US20150259688A1 - Nucleic acid ligands to ll37 - Google Patents

Nucleic acid ligands to ll37 Download PDF

Info

Publication number
US20150259688A1
US20150259688A1 US14/728,913 US201514728913A US2015259688A1 US 20150259688 A1 US20150259688 A1 US 20150259688A1 US 201514728913 A US201514728913 A US 201514728913A US 2015259688 A1 US2015259688 A1 US 2015259688A1
Authority
US
United States
Prior art keywords
composition
nucleic acid
modified
aptamer
alkyne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/728,913
Inventor
George W. Jackson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotex Inc
Original Assignee
Biotex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotex Inc filed Critical Biotex Inc
Priority to US14/728,913 priority Critical patent/US20150259688A1/en
Publication of US20150259688A1 publication Critical patent/US20150259688A1/en
Priority to US15/181,406 priority patent/US20160289679A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/335Modified T or U

Definitions

  • nucleotide sequences contained in the ASCII text file entitled “P1014US00_ST25.txt”, created Nov. 9, 2010, of 9,029 bytes in size are hereby incorporated by reference.
  • the nucleotide sequences are intended to include other aptamers incorporating modifications, truncations, incorporations into larger molecules or complexes, and/or other aptamers having substantial structural or sequence homology, for example, greater than 75% sequence homology, as well as RNA and/or other non-DNA aptamers.
  • the disclosed aptamers may also bind to homologous proteins from organisms other than the organisms listed herein, to recombinant or non-recombinant versions of the proteins, to modified versions of the proteins, to proteins from sources other than the source listed herein.
  • the indication of the species and source of the target proteins is given for reference only and is not intended to be limiting.
  • This invention relates to nucleic acid ligands to LL37, methods for producing said nucleic acid ligands, and methods for utilizing said nucleic acid ligands.
  • Psoriasis and rosacea are chronic inflammatory autoimmune skin disorders which affect a significant portion of people in the U.S. Although these disorders are not life-threatening, they can lead to a significantly poor quality of life and negatively impact the mental health of the patients, leading in severe cases to depression and even suicidal tendencies.
  • psoriasis one for rosacea
  • systemic immune suppressors There are five approved biological therapeutics on the market for psoriasis (none for rosacea), and all of these are systemic immune suppressors.
  • psoriasis The hallmarks of psoriasis are the chronic formation of itchy and scaly plaques, excessive skin inflammation, and hyperkeratinization.
  • the most common form is plaque psoriasis (psoriasis vulgaris), but there are numerous different clinical manifestations of psoriasis, including a form involving joint inflammation and another which affects the nails.
  • the exact causes of psoriasis are unknown, but genetic predisposition and environmental stressors are implicated.
  • Psoriasis affects 2-3% of the worldwide population, and 4.5 million people in the U.S. suffer from the disease.
  • the current modes of treatment include topical corticosteroids or systemic biologics.
  • Rosacea is another autoimmune disease predominantly affecting the skin, which affects 14 million in the U.S. alone.
  • the manifestations of rosacea include persistent reddening of the skin, mainly in the face, possibly accompanied by stinging, itching sensations, and/or swelling.
  • the onset of rosacea is usually triggered by a wide variety of environmental stressors, including diet, exercise, or weather changes.
  • the present invention is directed to nucleic acid ligands to LL37, methods for producing said nucleic acid ligands, and methods for utilizing said nucleic acid ligands.
  • this invention relates to nucleic acid ligands exhibiting high specific binding affinity to LL37 peptides, precursors and/or portions thereof. Further, the nucleic acid ligands may bind competitively with native ligands of LL37 and may also inhibit and/or interfere with LL37 function, such as by binding to LL37.
  • nucleic acid ligands may be or may include aptamers that are, or including but not limited to, single-stranded nucleic acid, such as, for example, single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and/or a combination thereof; at least a portion of double-stranded nucleic acid, such as, for example, double-stranded DNA (dsDNA), double-stranded RNA (dsRNA), and/or combinations thereof; modified nucleotides and/or other useful molecules, moieties, and/or other functional chemical components, or combinations thereof; or combinations thereof or similar.
  • ssDNA single-stranded DNA
  • ssRNA single-stranded RNA
  • dsRNA double-stranded RNA
  • the nucleic acid ligands may bind with relatively high specificity to a given target and may further act in a functional manner, such as with agonist or antagonist activity. Further, the nucleic acid ligands may also bind at least partially in competition with a native biomolecule.
  • the nucleic acid ligands may bind to and inhibit at least a portion of the function of LL37 peptides, such as, for example, by inhibiting the functional binding of LL37 to a native ligand, such as, for example, self DNA.
  • the nucleic acid ligands may be applied to a tissue of a patient such that the nucleic acid ligands may bind to and/or inhibit the function of LL37 in the tissue.
  • the nucleic acid ligands may also be modified, enhanced and/or substituted such that they may have increased transport efficiency across, for example, a tissue boundary, such as the skin of a patient.
  • nucleic acid ligands may incorporate modified nucleobases which may, for example, aid in increasing permeability of the nucleic acid ligands through a tissue boundary.
  • the nucleic acid ligands may also be applied to the tissue of a patient using active and/or forced transport methods.
  • Nucleic acid ligands may be generated and/or selected as aptamers utilizing selective propagation methods.
  • nucleic acid ligands may be generated as aptamers from large random libraries, for example, of nucleic acids, utilizing an iterative process, such as the process called Systematic Evolution of Ligands by Exponential Enrichment (SELEX), and/or modifications or similar techniques to SELEX.
  • Resultant aptamers may be further screened for a particular functional activity, such as, for example, antagonist activity against LL37.
  • Appropriate aptamers may then be produced on a large scale at a relatively low cost utilizing nucleic acid synthesis and/or other nucleic acid production methods, which may include cloning and/or fermentation methods.
  • the binding affinity of the aptamers may also be determined, for example, by surface plasmon resonance (SPR) techniques.
  • SPR surface plasmon resonance
  • the permeability through tissue may also be determined, for example, by fluorescence permeability studies.
  • FIG. 1 illustrates an example of SELEX
  • FIG. 2 illustrates a mechanism for psoriasis
  • FIG. 3 shows examples of modified nucleobases
  • FIG. 4 shows an example of a binding curve for an aptamer to LL37 measured by surface plasmon resonance (SPR);
  • FIG. 5 shows an example of the effect of an LL37 aptamer on the production of LL37 in cell culture
  • FIG. 6 shows an example of transport of a modified nucleic acid across murine skin.
  • the present invention is directed to nucleic acid ligands to LL37, methods for producing said nucleic acid ligands, and methods for utilizing said nucleic acid ligands.
  • this invention relates to nucleic acid ligands exhibiting high specific binding affinity to LL37 peptides, precursors and/or portions thereof. Further, the nucleic acid ligands may bind competitively with native ligands of LL37 and may also inhibit and/or interfere with LL37 function, such as by binding to LL37.
  • nucleic acid ligands may be or may include aptamers.
  • An “aptamer” refers to a biomolecule that is capable of binding to a particular molecule of interest with high affinity and specificity.
  • the binding of a target to an aptamer may generally derive from secondary and/or three-dimensional (3D) structures of the aptamer and the binding may also change the conformation and/or structure of the aptamer.
  • RNA RNA
  • riboswitch This type of interaction, with a small molecule metabolite, for example, coupled with subsequent changes in aptamer function where the aptamer may be an RNA
  • Aptamers may also include non-natural nucleotides, nucleotide analogs, non-natural amino acids and/or amino acid analogs.
  • the method of selection may be by, but is not limited to, affinity chromatography and the method of amplification by reverse transcription (RT), polymerase chain reaction (PCR) and/or any other appropriate amplification method.
  • Aptamers may include specific binding regions which may be capable of binding, attaching, and/or forming complexes with an intended target in an environment wherein other substances in the same environment may not bound, attached, and/or complexed to the aptamer.
  • the specificity of the binding may be defined in terms of the comparative dissociation constants (Kd) of the aptamer for its target as compared to the dissociation constant of the aptamer for other materials in the environment or unrelated molecules in general.
  • Kd comparative dissociation constants
  • the Kd for the aptamer with respect to its target may be at least about 10-fold less than the Kd for the aptamer with unrelated material and/or accompanying material in the environment.
  • the Kd may be at least about 50-fold less, in a further example, at least about 100-fold less, and in some exemplary examples at least about 200-fold less.
  • a nucleic acid aptamer may typically be between about 10 and about 300 nucleotides in length, for example. In general, an aptamer may also be between about 30 and about 100 nucleotides in length.
  • the terms “nucleic acid molecule” and “polynucleotide” may refer to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form.
  • the term may refer to nucleic acids containing known analogues of natural nucleotides which may have similar binding properties as the reference nucleic acid and may be metabolized in a manner similar to naturally occurring nucleotides.
  • a particular nucleic acid sequence may also implicitly encompass conservatively modified variants thereof (e.g., degenerate codon substitutions) and/or complementary sequences, as well as the sequence.
  • Degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons may be substituted with mixed-base and/or deoxyinosine residues.
  • nucleic acid may be in any physical form, such as e.g., linear, circular, or supercoiled.
  • the term nucleic acid may also be used interchangeably with oligonucleotide, gene, cDNA, and mRNA encoded by a gene.
  • Aptamers may further include, but are not limited to, single-stranded nucleic acid, such as, for example, single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and/or a combination thereof; at least a portion of double-stranded nucleic acid, such as, for example, double-stranded DNA (dsDNA), double-stranded RNA (dsRNA), and/or combinations thereof; modified nucleotides and/or other useful molecules, moieties, and/or other functional chemical components, or combinations thereof; or combinations thereof or similar.
  • single-stranded nucleic acid such as, for example, single-stranded DNA (ssDNA), single-stranded RNA (sRNA), and/or a combination thereof
  • dsDNA double-stranded DNA
  • dsRNA double-stranded RNA
  • dsRNA double-stranded RNA
  • modified nucleic acid bases may include, but are not limited to, 5-Propynyl-2′-deoxycytidine-5′-Triphosphate, C8-alkyne-dCTP, 2′-Deoxy-P-nucleoside-5′-Triphosphate, 2′-Deoxyinosine-5′-Triphosphate, 2′-Deoxypseudouridine-5′-Triphosphate, 2′-Deoxyuridine-5′-Triphosphate, 2′-Deoxyzebularine-5′-Triphosphate, 2-Amino-2′-deoxyadenosine-5′-Triphosphate, 2-Amino-6-chloropurine-2′-deoxyriboside-5′-Triphosphate, 2-Aminopurine-2′-deoxyribose-5′-Triphosphate, 2-Thio-2′-deoxycytidine-5′-Triphosphate, 2-Thiothymidine-5′-Triphosphate, 2′-Deoxy-L-aden
  • nucleoside triphosphates may generally refer to any appropriate phosphate of the modified base, such as additionally, for example, monophosphates (NMPs) or diphosphates (NDPs) of the base.
  • NMPs monophosphates
  • NDPs diphosphates
  • modified pyrimidine nucleosides are disclosed in U.S. Pat. No. 6,369,040, the entire contents of which are hereby incorporated by reference.
  • the nucleic acid ligands may bind with relatively high specificity to a given target and may further act in a functional manner, such as with agonist or antagonist activity. Further, the nucleic acid ligands may also bind at least partially in competition with a native biomolecule.
  • Nucleic acid ligands may be generated and/or selected as aptamers utilizing selective propagation methods.
  • nucleic acid ligands may be generated as aptamers from large random libraries, for example, of nucleic acids, utilizing an iterative process, such as the process called Systematic Evolution of Ligands by Exponential Enrichment (SELEX), and/or modifications or similar techniques to SELEX.
  • Resultant aptamers may be further screened for a particular functional activity, such as, for example, antagonist activity against LL37.
  • Appropriate aptamers may then be produced on a large scale at a relatively low cost utilizing nucleic acid synthesis and/or other nucleic acid production methods, which may include cloning and/or fermentation methods.
  • the binding affinity of the aptamers may also be determined, for example, by surface plasmon resonance (SPR) techniques.
  • SPR surface plasmon resonance
  • the permeability through tissue may also be determined, for example, by fluorescence permeability studies.
  • generated aptamers may also be analyzed, such as by sequencing, sequence clustering, folding, conformation and/or shape determination, motif-identification, and/or by any other appropriate method of analysis or combination thereof. For example, after multiple rounds of selection in SELEX, particular sequence motifs and/or clusters may emerge as dominant. This may be useful, for example, in determining particular aptamer features that may play a substantial role in the binding activity of the aptamers.
  • the SELEX method may include contacting a library of, for example, nucleic acids with at least one target, such as, for example, whole cell(s); target molecules, such as isolated and/or partially isolated receptor molecules; and/or any other appropriate target.
  • target molecules such as isolated and/or partially isolated receptor molecules
  • the members of the library that do not bind with some affinity to the target may be washed or otherwise partitioned from the remainder of the library, which may have a given level of binding affinity to the target. Washing and/or partitioning may in general include any appropriate method and/or mechanism of separating non-binding molecules, such as, for example, agitation, aspiration, flushing, and/or any other appropriate method, mechanism, or combination thereof.
  • Flushing and/or otherwise employing a fluid for washing may generally utilize the same or similar fluid as the fluid utilized as the binding environment. The process may be repeated to partition the strongest binding members of the library. Binding may generally refer to forming a molecular complex, chemical bond, physical attachment and/or any other general intermolecular association, interaction and/or attachment. Also in general, the separating force of the washing and/or partitioning method or mechanism may generally set at least a partial threshold of binding affinity for an nucleic acids that may remain after the washing and/or partitioning step.
  • Amplification, such as by PCR and/or other appropriate nucleic acid amplification methods, of the binding library members may also be utilized to increase the numbers of the binding members of the library for subsequent repetitions and for isolation and/or purification of any final products of the process.
  • Embodiments of the SELEX method may generally be utilized to achieve the generation of functional biomolecules of a given binding affinity and/or range of binding affinity.
  • the various steps of SELEX and related protocols or modifications thereof may be performed in general, utilizing appropriate conditions, such as, for example, an appropriate buffer and/or binding environment, which may be, for example, the same or similar to an environment where generated aptamers may be utilized.
  • an appropriate physiological buffer and/or environment may generally be utilized for SELEX protocols. Collection of product aptamers may be achieved by, for example, elution of the nucleic acids utilizing an unfavorable environment or buffer for binding to the target, such as, for example, high osmolarity solution, which may in general interfere with binding ability of the nucleic acids. Any other appropriate collection method may also be utilized. Details of a basic SELEX protocol may be found in U.S. Pat. No. 5,270,163, entitled “Methods for identifying nucleic acid ligands,” the entire contents of which are hereby incorporated by reference.
  • the SELEX technique may begin with a large library of random nucleotides or aptamers.
  • the library may then be contacted with a target and the aptamers bound to the target may be separated and amplified for the next round.
  • the binding conditions for each round may be made more stringent than in the previous round until the only remaining aptamers in the pool are highly specific for and bind with high affinity to the target. While aptamers may be analogous to antibodies in their range of target recognition and variety of applications, they may also possess several key advantages over their protein counterparts.
  • the selected aptamers may also be produced by chemical synthesis, which may aid in eliminating batch-to-batch variation which complicates production of therapeutic proteins.
  • SELEX may be performed to generate aptamers utilizing a whole-cell and/or tissue approach. This may be desirable as whole-cell and/or tissue targets may present appropriate target molecules in a “native” state, such as living target cells with active and/or operative target molecules. In some embodiments, non-whole-cell targets may also be utilized, which may include, but are not limited to, purified molecular samples, anchored target molecules, artificial micelles and/or liposomes presenting target molecules, and/or any other appropriate target.
  • the nucleic acid ligands may bind to and inhibit at least a portion of the function of LL37 peptides, such as, for example, by inhibiting the functional binding of LL37 to a native ligand, such as, for example, self DNA.
  • a native ligand such as, for example, self DNA.
  • cationic antimicrobial peptides have been shown to be an integral part of innate immune responses, and are found in many classes of organisms. These small peptides ( ⁇ 10-50 residues) are produced by the host organism and may interact with the negatively-charged membranes of pathogens such as bacteria and fungi. In higher organisms, these peptides have been also found to interact with and modulate host immune systems.
  • One family of the cationic antimicrobial peptides are the cathelicidin peptides, which are common in mammals, but only one cathelicidin has been identified in humans.
  • This peptide is expressed as a precursor (CAP-18) which is subsequently proteolytically processed to produce a 37-amino acid cationic peptide of 4.5 kDa, called LL37.
  • LL37 has also been shown to be processed differentially in a tissue-dependent manner, to produce various peptides with varying antimicrobial activities.
  • Previous research has demonstrated that LL37 has potent antimicrobial activity, can attenuate host responses to lipopolysaccharides (LPS), influences cytokine secretion of various tissues, and can directly activate different immune cells to produce a wide variety of responses.
  • LPS lipopolysaccharides
  • this small peptide has been shown to play a pivotal role in the interplay of inflammation, pathogen response, and immune modulation.
  • LL37 The antimicrobial effects of LL37 have led to its development as an antimicrobial agent for dental caries, antibiotic-resistant pathogens, and even for coating prosthetic devices. In addition, it has been investigated as a potential cancer therapeutic due to its anti-tumor activities in specific cancers. However, LL37 is also implicated in the onset of some diseases. In particular types of cancers, LL37 expression actually increases proliferation. There has also been a study linking the expression of LL37 to the pathogenesis of atherosclerosis. By far, the most established finding of LL37 dysfunction leading to a specific disorder has been the well-investigated link of LL37 overexpression leading to the emergence and/or propagation of psoriasis.
  • LL37 promotes an autoimmune response by binding to self-DNA extracellularly and activating plasmacytoid dendritic cells (pDC) to produce IFN- ⁇ .
  • the LL37-DNA binding was demonstrated to be nonspecific, as DNA isolated from non-psoriasis patients also induced expression of IFN- ⁇ .
  • LL37 binds to extracellular self-DNA allowing its internalization into endocytic compartments of plasmacytoid dendritic cells (pDCs) where it triggers Toll-like receptor (TLR)-9 activation.
  • TLR Toll-like receptor
  • LL37 is constantly overexpressed in psoriatic skin leading to the formation of LL37-DNA complexes that induce chronic activation of pDC with production of high levels of IFN- ⁇ .
  • the overexpression of IFN- ⁇ initiates the local activation of autoimmune T-cells and may lead to the development of psoriatic lesions.
  • the nucleic acid ligands may be applied to a tissue of a patient such that the nucleic acid ligands may bind to and/or inhibit the function of LL37 in the tissue.
  • the nucleic acid ligands may also be modified, enhanced and/or substituted such that they may have increased transport efficiency across, for example, a tissue boundary, such as the skin of a patient.
  • nucleic acid ligands may incorporate and/or include modified nucleobases which may, for example, aid in increasing permeability of the nucleic acid ligands through a tissue boundary.
  • modified nucleobases such as alkyne-modified bases which may include, but are not limited to, Amino-allyl deoxyUTP, 5-Propynyl-2′-deoxycytidine-5′-Triphosphate, C8-alkyne-dCTP, as shown in FIG. 3 , and/or any other appropriate modified base.
  • alkyne-modified bases which may include, but are not limited to, Amino-allyl deoxyUTP, 5-Propynyl-2′-deoxycytidine-5′-Triphosphate, C8-alkyne-dCTP, as shown in FIG. 3 , and/or any other appropriate modified base.
  • higher bond-order modified bases may generally have increased permeability through tissue, such as lipid-rich and proteinaceous tissues which may include skin.
  • the nucleic acid ligands may also be applied to the tissue of a patient using active and/or forced transport methods, such as, for example, electrophoresis, sonophoresis, and/or any other appropriate method or combination thereof.
  • the nucleic acid ligands may also be dissolved in a solvent, such as, for example DMSO, which may improve and/or enhance permeability.
  • multimeric or chimeric aptamers may be generated which may include multiple binding sites for at least one target.
  • a chimeric aptamer may be generated from two or more aptamers joined by a linking sequence which may include, for example, an oligonucleotide sequence or other polymeric linkage.
  • multimeric aptamers may be generated utilizing, for example, rolling circle amplification, such as from a circular DNA template, and/or any other appropriate method.
  • a chimeric aptamer may, for example, be utilized to bind multiple sites of a target, such as LL37.
  • Aptamers were immobilized to the test channel of a neutravidin-coated SPR chip via standard biotin modification.
  • a nonsense DNA was immobilized on the reference channel to identically match the electrostatic conditions of each channel, and then increasing concentrations of target protein LL37 were added such that no regeneration steps are required.
  • the differential response to each dose was extracted and fit to a binding isotherm model to accurately determine Kd. Binding curves for sequence ID SEQ7 is shown in FIG. 4 , yielding a Kd of 117.9 nM.
  • LL37-specific aptamers for competing with human (self) genomic DNA (gDNA) to inhibit pDC activation as a key pathogenic event that leads to psoriasis.
  • 2 aptamers sequence IDs SEQ7 and SEQ16, were chosen as additives to pDC cell cultures.
  • pDC cell cultures were incubated with various combinations of LL37, LL37+gDNA, or LL37+gDNA+Aptamer.
  • the LL37 concentration was 10 ⁇ M while the aptamer concentration employed was half that at 5 ⁇ M.
  • Cell culture supernatants were then assayed by sensitive ELISA for IFN- ⁇ .
  • SEQ7 shown as Apta#222 greatly decreased IFN- ⁇ production.
  • FIG. 6 shows the result for a 76-mer DNA incorporating 5-Propynyl-2′-deoxycytidine-5′-Triphosphate.
  • the applied DNA was dissolved in 2% DMSO to enhance permeability. As shown in FIG. 6 , the compound penetrates well into the dermis.

Abstract

The present invention is directed to nucleic acid ligands to LL37, methods for producing said nucleic acid ligands, and methods for utilizing said nucleic acid ligands. In one exemplary embodiment, for example, this invention relates to nucleic acid ligands exhibiting high specific binding affinity to LL37 peptides, precursors and/or portions thereof. Further, the nucleic acid ligands may bind competitively with native ligands of LL37 and may also inhibit and/or interfere with LL37 function, such as by binding to LL37.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of co-pending U.S. patent application Ser. No. 13/296,163, filed Nov. 11, 2011, entitled “NUCLEIC ACID LIGANDS TO LL37”, which claims the benefit and priority of U.S. provisional patent application Ser. No. 61/412,929, filed Nov. 12, 2010, entitled “NUCLEIC ACID LIGANDS TO LL37”. The contents of both applications are hereby incorporated by reference in their entireties.
  • SEQUENCE LISTING
  • Nucleotide sequences contained in the ASCII text file entitled “P1014US00_ST25.txt”, created Nov. 9, 2010, of 9,029 bytes in size are hereby incorporated by reference. The nucleotide sequences are intended to include other aptamers incorporating modifications, truncations, incorporations into larger molecules or complexes, and/or other aptamers having substantial structural or sequence homology, for example, greater than 75% sequence homology, as well as RNA and/or other non-DNA aptamers. The disclosed aptamers may also bind to homologous proteins from organisms other than the organisms listed herein, to recombinant or non-recombinant versions of the proteins, to modified versions of the proteins, to proteins from sources other than the source listed herein. The indication of the species and source of the target proteins is given for reference only and is not intended to be limiting.
  • FIELD OF THE INVENTION
  • This invention relates to nucleic acid ligands to LL37, methods for producing said nucleic acid ligands, and methods for utilizing said nucleic acid ligands.
  • BACKGROUND OF THE INVENTION
  • Psoriasis and rosacea are chronic inflammatory autoimmune skin disorders which affect a significant portion of people in the U.S. Although these disorders are not life-threatening, they can lead to a significantly poor quality of life and negatively impact the mental health of the patients, leading in severe cases to depression and even suicidal tendencies. There are five approved biological therapeutics on the market for psoriasis (none for rosacea), and all of these are systemic immune suppressors.
  • The hallmarks of psoriasis are the chronic formation of itchy and scaly plaques, excessive skin inflammation, and hyperkeratinization. The most common form is plaque psoriasis (psoriasis vulgaris), but there are numerous different clinical manifestations of psoriasis, including a form involving joint inflammation and another which affects the nails. The exact causes of psoriasis are unknown, but genetic predisposition and environmental stressors are implicated. Psoriasis affects 2-3% of the worldwide population, and 4.5 million people in the U.S. suffer from the disease. The current modes of treatment include topical corticosteroids or systemic biologics.
  • Rosacea is another autoimmune disease predominantly affecting the skin, which affects 14 million in the U.S. alone. The manifestations of rosacea include persistent reddening of the skin, mainly in the face, possibly accompanied by stinging, itching sensations, and/or swelling. The onset of rosacea is usually triggered by a wide variety of environmental stressors, including diet, exercise, or weather changes.
  • Recent research has highlighted the overexpression of a 37-amino acid human antimicrobial peptide named LL37 in the pathogenesis of psoriasis, and independently implicated LL37 in rosacea.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to nucleic acid ligands to LL37, methods for producing said nucleic acid ligands, and methods for utilizing said nucleic acid ligands. In one exemplary embodiment, for example, this invention relates to nucleic acid ligands exhibiting high specific binding affinity to LL37 peptides, precursors and/or portions thereof. Further, the nucleic acid ligands may bind competitively with native ligands of LL37 and may also inhibit and/or interfere with LL37 function, such as by binding to LL37.
  • In one aspect of the present invention, nucleic acid ligands may be or may include aptamers that are, or including but not limited to, single-stranded nucleic acid, such as, for example, single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and/or a combination thereof; at least a portion of double-stranded nucleic acid, such as, for example, double-stranded DNA (dsDNA), double-stranded RNA (dsRNA), and/or combinations thereof; modified nucleotides and/or other useful molecules, moieties, and/or other functional chemical components, or combinations thereof; or combinations thereof or similar.
  • In general, the nucleic acid ligands may bind with relatively high specificity to a given target and may further act in a functional manner, such as with agonist or antagonist activity. Further, the nucleic acid ligands may also bind at least partially in competition with a native biomolecule.
  • In an exemplary embodiment, the nucleic acid ligands may bind to and inhibit at least a portion of the function of LL37 peptides, such as, for example, by inhibiting the functional binding of LL37 to a native ligand, such as, for example, self DNA. In some embodiments, the nucleic acid ligands may be applied to a tissue of a patient such that the nucleic acid ligands may bind to and/or inhibit the function of LL37 in the tissue. In some exemplary embodiments, the nucleic acid ligands may also be modified, enhanced and/or substituted such that they may have increased transport efficiency across, for example, a tissue boundary, such as the skin of a patient. For example, nucleic acid ligands may incorporate modified nucleobases which may, for example, aid in increasing permeability of the nucleic acid ligands through a tissue boundary. The nucleic acid ligands may also be applied to the tissue of a patient using active and/or forced transport methods.
  • Nucleic acid ligands may be generated and/or selected as aptamers utilizing selective propagation methods. In some exemplary embodiments, nucleic acid ligands may be generated as aptamers from large random libraries, for example, of nucleic acids, utilizing an iterative process, such as the process called Systematic Evolution of Ligands by Exponential Enrichment (SELEX), and/or modifications or similar techniques to SELEX. Resultant aptamers may be further screened for a particular functional activity, such as, for example, antagonist activity against LL37. Appropriate aptamers may then be produced on a large scale at a relatively low cost utilizing nucleic acid synthesis and/or other nucleic acid production methods, which may include cloning and/or fermentation methods. The binding affinity of the aptamers may also be determined, for example, by surface plasmon resonance (SPR) techniques. The permeability through tissue may also be determined, for example, by fluorescence permeability studies.
  • The present invention together with the above and other advantages may best be understood from the following detailed description of the exemplary embodiments and of the invention illustrated in the drawings.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates an example of SELEX;
  • FIG. 2 illustrates a mechanism for psoriasis;
  • FIG. 3 shows examples of modified nucleobases;
  • FIG. 4 shows an example of a binding curve for an aptamer to LL37 measured by surface plasmon resonance (SPR);
  • FIG. 5 shows an example of the effect of an LL37 aptamer on the production of LL37 in cell culture; and
  • FIG. 6 shows an example of transport of a modified nucleic acid across murine skin.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The detailed description set forth below is intended as a description of the presently exemplified embodiments provided in accordance with aspects of the present invention and is not intended to represent the only forms in which the present invention may be practiced or utilized. It is to be understood, however, that the same or equivalent functions and components may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices, compositions and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the exemplified methods, devices, compositions and materials are now described.
  • All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing, for example, the compositions and methodologies that are described in the publications which might be used in connection with the presently described invention. The publications listed or discussed above, below and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.
  • The present invention is directed to nucleic acid ligands to LL37, methods for producing said nucleic acid ligands, and methods for utilizing said nucleic acid ligands. In one exemplary embodiment, for example, this invention relates to nucleic acid ligands exhibiting high specific binding affinity to LL37 peptides, precursors and/or portions thereof. Further, the nucleic acid ligands may bind competitively with native ligands of LL37 and may also inhibit and/or interfere with LL37 function, such as by binding to LL37.
  • In one aspect of the present invention, nucleic acid ligands may be or may include aptamers. An “aptamer” refers to a biomolecule that is capable of binding to a particular molecule of interest with high affinity and specificity. The binding of a target to an aptamer, which may be a nucleic acid such as RNA or DNA, or a combination thereof, or a peptide sequence, may generally derive from secondary and/or three-dimensional (3D) structures of the aptamer and the binding may also change the conformation and/or structure of the aptamer. This type of interaction, with a small molecule metabolite, for example, coupled with subsequent changes in aptamer function where the aptamer may be an RNA, may be referred to as a ‘riboswitch’. Aptamers may also include non-natural nucleotides, nucleotide analogs, non-natural amino acids and/or amino acid analogs. The method of selection may be by, but is not limited to, affinity chromatography and the method of amplification by reverse transcription (RT), polymerase chain reaction (PCR) and/or any other appropriate amplification method. Aptamers may include specific binding regions which may be capable of binding, attaching, and/or forming complexes with an intended target in an environment wherein other substances in the same environment may not bound, attached, and/or complexed to the aptamer. The specificity of the binding may be defined in terms of the comparative dissociation constants (Kd) of the aptamer for its target as compared to the dissociation constant of the aptamer for other materials in the environment or unrelated molecules in general. Typically, the Kd for the aptamer with respect to its target may be at least about 10-fold less than the Kd for the aptamer with unrelated material and/or accompanying material in the environment. In another example, the Kd may be at least about 50-fold less, in a further example, at least about 100-fold less, and in some exemplary examples at least about 200-fold less. A nucleic acid aptamer may typically be between about 10 and about 300 nucleotides in length, for example. In general, an aptamer may also be between about 30 and about 100 nucleotides in length. The terms “nucleic acid molecule” and “polynucleotide” may refer to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. In general, the term may refer to nucleic acids containing known analogues of natural nucleotides which may have similar binding properties as the reference nucleic acid and may be metabolized in a manner similar to naturally occurring nucleotides. A particular nucleic acid sequence may also implicitly encompass conservatively modified variants thereof (e.g., degenerate codon substitutions) and/or complementary sequences, as well as the sequence. Degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons may be substituted with mixed-base and/or deoxyinosine residues. Also included may be molecules that may have naturally occurring phosphodiester linkages as well as those that may have non-naturally occurring linkages, e.g., for stabilization purposes. The nucleic acid may be in any physical form, such as e.g., linear, circular, or supercoiled. The term nucleic acid may also be used interchangeably with oligonucleotide, gene, cDNA, and mRNA encoded by a gene.
  • Aptamers may further include, but are not limited to, single-stranded nucleic acid, such as, for example, single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and/or a combination thereof; at least a portion of double-stranded nucleic acid, such as, for example, double-stranded DNA (dsDNA), double-stranded RNA (dsRNA), and/or combinations thereof; modified nucleotides and/or other useful molecules, moieties, and/or other functional chemical components, or combinations thereof; or combinations thereof or similar.
  • In general, modified nucleic acid bases may be utilized and may include, but are not limited to, 5-Propynyl-2′-deoxycytidine-5′-Triphosphate, C8-alkyne-dCTP, 2′-Deoxy-P-nucleoside-5′-Triphosphate, 2′-Deoxyinosine-5′-Triphosphate, 2′-Deoxypseudouridine-5′-Triphosphate, 2′-Deoxyuridine-5′-Triphosphate, 2′-Deoxyzebularine-5′-Triphosphate, 2-Amino-2′-deoxyadenosine-5′-Triphosphate, 2-Amino-6-chloropurine-2′-deoxyriboside-5′-Triphosphate, 2-Aminopurine-2′-deoxyribose-5′-Triphosphate, 2-Thio-2′-deoxycytidine-5′-Triphosphate, 2-Thiothymidine-5′-Triphosphate, 2′-Deoxy-L-adenosine-5′-Triphosphate, 2′-Deoxy-L-cytidine-5′-Triphosphate, 2′-Deoxy-L-guanosine-5′-Triphosphate, 2′-Deoxy-L-thymidine-5′-Triphosphate, 4-Thiothymidine-5′-Triphosphate, 5-Aminoallyl-2′-deoxycytidine-5′-Triphosphate, 5-Aminoallyl-2′-deoxyuridine-5′-Triphosphate, 5-Bromo-2′-deoxycytidine-5′-Triphosphate, 5-Bromo-2′-deoxyuridine-5′-Triphosphate, 5-Fluoro-2′-deoxyuridine-5′-Triphosphate, and/or any other appropriate modified nucleic acid base. It may generally be understood that the nucleoside triphosphates (NTPs) listed above may generally refer to any appropriate phosphate of the modified base, such as additionally, for example, monophosphates (NMPs) or diphosphates (NDPs) of the base. Examples of modified pyrimidine nucleosides are disclosed in U.S. Pat. No. 6,369,040, the entire contents of which are hereby incorporated by reference.
  • In general, the nucleic acid ligands may bind with relatively high specificity to a given target and may further act in a functional manner, such as with agonist or antagonist activity. Further, the nucleic acid ligands may also bind at least partially in competition with a native biomolecule.
  • Nucleic acid ligands may be generated and/or selected as aptamers utilizing selective propagation methods. In some exemplary embodiments, nucleic acid ligands may be generated as aptamers from large random libraries, for example, of nucleic acids, utilizing an iterative process, such as the process called Systematic Evolution of Ligands by Exponential Enrichment (SELEX), and/or modifications or similar techniques to SELEX. Resultant aptamers may be further screened for a particular functional activity, such as, for example, antagonist activity against LL37. Appropriate aptamers may then be produced on a large scale at a relatively low cost utilizing nucleic acid synthesis and/or other nucleic acid production methods, which may include cloning and/or fermentation methods. The binding affinity of the aptamers may also be determined, for example, by surface plasmon resonance (SPR) techniques. The permeability through tissue may also be determined, for example, by fluorescence permeability studies.
  • In general, generated aptamers may also be analyzed, such as by sequencing, sequence clustering, folding, conformation and/or shape determination, motif-identification, and/or by any other appropriate method of analysis or combination thereof. For example, after multiple rounds of selection in SELEX, particular sequence motifs and/or clusters may emerge as dominant. This may be useful, for example, in determining particular aptamer features that may play a substantial role in the binding activity of the aptamers.
  • In general, as illustrated in FIG. 1, the SELEX method may include contacting a library of, for example, nucleic acids with at least one target, such as, for example, whole cell(s); target molecules, such as isolated and/or partially isolated receptor molecules; and/or any other appropriate target. In general, the members of the library that do not bind with some affinity to the target may be washed or otherwise partitioned from the remainder of the library, which may have a given level of binding affinity to the target. Washing and/or partitioning may in general include any appropriate method and/or mechanism of separating non-binding molecules, such as, for example, agitation, aspiration, flushing, and/or any other appropriate method, mechanism, or combination thereof. Flushing and/or otherwise employing a fluid for washing may generally utilize the same or similar fluid as the fluid utilized as the binding environment. The process may be repeated to partition the strongest binding members of the library. Binding may generally refer to forming a molecular complex, chemical bond, physical attachment and/or any other general intermolecular association, interaction and/or attachment. Also in general, the separating force of the washing and/or partitioning method or mechanism may generally set at least a partial threshold of binding affinity for an nucleic acids that may remain after the washing and/or partitioning step. Amplification, such as by PCR and/or other appropriate nucleic acid amplification methods, of the binding library members may also be utilized to increase the numbers of the binding members of the library for subsequent repetitions and for isolation and/or purification of any final products of the process. Embodiments of the SELEX method may generally be utilized to achieve the generation of functional biomolecules of a given binding affinity and/or range of binding affinity. The various steps of SELEX and related protocols or modifications thereof may be performed in general, utilizing appropriate conditions, such as, for example, an appropriate buffer and/or binding environment, which may be, for example, the same or similar to an environment where generated aptamers may be utilized. For cell receptor molecules and/or other molecules that bind particular molecules as their function, an appropriate physiological buffer and/or environment may generally be utilized for SELEX protocols. Collection of product aptamers may be achieved by, for example, elution of the nucleic acids utilizing an unfavorable environment or buffer for binding to the target, such as, for example, high osmolarity solution, which may in general interfere with binding ability of the nucleic acids. Any other appropriate collection method may also be utilized. Details of a basic SELEX protocol may be found in U.S. Pat. No. 5,270,163, entitled “Methods for identifying nucleic acid ligands,” the entire contents of which are hereby incorporated by reference. Other SELEX protocols that may generally be utilized and/or modified for an appropriate usage include those found in U.S. Pat. No. 5,789,157, entitled “Systematic evolution of ligands by exponential enrichment: tissue selex,” the entire contents of which are hereby incorporated by reference.
  • The SELEX technique may begin with a large library of random nucleotides or aptamers. The library may then be contacted with a target and the aptamers bound to the target may be separated and amplified for the next round. The binding conditions for each round may be made more stringent than in the previous round until the only remaining aptamers in the pool are highly specific for and bind with high affinity to the target. While aptamers may be analogous to antibodies in their range of target recognition and variety of applications, they may also possess several key advantages over their protein counterparts. For example, they are generally smaller, easier and/or more economical to produce, are capable of greater specificity and affinity, are highly biocompatible and non-immunogenic, and/or can easily be modified chemically to yield improved properties, for example, any desired properties. After selection, the selected aptamers may also be produced by chemical synthesis, which may aid in eliminating batch-to-batch variation which complicates production of therapeutic proteins.
  • In some exemplary embodiments, SELEX may be performed to generate aptamers utilizing a whole-cell and/or tissue approach. This may be desirable as whole-cell and/or tissue targets may present appropriate target molecules in a “native” state, such as living target cells with active and/or operative target molecules. In some embodiments, non-whole-cell targets may also be utilized, which may include, but are not limited to, purified molecular samples, anchored target molecules, artificial micelles and/or liposomes presenting target molecules, and/or any other appropriate target.
  • In an exemplary embodiment, the nucleic acid ligands may bind to and inhibit at least a portion of the function of LL37 peptides, such as, for example, by inhibiting the functional binding of LL37 to a native ligand, such as, for example, self DNA. Examples of nucleic acid ligands that have been generated that may bind to LL37 are incorporated herein by reference to the sequence IDs SEQ1-SEQ43.
  • For example, and without wishing to be bound by any particular theory, cationic antimicrobial peptides have been shown to be an integral part of innate immune responses, and are found in many classes of organisms. These small peptides (˜10-50 residues) are produced by the host organism and may interact with the negatively-charged membranes of pathogens such as bacteria and fungi. In higher organisms, these peptides have been also found to interact with and modulate host immune systems. One family of the cationic antimicrobial peptides are the cathelicidin peptides, which are common in mammals, but only one cathelicidin has been identified in humans. This peptide is expressed as a precursor (CAP-18) which is subsequently proteolytically processed to produce a 37-amino acid cationic peptide of 4.5 kDa, called LL37. LL37 has also been shown to be processed differentially in a tissue-dependent manner, to produce various peptides with varying antimicrobial activities. Previous research has demonstrated that LL37 has potent antimicrobial activity, can attenuate host responses to lipopolysaccharides (LPS), influences cytokine secretion of various tissues, and can directly activate different immune cells to produce a wide variety of responses. Thus, in over 300 published studies this small peptide has been shown to play a pivotal role in the interplay of inflammation, pathogen response, and immune modulation. The antimicrobial effects of LL37 have led to its development as an antimicrobial agent for dental caries, antibiotic-resistant pathogens, and even for coating prosthetic devices. In addition, it has been investigated as a potential cancer therapeutic due to its anti-tumor activities in specific cancers. However, LL37 is also implicated in the onset of some diseases. In particular types of cancers, LL37 expression actually increases proliferation. There has also been a study linking the expression of LL37 to the pathogenesis of atherosclerosis. By far, the most established finding of LL37 dysfunction leading to a specific disorder has been the well-investigated link of LL37 overexpression leading to the emergence and/or propagation of psoriasis. LL37 promotes an autoimmune response by binding to self-DNA extracellularly and activating plasmacytoid dendritic cells (pDC) to produce IFN-α. The LL37-DNA binding was demonstrated to be nonspecific, as DNA isolated from non-psoriasis patients also induced expression of IFN-α. As shown in FIG. 2, LL37 binds to extracellular self-DNA allowing its internalization into endocytic compartments of plasmacytoid dendritic cells (pDCs) where it triggers Toll-like receptor (TLR)-9 activation. Research has demonstrated that LL37 is constantly overexpressed in psoriatic skin leading to the formation of LL37-DNA complexes that induce chronic activation of pDC with production of high levels of IFN-α. The overexpression of IFN-α initiates the local activation of autoimmune T-cells and may lead to the development of psoriatic lesions.
  • In some embodiments, the nucleic acid ligands may be applied to a tissue of a patient such that the nucleic acid ligands may bind to and/or inhibit the function of LL37 in the tissue. In some exemplary embodiments, the nucleic acid ligands may also be modified, enhanced and/or substituted such that they may have increased transport efficiency across, for example, a tissue boundary, such as the skin of a patient. For example, nucleic acid ligands may incorporate and/or include modified nucleobases which may, for example, aid in increasing permeability of the nucleic acid ligands through a tissue boundary. For example, during amplification or synthesis, modified nucleobases such as alkyne-modified bases which may include, but are not limited to, Amino-allyl deoxyUTP, 5-Propynyl-2′-deoxycytidine-5′-Triphosphate, C8-alkyne-dCTP, as shown in FIG. 3, and/or any other appropriate modified base. Without wishing to be bound by any particular theory, higher bond-order modified bases may generally have increased permeability through tissue, such as lipid-rich and proteinaceous tissues which may include skin. The nucleic acid ligands may also be applied to the tissue of a patient using active and/or forced transport methods, such as, for example, electrophoresis, sonophoresis, and/or any other appropriate method or combination thereof. The nucleic acid ligands may also be dissolved in a solvent, such as, for example DMSO, which may improve and/or enhance permeability.
  • In some embodiments, multimeric or chimeric aptamers may be generated which may include multiple binding sites for at least one target. For example, a chimeric aptamer may be generated from two or more aptamers joined by a linking sequence which may include, for example, an oligonucleotide sequence or other polymeric linkage. In some embodiments, multimeric aptamers may be generated utilizing, for example, rolling circle amplification, such as from a circular DNA template, and/or any other appropriate method. A chimeric aptamer may, for example, be utilized to bind multiple sites of a target, such as LL37.
  • The following examples were carried out as exemplary illustrations of the present invention and are not to be construed to be limiting in any manner.
  • Examples 1. Verification of Aptamer Binding with Surface Plasmon Resonance (SPR)
  • Aptamers were immobilized to the test channel of a neutravidin-coated SPR chip via standard biotin modification. A nonsense DNA was immobilized on the reference channel to identically match the electrostatic conditions of each channel, and then increasing concentrations of target protein LL37 were added such that no regeneration steps are required. The differential response to each dose was extracted and fit to a binding isotherm model to accurately determine Kd. Binding curves for sequence ID SEQ7 is shown in FIG. 4, yielding a Kd of 117.9 nM.
  • 2. Inhibition of IFN-α Production in pDC Cell Culture with LL37 and Aptamers
  • Preliminary investigations were performed to determine the feasibility of using LL37-specific aptamers for competing with human (self) genomic DNA (gDNA) to inhibit pDC activation as a key pathogenic event that leads to psoriasis. Based on the richest folding as determined by mfold, 2 aptamers, sequence IDs SEQ7 and SEQ16, were chosen as additives to pDC cell cultures. pDC cell cultures were incubated with various combinations of LL37, LL37+gDNA, or LL37+gDNA+Aptamer. The LL37 concentration was 10 μM while the aptamer concentration employed was half that at 5 μM. Cell culture supernatants were then assayed by sensitive ELISA for IFN-α. As shown in FIG. 5, SEQ7 (shown as Apta#222) greatly decreased IFN-α production.
  • 3. Example of Enhanced Transport of Modified-Base Aptamers Across Murine Skin
  • During PCR amplification of 76-mer DNA, a modified nucleobase was substituted for the natural counterpart. The forward PCR primer was biotinylated, and the reverse primer was phosphorylated to allow specific digestion of the complementary strand using lambda exonuclease such that a single-stranded DNA was created. The purified DNA product was then added to humidified, explanted mouse skin at room temperature at a concentration of 1 μM overnight. Skin samples were then sectioned by cryotome and labeled with a streptavidin fluorophore for fluorescence microscopy. FIG. 6 shows the result for a 76-mer DNA incorporating 5-Propynyl-2′-deoxycytidine-5′-Triphosphate. The applied DNA was dissolved in 2% DMSO to enhance permeability. As shown in FIG. 6, the compound penetrates well into the dermis.
  • Although various exemplary embodiments have been shown and described, it will be appreciated by those of ordinary skill in the art that the present invention can be embodied in other forms, combinations and modifications without departing from the spirit or essential character hereof. The present description is therefore considered in all respects to be illustrative and not restrictive. The scope of the present invention is intended to be limited only by the appended claims, and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.

Claims (20)

1. A composition comprising:
at least one modified aptamer having a specific binding affinity to human LL37, said at least one modified aptamer comprising at least one higher-order-bond modified nucleobase; wherein said specific binding affinity substantially inhibits the function of said human LL37.
2. The composition of claim 1, wherein said at least one higher-order-bond modified nucleobase comprises an alkyne-modified nucleobase.
3. The composition of claim 2, wherein said alkyne-modified nucleobase is selected from the group consisting of Amino-allyl deoxyUTP, 5-Propynyl-2′-deoxycytidine-5′-Triphosphate, and C8-alkyne-dCTP.
4. The composition of claim 1, wherein said at least one modified nucleic acid ligand comprises an aptamer substantially homologous to Sequence ID SEQ7.
5. The composition of claim 1, further comprising a solvent, wherein said at least one modified nucleic acid ligand is substantially dissolved in said solvent.
6. The composition of claim 5, wherein said solvent comprises DMSO.
7. The composition of claim 1, wherein said at least one modified nucleic acid ligand comprises a multimeric aptamer comprising at least two aptamers.
8. The composition of claim 7, wherein said multimeric aptamer comprises a chimeric aptamer.
9. The composition of claim 7, wherein said at least two aptamers are linked by a polymeric linkage.
10. The composition of claim 9, wherein said polymeric linkage comprises an oligonucleotide linkage.
11. A method for treatment of a human comprising:
applying a composition to a human tissue experiencing psoriasis or rosacea to prevent DNA-mediated activation of plasmacytoid dendritic cells by human LL37 peptide, said composition comprising at least one modified aptamer having a non-naturally derived single stranded DNA sequence which produces a secondary structure with a specific binding affinity to said human LL37 peptide and which is incapable of triggering said DNA-mediated activation of plasmacytoid dendritic cells by said human LL37 peptide, said at least one modified aptamer comprising at least one high-order-bond modified nucleobase;
wherein said at least one high-order-bond modified nucleobase increases transport of said composition into or across said human tissue.
12. The method of claim 11, wherein said at least one modified nucleic acid ligand binds to and substantially inhibits said human LL37.
13. The method of claim 11, wherein said increased transport comprises increased solubility of said composition in lipid-rich or proteinaceous tissue.
14. The method of claim 11, wherein said at least one high-order-bond modified nucleobase comprises an alkyne-modified nucleobase.
15. The method of claim 14, wherein said alkyne-modified nucleobase is selected from the group consisting of Amino-allyl deoxyUTP, 5-Propynyl-2′-deoxycytidine-5′-Triphosphate, and C8-alkyne-dCTP.
16. The method of claim 11, further comprising applying a solvent to said human tissue.
17. The method of claim 11, wherein said human tissue comprises skin.
18. A composition comprising:
at least one modified nucleic acid ligand substantially homologous to Sequence ID SEQ7.
19. The composition of claim 18, wherein said at least one modified nucleic acid ligand comprises at least one alkyne-modified nucleobase.
20. The composition of claim 19, wherein said alkyne-modified nucleobase is selected from the group consisting of Amino-allyl deoxyUTP, 5-Propynyl-2′-deoxycytidine-5′-Triphosphate, and C8-alkyne-dCTP.
US14/728,913 2010-11-12 2015-06-02 Nucleic acid ligands to ll37 Abandoned US20150259688A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/728,913 US20150259688A1 (en) 2010-11-12 2015-06-02 Nucleic acid ligands to ll37
US15/181,406 US20160289679A1 (en) 2010-11-12 2016-06-13 Nucleic acid ligands to ll37

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41292910P 2010-11-12 2010-11-12
US13/296,163 US9044495B2 (en) 2010-11-12 2011-11-14 Nucleic acid ligands to LL37
US14/728,913 US20150259688A1 (en) 2010-11-12 2015-06-02 Nucleic acid ligands to ll37

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/296,163 Continuation US9044495B2 (en) 2010-11-12 2011-11-14 Nucleic acid ligands to LL37

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/181,406 Continuation-In-Part US20160289679A1 (en) 2010-11-12 2016-06-13 Nucleic acid ligands to ll37

Publications (1)

Publication Number Publication Date
US20150259688A1 true US20150259688A1 (en) 2015-09-17

Family

ID=46047952

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/296,163 Expired - Fee Related US9044495B2 (en) 2010-11-12 2011-11-14 Nucleic acid ligands to LL37
US14/728,913 Abandoned US20150259688A1 (en) 2010-11-12 2015-06-02 Nucleic acid ligands to ll37

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/296,163 Expired - Fee Related US9044495B2 (en) 2010-11-12 2011-11-14 Nucleic acid ligands to LL37

Country Status (1)

Country Link
US (2) US9044495B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500615A (en) * 2020-03-20 2020-08-07 中国科学院动物研究所 Recombinant expression vector for expressing LL-37 polypeptide, recombinant lactococcus lactis, antiviral drug, construction method and application

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256430B2 (en) 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
US10927381B2 (en) * 2009-03-23 2021-02-23 Base Pair Biotechnologies, Inc. Functional ligands to LL37
US9044495B2 (en) * 2010-11-12 2015-06-02 Biotex, Inc. Nucleic acid ligands to LL37
US20160289679A1 (en) * 2010-11-12 2016-10-06 Biotex, Inc. Nucleic acid ligands to ll37
CN104602638B (en) 2012-06-27 2017-12-19 曼特瑞斯医药有限责任公司 System for influenceing to treat tissue
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
WO2015143025A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US20150265353A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060275303A1 (en) * 2003-02-27 2006-12-07 Robert Bals Modulating angiogenesis using LL-37/HCAP-18
US20120295862A1 (en) * 2009-09-10 2012-11-22 The Univeristy of Idaho Nucleobase-functionalized conformationally restricted nucleotides and oligonucleotides for targeting of nucleic acids
US9044495B2 (en) * 2010-11-12 2015-06-02 Biotex, Inc. Nucleic acid ligands to LL37

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060275303A1 (en) * 2003-02-27 2006-12-07 Robert Bals Modulating angiogenesis using LL-37/HCAP-18
US20120295862A1 (en) * 2009-09-10 2012-11-22 The Univeristy of Idaho Nucleobase-functionalized conformationally restricted nucleotides and oligonucleotides for targeting of nucleic acids
US9044495B2 (en) * 2010-11-12 2015-06-02 Biotex, Inc. Nucleic acid ligands to LL37

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500615A (en) * 2020-03-20 2020-08-07 中国科学院动物研究所 Recombinant expression vector for expressing LL-37 polypeptide, recombinant lactococcus lactis, antiviral drug, construction method and application

Also Published As

Publication number Publication date
US20120121533A1 (en) 2012-05-17
US9044495B2 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
US9044495B2 (en) Nucleic acid ligands to LL37
JP5015923B2 (en) Materials and methods for generating complete 2 'modified nucleic acid transcripts
US8101385B2 (en) Materials and methods for the generation of transcripts comprising modified nucleotides
Fernández et al. TLR4-binding DNA aptamers show a protective effect against acute stroke in animal models
KR101276519B1 (en) Aptamer against il-17 and use thereof
KR101466931B1 (en) SDF-1 binding type B nucleic acid molecules
MXPA06010012A (en) Aptamers to the human il-12 cytokine family and their use as autoimmune disease therapeutics.
JP6442941B2 (en) Vascular endothelial growth factor binding nucleic acid aptamer and use thereof
Cao et al. A DNA aptamer with high affinity and specificity for molecular recognition and targeting therapy of gastric cancer
US20190010499A1 (en) Methods for improved aptamer selection
EP3369820B1 (en) Dna aptamer capable of bonding to vwf
KR20200023427A (en) Compositions and Methods for Inhibiting HMGB1 Expression
US20080214489A1 (en) Aptamer-mediated intracellular delivery of oligonucleotides
WO2017180549A1 (en) Allergen detection using magnetics
US20160289679A1 (en) Nucleic acid ligands to ll37
KR20190024894A (en) Oligonucleotides containing modified nucleosides
JP6586669B2 (en) Aptamers that bind to autotaxin and inhibit the bioactivity of autotaxin and use thereof
KR101250557B1 (en) PAUF-specific aptamer and therapeutic composition for treatment of pancreatic cancer comprising thereof
US11008576B2 (en) Chemically modified RNA aptamers and uses thereof
CN101014609A (en) Nucleic acid ligands to immunoglobuline e and their use as atopic disease therapeutics
CN111542607A (en) Aptamer aiming at ADAMTS5 and application thereof
KR20180119758A (en) White blood cell specific aptamer and the use thereof
Umezawa et al. Development of the 12-base short dimeric myogenetic oligodeoxynucleotide that induces myogenic differentiation
EP3224361B1 (en) Nucleic acid compounds for binding growth differentiation factor 11
WO2012063219A1 (en) Specific ligand for annexin 2

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION