US20150326429A1 - Physical-layer system prioritization and communication session management within a wireless communications system - Google Patents

Physical-layer system prioritization and communication session management within a wireless communications system Download PDF

Info

Publication number
US20150326429A1
US20150326429A1 US14/788,008 US201514788008A US2015326429A1 US 20150326429 A1 US20150326429 A1 US 20150326429A1 US 201514788008 A US201514788008 A US 201514788008A US 2015326429 A1 US2015326429 A1 US 2015326429A1
Authority
US
United States
Prior art keywords
system
access terminal
highest
systems
communication session
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/788,008
Inventor
Mohammed Ataur Rahman Shuman
Amit Goel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/693,117 priority Critical patent/US9100815B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US14/788,008 priority patent/US20150326429A1/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOEL, AMIT, SHUMAN, MOHAMMED A.
Publication of US20150326429A1 publication Critical patent/US20150326429A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/08Configuration management of network or network elements
    • H04L41/0803Configuration setting of network or network elements
    • H04L41/0813Changing of configuration
    • H04L41/082Changing of configuration due to updating or upgrading of network functionality, e.g. firmware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
    • H04L69/321Aspects of inter-layer communication protocols or service data unit [SDU] definitions; Interfaces between layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
    • H04L69/322Aspects of intra-layer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Aspects of intra-layer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer, i.e. layer one
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Abstract

Embodiments are directed to selecting a physical layer for an access terminal's (AT's) participation in a communication session. In an embodiment, the AT can register its priorities for multiple physical-layer systems as well as contact information by which an application server can contact the AT over each system. The AT selectively updates the system prioritization and/or contact information. When the AT joins or initiates a communication session, the application server supports the AT on a highest-priority system through which the AT can be contacted. The system supporting the AT's session can change upon request by the AT, the initiative of the application server and/or a detected triggering event. In a further embodiment, multiple systems can be used concurrently to support the AT's session, such that the AT can send and/or receive signaling and/or media for at least a portion of the communication session over the multiple systems concurrently.

Description

    CLAIM OF PRIORITY
  • The present application for patent is a Divisional of patent application Ser. No. 12/693,117 entitled “PHYSICAL-LAYER SYSTEM PRIORITIZATION AND COMMUNICATION SESSION MANAGEMENT WITHIN A WIRELESS COMMUNICATIONS SYSTEM,” filed Jan. 25, 2010. The disclosure of the prior application is hereby incorporated by reference herein in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • Embodiments of the invention are directed to physical-layer system prioritization and communication session management within a wireless communications system.
  • 2. Description of the Related Art
  • Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G), a second-generation (2G) digital wireless phone service (including interim 2.5G and 2.75G networks) and a third-generation (3G) high speed data/Internet-capable wireless service. There are presently many different types of wireless communication systems in use, including Cellular and Personal Communications Service (PCS) systems. Examples of known cellular systems include the cellular Analog Advanced Mobile Phone System (AMPS), and digital cellular systems based on Code Division Multiple Access (CDMA), Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), the Global System for Mobile access (GSM) variation of TDMA, and newer hybrid digital communication systems using both TDMA and CDMA technologies.
  • The method for providing CDMA mobile communications was standardized in the United States by the Telecommunications Industry Association/Electronic Industries Association in TIA/EIA/IS-95-A entitled “Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System,” referred to herein as IS-95. Combined AMPS & CDMA systems are described in TIA/EIA Standard IS-98. Other communications systems are described in the IMT-2000/UM, or International Mobile Telecommunications System 2000/Universal Mobile Telecommunications System, standards covering what are referred to as wideband CDMA (WCDMA), CDMA2000 (such as CDMA2000 1xEV-DO standards, for example) or TD-SCDMA.
  • In wireless communication systems, mobile stations, handsets, or access terminals (AT) receive signals from fixed position base stations (also referred to as cell sites or cells) that support communication links or service within particular geographic regions adjacent to or surrounding the base stations. Base stations provide entry points to an access network (AN)/radio access network (RAN), which is generally a packet data network using standard Internet Engineering Task Force (IETF) based protocols that support methods for differentiating traffic based on Quality of Service (QoS) requirements. Therefore, the base stations generally interact with ATs through an over the air interface and with the AN through Internet Protocol (IP) network data packets.
  • In wireless telecommunication systems, Push-to-talk (PTT) capabilities are becoming popular with service sectors and consumers. PTT can support a “dispatch” voice service that operates over standard commercial wireless infrastructures, such as CDMA, FDMA, TDMA, GSM, etc. In a dispatch model, communication between endpoints (ATs) occurs within virtual groups, wherein the voice of one “talker” is transmitted to one or more “listeners.” A single instance of this type of communication is commonly referred to as a dispatch call, or simply a PTT call. A PTT call is an instantiation of a group, which defines the characteristics of a call. A group in essence is defined by a member list and associated information, such as group name or group identification.
  • Conventionally, data packets within a wireless communication network have been configured to be sent to a single destination or access terminal A transmission of data to a single destination is referred to as “unicast”. As mobile communications have increased, the ability to transmit given data concurrently to multiple access terminals has become more important. Accordingly, protocols have been adopted to support concurrent data transmissions of the same packet or message to multiple destinations or target access terminals. A “broadcast” refers to a transmission of data packets to all destinations or access terminals (e.g., within a given cell, served by a given service provider, etc.), while a “multicast” refers to a transmission of data packets to a given group of destinations or access terminals. In an example, the given group of destinations or “multicast group” may include more than one and less than all of possible destinations or access terminals (e.g., within a given group, served by a given service provider, etc.). However, it is at least possible in certain situations that the multicast group comprises only one access terminal, similar to a unicast, or alternatively that the multicast group comprises all access terminals (e.g., within a given cell, etc.), similar to a broadcast.
  • Broadcasts and/or multicasts may be performed within wireless communication systems in a number of ways, such as performing a plurality of sequential unicast operations to accommodate the multicast group, allocating a unique broadcast/multicast channel (BCH) for handling multiple data transmissions at the same time and the like. A conventional system using a broadcast channel for push-to-talk communications is described in United States Patent Application Publication No. 2007/0049314 dated Mar. 1, 2007 and entitled “Push-To-Talk Group Call System Using CDMA 1x-EVDO Cellular Network”, the contents of which are incorporated herein by reference in its entirety. As described in Publication No. 2007/0049314, a broadcast channel can be used for push-to-talk calls using conventional signaling techniques. Although the use of a broadcast channel may improve bandwidth requirements over conventional unicast techniques, the conventional signaling of the broadcast channel can still result in additional overhead and/or delay and may degrade system performance.
  • The 3rd Generation Partnership Project 2 (“3GPP2”) defines a broadcast-multicast service (BCMCS) specification for supporting multicast communications in CDMA2000 networks. Accordingly, a version of 3GPP2's BCMCS specification, entitled “CDMA2000 High Rate Broadcast-Multicast Packet Data Air Interface Specification”, dated Feb. 14, 2006, Version 1.0 C.S0054-A, is hereby incorporated by reference in its entirety.
  • SUMMARY
  • Embodiments are directed to selecting a physical layer for an access terminal's (AT's) participation in a communication session within a wireless communications system. In an embodiment, the AT can register its priorities for multiple physical-layer systems as well as contact information by which an application server can contact the AT over each system. The AT selectively updates the system prioritization and/or contact information. When the AT joins or initiates a communication session, the application server supports the AT on a highest-priority system through which the AT can be contacted. The system supporting the AT's session can change upon request by the AT, or based the initiative of the application server. In a further embodiment, multiple systems can be used concurrently to support the AT's session, such that the AT can send and/or receive signaling and/or media for at least a portion of the communication session over the multiple systems concurrently.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete appreciation of embodiments of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings which are presented solely for illustration and not limitation of the invention, and in which:
  • FIG. 1 is a diagram of a wireless network architecture that supports access terminals and access networks in accordance with at least one embodiment of the invention.
  • FIG. 2A illustrates the carrier network according to an embodiment of the present invention.
  • FIG. 2B illustrates an example of the wireless communication of FIG. 1 in more detail in accordance with at least one embodiment of the invention.
  • FIG. 3 is an illustration of an access terminal in accordance with at least one embodiment of the invention.
  • FIG. 4A illustrates a process of registering multiple systems of a given access terminal (AT) with an application server in accordance with an embodiment of the invention.
  • FIG. 4B illustrates a more detailed implementation of the process of FIG. 4A in accordance with an embodiment of the invention.
  • FIG. 5A illustrates a process of setting up a server-arbitrated communication session in accordance with an embodiment of the invention.
  • FIG. 5B illustrates a more detailed implementation of the process of FIG. 5A in accordance with an embodiment of the invention.
  • FIG. 6A illustrates a continuation of FIG. 5A in accordance with an embodiment of the invention.
  • FIG. 6B illustrates a more detailed implementation of the process of FIG. 6A in accordance with an embodiment of the invention.
  • FIG. 7A illustrates a continuation of FIG. 5A in accordance with another embodiment of the invention.
  • FIG. 7B illustrates a more detailed implementation of the process of FIG. 7A in accordance with an embodiment of the invention.
  • FIG. 7C illustrates a more detailed implementation of the process of FIG. 7A in accordance with another embodiment of the invention.
  • FIG. 8A illustrates a selective media flow arbitration by the application server whereby the application server can provide and/or receive a media from to/from one or more access terminals on multiple systems in accordance with an embodiment of the invention.
  • FIG. 8B illustrates a more detailed implementation of FIG. 8A whereby the process of FIG. 8A is integrated into the process of FIG. 6B in accordance with an embodiment of the invention.
  • FIG. 8C illustrates a more detailed implementation of FIG. 8A whereby the process of FIG. 8A is integrated into the process of FIG. 7B in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION
  • Aspects of the invention are disclosed in the following description and related drawings directed to specific embodiments of the invention. Alternate embodiments may be devised without departing from the scope of the invention. Additionally, well-known elements of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention.
  • The words “exemplary” and/or “example” are used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” and/or “example” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiments of the invention” does not require that all embodiments of the invention include the discussed feature, advantage or mode of operation.
  • Further, many embodiments are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs)), by program instructions being executed by one or more processors, or by a combination of both. Additionally, these sequence of actions described herein can be considered to be embodied entirely within any form of computer readable storage medium having stored therein a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein. Thus, the various aspects of the invention may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the embodiments described herein, the corresponding form of any such embodiments may be described herein as, for example, “logic configured to” perform the described action.
  • A High Data Rate (HDR) subscriber station, referred to herein as an access terminal (AT), may be mobile or stationary, and may communicate with one or more HDR base stations, referred to herein as modem pool transceivers (MPTs) or base stations (BS). An access terminal transmits and receives data packets through one or more modem pool transceivers to an HDR base station controller, referred to as a modem pool controller (MPC), base station controller (BSC) and/or packet control function (PCF). Modem pool transceivers and modem pool controllers are parts of a network called an access network. An access network transports data packets between multiple access terminals.
  • The access network may be further connected to additional networks outside the access network, such as a corporate intranet or the Internet, and may transport data packets between each access terminal and such outside networks. An access terminal that has established an active traffic channel connection with one or more modem pool transceivers is called an active access terminal, and is said to be in a traffic state. An access terminal that is in the process of establishing an active traffic channel connection with one or more modem pool transceivers is said to be in a connection setup state. An access terminal may be any data device that communicates through a wireless channel or through a wired channel, for example using fiber optic or coaxial cables. An access terminal may further be any of a number of types of devices including but not limited to PC card, compact flash, external or internal modem, or wireless or wireline phone. The communication link through which the access terminal sends signals to the modem pool transceiver is called a reverse link or traffic channel. The communication link through which a modem pool transceiver sends signals to an access terminal is called a forward link or traffic channel. As used herein the term traffic channel can refer to either a forward or reverse traffic channel.
  • FIG. 1 illustrates a block diagram of one exemplary embodiment of a wireless system 100 in accordance with at least one embodiment of the invention. System 100 can contain access terminals, such as cellular telephone 102, in communication across an air interface 104 with an access network or radio access network (RAN) 120 that can connect the access terminal 102 to network equipment providing data connectivity between a packet switched data network (e.g., an intranet, the Internet, and/or carrier network 126) and the access terminals 102, 108, 110, 112. As shown here, the access terminal can be a cellular telephone 102, a personal digital assistant 108, a pager 110, which is shown here as a two-way text pager, or even a separate computer platform 112 that has a wireless communication portal. Embodiments of the invention can thus be realized on any form of access terminal including a wireless communication portal or having wireless communication capabilities, including without limitation, wireless modems, PCMCIA cards, personal computers, telephones, or any combination or sub-combination thereof. Further, as used herein, the terms “access terminal”, “wireless device”, “client device”, “mobile terminal” and variations thereof may be used interchangeably.
  • Referring back to FIG. 1, the components of the wireless network 100 and interrelation of the elements of the exemplary embodiments of the invention are not limited to the configuration illustrated. System 100 is merely exemplary and can include any system that allows remote access terminals, such as wireless client computing devices 102, 108, 110, 112 to communicate over-the-air between and among each other and/or between and among components connected via the air interface 104 and RAN 120, including, without limitation, carrier network 126, the Internet, and/or other remote servers.
  • The RAN 120 controls messages (typically sent as data packets) sent to a base station controller/packet control function (BSC/PCF) 122. The BSC/PCF 122 is responsible for signaling, establishing, and tearing down bearer channels (i.e., data channels) between a packet data service node 100 (“PDSN”) and the access terminals 102/108/110/112. If link layer encryption is enabled, the BSC/PCF 122 also encrypts the content before forwarding it over the air interface 104. The function of the BSC/PCF 122 is well-known in the art and will not be discussed further for the sake of brevity. The carrier network 126 may communicate with the BSC/PCF 122 by a network, the Internet and/or a public switched telephone network (PSTN). Alternatively, the BSC/PCF 122 may connect directly to the Internet or external network. Typically, the network or Internet connection between the carrier network 126 and the BSC/PCF 122 transfers data, and the PSTN transfers voice information. The BSC/PCF 122 can be connected to multiple base stations (BS) or modem pool transceivers (MPT) 124. In a similar manner to the carrier network, the BSC/PCF 122 is typically connected to the MPT/BS 124 by a network, the Internet and/or PSTN for data transfer and/or voice information. The MPT/BS 124 can broadcast data messages wirelessly to the access terminals, such as cellular telephone 102. The MPT/BS 124, BSC/PCF 122 and other components may form the RAN 120, as is known in the art. However, alternate configurations may also be used and the invention is not limited to the configuration illustrated. For example, in another embodiment the functionality of the BSC/PCF 122 and one or more of the MPT/BS 124 may be collapsed into a single “hybrid” module having the functionality of both the BSC/PCF 122 and the MPT/BS 124.
  • FIG. 2A illustrates the carrier network 126 according to an embodiment of the present invention. In the embodiment of FIG. 2A, the carrier network 126 includes a packet data serving node (PDSN) 160, a broadcast serving node (BSN) 165, an application server 170 and an Internet 175. However, application server 170 and other components may be located outside the carrier network in alternative embodiments. The PDSN 160 provides access to the Internet 175, intranets and/or remote servers (e.g., application server 170) for mobile stations (e.g., access terminals, such as 102, 108, 110, 112 from FIG. 1) utilizing, for example, a cdma2000 Radio Access Network (RAN) (e.g., RAN 120 of FIG. 1). Acting as an access gateway, the PDSN 160 may provide simple IP and mobile IP access, foreign agent support, and packet transport. The PDSN 160 can act as a client for Authentication, Authorization, and Accounting (AAA) servers and other supporting infrastructure and provides mobile stations with a gateway to the IP network as is known in the art. As shown in FIG. 2A, the PDSN 160 may communicate with the RAN 120 (e.g., the BSC/PCF 122) via a conventional A10 connection. The A10 connection is well-known in the art and will not be described further for the sake of brevity.
  • Referring to FIG. 2A, the broadcast serving node (BSN) 165 may be configured to support multicast and broadcast services. The BSN 165 will be described in greater detail below. The BSN 165 communicates with the RAN 120 (e.g., the BSC/PCF 122) via a broadcast (BC) A10 connection, and with the application server 170 via the Internet 175. The BCA10 connection is used to transfer multicast and/or broadcast messaging. Accordingly, the application server 170 sends unicast messaging to the PDSN 160 via the Internet 175, and sends multicast messaging to the BSN 165 via the Internet 175.
  • Generally, as will be described in greater detail below, the RAN 120 transmits multicast messages, received from the BSN 165 via the BCA10 connection, over a broadcast channel (BCH) of the air interface 104 to one or more access terminals 200.
  • FIG. 2B illustrates an example of the wireless communication 100 of FIG. 1 in more detail. In particular, referring to FIG. 2B, ATs 1 . . . N are shown as connecting to the RAN 120 at locations serviced by different packet data network end-points. Accordingly, ATs 1 and 3 connect to the RAN 120 at a portion served by a first packet data network end-point 162 (e.g., which may correspond to PDSN 160, BSN 165, a home agent (HA), a foreign agent (FA), etc.). The first packet data network end-point 162 in turn connects, via the routing unit 188, to the Internet 175 and/or to one or more of an authentication, authorization and accounting (AAA) server 182, a provisioning server 184, an Internet Protocol (IP) Multimedia Subsystem (IMS)/Session Initiation Protocol (SIP) Registration Server 186 and/or the application server 170. ATs 2 and 5 . . . N connect to the RAN 120 at a portion served by a second packet data network end-point 164 (e.g., which may correspond to PDSN 160, BSN 165, FA, HA, etc.). Similar to the first packet data network end-point 162, the second packet data network end-point 164 in turn connects, via the routing unit 188, to the Internet 175 and/or to one or more of the AAA server 182, a provisioning server 184, an IMS/SIP Registration Server 186 and/or the application server 170. AT 4 connects directly to the Internet 175, and through the Internet 175 can then connect to any of the system components described above.
  • Referring to FIG. 2B, ATs 1, 3 and 5 . . . N are illustrated as wireless cell-phones, AT 2 is illustrated as a wireless tablet-PC and AT 4 is illustrated as a wired desktop station. However, in other embodiments, it will be appreciated that the wireless communication system 100 can connect to any type of AT, and the examples illustrated in FIG. 2B are not intended to limit the types of ATs that may be implemented within the system. Also, while the AAA 182, the provisioning server 184, the IMS/SIP registration server 186 and the application server 170 are each illustrated as structurally separate servers, one or more of these servers may be consolidated in at least one embodiment of the invention.
  • Further, referring to FIG. 2B, the application server 170 is illustrated as including a plurality of media control complexes (MCCs) 1 . . . N 170B, and a plurality of regional dispatchers 1 . . . N 170A. Collectively, the regional dispatchers 170A and MCCs 170B are included within the application server 170, which in at least one embodiment can correspond to a distributed network of servers that collectively functions to arbitrate communication sessions (e.g., half-duplex group communication sessions via IP unicasting and/or IP multicasting protocols) within the wireless communication system 100. For example, because the communication sessions arbitrated by the application server 170 can theoretically take place between ATs located anywhere within the system 100, multiple regional dispatchers 170A and MCCs are distributed to reduce latency for the arbitrated communication sessions (e.g., so that a MCC in North America is not relaying media back-and-forth between session participants located in China). Thus, when reference is made to the application server 170, it will be appreciated that the associated functionality can be enforced by one or more of the regional dispatchers 170A and/or one or more of the MCCs 170B. The regional dispatchers 170A are generally responsible for any functionality related to establishing a communication session (e.g., handling signaling messages between the ATs, scheduling and/or sending announce messages, etc.), whereas the MCCs 170B are responsible for hosting the communication session for the duration of the call instance, including conducting an in-call signaling and an actual exchange of media during an arbitrated communication session.
  • Referring to FIG. 3, an access terminal 200, (here a wireless device), such as a cellular telephone, has a platform 202 that can receive and execute software applications, data and/or commands transmitted from the RAN 120 that may ultimately come from the carrier network 126, the Internet and/or other remote servers and networks. The platform 202 can include a transceiver 206 operably coupled to an application specific integrated circuit (“ASIC” 208), or other processor, microprocessor, logic circuit, or other data processing device. The ASIC 208 or other processor executes the application programming interface (“API’) 210 layer that interfaces with any resident programs in the memory 212 of the wireless device. The memory 212 can be comprised of read-only or random-access memory (RAM and ROM), EEPROM, flash cards, or any memory common to computer platforms. The platform 202 also can include a local database 214 that can hold applications not actively used in memory 212. The local database 214 is typically a flash memory cell, but can be any secondary storage device as known in the art, such as magnetic media, EEPROM, optical media, tape, soft or hard disk, or the like. The internal platform 202 components can also be operably coupled to external devices such as antenna 222, display 224, push-to-talk button 228 and keypad 226 among other components, as is known in the art.
  • Accordingly, an embodiment of the invention can include an access terminal including the ability to perform the functions described herein. As will be appreciated by those skilled in the art, the various logic elements can be embodied in discrete elements, software modules executed on a processor or any combination of software and hardware to achieve the functionality disclosed herein. For example, ASIC 208, memory 212, API 210 and local database 214 may all be used cooperatively to load, store and execute the various functions disclosed herein and thus the logic to perform these functions may be distributed over various elements. Alternatively, the functionality could be incorporated into one discrete component. Therefore, the features of the access terminal in FIG. 3 are to be considered merely illustrative and the invention is not limited to the illustrated features or arrangement.
  • The wireless communication between the access terminal 102 and the RAN 120 can be based on different technologies, such as code division multiple access (CDMA), WCDMA, time division multiple access (TDMA), frequency division multiple access (FDMA), Orthogonal Frequency Division Multiplexing (OFDM), the Global System for Mobile Communications (GSM), or other protocols that may be used in a wireless communications network or a data communications network. The data communication is typically between the client device 102, MPT/BS 124, and BSC/PCF 122. The BSC/PCF 122 can be connected to multiple data networks such as the carrier network 126, PSTN, the Internet, a virtual private network, and the like, thus allowing the access terminal 102 access to a broader communication network. As discussed in the foregoing and known in the art, voice transmission and/or data can be transmitted to the access terminals from the RAN using a variety of networks and configurations. Accordingly, the illustrations provided herein are not intended to limit the embodiments of the invention and are merely to aid in the description of aspects of embodiments of the invention.
  • As discussed above, access terminals can participate in server-arbitrated communication sessions with other access terminals via a number of potential systems (e.g., EV-DO, 1x, WiFi, LTE, etc.). In other words, different mechanisms or systems can link a given access terminal to the application server 170 over different physical layers for facilitating the exchange of signaling and/or media related to the communication session. For each system, the given access terminal can have an interface with an associated interface address or contact information. As will be appreciated, interfaces to wireless systems include one or more antennas (e.g., such as antenna 222 as illustrated in FIG. 3), whereas interfaces to wired systems can include ports or docks to which wires are connected. For example, the interface of the given access terminal for a WiFi connection may correspond to hardware and/or software modules at the given access terminal configured to receive and/or transmit WiFi information, and the WiFi interface has its own Internet Protocol (IP) address. In the case of WiFi, for example, it will be appreciated that the RAN 120 corresponds to an Access Point (AP) through which the access terminal can connected to the Internet. Thus, incoming packets addressed to the WiFi interface's IP address are handled by the WiFi interface of the given access terminal, incoming packets addressed to the EV-DO's IP address are handled by an EV-DO interface, and so on. Likewise, outgoing packets from the given access terminal sent over the WiFi system include a source address equal to the access terminal's WiFi interface IP address, outgoing packets from the given access terminal sent over the EV-DO system include a source address equal to the access terminal's EV-DO interface IP address, and so on.
  • Conventionally, most access terminals exchange signaling and/or media with the application server 170 over one particular system at any given time, and the application server 170 is only aware of one system by which to contact each access terminal. Accordingly, if performance on a system used to support a particular access terminal degrades during the communication session, the access terminal is likely to be dropped from the session. The access terminal can, at this point, attempt to set-up its connection to the application server 170 on a different system, but this can take a relatively long time and can lead to a long outage period during which the access terminal cannot participate in the communication session.
  • Accordingly, embodiments of the invention are directed to registering multiple systems with the application server 170, each system having a system interface associated with a different physical layer, such that the application server 170 can handoff an access terminal to a different system if performance degrades on the access terminal's current system.
  • FIG. 4A illustrates a process of registering multiple systems of a given access terminal (AT) with the application server 170 in accordance with an embodiment of the invention. In particular, FIG. 4A illustrates the registration process at a relatively high-level, with FIG. 4B directed to a more detailed implementation of the registration process.
  • Referring to FIG. 4A, at some point after the given AT powers up, the given AT registers with systems 1 . . . N, where N>=2 and whereby each of systems 1 . . . N is associated with a different type of physical layer, 400A. For example, systems 1 . . . N can include an EV-DO system, a WiFi system, a 1x system, etc., and/or any other system through which the given AT can contact the application server 170. Further, in addition to obtaining the system registration in 400A, the given AT also obtains contact information (e.g., an IP address, etc.) for system interfaces 1 . . . N, each corresponding to one of systems 1 . . . N. Thus, system interface 1 corresponds to system 1, system interface 2 corresponds to system 2, and so on. The contact information permits data sent over a given system interface of the given AT to be recognized by the corresponding system at the RAN 120, and permits the corresponding system at the RAN 120 to send data to the appropriate system interface at the given AT.
  • After registering with each of systems 1 . . . N in 400A, the given AT determines a prioritization of systems 1 . . . N for its communication sessions that are to be arbitrated by the application server 170, 405A. In an example, the given AT can store the system prioritization determined 405A along with the system interface contact information obtained in 400A in an internal record maintained thereon.
  • The prioritization of the systems in 405A can be based on a number of different parameters, either alone or in combination. For example, performance parameters such as bandwidth, latency and/or Quality of Service (QoS) can be considered. In another example, the parameters can include cost. In another example, the parameters can include the location and/or environment of the given AT. For example, a WiFi system that offers unlimited data-transfer, high-bandwidth and low-latency may be prioritized over an EV-DO system and/or a 1x system, so long as the connection to the WiFi system is sufficiently strong. In a further example, if the given AT is aware of a defined location region of a particular WiFi system, the prioritization of 405A may prioritize the WiFi system over the EV-DO system and/or 1x system when inside the defined location, and be prioritize the EV-DO system and/or 1x system over the WiFi system when inside of the EV-DO system. Methodologies related to restricting communications in accordance with a defined location region are described in more detail within co-pending U.S. Provisional Patent Application No. 61/163,834, entitled “REGULATING THE SCOPE OF SERVICE GEOGRAPHICALLY IN WIRELESS NETWORKS”, filed on Mar. 26, 2009, assigned to the same assignee of the subject application, and hereby incorporated by reference in its entirety.
  • After prioritizing systems 1 . . . N in 405A, the given AT sends a registration message over the system determined to have the highest-priority to the application server 170, 410A. The registration message indicates the determined system prioritization from 405A, and also indicates the associated contact information for each corresponding system interface of the given AT obtained in 400A. The application server 170 receives the registration message and updates a record for the given AT indicative of the given AT's preferred system prioritization and associated system interface contact information, 415A. While not shown in FIG. 4A, in another embodiment, the registration message may include a list of systems and associated system interface contact information without indicating actual system priorities. In this case, the application server 170 itself may rank the listed systems to determine the respective system priorities for the given AT.
  • Periodically and/or in response to a triggering event, the given AT determines whether to update the system prioritization and/or the associated system interface contact information with the application server 170, 420A. For example, the given AT can determine to update the system prioritization and/or the associated system interface contact information if (i) performance on one or more of the systems improves or degrades, (ii) if a cost on one or more of the systems increases or decreases (e.g., which can be based on a current location of the given AT), (iii) if the contact information for one or more of the system interfaces changes, (iv) if the given AT has been de-registered from one or more of the systems, (v) if the given AT has registered to one or more new systems, (vi) if the given AT has entered or exited a defined location region (vii) and/or any combination thereof.
  • If the given AT determines not to update the system prioritization or the associated system interface contact information with the application server 170 in 420A, the given AT does not update its registration information with the application server 170. Alternatively, if the given AT determines to update the system prioritization and/or the associated system interface contact information with the application server 170 in 420A, the given AT updates its internal record indicative of the given AT's preferred system prioritization and associated system interface contact information and then sends a supplemental registration message over the system having the highest-priority to the application server 170, 425A, after which the process returns to 420A where the given AT waits for a next update to the system prioritization and/or system interface contact information.
  • Similar to 410A, the supplemental registration message sent in 425A indicates the updated system prioritization (e.g., although if only the contact information has changed, the system prioritization in the supplemental registration message is un-changed) and updated system interface contact information (e.g., although if only the system prioritization has changed, the contact information in the supplemental registration message is un-changed). The application server 170 receives the supplemental registration message and updates the record for the given AT indicative of the given AT's preferred system prioritization and associated system interface contact information, 430A.
  • FIG. 4B illustrates a more detailed implementation example of the process of FIG. 4A in accordance with an embodiment of the invention. Referring to FIG. 4B, at some point after the given AT powers up, the given AT registers with system A and obtains an IP address IP1 that addresses system interface A for the given AT's communications over system A, 400B. The given AT also registers with system B and obtains an IP address IP2 that addresses system interface B for the given AT's communications over system B, 405B. The given AT also registers with system C and obtains an IP address IP3 that addresses system interface C for AT 1's communications over system C, 410B. The system registrations performed in 400B through 410B are each well-known in the art. However, ATs do not typically register with and obtain IP addresses for communications over multiple systems at the same time.
  • After registering with each of systems A, B and C, the given AT determines a prioritization of systems A, B and C for its communication sessions that are to be arbitrated by the application server 170, 415B. In an example, the given AT can store the system prioritization determined 415B along with the system interface contact information for systems A, B and C in an internal record. The prioritization of 415B is described above with respect to 405A of FIG. 4A, and will not be described again here for the sake of brevity.
  • In the example of FIG. 4B, assume that the given AT allocates the highest-priority to system A, the next highest-priority (or second highest-priority) to system B and the next highest-priority (e.g., the third highest or lowest-priority in the example with three (3) systems) to system C in 415B. Under this assumption, after prioritizing systems A, B and C, the given AT sends a registration message over system A configured as [A(IP1); B(IP2); C(IP3)] to indicate the system prioritization and associated system interface contact information to the application server 170, 420B.
  • At some later point in time, assume that the given AT determines that conditions are present that indicate system B should now have a higher priority than system A, 425B. For example, if system B is an EV-DO system, a pilot signal on system B may have a signal strength that has risen above a threshold, etc. Alternatively, conditions on system A may have deteriorated such that system B becomes the best available system based on some performance metric. Accordingly, under this assumption, after updating its internal record indicative of the given AT's system prioritization, the given AT sends a supplemental registration message over system B configured as [B(IP2); A(IP1); C(IP3)] to indicate the updated system prioritization and associated system interface contact information to the application server 170, 430B.
  • At some later point in time, assume that the given AT determines that the given AT obtains a new IP address IP4 of system interface C for communications over system C, 435B. Accordingly, under this assumption, after updating its internal record indicative of the given AT's system interface contact information, the given AT sends a supplemental registration message over system B configured as [B(IP2); A(IP1); C(IP4)] to indicate the system prioritization and the updated system interface contact information to the application server 170, 440B.
  • At some later point in time, assume that the given AT de-registers from system B completely, such that the given AT has no IP address for system interface B and cannot communicate over system B, 445B. Accordingly, under this assumption, after updating its internal record indicative of the given AT's system prioritization (i.e., by removing system B entirely), the given AT sends a supplemental registration message over system A configured as [A(IP1); C(IP4)] to indicate the updated system prioritization and associated system interface contact information to the application server 170, 450B.
  • As will be appreciated, the processes of FIG. 4A and/or FIG. 4B can be performed at any time the given AT is powered-on and is not actively engaged in a communication session with the application server 170. Processes by which a server-arbitrated communication session can be set-up after an execution of the processes of FIG. 4A and/or 4B will now be described with respect to FIGS. 5A and 5B.
  • FIG. 5A illustrates a process of setting up a server-arbitrated communication session in accordance with an embodiment of the invention. In particular, FIG. 5A illustrates the set-up process at a relatively high-level, with FIG. 5B directed to a more detailed implementation of the registration process.
  • Referring to FIG. 5A, assume that the process of FIG. 4A at each of ATs 1 . . . M has already been executing, such that the application server 170 is aware of the current system prioritizations and system interface contact information for ATs 1 . . . M. In 500A, a given AT (“AT 1”) among ATs 1 . . . M determines to initiate a communication session arbitrated by the application server 170, and thereby sends one or more call request messages over AT 1's highest-priority system to the application server 170 to request a communication session to ATs 2 . . . M (e.g., where M>2 for a group session and M=2 for a one-to-one session).
  • In 505A, AT 1 determines whether the communication session can be supported on the current system. For example, each call request message sent in 500A is associated with a given timeout period, such that if the given timeout period elapses and no ACK to the call request message is received back at AT 1, AT 1 will assume that its call request message has not bent transferred to the application server 170 successfully. After a threshold number (e.g., one, two, etc.) of failed call attempts (i.e., which can be inferred when no ACK to the call request message is received at AT 1), AT 1 will infer that its call cannot be supported by the current system. Otherwise, if an ACK is received as shown at 510A in response to a call request message sent over a given system, AT 1 will assume that its communication session can be supported on that system.
  • If AT 1 determines that the communication session cannot be supported on the current system in 505A, the process returns to 500A and repeats for the system having the next-highest level of priority. Otherwise, if an ACK to one of the call request messages is received in 510A, AT 1 determines that the communication session can be supported on the current system in 505A, and the process advances to 515A.
  • In 515A, AT 1 updates the record storing its system prioritization and/or system interface contact information, if necessary. For example, if the iterative process of 500A through 510A resulted in the second highest-priority system being ACKed, then the second highest-priority system can be transitioned to the highest-priority system, with the highest-priority system being demoted to a lower priority in the system prioritization. In another example, if the iterative process of 500A through 510A resulted in the highest-priority system being ACKed, then the record need not be updated. Similarly, in 520A, the application server 170 also updates its record for AT 1's system prioritization, if necessary, based upon which system the application server 170 successfully received the call request message.
  • The application server 170 evaluates the call request message and identifies the associated call target(s) (i.e., ATs 1 . . . M) and loads the system prioritization and system interface contact information for each of the associated call target(s), 525A. Accordingly, in 530A, the application server 170 sends an announce message to each of ATs 2 . . . M over the highest-priority systems for each of ATs 2 . . . M. In 535A, similar to 505A, the application server 170 determines whether each announce message has been ACKed within a given timeout period. If not, the process returns to 525A and repeats on a next highest-priority system for the non-responsive AT(s). Otherwise, if an ACK is received from ATs 2 . . . M as shown in 540A, the process advances to 545A.
  • In 545A, ATs among ATs 2 . . . M that were not reached on their highest-priority system update their system prioritization and the application server 170 likewise updates its system prioritization record for any ATs that were not responsive on their highest-priority in 550A. For example, 545A and 550A may at least replace the old highest-priority system with the system upon which the announce message was ACKed in 540A. After at least one of ATs 2 . . . M acknowledge and accept the announced communication session in 540A, the application server 170 begins arbitrating the communication session by exchanging media between the call originator AT 1 and the call targets ATs 2 . . . M, 555A. As will be appreciated, the media is exchanged in 555A over the system upon which the call request message was ACKed in 510A for AT 1, and the system upon which the announce message was ACKed in 540A for ATs 2 . . . M.
  • FIG. 5B illustrates a more detailed implementation example of the process of FIG. 5A in accordance with an embodiment of the invention. Referring to FIG. 5B, assume that AT 1 sends a system priority registration over system interface A configured as [A(IP1); B(IP2); C(IP3)], 500B, and that AT 2 sends a system priority registration over system interface C configured as [C(IP5); B(IP6); A(IP7)], 505B, and that the application server 170 updates its records to reflect the system prioritizations and associated IP addressed reported in 500B and 505B.
  • At some point in time after the registrations of 500B through 510B, AT 1 attempts to send a call request message over system A to the application server, 515B, but AT 1 determines that no ACK is received to its call request message, 520B. As will be appreciated, AT 1 may attempt one or more re-transmissions on system A, but at some point AT 1 will transition its call request attempts to system B as its second highest-priority system. Accordingly, AT 1 next attempts to send the call request message over system B to the application server, 525B, the application server 170 ACKs the call request message on system B, 530B, and AT 1 determines its call request message on system B is ACKed, 535B. Accordingly, both AT 1 and the application server 170 update their records to at least transition system B to the highest-priority system and demote system A to a lower priority for AT 1, 540B and 545B.
  • In 550B, the application server 170 identifies AT 2 as a call target and loads the system prioritization and system interface contact information from its records as stored at 510B. The application server 170 sends an announce message over system C at IP address IP5 to AT 2, 555B, and the application server 170 determines that AT 2 does not ACK within the timeout period, 560B. Accordingly, the application server 170 next sends an announce message over system B at IP address IP6 to AT 2, 565B, and the application server 170 determines that AT 2 ACKs within the timeout period, 570B and 575B. Accordingly, both AT 2 and the application server 170 update their records to at least transition system B to the highest-priority system and demote system C to a lower priority for AT 2, 580B and 585B. The application server 170 begins arbitrating the communication session by exchanging media between the call originator AT 1 and the call target AT 2 over system B at IP addresses IP2 and IP6, respectively, 590B.
  • FIG. 6A illustrates a continuation of FIG. 5A in accordance with an embodiment of the invention. Accordingly, in 600A, assume that the application server 170 is arbitrating the communication session by exchanging media between the call originator AT 1 and the call targets ATs 2 . . . M. As will be appreciated, 600A of FIG. 6A generally corresponds to 555A of FIG. 5A.
  • During the communication session, the application server 170 periodically sends a signaling message to each active session participant (i.e., ATs 1 . . . M) on their respective highest-priority systems, 605A. In other words, the application server 170 does not typically receive ACKs to the actual media sent to target ATs in 600A, and as such the application server 170 does not know whether one or more ATs have dropped out of the call (e.g., because the system the application server 170 is currently supporting the AT(s) on has degraded, etc.). The periodic signaling message, which is configured to prompt an ACK, thereby functions to inform the application server 170 with regard to whether the current systems carrying the media flow to the active session participants remains a valid manner of contacting the ATs.
  • Accordingly, each of ATs 1 . . . M that receives the periodic signaling message from the application server 170 sends an ACK on their currently-supported system, 610A. In 615A, the application server 170 determines whether each active session participant has ACKed the periodic signaling message. If the application server 170 determines that each active session participant has ACKed the periodic signaling message, the process returns to 600A and the session continues until the next periodic signaling message is sent. Otherwise, if the application server 170 determines that each active session participant has not ACKed the periodic signaling message, the application server 170 sends a supplemental signaling message to each active session participant that did not send an ACK in 610A, 620A. The supplemental signaling message sent in 620A is sent in the next highest-priority level system for each non-responsive AT. Thus, the second highest-level priority system is the next highest-level priority system for the highest-level priority system, the third highest-level priority system is the next highest-level priority system for the second highest-level priority system, and so on. Also, the supplemental signaling message sent in 620A need not be ‘periodic’ in the sense that the message from 605A is periodic. Rather, the supplemental signaling message sent in 620A can be sent as soon as possible after the application server 170 determines a higher-priority system has not ACKed the previous supplemental or periodic signaling message.
  • Accordingly, each of ATs 1 . . . M that receives the supplemental signaling message from the application server 170 sends an ACK on the system upon which the supplemental signaling message is received, 625A. In 630A, the application server 170 determines whether the non-responsive AT(s) targeted for the supplemental signaling message have ACKed the supplemental signaling message. If the application server 170 determines that each AT to which the supplemental signaling message of 620A is sent has not ACKed the supplemental signaling message in 630A, the process returns to 620A and repeats for each AT that remains non-responsive and another supplemental signaling message is sent on each of the remaining ATs' next highest-priority system(s). Accordingly, 620A through 630A is an iterative process that repeats until an ACK is received or each system for any non-responsive ATs has been pinged.
  • Otherwise, if the application server 170 determines that each AT to which the supplemental signaling message of 620A is sent has ACKed the supplemental signaling message in 630A, the application server 170 updates its system prioritization for the ATs that did not ACK on their highest-priority system such that the ACKed-system is transitioned to the new highest-priority system, 635A. Likewise, ATs that receive a supplemental signaling message on a system other than their highest-priority system will transition the other system to their new highest-priority system, 640A.
  • FIG. 6B illustrates a more detailed implementation example of the process of FIG. 6A in accordance with an embodiment of the invention. Referring to FIG. 6B, assume that the application server 170 is arbitrating the communication session by exchanging media between the call originator AT 1 on system B at IP address IP2 and AT 2 on system B at IP address IP6, 600B.
  • In 605B, the application server 170 sends a periodic signaling message (e.g., an Are You There? (AYT) message, an ICMP echo request message, etc.) to the call originator AT 1 on system B at IP address IP2 and AT 2 on system B at IP address IP6. AT 1 and AT 2 both ACK the periodic signaling message (e.g., by sending I Am Here (IAH) messages, by sending ICMP echo response messages, etc.), 610B and 615B. At some later point in time, the application server 170 sends another periodic signaling message to the call originator AT 1 on system B at IP address IP2 and AT 2 on system B at IP address IP6, 620B. This time, only AT 1 ACKs the periodic signaling message, 625B.
  • After a timeout period, the application server 170 determines that AT 2 has not ACKed the periodic signaling message from 620B, 630B. Accordingly, the application server 170 attempts to ping AT 2 on AT 2's next highest-priority system (i.e., system A) by sending a supplemental signaling message to AT 1 on system A at IP address IP7, 635B. AT 2 ACKs the supplemental signaling message on system A, 640B, and both AT 2 and the application server 170 update their system prioritizations such that the priority of system A is increased while the priority of system B is demoted, 645B and 650B. Thereafter, the application server 170 arbitrates the communication session by exchanging media between the call originator AT 1 on system B at IP address IP2 and AT 2 on system A at IP address IP7, 655B.
  • As will be appreciated by one of ordinary skill in the art, FIGS. 6A and 6B illustrate embodiments by which the application server 170 determines one or more ATs to be non-responsive on a currently supported system, and in response to this determination the application server 170 attempts to ping the non-responsive AT(s) on lower-priority systems iteratively until the AT(s) acknowledge the ping (i.e., supplemental signaling message). In alternative embodiments, the session participants may trigger a system-switch on their own initiative, as will be described below with respect to FIGS. 7A through 7C.
  • FIG. 7A illustrates a continuation of FIG. 5A in accordance with another embodiment of the invention. Accordingly, in 700A, assume that the application server 170 is arbitrating the communication session by exchanging media between the call originator AT 1 and the call targets ATs 2 . . . M. As will be appreciated, 700A of FIG. 7A generally corresponds to 555A of FIG. 5A.
  • During the communication session, each of ATs 1 . . . M monitor systems 1 . . . N with system interfaces 1 . . . N, respectively, 705A. For example, the monitoring of 705A may include decoding the media stream of the communication session carried on one of systems 1 . . . N while tracking one or more performance parameters (e.g., pilot signal strength, etc.) associated with the other systems of systems 1 . . . N. Based on the system monitoring of 705A, each of ATs 1 . . . M determines whether to change the system supporting its current session in 710A. For example, if a given AT among ATs 1 . . . M determines that the pilot signal strength of a different system is stronger than the current system supporting the communication session in 705A, the given AT may determine to switch to the different system. In another example, if a given AT among ATs 1 . . . M is moving and the monitoring of 705A determines that the given AT has entered a location where the current system supporting the communication session is either unavailable or more expensive than another available system, the given AT may determine to switch to the other available system. In a further example, the determination of 710A may correspond to a repeating of the determination of 405A discussed above with respect to FIG. 4A, except that the determination of 710A occurs when the given AT is already engaged in an active communication session based on more up-to-date information.
  • If ATs 1 . . . M determine not to change systems in 710A, the process returns to 705A and ATs 1 . . . M continue to monitor the communication session on the same system, while also tracking the performance expectation on other systems. Otherwise, if one or more of ATs 1 . . . M determine to change systems in 710A, the one or more ATs send a system-change request to the application server 170 that requests the application server 170 to support the communication session on a different system for the one or more ATs, 715A. The application server 170 receives the system-change request(s) and changes the system upon which the communication session is supported for the one or more ATs, 720A. While not shown in FIG. 7A, the one or more ATs and the application server 170 may also update the system prioritizations for the one or more ATs such that the system requested by the system-change request in 715A is set as the new highest-priority system.
  • FIG. 7B illustrates a more detailed implementation example of the process of FIG. 7A in accordance with an embodiment of the invention. Referring to FIG. 7B, assume that the application server 170 is arbitrating the communication session by exchanging media between the call originator AT 1 on system B at IP address IP2 and AT 2 on system B at IP address IP6, 700B. ATs 1 and 2 monitor systems A, B and C during the communication session, 705B and 710B. In particular, AT 1 monitors one or more performance parameters associated with systems A and C while monitoring the media flow (e.g., and/or transmitting the media flow, if AT 1 is a half-duplex floor-holder or full-duplex session participant) of the communication session on system B in 705B, and AT 2 monitors one or more performance parameters associated with systems B and C while monitoring the media flow (e.g., and/or transmitting the media flow, if AT 2 is a half-duplex floor-holder or full-duplex session participant) of the communication session on system A in 710B.
  • During the monitoring of 705B, assume that AT 1 determines that one or more monitored performance parameters rise above a threshold level, 715B. For example, if the one or more monitored performance parameters include a pilot signal strength level, then system A's pilot signal strength level may rise above the connection strength that is obtained on system B and/or some other signal threshold strength level (e.g., which can be set higher than system B's strength, to avoid quick transitions between systems in a boundary area). Based on the determination from 715B, AT 1 determines to transition its communication session from system B to system A. Accordingly, AT 1 sends a system-change request (e.g., a For Your Information (FYI) (IP_Update IP1) message, an ARP Announcement message in an Internet domain, etc.) to the application server 170 to request the system transition from system B on IP address IP2 to system A at IP address IP1, 720B. The application server 170 receives the request and thereafter supports AT 1 on the requested system, 725B.
  • FIG. 7B illustrates an example whereby AT 1 requests a system change without AT 1's associated system prioritization being updated. In other words, while the application server 170 supports the communication session for AT 1 on system A at IP address IP1 in 725B, the system prioritization for AT 1 is unchanged such that subsequent attempts to contact AT 1 are over system B at IP address IP2. FIG. 7C illustrate an alternative manner of a handset-initiated system-change embodiment whereby the system prioritization for AT 1 is changed in response to a request to transition to another system.
  • Referring to FIG. 7C, 700C through 715C correspond to 700B through 715B of FIG. 7B, respectively, and as such will not be discussed further for the sake of brevity. Based on the determination from 715C, AT 1 determines to transition its communication session from system B to system A. Next, instead of an explicit request to transition to system A at IP address IP1 as in 720B (e.g., via an FYI_Update(IP1) message, an ARP Announcement message in an Internet domain, etc.), AT 1 sends a supplemental registration message over system A configured as [A(IP1); B(IP2); C(IP3)] to indicate the updated system prioritization and associated system interface contact information to the application server 170. Thus, the supplemental registration message results in the system prioritizations maintained at AT 1 and the application server 170 to be updated, 725B and 730B, and the application server 170 thereafter supports AT 1 on the requested system, 735B. Thus, while both FIGS. 7B and 7C result in the application server 170 switching AT 1's session support to a different system, FIG. 7C further modifies the system prioritization such that subsequent contact attempts of AT 1 will also prioritize system A over system B.
  • Above-described embodiments of the invention have generally been directed to implementations whereby, at any given time during a communication session, each AT is connected to the application server 170 over a single system among the available systems 1 . . . N. However, to further improve reliability of the communication session, the communication session can at least temporarily support the communication session on one or more of ATs 1 . . . M on multiple systems, as will be described below with respect to FIGS. 8A through 8C.
  • FIG. 8A illustrates a selective media flow arbitration by the application server 170 whereby the application server 170 can provide and/or receive a media from to/from one or more access terminals on multiple systems in accordance with an embodiment of the invention. The process of FIG. 8A is described broadly, as the process can potentially be performed at different times during the communication session. For example, multiple systems can be used to exchange media to a particular AT (i) upon set-up of the communication session, (ii) during a handoff of an AT from one system or another, (iii) upon request by the AT, or (iv) even throughout the entire session (e.g., in which case FIG. 8A would execute at session set-up and block 815A would not evaluate to a determination to end multiple system support until session termination). FIGS. 8B and 8C illustrate two examples where the process of FIG. 8A is illustrated within above-described FIGS. 6B and 7B, respectively, to provide examples of how FIG. 8A may be integrated into other embodiments. However, it will be appreciated that other manners of integrating the process of FIG. 8A into the above-described embodiments of the invention can also be used, such that multiple-system support can be achieved at any point during the communication session.
  • Referring to FIG. 8A, the application server 170 determines whether to support the communication session for a given AT on multiple systems, 800A (e.g., on each system that the given AT can be contacted upon, on more than one and less than all systems in the given AT's system prioritization, etc.). As noted in the preceding paragraph, reasons as to why the application server 170 may support the given AT on multiple systems include increasing reliability during session set-up, reducing an occurrence of dropped calls when handing off the given AT from one system to another system and/or providing multiple-system support to the given AT throughout the whole session if sufficient resources are available. Further, the evaluation of 800A may be performed periodically, or can be triggered by a triggering event (e.g., a request from the given AT to switch systems, a request from the given AT to provide multiple-system support, a determination by the application server 170 itself to switch systems and/or provide multi-system support, etc.).
  • If the application server 170 determines not to support the communication session for a given AT on multiple systems in 800A, the application server 170 advances to 820A and provides support for the given AT on a single system. Otherwise, if the application server 170 determines to support the communication session for a given AT on multiple systems in 800A, the application server 170 modifies its arbitration of the communication session such that the given AT and the application server 170 communicate over two or more systems, 805A. For example, in 805A, the application server 170 can send the same media to the given AT redundantly over two different systems to increase the given AT's success rate in decoding the media flow. In another example, the application server 170 can send different media to the given AT over the different systems to increase the level of bandwidth between the application server 170 and the given AT. Likewise, if the given AT is a floor-holder for a half-duplex call or a participant in the full-duplex session, the given AT can likewise send media on the reverse link to the application server 170 over the different systems in 805A, either redundantly or with different media to increase reverse link bandwidth. Accordingly, the given AT monitors each of the multiple systems carrying the media flow in 810A.
  • In 815A, the application server 170 determines whether to end multiple system support for the given AT. For example, the application server 170 can start a timer when multiple system support is allocated to the given AT in 805A, and can determine to terminate the multiple system support when the timer exceeds a given expiration threshold. If the application server 170 determines not to terminate multiple system support for the given AT, the process returns to 805A and the session continues with media and/or signaling being exchanged with the given AT on multiple systems. Otherwise, if the application server 170 determines to terminate multiple system support for the given AT, the application server 170 transitions to providing single-system support for the communication session to the given AT (e.g., such as in 555A of FIG. 5A, 590B of FIG. 5B, 600A of FIG. 6A, 600B or 655B of FIG. 6B, 700A of FIG. 7A, 700B or 725B of FIG. 7B and/or 700C or 735C of FIG. 7C).
  • FIG. 8B illustrates a more detailed implementation of FIG. 8A, whereby the process of FIG. 8A is integrated into the embodiment described above with respect to FIG. 6B. Accordingly, referring to FIG. 8B, 600B through 630B correspond to their descriptions from FIG. 6B above, except that the determination at 630B that AT 2 has not ACKed the periodic signaling message also triggers a determination, as in 800A, to provide the media flow to AT 2 on multiple systems at least until the application server 170 can verify that AT 2 is present on a supported system. Accordingly, after detecting that AT 2 is not capable of ACKing the periodic signaling message on system B in 630B, the application server 170 begins forwarding the media flow to AT 2 on each of systems A, B and C, 805A. The application server 170 then provides the supplemental signaling message to AT 2 on the next or second-highest priority system, 635B, which is system A in this example. When AT 2 detects that a supplemental signaling message is received on an unexpected system in 810A, AT 2 interprets this event as an indication that the application server 170 has been unable to contact AT 2 on system B, which is AT 2's highest priority system at this point, and that the media flow will at least temporarily be provided on each of AT 2's systems. Thereby, AT 2 attempts to monitor the media flows on each system in 810A, and AT 2 also ACKs the signaling message on system A in 640B to inform the application server 170 that at least system A can still be used to contact AT 2.
  • In the example of FIG. 8B, after the ACK on system A is received at the application server 170, the application server 170 can stop supporting the media flow to AT 2 on systems other than system A, and instead can limit its media flow forwarding to AT 2 on system A only to conserve system resources, 815A. Thereby, the application server 170 transitions to single-system support for AT 2 on system A in 655B, which corresponds to 820A of FIG. 8A.
  • FIG. 8C illustrates a more detailed implementation of FIG. 8A, whereby the process of FIG. 8A is integrated into the embodiment described above with respect to FIG. 7B. Accordingly, referring to FIG. 8C, 800C through 810C correspond to 700B through 710B, respectively, of FIG. 7B. However, after determining that that one or more performance metrics rises above the threshold level in 815C, AT 1 sends a message requesting that the application server 170 support the communication session on both system B at IP address IP2 and system A at IP address IP1, 820C. The application server 170 receives the message of 820C and determines to provide the media flow to AT 1 on both systems A and B, 825C.
  • Accordingly, the application server 170 begins forwarding the media flow to AT 1 on each of systems A and B but not system C (e.g., because support on system C was not requested in the message of 820C), and also continues to provide the media flow to AT 2 on system A, 830C. While not shown in FIG. 8C, it may be assumed that AT 1 monitors the media flow on both systems A and B in 830C. It may also be assumed that the application server 170 sends periodic signaling messages to AT 1 on both systems A and B when multiple-system support is provided to ensure that AT 1 is receiving the media flow on both of the systems, and that AT 1 successfully ACKs these periodic signaling messages.
  • Next, at some later point in time, AT 1 determines that one or more performance metrics on system B drop below a threshold level, 835C (e.g., which may be equal to or different than the threshold level associated with 815C, and may correspond to the same or different performance parameters as in 815C). Next, responsive to the determination of 835C, AT 1 sends a message requesting that the application server 170 support the communication session exclusively on and system A at IP address IP1, 840C. Upon receiving the message of 840C, the application server 170 stops supporting the media flow to AT 1 on system A and restricts media flow support for AT 1's communication session to system A, 845C. Thereafter, the application server 170 transitions to single-system support for AT 1 on system A in 850C.
  • Those of skill in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • Further, those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
  • The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • The methods, sequences and/or algorithms described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal (e.g., access terminal). In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
  • In one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • While the foregoing disclosure shows illustrative embodiments of the invention, it should be noted that various changes and modifications could be made herein without departing from the scope of the invention as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with the embodiments of the invention described herein need not be performed in any particular order. Furthermore, although elements of the invention may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.

Claims (25)

What is claimed is:
1. A method of conducting a communication session in a wireless communications system, comprising:
sending media associated with the communication session to at least one access terminal on a highest-priority system among a previously established system prioritization for a plurality of systems by which the at least one access terminal can be contacted by an application server, each of the plurality of systems associated with a different physical-layer;
periodically sending a signaling message on the highest-priority system to the at least one access terminal to confirm that the at least one access terminal can still be reached on the highest-priority system; and
selectively updating the system prioritization based at least in part on whether the periodically sending step results in an acknowledgment from the at least one access terminal.
2. The method of claim 1, wherein the selectively updating step includes:
if the signaling message is not acknowledged by the at least one access terminal, sending a supplemental signaling message on at least one of the plurality of systems other than the highest-priority system; and
if one of the supplemental signaling messages is acknowledged, updating the system prioritization such that the system upon which the acknowledgment is received corresponds to the highest-priority system in the updated system prioritization.
3. The method of claim 1, further comprising:
receiving a request from the at least one access terminal to transition support of the communication session from the highest-priority system to a different of the plurality of systems;
modifying the sending step such that the modified sending step sends media associated with the communication session to the at least one access terminal on the requested system instead of the highest-priority system.
4. The method of claim 3, wherein the received request either corresponds to (i) a request to temporarily support the communication session on the requested system without modifying the system prioritization, or to (ii) a request to support the communication session on the requested system and to set the requested system as the highest-priority system in an updated system prioritization.
5. The method of claim 1, further comprising:
determining to send media associated with the communication session to the at least one access terminal on multiple systems among the plurality of systems, such that the media is carried on the highest-priority system and at least one additional system; and
modifying the sending step such that the modified sending step sends media associated with the communication session to the at least one access terminal on the highest-priority system as well as the at least one additional system.
6. The method of claim 5, wherein the determining step determines to send the media on multiple systems in response to a triggering event.
7. The method of claim 6, wherein the triggering event corresponds to (i) the at least one access terminal failing to acknowledge the periodic signaling message and/or (ii) a request received from the at least one access terminal for multiple-system support of the communication session.
8. The method of claim 1, wherein the plurality of systems include one or more of a WiFi system, a CDMA2000 1x system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, a orthogonal frequency division multiplexing (OFDM) system, a long-term evolution (LTE) system and/or a broadcast and multicast service (BCMCS) system.
9. A method of conducting a communication session in a wireless communications system, comprising:
receiving media associated with the communication session at an access terminal on a highest-priority system among a previously established system prioritization for a plurality of systems by which the access terminal can be contacted by an application server, each of the plurality of systems associated with a different physical-layer;
receiving a signaling message on one of the plurality of systems; and
selectively updating the system prioritization based on whether the signaling message is received on the highest-priority system.
10. The method of claim 9, wherein if the signaling message is received on the highest-priority system, the selectively updating step does not update the system prioritization.
11. The method of claim 9, wherein if the signaling message is received on a system other than the highest-priority system, the selectively updating step includes updating the system prioritization such that the system upon which the signaling message is received corresponds to the highest-priority system in the updated system prioritization.
12. The method of claim 9, further comprising:
sending an acknowledgment to the signaling message on the system upon which the signaling message is received.
13. The method of claim 12, further comprising:
after the sending step, receiving media associated with the communication session at an access terminal on the system upon which the signaling message is received and the acknowledgment is sent.
14. The method of claim 9, further comprising:
sending a request to the application server to transition support of the communication session from the highest-priority system to a different of the plurality of systems; and
after the sending step, receiving media associated with the communication session at an access terminal on the requested system.
15. The method of claim 14, wherein the sent request either corresponds to (i) a request to temporarily support the communication session on the requested system without modifying the system prioritization, or to (ii) a request to support the communication session on the requested system and to set the requested system as the highest-priority system in an updated system prioritization.
16. The method of claim 9, further comprising:
determining that the application server is expected to send media associated with the communication session to the access terminal on multiple systems among the plurality of systems, such that the media is carried on the highest-priority system and at least one additional system; and
receiving media associated with the communication session at the access terminal on the highest-priority system and the at least one additional system.
17. The method of claim 16, wherein the determining step is based on a triggering event.
18. The method of claim 17, wherein the triggering event corresponds to (i) the signaling message being received on a system other than the highest-priority system and/or (ii) a request sent by the access terminal to the application server for multiple-system support of the communication session.
19. The method of claim 9, wherein the plurality of systems include one or more of a WiFi system, a CDMA2000 1x system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, a orthogonal frequency division multiplexing (OFDM) system, a long-term evolution (LTE) system and/or a broadcast and multicast service (BCMCS) system.
20. An application server, comprising:
means for sending media associated with a communication session to at least one access terminal on a highest-priority system among a previously established system prioritization for a plurality of systems by which the at least one access terminal can be contacted by an application server, each of the plurality of systems associated with a different physical-layer;
means for periodically sending a signaling message on the highest-priority system to the at least one access terminal to confirm that the at least one access terminal can still be reached on the highest-priority system; and
means for selectively updating the system prioritization based at least in part on whether the periodically sending step results in an acknowledgment from the at least one access terminal.
21. An access terminal, comprising:
means for receiving media associated with a communication session on a highest-priority system among a previously established system prioritization for a plurality of systems by which the access terminal can be contacted by an application server, each of the plurality of systems associated with a different physical-layer;
means for receiving a signaling message on one of the plurality of systems; and
means for selectively updating the system prioritization based on whether the signaling message is received on the highest-priority system.
22. An application server, comprising:
logic configured to send media associated with a communication session to at least one access terminal on a highest-priority system among a previously established system prioritization for a plurality of systems by which the at least one access terminal can be contacted by an application server, each of the plurality of systems associated with a different physical-layer;
logic configured to periodically send a signaling message on the highest-priority system to the at least one access terminal to confirm that the at least one access terminal can still be reached on the highest-priority system; and
logic configured to selectively update the system prioritization based at least in part on whether the periodically sending step results in an acknowledgment from the at least one access terminal.
23. An access terminal, comprising:
logic configured to receive media associated with a communication session on a highest-priority system among a previously established system prioritization for a plurality of systems by which the access terminal can be contacted by an application server, each of the plurality of systems associated with a different physical-layer;
logic configured to receive a signaling message on one of the plurality of systems; and
logic configured to selectively update the system prioritization based on whether the signaling message is received on the highest-priority system.
24. A computer-readable storage medium, comprising instructions, which, when executed by an application server, cause the application server to perform operations, the instructions comprising:
program code to send media associated with a communication session to at least one access terminal on a highest-priority system among a previously established system prioritization for a plurality of systems by which the at least one access terminal can be contacted by an application server, each of the plurality of systems associated with a different physical-layer;
program code to periodically send a signaling message on the highest-priority system to the at least one access terminal to confirm that the at least one access terminal can still be reached on the highest-priority system; and
program code to selectively update the system prioritization based at least in part on whether the periodically sending step results in an acknowledgment from the at least one access terminal.
25. A computer-readable storage medium, comprising instructions, which, when executed by an access terminal, cause the access terminal to perform operations, the instructions comprising:
program code to receive media associated with a communication session on a highest-priority system among a previously established system prioritization for a plurality of systems by which the access terminal can be contacted by an application server, each of the plurality of systems associated with a different physical-layer;
program code to receive a signaling message on one of the plurality of systems; and
program code to selectively update the system prioritization based on whether the signaling message is received on the highest-priority system.
US14/788,008 2010-01-25 2015-06-30 Physical-layer system prioritization and communication session management within a wireless communications system Abandoned US20150326429A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/693,117 US9100815B2 (en) 2010-01-25 2010-01-25 Physical-layer system prioritization and communication session management within a wireless communications system
US14/788,008 US20150326429A1 (en) 2010-01-25 2015-06-30 Physical-layer system prioritization and communication session management within a wireless communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/788,008 US20150326429A1 (en) 2010-01-25 2015-06-30 Physical-layer system prioritization and communication session management within a wireless communications system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/693,117 Division US9100815B2 (en) 2010-01-25 2010-01-25 Physical-layer system prioritization and communication session management within a wireless communications system

Publications (1)

Publication Number Publication Date
US20150326429A1 true US20150326429A1 (en) 2015-11-12

Family

ID=43901286

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/693,117 Active 2030-06-16 US9100815B2 (en) 2010-01-25 2010-01-25 Physical-layer system prioritization and communication session management within a wireless communications system
US14/788,008 Abandoned US20150326429A1 (en) 2010-01-25 2015-06-30 Physical-layer system prioritization and communication session management within a wireless communications system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/693,117 Active 2030-06-16 US9100815B2 (en) 2010-01-25 2010-01-25 Physical-layer system prioritization and communication session management within a wireless communications system

Country Status (8)

Country Link
US (2) US9100815B2 (en)
EP (4) EP2632203B1 (en)
JP (1) JP5544433B2 (en)
KR (1) KR101492582B1 (en)
CN (1) CN102823279B (en)
ES (4) ES2634460T3 (en)
HU (3) HUE035277T2 (en)
WO (1) WO2011091223A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103426A1 (en) * 2014-01-02 2015-07-09 Qualcomm Incorporated Application-layer handoff of an access terminal from a first system of an access network to a second system of the access network during a communication session within a wireless communications system
US20110182272A1 (en) 2010-01-25 2011-07-28 Qualcomm Incorporated Application-layer handoff of an access terminal from a first system of an access network to a second system of the access network during a communication session within a wireless communications system
US9858551B2 (en) * 2011-09-02 2018-01-02 Bbs Technologies, Inc. Ranking analysis results based on user perceived problems in a database system
CN102404777A (en) * 2011-12-01 2012-04-04 浪潮电子信息产业股份有限公司 Method based wireless network management
US20140068058A1 (en) * 2012-09-06 2014-03-06 Apple Inc. Usage-based sorting of local network services
CN104995960A (en) * 2012-10-12 2015-10-21 诺基亚通信公司 Method and apparatus for access network selection
US8761142B2 (en) 2012-10-19 2014-06-24 Ubiquiti Networks, Inc. Distributed seamless roaming in wireless networks
US20150207854A1 (en) * 2012-10-29 2015-07-23 Google Inc. External application request
US8836601B2 (en) 2013-02-04 2014-09-16 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
US9397820B2 (en) 2013-02-04 2016-07-19 Ubiquiti Networks, Inc. Agile duplexing wireless radio devices
US9543635B2 (en) 2013-02-04 2017-01-10 Ubiquiti Networks, Inc. Operation of radio devices for long-range high-speed wireless communication
US9496620B2 (en) 2013-02-04 2016-11-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US8855730B2 (en) 2013-02-08 2014-10-07 Ubiquiti Networks, Inc. Transmission and reception of high-speed wireless communication using a stacked array antenna
WO2015054567A1 (en) 2013-10-11 2015-04-16 Ubiquiti Networks, Inc. Wireless radio system optimization by persistent spectrum analysis
WO2015134753A1 (en) 2014-03-07 2015-09-11 Ubiquiti Networks, Inc. Cloud device identification and authentication
US9325516B2 (en) 2014-03-07 2016-04-26 Ubiquiti Networks, Inc. Power receptacle wireless access point devices for networked living and work spaces
WO2015142723A1 (en) 2014-03-17 2015-09-24 Ubiquiti Networks, Inc. Array antennas having a plurality of directional beams
WO2015153717A1 (en) 2014-04-01 2015-10-08 Ubiquiti Networks, Inc. Antenna assembly
WO2016023157A1 (en) * 2014-08-11 2016-02-18 华为技术有限公司 Communication method, user equipment, access network device and application server
JP6444125B2 (en) * 2014-10-07 2018-12-26 キヤノン株式会社 Information processing apparatus, information processing apparatus control method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052720A (en) * 1998-05-14 2000-04-18 Sun Microsystems, Inc. Generic schema for storing configuration information on a server computer
US20090016310A1 (en) * 2007-07-13 2009-01-15 Rasal Digambar L Optimized usage of access technology in a multi-mode architecture
US20090047986A1 (en) * 2007-08-14 2009-02-19 Motorola, Inc. Method and system for managing transmissions in a wireless communication network
US20090213842A1 (en) * 2008-02-26 2009-08-27 Jen-Ya Huang Communication link establishing method
US20100000397A1 (en) * 2006-04-17 2010-01-07 Owen Oil Tools Lp High Density Perforating Gun System Producing Reduced Debris

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5862480A (en) * 1995-12-26 1999-01-19 Motorola, Inc. Method and apparatus for managing service accessibility between differing radio telecommunication networks
US20040151162A1 (en) * 2002-05-20 2004-08-05 Kumar Ramaswamy Multi-network mobile communication system
KR100571802B1 (en) 2001-09-03 2006-04-17 삼성전자주식회사 Mobile communication system and method for raising communication efficiency
GB2380898B (en) 2001-10-09 2004-01-14 Motorola Inc Communication network location register and subscriber device
US7324507B1 (en) * 2001-11-21 2008-01-29 Marvell International Ltd. Ethernet automatic fiber/copper media selection logic
US7054309B1 (en) * 2001-11-21 2006-05-30 Marvell International Ltd. Ethernet automatic fiber/copper media selection logic
US6944147B2 (en) 2001-12-10 2005-09-13 Nortel Networks Limited System and method for maximizing capacity in a telecommunications system
US7826844B2 (en) * 2002-01-16 2010-11-02 Qualcomm Incorporated Method and apparatus for efficient selection and acquisition of a wireless communications system
US6956846B2 (en) * 2002-08-16 2005-10-18 Utstarcom Incorporated System and method for foreign agent control node redundancy in a mobile internet protocol network
DE60317824T2 (en) * 2002-10-30 2008-10-30 Research In Motion Ltd., Waterloo Method and device for the preferred selection of a communication network which makes data services available
WO2004093404A1 (en) 2003-04-17 2004-10-28 Sharp Kabushiki Kaisha Transmitter, receiver, wireless system, control method, control program, and computer-readable recording medium containing the program
US8140698B2 (en) * 2003-04-30 2012-03-20 International Business Machines Corporation Method and system for efficient data transmission in interactive networked environments
US7203486B2 (en) * 2003-05-19 2007-04-10 France Telecom Wireless system having a dynamically configured multimodal user interface based on user preferences
JP2004355242A (en) 2003-05-28 2004-12-16 Denso Corp Communication method of integrated radio set for vehicle
US20050215200A1 (en) * 2004-03-25 2005-09-29 General Motors Corporation Method and system for implementing a vehicle WiFi access point gateway
US20050233780A1 (en) * 2004-04-20 2005-10-20 Nokia Corporation System and method for power management in a mobile communications device
US7162236B2 (en) * 2004-04-26 2007-01-09 Motorola, Inc. Fast call set-up for multi-mode communication
US7277703B2 (en) * 2004-06-30 2007-10-02 Nokia Corporation Apparatus, and an associated method, for facilitating network selection utilizing modified scan list
US7728871B2 (en) * 2004-09-30 2010-06-01 Smartvue Corporation Wireless video surveillance system & method with input capture and data transmission prioritization and adjustment
WO2006058553A1 (en) 2004-12-03 2006-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Handing off a mobile station between a first access network supporting sip (session initiation protocol) and a second cellular access network
KR100653598B1 (en) 2005-02-01 2006-12-05 주식회사 인터파크지마켓 System and method for responding with customer, and recordable media thereof
JP4861713B2 (en) * 2005-02-01 2012-01-25 イーベイ コリア カンパニーリミテッド Intelligent customer service system, intelligent customer service method
KR101100198B1 (en) 2005-04-11 2011-12-28 엘지전자 주식회사 Method of establishing initiation and links in multi mode mobile terminal
AT497684T (en) 2005-04-18 2011-02-15 Telecom Italia Spa Process for interactive mobile network selection
US20060268711A1 (en) * 2005-05-27 2006-11-30 Doradla Anil K Network selection terminal
US8249590B2 (en) * 2005-08-16 2012-08-21 Varaha Systems Incorporated System, method, and apparatus for voice handoffs
US7970425B2 (en) 2005-08-30 2011-06-28 Alcatel-Lucent Usa Inc. Push-to-talk group call system using CDMA 1x-EVDO cellular network
US20070178933A1 (en) * 2006-01-30 2007-08-02 Sony Ericsson Mobile Communications Ab Wireless communication network selection
US20070286092A1 (en) 2006-03-31 2007-12-13 David Famolari Method for use of preference list to manage network load and user experience in a multi-network environment
GB0619454D0 (en) 2006-10-02 2006-11-08 Fujitsu Ltd Communication systems
US7751713B2 (en) * 2007-01-19 2010-07-06 Infinera Corporation Communication network with skew path monitoring and adjustment
US8005107B2 (en) 2007-02-06 2011-08-23 Research In Motion Limited Method and system for robust MAC signaling
EP1962471A1 (en) 2007-02-21 2008-08-27 Alcatel Lucent Method of providing an access to a real-time service
US8515433B2 (en) * 2007-06-15 2013-08-20 Silver Spring Networks, Inc. Load management in wireless mesh communications networks
US8233401B2 (en) * 2007-08-13 2012-07-31 Cisco Technology, Inc. Using an IP registration to automate SIP registration
US8090323B2 (en) * 2008-03-04 2012-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Reverse link optimized channel quality estimation
JP4850211B2 (en) 2008-06-19 2012-01-11 三菱電機株式会社 Communications system
JP5183397B2 (en) * 2008-09-29 2013-04-17 株式会社日立製作所 Wireless communication system, call processing control apparatus, and call processing control method
US8639245B2 (en) * 2009-06-08 2014-01-28 Qualcomm Incorporated Method and apparatus for updating rules governing the switching of virtual SIM service contracts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052720A (en) * 1998-05-14 2000-04-18 Sun Microsystems, Inc. Generic schema for storing configuration information on a server computer
US20100000397A1 (en) * 2006-04-17 2010-01-07 Owen Oil Tools Lp High Density Perforating Gun System Producing Reduced Debris
US20090016310A1 (en) * 2007-07-13 2009-01-15 Rasal Digambar L Optimized usage of access technology in a multi-mode architecture
US20090047986A1 (en) * 2007-08-14 2009-02-19 Motorola, Inc. Method and system for managing transmissions in a wireless communication network
US20090213842A1 (en) * 2008-02-26 2009-08-27 Jen-Ya Huang Communication link establishing method

Also Published As

Publication number Publication date
CN102823279A (en) 2012-12-12
KR20120123479A (en) 2012-11-08
EP2632224A2 (en) 2013-08-28
EP2632203A3 (en) 2013-12-25
ES2634460T3 (en) 2017-09-27
WO2011091223A3 (en) 2011-11-24
US20110185011A1 (en) 2011-07-28
EP2529563A2 (en) 2012-12-05
HUE032329T2 (en) 2017-09-28
EP2632224A3 (en) 2013-12-18
HUE035277T2 (en) 2018-05-02
KR101492582B1 (en) 2015-02-11
ES2608652T3 (en) 2017-04-12
EP2632225A2 (en) 2013-08-28
JP5544433B2 (en) 2014-07-09
EP2632203B1 (en) 2016-10-12
US9100815B2 (en) 2015-08-04
JP2013518467A (en) 2013-05-20
EP2632203A2 (en) 2013-08-28
HUE039431T2 (en) 2018-12-28
WO2011091223A2 (en) 2011-07-28
EP2632225A3 (en) 2013-12-25
CN102823279B (en) 2015-08-05
ES2553567T3 (en) 2015-12-10
EP2632225B1 (en) 2017-05-17
EP2529563B1 (en) 2015-08-26
EP2632224B1 (en) 2018-08-08
ES2693108T3 (en) 2018-12-07

Similar Documents

Publication Publication Date Title
ES2749196T3 (en) Efficient transmission of radio resource for group communication through LTE EMBMS
US9107188B2 (en) Quality of Service (QoS) acquisition and provisioning within a wireless communications system
JP5670395B2 (en) Responding to interactive multicast messages in a wireless communication system
JP5905083B2 (en) Group communication sessions supported at least in part via a personal area network in a wireless communication system
US8433318B2 (en) Select band-scanning by a multi-sim user equipment (UE) in a wireless communications system
JP5781193B2 (en) Support for multimedia applications based on network zone awareness
KR101105584B1 (en) Method and apparatus for broadcast application in a wireless communication system
US20140122583A1 (en) Managing a client application session based on a status of a local wireless connection between primary and secondary communication terminals
EP2230795B1 (en) Multicast communications within a wireless communications network
JP6153983B2 (en) Exchanging presence information in communication networks
RU2369011C2 (en) System amd method of radio communication
US8825070B2 (en) Radio resource reservation for wireless networks
JP4522863B2 (en) Method and apparatus for efficient paging and registration in a wireless communication network
US9313620B2 (en) Tracking locations of multicast group members within a wireless communication system
KR100594101B1 (en) System and method for supporting multimedia broadcast/multicast service in non tracking area
US8490174B2 (en) Transmitting keep-alive packets on behalf of a mobile communications device within a wireless communications system
US7672327B2 (en) Method for providing multicast and/or broadcast services to user terminals
US8447291B2 (en) Selective state transitions of a user equipment within a wireless communications system
KR101164759B1 (en) Dynamic group prioritization in communication networks
US7664517B2 (en) Wireless communication system utilizing a persistence value for group communication requests to reduce latency
US9317329B2 (en) Arbitrating resource acquisition for applications of a multi-processor mobile communications device
KR100947741B1 (en) Rrc connection setup method in a mobile communication system
US7885199B2 (en) System and method for providing group calling in a wireless network
CA2729014C (en) Method for distributing media in an infrastructure based communication system
JP5509345B2 (en) Page management of an access terminal when the access terminal is involved in a communication session in a wireless communication system

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHUMAN, MOHAMMED A.;GOEL, AMIT;REEL/FRAME:035941/0319

Effective date: 20100112

STCB Information on status: application discontinuation

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION