US20150273808A1 - System and method for direct infrared (ir) laser welding - Google Patents

System and method for direct infrared (ir) laser welding Download PDF

Info

Publication number
US20150273808A1
US20150273808A1 US14/228,347 US201414228347A US2015273808A1 US 20150273808 A1 US20150273808 A1 US 20150273808A1 US 201414228347 A US201414228347 A US 201414228347A US 2015273808 A1 US2015273808 A1 US 2015273808A1
Authority
US
United States
Prior art keywords
laser beam
plastic components
laser
recited
joining surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/228,347
Inventor
Stephen Thompson
Yannis Maudet
Nuno Demetrio Soeiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogefi Engine Systems USA Inc
Original Assignee
Sogefi Engine Systems USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52807618&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150273808(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sogefi Engine Systems USA Inc filed Critical Sogefi Engine Systems USA Inc
Priority to US14/228,347 priority Critical patent/US20150273808A1/en
Assigned to SOGEFI ENGINE SYSTEMS USA, INC. reassignment SOGEFI ENGINE SYSTEMS USA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Maudet, Yannis, Soeiro, Nuno Demetrio, THOMPSON, STEPHEN
Priority to EP15161007.8A priority patent/EP2923821B1/en
Publication of US20150273808A1 publication Critical patent/US20150273808A1/en
Priority to US15/438,004 priority patent/US11110665B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1632Laser beams characterised by the way of heating the interface direct heating the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1661Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/944Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/863Robotised, e.g. mounted on a robot arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/749Motors
    • B29L2031/7492Intake manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Definitions

  • the present invention generally relates to direct laser infrared (IR) welding for plastic components.
  • the present invention is directed to a system and method for joining at least two plastic components together using direct laser IR welding.
  • vibration laser welding is currently the prevalent approach used to join multiple plastic components together.
  • alternative welding techniques such as conventional laser welding and infrared (IR) welding may be used as well to join multiple plastic components together.
  • IR infrared
  • These alternative welding techniques tend to produce higher quality weld joints and offer greater design freedom when compared to vibration welding. Nonetheless, these alternative welding techniques also have drawbacks as well, which limit the applications where they may be used.
  • a first, optically transparent part and a second, absorbent part are provided, where the first part is positioned above the second part.
  • the first part may be constructed of a transparent polymer that allows for IR energy from a laser beam to pass through.
  • the second part may be treated with a material that acts to absorb the IR energy from the laser beam. For example, in one approach carbon black may be added to the second part to absorb IR energy from the laser beam.
  • the first part and the second part are clamped together, and the IR energy from the laser beam passes through the first part.
  • the IR energy from the laser beam melts an adjacent surface of the second part, which in turn welds the first part and the second part together.
  • the first part and the second part are each constructed of dissimilar materials (i.e., the first part is constructed of a transparent material and the second part is constructed of a material that absorbs IR energy).
  • a direct line of sight should be available through a relatively thin portion of the first part as well.
  • the relatively thin portion of the first part is typically between about one to three millimeters. This requirement provides narrow design constraints, and limits the number of applications where laser welding may be used.
  • heating elements such as, for example, quartz lamps or a heated filament may be provided to generate heat.
  • the heat may be radiated directly upon the surfaces of the parts that are to be joined to one another. Specifically, the surfaces of the parts to be joined to one another may be melted. The melted surfaces of the parts may then be clamped against one another to create a weld.
  • this problem may be further exacerbated if the parts have relatively complex geometry, as this makes uniform heating along the surfaces more difficult.
  • the tooling associated with the heating elements may need to be customized depending on the application, which may add cost. Thus, there exists a need for a more cost-effective and flexible approach to weld plastic parts.
  • a system for welding at least two plastic components together where the plastic components are welded together at respective joining surfaces.
  • the system includes at least one infrared (IR) laser beam source positioned relative to the at least two plastic components and a control module.
  • the IR laser beam source generates an IR laser beam.
  • the control module is in operative communication with the at least one IR laser beam source.
  • the control module includes control logic for controlling the at least one IR laser beam source to heat the joining surfaces of the at least two plastic components to a welding temperature.
  • a method of welding at least two plastic components together comprises directing at least one infrared (IR) laser beam along the joining surfaces of the at least two plastic components.
  • the IR laser beam heats the joining surfaces of the at least two plastic components to a welding temperature.
  • the method also includes clamping the at least two plastic components together at the joining surfaces to create a weld.
  • FIG. 1 is a schematic illustration of an exemplary system for heating at least two plastic components together using an IR laser source
  • FIG. 2 is a schematic illustration of the two plastic components shown in FIG. 1 being clamped together after sufficient heating;
  • FIG. 3 is a schematic illustration of an alternative embodiment of the system shown in FIG. 1 for heating at least two plastic components together;
  • FIG. 4 is a schematic illustration of the two plastic components shown in FIG. 3 being clamped together after sufficient heating;
  • FIG. 5 is a schematic illustration of another embodiment of the system shown in FIG. 1 for heating at least two plastic components together;
  • FIG. 6 is a schematic illustration of the two plastic components shown in FIG. 5 being clamped together after sufficient heating.
  • FIG. 1 illustrates an exemplary system 10 for welding at least two plastic components 20 a , 20 b together at their respective joining surfaces 22 a , 22 b .
  • the system 10 may include a laser beam source 30 and a control module 32 in operative communication with the laser beam source 30 .
  • the laser beam source 30 generates a laser beam 40 operating in the infrared (IR) portion of the electromagnetic spectrum, where a wavelength of the laser beam 40 generally ranges from about 750 nm to about 1 mm.
  • the laser beam source 30 may include a solid-state laser, a diode laser, or a gas laser for generating the laser beam 40 .
  • a solid-state laser is a fiber laser.
  • the plastic components 20 a , 20 b may be underhood components in an automotive application.
  • the control module 32 may refer to, or be part of, an application specific integrated circuit (ASIC), an electronic circuit, a combinational logic circuit, a field programmable gate array (FPGA), a processor (shared, dedicated, or group) that executes code, or a combination of some or all of the above, such as in a system-on-chip.
  • the control module 32 may be used to control the laser beam source 30 in order to direct the laser beam 40 along the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b . In the embodiments as shown in FIGS.
  • the laser beam source 30 is based on remote laser welding, which utilizes scanning mirrors (not illustrated) for positioning and moving the laser beam 40 along the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b .
  • scanning mirrors not illustrated
  • other techniques may be used to position the laser beam 40 along the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b as well.
  • a robot or a Cartesian system may be used for positioning and moving the laser beam 40 along the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b.
  • the plastic components 20 a , 20 b may be constructed of any type of thermoplastic polymer such as, but not limited to, polypropylene, polycarbonate, acrylic, nylon, and acrylonitrile butadiene styrene (ABS).
  • the plastic components 20 a , 20 b may be constructed of the same material.
  • the plastic components 20 a , 20 b may be constructed of different materials.
  • an additive or colorant may be added to material the plastic components 20 a , 20 b are constructed of, where the colorant is configured to substantially absorb the energy emitted by the laser beam 40 .
  • the colorant may be carbon black.
  • the additive or colorant may be omitted from the plastic components 20 a , 20 b .
  • a coating configured to substantially absorb energy in the IR spectrum may be applied the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b .
  • CLEARWELD® One commercially available example of the coating is sold under the trade name CLEARWELD®, and is manufactured by the Gentex Corporation located in Binghamton, N.Y.
  • the colorant may be omitted from the plastic components 20 a , 20 b .
  • the coating is not applied to the joining surfaces 22 a , 22 b of the components 20 a , 20 b .
  • the laser beam 40 includes a wavelength of at least about 2000 nm within the IR spectrum. If the laser beam 40 operates at a wavelength of at least 2000 nm, then the plastic components 20 a , 20 b may be able to substantially absorb the energy emitted by the laser beam 40 , even in the absence of the colorant or the coating applied to the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b.
  • the plastic components 20 a , 20 b may be held in place using a fixture (not illustrated). In the non-limiting embodiment as shown in FIG. 1 , both of the plastic components 20 a , 20 b are positioned such that the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b generally oppose the laser beam source 30 .
  • the control module 32 may be used to scan the laser beam 40 along both the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b .
  • FIG. 1 both of the plastic components 20 a , 20 b are positioned such that the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b generally oppose the laser beam source 30 .
  • the control module 32 may be used to scan the laser beam 40 along both the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b .
  • control module 32 includes control logic or circuitry for controlling the laser beam source 30 to manipulate the laser beam 40 within a first welding area 50 a and a second welding area 50 b in order to melt the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b.
  • the laser beam 40 rapidly scans repeatedly over both the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b in a quasi-simultaneous matter in order to sufficiently heat both of the joining surfaces 22 a , 22 b to a welding temperature at about the same time.
  • the laser 40 scans and heats the surfaces 22 a , 22 b rapidly enough in order to keep the surfaces 22 a , 22 b at the welding temperature until the plastic components 20 a , 20 b are clamped together (the clamping is shown in FIG. 2 , and is described in greater detail below).
  • the laser beam 40 may repeatedly scan over both the joining surfaces 22 a , 22 b at a rate of about 50,000 mm/second. This speed of the laser 40 translates into about ten to about two hundred passes per second along the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b , where the exact number of passes may depend on the specific size and geometry of the plastic components 20 a , 20 b .
  • the welding temperature may vary based on the specific material that the plastic components 20 a , 20 b are constructed of. The welding temperature may be defined as a temperature at which the plastic components 20 a , 20 b melt sufficiently so that they may be fused together.
  • the control module 32 may include control logic for adjusting various welding parameters of the laser beam 40 in order to accommodate the geometry of the joining surfaces 22 a , 22 b as well as the specific material that the plastic components 20 a , 20 b are constructed of Specifically, the welding parameters may control the amount of heat and melting the joining surfaces 22 a , 22 b may undergo as the laser beam 40 is scanned. Some examples of the welding parameters that the control module 32 may adjust include, but are not limited to, the travel speed of the laser beam 40 , the scanning frequency of the laser beam 40 , the duration at which the laser beam 40 heats the plastic components 20 a , 20 b , and a size of the laser focal diameter of the laser beam 40 .
  • the laser beam 40 may wobble or quiver slightly as the laser beam 40 melts the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b , which also affects the amount of heat and melting the joining surfaces 22 a , 22 b may undergo.
  • the welding parameters may also account for any unique features located along the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b .
  • relatively small ribs may be positioned along the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b . The ribs may be used to accelerate the melting of the joining surfaces 22 a , 22 b.
  • the welding parameters may be adjusted in order to achieve a specific amount of energy per unit of surface area of the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b .
  • the specific amount of energy per unit of surface area generates enough heat for the joining surfaces 22 a , 22 b to melt sufficiently so that they may be fused together, but at the same time will not cause the plastic components 20 a , 20 b to overheat and burn.
  • the specific amount of energy per unit of surface area may generate enough heat so that the joining surfaces 22 a , 22 b of the plastic components 20 a , 20 b remain melted as the plastic components 20 a , 20 b are clamped together to form a weld.
  • the average energy per unit of surface area may range from about 0.055 W/mm 2 to about 0.5 W/mm 2 . It should be noted that if excessive energy is delivered to the joining surfaces 22 a , 22 b , the plastic components 20 a , 20 b may degrade or burn. For example, if a spot size of the laser beam 40 is relatively small, or if a scanning speed of the laser beam 40 is relatively slow, this may generate excessive energy along the joining surfaces 22 a , 22 b , which may cause burning. Moreover, if insufficient energy is delivered to the joining surfaces 22 a , 22 b , then the plastic components 20 a , 20 b may not be heated to the welding temperature.
  • the plastic components 20 a , 20 b may be clamped together to form a weld.
  • the fixture holding both the plastic components 20 a , 20 b may rotate both of the plastic components 20 a , 20 b by about ninety degrees, and towards one another such that the joining surfaces 20 a , 20 b face one another along a y-axis of orientation.
  • the fixture (not illustrated) may then clamp the plastic components 20 a , 20 b together for a predetermined amount of time under a predetermined amount of pressure.
  • the plastic components 20 a , 20 b may be clamped together with between about 1 MPa to about 4 MPa of clamping pressure for about five to twenty seconds. Clamping the plastic components 20 a , 20 b for the predetermined amount of time under the predetermined amount of pressure creates a weld (not shown) between the two joining surfaces 22 a , 22 b .
  • the plastic components 20 a , 20 b may be welded or joined together in order to create a single, unitary part.
  • a single laser beam source 30 is illustrated.
  • the system 10 may utilize more than one laser beam source 30 as well.
  • FIG. 3 a system 100 having multiple laser beam sources 130 a , 130 b is illustrated.
  • the laser beam source 130 a may be used to melt a joining surface 122 a of a plastic component 120 a .
  • the laser beam source 130 b may be used to melt a joining surface 122 b of a plastic component 120 b .
  • Multiple laser beam sources 130 may be especially advantageous if surface areas of the joining surfaces 122 a , 122 b are relatively large, as a single laser beam may not always be able to scan the joining surfaces 122 a , 122 b frequently enough in order to melt the joining surfaces 122 a , 122 b sufficiently to create a weld.
  • a control module 132 may be in operative communication with both the laser beam sources 130 a , 130 b .
  • the control module 132 includes control logic or circuitry for controlling the laser beam sources 130 a , 130 b independently of one another.
  • the control module 132 includes control logic or circuitry for controlling the laser beam source 130 a to manipulate a laser beam 140 a along a first welding area 150 a .
  • the laser beam 40 travels within the first welding area 150 a in order to heat the joining surface 122 a of the plastic component 120 a to the welding temperature, thereby melting the joining surface 122 a .
  • the control module 132 also controls the laser beam source 130 b to manipulate a laser beam 140 b along a second welding area 150 b .
  • the laser beam 140 b travels within the second welding area 150 b in order to heat the joining surface 122 b of the plastic component 120 b to the welding temperature, thereby melting the joining surface 122 b .
  • both joining surfaces 122 a , 122 b of the plastic components 120 a , 120 b may be melted together at the same time.
  • the plastic components 120 a , 120 b may be welded together.
  • the fixture holding both the plastic components 120 a , 120 b may rotate both of the plastic components 120 a , 120 b by about ninety degrees, and towards one another such that the joining surfaces 120 a , 120 b face one another in the y-axis orientation.
  • the fixture (not illustrated) may then clamp the plastic components 120 a , 120 b together for the predetermined amount of time under the predetermined amount of pressure.
  • FIG. 4 illustrates both the laser beam sources 130 a , 130 b being positioned directly adjacent or side-by-side with one another, it is to be understood that the laser beam sources 130 a , 130 b may be oriented in other configurations as well.
  • FIG. 4 illustrates the plastic components 120 a , 120 b positioned side-by-side with one another, which each of the joining surfaces 122 a , 122 b facing upwardly towards the laser beam sources 130 a , 130 b , those skilled in the art will appreciate that the plastic components 120 a , 120 b may be positioned in different orientations as well.
  • FIG. 5 a system 200 having multiple laser beam sources 230 a , 230 b is illustrated.
  • a control module 232 may be in operative communication with both the laser beam sources 230 a , 230 b.
  • FIG. 5 also illustrates two plastic components 220 a , 220 b that include respective joining surfaces 222 a , 222 b .
  • One of the plastic components 220 a is oriented in a first position, where the joining surface 222 a is positioned in an upwards direction.
  • the remaining plastic component 220 b has been rotated by about one hundred and eighty degrees and is oriented in a second position, where the joining surface 222 b is positioned in a downwards direction.
  • the laser beam source 230 a is positioned above the joining surface 222 a of the plastic component 220 a .
  • the laser beam source 230 a may be used to heat the joining surface 222 a of the plastic component 220 a to the welding temperature, thereby melting the joining surface 222 a .
  • the control module 232 includes control logic or circuitry for controlling the laser beam source 230 a to manipulate a laser beam 240 a along a first welding area 250 a .
  • the laser beam 240 a travels within the first welding area 250 a in order to heat the joining surface 222 a of the plastic component 220 a.
  • the laser beam source 230 b is positioned below the joining surface 222 b of the plastic component 220 b .
  • the laser beam source 230 b may be used to heat the joining surface 222 b of the plastic component 220 b to the welding temperature, thereby melting the joining surface 222 b .
  • the control module 232 includes control logic or circuitry for controlling the laser beam source 230 b to manipulate a laser beam 240 b along a second welding area 250 b .
  • the laser beam 240 b travels within the second welding area 250 b in order to melt the joining surface 222 b of the plastic component 220 b .
  • the laser beam 240 a may melt the joining surface 222 a of the plastic component 220 a simultaneously as the laser beam 240 b melts the joining surface 222 b of the plastic component 220 b.
  • the plastic components 220 a , 220 b may be welded together.
  • the fixture holding both the plastic components 220 a , 220 b may translate one or both of the plastic components 220 a , 220 b in a linear direction towards one another such that the joining surfaces 120 a , 120 b face one another in an x-axis orientation.
  • the fixture holding both the plastic components 220 a , 220 b may translate one or both of the plastic components 220 a , 220 b in a linear direction towards one another such that the joining surfaces 120 a , 120 b face one another in an x-axis orientation.
  • the plastic component 220 b is translated in the linear direction towards the plastic component 220 a such that the joining surface 222 b of the plastic component 220 b generally opposes the joining surface 222 a of the plastic component 220 a .
  • the fixture (not illustrated) may then clamp the plastic components 220 a , 220 b together for the predetermined amount of time under the predetermined amount of pressure.
  • the disclosed systems each utilize direct IR welding to join at least two plastic components together.
  • the disclosed laser beam generated by the IR laser beam source may directly scan and melt respective joining surfaces of the plastic components.
  • conventional laser welding typically requires a first, optically transparent part and a second, absorbent part.
  • the first part may be constructed of a transparent polymer that allows for IR energy from a laser beam to pass through.
  • the second part may be treated with a material that acts to absorb the IR energy from the laser beam.
  • the disclosed system does not require two parts constructed of dissimilar materials for welding.
  • the disclosed system does not typically require custom tooling for welding, unlike IR welding.
  • the disclosed system may also provide greater control as well as more consistent heating of the joining surfaces of the plastic parts when compared to IR welding.

Abstract

A system for welding at least two plastic components together is disclosed, where the plastic components are welded together at respective joining surfaces. The system includes at least one infrared (IR) laser beam source positioned relative to the at least two plastic components and a control module. The IR laser beam source generates an IR laser beam. The control module is in operative communication with the at least one IR laser beam source. The control module includes control logic for controlling the at least one IR laser beam source to heat the joining surfaces of the at least two plastic components to a welding temperature.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to direct laser infrared (IR) welding for plastic components. In particular, the present invention is directed to a system and method for joining at least two plastic components together using direct laser IR welding.
  • 2. Description of the Related Art
  • In the area of automotive underhood components such as intake manifolds, vibration laser welding is currently the prevalent approach used to join multiple plastic components together. However, alternative welding techniques such as conventional laser welding and infrared (IR) welding may be used as well to join multiple plastic components together. These alternative welding techniques tend to produce higher quality weld joints and offer greater design freedom when compared to vibration welding. Nonetheless, these alternative welding techniques also have drawbacks as well, which limit the applications where they may be used.
  • In conventional laser welding, a first, optically transparent part and a second, absorbent part are provided, where the first part is positioned above the second part. The first part may be constructed of a transparent polymer that allows for IR energy from a laser beam to pass through. The second part may be treated with a material that acts to absorb the IR energy from the laser beam. For example, in one approach carbon black may be added to the second part to absorb IR energy from the laser beam. The first part and the second part are clamped together, and the IR energy from the laser beam passes through the first part. The IR energy from the laser beam melts an adjacent surface of the second part, which in turn welds the first part and the second part together. However, in conventional laser welding the first part and the second part are each constructed of dissimilar materials (i.e., the first part is constructed of a transparent material and the second part is constructed of a material that absorbs IR energy). Moreover, a direct line of sight should be available through a relatively thin portion of the first part as well. The relatively thin portion of the first part is typically between about one to three millimeters. This requirement provides narrow design constraints, and limits the number of applications where laser welding may be used.
  • In IR welding, heating elements such as, for example, quartz lamps or a heated filament may be provided to generate heat. The heat may be radiated directly upon the surfaces of the parts that are to be joined to one another. Specifically, the surfaces of the parts to be joined to one another may be melted. The melted surfaces of the parts may then be clamped against one another to create a weld. However, it may be challenging to control the heating elements in order to achieve a constant or uniform temperature along the surfaces of the parts that are joined to one another. Moreover, this problem may be further exacerbated if the parts have relatively complex geometry, as this makes uniform heating along the surfaces more difficult. Finally, the tooling associated with the heating elements may need to be customized depending on the application, which may add cost. Thus, there exists a need for a more cost-effective and flexible approach to weld plastic parts.
  • BRIEF SUMMARY OF THE INVENTION
  • In one embodiment, a system for welding at least two plastic components together is disclosed, where the plastic components are welded together at respective joining surfaces. The system includes at least one infrared (IR) laser beam source positioned relative to the at least two plastic components and a control module. The IR laser beam source generates an IR laser beam. The control module is in operative communication with the at least one IR laser beam source. The control module includes control logic for controlling the at least one IR laser beam source to heat the joining surfaces of the at least two plastic components to a welding temperature.
  • In another embodiment, a method of welding at least two plastic components together is disclosed. The two plastic components are welded together at respective joining surfaces. The method comprises directing at least one infrared (IR) laser beam along the joining surfaces of the at least two plastic components. The IR laser beam heats the joining surfaces of the at least two plastic components to a welding temperature. The method also includes clamping the at least two plastic components together at the joining surfaces to create a weld.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For the purpose of illustrating the invention, the drawings show a form of the invention that is presently preferred. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
  • FIG. 1 is a schematic illustration of an exemplary system for heating at least two plastic components together using an IR laser source;
  • FIG. 2 is a schematic illustration of the two plastic components shown in FIG. 1 being clamped together after sufficient heating;
  • FIG. 3 is a schematic illustration of an alternative embodiment of the system shown in FIG. 1 for heating at least two plastic components together;
  • FIG. 4 is a schematic illustration of the two plastic components shown in FIG. 3 being clamped together after sufficient heating;
  • FIG. 5 is a schematic illustration of another embodiment of the system shown in FIG. 1 for heating at least two plastic components together; and
  • FIG. 6 is a schematic illustration of the two plastic components shown in FIG. 5 being clamped together after sufficient heating.
  • DETAILED DESCRIPTION
  • Referring now to the drawings in which like reference numerals indicate like parts, FIG. 1 illustrates an exemplary system 10 for welding at least two plastic components 20 a, 20 b together at their respective joining surfaces 22 a, 22 b. The system 10 may include a laser beam source 30 and a control module 32 in operative communication with the laser beam source 30. The laser beam source 30 generates a laser beam 40 operating in the infrared (IR) portion of the electromagnetic spectrum, where a wavelength of the laser beam 40 generally ranges from about 750 nm to about 1 mm. For example, the laser beam source 30 may include a solid-state laser, a diode laser, or a gas laser for generating the laser beam 40. One specific example of a solid-state laser is a fiber laser. In one non-limiting embodiment, the plastic components 20 a, 20 b may be underhood components in an automotive application.
  • The control module 32 may refer to, or be part of, an application specific integrated circuit (ASIC), an electronic circuit, a combinational logic circuit, a field programmable gate array (FPGA), a processor (shared, dedicated, or group) that executes code, or a combination of some or all of the above, such as in a system-on-chip. The control module 32 may be used to control the laser beam source 30 in order to direct the laser beam 40 along the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b. In the embodiments as shown in FIGS. 1-6, the laser beam source 30 is based on remote laser welding, which utilizes scanning mirrors (not illustrated) for positioning and moving the laser beam 40 along the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b. However, those skilled in the art will appreciate that other techniques may be used to position the laser beam 40 along the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b as well. For example, in an alternative embodiment, a robot or a Cartesian system may be used for positioning and moving the laser beam 40 along the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b.
  • The plastic components 20 a, 20 b may be constructed of any type of thermoplastic polymer such as, but not limited to, polypropylene, polycarbonate, acrylic, nylon, and acrylonitrile butadiene styrene (ABS). In one approach, the plastic components 20 a, 20 b may be constructed of the same material. Alternatively, in another approach, the plastic components 20 a, 20 b may be constructed of different materials. In one embodiment, an additive or colorant may be added to material the plastic components 20 a, 20 b are constructed of, where the colorant is configured to substantially absorb the energy emitted by the laser beam 40. For example, in one embodiment, the colorant may be carbon black. In another embodiment, the additive or colorant may be omitted from the plastic components 20 a, 20 b. Instead, a coating configured to substantially absorb energy in the IR spectrum (not illustrated) may be applied the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b. One commercially available example of the coating is sold under the trade name CLEARWELD®, and is manufactured by the Gentex Corporation located in Binghamton, N.Y.
  • In yet another embodiment, the colorant may be omitted from the plastic components 20 a, 20 b. Additionally, the coating is not applied to the joining surfaces 22 a, 22 b of the components 20 a, 20 b. Instead, the laser beam 40 includes a wavelength of at least about 2000 nm within the IR spectrum. If the laser beam 40 operates at a wavelength of at least 2000 nm, then the plastic components 20 a, 20 b may be able to substantially absorb the energy emitted by the laser beam 40, even in the absence of the colorant or the coating applied to the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b.
  • The plastic components 20 a, 20 b may be held in place using a fixture (not illustrated). In the non-limiting embodiment as shown in FIG. 1, both of the plastic components 20 a, 20 b are positioned such that the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b generally oppose the laser beam source 30. The control module 32 may be used to scan the laser beam 40 along both the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b. In the exemplary embodiment as shown in FIG. 1, the control module 32 includes control logic or circuitry for controlling the laser beam source 30 to manipulate the laser beam 40 within a first welding area 50 a and a second welding area 50 b in order to melt the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b.
  • The laser beam 40 rapidly scans repeatedly over both the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b in a quasi-simultaneous matter in order to sufficiently heat both of the joining surfaces 22 a, 22 b to a welding temperature at about the same time. Those skilled in the art will appreciate that the laser 40 scans and heats the surfaces 22 a, 22 b rapidly enough in order to keep the surfaces 22 a, 22 b at the welding temperature until the plastic components 20 a, 20 b are clamped together (the clamping is shown in FIG. 2, and is described in greater detail below). For example, in one non-limiting embodiment, the laser beam 40 may repeatedly scan over both the joining surfaces 22 a, 22 b at a rate of about 50,000 mm/second. This speed of the laser 40 translates into about ten to about two hundred passes per second along the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b, where the exact number of passes may depend on the specific size and geometry of the plastic components 20 a, 20 b. The welding temperature may vary based on the specific material that the plastic components 20 a, 20 b are constructed of. The welding temperature may be defined as a temperature at which the plastic components 20 a, 20 b melt sufficiently so that they may be fused together.
  • The control module 32 may include control logic for adjusting various welding parameters of the laser beam 40 in order to accommodate the geometry of the joining surfaces 22 a, 22 b as well as the specific material that the plastic components 20 a, 20 b are constructed of Specifically, the welding parameters may control the amount of heat and melting the joining surfaces 22 a, 22 b may undergo as the laser beam 40 is scanned. Some examples of the welding parameters that the control module 32 may adjust include, but are not limited to, the travel speed of the laser beam 40, the scanning frequency of the laser beam 40, the duration at which the laser beam 40 heats the plastic components 20 a, 20 b, and a size of the laser focal diameter of the laser beam 40. Additionally, in one embodiment, the laser beam 40 may wobble or quiver slightly as the laser beam 40 melts the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b, which also affects the amount of heat and melting the joining surfaces 22 a, 22 b may undergo.
  • Moreover, in one embodiment the welding parameters may also account for any unique features located along the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b. For example, in one embodiment relatively small ribs (not shown) may be positioned along the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b. The ribs may be used to accelerate the melting of the joining surfaces 22 a, 22 b.
  • The welding parameters may be adjusted in order to achieve a specific amount of energy per unit of surface area of the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b. The specific amount of energy per unit of surface area generates enough heat for the joining surfaces 22 a, 22 b to melt sufficiently so that they may be fused together, but at the same time will not cause the plastic components 20 a, 20 b to overheat and burn. In particular, the specific amount of energy per unit of surface area may generate enough heat so that the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b remain melted as the plastic components 20 a, 20 b are clamped together to form a weld. The clamping of the plastic components 20 a, 20 b together to form a weld is described in greater detail below. In one non-limiting embodiment, the average energy per unit of surface area may range from about 0.055 W/mm2 to about 0.5 W/mm2. It should be noted that if excessive energy is delivered to the joining surfaces 22 a, 22 b, the plastic components 20 a, 20 b may degrade or burn. For example, if a spot size of the laser beam 40 is relatively small, or if a scanning speed of the laser beam 40 is relatively slow, this may generate excessive energy along the joining surfaces 22 a, 22 b, which may cause burning. Moreover, if insufficient energy is delivered to the joining surfaces 22 a, 22 b, then the plastic components 20 a, 20 b may not be heated to the welding temperature.
  • Once the joining surfaces 22 a, 22 b of the plastic components 20 a, 20 b have been melted, the plastic components 20 a, 20 b may be clamped together to form a weld. Specifically, referring to FIG. 2, the fixture holding both the plastic components 20 a, 20 b (not illustrated) may rotate both of the plastic components 20 a, 20 b by about ninety degrees, and towards one another such that the joining surfaces 20 a, 20 b face one another along a y-axis of orientation. The fixture (not illustrated) may then clamp the plastic components 20 a, 20 b together for a predetermined amount of time under a predetermined amount of pressure. In one exemplary embodiment, the plastic components 20 a, 20 b may be clamped together with between about 1 MPa to about 4 MPa of clamping pressure for about five to twenty seconds. Clamping the plastic components 20 a, 20 b for the predetermined amount of time under the predetermined amount of pressure creates a weld (not shown) between the two joining surfaces 22 a, 22 b. Thus, the plastic components 20 a, 20 b may be welded or joined together in order to create a single, unitary part.
  • In the embodiment as shown in FIG. 1, a single laser beam source 30 is illustrated. However, those skilled in the art will appreciate that the system 10 may utilize more than one laser beam source 30 as well. Turning to FIG. 3, a system 100 having multiple laser beam sources 130 a, 130 b is illustrated. Specifically, the laser beam source 130 a may be used to melt a joining surface 122 a of a plastic component 120 a. Similarly, the laser beam source 130 b may be used to melt a joining surface 122 b of a plastic component 120 b. Multiple laser beam sources 130 may be especially advantageous if surface areas of the joining surfaces 122 a, 122 b are relatively large, as a single laser beam may not always be able to scan the joining surfaces 122 a, 122 b frequently enough in order to melt the joining surfaces 122 a, 122 b sufficiently to create a weld.
  • A control module 132 may be in operative communication with both the laser beam sources 130 a, 130 b. The control module 132 includes control logic or circuitry for controlling the laser beam sources 130 a, 130 b independently of one another. Specifically, the control module 132 includes control logic or circuitry for controlling the laser beam source 130 a to manipulate a laser beam 140 a along a first welding area 150 a. The laser beam 40 travels within the first welding area 150 a in order to heat the joining surface 122 a of the plastic component 120 a to the welding temperature, thereby melting the joining surface 122 a. Simultaneously, the control module 132 also controls the laser beam source 130 b to manipulate a laser beam 140 b along a second welding area 150 b. The laser beam 140 b travels within the second welding area 150 b in order to heat the joining surface 122 b of the plastic component 120 b to the welding temperature, thereby melting the joining surface 122 b. Thus, both joining surfaces 122 a, 122 b of the plastic components 120 a, 120 b may be melted together at the same time.
  • Once the joining surfaces 122 a, 122 b of the plastic components 120 a, 120 b have been melted, the plastic components 120 a, 120 b may be welded together. Specifically, referring to FIG. 4, the fixture holding both the plastic components 120 a, 120 b (not illustrated) may rotate both of the plastic components 120 a, 120 b by about ninety degrees, and towards one another such that the joining surfaces 120 a, 120 b face one another in the y-axis orientation. The fixture (not illustrated) may then clamp the plastic components 120 a, 120 b together for the predetermined amount of time under the predetermined amount of pressure.
  • Although FIG. 4 illustrates both the laser beam sources 130 a, 130 b being positioned directly adjacent or side-by-side with one another, it is to be understood that the laser beam sources 130 a, 130 b may be oriented in other configurations as well. Moreover, although FIG. 4 illustrates the plastic components 120 a, 120 b positioned side-by-side with one another, which each of the joining surfaces 122 a, 122 b facing upwardly towards the laser beam sources 130 a, 130 b, those skilled in the art will appreciate that the plastic components 120 a, 120 b may be positioned in different orientations as well. Turning to FIG. 5, a system 200 having multiple laser beam sources 230 a, 230 b is illustrated. A control module 232 may be in operative communication with both the laser beam sources 230 a, 230 b.
  • FIG. 5 also illustrates two plastic components 220 a, 220 b that include respective joining surfaces 222 a, 222 b. One of the plastic components 220 a is oriented in a first position, where the joining surface 222 a is positioned in an upwards direction. The remaining plastic component 220 b has been rotated by about one hundred and eighty degrees and is oriented in a second position, where the joining surface 222 b is positioned in a downwards direction.
  • The laser beam source 230 a is positioned above the joining surface 222 a of the plastic component 220 a. The laser beam source 230 a may be used to heat the joining surface 222 a of the plastic component 220 a to the welding temperature, thereby melting the joining surface 222 a. Specifically, the control module 232 includes control logic or circuitry for controlling the laser beam source 230 a to manipulate a laser beam 240 a along a first welding area 250 a. The laser beam 240 a travels within the first welding area 250 a in order to heat the joining surface 222 a of the plastic component 220 a.
  • The laser beam source 230 b is positioned below the joining surface 222 b of the plastic component 220 b. The laser beam source 230 b may be used to heat the joining surface 222 b of the plastic component 220 b to the welding temperature, thereby melting the joining surface 222 b. Specifically, the control module 232 includes control logic or circuitry for controlling the laser beam source 230 b to manipulate a laser beam 240 b along a second welding area 250 b. The laser beam 240 b travels within the second welding area 250 b in order to melt the joining surface 222 b of the plastic component 220 b. It should be noted that the laser beam 240 a may melt the joining surface 222 a of the plastic component 220 a simultaneously as the laser beam 240 b melts the joining surface 222 b of the plastic component 220 b.
  • Once the joining surfaces 222 a, 222 b of the plastic components 220 a, 220 b have been melted, the plastic components 220 a, 220 b may be welded together. Specifically, referring to FIG. 6, the fixture holding both the plastic components 220 a, 220 b (not illustrated) may translate one or both of the plastic components 220 a, 220 b in a linear direction towards one another such that the joining surfaces 120 a, 120 b face one another in an x-axis orientation. For example, in the embodiment as shown in FIG. 6, the plastic component 220 b is translated in the linear direction towards the plastic component 220 a such that the joining surface 222 b of the plastic component 220 b generally opposes the joining surface 222 a of the plastic component 220 a. The fixture (not illustrated) may then clamp the plastic components 220 a, 220 b together for the predetermined amount of time under the predetermined amount of pressure.
  • Referring generally to FIGS. 1-6, the disclosed systems each utilize direct IR welding to join at least two plastic components together. Specifically, the disclosed laser beam generated by the IR laser beam source may directly scan and melt respective joining surfaces of the plastic components. In contrast, conventional laser welding typically requires a first, optically transparent part and a second, absorbent part. The first part may be constructed of a transparent polymer that allows for IR energy from a laser beam to pass through. The second part may be treated with a material that acts to absorb the IR energy from the laser beam. In contrast, the disclosed system does not require two parts constructed of dissimilar materials for welding. Moreover, the disclosed system does not typically require custom tooling for welding, unlike IR welding. The disclosed system may also provide greater control as well as more consistent heating of the joining surfaces of the plastic parts when compared to IR welding.
  • Although the invention has been described and illustrated with respect to exemplary embodiments thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions and additions may be made therein and thereto, without parting from the spirit and scope of the present invention. Accordingly, other embodiments are within the scope of the following claims.

Claims (20)

What is claimed is:
1. A system for welding at least two plastic components together, wherein the at least two plastic components are welded together at respective joining surfaces, the system comprising:
at least one infrared (IR) laser beam source positioned relative to the at least two plastic components, wherein the at least one IR laser beam source generates an IR laser beam; and
a control module in operative communication with the at least one IR laser beam source, the control module including control logic for controlling the at least one IR laser beam source to heat the joining surfaces of the at least two plastic components to a welding temperature.
2. The system as recited in claim 1, wherein the control module includes control logic for adjusting at least one welding parameter of the IR laser beam.
3. The system as recited in claim 2, wherein the at least one welding parameter includes at least one of a travel speed of the IR laser beam, a scanning frequency of the IR laser beam, a duration at which the IR laser beam heats the at least two plastic components, and a size of a laser focal diameter of the IR laser beam.
4. The system as recited in claim 1, wherein the control module includes control logic for controlling a specific amount of energy per surface area created along the joining surfaces of the at least two plastic components.
5. The system of claim 1, further comprising a second IR laser beam source.
6. The system of claim 5, wherein the second IR laser beam source is positioned directly adjacent to the at least one IR laser beam source, and wherein the second IR laser beam generates a second IR laser beam for heating at least one of the joining surfaces of the at least two plastic components to the welding temperature.
7. The system of claim 5, wherein the at least one IR laser beam source is positioned above a first joining surface of a first plastic component, and the second IR laser beam source is positioned below a second joining surface of a second plastic component.
8. The system of claim 1, wherein the IR laser beam includes a wavelength of least about 2000 nm.
9. The system of claim 1, wherein the at least one IR laser beam source is one of a diode laser, a solid-state laser, and a gas laser.
10. A method of welding at least two plastic components together, wherein the at least two plastic components are welded together at respective joining surfaces, the method comprising:
directing at least one infrared (IR) laser beam along the joining surfaces of the at least two plastic components, wherein the at least one IR laser beam heats the joining surfaces of the at least two plastic components to a welding temperature; and
clamping the at least two plastic components together at the joining surfaces to create a weld.
11. The method as recited in claim 10, comprising adjusting at least one welding parameter of the at least one IR laser beam.
12. The method as recited in claim 11, wherein the at least one welding parameter includes at least one of a travel speed of the at least one IR laser beam, a scanning frequency of the at least one IR laser beam, a duration at which the at least one IR laser beam heats the at least two plastic components, and a size of a laser focal diameter of the at least one IR laser beam.
13. The method as recited in claim 10, comprising controlling a specific amount of energy per surface area created along the joining surfaces of the at least two plastic components.
14. The method as recited in claim 10, comprising a second IR laser beam, wherein the at least one IR laser beam melts a first joining surface of a first plastic component and the second IR laser melts a second joining surface of a second plastic component.
15. The method as recited in claim 10, comprising rotating both the at least two plastic components by about ninety degrees before clamping.
16. The method as recited in claim 10, comprising translating at least one of the at least two plastic components in a linear direction before clamping such that a first joining surface of a first plastic component generally opposes a second joining surface of a second plastic component.
17. The method as recited in claim 10, comprising applying a coating to the joining surfaces of the at least two plastic components.
18. The method as recited in claim 10, comprising adding a colorant to a material the at least two plastic components are constructed of, and wherein the colorant absorbs energy emitted by the IR laser beam.
19. The method as recited in claim 10, wherein the at least one IR laser beam includes a wavelength of least about 2000 nm.
20. The method as recited in claim 10, wherein the wherein the at least one IR laser beam is generated by at least one IR laser beam source, and wherein the at least one IR laser beam source is one of a diode laser, a solid-state laser, and a gas laser.
US14/228,347 2014-03-28 2014-03-28 System and method for direct infrared (ir) laser welding Abandoned US20150273808A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/228,347 US20150273808A1 (en) 2014-03-28 2014-03-28 System and method for direct infrared (ir) laser welding
EP15161007.8A EP2923821B1 (en) 2014-03-28 2015-03-26 Method for direct infrared laser welding
US15/438,004 US11110665B2 (en) 2014-03-28 2017-02-21 System and method for direct infrared (IR) laser welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/228,347 US20150273808A1 (en) 2014-03-28 2014-03-28 System and method for direct infrared (ir) laser welding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/438,004 Division US11110665B2 (en) 2014-03-28 2017-02-21 System and method for direct infrared (IR) laser welding

Publications (1)

Publication Number Publication Date
US20150273808A1 true US20150273808A1 (en) 2015-10-01

Family

ID=52807618

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/228,347 Abandoned US20150273808A1 (en) 2014-03-28 2014-03-28 System and method for direct infrared (ir) laser welding
US15/438,004 Active US11110665B2 (en) 2014-03-28 2017-02-21 System and method for direct infrared (IR) laser welding

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/438,004 Active US11110665B2 (en) 2014-03-28 2017-02-21 System and method for direct infrared (IR) laser welding

Country Status (2)

Country Link
US (2) US20150273808A1 (en)
EP (1) EP2923821B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017011354A1 (en) * 2017-12-07 2019-06-13 Kocher-Plastik Maschinenbau Gmbh Method and device for connecting at least two plastic parts
US10605545B2 (en) * 2016-02-09 2020-03-31 Modine Manufacturing Company Heat exchanger and core for a heat exchanger
DE102019215516A1 (en) * 2019-10-10 2021-04-15 Vitesco Technologies GmbH Process for the integral connection of two workpieces made of plastic by means of laser welding
US11654640B1 (en) 2022-02-08 2023-05-23 Dukane Ias, Llc Feedback system and method for automatically adjusting and controlling infrared heating of parts

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591719B2 (en) * 2017-12-19 2020-03-17 Microvision, Inc. Laser welded scanner assemblies
US10286607B1 (en) 2017-12-19 2019-05-14 Microvision, Inc. Plastic laser welding with partial masking
DE102020133116A1 (en) * 2020-12-11 2022-06-15 Peri Se Method and device for welding a first component to a second component and horizontal bar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151149A (en) * 1988-07-28 1992-09-29 The Entwistle Corporation Apparatus for bonding or melt fusing plastic and plastic matrix composite materials
US6444946B1 (en) * 1999-04-29 2002-09-03 Bielomatik Leuze Gmbh + Co. Method and apparatus for welding
DE102006058997A1 (en) * 2006-12-14 2008-06-19 Bayerische Motoren Werke Ag Laser butt-welding equipment with scanner, for joining plastic components used in automobile industry, also includes travel system moving scanner
US20100301522A1 (en) * 2009-05-29 2010-12-02 Stanley Electric Co., Ltd. Method for manufacturing resin mold assembly

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159169A3 (en) 1984-04-09 1987-07-01 Toyota Jidosha Kabushiki Kaisha A process for joining different kinds of synthetic resins
US5893959A (en) 1994-03-31 1999-04-13 Marquardt Gmbh Workpiece of plastic and production process for such a workpiece
US20020100540A1 (en) * 1998-07-10 2002-08-01 Alexander Savitski Simultaneous butt and lap joints
DE19925203B4 (en) 1999-06-01 2004-04-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for welding plastics, and use of the plastic
CN1827674A (en) 2000-11-13 2006-09-06 纳幕尔杜邦公司 Fabricated resin products for laser welding and including transmitting and absorbing black colorants, and colored resin compositions therefor
ATE383937T1 (en) 2001-09-29 2008-02-15 Inst Angewandte Biotechnik Und METHOD FOR LASER BEAM WELDING OF PLASTIC PARTS
DE10151847A1 (en) 2001-10-24 2003-05-08 Bayer Ag Laser absorbing soot molding compounds
US6913056B2 (en) 2002-01-31 2005-07-05 Baxter International Inc. Apparatus and method for connecting and disconnecting flexible tubing
AU2003203000A1 (en) 2002-01-31 2003-09-02 Baxter International Inc. Laser weldable flexible medical tubings, films and assemblies thereof
DE102004030619A1 (en) 2004-06-24 2006-01-12 Forschungszentrum Karlsruhe Gmbh Method for joining workpieces made of plastic
US7820936B2 (en) * 2004-07-02 2010-10-26 Boston Scientific Scimed, Inc. Method and apparatus for controlling and adjusting the intensity profile of a laser beam employed in a laser welder for welding polymeric and metallic components
DE202004011497U1 (en) 2004-07-22 2005-12-08 Sator Laser Gmbh Device for welding two bodies made from weldable material comprises scanner units each having a movable mirror, a controllable drive for the mirror, a control unit for the drive and a laser which is directed onto the mirror
DE102005024983A1 (en) 2004-07-22 2006-02-16 Sator Laser Gmbh Device for welding two bodies made from weldable material comprises scanner units each having a movable mirror, a controllable drive for the mirror, a control unit for the drive and a laser which is directed onto the mirror
US7343218B2 (en) 2006-05-09 2008-03-11 Branson Ultrasonics Corporation Automatic part feedback compensation for laser plastics welding
US20090130451A1 (en) 2007-11-19 2009-05-21 Tony Farrell Laser-weldable thermoplastics, methods of manufacture, and articles thereof
DE102008042663A1 (en) 2008-10-08 2010-04-29 Geiger Technologies Gmbh Method for joining contact surface of component with another contact surface of another component, involves providing heat source for introducing heat in contact surface
DE102008063177B4 (en) * 2008-12-29 2020-06-04 Frimo Group Gmbh Infrared welding device
WO2011018513A1 (en) 2009-08-13 2011-02-17 Loctite (R & D) Limited Infrared absorbing dye-containing cyanoacrylate compositions and laser welding method using such compositions
JP2012091400A (en) 2010-10-27 2012-05-17 Akita Prefectural Univ Laser joining method and laser joined material
DK2548714T3 (en) 2011-07-21 2013-11-11 Ems Patent Ag Laser beam welding method and thus formed mold parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151149A (en) * 1988-07-28 1992-09-29 The Entwistle Corporation Apparatus for bonding or melt fusing plastic and plastic matrix composite materials
US6444946B1 (en) * 1999-04-29 2002-09-03 Bielomatik Leuze Gmbh + Co. Method and apparatus for welding
DE102006058997A1 (en) * 2006-12-14 2008-06-19 Bayerische Motoren Werke Ag Laser butt-welding equipment with scanner, for joining plastic components used in automobile industry, also includes travel system moving scanner
US20100301522A1 (en) * 2009-05-29 2010-12-02 Stanley Electric Co., Ltd. Method for manufacturing resin mold assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10605545B2 (en) * 2016-02-09 2020-03-31 Modine Manufacturing Company Heat exchanger and core for a heat exchanger
DE102017011354A1 (en) * 2017-12-07 2019-06-13 Kocher-Plastik Maschinenbau Gmbh Method and device for connecting at least two plastic parts
US11591126B2 (en) 2017-12-07 2023-02-28 Kocher-Plastik Maschinenbau Gmbh Method and apparatus for joining at least two plastic parts
DE102019215516A1 (en) * 2019-10-10 2021-04-15 Vitesco Technologies GmbH Process for the integral connection of two workpieces made of plastic by means of laser welding
DE102019215516B4 (en) 2019-10-10 2022-07-21 Continental Automotive Gmbh Device for cohesively connecting two work pieces made of plastic by means of laser welding
US11654640B1 (en) 2022-02-08 2023-05-23 Dukane Ias, Llc Feedback system and method for automatically adjusting and controlling infrared heating of parts

Also Published As

Publication number Publication date
EP2923821A1 (en) 2015-09-30
EP2923821B1 (en) 2019-08-07
US20170157838A1 (en) 2017-06-08
US11110665B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
US11110665B2 (en) System and method for direct infrared (IR) laser welding
CA2564403C (en) Method and apparatus for laser welding thermoplastic resin members
US7287877B2 (en) Vehicular lighting device and beam welding method
US20060283544A1 (en) Laser welding apparatus and laser welding method
KR100348169B1 (en) Laser joining method and a device for joining different workpieces made of plastic or joining plastic to other materials
KR20090094113A (en) Laser-beam welding device comprising an optical means for converting the laser beam into an annular laser beam and a corresponding laser-beam welding method
US20060278617A1 (en) Laser welding of battery module enclosure components
US20050167407A1 (en) Process and apparatus for joining components using laser radiation
US20070084553A1 (en) Method and apparatus for laser welding thermoplastic resin members
Acherjee State-of-art review of laser irradiation strategies applied to laser transmission welding of polymers
JPH11348132A (en) Method for laser welding and apparatus for laser welding
JP2005119050A (en) Resin molded product and its manufacturing method
KR20010062329A (en) A method and a device for heating at least two elements by means of laser beams of high energy density
US20050121137A1 (en) Joint designs for laser welding of thermoplastics
US20070090097A1 (en) Laser welding system for welding workpiece
US20060049154A1 (en) System and method for bonding camera components after adjustment
HU226696B1 (en) Method for shaping components using electromagnetic radiation
JP2004050835A (en) Method of connecting plastic constituting member using laser radiation
CN110856886A (en) Soldering method for connecting a transparent first substrate and a non-transparent second substrate and use thereof
JP4439892B2 (en) Laser welding method
JP4584683B2 (en) Condensing head for laser welding
CN111223393A (en) Method for joining two joining parts using a surface radiator and joining device
Brunnecker et al. Laser Welding of Plastics—a Neat Thing: The story of a popular laser application
JP2016502475A (en) Joining method of thermoplastic material bonding partner and glass bonding partner
Sieben et al. Laser-Hybrid welding, an innovative technology to join automotive body parts

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOGEFI ENGINE SYSTEMS USA, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THOMPSON, STEPHEN;MAUDET, YANNIS;SOEIRO, NUNO DEMETRIO;SIGNING DATES FROM 20140326 TO 20140327;REEL/FRAME:032569/0097

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION