Here it holds in particular that the plastic consists of plastic fibers and/or plastic filaments.
  • More preferably, it holds that the second sheet consists of a plastic for 60-70 percent by weight excluding 70 percent by weight or for 70-100 percent by weight. On balance it holds therefore that more preferably the second sheet consists of a plastic for 60-100 percent by weight. Here it holds in particular that the plastic consists of plastic fibers and/or plastic filaments.
  • Still more preferably, it holds that the second sheet consists of a plastic for 70-100 percent by weight, in particular consists of plastic for 75-95 percent by weight and more in particular consists of plastic for 80-95 percent by weight. Here it holds in particular that the plastic consists of plastic fibers and/or plastic filaments.
  • An advantage of a nonwoven material is that it can form a good fluid sealing with the holder when the nonwoven material is moist as a result of the supply of the fluid. When the nonwoven material is made of a plastic at least for a part, it may typically have been made form-retaining through a heat treatment. The plastic can consist, for example, of polymers which comprise PE, PET, PETP, coPET, LLDPE, CPP, PLA and/or PP. The plastic is present in the nonwoven material in the form of, for instance, plastic fibers and/or plastic filaments.
  • In particular, it holds that the second sheet is furthermore provided with cellulose fibers and/or cellulose filaments. Still more in particular, the second sheet consists of the above-mentioned plastic fibers and/or plastic filaments and the cellulose fibers and/or cellulose filaments. The nonwoven material can thus consist of a combination of plastic fibers and/or plastic filaments and cellulose fibers and/or cellulose filaments. Also, it may be that the cellulose fibers are covered with a plastic coating. An advantage of the embodiments mentioned is that the second sheet has the optical properties of filtering paper more, while yet being form-retaining. This last may be so because, measured in percents by weight, more plastic or plastic fibers and/or plastic filaments are present than cellulose fibers and/or cellulose filaments, while, in particular, the nonwoven material has undergone a heat treatment to increase form retention.
  • According to a practical embodiment, it holds that the density of the second sheet is in the range of 15-60 g/m2 or in the range of 60-200 g/m2 excluding 60 g/m2, preferably 70-150 g/m2 and more preferably 90-120 g/m2. At these densities, the form retention concerned can be realized well. In particular, it holds that the second sheet is made of a polyester fiber, in particular of Smash™ material. Preferably, it holds that the second sheet is made of SMASH™ 150 g/m2.
  • In particular, it holds alternatively that the second sheet is made of Polylactic Acid (PLA) fibers. Preferably, it holds that the second sheet is made of PLA 70-100 g/m2.
  • Also, it holds preferably that the second material is made of 100% Polylactic Acid (PLA) fibers and possibly derivatives. Owing to this, the second sheet is at least substantially completely biodegradable after use.
  • In this application, a form retention can for instance be defined as follows. The form retention of the second sheet according to a test is expressed in a force, measured during the test, that is exerted on the second sheet, while the test is carried out on the second sheet as such, that is, on the pad without the first sheet and the beverage preparation product but with preservation of its shape such as when the second sheet forms part of the pad. For carrying out the test, the second sheet as such, that is, the pad without the first sheet and the beverage preparation product, is laid on a horizontal surface, such that the second sheet is supported by its longitudinal edge on the horizontal surface, the horizontal surface provided with an elongated groove having a width of 30 mm and the second sheet, symmetrically with respect to the groove, overlying the groove and supported on opposite sides of the groove on the horizontal surface, while in carrying out the test use is made of a knife having a length corresponding to the diameter of the pad, a cutting face of the knife having a thickness of 3 mm and a length direction of the cutting face extending in horizontal direction in a length direction of the groove, wherein for testing, the knife from a position above the pad is moved down in vertical direction with a constant speed of 100 mm/minute, a center of the cutting face situated, viewed in vertical direction, above a center of gravity of the second sheet, and wherein from the moment that the knife touches the second sheet the resistance in units Newton is measured that the knife experiences as a result of the deforming of the pad by the knife as the knife moves down and wherein the moving down is continued until the cutting face of the knife is in the groove at a 12 mm depth with respect to the horizontal surface and wherein a measured highest resistance is the measure of the bending stiffness of the second sheet.
  • According to a preferred embodiment of the pad, the highest resistance measured according to the test, that is, the highest measured force in Newton, is in the range of 0.2-4 Newton, and/or the highest measured force in the test is greater than 1 Newton.
  • In this application the thickness of a sheet is defined according to NEN-EN-ISO 53-2011.
  • In addition, it can be effected that the thickness of the second sheet is in the range of 50-400 or 400-500 micrometer (μm) excluding 400 micrometer, hence on balance in the range of 50-500 micrometer, preferably in the range of 100-500 micrometer, preferably in the range of 110-350 micrometer, more preferably in the range of 150-300 micrometer. What is thus effected is on the one hand that the second sheet is not too heavy and on the other hand also that the second sheet is well permeable to the fluid. In particular, it holds here that when the fluid is being caused to flow through the pad, a pressure drop across the beverage preparation product is greater than a pressure drop across the second sheet, in particular 10 times greater, more particularly 20 times greater. The thickness of the first sheet can be, for example, 1.4-10 times smaller than the thickness of the second sheet.
  • Furthermore, it holds preferably that the first sheet is of flexible design. The first sheet may be made of filtering paper known per se. In particular, it holds that the first sheet is provided with at least 70% of cellulose fibers and/or cellulose filaments, more preferably with at least 80% of cellulose fibers and/or cellulose filaments, still more preferably with at least 90% of cellulose fibers and/or cellulose filaments, while possibly for the rest the first sheet is made of plastic polymers of a kind as mentioned above, in particular in the form of plastic fibers and/or plastic filaments. The first sheet preferably comprises less than 30 percent of plastic polymers. The first sheet may also be made from PLA for 100%. Also, the first sheet can consist of PLA and Paper, for example, 25% PLA and 75% Paper. These polymers may be of a same kind as has been discussed for the second sheet. It is also possible, however, that the first sheet is of form-retaining design and is preferably made of a same material as the second sheet.
  • More particularly, it holds here that the first sheet and the second sheet are manufactured from a same sheet or same sheets. If the first sheet and the second sheet have undergone a heat treatment for making the sheet form-retaining, in that case, preferably, the heat treatment will also be the same, so that the first sheet and the second sheet have the same properties.
  • In particular, it holds that the part of the second sheet that is situated within the contours of the sealing seam is of dish-shaped design, while, in particular, the first sheet is of flat design. This has as an advantage that the coffee pad is self-locating when it is placed in a holder having a shape corresponding to the pad. The intention is then for the second sheet to come to rest on the bottom of such a holder.
  • The system according to the invention is, to that end, provided with a coffee-maker which is provided with a holder for receiving the pad, a cover for closing off the holder, and fluid means for generating a fluid flow under pressure, wherein the holder is provided with at least one beverage outflow opening and the cover is provided with at least one fluid inflow opening which are in fluid communication with the fluid means for supplying the fluid flow to the fluid openings so that the fluid is supplied under pressure to the first sheet of the pad so that the fluid is pressed through the pad for the preparation of the beverage in the pad, the beverage leaving the pad via the second sheet to proceed to leave the holder via the at least one beverage outflow opening.
  • Preferably, it holds here that the holder is provided with a bowl-shaped inner space, which is bounded by the bottom and an upstanding sidewall of the holder, wherein the bottom consists of an outer horizontally directed ring-shaped bottom part which adjoins the sidewall and an inner dish-shaped bottom part, wherein the dish-shaped bottom part adjacent the ring-shaped bottom part slopes downwards in a direction directed away from the sidewall and wherein the at least one outflow opening is provided in the dish-shaped bottom part. As mentioned, the pad rests on the bottom, while the second sheet extends along the bottom to near the upstanding edge. Preferably, the sealing seam of the pad then rests on the ring-shaped bottom part. In particular, it holds here that in the dish-shaped bottom part grooves are provided which form a fluid path to the at least one beverage outflow opening, while the grooves extend exclusively under the beverage preparation product in the pad. The portion of the bottom that is not provided with grooves, more particularly the ring-shaped bottom part, can then form a fluid sealing with that portion of the second sheet that rests on said areas of the bottom when the pad becomes moist through the fluid.
  • In particular, it holds that the at least one outflow opening is provided with a nozzle for generating a jet of the beverage. With the aid of the jet, in a manner known per se, air can be beaten into the prepared beverage for obtaining a beverage with a fine-bubble foam layer when it has been received in, for example, a cup. To this end, the system may for instance be provided with an impact surface impacted by the jet for beating air into the beverage to obtain a beverage with a fine-bubble foam layer.
  • In particular, it holds that the fluid is supplied to the first sheet with a pressure of 0.9 to 1.5 bar above atmospheric pressure. At this relatively low pressure, still a beverage with a good fine-bubble foam layer can be obtained that is comparable to beverages that are prepared under high pressure, as is the case with a coffee bed through which hot water is caused to flow under a pressure in excess of 10 bar.
  • The pad according to the invention is filled with a beverage preparation product for preparing beverage, the beverage preparation product comprising a product to be extracted with a fluid (and/or a product soluble in a fluid). The product to be extracted with a fluid can consist of, for example, ground coffee or tea-leaves. A product soluble in a fluid can consist of, for example, milk powder, chocolate milk powder and the like.
  • According to a particular embodiment of the system according to the invention, the system is further provided with a known coffee pad (such as a prior art coffee pad as defined in EP 904 717 A1) provided with an inner space which is filled with ground coffee, wherein the inner space is formed by a top sheet and a bottom sheet which are interconnected adjacent their longitudinal edges, wherein the top sheet and the bottom sheet also form an outer side of the pad and are each made of flexible filtering paper and wherein the coffee pad and the holder are tailored to each other so that the coffee pad can be received in the holder for preparing coffee, such that, in use, the fluid is supplied under pressure to the top side of the pad and is pressed through the pad so that the fluid flows through the top sheet, whereby in the pad a coffee extract is formed which proceeds to leave the pad via the bottom sheet and wherein the coffee extract proceeds to flow out of the holder via the beverage outflow opening of the holder. With such a system, a user can therefore use, as desired, the known coffee pad and the pad with the form-retaining second sheet in one and the same coffee-maker.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be further elucidated with reference to the drawings, in which:
  • FIG. 1 shows a possible embodiment of a pad according to the invention;
  • FIG. 2 shows an embodiment of a system according to the invention which is provided with the pad according to FIG. 1 and a coffee-maker;
  • FIG. 3 shows a top plan view of a holder of the coffee-maker according to FIG. 2;
  • FIG. 4 shows an embodiment of the system according to FIG. 2 which is further provided with a flexible pad of filtering paper;
  • FIGS. 5 a-5 f show schematically a method for making the pad as discussed above;
  • FIG. 6 shows an elevational view of the second sheet of a possible embodiment of the pad according to the invention;
  • FIG. 7.1 shows a side elevational view of an apparatus for determining a form retention of a second sheet of a pad;
  • FIG. 7.2 shows a view according to 7.2 of FIG. 7.1;
  • FIG. 7.3 shows a view according to 7.3 of FIG. 7.1;
  • FIG. 7.4 shows a side elevational view similar to FIG. 7.1 at the moment that a knife is just beginning to touch the pad;
  • FIG. 7.5 shows a side elevational view similar to FIG. 7.1 when the knife has reached a lowest position; and
  • FIG. 7.6 shows a curve of a measured force during the test.
  • DETAILED DESCRIPTION
  • In FIG. 1, with reference numeral 1 a pad for use in a coffee-maker is shown. The pad is of a type intended for preparing one or two cups of beverage. A cup of beverage can consist, for instance, of 20-200 ml of beverage, more particularly of 20-180 ml of beverage. The pad 1 is provided with an envelope 2A, 2B with an inner space 4 which is filled with a beverage preparation product 6 which is shown in hatched representation in the drawing. In this example, it holds that the envelope bounds the inner space. The beverage preparation product is intended for preparing a beverage. To this end, the beverage preparation product comprises a product to be extracted with a fluid and/or possibly a product soluble in a fluid.
  • In this example, it holds that the beverage preparation product comprises exclusively a product to be extracted with a fluid, more particularly, this concerns ground coffee. The envelope is formed by a first disc-shaped sheet 2A and a second disc-shaped sheet 2B which are interconnected adjacent their longitudinal edges 8. The interconnected parts of the first sheet 2A and the second sheet 2B form a sealing seam 10. The sealing seam therefore has the shape of a ring. The first sheet and the second sheet each form a filter which can pass a fluid and which forms a barrier to the beverage preparation product. This makes it possible that, in use, with a coffee-maker a fluid such as water is supplied under pressure to the pad so that the fluid is pressed through the pad for obtaining a beverage which thereupon leaves the pad again. All this will be discussed in more detail with reference to FIG. 2.
  • In this example, it holds furthermore that the second sheet 2B is of form-retaining design. The form retention of the second sheet, according to a test, is expressed in a force, measured during the test, which is exerted on the second sheet, while the test is carried out on the second sheet as such, that is, on the pad without the first sheet and the beverage preparation product; see FIGS. 7.1-7.3.
  • For carrying out the test, the second sheet 2B as such, that is, the pad without the first sheet and the beverage preparation product, but with preservation of its shape such as when the second sheet forms part of the pad, is laid on a horizontal surface 100, such that the second sheet is supported by its longitudinal edge 8 on the horizontal surface, while the horizontal surface is provided with an elongated groove 102 which has a width a of 30 mm, and while the second sheet, symmetrically with respect to the groove, overlies the groove and on opposite sides of the groove is supported on the horizontal surface. In carrying out the test use is made of a knife 104 having a length/which corresponds to the diameter D of the pad. A cutting face 106 of the knife has a thickness of 3 mm. A length direction L of the cutting face 106 extends in horizontal direction in a length direction L of the groove. For testing, the knife, from a position above the pad, is moved down in vertical direction V with a constant speed v of 100 mm/minute, while a center M of the cutting face is situated, viewed in vertical direction, above a center of gravity Z of the second sheet. Because the second sheet has the shape of a disc with a center P, this center P corresponds to the center of gravity mentioned. Moving the knife down is carried out with a load cell 108. Prior to carrying out the test, the longitudinal edge 8 lies wholly fittingly against the surface 100. From the moment that the knife touches the second sheet (FIG. 7.4) the resistance in units Newton is measured that the knife experiences as a result of the deforming of the pad by the knife as the knife moves down. In other words, the force is measured that the knife experiences from the second sheet as the knife moves down. Before the knife touches the second sheet, this force is zero. Thereupon this force starts to run up. Moving down is continued until the cutting face of the knife is in the groove at 12 mm depth b with respect to the horizontal surface (see FIG. 7.5). A highest resistance or force measured with the load cell 108 is the measure of the bending stiffness of the second sheet. This highest resistance Fmax is measured in Newton. As the knife moves down and initially touches the second sheet, the second sheet will first deform elastically. Thereafter, upon further downward movement, the second sheet is deformed. The measured greatest force typically corresponds with the moment just before which the second sheet buckles and hence yields under the load of the knife. After buckling the force can decrease again.
  • In other words, the force is measured that the knife experiences as a result of the pad deforming. In FIG. 7.6 this force F is plotted as a function of the distance x over which the knife is moved down. From x=x0 the force F starts to rise from F=0. The maximum measured force Fmax is at x=x1. At x=x0+b the knife has reached the point of its maximum downward travel. The measured measure for the form retention of the second sheet is F max.
  • The measured greatest force is preferably in the range of 0.2-4 Newton, and/or is preferably greater than 1 Newton.
  • In particular, it holds that the second sheet also remains form-retaining when a fluid such as the beverage and/or water is caused to flow through it, while the fluid can have a temperature of at most 80 degrees Celsius. In other words, when the fluid has a temperature that can run up to 80 degrees Celsius, the second sheet keeps the form-retaining properties mentioned.
  • More particularly, it holds here that the second sheet remains form-retaining when a fluid is caused to flow through it, while the fluid can have a temperature of at most 90 degrees Celsius and preferably at most 99 degrees Celsius.
  • In this example, it holds that the second sheet is made of a thermoplastic material. A thermoplastic material is a material that becomes more plastic as the temperature rises. Accordingly, it holds in this example that the second sheet also remains form-retaining when it comes into contact with a fluid such as a beverage and/or hot water that has a temperature of 80 degrees Celsius. Because a thermoplastic material is involved here, it will also hold that the sheet remains form-retaining when it comes into contact with a fluid having a temperature that is lower than 80 degrees Celsius.
  • More particularly, it holds that the second sheet also remains form-retaining when it comes into contact with a fluid of 90 degrees Celsius and preferably of 99 degrees Celsius. What is involved then, as mentioned, is a second sheet that is made of a thermoplastic material.
  • In this example, it holds furthermore that the second sheet is made of a nonwoven material. This nonwoven material, in this example, is made of a plastic for at least 50 percent by weight and preferably for at least 60 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments. More preferably, it holds that the nonwoven material is made from a plastic for at least 70 percent by weight. In particular, it holds that the nonwoven material consists of the plastic for at least 80 percent by weight, and more preferably for at least 90 percent by weight. On the other hand, it holds preferably that the nonwoven material consists of a plastic for 50-100 percent by weight, more preferably for 60-100 percent by weight. Still more preferably, it holds that the nonwoven material consists of the plastic for 70-100 percent by weight, in particular consists of a plastic for 75-95 percent by weight and still more in particular consists of plastic for 80-95 percent by weight.
  • In this example, it holds furthermore that the plastic comprises polymers of PLA, PETP and/or LLDPE. More in general, it holds that plastics and combinations thereof are possible such as PE, PET, PETP, coPET, LLDPE, CPP, PLA and/or PP.
  • In this example it holds that the nonwoven material has been made form-retaining through a heat treatment. This means that the sheet-form material that has been made of the respective plastic is brought into the required shape such as it is shown for the second sheet 2B, after which the second sheet undergoes a heat treatment so that the second sheet after cooling becomes form-retaining. In this example, it holds furthermore that the second sheet is provided with cellulose fibers and/or cellulose filaments. Accordingly, in that case, the second sheet comprises a combination of the above-mentioned plastics and cellulose fibers and/or filaments. In this example, it holds furthermore that the nonwoven material is provided with the cellulose fibers and/or the cellulose filaments. If this nonwoven material, as discussed above, consists of the plastic mentioned for at least 50 percent by weight, it will hold that the nonwoven material furthermore consists of cellulose for at most 50 percent by weight. If this nonwoven material, as discussed above, consists of the above-mentioned plastic for at least 60 or at least 70 percent by weight, it will hold that the nonwoven material furthermore consists of cellulose for at most 40 or 30 percent by weight, respectively. The nonwoven material therefore comprises preferably a combination of plastic and cellulose fibers and/or filaments. The plastic, according to the invention, preferably consists of plastic fibers and/or filaments. In this example, these plastic fibers and/or plastic filaments are part of the nonwoven material. It is also possible, however, that the plastic is present in the second sheet in the form of a coating on the cellulose fibers and/or the cellulose filaments. In this example, these plastic-coated fibers and/or plastic-coated filaments are then part of the nonwoven material.
  • From the examples mentioned it appears that it holds in particular that the nonwoven material consists for a greater proportion of percents by weight of the plastic mentioned than of cellulose fibers and/or filaments. In this example, it holds that the density of the second sheet is in the range of 15-60 g/m2 or in the range of 60-150 g/m2 excluding 60 g/m2, that is, on balance in the range of 15-150 g/m2. Preferably, however, it holds that the density of the second sheet is in the range of 70-130 g/m2, more preferably in the range of 90-120 g/m2. The thickness of the second sheet in this example is in the range of 50-600 micrometer. Preferably, it holds that the thickness is in the range of 100-500 micrometer, more particularly in the range of 150-300 micrometer. The thickness mentioned is schematically denoted in FIG. 1 and in FIG. 4A with the letter h.
  • In this example, it holds furthermore that the second sheet within the contours of the sealing seam is designed to be homogeneously permeable to a fluid such as water. Also, it holds in this example that the second sheet within the contours of the sealing seam comprises a smoothly running inner and outer surface.
  • In this example, it holds furthermore that the first sheet is of flexible design. In particular, it holds that the first sheet is made of filtering paper known per se. Here, it holds in this example that the first sheet is provided with at least 70 percent of cellulose fibers and/or cellulose filaments. The residual portion of the first sheet may again be made of the plastics and/or plastic fibers and/or plastic filaments and/or plastic coatings mentioned in the context of the second sheet. More particularly, it holds that the first sheet is provided with at least 80 percent by weight of cellulose, more preferably with at least 90 percent by weight of cellulose. The first sheet comprises less than 30 percent by weight of plastic polymers, preferably of a same kind as mentioned in the context of the second sheet.
  • The thickness of the first sheet is, for example, 1.4-10 times smaller than the thickness of the second sheet. The thickness mentioned is schematically denoted in FIG. 1 with the letter h′.
  • As can be seen in FIG. 1, it holds that the part of the second sheet that is within the contours of the sealing seam is of dish-shaped design. Also, it holds in this example that the first sheet is of flat design. The part of the second sheet that is within the contours of the sealing seam, as shown in FIG. 2, has a diameter denoted with d. The diameter of the whole pad is denoted with D in FIG. 2. Also, this means that the ring-shaped sealing seam 10 has a diameter of (D−d)/2. In this example, D is approximately 74.4 mm and d is approximately 61 mm. Other dimensions are conceivable for D. D can be, for instance, in the range of 45-90 mm, preferably 70-80 mm, more preferably 73-76 mm, in particular approximately 74.4 mm.
  • According to an alternative, the second sheet can comprise a foil and/or consist of a foil which is provided with a multiplicity of outflow openings and is made of a plastic, comprising plastic polymers. The plastic polymers can comprise PE, PET, PETP, coPET, LLDPE, CPP, PLA and/or PP. The second sheet can then comprise a first layer which consists at least substantially of PETP and a second layer which consists at least substantially of CPP.
  • In FIG. 2 a system is shown in which the pad of FIG. 1 is used. The system is provided with a coffee-maker 14 which is provided with a holder 16 for receiving the pad 1. Further, the coffee-maker is provided with a cover 18 for closing off the holder 16. The coffee-maker is furthermore provided with fluid means 20, 22 for generating a fluid flow under pressure. In this example, these fluid means consist of a pump 20 and a storage vessel 22 which is filled with a fluid, in this example with hot water. The temperature of the water can be, for example, 70-98 degrees Celsius. To that end, the storage vessel 22 is provided with a heating element 24. The storage vessel 22 itself in turn may be filled from a larger storage vessel, which comprises cold water. This larger storage vessel is not shown in the drawing. The pump 20, in use, supplies hot water via a duct 26 to an inner space 28 of the cover 18. A bottom 30 of the cover is provided with a multiplicity of inflow openings 32. The holder 16 is provided with a bowl-shaped inner space 36 which is bounded by a bottom 34 of the holder and an upstanding sidewall 38 of the holder. The bottom consists of an outer horizontally directed ring-shaped bottom part 40 which adjoins the sidewall 38. Furthermore, the bottom comprises an inner dish-shaped bottom part 42, while the dish-shaped bottom part adjacent the ring-shaped bottom part slopes downwards in a direction directed away from the sidewall, to the inside of the holder. The ring-shaped bottom part is provided with an outer edge 41 which adjoins the sidewall 38 and an inner edge 43 which adjoins the dish-shaped bottom part 42. The bottom is provided with at least one outflow opening 44. This outflow opening in this example is located in the dish-shaped bottom part 42. As shown in FIG. 2, it holds that the pad 1 rests on the bottom 34, with the second sheet extending along the bottom to near the upstanding sidewall 38. The sealing seam 10 of the pad then rests on the ring-shaped bottom part 40. As can be seen, the second sheet has a shape that corresponds to the shape of the bottom of the holder. The second sheet here has a smoothly running inner and outer surface within the sealing seam. In this example, it holds furthermore that in the dish-shaped bottom part 42 grooves 46 are provided. The grooves extend exclusively under the beverage preparation product 6 in the pad. In this example, it holds that the grooves 46 are formed by a multiplicity of projections 54 of the bottom. Between the upstanding projections 54, the respective grooves are formed. According to the invention, the grooves may also be differently formed, for instance as slots provided in the bottom and extending, for instance, in radial direction towards the outflow opening 44. The bottom is at least partly of smooth design and is made of a plastic and/or metal. The upper side of the tops are smooth, just like the rest of the bottom. In this example, it holds that the beverage preparation product is ground coffee. As can be properly seen, the ground coffee 6 forms a coffee bed. The grooves are under the coffee bed but also within the contours of the coffee bed, i.e., within the contours of the positions where the beverage preparation product is situated in the pad. The dish-shaped bottom part comprises an inner flat bottom part which is denoted with d′ in FIG. 2. As can be seen, the grooves extend exclusively in this inner bottom part d′ which is flat. Further, it holds that the at least one outflow opening 44 is provided with a nozzle 46 for generating a jet of the beverage as will be further elucidated hereinafter. To this end, the system is further provided with an impact member 50 which, in use, is impacted by a jet of the beverage made. The working of the system described up to this point is as follows.
  • A user will first of all remove the cover 18 for placing the pad 1 of FIG. 1 in the holder 16 of FIG. 2. Because the pad is provided with the second sheet 2B which is form-retaining, the pad will of itself slide into the right position as the pad is positioned in the bottom. The pad is, as it were, self-locating and ends up in the position as shown in FIG. 2. After this, the holder can be closed off with the cover as shown in FIG. 2. Thereupon a user operates the control unit 52 of the coffee-maker 14. The result is that the control unit 52 activates the pump 20. As a result, hot water is supplied from the storage vessel 22 via the duct 26 to the inner space 28 of the cover 18. This water will leave the cover 18 and flow into the holder via the inflow openings 32. The consequence is that the water is supplied under pressure from the upper side of the pad to the first sheet of the pad. The pressure in this example is 1.1 bar above atmospheric pressure. The hot water will then penetrate via the first sheet 2A into the inner space of the pad. Here, the hot water comes into contact with the ground coffee so that the coffee beverage is formed. The coffee beverage leaves the coffee pad via the second sheet 2B. As a result of the second sheet 2B becoming moist, it will form a sealing with the bottom 34, there where there are no grooves. There where the grooves are, the beverage will leave the pad. As a result of the grooves extending exclusively under the coffee bed, bypass is avoided. What is further avoided is that the hot water forms channels extending in vertical direction through the coffee bed. Such channels would preclude an optimal and efficient extraction of the ground coffee. Since, in addition, the grooves extend in a flat part of the bottom, this enables the second sheet to properly abut the bottom, so that it's the grooves that determine where the beverage can flow out of the pad. The beverage proceeds to flow via the grooves to the outflow opening 44. Because the outflow opening 44 is provided with a nozzle 47, while moreover it holds that the fluid is supplied to the pad under pressure, the coffee beverage will be formed into a jet that impacts the impact surface 50. As a result, the beverage will be atomized in a chamber 62 of the holder which is open at its underside 64. When the beverage is thereupon received in a cup, a beverage is obtained with a fine-bubble foam layer. After preparation of the beverage, the holder can be opened again by removing the cover. The pad 1 can then be removed easily in that the second sheet is still form-retaining.
  • In this example, it holds that the cover is provided with a sealing ring 60 which seals fluid-tightly against the upstanding sidewall 38 of the holder. It is also possible, however, that the upstanding sidewall 38 is provided with the sealing ring, this sealing ring then sealing against the cover 18. In this example, the second sheet is of form-retaining design. It is also possible, however, that the first sheet is also of form-retaining design. Preferably, it holds here that the first sheet is made of a same material as the second sheet. More particularly, it holds here that the first sheet and the second sheet are made from a same sheet or same sheets. In this example, the beverage preparation product consists of ground coffee. It is also conceivable, however, that the beverage preparation product consists of, for example, tea. (Furthermore, it is possible that the beverage preparation product consists of a product soluble in fluid or a product that forms a dispersion such as milk powder and/or cacao for preparing milk or chocolate milk.) It is also conceivable that the beverage preparation product is provided with one of the extractable products mentioned or a different type of extractable product in combination with a fluid-soluble product. The fluid-soluble product in turn may consist of milk powder or a flavor enhancer. Also, it is conceivable that the pad is used in a different type of coffee-maker. Further, in the holder of the coffee-maker of FIG. 2, also a coffee pad 1′ according to FIG. 5 may be placed, which is provided with an inner space which is filled with ground coffee, while the inner space is formed by a top sheet 2A′ and a bottom sheet 2B′ which are interconnected adjacent their longitudinal edges, while the top sheet and the bottom sheet also form an outer side of the pad and are each made from flexible filtering paper. The coffee pad 1′ and the holder 16 are tailored to each other so that the coffee pad can be received in the holder for preparing coffee, such that, in use, the fluid is supplied under pressure to the upper side of the pad and is pressed through the pad so that the fluid flows through the top sheet whereby in the pad a coffee extract is formed which proceeds to leave the pad via the bottom sheet and wherein the coffee extract proceeds to flow out of the holder via the beverage outflow opening of the holder. The bottom sheet of the pad here extends over the bottom 34 of the holder up to the upstanding sidewall 38 of the holder, thereby also forming a sealing with the holder to prevent bypass. The beverage can leave the pad there where the grooves are. Accordingly, the invention also concerns a system provided with the coffee-maker, the pad 1 and the pad 1′, allowing a user, as desired, to use the pad 1 or the pad 1′ for preparing the beverage.
  • FIGS. 5 a-5 f schematically show a method for making the pad as discussed above.
  • In FIG. 5 a it is shown that a fourth sheet 50 is placed above a mold 52 made of metal. Through, for instance, vacuum suction of the mold cavity 54, the fourth sheet takes the shape of the mold cavity (FIG. 5 b). Also, alternatively, the fourth sheet may be mechanically pressed into the mold cavity with a stamp 56 (represented in broken lines). Then, in FIG. 5 c, the fourth sheet is heated with a stamp 58. The fourth sheet is heated to, for example, 200-400 degrees Celsius. (The fourth sheet may also be heated in step c. to a temperature of 90-200 degrees Celsius, in particular when the second sheet is made of PLA.) The plastics in the sheet will thereby liquefy and/or soften. After this, the stamp 58 is removed and the fourth sheet is cooled. The sheet has now become form-retaining. The second sheet in this example will now already have a smoothly running inner and outer surface within the sealing seam to be formed. Thereupon, the beverage preparation product 6 is positioned on the fourth sheet (FIG. 5 d). Next, a third sheet 60 is placed above the fourth sheet 50 and the beverage preparation product. By means of a ring-shaped heating element 62, the fourth sheet and the third sheet are welded together (FIG. 5 f), whereby the sealing seam 10 is formed. Next, with a ring-shaped die 64 the pad 1 is cut out. The cut-out part of the fourth sheet 50 then constitutes the second disc-shaped sheet 2B and the cut-out part of the third sheet 60 then constitutes the first disc-shaped sheet 2A. Accordingly, it holds that in a step a. a set-up of a third sheet, fourth sheet and the beverage preparation product is made, with the beverage preparation product situated between the third sheet and the fourth sheet (FIG. 5 e), and then in a step b. the third sheet and the fourth sheet are joined together (FIG. 5 f). Further, it holds that the fourth sheet is heated in a step c. (FIG. 5 c) and then is cooled in a step d. for increasing the bending stiffness of the fourth sheet.
  • Further, it holds that the fourth sheet is heated in step c. to a temperature of 200-400 degrees Celsius or for instance 90-200 degrees Celsius. In a step e. the fourth sheet is placed in a mold so that the fourth sheet obtains a predetermined shape (FIG. 5 b), while thereupon step c. (FIG. 5 c) is carried out. In a step f. the beverage preparation product is placed on the fourth sheet, preferably while the fourth sheet is already in the mold (FIG. 5 d), whereby step b. is carried out after step f. It also holds in this example that step c. (FIG. 5 c) is carried out before step f. (FIG. 5 d). The third sheet and/or the fourth sheet may during the execution of step b. be heated to 90-400 degrees Celsius, in particular 90-200 degrees Celsius. Also, it holds that the fourth sheet and possibly the third sheet is cooled after carrying out step b.
  • It is also possible, however, that step b. and step c. are carried out at the same time. This can be done by leaving out the step of FIG. 5 c while in FIG. 5 f the mold is heated for carrying out step c.
  • Such variants are each understood to be within the purview of the invention. Thus, it is also possible to make the fourth sheet more form-retaining by calendering it in a step g. before the step according to FIG. 5 a is carried out. After this, the method can be continued as has been discussed with reference to FIGS. 5 a-5 f. This means that calendering in step g. is carried out before step a. and step b. It is also possible that only the steps of FIGS. 5 a, 5 b, 5 d, 5 e, and 5 f are carried out. Accordingly, the step c. of heating and the step d. of cooling are then omitted.
  • Also, still other embodiments of the pad are conceivable.
  • The invention is by no means limited to the embodiments outlined. Thus, the second sheet can also comprise a foil and/or consist of a foil which is provided with a multiplicity of outflow openings and is made of a plastic. The outflow openings can for instance be circular and have a diameter of 0.15-0.6 mm. The plastic may be of a kind as discussed above. Also, it is conceivable that the second sheet comprises a first layer which consists at least substantially of PETP and a second layer which consists at least substantially of CPP. By heating the foil of the above-outlined kinds and bringing it in a desired shape and/or by appropriately choosing the thickness of the foil, the form retention of the second sheet can be adjusted to the desired level. Production of the pad can then take place as has been discussed with reference to FIG. 5. Also, the second sheet may be composed from such a foil and a layer of nonwoven material, such as, for example, filtering paper. This layer of nonwoven material can also consist of the nonwoven material which has been discussed above for the second sheet of the pad according to FIG. 1. This layer may be bonded to the foil by, for instance, heating. In addition, it holds for each of the above-outlined embodiments that the beverage preparation product may be tamped down and/or condensed, and thereby contributes to the form retention of the pad. Such tamping down and/or compaction may be carried out, for instance, in the situation of FIG. 5 d, after which the pad is closed with the first sheet as discussed for FIGS. 5 e and 5 f. In each embodiment the beverage preparation product may be provided with ground coffee.
  • In addition, the second sheet may also be designed of different materials. Thus the second sheet may be made of a polyester fiber, in particular of Smash™ material. Preferably, it holds that the second sheet is made of SMASH™ 150 g/m2. Preferably, it holds here that the thickness of the second sheet is 250-450 μm, preferably 300-400 μm, more preferably 350 μm.
  • Also, it is possible that the second sheet is made of Polylactic Acid (PLA) fibers. Such PLA fibers are for instance described in WO 2012/027539. Preferably, it holds that the second sheet is made of PLA 60-120 g/m2, more preferably PLA 90 or 100 g/m2. In particular, furthermore, it may hold that the thickness of the sheet made of PLA is 100-600 μm (micrometer).
  • In particular, it holds furthermore that the second sheet is made of 100% Polylactic Acid (PLA) fibers and derivatives so that the second sheet is completely biodegradable after use. It preferably holds here that the second sheet is made of PLA fibers having a melting point of 145-175 degrees Celsius and PLA fibers having a melting point of 105-165 degrees Celsius. A combination of these two types of fibers provides on the one hand form retention of the second sheet and on the other coherence between the fibers.
  • According to an alternative, however, it holds that the second sheet consists for x % of Polylactic Acid (PLA) fibers and for (1−x)% of paper, with x being in the range of 50-80, preferably in the range of 60-70, more preferably approximately equal to 65. In particular it holds here that the PLA fibers have a melting point of 105-165 degrees Celsius.
  • In each of the cases outlined above, the fibers can have a length of 2-90 mm. Also, the fibers may be 0.6-6.0 denier. In particular, it holds that the first sheet is of more transparent design than the second sheet. The first sheet can then have the properties of the top sheet as discussed in EP 2 424 794. Also, it may hold that the second sheet is of at least substantially opaque design.
  • In each of the embodiments outlined, the second sheet may have a smoothly running inner and outer surface within the sealing seam. However, in each of the above-outlined embodiments the second sheet may also be so configured as to be provided with at least one groove or a multiplicity of grooves to increase form retention of the second sheet, with the grooves 80 extending, for instance, in radial direction of the pad and/or with the at least one groove 90 constituting a circumferential groove closed upon itself, extending around an axial axis of the pad, for example in the sealing seam (groove 90.1) or in the second sheet outside the sealing seam so that the groove (90.2) has a smaller diameter than the sealing seam. This is shown in FIG. 6 in which a view of the second sheet is shown. The radial grooves 80 extend to near the sealing seam 10. It is also conceivable, however, that the radial grooves extend into the sealing seam 10 (indicated for one groove 80.1). The grooves in this example have a V-shaped cross section. Other shapes, such as a U-shaped cross section, are also possible. By providing the mold 52 with such grooves and providing the stamp 56 with ribs corresponding to these grooves, the fourth sheet and hence the second sheet can be provided with the respective grooves 80, 90 by carrying out with such a mold and stamp, as desired, one of the methods which have been discussed with reference to FIG. 5.

Claims (67)

1. A pad for use in a coffee-maker for preparing 1 or 2 cups of beverage, provided with an envelope with an inner space which is filled with a beverage preparation product for preparing the beverage, wherein the beverage preparation product comprises a product to be extracted with a fluid (and/or a product soluble in a fluid), wherein the envelope is formed by a first disc-shaped sheet and a second disc-shaped sheet which are interconnected adjacent their longitudinal edges, wherein the interconnected parts of the first sheet and the second sheet form a sealing seam and wherein the first sheet and the second sheet each form a filter which can pass a fluid and which forms a barrier to the beverage preparation product, wherein, in use, with the coffee-maker a fluid such as water is supplied, under pressure, to the pad so that the fluid is pressed through the pad for obtaining the beverage which thereupon leaves the pad, wherein the second sheet is of form-retaining design.
2. The pad according to claim 1, wherein the first sheet forms a filter which can pass a fluid for preparing the beverage from outside the pad to the inner space and which forms a barrier to the product to be extracted and that the second sheet forms a filter which can pass a beverage formed in the inner space of the pad and which forms a barrier to the product to be extracted, wherein, in use, with the coffee-maker a fluid such as water is supplied under pressure to the first sheet of the pad so that the fluid is pressed via the first sheet through the pad for obtaining a beverage which thereupon leaves the pad via the second sheet.
3. The pad according to claim 1, wherein the second sheet also remains form-retaining when a fluid such as the beverage is caused to flow through it, while the fluid can have a temperature of at most 80 degrees Celsius, more particularly at most 90 degrees Celsius and preferably at most 99 degrees Celsius.
4. The pad according to claim 1, wherein the second sheet comprises a thermoplastic material.
5. The pad according to claim 1, wherein the second sheet also remains form-retaining when it comes into contact with a fluid having a temperature of 80 degrees Celsius, more particularly of 90 degrees Celsius and preferably of 99 degrees Celsius.
6. The pad according to claim 1, wherein the second sheet consists of a plastic for at least 50-70 percent by weight excluding 70 percent by weight or for at least 70 percent by weight; and preferably consists of a plastic for at least 60-70 percent by weight excluding 70 percent by weight or for at least 70 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments.
7. The pad according to claim 6, wherein the second sheet consists of a plastic for at least 70 percent by weight, preferably for at least 80 percent by weight and more preferably for at least 90 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments.
8. The pad according to claim 1, wherein the second sheet consists of a plastic for 50-70 percent by weight excluding 70 percent by weight or for 70-100 percent by weight; more preferably consists of a plastic for 60-70 percent by weight excluding 70 percent by weight or for 70-100 percent by weight, still more preferably consists of a plastic for 70-100 percent by weight, in particular consists of plastic for 75-95 percent by weight, and more particularly consists of plastic for 80-95 percent by weight, while in particular the plastic consists of plastic fibers and/or plastic filaments.
9. The pad according to claim 1, wherein the second sheet is made of a porous material.
10. The pad according to claim 1, wherein the second sheet is made of a nonwoven material.
11. The pad according to claim 7, wherein the second sheet is made of a nonwoven material, wherein the nonwoven material is made of the plastic and/or that the plastic is present in at least a part of the nonwoven material in the form of fibers and/or filaments which, at least for a part, are made of the plastic, more particularly in the form of plastic fibers and/or plastic filaments, still more particularly in the form of cellulose fibers and/or cellulose filaments which are provided with a plastic coating.
12. The pad according to claim 7, wherein the second sheet is furthermore made of cellulose fibers and/or cellulose filaments, more particularly that the second sheet for the rest is made from cellulose fibers and/or cellulose filaments.
13. The pad according to claim 7, wherein the second sheet is built up from a plurality of layers of material which are bonded together, more particularly that the second sheet comprises a first layer which consists at least substantially of cellulose fibers and/or cellulose filaments and a second layer which is made partly of the plastic and partly from cellulose fibers and/or cellulose filaments.
14. The pad according to claim 1, wherein the second sheet is made more form-retaining by means of calendering.
15. The pad according to claim 1, wherein the density of the second sheet is in the range of 15-60 g/m2 or in the range of 60-200 g/m2 excluding 60 g/m2, preferably in the range of 70-150 g/m2 and more preferably in the range of 90-120 g/m2.
16. The pad according to claim 1, wherein the thickness of the second sheet is in the range of 50-400 μm or in the range of 400-500 μm excluding 400 μm, preferably in the range of 100-500 μm, more preferably in the range of 110-350 μm and still more preferably in the range of 150-300 μm.
17. The pad according to claim 1, wherein the form retention of the second sheet according to a test is expressed in a force, measured during the test, that is exerted on the second sheet, the test being carried out on the second sheet as such, that is, on the pad without the first sheet and the beverage preparation product, wherein:
for carrying out the test, the second sheet as such, that is, the pad without the first sheet and the beverage preparation product but with preservation of its shape such as when the second sheet forms part of the pad, is laid on a horizontal surface, such that the second sheet is supported by its longitudinal edge on the horizontal surface, the horizontal surface provided with an elongated groove having a width of 30 mm, and the second sheet overlying the groove symmetrically with respect to the groove and supported on opposite sides of the groove on the horizontal surface, wherein in carrying out the test use is made of a knife having a length corresponding to the diameter of the pad, a cutting face of the knife having a thickness of 3 mm and a length direction of the cutting face extending in horizontal direction in a length direction of the groove, wherein, for testing, the knife from a position above the pad is moved down in vertical direction with a constant speed of 100 mm/minute, a center of the cutting face situated, viewed in vertical direction, above a center of gravity of the second sheet, and wherein from the moment that the knife touches the second sheet the force in units Newton is measured that the knife experiences as a result of the deforming of the pad by the knife as the knife moves down, and wherein moving down is continued until the cutting face of the knife is in the groove at a 12 mm depth with respect to the horizontal surface, and wherein a measured highest force is the measure of the bending stiffness of the second sheet; and wherein the measured highest force is in the range of 0.2-4 Newton, and/or is greater than 1 Newton.
18. The pad according to claim 16, wherein the density of the second sheet is in the range of 15-60 g/m2 or in the range of 60-200 g/m2 excluding 60 g/m2, preferably in the range of 70-150 g/m2 and more preferably in the range of 90-120 g/m2, and wherein the thickness of the second sheet is in the range of 50-400 μm or in the range of 400-500 μm excluding 400 μm, preferably in the range of 100-500 μm, more preferably in the range of 110-350 μm and still more preferably in the range of 150-300 μm.
19. The pad according to claim 1, wherein the pad is of disc-shaped design, while the longitudinal edges of the first sheet and the second sheet are each in a flat plane, have the shape of a circle and have a diameter within the range of 45-90 mm, preferably 70-80 mm, more preferably 73-76 mm, in particular of approximately 74.4 mm.
20. The pad according to claim 17, wherein the pad is of disc-shaped design, while the longitudinal edges of the first sheet and the second sheet are each in a flat plane, have the shape of a circle and have a diameter within the range of 45-90 mm, preferably 70-80 mm, more preferably 73-76 mm, in particular approximately 74.4 mm, and wherein the longitudinal edge of the second sheet at commencement of the test abuts wholly fittingly against the horizontal surface.
21. The pad according to claim 1, wherein the second sheet within the contours of the sealing seam is designed to be homogeneously permeable to a fluid such as water.
22. The pad according to claim 1, wherein the second sheet comprises a foil and/or consists of a foil which is provided with a multiplicity of outflow openings and is made of a plastic.
23. The pad according to claim 22, wherein the plastic consists of plastic polymers or comprises plastic polymers, wherein the plastic polymers comprise PE, PET, PETP, coPET, LLDPE, CPP, PLA and/or PP.
24. The pad according to claim 23, wherein the second sheet comprises a first layer at least substantially consisting of PETP and a second layer at least substantially consisting of CPP.
25. The pad according to claim 1, wherein the second sheet within the contours of the sealing seam comprises a smoothly running inner and outer surface.
26. The pad according to claim 1, wherein the second sheet is shaped such that it is provided with at least one groove or a multiplicity of grooves to increase the form retention of the second sheet, the grooves for instance extending in radial direction of the pad and/or the at least one groove constituting a circumferential groove closed upon itself, extending around an axial axis of the pad, for instance in the sealing seam or in the second sheet outside the sealing seam so that the groove has a smaller diameter than the sealing seam.
27. The pad according to claim 1, wherein the second sheet is made of a polyester fiber, in particular of Smash™ material.
28. The pad according to claim 27, wherein the second sheet is made of Smash™ 150 g/m2.
29. The pad according to claim 27, wherein the thickness of the second sheet is 250-450 μm, preferably 300-400 μm, more preferably 350 μm.
30. The pad according to claim 1, wherein the second sheet is made of Polylactic Acid (PLA) fibers.
31. The pad according to claim 30, wherein the second sheet is made of PLA 60-120 g/m2, preferably PLA 70-100 g/m2, more preferably PLA 90 or 100 g/m2.
32. The pad according to claim 30, wherein the thickness of the second sheet is 100-600 μm.
33. The pad according to claim 30, wherein the second sheet is made of 100% Polylactic Acid (PLA) fibers and possibly derivatives, so that the second sheet is at least substantially completely biodegradable after use.
34. The pad according to claim 30, wherein the second sheet consists for x % of Polylactic Acid (PLA) fibers and for (1−x)% of paper, with x being in the range of 50-80, preferably in the range of 60-70, more preferably approximately equal to 65, while in particular the PLA fibers have a melting point of 105-165 degrees Celsius.
35. The pad according to claim 30, wherein the fibers have a length of 2-90 mm.
36. The pad according to claim 30, wherein the fibers are 0.6-60 denier.
37. The pad according to claim 30, wherein the second sheet is made of PLA fibers have a melting point of 145-175 degrees Celsius and PLA fibers have a melting point of 105-165 degrees Celsius.
38. The pad according to claim 1, wherein the second sheet is made more form-retaining by means of a heat treatment.
39. The pad according to claim 1, wherein the first sheet is made of filtering paper.
40. The pad according to claim 1, wherein the first sheet is of more transparent design than the second sheet.
41. The pad according to claim 1, wherein the second sheet is of at least substantially opaque design.
42. The pad according to claim 1, wherein the first sheet is preferably provided with cellulose fibers and/or that the first sheet is provided with at least 70% by weight of cellulose, more preferably with at least 80% by weight of cellulose, still more preferably with at least 90% by weight of cellulose, while possibly the first sheet for the rest is made of a plastic, and/or that the first sheet comprises less than 30% of plastic polymers.
43. The pad according to claim 1, wherein the first sheet is of flexible design.
44. The pad according to claim 1, wherein the first sheet is of form-retaining design and is preferably made of a same material as the second sheet, more particularly that the first sheet and the second sheet are made from a same sheet or same kind of sheets.
45. The pad according to claim 1, wherein the envelope bounds the inner space.
46. The pad according to claim 1, wherein the part of the second sheet that is within the contours of the sealing seam is of dish-shaped design while in particular the first sheet is of flat design.
47. The pad according to claim 1, wherein the extractable product consists of ground coffee while in particular the ground coffee is condensed to a hard cake and/or that the extractable product is condensed to a hard cake.
48. The pad according to claim 1, wherein the beverage preparation product consists of a product to be extracted, more particularly of ground coffee.
49. A system for preparing a beverage, the system comprising:
a pad, wherein the pad includes having an envelope with an inner space that is filled with a beverage preparation product for preparing the beverage, wherein the beverage preparation product comprises a product to be extracted with a fluid or a product soluble in a fluid, wherein the envelope is formed by a first disc-shaped sheet and a second disc-shaped sheet that are interconnected adjacent their longitudinal edges, wherein the interconnected parts of the first sheet and the second sheet form a sealing seam and wherein the first sheet and the second sheet each form a filter which can pass a fluid and which forms a barrier to the beverage preparation product, wherein the second sheet is of form-retaining design; and
a coffee-maker, wherein the coffee-maker includes a holder for receiving the pad, a cover for closing off the holder, and fluid means for generating a fluid flow under pressure, wherein the holder is provided with at least one beverage outflow opening and the cover is provided with at least one fluid inflow opening which are in fluid communication with the fluid means for supplying the fluid flow to the fluid openings so that the fluid is supplied under pressure to the first sheet of the pad so that the fluid is pressed through the pad for the preparation of the beverage in the pad, the beverage leaving the pad via the second sheet to proceed to leave the holder via the at least one beverage outflow opening.
50. The system according to claim 49, wherein a fluid sealing is present between the second sheet and the bottom of the holder, which fluid sealing prevents the fluid which is supplied to the first sheet of the pad from flowing around the pad to the beverage outflow opening.
51. The system according to claim 49, wherein the holder is provided with a bowl-shaped inner space, which is bounded by the bottom and an upstanding sidewall of the holder, wherein the bottom consists of an outer horizontally directed ring-shaped bottom part which adjoins the sidewall and an inner dish-shaped bottom part which adjoins an inner edge of the ring-shaped bottom part, wherein the dish-shaped bottom part adjacent the ring-shaped bottom part slopes downwards in a direction directed away from the sidewall and to the inside of the holder and wherein the at least one beverage outflow opening is provided in the dish-shaped bottom part.
52. The system according to claim 51, wherein the ring-shaped bottom part is directed horizontally.
53. The system according to claim 51, wherein an underside of the sidewall is connected with the ring-shaped bottom part adjacent an outer edge of the ring-shaped bottom part.
54. The system according to claim 51, wherein the pad rests on the bottom, while the second sheet extends along the bottom to near the upstanding wall.
55. The system according to claim 51, wherein the sealing seam of the pad rests on the ring-shaped bottom part.
56. The system according to claim 51, wherein the second sheet has a shape corresponding to the shape of the bottom of the holder.
57. The system according to claim 51, wherein in the dish-shaped bottom part grooves are provided which form a fluid path to the at least one beverage outflow opening, while the grooves extend exclusively under the beverage preparation product in the pad.
58. The system according to claim 57, wherein the dish-shaped second bottom part comprises an inner flat bottom part, with the grooves provided in the inner flat bottom part.
59. The system according to claim 57, wherein a fluid sealing is present between the second sheet and the bottom of the holder, there where the bottom is not provided with grooves, which fluid sealing prevents the fluid which is supplied to the first sheet of the pad from flowing around the pad to the beverage outflow opening.
60. The system according to claim 49, wherein the at least one outflow opening is provided with a nozzle for generating a jet of the beverage.
61. The system according to claim 60, wherein the system is further provided with an impact surface which is impacted by the jet for beating air into the beverage to obtain a beverage with a fine-bubble foam layer.
62. The system according to claim 49, wherein the fluid is supplied to the first sheet with a pressure of 0.9-1.5 bar above atmospheric pressure.
63. The system according to claim 49, wherein a bottom of the holder is made of a hard plastic or metal and is of smooth design.
64. The system according to claim 49, wherein the system is further provided with a coffee pad provided with an inner space which is filled with ground coffee, wherein the inner space is formed by a first sheet and a second sheet which are interconnected adjacent their longitudinal edges, wherein the first sheet and the second sheet also form an outer side of the pad and are each made of flexible filtering paper and wherein the coffee pad and the holder are tailored to each other so that the coffee pad can be received in the holder for preparing coffee, wherein the second sheet extends over a bottom of the holder and wherein, in use, the fluid is supplied under pressure to the first sheet of the pad and is pressed through the pad so that the fluid flows through the first sheet, whereby in the pad a coffee extract is formed which proceeds to leave the pad via the second sheet and wherein the coffee extract proceeds to flow out of the holder via the beverage outflow opening of the holder, wherein preferably the first sheet is of flat design and the second sheet has the shape of the bottom.
65-117. (canceled)
118. The pad according to claim 17, wherein the density of the second sheet is in the range of 15-60 g/m2 or in the range of 60-200 g/m2 excluding 60 g/m2, preferably in the range of 70-150 g/m2 and more preferably in the range of 90-120 g/m2, and wherein the thickness of the second sheet is in the range of 50-400 μm or in the range of 400-500 μm excluding 400 μm, preferably in the range of 100-500 μm, more preferably in the range of 110-350 μm and still more preferably in the range of 150-300 μm.
119. The pad according to claim 7, wherein the second sheet for the rest is made from cellulose fibers and/or cellulose filaments.
US14/586,159 2012-07-05 2014-12-30 Pad for use in a coffee maker Active 2034-02-01 US11000146B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NL2009133 2012-07-05
NLNL2009133 2012-07-05
NL2009133 2012-07-05
PCT/NL2013/050510 WO2014007639A1 (en) 2012-07-05 2013-07-05 Pad for use in a coffee maker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2013/050510 Continuation WO2014007639A1 (en) 2012-07-05 2013-07-05 Pad for use in a coffee maker

Publications (2)

Publication Number Publication Date
US20150344220A1 true US20150344220A1 (en) 2015-12-03
US11000146B2 US11000146B2 (en) 2021-05-11

Family

ID=47045119

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/586,159 Active 2034-02-01 US11000146B2 (en) 2012-07-05 2014-12-30 Pad for use in a coffee maker

Country Status (11)

Country Link
US (1) US11000146B2 (en)
EP (1) EP2870081B1 (en)
JP (1) JP2015525603A (en)
CN (1) CN104603028A (en)
AU (1) AU2013285654A1 (en)
BR (1) BR112014033063B1 (en)
CA (1) CA2877945C (en)
MX (1) MX2015000112A (en)
PL (1) PL2870081T3 (en)
RU (1) RU2015103753A (en)
WO (1) WO2014007639A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10737876B2 (en) 2015-07-13 2020-08-11 K-Fee System Gmbh Filter element having a cut-out
US11045035B2 (en) 2015-09-18 2021-06-29 K-Fee System Gmbh Adapter for a single serve capsule
US11084650B2 (en) 2015-06-10 2021-08-10 K-Fee System Gmbh Portion capsule with a three-ply nonwoven fabric

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2870081T3 (en) 2012-07-05 2024-01-29 Koninklijke Douwe Egberts B.V. Pad for use in a coffee maker, methods for its manufacture and for preparing a beverage
US9783361B2 (en) 2013-03-14 2017-10-10 Starbucks Corporation Stretchable beverage cartridges and methods
NL2012064C2 (en) * 2014-01-08 2015-07-09 Koninkl Douwe Egberts Bv Pad for use in a coffee maker.
US10442610B2 (en) 2014-03-11 2019-10-15 Starbucks Corporation Pod-based restrictors and methods
PT3154874T (en) 2014-06-12 2018-12-17 K Fee System Gmbh Single serve capsule with a calendered fibrous material
CA2973553A1 (en) 2014-11-20 2016-05-26 Koninklijke Douwe Egberts B.V. Apparatus, system and method for preparing a coffee beverage
US9877495B2 (en) 2015-01-09 2018-01-30 Starbucks Corporation Method of making a sweetened soluble beverage product
US20170050799A1 (en) * 2015-08-20 2017-02-23 Novacart S.P.A. Capsule and process for making the same
CA3201910A1 (en) * 2020-12-11 2022-06-16 Richard John ANDREWS Beverage pad
CA3225060A1 (en) 2021-07-30 2023-02-02 Hans WIPRAECHTIGER Manufacturing line for manufacturing a compostable pod for brewing products and system for measuring and regulating the relative humidity of a biodegradable paper-based material

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445237A (en) * 1966-06-28 1969-05-20 Lester Gidge Preshaped cartridge for,and method of packaging,percolator ground coffee
US5573841A (en) * 1994-04-04 1996-11-12 Kimberly-Clark Corporation Hydraulically entangled, autogenous-bonding, nonwoven composite fabric
US6183814B1 (en) * 1997-05-23 2001-02-06 Cargill, Incorporated Coating grade polylactide and coated paper, preparation and uses thereof, and articles prepared therefrom
US6645584B1 (en) * 1998-07-07 2003-11-11 Enso Oyj Compostable coated paper or paperboard, a method for manufacturing the same and products obtained thereof
US20040005384A1 (en) * 2002-07-06 2004-01-08 Cai Edward Z. Pod and method for making fluid comestible
US20040105941A1 (en) * 2001-03-07 2004-06-03 Masaki Terada Packaging material and container
US20040115310A1 (en) * 2001-06-28 2004-06-17 Alfred Yoakim Sealed flexible cartridge
US20090232944A1 (en) * 2004-10-22 2009-09-17 John Macmahon Flexible pad for preparing a beverage
US20090311384A1 (en) * 2004-10-22 2009-12-17 John Macmahon Pod for preparing a beverage
US20100196545A1 (en) * 2007-03-02 2010-08-05 Mars Incorporated Beverage preparation material
US20110151060A1 (en) * 2008-08-20 2011-06-23 Ucc Ueshima Coffee Co., Ltd., Beverage extraction filter and production method therefor
US20120051672A1 (en) * 2010-08-25 2012-03-01 Nonwoven Network LLC Webs of bi-component and mono-component co-pla fibers
US20120085661A1 (en) * 2010-10-12 2012-04-12 Cellcomb Ab Pouch type food pad and food tray
US20130001289A1 (en) * 2011-06-28 2013-01-03 International Paper Company Paperboard cup with moisture absorbing protection
US20130108752A1 (en) * 2010-07-07 2013-05-02 Nestec S.A. Method for producing a beverage-ingredient capsule for the preparation of a beverage and apparatus
US20130209621A1 (en) * 2010-07-08 2013-08-15 Osamu Nakagiri Beverage extraction filter

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL47620C (en) 1936-10-23
US2382290A (en) 1940-11-22 1945-08-14 Marshall E Callander Manufacture of mineral wool
JPS63117439U (en) * 1987-01-26 1988-07-29 Lucky Coffee Machine Co.Ltd Extraction vessel
ZA924490B (en) 1991-07-05 1993-03-31 Nestle Sa A flexible package with a stiffening element and a process for its production
AU667548B2 (en) 1992-07-06 1996-03-28 Societe Des Produits Nestle S.A. Sealed flexible bag and method for making same
JPH0645606U (en) * 1992-11-30 1994-06-21 旭化成工業株式会社 Molded container
GB9305460D0 (en) * 1993-03-17 1993-05-05 Gen Foods Ltd Apparatus and method for beverage preparation
NL1007171C2 (en) * 1997-09-30 1999-03-31 Sara Lee De Nv Assembly for use in a coffee machine for preparing coffee, holder and pouch of that assembly.
IT1320945B1 (en) 2000-02-07 2003-12-18 Francesco Bonanno AUTOMATIC EMULSIFIER WITH SLIDING ADJUSTMENT AND FLOW SHOCK ABSORBER.
JP4865697B2 (en) 2004-03-26 2012-02-01 イリカフェ エス ピー エー Integrated cartridge for extracting beverages from fine particulate matter
RS50413B (en) 2004-10-01 2009-12-31 Hausbrandt Trieste 1892 Spa, Apparatus for preparing and delivering a beverage with the use of a raw matter contained in a cartridge
DK1845826T3 (en) * 2004-12-21 2010-01-18 Inventum Group B V Apparatus for making a beverage
ES2393660T3 (en) * 2007-06-05 2012-12-27 Criali Investment Sa Capsule for preparing a beverage and method for preparing a beverage using such a capsule
JP5315776B2 (en) * 2008-04-30 2013-10-16 静岡県 Drip tea bags
EP2239212B1 (en) * 2009-04-09 2015-11-11 Nestec S.A. Capsule for preparation of a beverage with a delivery wall forming a confined flowpath
IT1393936B1 (en) * 2009-04-09 2012-05-17 I T A Ca S R L Ora Mitaca S R L CARTRIDGE FOR COFFEE AND SOLUBLE PRODUCTS FOR THE PREPARATION OF DRINKS
PL2424794T3 (en) 2009-04-27 2020-03-31 Koninklijke Douwe Egberts B.V. A pad for preparing a beverage, a container comprising several pads, an apparatus and a method for preparing the beverage
CN102573577B (en) * 2009-06-17 2014-11-05 皇家戴维艾格伯茨有限公司 System, apparatus and method for preparing a beverage
US20110185911A1 (en) * 2009-10-21 2011-08-04 Gino Rapparini Filtering permeable thermoformed container for beverage-making products with a flat rim
PL2870081T3 (en) 2012-07-05 2024-01-29 Koninklijke Douwe Egberts B.V. Pad for use in a coffee maker, methods for its manufacture and for preparing a beverage

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445237A (en) * 1966-06-28 1969-05-20 Lester Gidge Preshaped cartridge for,and method of packaging,percolator ground coffee
US5573841A (en) * 1994-04-04 1996-11-12 Kimberly-Clark Corporation Hydraulically entangled, autogenous-bonding, nonwoven composite fabric
US6183814B1 (en) * 1997-05-23 2001-02-06 Cargill, Incorporated Coating grade polylactide and coated paper, preparation and uses thereof, and articles prepared therefrom
US6645584B1 (en) * 1998-07-07 2003-11-11 Enso Oyj Compostable coated paper or paperboard, a method for manufacturing the same and products obtained thereof
US20040105941A1 (en) * 2001-03-07 2004-06-03 Masaki Terada Packaging material and container
US20040115310A1 (en) * 2001-06-28 2004-06-17 Alfred Yoakim Sealed flexible cartridge
US20040005384A1 (en) * 2002-07-06 2004-01-08 Cai Edward Z. Pod and method for making fluid comestible
US20090311384A1 (en) * 2004-10-22 2009-12-17 John Macmahon Pod for preparing a beverage
US20090232944A1 (en) * 2004-10-22 2009-09-17 John Macmahon Flexible pad for preparing a beverage
US20100196545A1 (en) * 2007-03-02 2010-08-05 Mars Incorporated Beverage preparation material
US20110151060A1 (en) * 2008-08-20 2011-06-23 Ucc Ueshima Coffee Co., Ltd., Beverage extraction filter and production method therefor
US20130108752A1 (en) * 2010-07-07 2013-05-02 Nestec S.A. Method for producing a beverage-ingredient capsule for the preparation of a beverage and apparatus
US20130209621A1 (en) * 2010-07-08 2013-08-15 Osamu Nakagiri Beverage extraction filter
US20120051672A1 (en) * 2010-08-25 2012-03-01 Nonwoven Network LLC Webs of bi-component and mono-component co-pla fibers
US20120085661A1 (en) * 2010-10-12 2012-04-12 Cellcomb Ab Pouch type food pad and food tray
US20130001289A1 (en) * 2011-06-28 2013-01-03 International Paper Company Paperboard cup with moisture absorbing protection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084650B2 (en) 2015-06-10 2021-08-10 K-Fee System Gmbh Portion capsule with a three-ply nonwoven fabric
US10737876B2 (en) 2015-07-13 2020-08-11 K-Fee System Gmbh Filter element having a cut-out
US11498750B2 (en) 2015-07-13 2022-11-15 Gcs German Capsule Solution Gmbh Filter element having a cut-out
US11045035B2 (en) 2015-09-18 2021-06-29 K-Fee System Gmbh Adapter for a single serve capsule

Also Published As

Publication number Publication date
CA2877945A1 (en) 2014-01-09
US11000146B2 (en) 2021-05-11
CN104603028A (en) 2015-05-06
MX2015000112A (en) 2015-04-14
PL2870081T3 (en) 2024-01-29
EP2870081B1 (en) 2023-09-06
RU2015103753A (en) 2016-08-27
EP2870081A1 (en) 2015-05-13
JP2015525603A (en) 2015-09-07
BR112014033063B1 (en) 2020-11-10
CA2877945C (en) 2021-11-02
WO2014007639A1 (en) 2014-01-09
BR112014033063A2 (en) 2017-06-27
AU2013285654A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
US11000146B2 (en) Pad for use in a coffee maker
US20210354907A1 (en) Form-retaining pad for use in a coffee maker
RU2380999C2 (en) System of coffee-making machine and portion capsule
RU2526212C2 (en) System, method and capsule for beverage preparation
US8091813B2 (en) Bi-modal roller grinder
RU2453487C2 (en) Method for ground coffee particles preparation and placement into coffee cartridge and such coffee cartridge
KR101771759B1 (en) Capsule and system for preparing a beverage by centrifugation in a beverage production device
CA2536814C (en) Preparation of a beverage suitable for consumption
EP1576912A2 (en) Beverage filter cartridge and filter basket assembly
US20160255987A1 (en) Adapter for use in a coffee machine
US20060032380A1 (en) Filter for extraction device
NL2012061C2 (en) Form-retaining pad for use in a coffee maker.
EP3091880B1 (en) Pad for use in a coffee maker
NL2012063C2 (en) Form retaining pad for use in a coffee maker.

Legal Events

Date Code Title Description
AS Assignment

Owner name: KONINKLIJKE DOUWE EGBERTS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDERS, JOHANNES CORNELIS;REEL/FRAME:035794/0567

Effective date: 20150119

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE