US20150170885A1 - Plasma thermal shield for heat dissipation in plasma chamber - Google Patents

Plasma thermal shield for heat dissipation in plasma chamber Download PDF

Info

Publication number
US20150170885A1
US20150170885A1 US14/219,842 US201414219842A US2015170885A1 US 20150170885 A1 US20150170885 A1 US 20150170885A1 US 201414219842 A US201414219842 A US 201414219842A US 2015170885 A1 US2015170885 A1 US 2015170885A1
Authority
US
United States
Prior art keywords
plasma
thermal shield
shadow ring
plasma thermal
ring body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/219,842
Inventor
Alan Hiroshi Ouye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/219,842 priority Critical patent/US20150170885A1/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OUYE, ALAN HIROSHI
Publication of US20150170885A1 publication Critical patent/US20150170885A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device

Definitions

  • Embodiments of the present invention pertain to the field of semiconductor processing and, in particular, to methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits thereon.
  • integrated circuits are formed on a wafer (also referred to as a substrate) composed of silicon or other semiconductor material.
  • a wafer also referred to as a substrate
  • layers of various materials which are either semiconducting, conducting or insulating are utilized to form the integrated circuits. These materials are doped, deposited and etched using various well-known processes to form integrated circuits.
  • Each wafer is processed to form a large number of individual regions containing integrated circuits known as dies.
  • the wafer is “diced” to separate the individual die from one another for packaging or for use in an unpackaged form within larger circuits.
  • the two main techniques that are used for wafer dicing are scribing and sawing.
  • a diamond tipped scribe is moved across the wafer surface along pre-formed scribe lines. These scribe lines extend along the spaces between the dies. These spaces are commonly referred to as “streets.”
  • the diamond scribe forms shallow scratches in the wafer surface along the streets.
  • Scribing can be used for wafers that are about 10 mils (thousandths of an inch) or less in thickness. For thicker wafers, sawing is presently the preferred method for dicing.
  • a diamond tipped saw rotating at high revolutions per minute contacts the wafer surface and saws the wafer along the streets.
  • the wafer is mounted on a supporting member such as an adhesive film stretched across a film frame and the saw is repeatedly applied to both the vertical and horizontal streets.
  • a supporting member such as an adhesive film stretched across a film frame and the saw is repeatedly applied to both the vertical and horizontal streets.
  • chips and gouges can form along the severed edges of the dies.
  • cracks can form and propagate from the edges of the dies into the substrate and render the integrated circuit inoperative. Chipping and cracking are particularly a problem with scribing because only one side of a square or rectangular die can be scribed in the ⁇ 110> direction of the crystalline structure.
  • each die requires substantial cleaning to remove particles and other contaminants that result from the sawing process.
  • Plasma dicing has also been used, but may have limitations as well.
  • one limitation hampering implementation of plasma dicing may be cost.
  • a standard lithography operation for patterning resist may render implementation cost prohibitive.
  • Another limitation possibly hampering implementation of plasma dicing is that plasma processing of commonly encountered metals (e.g., copper) in dicing along streets can create production issues or throughput limits.
  • Embodiments of the present invention include methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits thereon.
  • a plasma thermal shield for a plasma processing chamber includes an annular ring body having an inner opening.
  • a plasma-facing surface of the annular ring body has a general topography.
  • a bottom surface of the annular ring body reciprocates the general topography with recessed regions disposed therein, providing one or more protruding regions at the bottom surface of the annular ring body.
  • a shadow ring assembly for a plasma processing chamber includes a shadow ring having an annular body and an inner opening.
  • the shadow ring assembly also includes a plasma thermal shield nested on the shadow ring.
  • the plasma thermal shield includes an annular ring body having an inner opening approximately the same size, and aligned with, the inner opening of the shadow ring.
  • a plasma-facing surface of the annular ring body of the plasma thermal shield has a general topography.
  • a bottom surface of the annular ring body of the plasma thermal shield reciprocates the general topography with recessed regions disposed therein, providing one or more protruding regions at the bottom surface of the annular ring body. The one or more protruding regions are in contact with the shadow ring.
  • a method of dicing a semiconductor wafer having a plurality of integrated circuits involves introducing a substrate supported by a substrate carrier into a plasma etch chamber.
  • the substrate has a patterned mask thereon covering integrated circuits and exposing streets of the substrate.
  • the method also involves clamping the substrate carrier below a shadow ring having a plasma thermal shield disposed thereon.
  • the method also involves plasma etching the substrate through the streets to singulate the integrated circuits.
  • the shadow ring and plasma thermal shield protect the substrate carrier from the plasma etching.
  • the plasma thermal shield dissipates heat away from the shadow ring during the plasma etching.
  • FIG. 1 illustrates a top plan of a semiconductor wafer to be diced, in accordance with an embodiment of the present invention.
  • FIG. 2 illustrates a top plan of a semiconductor wafer to be diced that has a dicing mask formed thereon, in accordance with an embodiment of the present invention.
  • FIG. 3 illustrates a plan view of a substrate carrier suitable for supporting a wafer during a singulation process, in accordance with an embodiment of the present invention.
  • FIG. 4 illustrates the substrate carrier of FIG. 3 with an overlying actively-cooled shadow ring or a plasma thermal shield, or both, in accordance with an embodiment of the present invention.
  • FIG. 5 illustrates an angled view of an actively-cooled shadow ring for heat dissipation in a plasma chamber with relative positioning to an etch cathode shown and relative sizing to a wafer support shown, in accordance with an embodiment of the present invention.
  • FIG. 6 illustrates an enlarged view of the plasma exposed coupler of the support apparatus of FIG. 5 , in accordance with an embodiment of the present invention.
  • FIG. 7 illustrates an enlarged view of the bellows feed-through of the support apparatus of FIG. 5 , in accordance with an embodiment of the present invention.
  • FIG. 8 illustrates an angled top view and angled bottom view of a plasma thermal shield, in accordance with an embodiment of the present invention.
  • FIG. 9 illustrates an enlarged angled cross-sectional view of the plasma thermal shield of FIG. 8 as positioned on a top surface of a shadow ring, in accordance with an embodiment of the present invention.
  • FIG. 10 illustrates a cross-sectional view of an etch reactor, in accordance with an embodiment of the present invention.
  • FIG. 11 is a Flowchart representing operations in a method of dicing a semiconductor wafer including a plurality of integrated circuits, in accordance with an embodiment of the present invention.
  • FIG. 12A illustrates a cross-sectional view of a semiconductor wafer including a plurality of integrated circuits during performing of a method of dicing the semiconductor wafer, corresponding to operation 1102 of the Flowchart of FIG. 11 , in accordance with an embodiment of the present invention.
  • FIG. 12B illustrates a cross-sectional view of a semiconductor wafer including a plurality of integrated circuits during performing of a method of dicing the semiconductor wafer, corresponding to operation 1104 of the Flowchart of FIG. 11 , in accordance with an embodiment of the present invention.
  • FIG. 12C illustrates a cross-sectional view of a semiconductor wafer including a plurality of integrated circuits during performing of a method of dicing the semiconductor wafer, corresponding to operation 1108 of the Flowchart of FIG. 11 , in accordance with an embodiment of the present invention.
  • FIG. 13 illustrates the effects of using a laser pulse in the femtosecond range versus longer pulse times, in accordance with an embodiment of the present invention.
  • FIG. 14 illustrates compaction on a semiconductor wafer achieved by using narrower streets versus conventional dicing which may be limited to a minimum width, in accordance with an embodiment of the present invention.
  • FIG. 15 illustrates freeform integrated circuit arrangement allowing denser packing and, hence, more die per wafer versus grid alignment approaches, in accordance with an embodiment of the present invention.
  • FIG. 16 illustrates a block diagram of a tool layout for laser and plasma dicing of wafers or substrates, in accordance with an embodiment of the present invention.
  • FIG. 17 illustrates a block diagram of an exemplary computer system, in accordance with an embodiment of the present invention.
  • One or more embodiments described herein are directed to an actively-cooled shadow ring for heat dissipation in a plasma etch chamber.
  • Embodiments may include plasmas and plasma based processes, thermal management, active cooling, and heat dissipation.
  • One or more embodiments described herein are directed to a plasma thermal shield for heat dissipation in a plasma chamber.
  • Embodiments may include plasmas and plasma based processes, thermal management, shielding of plasma generated species, and heat dissipation.
  • Applications for either of the actively-cooled shadow ring or the plasma thermal shield, or both, may include die singulation but other high power etch processes or differentiated etch chemistries may benefit from embodiments described herein.
  • the plasma thermal shield may be used on its own as an inexpensive, passive component, or it may be combined with an actively-cooled shadow ring as a thermal shield to modify plasma conditions. In the latter case, the plasma thermal shield is effectively used as a dopant source in a plasma etch process.
  • a hybrid wafer or substrate dicing process involving an initial laser scribe and subsequent plasma etch may be implemented for die singulation.
  • the laser scribe process may be used to cleanly remove a mask layer, organic and inorganic dielectric layers, and device layers.
  • the laser etch process may then be terminated upon exposure of, or partial etch of, the wafer or substrate.
  • the plasma etch portion of the dicing process may then be employed to etch through the bulk of the wafer or substrate, such as through bulk single crystalline silicon, to yield die or chip singulation or dicing.
  • an actively-cooled shadow ring or a plasma thermal shield, or both, are implemented during the etch portion of the dicing process.
  • the wafer or substrate is supported by a substrate carrier during the singulation process, including during the etch portion of the singulation process.
  • an apparatus may be used to support and protect the film and film frame used to hold a thin silicon wafer from etch gases.
  • the manufacturing processes related to integrated circuit (IC) packaging may require that a thinned silicon wafer be supported and mounted on a film such as a die attach film.
  • a die attach film is also supported by a substrate carrier and is used to adhere a thin silicon wafer to the substrate carrier.
  • conventional wafer dicing approaches include diamond saw cutting based on a purely mechanical separation, initial laser scribing and subsequent diamond saw dicing, or nanosecond or picosecond laser dicing.
  • thin wafer or substrate singulation such as 50 microns thick bulk silicon singulation
  • the conventional approaches have yielded only poor process quality.
  • Some of the challenges that may be faced when singulating die from thin wafers or substrates may include microcrack formation or delamination between different layers, chipping of inorganic dielectric layers, retention of strict kerf width control, or precise ablation depth control.
  • Embodiments of the present invention include a hybrid laser scribing and plasma etching die singulation approach that may be useful for overcoming one or more of the above challenges.
  • a combination of laser scribing and plasma etching is used to dice a semiconductor wafer into individualized or singulated integrated circuits.
  • femtosecond-based laser scribing is used as an essentially, if not totally, non-thermal process.
  • the femtosecond-based laser scribing may be localized with no or negligible heat damage zone.
  • approaches herein are used to singulated integrated circuits having ultra-low k films. With convention dicing, saws may need to be slowed down to accommodate such low k films.
  • semiconductor wafers are now often thinned prior to dicing.
  • a combination of mask patterning and partial wafer scribing with a femtosecond-based laser, followed by a plasma etch process is now practical.
  • direct writing with laser can eliminate need for a lithography patterning operation of a photo-resist layer and can be implemented with very little cost.
  • through-via type silicon etching is used to complete the dicing process in a plasma etching environment.
  • FIG. 1 illustrates a top plan of a semiconductor wafer to be diced, in accordance with an embodiment of the present invention.
  • FIG. 2 illustrates a top plan of a semiconductor wafer to be diced that has a dicing mask formed thereon, in accordance with an embodiment of the present invention.
  • a semiconductor wafer 100 has a plurality of regions 102 that include integrated circuits.
  • the regions 102 are separated by vertical streets 104 and horizontal streets 106 .
  • the streets 104 and 106 are areas of semiconductor wafer that do not contain integrated circuits and are designed as locations along which the wafer will be diced.
  • Some embodiments of the present invention involve the use of a combination laser scribe and plasma etch technique to cut trenches through the semiconductor wafer along the streets such that the dies are separated into individual chips or die. Since both a laser scribe and a plasma etch process are crystal structure orientation independent, the crystal structure of the semiconductor wafer to be diced may be immaterial to achieving a vertical trench through the wafer.
  • the semiconductor wafer 100 has a mask 200 deposited upon the semiconductor wafer 100 .
  • the mask is deposited in a conventional manner to achieve an approximately 4-10 micron thick layer.
  • the mask 200 and a portion of the semiconductor wafer 100 are, in one embodiment, patterned with a laser scribing process to define the locations (e.g., gaps 202 and 204 ) along the streets 104 and 106 where the semiconductor wafer 100 will be diced.
  • the integrated circuit regions of the semiconductor wafer 100 are covered and protected by the mask 200 .
  • the regions 206 of the mask 200 are positioned such that during a subsequent etching process, the integrated circuits are not degraded by the etch process.
  • Horizontal gaps 204 and vertical gaps 202 are formed between the regions 206 to define the areas that will be etched during the etching process to finally dice the semiconductor wafer 100 .
  • an actively-cooled shadow ring or a plasma thermal shield, or both, are implemented during the etch portion of the dicing process.
  • FIG. 3 illustrates a plan view of a substrate carrier suitable for supporting a wafer during a singulation process, in accordance with an embodiment of the present invention.
  • a substrate carrier 300 includes a layer of backing tape 302 surrounded by a tape ring or frame 304 .
  • a wafer or substrate 306 is supported by the backing tape 302 of the substrate carrier 300 .
  • the wafer or substrate 306 is attached to the backing tape 302 by a die attach film.
  • the tape ring 304 is composed of stainless steel.
  • a singulation process can be accommodated in a system sized to receive a substrate carrier such as the substrate carrier 300 .
  • a system such as system 1600 , described in greater detail below, can accommodate a wafer frame without impact on the system footprint that is otherwise sized to accommodate a substrate or wafer not supported by a substrate carrier.
  • such a processing system is sized to accommodate 300 millimeter-in-diameter wafers or substrates.
  • the same system can accommodate a wafer carrier approximately 380 millimeters in width by 380 millimeters in length, as depicted in FIG. 3 .
  • systems may be designed to handle 450 millimeter wafers or substrate or, more particularly, 450 millimeter wafer or substrate carriers.
  • a substrate carrier is accommodated in an etch chamber during a singulation process.
  • the assembly including a wafer or substrate on the substrate carrier is subjected to a plasma etch reactor without affecting (e.g., etching) the film frame (e.g., tape ring 304 ) and the film (e.g., backing tape 302 ).
  • a plasma etch reactor without affecting (e.g., etching) the film frame (e.g., tape ring 304 ) and the film (e.g., backing tape 302 ).
  • an actively-cooled shadow ring or a plasma thermal shield, or both are implemented during the etch portion of the dicing process.
  • FIG. 4 illustrates the substrate carrier of FIG. 3 with an overlying actively-cooled shadow ring or a plasma thermal shield, or both, in accordance with an embodiment of the present invention.
  • the substrate carrier 300 including the layer of backing tape 302 and tape ring or frame 304 is covered, in a top view perspective, by an actively-cooled shadow ring or a plasma thermal shield, or both, (all options represented as 400 in FIG. 4 ).
  • the actively-cooled shadow ring or a plasma thermal shield, or both, 400 includes a ring portion 402 and inner opening 404 .
  • a portion of the supported wafer or substrate 306 is also covered by the actively-cooled shadow ring or a plasma thermal shield, or both, 400 (specifically, portion 406 of the actively-cooled shadow ring or a plasma thermal shield, or both, 400 covers a portion of the wafer or substrate 306 ).
  • the portion 406 of the actively-cooled shadow ring or a plasma thermal shield, or both, 400 covers approximately 1-1.5 mm of the outer most portion of the wafer or substrate 306 .
  • the portion covered may be referred to as the exclusion region of the wafer or substrate 306 since this area is effectively shielded from a plasma process.
  • an actively-cooled shadow ring for heat dissipation in a plasma chamber is now described in greater detail.
  • an actively-cooled shadow ring can be implemented to reduce a temperature of a process kit shadow ring during processing of a wafer supported by a wafer carrier.
  • damage or burning of a die singulation tape that otherwise occurs at elevated temperatures may be mitigated.
  • a damaged or burned die singulation tape normally leads to the wafer or substrate as not being recoverable.
  • the attached tape can become damaged when the tape frame reaches an elevated temperature.
  • FIG. 5 illustrates an angled view of an actively-cooled shadow ring for heat dissipation in a plasma chamber with relative positioning to an etch cathode shown and relative sizing to a wafer support shown, in accordance with an embodiment of the present invention.
  • a support apparatus 500 for a plasma chamber includes a cathode 502 positioned below an actively-cooled shadow ring 504 .
  • a wafer or substrate support 300 with a tape 302 and frame 304 and supporting a wafer of substrate 306 is shown above the actively-cooled shadow ring 504 for sizing perspective.
  • Such a wafer or substrate support can be as described above with respect to FIG. 3 .
  • the wafer or substrate support 300 is actually position between the actively-cooled shadow ring 504 and the cathode 502 .
  • the support apparatus 500 may also include a motorized assembly 514 and a casing 516 , which is also depicted in FIG. 5 .
  • the actively-cooled shadow ring 504 is fed with coolant gas or liquid by a bellows feed-through 506 which feeds into a plasma exposed coupler 508 .
  • the actively-cooled shadow ring 504 is raised or lowered relative to a fixed cathode by three vertical posts 510 which can be raised for introduction of the substrate or wafer carrier 300 to the cathode 502 and then lowered to clamp the substrate or wafer carrier 300 into position.
  • the three vertical posts 510 attach the actively-cooled shadow ring 504 to a circular ring 505 below.
  • the circular ring 505 is connected to the motorized assembly 514 and provides the vertical motion and positioning of the actively-cooled shadow ring 504 .
  • the substrate or wafer carrier 300 may rest on a plurality of pads that sit between the actively-cooled shadow ring 504 and the cathode 502 .
  • a pad For illustrative purposes, one such pad 512 is depicted. However, it is to be appreciated that the pad 512 is actually below or underneath the actively-cooled shadow ring 504 , and that more than one pad is typically used, such as four pads.
  • the actively-cooled shadow ring 504 is composed of aluminum with a hard anodized surface or a ceramic coating.
  • the actively-cooled shadow ring 504 is sized to entirely cover, from a top-down perspective, the tape frame 304 , the tape 302 , and the outer most region of the substrate 306 during plasma processing, as was described in association with FIG. 4 .
  • the leading edge of the shadow ring to the wafer is approximately 0.050 inches high.
  • the cathode 502 is an etch cathode and can function as an electrostatic chuck to assist in sample clamping during processing. In one embodiment, the cathode 502 is thermally controlled.
  • FIG. 6 illustrates an enlarged view of the plasma exposed coupler 508 of the support apparatus 500 of FIG. 5 , in accordance with an embodiment of the present invention.
  • the terminating end of the bellows feed-through is depicted as coupled to the plasma exposed coupler 508 .
  • a pair of fluid connections 620 such as a supply and return line pair, is shown as entering/exiting the actively-cooled shadow ring 504 .
  • the plasma exposed coupler 508 is depicted as essentially transparent in order to reveal the pair of fluid connections 620 for illustrative purposes.
  • the pair of fluid connections 620 provides an entrance/exit to an internal fluid channel that circulates through the actively-cooled shadow ring 504 .
  • the pair of fluid connections 620 enables continual flow of a cooling fluid or gas through the actively-cooled shadow ring during plasma processing.
  • the cooling channels travel essentially the entire mid-circumference of the body of an annular actively-cooled shadow ring.
  • the ability to enable such continual flow can provide superior temperature control of the shadow ring which enables temperature control (e.g., reduced temperature exposure) of the tape frame and tape of a substrate carrier clamped to the actively-cooled shadow ring 504 .
  • This protection of the tape frame and tape is in addition to the protection provided by physically blocking the plasma from reaching the tape frame and tape of the substrate or wafer carrier.
  • the fluid-channeled shadow ring referred to herein as actively-cooled shadow ring 504 , is distinguished from passively cooled shadow rings that may merely be cooled by contact with a heat sink or w cooled chamber wall.
  • the plasma exposed coupler 508 is a fixed-length connection between the actively-cooled shadow ring 504 above and the bellows feed-through 506 below.
  • the coupling provided is intended to be exposed to a plasma process and to allow the bellows feed-through 506 to be positioned away from the plasma process.
  • the coupling is a vacuum connection between the bellows feed-through 506 and the actively-cooled shadow ring 504 .
  • FIG. 7 illustrates an enlarged view of the bellows feed-through 506 of the support apparatus 500 of FIG. 5 , in accordance with an embodiment of the present invention.
  • the bellow feed-through 506 is shown having an outer bellows 730 with an inner sleeve 732 .
  • a connection 734 is provided for coupling to a chamber body.
  • the lower opening of the bellows feed-through 506 can accommodate supply and return lines for the coolant used to cool actively-cooled shadow ring 504 .
  • the outer bellows 730 is metallic
  • the inner sleeve 732 is a stainless steel protective sleeve to accommodate hoses for supply and return lines
  • the sizing of connection 734 is an NW40 connection.
  • the bellows feed-through 506 allows vertical motion of the actively-cooled shadow ring 504 , which is in vacuum. This motion is provided by a motorized assembly which provides the necessary vertical positioning. The bellows feed-through must have allowance for this range of motion.
  • the bellows feed-through 506 has a vacuum connection at either end, e.g., a vacuum centering o-ring seal at one end and an o-ring seal on the other end.
  • the inner portion of the bellows feed-through 506 has a protective shield to allow fluid lines to pass-through without compromising the convolutions.
  • the bellows feed-through 506 and the plasma exposed coupler 508 provide a path for the supply and return lines for a coolant fluid.
  • the coolant fluid may be passed through a fluid chiller (not depicted) after exiting and/or before entering the actively-cooled shadow ring 504 .
  • the actively-cooled shadow ring 504 is capable of dissipating a large quantity of plasma heat and in a short period of time.
  • the actively-cooled shadow ring 504 is designed to be capable of reducing a shadow ring from temperatures greater than 260 degrees Celsius to less than 120 degrees Celsius on a continuous processing basis.
  • an internal plasma-exposed component could be cooled and/or vertically-moved in a chamber.
  • an actively-cooled shadow ring assembly includes the following major components: a bellows feed-through, a plasma-exposed coupling, a fluid-channeled shadow ring, fluid supply and return lines, and a fluid chiller.
  • the actively-cooled shadow ring may also have a plasma shield as a plasma protective cover over the actively-cooled shadow ring, such as described in association with FIGS. 8 and 9 below.
  • the actively-cooled shadow ring has an internal fluid channel to allow a chilled fluid to flow and remove plasma-induced heat.
  • an actively-cooled shadow ring may have an increased thickness on the order of about 1 ⁇ 8 th of an inch relative to a conventional shadow ring in order to accommodate the cooling channels.
  • the fluid channel is designed such that it removes this heat before the actively-cooled shadow ring develops a temperature that will damage the tape or greatly elevate the temperature of the tape frame of a wafer or substrate carrier.
  • the fluid itself is non-RF conductive so as not to draw RF power away from the plasma or RF power to the chiller.
  • the actively-cooled shadow ring is capable of withstanding high RF power and not suffer plasma erosion.
  • the supply and return fluid lines are connected to the actively-cooled shadow ring and run inside the plasma-exposed coupler and bellows feed-through.
  • the fluid lines are non-RF conductive and are capable of handling fluid temperatures below 0 degrees Celsius.
  • an associated chiller is capable of supplying a fluid below 0 degrees Celsius and with enough volume capacity to quickly dissipate the plasma heat developed.
  • an actively-cooled shadow ring assembly is designed such that no fluid leaks or spills can be introduced into a process chamber housing the assembly.
  • the actively-cooled shadow ring is removable for assembly and servicing.
  • Components or kits may be grouped as: (1) an NW40 sized bellows with inner shield which includes a vacuum feed-through and inner shield for fluid lines, (2) a plasma-exposed coupler which can be a swap kit part, if necessary, (3) an actively-cooled shadow ring with an aluminum-core and anodized or ceramic coating, (4) low temperature fluid lines including a one-piece fluid connection line.
  • Additional hardware may include a secondary chiller specifically designed for the actively-cooled shadow ring.
  • a plasma thermal shield for heat dissipation in a plasma chamber is now described in greater detail.
  • the plasma thermal shield can be used with a standard shadow ring as an inexpensive, passive component for thermal protection of substrate carrier that is plasma etched using a conventional shadow ring.
  • the plasma thermal shield may be used together with the above described actively-cooled shadow ring.
  • FIG. 8 illustrates an angled top view and angled bottom view of a plasma thermal shield, in accordance with an embodiment of the present invention.
  • a plasma thermal shield 800 is an annular ring with an inner opening 801 .
  • the plasma thermal shield 800 is sized and shaped to be compatible with, e.g., by nesting upon a top surface of, a shadow ring included in a plasma processing chamber.
  • the surface of the plasma thermal shield 800 shown in the top view is the surface exposed to a plasma during processing.
  • the surface of the top view includes a first upper surface region 802 which is raised above a second upper surface region 804 .
  • the first and second upper surfaces 802 and 804 are coupled by a sloping region 806 .
  • the plasma thermal shield 800 has a bottom surface that is not exposed to a plasma during processing.
  • the surface of the bottom view includes a first lower surface region 812 which is below a second lower surface region 814 .
  • the first and second lower surfaces 812 and 814 are coupled by a sloping region 816 .
  • the bottom surface of the plasma thermal shield 800 reciprocates the general topography of the upper surface.
  • some regions of the bottom surface of the plasma thermal shield 800 may be removed for heat dissipating applications.
  • FIG. 9 illustrates an enlarged angled cross-sectional view of the plasma thermal shield 800 of FIG. 8 as positioned on a top surface of a shadow ring 900 , in accordance with an embodiment of the present invention.
  • the plasma thermal shield 800 is nested on an upper surface of a shadow ring 900 (which, in an embodiment, is an actively-cooled shadow ring as described in association with FIGS. 5-7 ).
  • the upper surface portions 802 , 804 and 806 are as described above with respect to FIG. 8 .
  • the bottom surface portions 812 , 814 and 816 of the plasma thermal shield 800 have recessed portions therein.
  • a first gap or cavity 952 is formed between regions 814 and 816 of the bottom surface
  • a second gap or cavity 952 is formed between regions 812 and 816 of the bottom surface.
  • the effect is to leave remaining three protruding portions or contact features 950 that raise a majority of the bottom surface of the plasma thermal shield 800 off of the top surface of the shadow ring 900 .
  • the three protruding portions or contact features 950 run the entire annular length to provide nesting support for the plasma thermal shield 800 when nested on the upper surface of the shadow ring 900 .
  • the three protruding portions or contact features 950 raise the majority of the bottom surface of the plasma thermal shield 800 off of the top surface of the shadow ring 900 by a height of approximately 1/16 th of an inch.
  • first and second gaps or cavities 952 have a height of approximately 1/16 th of an inch.
  • the thinned regions of surfaces 814 and 812 have a remaining thickness of approximately 1/16 th of an inch. It is to be appreciated, however, that the size of the gaps or cavities 952 (as a height dimension) provide a trade-off between distancing heat from an underlying shadow ring versus having sufficient material in the plasma thermal shield for absorbing heat. Thus, the height of the gaps can be varied by application.
  • an amount of surface area of the bottom surface of the plasma thermal shield 800 that is recessed is approximately in the range of 85-92%.
  • the plasma thermal shield 800 is composed of a material such as, but not limited to, alumina (Al 2 O 3 ), yttria (Y 2 O 3 ), silicon nitride (SiN) or silicon carbide (SiC).
  • the plasma thermal shield 800 is composed of a process sensitive material and can act as a source of dopant for a plasma process.
  • the plasma thermal shield 800 can be viewed as an external device used to prevent contact of an underlying shadow ring with a hot surface or to act as a heat deflector for the underlying shadow ring.
  • the plasma thermal shield 800 and the shadow ring 900 are installed as two separate components.
  • both the shadow ring 900 surface and the plasma thermal shield 800 barrier are composed of alumina, where the plasma thermal shield 800 provides heat dissipation away from the surface of the shadow ring 900 even though the materials are the same.
  • the plasma thermal shield 800 blocks heat transfer to the shadow ring 900 which is in contact with a tape frame of a substrate or wafer carrier.
  • an open area of tape from the carrier may be positioned below the thinnest section of the shadow ring 900 .
  • the consequential lowest mass region of the shadow ring 900 is may be the highest in temperature.
  • the plasma thermal shield 800 is designed to have greater mass and smaller gap in this region relative to the remainder of the plasma thermal shield 800 , i.e., greater proportional mass is added to the tape region of the carrier.
  • a plasma thermal shield is cross-sectionally a shell of ceramic located on top of an existing shadow ring.
  • the material of the plasma thermal shield is the same material as the shadow ring and covers the entire top surface of the shadow ring.
  • the top surface of the plasma thermal shield may or may not be conformal to the shadow ring below.
  • the top surface of a plasma thermal shield is a continuous surface and the underside has removed areas of material to reduce conduction to the shadow ring.
  • the contact points between a plasma thermal shield and shadow ring are related to prohibiting plasma into removed areas as well as installation alignment. It is to be appreciated that the removed area cannot be so great as to create a significant plasma in the removed areas.
  • the heat generated by the plasma is transferred to the plasma thermal shield.
  • the plasma thermal shield increase in temperature heats up and radiates the heat to the shadow ring below.
  • the shadow ring is heated only by radiated energy from the plasma thermal shield and not by direct plasma contact.
  • a plasma thermal shield is a single passive part.
  • the shape and material of the plasma thermal shield can be modified for different process conditions.
  • the plasma thermal shield can be used to reduce the temperature of a shadow ring by a factor in the range of 100-120 degrees Celsius.
  • the plasma thermal shield may also be used as a differentiated material cover for process chemistry modification, essentially providing a dopant source to the plasma process.
  • a plasma thermal shield is used together with an actively-cooled shadow ring.
  • possible assemblies described herein for protecting a substrate or wafer carrier during plasma processing include an actively-cooled shadow ring, a shadow ring having a plasma thermal shield thereon, or an actively-cooled shadow ring having a plasma thermal shield thereon.
  • a protective annular ring with exposing inner region is provided for plasma processing of the carrier.
  • an etch reactor is configured to accommodate etching of a thin wafer or substrate supported by a substrate carrier.
  • FIG. 10 illustrates a cross-sectional view of an etch reactor, in accordance with an embodiment of the present invention.
  • an etch reactor 1000 includes a chamber 1002 .
  • An end effector 1004 is included for transferring a substrate carrier 1006 to and from chamber 1002 .
  • An inductively coupled plasma (ICP) source 1008 is positioned in an upper portion of the chamber 1002 .
  • the chamber 1002 is further equipped with a throttle valve 1010 and a turbo molecular pump 1012 .
  • the etch reactor 1000 also includes a cathode assembly 1014 (e.g., an assembly including an etch cathode or etch electrode).
  • a shadow ring assembly 1015 is included above the region accommodating the substrate or wafer carrier 1006 .
  • the shadow ring assembly 1015 is one of an actively-cooled shadow ring, a shadow ring having a plasma thermal shield thereon, or an actively-cooled shadow ring having a plasma thermal shield thereon.
  • a shadow ring actuator 1018 may be included for moving the shadow ring.
  • Other actuators, such as actuator 1016 may also be included.
  • the end effector 1004 is a robot blade sized for handling a substrate carrier.
  • the robotic end effector 1004 supports a film frame assembly (e.g., substrate carrier 300 ) during transfer to and from an etch reactor under sub-atmospheric pressure (vacuum).
  • the end effector 1004 includes features to support the substrate carrier in the X-Y-Z axis with gravity-assist.
  • the end effector 1004 also includes a feature to calibrate and center the end effector with respect to circular features of a processing tool (e.g., an etch cathode center, or a center of a circular silicon wafer).
  • an etch electrode of the cathode assembly 1014 is configured to allow RF and thermal coupling with the substrate carrier to enable plasma etching. However, in an embodiment, the etch electrode only contacts a backing tape portion of a substrate carrier and not the frame of the substrate carrier.
  • the shadow ring 1015 includes a protective annular ring, a lift hoop, and three supporting pins coupled between the lift hoop and the protective annular ring, as described in association with FIG. 5 .
  • the lift hoop is disposed in a processing volume radially outwards of a supporting assembly.
  • the lift hoop is mounted on shaft in a substantially horizontal orientation.
  • the shaft is driven by an actuator to move the lift hoop vertically in the processing volume.
  • the three supporting pins extend upward from the lift hoop and position the protective annular ring above the supporting assembly.
  • the three supporting pins may fixedly attach the protective annular ring to the lift hoop.
  • the protective annular ring moves vertically with the lift hoop in the processing volume so that the protective annular ring can be positioned at a desired distance above a substrate and/or an exterior substrate handling device (such as a substrate carrier) can enter the processing volume between the protective annular ring and the supporting assembly to transfer the substrate.
  • the three supporting pins may be positioned to allow the substrate carrier to be transferred in and out of a processing chamber between the supporting pins.
  • FIG. 11 is a Flowchart 1100 representing operations in a method of dicing a semiconductor wafer including a plurality of integrated circuits, in accordance with an embodiment of the present invention.
  • FIGS. 12A-12C illustrate cross-sectional views of a semiconductor wafer including a plurality of integrated circuits during performing of a method of dicing the semiconductor wafer, corresponding to operations of Flowchart 1100 , in accordance with an embodiment of the present invention.
  • a mask 1202 is formed above a semiconductor wafer or substrate 1204 .
  • the mask 1202 is composed of a layer covering and protecting integrated circuits 1206 formed on the surface of semiconductor wafer 1204 .
  • the mask 1202 also covers intervening streets 1207 formed between each of the integrated circuits 1206 .
  • the semiconductor wafer or substrate 1204 is supported by a substrate carrier 1214 .
  • the substrate carrier 1214 includes a layer of backing tape, a portion of which is depicted as 1214 in FIG. 12A , surrounded by a tape ring or frame (not shown).
  • the semiconductor wafer or substrate 1204 is disposed on a die attach film 1216 disposed on the substrate carrier 1214 , as is depicted in FIG. 12A .
  • forming the mask 1202 includes forming a layer such as, but not limited to, a photo-resist layer or an Mine patterning layer.
  • a polymer layer such as a photo-resist layer may be composed of a material otherwise suitable for use in a lithographic process.
  • the photo-resist layer is composed of a positive photo-resist material such as, but not limited to, a 248 nanometer (nm) resist, a 193 nm resist, a 157 nm resist, an extreme ultra-violet (EUV) resist, or a phenolic resin matrix with a diazonaphthoquinone sensitizer.
  • the photo-resist layer is composed of a negative photo-resist material such as, but not limited to, poly-cis-isoprene and poly-vinyl-cinnamate.
  • the mask 1202 is a water-soluble mask layer.
  • the water-soluble mask layer is readily dissolvable in an aqueous media.
  • the water-soluble mask layer is composed of a material that is soluble in one or more of an alkaline solution, an acidic solution, or in deionized water.
  • the water-soluble mask layer maintains its water solubility upon exposure to a heating process, such as heating approximately in the range of 50-160 degrees Celsius.
  • the water-soluble mask layer is soluble in aqueous solutions following exposure to chamber conditions used in a laser and plasma etch singulation process.
  • the water-soluble mask layer is composed of a material such as, but not limited to, polyvinyl alcohol, polyacrylic acid, dextran, polymethacrylic acid, polyethylene imine, or polyethylene oxide.
  • the water-soluble mask layer has an etch rate in an aqueous solution approximately in the range of 1-15 microns per minute and, more particularly, approximately 1.3 microns per minute.
  • the mask 1202 is a UV-curable mask layer.
  • the mask layer has a susceptibility to UV light that reduces an adhesiveness of the UV-curable layer by at least approximately 80%.
  • the UV layer is composed of polyvinyl chloride or an acrylic-based material.
  • the UV-curable layer is composed of a material or stack of materials with an adhesive property that weakens upon exposure to UV light.
  • the UV-curable adhesive film is sensitive to approximately 365 nm UV light. In one such embodiment, this sensitivity enables use of LED light to perform a cure.
  • the semiconductor wafer or substrate 1204 is composed of a material suitable to withstand a fabrication process and upon which semiconductor processing layers may suitably be disposed.
  • semiconductor wafer or substrate 1204 is composed of a group IV-based material such as, but not limited to, crystalline silicon, germanium or silicon/germanium.
  • providing semiconductor wafer 1204 includes providing a monocrystalline silicon substrate.
  • the monocrystalline silicon substrate is doped with impurity atoms.
  • semiconductor wafer or substrate 1204 is composed of a material such as, e.g., a material substrate used in the fabrication of light emitting diodes (LEDs).
  • LEDs light emitting diodes
  • the semiconductor wafer or substrate 1204 has a thickness of approximately 300 microns or less.
  • a bulk single-crystalline silicon substrate is thinned from the backside prior to being affixed to the die attach film 1216 .
  • the thinning may be performed by a backside grind process.
  • the bulk single-crystalline silicon substrate is thinned to a thickness approximately in the range of 50-300 microns. It is important to note that, in an embodiment, the thinning is performed prior to a laser ablation and plasma etch dicing process.
  • the die attach film 1216 (or any suitable substitute capable of bonding a thinned or thin wafer or substrate to the substrate carrier 1214 ) has a thickness of approximately 20 microns.
  • the semiconductor wafer or substrate 1204 has disposed thereon or therein, as a portion of the integrated circuits 1206 , an array of semiconductor devices.
  • semiconductor devices include, but are not limited to, memory devices or complimentary metal-oxide-semiconductor (CMOS) transistors fabricated in a silicon substrate and encased in a dielectric layer.
  • CMOS complimentary metal-oxide-semiconductor
  • a plurality of metal interconnects may be formed above the devices or transistors, and in surrounding dielectric layers, and may be used to electrically couple the devices or transistors to form the integrated circuits 1206 .
  • Materials making up the streets 1207 may be similar to or the same as those materials used to form the integrated circuits 1206 .
  • streets 1207 may be composed of layers of dielectric materials, semiconductor materials, and metallization.
  • one or more of the streets 1207 includes test devices similar to the actual devices of the integrated circuits 1206 .
  • the mask 1202 is patterned with a laser scribing process to provide a patterned mask 1208 with gaps 1210 , exposing regions of the semiconductor wafer or substrate 1204 between the integrated circuits 1206 .
  • the laser scribing process is a femtosecond-based laser scribing process. The laser scribing process is used to remove the material of the streets 1207 originally formed between the integrated circuits 1206 .
  • patterning the mask 1202 with the laser scribing process includes forming trenches 1212 partially into the regions of the semiconductor wafer 1204 between the integrated circuits 1206 , as is depicted in FIG. 12B .
  • patterning the mask 1202 with the laser scribing process includes using a laser having a pulse width in the femtosecond range.
  • a laser with a wavelength in the visible spectrum plus the ultra-violet (UV) and infra-red (IR) ranges (totaling a broadband optical spectrum) may be used to provide a femtosecond-based laser, i.e., a laser with a pulse width on the order of the femtosecond (10 ⁇ 15 seconds).
  • ablation is not, or is essentially not, wavelength dependent and is thus suitable for complex films such as films of the mask 1202 , the streets 1207 and, possibly, a portion of the semiconductor wafer or substrate 1204 .
  • FIG. 13 illustrates the effects of using a laser pulse in the femtosecond range versus longer frequencies, in accordance with an embodiment of the present invention.
  • a laser with a pulse width in the femtosecond range heat damage issues are mitigated or eliminated (e.g., minimal to no damage 1302 C with femtosecond processing of a via 1300 C) versus longer pulse widths (e.g., damage 1302 B with picosecond processing of a via 1300 B and significant damage 1302 A with nanosecond processing of a via 1300 A).
  • the elimination or mitigation of damage during formation of via 1300 C may be due to a lack of low energy recoupling (as is seen for picosecond-based laser ablation) or thermal equilibrium (as is seen for nanosecond-based laser ablation), as depicted in FIG. 13 .
  • Laser parameters selection may be critical to developing a successful laser scribing and dicing process that minimizes chipping, microcracks and delamination in order to achieve clean laser scribe cuts.
  • many functional layers of different material types e.g., conductors, insulators, semiconductors
  • thicknesses are typically disposed thereon.
  • Such materials may include, but are not limited to, organic materials such as polymers, metals, or inorganic dielectrics such as silicon dioxide and silicon nitride.
  • a laser ablation process may cause delamination issues.
  • a laser penetrate through high bandgap energy dielectrics (such as silicon dioxide with an approximately of 9 eV bandgap) without measurable absorption.
  • the laser energy may be absorbed in an underlying metal or silicon layer, causing significant vaporization of the metal or silicon layers. The vaporization may generate high pressures to lift-off the overlying silicon dioxide dielectric layer and potentially causing severe interlayer delamination and microcracking.
  • ionization of the dielectric materials may need to occur such that they behave similar to a conductive material by strongly absorbing photons.
  • the absorption may block a majority of the laser energy from penetrating through to underlying silicon or metal layers before ultimate ablation of the dielectric layer.
  • ionization of inorganic dielectrics is feasible when the laser intensity is sufficiently high to initiate photon-ionization and impact ionization in the inorganic dielectric materials.
  • suitable femtosecond-based laser processes are characterized by a high peak intensity (irradiance) that usually leads to nonlinear interactions in various materials.
  • the femtosecond laser sources have a pulse width approximately in the range of 10 femtoseconds to 500 femtoseconds, although preferably in the range of 100 femtoseconds to 400 femtoseconds.
  • the femtosecond laser sources have a wavelength approximately in the range of 1570 nanometers to 200 nanometers, although preferably in the range of 540 nanometers to 250 nanometers.
  • the laser and corresponding optical system provide a focal spot at the work surface approximately in the range of 3 microns to 15 microns, though preferably approximately in the range of 5 microns to 10 microns.
  • the spacial beam profile at the work surface may be a single mode (Gaussian) or have a shaped top-hat profile.
  • the laser source has a pulse repetition rate approximately in the range of 200 kHz to 10 MHz, although preferably approximately in the range of 500 kHz to 5 MHz.
  • the laser source delivers pulse energy at the work surface approximately in the range of 0.5 uJ to 100 uJ, although preferably approximately in the range of 1 uJ to 5 uJ.
  • the laser scribing process runs along a work piece surface at a speed approximately in the range of 500 mm/sec to 5 m/sec, although preferably approximately in the range of 600 mm/sec to 2 m/sec.
  • the scribing process may be run in single pass only, or in multiple passes, but, in an embodiment, preferably 1-2 passes.
  • the scribing depth in the work piece is approximately in the range of 5 microns to 50 microns deep, preferably approximately in the range of 10 microns to 20 microns deep.
  • the laser may be applied either in a train of single pulses at a given pulse repetition rate or a train of pulse bursts.
  • the kerf width of the laser beam generated is approximately in the range of 2 microns to 15 microns, although in silicon wafer scribing/dicing preferably approximately in the range of 6 microns to 10 microns, measured at the device/silicon interface.
  • Laser parameters may be selected with benefits and advantages such as providing sufficiently high laser intensity to achieve ionization of inorganic dielectrics (e.g., silicon dioxide) and to minimize delamination and chipping caused by underlayer damage prior to direct ablation of inorganic dielectrics. Also, parameters may be selected to provide meaningful process throughput for industrial applications with precisely controlled ablation width (e.g., kerf width) and depth. As described above, a femtosecond-based laser is far more suitable to providing such advantages, as compared with picosecond-based and nanosecond-based laser ablation processes. However, even in the spectrum of femtosecond-based laser ablation, certain wavelengths may provide better performance than others.
  • inorganic dielectrics e.g., silicon dioxide
  • parameters may be selected to provide meaningful process throughput for industrial applications with precisely controlled ablation width (e.g., kerf width) and depth.
  • ablation width e.g., kerf width
  • a femtosecond-based laser is far more
  • a femtosecond-based laser process having a wavelength closer to or in the UV range provides a cleaner ablation process than a femtosecond-based laser process having a wavelength closer to or in the IR range.
  • a femtosecond-based laser process suitable for semiconductor wafer or substrate scribing is based on a laser having a wavelength of approximately less than or equal to 540 nanometers.
  • pulses of approximately less than or equal to 400 femtoseconds of the laser having the wavelength of approximately less than or equal to 540 nanometers are used.
  • dual laser wavelengths e.g., a combination of an IR laser and a UV laser
  • a portion of the substrate carrier is covered with an actively-cooled shadow ring or a plasma thermal shield, or both, in preparation for an etch portion of the dicing process.
  • the actively-cooled shadow ring or a plasma thermal shield, or both is included in a plasma etching chamber.
  • the actively-cooled shadow ring or a plasma thermal shield, or a combination of both leaves exposed a portion of, but not all of, the semiconductor wafer or substrate 1204 , as described above in association with FIG. 4 .
  • etching the semiconductor wafer 1204 includes etching to extend the trenches 1212 formed with the laser scribing process and to ultimately etch entirely through semiconductor wafer or substrate 1204 , as depicted in FIG. 12C .
  • etching the semiconductor wafer or substrate 1204 includes using a plasma etching process.
  • a through-silicon via type etch process is used.
  • the etch rate of the material of semiconductor wafer or substrate 1204 is greater than 25 microns per minute.
  • An ultra-high-density plasma source may be used for the plasma etching portion of the die singulation process.
  • An example of a process chamber suitable to perform such a plasma etch process is the Applied Centura® SilviaTM Etch system available from Applied Materials of Sunnyvale, Calif., USA.
  • the Applied Centura® SilviaTM Etch system combines the capacitive and inductive RF coupling, which gives much more independent control of the ion density and ion energy than was possible with the capacitive coupling only, even with the improvements provided by magnetic enhancement.
  • the combination enables effective decoupling of the ion density from ion energy, so as to achieve relatively high density plasmas without the high, potentially damaging, DC bias levels, even at very low pressures.
  • An exceptionally wide process window results.
  • any plasma etch chamber capable of etching silicon may be used.
  • a deep silicon etch is used to etch a single crystalline silicon substrate or wafer 1204 at an etch rate greater than approximately 40% of conventional silicon etch rates while maintaining essentially precise profile control and virtually scallop-free sidewalls.
  • a through-silicon via type etch process is used. The etch process is based on a plasma generated from a reactive gas, which generally a fluorine-based gas such as SF 6 , C 4 F 8 , CHF 3 , XeF 2 , or any other reactant gas capable of etching silicon at a relatively fast etch rate.
  • a Bosch process is used which involves formation of a scalloped profile.
  • singulation may further include patterning of die attach film 1216 .
  • die attach film 1216 is patterned by a technique such as, but not limited to, laser ablation, dry (plasma) etching or wet etching.
  • the die attach film 1216 is patterned in sequence following the laser scribe and plasma etch portions of the singulation process to provide die attach film portions 1218 , as depicted in FIG. 12C .
  • the patterned mask 1208 is removed after the laser scribe and plasma etch portions of the singulation process, as is also depicted in FIG. 12C .
  • the patterned mask 1208 may be removed prior to, during, or following patterning of the die attach film 1216 .
  • the semiconductor wafer or substrate 1204 is etched while supported by the substrate carrier 1214 .
  • the die attach film 1216 is also patterned while disposed on the substrate carrier 1214 .
  • wafer dicing may be preformed by initial laser ablation through a mask, through wafer streets (including metallization), and partially into a silicon substrate.
  • the laser pulse width may be selected in the femtosecond range.
  • Die singulation may then be completed by subsequent through-silicon deep plasma etching.
  • an actively-cooled shadow ring or a plasma thermal shield, or both, are implemented during the etch portion of the dicing process. Additionally, removal of exposed portions of the die attach film is performed to provide singulated integrated circuits, each having a portion of a die attach film thereon.
  • the individual integrated circuits, including die attach film portions may then be removed from the substrate carrier 1214 , as depicted in FIG. 12C .
  • the singulated integrated circuits are removed from the substrate carrier 1214 for packaging.
  • the patterned die attach film 1218 is retained on the backside of each integrated circuit and included in the final packaging.
  • the patterned die attach film 1214 is removed during or subsequent to the singulation process.
  • the plurality of integrated circuits 1206 may be separated by streets 1207 having a width of approximately 10 microns or smaller.
  • a laser scribing approach such as a femtosecond-based laser scribing approach
  • FIG. 14 illustrates compaction on a semiconductor wafer or substrate achieved by using narrower streets versus conventional dicing which may be limited to a minimum width, in accordance with an embodiment of the present invention.
  • compaction on a semiconductor wafer is achieved by using narrower streets (e.g., widths of approximately 10 microns or smaller in layout 1402 ) versus conventional dicing which may be limited to a minimum width (e.g., widths of approximately 70 microns or larger in layout 1400 ). It is to be understood, however, that it may not always be desirable to reduce the street width to less than 10 microns even if otherwise enabled by a femtosecond-based laser scribing process. For example, some applications may require a street width of at least 40 microns in order to fabricate dummy or test devices in the streets separating the integrated circuits.
  • the plurality of integrated circuits 1206 may be arranged on semiconductor wafer or substrate 1204 in a non-restricted layout.
  • FIG. 15 illustrates a freeform integrated circuit arrangement allowing denser packing.
  • the denser packing may provide for more die per wafer versus grid alignment approaches, in accordance with an embodiment of the present invention.
  • a freeform layout e.g., a non-restricted layout on semiconductor wafer or substrate 1502
  • allows denser packing and hence more die per wafer versus grid alignment approaches e.g., a restricted layout on semiconductor wafer or substrate 1500 .
  • the speed of the laser ablation and plasma etch singulation process is independent of die size, layout or the number of streets.
  • FIG. 16 illustrates a block diagram of a tool layout for laser and plasma dicing of wafers or substrates, in accordance with an embodiment of the present invention.
  • a process tool 1600 includes a factory interface 1602 (FI) having a plurality of load locks 1604 coupled therewith.
  • a cluster tool 1606 is coupled with the factory interface 1602 .
  • the cluster tool 1606 includes one or more plasma etch chambers, such as plasma etch chamber 1608 .
  • a laser scribe apparatus 1610 is also coupled to the factory interface 1602 .
  • the overall footprint of the process tool 1600 may be, in one embodiment, approximately 3500 millimeters (3.5 meters) by approximately 3800 millimeters (3.8 meters), as depicted in FIG. 16 .
  • the laser scribe apparatus 1610 houses a femtosecond-based laser.
  • the femtosecond-based laser may be suitable for performing a laser ablation portion of a hybrid laser and etch singulation process, such as the laser abalation processes described above.
  • a moveable stage is also included in laser scribe apparatus 1600 , the moveable stage configured for moving a wafer or substrate (or a carrier thereof) relative to the femtosecond-based laser.
  • the femtosecond-based laser is also moveable.
  • the overall footprint of the laser scribe apparatus 1610 may be, in one embodiment, approximately 2240 millimeters by approximately 1270 millimeters, as depicted in FIG. 16 .
  • the one or more plasma etch chambers 1608 is configured for etching a wafer or substrate through the gaps in a patterned mask to singulate a plurality of integrated circuits.
  • the one or more plasma etch chambers 1608 is configured to perform a deep silicon etch process.
  • the one or more plasma etch chambers 1608 is an Applied Centura® SilviaTM Etch system, available from Applied Materials of Sunnyvale, Calif., USA.
  • the etch chamber may be specifically designed for a deep silicon etch used to create singulate integrated circuits housed on or in single crystalline silicon substrates or wafers.
  • a high-density plasma source is included in the plasma etch chamber 1608 to facilitate high silicon etch rates.
  • more than one etch chamber is included in the cluster tool 1606 portion of process tool 1600 to enable high manufacturing throughput of the singulation or dicing process.
  • one or more of the etch chambers is equipped with an actively-cooled shadow ring or a plasma thermal shield, or both.
  • the factory interface 1602 may be a suitable atmospheric port to interface between an outside manufacturing facility with laser scribe apparatus 1610 and cluster tool 1606 .
  • the factory interface 1602 may include robots with arms or blades for transferring wafers (or carriers thereof) from storage units (such as front opening unified pods) into either cluster tool 1606 or laser scribe apparatus 1610 , or both.
  • Cluster tool 1606 may include other chambers suitable for performing functions in a method of singulation.
  • a deposition chamber 1612 in place of an additional etch chamber, is included.
  • the deposition chamber 1612 may be configured for mask deposition on or above a device layer of a wafer or substrate prior to laser scribing of the wafer or substrate.
  • the deposition chamber 1612 is suitable for depositing a water soluble mask layer.
  • a wet/dry station 1614 is included in place of an additional etch chamber.
  • the wet/dry station may be suitable for cleaning residues and fragments, or for removing a water soluble mask, subsequent to a laser scribe and plasma etch singulation process of a substrate or wafer.
  • a metrology station is also included as a component of process tool 1600 .
  • Embodiments of the present invention may be provided as a computer program product, or software, that may include a machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to embodiments of the present invention.
  • the computer system is coupled with process tool 1600 described in association with FIG. 16 or with etch chamber 1000 described in association with FIG. 10 .
  • a machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer).
  • a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.), a machine (e.g., computer) readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., infrared signals, digital signals, etc.)), etc.
  • FIG. 17 illustrates a diagrammatic representation of a machine in the exemplary form of a computer system 1700 within which a set of instructions, for causing the machine to perform any one or more of the methodologies described herein, may be executed.
  • the machine may be connected (e.g., networked) to other machines in a Local Area Network (LAN), an intranet, an extranet, or the Internet.
  • LAN Local Area Network
  • the machine may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.
  • the machine may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
  • PC personal computer
  • PDA Personal Digital Assistant
  • STB set-top box
  • WPA Personal Digital Assistant
  • the exemplary computer system 1700 includes a processor 1702 , a main memory 1704 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 1706 (e.g., flash memory, static random access memory (SRAM), etc.), and a secondary memory 1718 (e.g., a data storage device), which communicate with each other via a bus 1730 .
  • main memory 1704 e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • RDRAM Rambus DRAM
  • static memory 1706 e.g., flash memory, static random access memory (SRAM), etc.
  • secondary memory 1718 e.g., a data storage device
  • Processor 1702 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processor 1702 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processor 1702 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. Processor 1702 is configured to execute the processing logic 1726 for performing the operations described herein.
  • CISC complex instruction set computing
  • RISC reduced instruction set computing
  • VLIW very long instruction word
  • Processor 1702 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like.
  • the computer system 1700 may further include a network interface device 1708 .
  • the computer system 1700 also may include a video display unit 1710 (e.g., a liquid crystal display (LCD), a light emitting diode display (LED), or a cathode ray tube (CRT)), an alphanumeric input device 1712 (e.g., a keyboard), a cursor control device 1714 (e.g., a mouse), and a signal generation device 1716 (e.g., a speaker).
  • a video display unit 1710 e.g., a liquid crystal display (LCD), a light emitting diode display (LED), or a cathode ray tube (CRT)
  • an alphanumeric input device 1712 e.g., a keyboard
  • a cursor control device 1714 e.g., a mouse
  • a signal generation device 1716 e.g., a speaker
  • the secondary memory 1718 may include a machine-accessible storage medium (or more specifically a computer-readable storage medium) 1731 on which is stored one or more sets of instructions (e.g., software 1722 ) embodying any one or more of the methodologies or functions described herein.
  • the software 1722 may also reside, completely or at least partially, within the main memory 1704 and/or within the processor 1702 during execution thereof by the computer system 1700 , the main memory 1704 and the processor 1702 also constituting machine-readable storage media.
  • the software 1722 may further be transmitted or received over a network 1720 via the network interface device 1708 .
  • machine-accessible storage medium 1731 is shown in an exemplary embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions.
  • the term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention.
  • the term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
  • a machine-accessible storage medium has instructions stored thereon which cause a data processing system to perform a method of dicing a semiconductor wafer having a plurality of integrated circuits.
  • the method involves introducing a substrate supported by a substrate carrier into a plasma etch chamber.
  • the substrate has a patterned mask thereon covering integrated circuits and exposing streets of the substrate.
  • the method also involves clamping the substrate carrier below a shadow ring having cooling channels therein.
  • the method also involves plasma etching the substrate through the streets to singulate the integrated circuits.
  • the shadow ring shields the substrate carrier from the plasma etching.
  • a cooling fluid is transported through the cooling channels during the plasma etching.
  • a machine-accessible storage medium has instructions stored thereon which cause a data processing system to perform a method of dicing a semiconductor wafer having a plurality of integrated circuits.
  • the method involves introducing a substrate supported by a substrate carrier into a plasma etch chamber.
  • the substrate has a patterned mask thereon covering integrated circuits and exposing streets of the substrate.
  • the method also involves clamping the substrate carrier below a shadow ring having a plasma thermal shield disposed thereon.
  • the method also involves plasma etching the substrate through the streets to singulate the integrated circuits.
  • the shadow ring and plasma thermal shield protect the substrate carrier from the plasma etching.
  • the plasma thermal shield dissipates heat away from the shadow ring during the plasma etching.

Abstract

Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a plasma thermal shield for a plasma processing chamber includes an annular ring body having an inner opening. A plasma-facing surface of the annular ring body has a general topography. A bottom surface of the annular ring body reciprocates the general topography with recessed regions disposed therein, providing one or more protruding regions at the bottom surface of the annular ring body.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 14/109,820, filed on Dec. 17, 2013, the entire contents of which are hereby incorporated by reference herein.
  • BACKGROUND
  • 1) Field
  • Embodiments of the present invention pertain to the field of semiconductor processing and, in particular, to methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits thereon.
  • 2) Description of Related Art
  • In semiconductor wafer processing, integrated circuits are formed on a wafer (also referred to as a substrate) composed of silicon or other semiconductor material. In general, layers of various materials which are either semiconducting, conducting or insulating are utilized to form the integrated circuits. These materials are doped, deposited and etched using various well-known processes to form integrated circuits. Each wafer is processed to form a large number of individual regions containing integrated circuits known as dies.
  • Following the integrated circuit formation process, the wafer is “diced” to separate the individual die from one another for packaging or for use in an unpackaged form within larger circuits. The two main techniques that are used for wafer dicing are scribing and sawing. With scribing, a diamond tipped scribe is moved across the wafer surface along pre-formed scribe lines. These scribe lines extend along the spaces between the dies. These spaces are commonly referred to as “streets.” The diamond scribe forms shallow scratches in the wafer surface along the streets. Upon the application of pressure, such as with a roller, the wafer separates along the scribe lines. The breaks in the wafer follow the crystal lattice structure of the wafer substrate. Scribing can be used for wafers that are about 10 mils (thousandths of an inch) or less in thickness. For thicker wafers, sawing is presently the preferred method for dicing.
  • With sawing, a diamond tipped saw rotating at high revolutions per minute contacts the wafer surface and saws the wafer along the streets. The wafer is mounted on a supporting member such as an adhesive film stretched across a film frame and the saw is repeatedly applied to both the vertical and horizontal streets. One problem with either scribing or sawing is that chips and gouges can form along the severed edges of the dies. In addition, cracks can form and propagate from the edges of the dies into the substrate and render the integrated circuit inoperative. Chipping and cracking are particularly a problem with scribing because only one side of a square or rectangular die can be scribed in the <110> direction of the crystalline structure. Consequently, cleaving of the other side of the die results in a jagged separation line. Because of chipping and cracking, additional spacing is required between the dies on the wafer to prevent damage to the integrated circuits, e.g., the chips and cracks are maintained at a distance from the actual integrated circuits. As a result of the spacing requirements, not as many dies can be formed on a standard sized wafer and wafer real estate that could otherwise be used for circuitry is wasted. The use of a saw exacerbates the waste of real estate on a semiconductor wafer. The blade of the saw is approximate 15 microns thick. As such, to insure that cracking and other damage surrounding the cut made by the saw does not harm the integrated circuits, three to five hundred microns often must separate the circuitry of each of the dies. Furthermore, after cutting, each die requires substantial cleaning to remove particles and other contaminants that result from the sawing process.
  • Plasma dicing has also been used, but may have limitations as well. For example, one limitation hampering implementation of plasma dicing may be cost. A standard lithography operation for patterning resist may render implementation cost prohibitive. Another limitation possibly hampering implementation of plasma dicing is that plasma processing of commonly encountered metals (e.g., copper) in dicing along streets can create production issues or throughput limits.
  • SUMMARY
  • Embodiments of the present invention include methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits thereon.
  • In an embodiment, a plasma thermal shield for a plasma processing chamber includes an annular ring body having an inner opening. A plasma-facing surface of the annular ring body has a general topography. A bottom surface of the annular ring body reciprocates the general topography with recessed regions disposed therein, providing one or more protruding regions at the bottom surface of the annular ring body.
  • In another embodiment, a shadow ring assembly for a plasma processing chamber includes a shadow ring having an annular body and an inner opening. The shadow ring assembly also includes a plasma thermal shield nested on the shadow ring. The plasma thermal shield includes an annular ring body having an inner opening approximately the same size, and aligned with, the inner opening of the shadow ring. A plasma-facing surface of the annular ring body of the plasma thermal shield has a general topography. A bottom surface of the annular ring body of the plasma thermal shield reciprocates the general topography with recessed regions disposed therein, providing one or more protruding regions at the bottom surface of the annular ring body. The one or more protruding regions are in contact with the shadow ring.
  • In another embodiment, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves introducing a substrate supported by a substrate carrier into a plasma etch chamber. The substrate has a patterned mask thereon covering integrated circuits and exposing streets of the substrate. The method also involves clamping the substrate carrier below a shadow ring having a plasma thermal shield disposed thereon. The method also involves plasma etching the substrate through the streets to singulate the integrated circuits. The shadow ring and plasma thermal shield protect the substrate carrier from the plasma etching. The plasma thermal shield dissipates heat away from the shadow ring during the plasma etching.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a top plan of a semiconductor wafer to be diced, in accordance with an embodiment of the present invention.
  • FIG. 2 illustrates a top plan of a semiconductor wafer to be diced that has a dicing mask formed thereon, in accordance with an embodiment of the present invention.
  • FIG. 3 illustrates a plan view of a substrate carrier suitable for supporting a wafer during a singulation process, in accordance with an embodiment of the present invention.
  • FIG. 4 illustrates the substrate carrier of FIG. 3 with an overlying actively-cooled shadow ring or a plasma thermal shield, or both, in accordance with an embodiment of the present invention.
  • FIG. 5 illustrates an angled view of an actively-cooled shadow ring for heat dissipation in a plasma chamber with relative positioning to an etch cathode shown and relative sizing to a wafer support shown, in accordance with an embodiment of the present invention.
  • FIG. 6 illustrates an enlarged view of the plasma exposed coupler of the support apparatus of FIG. 5, in accordance with an embodiment of the present invention.
  • FIG. 7 illustrates an enlarged view of the bellows feed-through of the support apparatus of FIG. 5, in accordance with an embodiment of the present invention.
  • FIG. 8 illustrates an angled top view and angled bottom view of a plasma thermal shield, in accordance with an embodiment of the present invention.
  • FIG. 9 illustrates an enlarged angled cross-sectional view of the plasma thermal shield of FIG. 8 as positioned on a top surface of a shadow ring, in accordance with an embodiment of the present invention.
  • FIG. 10 illustrates a cross-sectional view of an etch reactor, in accordance with an embodiment of the present invention.
  • FIG. 11 is a Flowchart representing operations in a method of dicing a semiconductor wafer including a plurality of integrated circuits, in accordance with an embodiment of the present invention.
  • FIG. 12A illustrates a cross-sectional view of a semiconductor wafer including a plurality of integrated circuits during performing of a method of dicing the semiconductor wafer, corresponding to operation 1102 of the Flowchart of FIG. 11, in accordance with an embodiment of the present invention.
  • FIG. 12B illustrates a cross-sectional view of a semiconductor wafer including a plurality of integrated circuits during performing of a method of dicing the semiconductor wafer, corresponding to operation 1104 of the Flowchart of FIG. 11, in accordance with an embodiment of the present invention.
  • FIG. 12C illustrates a cross-sectional view of a semiconductor wafer including a plurality of integrated circuits during performing of a method of dicing the semiconductor wafer, corresponding to operation 1108 of the Flowchart of FIG. 11, in accordance with an embodiment of the present invention.
  • FIG. 13 illustrates the effects of using a laser pulse in the femtosecond range versus longer pulse times, in accordance with an embodiment of the present invention.
  • FIG. 14 illustrates compaction on a semiconductor wafer achieved by using narrower streets versus conventional dicing which may be limited to a minimum width, in accordance with an embodiment of the present invention.
  • FIG. 15 illustrates freeform integrated circuit arrangement allowing denser packing and, hence, more die per wafer versus grid alignment approaches, in accordance with an embodiment of the present invention.
  • FIG. 16 illustrates a block diagram of a tool layout for laser and plasma dicing of wafers or substrates, in accordance with an embodiment of the present invention.
  • FIG. 17 illustrates a block diagram of an exemplary computer system, in accordance with an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits thereon, are described. In the following description, numerous specific details are set forth, such as substrate carriers for thin wafers, scribing and plasma etching conditions and material regimes, in order to provide a thorough understanding of embodiments of the present invention. It will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details. In other instances, well-known aspects, such as integrated circuit fabrication, are not described in detail in order to not unnecessarily obscure embodiments of the present invention. Furthermore, it is to be understood that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
  • One or more embodiments described herein are directed to an actively-cooled shadow ring for heat dissipation in a plasma etch chamber. Embodiments may include plasmas and plasma based processes, thermal management, active cooling, and heat dissipation. One or more embodiments described herein are directed to a plasma thermal shield for heat dissipation in a plasma chamber. Embodiments may include plasmas and plasma based processes, thermal management, shielding of plasma generated species, and heat dissipation. Applications for either of the actively-cooled shadow ring or the plasma thermal shield, or both, may include die singulation but other high power etch processes or differentiated etch chemistries may benefit from embodiments described herein. The plasma thermal shield may be used on its own as an inexpensive, passive component, or it may be combined with an actively-cooled shadow ring as a thermal shield to modify plasma conditions. In the latter case, the plasma thermal shield is effectively used as a dopant source in a plasma etch process.
  • In another aspect, a hybrid wafer or substrate dicing process involving an initial laser scribe and subsequent plasma etch may be implemented for die singulation. The laser scribe process may be used to cleanly remove a mask layer, organic and inorganic dielectric layers, and device layers. The laser etch process may then be terminated upon exposure of, or partial etch of, the wafer or substrate. The plasma etch portion of the dicing process may then be employed to etch through the bulk of the wafer or substrate, such as through bulk single crystalline silicon, to yield die or chip singulation or dicing. In one embodiment, an actively-cooled shadow ring or a plasma thermal shield, or both, are implemented during the etch portion of the dicing process. In an embodiment, the wafer or substrate is supported by a substrate carrier during the singulation process, including during the etch portion of the singulation process.
  • In accordance with an embodiment of the present invention, described herein are one or more apparatuses for, and methods of, protecting a substrate carrier composed of thin wafer tape and a tape frame during plasma etch in a singulation process. For example, an apparatus may be used to support and protect the film and film frame used to hold a thin silicon wafer from etch gases. The manufacturing processes related to integrated circuit (IC) packaging may require that a thinned silicon wafer be supported and mounted on a film such as a die attach film. In one embodiment, a die attach film is also supported by a substrate carrier and is used to adhere a thin silicon wafer to the substrate carrier.
  • To provide context, conventional wafer dicing approaches include diamond saw cutting based on a purely mechanical separation, initial laser scribing and subsequent diamond saw dicing, or nanosecond or picosecond laser dicing. For thin wafer or substrate singulation, such as 50 microns thick bulk silicon singulation, the conventional approaches have yielded only poor process quality. Some of the challenges that may be faced when singulating die from thin wafers or substrates may include microcrack formation or delamination between different layers, chipping of inorganic dielectric layers, retention of strict kerf width control, or precise ablation depth control. Embodiments of the present invention include a hybrid laser scribing and plasma etching die singulation approach that may be useful for overcoming one or more of the above challenges.
  • In accordance with an embodiment of the present invention, a combination of laser scribing and plasma etching is used to dice a semiconductor wafer into individualized or singulated integrated circuits. In one embodiment, femtosecond-based laser scribing is used as an essentially, if not totally, non-thermal process. For example, the femtosecond-based laser scribing may be localized with no or negligible heat damage zone. In an embodiment, approaches herein are used to singulated integrated circuits having ultra-low k films. With convention dicing, saws may need to be slowed down to accommodate such low k films. Furthermore, semiconductor wafers are now often thinned prior to dicing. As such, in an embodiment, a combination of mask patterning and partial wafer scribing with a femtosecond-based laser, followed by a plasma etch process, is now practical. In one embodiment, direct writing with laser can eliminate need for a lithography patterning operation of a photo-resist layer and can be implemented with very little cost. In one embodiment, through-via type silicon etching is used to complete the dicing process in a plasma etching environment.
  • Thus, in an aspect of the present invention, a combination of laser scribing and plasma etching may be used to dice a semiconductor wafer into singulated integrated circuits. FIG. 1 illustrates a top plan of a semiconductor wafer to be diced, in accordance with an embodiment of the present invention. FIG. 2 illustrates a top plan of a semiconductor wafer to be diced that has a dicing mask formed thereon, in accordance with an embodiment of the present invention.
  • Referring to FIG. 1, a semiconductor wafer 100 has a plurality of regions 102 that include integrated circuits. The regions 102 are separated by vertical streets 104 and horizontal streets 106. The streets 104 and 106 are areas of semiconductor wafer that do not contain integrated circuits and are designed as locations along which the wafer will be diced. Some embodiments of the present invention involve the use of a combination laser scribe and plasma etch technique to cut trenches through the semiconductor wafer along the streets such that the dies are separated into individual chips or die. Since both a laser scribe and a plasma etch process are crystal structure orientation independent, the crystal structure of the semiconductor wafer to be diced may be immaterial to achieving a vertical trench through the wafer.
  • Referring to FIG. 2, the semiconductor wafer 100 has a mask 200 deposited upon the semiconductor wafer 100. In one embodiment, the mask is deposited in a conventional manner to achieve an approximately 4-10 micron thick layer. The mask 200 and a portion of the semiconductor wafer 100 are, in one embodiment, patterned with a laser scribing process to define the locations (e.g., gaps 202 and 204) along the streets 104 and 106 where the semiconductor wafer 100 will be diced. The integrated circuit regions of the semiconductor wafer 100 are covered and protected by the mask 200. The regions 206 of the mask 200 are positioned such that during a subsequent etching process, the integrated circuits are not degraded by the etch process. Horizontal gaps 204 and vertical gaps 202 are formed between the regions 206 to define the areas that will be etched during the etching process to finally dice the semiconductor wafer 100. In accordance with an embodiment of the present invention, an actively-cooled shadow ring or a plasma thermal shield, or both, are implemented during the etch portion of the dicing process.
  • As mentioned briefly above, a substrate for dicing is supported by a substrate carrier during the plasma etching portion of a die singulation process, e.g., of a hybrid laser ablation and plasma etching singulation scheme. For example, FIG. 3 illustrates a plan view of a substrate carrier suitable for supporting a wafer during a singulation process, in accordance with an embodiment of the present invention.
  • Referring to FIG. 3, a substrate carrier 300 includes a layer of backing tape 302 surrounded by a tape ring or frame 304. A wafer or substrate 306 is supported by the backing tape 302 of the substrate carrier 300. In one embodiment, the wafer or substrate 306 is attached to the backing tape 302 by a die attach film. In one embodiment, the tape ring 304 is composed of stainless steel.
  • In an embodiment, a singulation process can be accommodated in a system sized to receive a substrate carrier such as the substrate carrier 300. In one such embodiment, a system such as system 1600, described in greater detail below, can accommodate a wafer frame without impact on the system footprint that is otherwise sized to accommodate a substrate or wafer not supported by a substrate carrier. In one embodiment, such a processing system is sized to accommodate 300 millimeter-in-diameter wafers or substrates. The same system can accommodate a wafer carrier approximately 380 millimeters in width by 380 millimeters in length, as depicted in FIG. 3. However, it is to be appreciated that systems may be designed to handle 450 millimeter wafers or substrate or, more particularly, 450 millimeter wafer or substrate carriers.
  • In an aspect of the present invention, a substrate carrier is accommodated in an etch chamber during a singulation process. In an embodiment, the assembly including a wafer or substrate on the substrate carrier is subjected to a plasma etch reactor without affecting (e.g., etching) the film frame (e.g., tape ring 304) and the film (e.g., backing tape 302). In one such embodiment, an actively-cooled shadow ring or a plasma thermal shield, or both, are implemented during the etch portion of the dicing process. In an example, FIG. 4 illustrates the substrate carrier of FIG. 3 with an overlying actively-cooled shadow ring or a plasma thermal shield, or both, in accordance with an embodiment of the present invention.
  • Referring to FIG. 4, the substrate carrier 300, including the layer of backing tape 302 and tape ring or frame 304 is covered, in a top view perspective, by an actively-cooled shadow ring or a plasma thermal shield, or both, (all options represented as 400 in FIG. 4). The actively-cooled shadow ring or a plasma thermal shield, or both, 400 includes a ring portion 402 and inner opening 404. In one embodiment, a portion of the supported wafer or substrate 306 is also covered by the actively-cooled shadow ring or a plasma thermal shield, or both, 400 (specifically, portion 406 of the actively-cooled shadow ring or a plasma thermal shield, or both, 400 covers a portion of the wafer or substrate 306). In a specific such embodiment, the portion 406 of the actively-cooled shadow ring or a plasma thermal shield, or both, 400 covers approximately 1-1.5 mm of the outer most portion of the wafer or substrate 306. The portion covered may be referred to as the exclusion region of the wafer or substrate 306 since this area is effectively shielded from a plasma process.
  • In a first aspect, an actively-cooled shadow ring for heat dissipation in a plasma chamber is now described in greater detail. In an embodiment, an actively-cooled shadow ring can be implemented to reduce a temperature of a process kit shadow ring during processing of a wafer supported by a wafer carrier. By reducing the temperature of a shadow ring, damage or burning of a die singulation tape that otherwise occurs at elevated temperatures may be mitigated. For example, a damaged or burned die singulation tape normally leads to the wafer or substrate as not being recoverable. Furthermore, the attached tape can become damaged when the tape frame reaches an elevated temperature. Although described herein in the context of tape and frame protection during etch processing for die singulation, use of an actively-cooled shadow ring can provide other process benefits can include an increase in throughput. For example, temperature reduction may otherwise be achieved by easing of process conditions such as RF power reduction, but this requires an increase in process time which is detrimental to throughput.
  • FIG. 5 illustrates an angled view of an actively-cooled shadow ring for heat dissipation in a plasma chamber with relative positioning to an etch cathode shown and relative sizing to a wafer support shown, in accordance with an embodiment of the present invention.
  • Referring to FIG. 5, a support apparatus 500 for a plasma chamber includes a cathode 502 positioned below an actively-cooled shadow ring 504. A wafer or substrate support 300 with a tape 302 and frame 304 and supporting a wafer of substrate 306 is shown above the actively-cooled shadow ring 504 for sizing perspective. Such a wafer or substrate support can be as described above with respect to FIG. 3. In use, the wafer or substrate support 300 is actually position between the actively-cooled shadow ring 504 and the cathode 502. The support apparatus 500 may also include a motorized assembly 514 and a casing 516, which is also depicted in FIG. 5.
  • Referring again to FIG. 5, the actively-cooled shadow ring 504 is fed with coolant gas or liquid by a bellows feed-through 506 which feeds into a plasma exposed coupler 508. In an embodiment, the actively-cooled shadow ring 504 is raised or lowered relative to a fixed cathode by three vertical posts 510 which can be raised for introduction of the substrate or wafer carrier 300 to the cathode 502 and then lowered to clamp the substrate or wafer carrier 300 into position. The three vertical posts 510 attach the actively-cooled shadow ring 504 to a circular ring 505 below. The circular ring 505 is connected to the motorized assembly 514 and provides the vertical motion and positioning of the actively-cooled shadow ring 504.
  • The substrate or wafer carrier 300 may rest on a plurality of pads that sit between the actively-cooled shadow ring 504 and the cathode 502. For illustrative purposes, one such pad 512 is depicted. However, it is to be appreciated that the pad 512 is actually below or underneath the actively-cooled shadow ring 504, and that more than one pad is typically used, such as four pads. In an embodiment, the actively-cooled shadow ring 504 is composed of aluminum with a hard anodized surface or a ceramic coating. In an embodiment, the actively-cooled shadow ring 504 is sized to entirely cover, from a top-down perspective, the tape frame 304, the tape 302, and the outer most region of the substrate 306 during plasma processing, as was described in association with FIG. 4. In one specific such embodiment, the leading edge of the shadow ring to the wafer is approximately 0.050 inches high.
  • In an embodiment, the cathode 502 is an etch cathode and can function as an electrostatic chuck to assist in sample clamping during processing. In one embodiment, the cathode 502 is thermally controlled.
  • FIG. 6 illustrates an enlarged view of the plasma exposed coupler 508 of the support apparatus 500 of FIG. 5, in accordance with an embodiment of the present invention. Referring to FIG. 6, the terminating end of the bellows feed-through is depicted as coupled to the plasma exposed coupler 508. A pair of fluid connections 620, such as a supply and return line pair, is shown as entering/exiting the actively-cooled shadow ring 504. The plasma exposed coupler 508 is depicted as essentially transparent in order to reveal the pair of fluid connections 620 for illustrative purposes. In an embodiment, the pair of fluid connections 620 provides an entrance/exit to an internal fluid channel that circulates through the actively-cooled shadow ring 504. In one such embodiment, the pair of fluid connections 620 enables continual flow of a cooling fluid or gas through the actively-cooled shadow ring during plasma processing. In a specific embodiments, the cooling channels travel essentially the entire mid-circumference of the body of an annular actively-cooled shadow ring.
  • In an embodiment, the ability to enable such continual flow can provide superior temperature control of the shadow ring which enables temperature control (e.g., reduced temperature exposure) of the tape frame and tape of a substrate carrier clamped to the actively-cooled shadow ring 504. This protection of the tape frame and tape is in addition to the protection provided by physically blocking the plasma from reaching the tape frame and tape of the substrate or wafer carrier. The fluid-channeled shadow ring, referred to herein as actively-cooled shadow ring 504, is distinguished from passively cooled shadow rings that may merely be cooled by contact with a heat sink or w cooled chamber wall.
  • Referring again to FIG. 6, in an embodiment, the plasma exposed coupler 508 is a fixed-length connection between the actively-cooled shadow ring 504 above and the bellows feed-through 506 below. The coupling provided is intended to be exposed to a plasma process and to allow the bellows feed-through 506 to be positioned away from the plasma process. In one such embodiment, the coupling is a vacuum connection between the bellows feed-through 506 and the actively-cooled shadow ring 504.
  • FIG. 7 illustrates an enlarged view of the bellows feed-through 506 of the support apparatus 500 of FIG. 5, in accordance with an embodiment of the present invention. Referring to FIG. 7, the bellow feed-through 506 is shown having an outer bellows 730 with an inner sleeve 732. A connection 734 is provided for coupling to a chamber body. The lower opening of the bellows feed-through 506 can accommodate supply and return lines for the coolant used to cool actively-cooled shadow ring 504. In one embodiment, the outer bellows 730 is metallic, the inner sleeve 732 is a stainless steel protective sleeve to accommodate hoses for supply and return lines, the sizing of connection 734 is an NW40 connection.
  • In an embodiment, the bellows feed-through 506 allows vertical motion of the actively-cooled shadow ring 504, which is in vacuum. This motion is provided by a motorized assembly which provides the necessary vertical positioning. The bellows feed-through must have allowance for this range of motion. In one embodiment, the bellows feed-through 506 has a vacuum connection at either end, e.g., a vacuum centering o-ring seal at one end and an o-ring seal on the other end. In one embodiment, the inner portion of the bellows feed-through 506 has a protective shield to allow fluid lines to pass-through without compromising the convolutions. Together, the bellows feed-through 506 and the plasma exposed coupler 508 provide a path for the supply and return lines for a coolant fluid. The coolant fluid may be passed through a fluid chiller (not depicted) after exiting and/or before entering the actively-cooled shadow ring 504.
  • In an embodiment, the actively-cooled shadow ring 504 is capable of dissipating a large quantity of plasma heat and in a short period of time. In one such embodiment, the actively-cooled shadow ring 504 is designed to be capable of reducing a shadow ring from temperatures greater than 260 degrees Celsius to less than 120 degrees Celsius on a continuous processing basis. In an embodiment, with a vacuum-to-atmosphere connection available, an internal plasma-exposed component could be cooled and/or vertically-moved in a chamber.
  • Thus, in an embodiment, an actively-cooled shadow ring assembly includes the following major components: a bellows feed-through, a plasma-exposed coupling, a fluid-channeled shadow ring, fluid supply and return lines, and a fluid chiller. The actively-cooled shadow ring may also have a plasma shield as a plasma protective cover over the actively-cooled shadow ring, such as described in association with FIGS. 8 and 9 below. The actively-cooled shadow ring has an internal fluid channel to allow a chilled fluid to flow and remove plasma-induced heat. With respect to sizing, an actively-cooled shadow ring may have an increased thickness on the order of about ⅛th of an inch relative to a conventional shadow ring in order to accommodate the cooling channels. In an embodiment, the fluid channel is designed such that it removes this heat before the actively-cooled shadow ring develops a temperature that will damage the tape or greatly elevate the temperature of the tape frame of a wafer or substrate carrier. In one embodiment, the fluid itself is non-RF conductive so as not to draw RF power away from the plasma or RF power to the chiller. In one embodiment, the actively-cooled shadow ring is capable of withstanding high RF power and not suffer plasma erosion. The supply and return fluid lines are connected to the actively-cooled shadow ring and run inside the plasma-exposed coupler and bellows feed-through. In one embodiment, the fluid lines are non-RF conductive and are capable of handling fluid temperatures below 0 degrees Celsius. In one embodiment, an associated chiller is capable of supplying a fluid below 0 degrees Celsius and with enough volume capacity to quickly dissipate the plasma heat developed.
  • In an embodiment, an actively-cooled shadow ring assembly is designed such that no fluid leaks or spills can be introduced into a process chamber housing the assembly. The actively-cooled shadow ring is removable for assembly and servicing. Components or kits may be grouped as: (1) an NW40 sized bellows with inner shield which includes a vacuum feed-through and inner shield for fluid lines, (2) a plasma-exposed coupler which can be a swap kit part, if necessary, (3) an actively-cooled shadow ring with an aluminum-core and anodized or ceramic coating, (4) low temperature fluid lines including a one-piece fluid connection line. Additional hardware may include a secondary chiller specifically designed for the actively-cooled shadow ring.
  • In a second aspect, a plasma thermal shield for heat dissipation in a plasma chamber is now described in greater detail. The plasma thermal shield can be used with a standard shadow ring as an inexpensive, passive component for thermal protection of substrate carrier that is plasma etched using a conventional shadow ring. On the other hand, the plasma thermal shield may be used together with the above described actively-cooled shadow ring.
  • As an example FIG. 8 illustrates an angled top view and angled bottom view of a plasma thermal shield, in accordance with an embodiment of the present invention.
  • Referring to the top view of FIG. 8, a plasma thermal shield 800 is an annular ring with an inner opening 801. In an embodiment, the plasma thermal shield 800 is sized and shaped to be compatible with, e.g., by nesting upon a top surface of, a shadow ring included in a plasma processing chamber. For example, in one such embodiment, the surface of the plasma thermal shield 800 shown in the top view is the surface exposed to a plasma during processing. The surface of the top view includes a first upper surface region 802 which is raised above a second upper surface region 804. The first and second upper surfaces 802 and 804, respectively, are coupled by a sloping region 806.
  • Referring to the bottom view of FIG. 8, the plasma thermal shield 800 has a bottom surface that is not exposed to a plasma during processing. The surface of the bottom view includes a first lower surface region 812 which is below a second lower surface region 814. The first and second lower surfaces 812 and 814, respectively, are coupled by a sloping region 816. In general, from a high level view, in an embodiment, the bottom surface of the plasma thermal shield 800 reciprocates the general topography of the upper surface. However, as described in association with FIG. 9, some regions of the bottom surface of the plasma thermal shield 800 may be removed for heat dissipating applications.
  • FIG. 9 illustrates an enlarged angled cross-sectional view of the plasma thermal shield 800 of FIG. 8 as positioned on a top surface of a shadow ring 900, in accordance with an embodiment of the present invention.
  • Referring to FIG. 9, the plasma thermal shield 800 is nested on an upper surface of a shadow ring 900 (which, in an embodiment, is an actively-cooled shadow ring as described in association with FIGS. 5-7). The upper surface portions 802, 804 and 806 are as described above with respect to FIG. 8. However, in the enlarged view of FIG. 9, it can be seen that the bottom surface portions 812, 814 and 816 of the plasma thermal shield 800 have recessed portions therein. In the particular example shown in FIG. 9, a first gap or cavity 952 is formed between regions 814 and 816 of the bottom surface, and a second gap or cavity 952 is formed between regions 812 and 816 of the bottom surface. The effect is to leave remaining three protruding portions or contact features 950 that raise a majority of the bottom surface of the plasma thermal shield 800 off of the top surface of the shadow ring 900. In an embodiment, the three protruding portions or contact features 950 run the entire annular length to provide nesting support for the plasma thermal shield 800 when nested on the upper surface of the shadow ring 900.
  • In an embodiment, the three protruding portions or contact features 950 raise the majority of the bottom surface of the plasma thermal shield 800 off of the top surface of the shadow ring 900 by a height of approximately 1/16th of an inch. Thus, first and second gaps or cavities 952 have a height of approximately 1/16th of an inch. In one such embodiment, the thinned regions of surfaces 814 and 812 have a remaining thickness of approximately 1/16th of an inch. It is to be appreciated, however, that the size of the gaps or cavities 952 (as a height dimension) provide a trade-off between distancing heat from an underlying shadow ring versus having sufficient material in the plasma thermal shield for absorbing heat. Thus, the height of the gaps can be varied by application. Furthermore, the extent and locations of the recessed portions between protruding or contact portions 950 are subject to the same trade-off. In one embodiment, an amount of surface area of the bottom surface of the plasma thermal shield 800 that is recessed is approximately in the range of 85-92%. In an embodiment, the plasma thermal shield 800 is composed of a material such as, but not limited to, alumina (Al2O3), yttria (Y2O3), silicon nitride (SiN) or silicon carbide (SiC). In one embodiment, the plasma thermal shield 800 is composed of a process sensitive material and can act as a source of dopant for a plasma process. In an embodiment, the plasma thermal shield 800 can be viewed as an external device used to prevent contact of an underlying shadow ring with a hot surface or to act as a heat deflector for the underlying shadow ring.
  • In an embodiment, the plasma thermal shield 800 and the shadow ring 900 are installed as two separate components. In one embodiment, both the shadow ring 900 surface and the plasma thermal shield 800 barrier are composed of alumina, where the plasma thermal shield 800 provides heat dissipation away from the surface of the shadow ring 900 even though the materials are the same. In an embodiment, the plasma thermal shield 800 blocks heat transfer to the shadow ring 900 which is in contact with a tape frame of a substrate or wafer carrier. In an embodiment, with respect to power distribution, an open area of tape from the carrier may be positioned below the thinnest section of the shadow ring 900. The consequential lowest mass region of the shadow ring 900 is may be the highest in temperature. Accordingly, in an embodiment, the plasma thermal shield 800 is designed to have greater mass and smaller gap in this region relative to the remainder of the plasma thermal shield 800, i.e., greater proportional mass is added to the tape region of the carrier.
  • Thus, in an embodiment, a plasma thermal shield is cross-sectionally a shell of ceramic located on top of an existing shadow ring. In one embodiment, the material of the plasma thermal shield is the same material as the shadow ring and covers the entire top surface of the shadow ring. The top surface of the plasma thermal shield may or may not be conformal to the shadow ring below. In one embodiment, the top surface of a plasma thermal shield is a continuous surface and the underside has removed areas of material to reduce conduction to the shadow ring. In an embodiment, the contact points between a plasma thermal shield and shadow ring are related to prohibiting plasma into removed areas as well as installation alignment. It is to be appreciated that the removed area cannot be so great as to create a significant plasma in the removed areas. In the plasma environment, the heat generated by the plasma is transferred to the plasma thermal shield. The plasma thermal shield increase in temperature heats up and radiates the heat to the shadow ring below. However, the shadow ring is heated only by radiated energy from the plasma thermal shield and not by direct plasma contact.
  • In an embodiment, a plasma thermal shield is a single passive part. The shape and material of the plasma thermal shield can be modified for different process conditions. In an embodiment, the plasma thermal shield can be used to reduce the temperature of a shadow ring by a factor in the range of 100-120 degrees Celsius. The plasma thermal shield may also be used as a differentiated material cover for process chemistry modification, essentially providing a dopant source to the plasma process.
  • In an embodiment, a plasma thermal shield is used together with an actively-cooled shadow ring. Thus, possible assemblies described herein for protecting a substrate or wafer carrier during plasma processing include an actively-cooled shadow ring, a shadow ring having a plasma thermal shield thereon, or an actively-cooled shadow ring having a plasma thermal shield thereon. In all three scenarios, from a plan view perspective, a protective annular ring with exposing inner region is provided for plasma processing of the carrier.
  • In an aspect of the present invention, an etch reactor is configured to accommodate etching of a thin wafer or substrate supported by a substrate carrier. For example, FIG. 10 illustrates a cross-sectional view of an etch reactor, in accordance with an embodiment of the present invention.
  • Referring to FIG. 10, an etch reactor 1000 includes a chamber 1002. An end effector 1004 is included for transferring a substrate carrier 1006 to and from chamber 1002. An inductively coupled plasma (ICP) source 1008 is positioned in an upper portion of the chamber 1002. The chamber 1002 is further equipped with a throttle valve 1010 and a turbo molecular pump 1012. The etch reactor 1000 also includes a cathode assembly 1014 (e.g., an assembly including an etch cathode or etch electrode). A shadow ring assembly 1015 is included above the region accommodating the substrate or wafer carrier 1006. In an embodiment, the shadow ring assembly 1015 is one of an actively-cooled shadow ring, a shadow ring having a plasma thermal shield thereon, or an actively-cooled shadow ring having a plasma thermal shield thereon. A shadow ring actuator 1018 may be included for moving the shadow ring. Other actuators, such as actuator 1016 may also be included.
  • In an embodiment, the end effector 1004 is a robot blade sized for handling a substrate carrier. In one such embodiment, the robotic end effector 1004 supports a film frame assembly (e.g., substrate carrier 300) during transfer to and from an etch reactor under sub-atmospheric pressure (vacuum). The end effector 1004 includes features to support the substrate carrier in the X-Y-Z axis with gravity-assist. The end effector 1004 also includes a feature to calibrate and center the end effector with respect to circular features of a processing tool (e.g., an etch cathode center, or a center of a circular silicon wafer).
  • In one embodiment, an etch electrode of the cathode assembly 1014 is configured to allow RF and thermal coupling with the substrate carrier to enable plasma etching. However, in an embodiment, the etch electrode only contacts a backing tape portion of a substrate carrier and not the frame of the substrate carrier.
  • In an embodiment, the shadow ring 1015 includes a protective annular ring, a lift hoop, and three supporting pins coupled between the lift hoop and the protective annular ring, as described in association with FIG. 5. The lift hoop is disposed in a processing volume radially outwards of a supporting assembly. The lift hoop is mounted on shaft in a substantially horizontal orientation. The shaft is driven by an actuator to move the lift hoop vertically in the processing volume. The three supporting pins extend upward from the lift hoop and position the protective annular ring above the supporting assembly. The three supporting pins may fixedly attach the protective annular ring to the lift hoop. The protective annular ring moves vertically with the lift hoop in the processing volume so that the protective annular ring can be positioned at a desired distance above a substrate and/or an exterior substrate handling device (such as a substrate carrier) can enter the processing volume between the protective annular ring and the supporting assembly to transfer the substrate. The three supporting pins may be positioned to allow the substrate carrier to be transferred in and out of a processing chamber between the supporting pins.
  • In another aspect, FIG. 11 is a Flowchart 1100 representing operations in a method of dicing a semiconductor wafer including a plurality of integrated circuits, in accordance with an embodiment of the present invention. FIGS. 12A-12C illustrate cross-sectional views of a semiconductor wafer including a plurality of integrated circuits during performing of a method of dicing the semiconductor wafer, corresponding to operations of Flowchart 1100, in accordance with an embodiment of the present invention.
  • Referring to operation 1102 of Flowchart 1100, and corresponding FIG. 12A, a mask 1202 is formed above a semiconductor wafer or substrate 1204. The mask 1202 is composed of a layer covering and protecting integrated circuits 1206 formed on the surface of semiconductor wafer 1204. The mask 1202 also covers intervening streets 1207 formed between each of the integrated circuits 1206. The semiconductor wafer or substrate 1204 is supported by a substrate carrier 1214.
  • In an embodiment, the substrate carrier 1214 includes a layer of backing tape, a portion of which is depicted as 1214 in FIG. 12A, surrounded by a tape ring or frame (not shown). In one such embodiment, the semiconductor wafer or substrate 1204 is disposed on a die attach film 1216 disposed on the substrate carrier 1214, as is depicted in FIG. 12A.
  • In accordance with an embodiment of the present invention, forming the mask 1202 includes forming a layer such as, but not limited to, a photo-resist layer or an Mine patterning layer. For example, a polymer layer such as a photo-resist layer may be composed of a material otherwise suitable for use in a lithographic process. In one embodiment, the photo-resist layer is composed of a positive photo-resist material such as, but not limited to, a 248 nanometer (nm) resist, a 193 nm resist, a 157 nm resist, an extreme ultra-violet (EUV) resist, or a phenolic resin matrix with a diazonaphthoquinone sensitizer. In another embodiment, the photo-resist layer is composed of a negative photo-resist material such as, but not limited to, poly-cis-isoprene and poly-vinyl-cinnamate.
  • In another embodiment, the mask 1202 is a water-soluble mask layer. In an embodiment, the water-soluble mask layer is readily dissolvable in an aqueous media. For example, in one embodiment, the water-soluble mask layer is composed of a material that is soluble in one or more of an alkaline solution, an acidic solution, or in deionized water. In an embodiment, the water-soluble mask layer maintains its water solubility upon exposure to a heating process, such as heating approximately in the range of 50-160 degrees Celsius. For example, in one embodiment, the water-soluble mask layer is soluble in aqueous solutions following exposure to chamber conditions used in a laser and plasma etch singulation process. In one embodiment, the water-soluble mask layer is composed of a material such as, but not limited to, polyvinyl alcohol, polyacrylic acid, dextran, polymethacrylic acid, polyethylene imine, or polyethylene oxide. In a specific embodiment, the water-soluble mask layer has an etch rate in an aqueous solution approximately in the range of 1-15 microns per minute and, more particularly, approximately 1.3 microns per minute.
  • In another embodiment, the mask 1202 is a UV-curable mask layer. In an embodiment, the mask layer has a susceptibility to UV light that reduces an adhesiveness of the UV-curable layer by at least approximately 80%. In one such embodiment, the UV layer is composed of polyvinyl chloride or an acrylic-based material. In an embodiment, the UV-curable layer is composed of a material or stack of materials with an adhesive property that weakens upon exposure to UV light. In an embodiment, the UV-curable adhesive film is sensitive to approximately 365 nm UV light. In one such embodiment, this sensitivity enables use of LED light to perform a cure.
  • In an embodiment, the semiconductor wafer or substrate 1204 is composed of a material suitable to withstand a fabrication process and upon which semiconductor processing layers may suitably be disposed. For example, in one embodiment, semiconductor wafer or substrate 1204 is composed of a group IV-based material such as, but not limited to, crystalline silicon, germanium or silicon/germanium. In a specific embodiment, providing semiconductor wafer 1204 includes providing a monocrystalline silicon substrate. In a particular embodiment, the monocrystalline silicon substrate is doped with impurity atoms. In another embodiment, semiconductor wafer or substrate 1204 is composed of a material such as, e.g., a material substrate used in the fabrication of light emitting diodes (LEDs).
  • In an embodiment, the semiconductor wafer or substrate 1204 has a thickness of approximately 300 microns or less. For example, in one embodiment, a bulk single-crystalline silicon substrate is thinned from the backside prior to being affixed to the die attach film 1216. The thinning may be performed by a backside grind process. In one embodiment, the bulk single-crystalline silicon substrate is thinned to a thickness approximately in the range of 50-300 microns. It is important to note that, in an embodiment, the thinning is performed prior to a laser ablation and plasma etch dicing process. In an embodiment, the die attach film 1216 (or any suitable substitute capable of bonding a thinned or thin wafer or substrate to the substrate carrier 1214) has a thickness of approximately 20 microns.
  • In an embodiment, the semiconductor wafer or substrate 1204 has disposed thereon or therein, as a portion of the integrated circuits 1206, an array of semiconductor devices. Examples of such semiconductor devices include, but are not limited to, memory devices or complimentary metal-oxide-semiconductor (CMOS) transistors fabricated in a silicon substrate and encased in a dielectric layer. A plurality of metal interconnects may be formed above the devices or transistors, and in surrounding dielectric layers, and may be used to electrically couple the devices or transistors to form the integrated circuits 1206. Materials making up the streets 1207 may be similar to or the same as those materials used to form the integrated circuits 1206. For example, streets 1207 may be composed of layers of dielectric materials, semiconductor materials, and metallization. In one embodiment, one or more of the streets 1207 includes test devices similar to the actual devices of the integrated circuits 1206.
  • Referring to operation 1104 of Flowchart 1100, and corresponding FIG. 12B, the mask 1202 is patterned with a laser scribing process to provide a patterned mask 1208 with gaps 1210, exposing regions of the semiconductor wafer or substrate 1204 between the integrated circuits 1206. In one such embodiment, the laser scribing process is a femtosecond-based laser scribing process. The laser scribing process is used to remove the material of the streets 1207 originally formed between the integrated circuits 1206. In accordance with an embodiment of the present invention, patterning the mask 1202 with the laser scribing process includes forming trenches 1212 partially into the regions of the semiconductor wafer 1204 between the integrated circuits 1206, as is depicted in FIG. 12B.
  • In an embodiment, patterning the mask 1202 with the laser scribing process includes using a laser having a pulse width in the femtosecond range. Specifically, a laser with a wavelength in the visible spectrum plus the ultra-violet (UV) and infra-red (IR) ranges (totaling a broadband optical spectrum) may be used to provide a femtosecond-based laser, i.e., a laser with a pulse width on the order of the femtosecond (10−15 seconds). In one embodiment, ablation is not, or is essentially not, wavelength dependent and is thus suitable for complex films such as films of the mask 1202, the streets 1207 and, possibly, a portion of the semiconductor wafer or substrate 1204.
  • FIG. 13 illustrates the effects of using a laser pulse in the femtosecond range versus longer frequencies, in accordance with an embodiment of the present invention. Referring to FIG. 13, by using a laser with a pulse width in the femtosecond range heat damage issues are mitigated or eliminated (e.g., minimal to no damage 1302C with femtosecond processing of a via 1300C) versus longer pulse widths (e.g., damage 1302B with picosecond processing of a via 1300B and significant damage 1302A with nanosecond processing of a via 1300A). The elimination or mitigation of damage during formation of via 1300C may be due to a lack of low energy recoupling (as is seen for picosecond-based laser ablation) or thermal equilibrium (as is seen for nanosecond-based laser ablation), as depicted in FIG. 13.
  • Laser parameters selection, such as pulse width, may be critical to developing a successful laser scribing and dicing process that minimizes chipping, microcracks and delamination in order to achieve clean laser scribe cuts. The cleaner the laser scribe cut, the smoother an etch process that may be performed for ultimate die singulation. In semiconductor device wafers, many functional layers of different material types (e.g., conductors, insulators, semiconductors) and thicknesses are typically disposed thereon. Such materials may include, but are not limited to, organic materials such as polymers, metals, or inorganic dielectrics such as silicon dioxide and silicon nitride.
  • By contrast, if non-optimal laser parameters are selected, in a stacked structure that involves, e.g., two or more of an inorganic dielectric, an organic dielectric, a semiconductor, or a metal, a laser ablation process may cause delamination issues. For example, a laser penetrate through high bandgap energy dielectrics (such as silicon dioxide with an approximately of 9 eV bandgap) without measurable absorption. However, the laser energy may be absorbed in an underlying metal or silicon layer, causing significant vaporization of the metal or silicon layers. The vaporization may generate high pressures to lift-off the overlying silicon dioxide dielectric layer and potentially causing severe interlayer delamination and microcracking. In an embodiment, while picoseconds-based laser irradiation processes lead to microcracking and delaminating in complex stacks, femtosecond-based laser irradiation processes have been demonstrated to not lead to microcracking or delamination of the same material stacks.
  • In order to be able to directly ablate dielectric layers, ionization of the dielectric materials may need to occur such that they behave similar to a conductive material by strongly absorbing photons. The absorption may block a majority of the laser energy from penetrating through to underlying silicon or metal layers before ultimate ablation of the dielectric layer. In an embodiment, ionization of inorganic dielectrics is feasible when the laser intensity is sufficiently high to initiate photon-ionization and impact ionization in the inorganic dielectric materials.
  • In accordance with an embodiment of the present invention, suitable femtosecond-based laser processes are characterized by a high peak intensity (irradiance) that usually leads to nonlinear interactions in various materials. In one such embodiment, the femtosecond laser sources have a pulse width approximately in the range of 10 femtoseconds to 500 femtoseconds, although preferably in the range of 100 femtoseconds to 400 femtoseconds. In one embodiment, the femtosecond laser sources have a wavelength approximately in the range of 1570 nanometers to 200 nanometers, although preferably in the range of 540 nanometers to 250 nanometers. In one embodiment, the laser and corresponding optical system provide a focal spot at the work surface approximately in the range of 3 microns to 15 microns, though preferably approximately in the range of 5 microns to 10 microns.
  • The spacial beam profile at the work surface may be a single mode (Gaussian) or have a shaped top-hat profile. In an embodiment, the laser source has a pulse repetition rate approximately in the range of 200 kHz to 10 MHz, although preferably approximately in the range of 500 kHz to 5 MHz. In an embodiment, the laser source delivers pulse energy at the work surface approximately in the range of 0.5 uJ to 100 uJ, although preferably approximately in the range of 1 uJ to 5 uJ. In an embodiment, the laser scribing process runs along a work piece surface at a speed approximately in the range of 500 mm/sec to 5 m/sec, although preferably approximately in the range of 600 mm/sec to 2 m/sec.
  • The scribing process may be run in single pass only, or in multiple passes, but, in an embodiment, preferably 1-2 passes. In one embodiment, the scribing depth in the work piece is approximately in the range of 5 microns to 50 microns deep, preferably approximately in the range of 10 microns to 20 microns deep. The laser may be applied either in a train of single pulses at a given pulse repetition rate or a train of pulse bursts. In an embodiment, the kerf width of the laser beam generated is approximately in the range of 2 microns to 15 microns, although in silicon wafer scribing/dicing preferably approximately in the range of 6 microns to 10 microns, measured at the device/silicon interface.
  • Laser parameters may be selected with benefits and advantages such as providing sufficiently high laser intensity to achieve ionization of inorganic dielectrics (e.g., silicon dioxide) and to minimize delamination and chipping caused by underlayer damage prior to direct ablation of inorganic dielectrics. Also, parameters may be selected to provide meaningful process throughput for industrial applications with precisely controlled ablation width (e.g., kerf width) and depth. As described above, a femtosecond-based laser is far more suitable to providing such advantages, as compared with picosecond-based and nanosecond-based laser ablation processes. However, even in the spectrum of femtosecond-based laser ablation, certain wavelengths may provide better performance than others. For example, in one embodiment, a femtosecond-based laser process having a wavelength closer to or in the UV range provides a cleaner ablation process than a femtosecond-based laser process having a wavelength closer to or in the IR range. In a specific such embodiment, a femtosecond-based laser process suitable for semiconductor wafer or substrate scribing is based on a laser having a wavelength of approximately less than or equal to 540 nanometers. In a particular such embodiment, pulses of approximately less than or equal to 400 femtoseconds of the laser having the wavelength of approximately less than or equal to 540 nanometers are used. However, in an alternative embodiment, dual laser wavelengths (e.g., a combination of an IR laser and a UV laser) are used.
  • Referring to optional operation 1106 of Flowchart 1100, in accordance with an embodiment of the present invention, a portion of the substrate carrier is covered with an actively-cooled shadow ring or a plasma thermal shield, or both, in preparation for an etch portion of the dicing process. In one embodiment, the actively-cooled shadow ring or a plasma thermal shield, or both, is included in a plasma etching chamber. In one embodiment, the actively-cooled shadow ring or a plasma thermal shield, or a combination of both, leaves exposed a portion of, but not all of, the semiconductor wafer or substrate 1204, as described above in association with FIG. 4.
  • Referring to operation 1108 of Flowchart 1100, and corresponding FIG. 12C, the semiconductor wafer or substrate 1204 is etched through the gaps 1210 in the patterned mask 1208 to singulate the integrated circuits 1206. In accordance with an embodiment of the present invention, etching the semiconductor wafer 1204 includes etching to extend the trenches 1212 formed with the laser scribing process and to ultimately etch entirely through semiconductor wafer or substrate 1204, as depicted in FIG. 12C.
  • In an embodiment, etching the semiconductor wafer or substrate 1204 includes using a plasma etching process. In one embodiment, a through-silicon via type etch process is used. For example, in a specific embodiment, the etch rate of the material of semiconductor wafer or substrate 1204 is greater than 25 microns per minute. An ultra-high-density plasma source may be used for the plasma etching portion of the die singulation process. An example of a process chamber suitable to perform such a plasma etch process is the Applied Centura® Silvia™ Etch system available from Applied Materials of Sunnyvale, Calif., USA. The Applied Centura® Silvia™ Etch system combines the capacitive and inductive RF coupling, which gives much more independent control of the ion density and ion energy than was possible with the capacitive coupling only, even with the improvements provided by magnetic enhancement. The combination enables effective decoupling of the ion density from ion energy, so as to achieve relatively high density plasmas without the high, potentially damaging, DC bias levels, even at very low pressures. An exceptionally wide process window results. However, any plasma etch chamber capable of etching silicon may be used. In an exemplary embodiment, a deep silicon etch is used to etch a single crystalline silicon substrate or wafer 1204 at an etch rate greater than approximately 40% of conventional silicon etch rates while maintaining essentially precise profile control and virtually scallop-free sidewalls. In a specific embodiment, a through-silicon via type etch process is used. The etch process is based on a plasma generated from a reactive gas, which generally a fluorine-based gas such as SF6, C4 F8, CHF3, XeF2, or any other reactant gas capable of etching silicon at a relatively fast etch rate. In one embodiment, however, a Bosch process is used which involves formation of a scalloped profile.
  • In an embodiment, singulation may further include patterning of die attach film 1216. In one embodiment, die attach film 1216 is patterned by a technique such as, but not limited to, laser ablation, dry (plasma) etching or wet etching. In an embodiment, the die attach film 1216 is patterned in sequence following the laser scribe and plasma etch portions of the singulation process to provide die attach film portions 1218, as depicted in FIG. 12C. In an embodiment, the patterned mask 1208 is removed after the laser scribe and plasma etch portions of the singulation process, as is also depicted in FIG. 12C. The patterned mask 1208 may be removed prior to, during, or following patterning of the die attach film 1216. In an embodiment, the semiconductor wafer or substrate 1204 is etched while supported by the substrate carrier 1214. In an embodiment, the die attach film 1216 is also patterned while disposed on the substrate carrier 1214.
  • Accordingly, referring again to Flowchart 1100 and FIGS. 12A-12C, wafer dicing may be preformed by initial laser ablation through a mask, through wafer streets (including metallization), and partially into a silicon substrate. The laser pulse width may be selected in the femtosecond range. Die singulation may then be completed by subsequent through-silicon deep plasma etching. In one embodiment, an actively-cooled shadow ring or a plasma thermal shield, or both, are implemented during the etch portion of the dicing process. Additionally, removal of exposed portions of the die attach film is performed to provide singulated integrated circuits, each having a portion of a die attach film thereon. The individual integrated circuits, including die attach film portions may then be removed from the substrate carrier 1214, as depicted in FIG. 12C. In an embodiment, the singulated integrated circuits are removed from the substrate carrier 1214 for packaging. In one such embodiment, the patterned die attach film 1218 is retained on the backside of each integrated circuit and included in the final packaging. However, in another embodiment, the patterned die attach film 1214 is removed during or subsequent to the singulation process.
  • Referring again to FIGS. 12A-12C, the plurality of integrated circuits 1206 may be separated by streets 1207 having a width of approximately 10 microns or smaller. The use of a laser scribing approach (such as a femtosecond-based laser scribing approach) may enable such compaction in a layout of integrated circuits, at least in part due to the tight profile control of the laser. For example, FIG. 14 illustrates compaction on a semiconductor wafer or substrate achieved by using narrower streets versus conventional dicing which may be limited to a minimum width, in accordance with an embodiment of the present invention.
  • Referring to FIG. 14, compaction on a semiconductor wafer is achieved by using narrower streets (e.g., widths of approximately 10 microns or smaller in layout 1402) versus conventional dicing which may be limited to a minimum width (e.g., widths of approximately 70 microns or larger in layout 1400). It is to be understood, however, that it may not always be desirable to reduce the street width to less than 10 microns even if otherwise enabled by a femtosecond-based laser scribing process. For example, some applications may require a street width of at least 40 microns in order to fabricate dummy or test devices in the streets separating the integrated circuits.
  • Referring again to FIGS. 12A-12C, the plurality of integrated circuits 1206 may be arranged on semiconductor wafer or substrate 1204 in a non-restricted layout. For example, FIG. 15 illustrates a freeform integrated circuit arrangement allowing denser packing. The denser packing may provide for more die per wafer versus grid alignment approaches, in accordance with an embodiment of the present invention. Referring to FIG. 15, a freeform layout (e.g., a non-restricted layout on semiconductor wafer or substrate 1502) allows denser packing and hence more die per wafer versus grid alignment approaches (e.g., a restricted layout on semiconductor wafer or substrate 1500). In an embodiment, the speed of the laser ablation and plasma etch singulation process is independent of die size, layout or the number of streets.
  • A single process tool may be configured to perform many or all of the operations in a hybrid laser ablation and plasma etch singulation process. For example, FIG. 16 illustrates a block diagram of a tool layout for laser and plasma dicing of wafers or substrates, in accordance with an embodiment of the present invention.
  • Referring to FIG. 16, a process tool 1600 includes a factory interface 1602 (FI) having a plurality of load locks 1604 coupled therewith. A cluster tool 1606 is coupled with the factory interface 1602. The cluster tool 1606 includes one or more plasma etch chambers, such as plasma etch chamber 1608. A laser scribe apparatus 1610 is also coupled to the factory interface 1602. The overall footprint of the process tool 1600 may be, in one embodiment, approximately 3500 millimeters (3.5 meters) by approximately 3800 millimeters (3.8 meters), as depicted in FIG. 16.
  • In an embodiment, the laser scribe apparatus 1610 houses a femtosecond-based laser. The femtosecond-based laser may be suitable for performing a laser ablation portion of a hybrid laser and etch singulation process, such as the laser abalation processes described above. In one embodiment, a moveable stage is also included in laser scribe apparatus 1600, the moveable stage configured for moving a wafer or substrate (or a carrier thereof) relative to the femtosecond-based laser. In a specific embodiment, the femtosecond-based laser is also moveable. The overall footprint of the laser scribe apparatus 1610 may be, in one embodiment, approximately 2240 millimeters by approximately 1270 millimeters, as depicted in FIG. 16.
  • In an embodiment, the one or more plasma etch chambers 1608 is configured for etching a wafer or substrate through the gaps in a patterned mask to singulate a plurality of integrated circuits. In one such embodiment, the one or more plasma etch chambers 1608 is configured to perform a deep silicon etch process. In a specific embodiment, the one or more plasma etch chambers 1608 is an Applied Centura® Silvia™ Etch system, available from Applied Materials of Sunnyvale, Calif., USA. The etch chamber may be specifically designed for a deep silicon etch used to create singulate integrated circuits housed on or in single crystalline silicon substrates or wafers. In an embodiment, a high-density plasma source is included in the plasma etch chamber 1608 to facilitate high silicon etch rates. In an embodiment, more than one etch chamber is included in the cluster tool 1606 portion of process tool 1600 to enable high manufacturing throughput of the singulation or dicing process. In accordance with an embodiment of the present invention, one or more of the etch chambers is equipped with an actively-cooled shadow ring or a plasma thermal shield, or both.
  • The factory interface 1602 may be a suitable atmospheric port to interface between an outside manufacturing facility with laser scribe apparatus 1610 and cluster tool 1606. The factory interface 1602 may include robots with arms or blades for transferring wafers (or carriers thereof) from storage units (such as front opening unified pods) into either cluster tool 1606 or laser scribe apparatus 1610, or both.
  • Cluster tool 1606 may include other chambers suitable for performing functions in a method of singulation. For example, in one embodiment, in place of an additional etch chamber, a deposition chamber 1612 is included. The deposition chamber 1612 may be configured for mask deposition on or above a device layer of a wafer or substrate prior to laser scribing of the wafer or substrate. In one such embodiment, the deposition chamber 1612 is suitable for depositing a water soluble mask layer. In another embodiment, in place of an additional etch chamber, a wet/dry station 1614 is included. The wet/dry station may be suitable for cleaning residues and fragments, or for removing a water soluble mask, subsequent to a laser scribe and plasma etch singulation process of a substrate or wafer. In an embodiment, a metrology station is also included as a component of process tool 1600.
  • Embodiments of the present invention may be provided as a computer program product, or software, that may include a machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to embodiments of the present invention. In one embodiment, the computer system is coupled with process tool 1600 described in association with FIG. 16 or with etch chamber 1000 described in association with FIG. 10. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.), a machine (e.g., computer) readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., infrared signals, digital signals, etc.)), etc.
  • FIG. 17 illustrates a diagrammatic representation of a machine in the exemplary form of a computer system 1700 within which a set of instructions, for causing the machine to perform any one or more of the methodologies described herein, may be executed. In alternative embodiments, the machine may be connected (e.g., networked) to other machines in a Local Area Network (LAN), an intranet, an extranet, or the Internet. The machine may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines (e.g., computers) that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies described herein.
  • The exemplary computer system 1700 includes a processor 1702, a main memory 1704 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 1706 (e.g., flash memory, static random access memory (SRAM), etc.), and a secondary memory 1718 (e.g., a data storage device), which communicate with each other via a bus 1730.
  • Processor 1702 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processor 1702 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processor 1702 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. Processor 1702 is configured to execute the processing logic 1726 for performing the operations described herein.
  • The computer system 1700 may further include a network interface device 1708. The computer system 1700 also may include a video display unit 1710 (e.g., a liquid crystal display (LCD), a light emitting diode display (LED), or a cathode ray tube (CRT)), an alphanumeric input device 1712 (e.g., a keyboard), a cursor control device 1714 (e.g., a mouse), and a signal generation device 1716 (e.g., a speaker).
  • The secondary memory 1718 may include a machine-accessible storage medium (or more specifically a computer-readable storage medium) 1731 on which is stored one or more sets of instructions (e.g., software 1722) embodying any one or more of the methodologies or functions described herein. The software 1722 may also reside, completely or at least partially, within the main memory 1704 and/or within the processor 1702 during execution thereof by the computer system 1700, the main memory 1704 and the processor 1702 also constituting machine-readable storage media. The software 1722 may further be transmitted or received over a network 1720 via the network interface device 1708.
  • While the machine-accessible storage medium 1731 is shown in an exemplary embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention. The term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
  • In accordance with an embodiment of the present invention, a machine-accessible storage medium has instructions stored thereon which cause a data processing system to perform a method of dicing a semiconductor wafer having a plurality of integrated circuits. The method involves introducing a substrate supported by a substrate carrier into a plasma etch chamber. The substrate has a patterned mask thereon covering integrated circuits and exposing streets of the substrate. The method also involves clamping the substrate carrier below a shadow ring having cooling channels therein. The method also involves plasma etching the substrate through the streets to singulate the integrated circuits. The shadow ring shields the substrate carrier from the plasma etching. A cooling fluid is transported through the cooling channels during the plasma etching.
  • In accordance with another embodiment of the present invention, a machine-accessible storage medium has instructions stored thereon which cause a data processing system to perform a method of dicing a semiconductor wafer having a plurality of integrated circuits. The method involves introducing a substrate supported by a substrate carrier into a plasma etch chamber. The substrate has a patterned mask thereon covering integrated circuits and exposing streets of the substrate. The method also involves clamping the substrate carrier below a shadow ring having a plasma thermal shield disposed thereon. The method also involves plasma etching the substrate through the streets to singulate the integrated circuits. The shadow ring and plasma thermal shield protect the substrate carrier from the plasma etching. The plasma thermal shield dissipates heat away from the shadow ring during the plasma etching.
  • Thus, methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, have been disclosed.

Claims (14)

1. A plasma thermal shield for a plasma processing chamber, the plasma thermal shield comprising:
an annular ring body having an inner opening;
a plasma-facing surface of the annular ring body, the plasma-facing surface having a general topography; and
a bottom surface of the annular ring body, the bottom surface reciprocating the general topography with recessed regions disposed therein, providing one or more protruding regions at the bottom surface of the annular ring body.
2. The plasma thermal shield of claim 1, wherein a total surface area of the recessed regions is approximately in the range of 85-92% of a total surface area of the bottom surface of the annular ring body.
3. The plasma thermal shield of claim 1, wherein the general topography comprises an outer surface raised above an inner surface and coupled to the inner surface by a sloping surface.
4. The plasma thermal shield of claim 3, wherein the one or more protruding regions comprise a first protruding region reciprocal to the outer surface, a second protruding region reciprocal to the sloping surface, and a third first protruding region reciprocal to the inner surface.
5. The plasma thermal shield of claim 1, wherein the recessed regions have a depth or approximately 1/16th of an inch into the annular ring body, leaving approximately 1/16th of an inch of the annular ring body remaining at the recessed regions.
6. The plasma thermal shield of claim 1, wherein the annular ring body comprises a material selected from the group consisting of alumina (Al2O3), yttria (Y2O3), silicon nitride (SiN) and silicon carbide (SiC).
7. A shadow ring assembly for a plasma processing chamber, the shadow ring assembly comprising:
a shadow ring having an annular body and an inner opening; and
a plasma thermal shield nested on the shadow ring, the plasma thermal shield comprising:
an annular ring body having an inner opening approximately the same size, and aligned with, the inner opening of the shadow ring;
a plasma-facing surface of the annular ring body, the plasma-facing surface having a general topography; and
a bottom surface of the annular ring body, the bottom surface reciprocating the general topography with recessed regions disposed therein, providing one or more protruding regions at the bottom surface of the annular ring body, the one or more protruding regions in contact with the shadow ring.
8. The shadow ring assembly of claim 7, wherein the plasma thermal shield prevents contact of the underlying shadow ring with a hot surface or acts as a heat deflector for the underlying shadow ring.
9. The shadow ring assembly of claim 7, wherein a total surface area of the recessed regions of the plasma thermal shield is approximately in the range of 85-92% of a total surface area of the bottom surface of the annular ring body of the plasma thermal shield.
10. The shadow ring assembly of claim 7, wherein the general topography of the plasma-facing surface of the annular ring body of the plasma thermal shield comprises an outer surface raised above an inner surface and coupled to the inner surface by a sloping surface.
11. The shadow ring assembly of claim 7, wherein the recessed regions of the plasma thermal shield have a depth or approximately 1/16th of an inch into the annular ring body of the of the plasma thermal shield, leaving approximately 1/16th of an inch of the annular ring body remaining at the recessed regions.
12. The shadow ring assembly of claim 7, wherein the annular ring body of the plasma thermal shield comprises a material selected from the group consisting of alumina (Al2O3), yttria (Y2O3), silicon nitride (SiN) and silicon carbide (SiC).
13. The shadow ring assembly of claim 7, wherein the shadow ring further comprises a cooling channel disposed in the annular body of the shadow ring for cooling fluid transport, the cooling channel coupled to a pair of supply/return openings at a surface of the annular body of the shadow ring.
14-20. (canceled)
US14/219,842 2013-12-17 2014-03-19 Plasma thermal shield for heat dissipation in plasma chamber Abandoned US20150170885A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/219,842 US20150170885A1 (en) 2013-12-17 2014-03-19 Plasma thermal shield for heat dissipation in plasma chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/109,820 US9293304B2 (en) 2013-12-17 2013-12-17 Plasma thermal shield for heat dissipation in plasma chamber
US14/219,842 US20150170885A1 (en) 2013-12-17 2014-03-19 Plasma thermal shield for heat dissipation in plasma chamber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/109,820 Continuation US9293304B2 (en) 2013-12-17 2013-12-17 Plasma thermal shield for heat dissipation in plasma chamber

Publications (1)

Publication Number Publication Date
US20150170885A1 true US20150170885A1 (en) 2015-06-18

Family

ID=53369349

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/109,820 Active 2034-02-12 US9293304B2 (en) 2013-12-17 2013-12-17 Plasma thermal shield for heat dissipation in plasma chamber
US14/219,842 Abandoned US20150170885A1 (en) 2013-12-17 2014-03-19 Plasma thermal shield for heat dissipation in plasma chamber

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/109,820 Active 2034-02-12 US9293304B2 (en) 2013-12-17 2013-12-17 Plasma thermal shield for heat dissipation in plasma chamber

Country Status (3)

Country Link
US (2) US9293304B2 (en)
TW (1) TWI644352B (en)
WO (1) WO2015094863A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160240352A1 (en) * 2015-02-17 2016-08-18 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus and method for manufacturing electronic component

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802545B2 (en) * 2011-03-14 2014-08-12 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
GB201419210D0 (en) * 2014-10-29 2014-12-10 Spts Technologies Ltd Clamp assembly
US9478455B1 (en) * 2015-06-12 2016-10-25 Applied Materials, Inc. Thermal pyrolytic graphite shadow ring assembly for heat dissipation in plasma chamber
GB201518756D0 (en) * 2015-10-22 2015-12-09 Spts Technologies Ltd Apparatus for plasma dicing
US10435784B2 (en) * 2016-08-10 2019-10-08 Applied Materials, Inc. Thermally optimized rings
US11615966B2 (en) 2020-07-19 2023-03-28 Applied Materials, Inc. Flowable film formation and treatments
US11887811B2 (en) 2020-09-08 2024-01-30 Applied Materials, Inc. Semiconductor processing chambers for deposition and etch
US11699571B2 (en) 2020-09-08 2023-07-11 Applied Materials, Inc. Semiconductor processing chambers for deposition and etch
US20220108908A1 (en) * 2020-10-06 2022-04-07 Applied Materials, Inc. Shadow ring kit for plasma etch wafer singulation process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460703A (en) * 1992-11-12 1995-10-24 Applied Materials, Inc. Low thermal expansion clamping mechanism
US5632873A (en) * 1995-05-22 1997-05-27 Stevens; Joseph J. Two piece anti-stick clamp ring
US6159299A (en) * 1999-02-09 2000-12-12 Applied Materials, Inc. Wafer pedestal with a purge ring
US6214184B1 (en) * 1997-05-14 2001-04-10 Taiwan Semiconductor Manufacturing Company, Ltd Insulated wafer pedestal
US6231674B1 (en) * 1994-02-23 2001-05-15 Applied Materials, Inc. Wafer edge deposition elimination

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049944A (en) 1973-02-28 1977-09-20 Hughes Aircraft Company Process for fabricating small geometry semiconductive devices including integrated components
US4339528A (en) 1981-05-19 1982-07-13 Rca Corporation Etching method using a hardened PVA stencil
US4684437A (en) 1985-10-31 1987-08-04 International Business Machines Corporation Selective metal etching in metal/polymer structures
JPH0416085A (en) 1990-05-10 1992-01-21 Tokyo Gas Co Ltd Picture recording and reproducing device
KR100215338B1 (en) 1991-03-06 1999-08-16 가나이 쓰도무 Method of manufacturing semiconductor device
EP0609809B8 (en) 1993-02-01 2001-11-21 Canon Kabushiki Kaisha Liquid crystal display device
US5593606A (en) 1994-07-18 1997-01-14 Electro Scientific Industries, Inc. Ultraviolet laser system and method for forming vias in multi-layered targets
EP1357584A3 (en) 1996-08-01 2005-01-12 Surface Technology Systems Plc Method of surface treatment of semiconductor substrates
US6426484B1 (en) 1996-09-10 2002-07-30 Micron Technology, Inc. Circuit and method for heating an adhesive to package or rework a semiconductor die
US5920973A (en) 1997-03-09 1999-07-13 Electro Scientific Industries, Inc. Hole forming system with multiple spindles per station
JP3230572B2 (en) 1997-05-19 2001-11-19 日亜化学工業株式会社 Method for manufacturing nitride compound semiconductor device and semiconductor light emitting device
US5955381A (en) 1998-03-03 1999-09-21 Lucent Technologies Inc. Integrated circuit fabrication
US6057180A (en) 1998-06-05 2000-05-02 Electro Scientific Industries, Inc. Method of severing electrically conductive links with ultraviolet laser output
JP2001044144A (en) 1999-08-03 2001-02-16 Tokyo Seimitsu Co Ltd Semiconductor chip manufacturing process
JP2001110811A (en) 1999-10-08 2001-04-20 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device
JP4387007B2 (en) 1999-10-26 2009-12-16 株式会社ディスコ Method for dividing semiconductor wafer
JP2001144126A (en) 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method
JP2001148358A (en) 1999-11-19 2001-05-29 Disco Abrasive Syst Ltd Semiconductor wafer and deviding method thereof
US6300593B1 (en) 1999-12-07 2001-10-09 First Solar, Llc Apparatus and method for laser scribing a coated substrate
JP5123456B2 (en) 2000-01-10 2013-01-23 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Laser cutting method and laser system for conductive link
US6887804B2 (en) 2000-01-10 2005-05-03 Electro Scientific Industries, Inc. Passivation processing over a memory link
TW504425B (en) 2000-03-30 2002-10-01 Electro Scient Ind Inc Laser system and method for single pass micromachining of multilayer workpieces
KR100773070B1 (en) 2000-07-12 2007-11-02 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 Laser system and method for single pulse severing of ?? fuses
DE10044419C1 (en) 2000-09-08 2002-05-02 Infineon Technologies Ag Shading ring for plasma coating systems and its use
US6676878B2 (en) 2001-01-31 2004-01-13 Electro Scientific Industries, Inc. Laser segmented cutting
US6759275B1 (en) 2001-09-04 2004-07-06 Megic Corporation Method for making high-performance RF integrated circuits
US6642127B2 (en) 2001-10-19 2003-11-04 Applied Materials, Inc. Method for dicing a semiconductor wafer
JP3910843B2 (en) 2001-12-13 2007-04-25 東京エレクトロン株式会社 Semiconductor element separation method and semiconductor element separation apparatus
US6706998B2 (en) 2002-01-11 2004-03-16 Electro Scientific Industries, Inc. Simulated laser spot enlargement
JP4447325B2 (en) 2002-02-25 2010-04-07 株式会社ディスコ Method for dividing semiconductor wafer
KR100451950B1 (en) 2002-02-25 2004-10-08 삼성전자주식회사 Sawing method for image sensor device wafer
JP2003257896A (en) 2002-02-28 2003-09-12 Disco Abrasive Syst Ltd Method for dicing semiconductor wafer
AU2003224098A1 (en) 2002-04-19 2003-11-03 Xsil Technology Limited Laser machining
JP2004031526A (en) 2002-06-24 2004-01-29 Toyoda Gosei Co Ltd Manufacturing method of group iii nitride compound semiconductor element
US6582983B1 (en) 2002-07-12 2003-06-24 Keteca Singapore Singapore Method and wafer for maintaining ultra clean bonding pads on a wafer
JP4286497B2 (en) 2002-07-17 2009-07-01 新光電気工業株式会社 Manufacturing method of semiconductor device
JP3908148B2 (en) 2002-10-28 2007-04-25 シャープ株式会社 Multilayer semiconductor device
US20040157457A1 (en) 2003-02-12 2004-08-12 Songlin Xu Methods of using polymer films to form micro-structures
JP2004273895A (en) 2003-03-11 2004-09-30 Disco Abrasive Syst Ltd Dividing method of semiconductor wafer
US7087452B2 (en) 2003-04-22 2006-08-08 Intel Corporation Edge arrangements for integrated circuit chips
JP2004322168A (en) 2003-04-25 2004-11-18 Disco Abrasive Syst Ltd Laser machining apparatus
JP4231349B2 (en) 2003-07-02 2009-02-25 株式会社ディスコ Laser processing method and laser processing apparatus
JP4408361B2 (en) 2003-09-26 2010-02-03 株式会社ディスコ Wafer division method
US7128806B2 (en) 2003-10-21 2006-10-31 Applied Materials, Inc. Mask etch processing apparatus
JP4471632B2 (en) 2003-11-18 2010-06-02 株式会社ディスコ Wafer processing method
JP2005203541A (en) 2004-01-15 2005-07-28 Disco Abrasive Syst Ltd Laser-processing method for wafer
US7459377B2 (en) 2004-06-08 2008-12-02 Panasonic Corporation Method for dividing substrate
US7804043B2 (en) 2004-06-15 2010-09-28 Laserfacturing Inc. Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser
US7687740B2 (en) 2004-06-18 2010-03-30 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots delivering multiple blows
US7507638B2 (en) 2004-06-30 2009-03-24 Freescale Semiconductor, Inc. Ultra-thin die and method of fabricating same
JP4018088B2 (en) 2004-08-02 2007-12-05 松下電器産業株式会社 Semiconductor wafer dividing method and semiconductor element manufacturing method
US7199050B2 (en) 2004-08-24 2007-04-03 Micron Technology, Inc. Pass through via technology for use during the manufacture of a semiconductor device
JP4018096B2 (en) 2004-10-05 2007-12-05 松下電器産業株式会社 Semiconductor wafer dividing method and semiconductor element manufacturing method
US20060088984A1 (en) 2004-10-21 2006-04-27 Intel Corporation Laser ablation method
US20060086898A1 (en) 2004-10-26 2006-04-27 Matsushita Electric Industrial Co., Ltd. Method and apparatus of making highly repetitive micro-pattern using laser writer
US20060146910A1 (en) 2004-11-23 2006-07-06 Manoochehr Koochesfahani Method and apparatus for simultaneous velocity and temperature measurements in fluid flow
JP4288229B2 (en) 2004-12-24 2009-07-01 パナソニック株式会社 Manufacturing method of semiconductor chip
US20060138925A1 (en) 2004-12-28 2006-06-29 Yi-Fang Cheng Plasma processing device having a ring-shaped air chamber for heat dissipation
US7875898B2 (en) 2005-01-24 2011-01-25 Panasonic Corporation Semiconductor device
JP2006253402A (en) 2005-03-10 2006-09-21 Nec Electronics Corp Manufacturing method of semiconductor device
US7361990B2 (en) 2005-03-17 2008-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing cracking of high-lead or lead-free bumps by matching sizes of contact pads and bump pads
JP4478053B2 (en) 2005-03-29 2010-06-09 株式会社ディスコ Semiconductor wafer processing method
JP4285455B2 (en) * 2005-07-11 2009-06-24 パナソニック株式会社 Manufacturing method of semiconductor chip
JP4599243B2 (en) 2005-07-12 2010-12-15 株式会社ディスコ Laser processing equipment
JP4769560B2 (en) 2005-12-06 2011-09-07 株式会社ディスコ Wafer division method
JP4372115B2 (en) 2006-05-12 2009-11-25 パナソニック株式会社 Semiconductor device manufacturing method and semiconductor module manufacturing method
JP4480728B2 (en) 2006-06-09 2010-06-16 パナソニック株式会社 Method for manufacturing MEMS microphone
JP4544231B2 (en) 2006-10-06 2010-09-15 パナソニック株式会社 Manufacturing method of semiconductor chip
JP4840174B2 (en) * 2007-02-08 2011-12-21 パナソニック株式会社 Manufacturing method of semiconductor chip
JP4840200B2 (en) 2007-03-09 2011-12-21 パナソニック株式会社 Manufacturing method of semiconductor chip
US7926410B2 (en) 2007-05-01 2011-04-19 J.R. Automation Technologies, L.L.C. Hydraulic circuit for synchronized horizontal extension of cylinders
JP5111938B2 (en) 2007-05-25 2013-01-09 日東電工株式会社 Method for holding semiconductor wafer
JP5205012B2 (en) 2007-08-29 2013-06-05 株式会社半導体エネルギー研究所 Display device and electronic apparatus including the display device
JP4858395B2 (en) 2007-10-12 2012-01-18 パナソニック株式会社 Plasma processing equipment
US7859084B2 (en) 2008-02-28 2010-12-28 Panasonic Corporation Semiconductor substrate
JP2009260272A (en) 2008-03-25 2009-11-05 Panasonic Corp Method of processing substrate, method of manufacturing semiconductor chip and method of manufacturing semiconductor chip with resin adhesion layer
WO2009126907A2 (en) 2008-04-10 2009-10-15 Applied Materials, Inc. Laser-scribing platform and hybrid writing strategy
US20100013036A1 (en) 2008-07-16 2010-01-21 Carey James E Thin Sacrificial Masking Films for Protecting Semiconductors From Pulsed Laser Process
US8609512B2 (en) 2009-03-27 2013-12-17 Electro Scientific Industries, Inc. Method for laser singulation of chip scale packages on glass substrates
US8642448B2 (en) 2010-06-22 2014-02-04 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US9082839B2 (en) 2011-03-14 2015-07-14 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
US8946058B2 (en) 2011-03-14 2015-02-03 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
US9070760B2 (en) 2011-03-14 2015-06-30 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
US8691702B2 (en) * 2011-03-14 2014-04-08 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
US8802545B2 (en) 2011-03-14 2014-08-12 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
US9343365B2 (en) 2011-03-14 2016-05-17 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
US8912077B2 (en) 2011-06-15 2014-12-16 Applied Materials, Inc. Hybrid laser and plasma etch wafer dicing using substrate carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460703A (en) * 1992-11-12 1995-10-24 Applied Materials, Inc. Low thermal expansion clamping mechanism
US6231674B1 (en) * 1994-02-23 2001-05-15 Applied Materials, Inc. Wafer edge deposition elimination
US5632873A (en) * 1995-05-22 1997-05-27 Stevens; Joseph J. Two piece anti-stick clamp ring
US6214184B1 (en) * 1997-05-14 2001-04-10 Taiwan Semiconductor Manufacturing Company, Ltd Insulated wafer pedestal
US6159299A (en) * 1999-02-09 2000-12-12 Applied Materials, Inc. Wafer pedestal with a purge ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160240352A1 (en) * 2015-02-17 2016-08-18 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus and method for manufacturing electronic component
US9786472B2 (en) * 2015-02-17 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus and method for manufacturing electronic component

Also Published As

Publication number Publication date
WO2015094863A1 (en) 2015-06-25
US20150170884A1 (en) 2015-06-18
TW201530642A (en) 2015-08-01
US9293304B2 (en) 2016-03-22
TWI644352B (en) 2018-12-11

Similar Documents

Publication Publication Date Title
US9165812B2 (en) Cooled tape frame lift and low contact shadow ring for plasma heat isolation
JP6903110B2 (en) Cooling pedestal for dicing tape heat management during plasma dicing
US9293304B2 (en) Plasma thermal shield for heat dissipation in plasma chamber
US9218992B2 (en) Hybrid laser and plasma etch wafer dicing using substrate carrier
US9112050B1 (en) Dicing tape thermal management by wafer frame support ring cooling during plasma dicing
US9117868B1 (en) Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing
US9269604B2 (en) Wafer edge warp suppression for thin wafer supported by tape frame
US20200258780A1 (en) Transfer arm for film frame substrate handling during plasma singulation of wafers
US9159621B1 (en) Dicing tape protection for wafer dicing using laser scribe process
US20150170955A1 (en) Actively-cooled shadow ring for heat dissipation in plasma chamber
US9196498B1 (en) Stationary actively-cooled shadow ring for heat dissipation in plasma chamber
US9478455B1 (en) Thermal pyrolytic graphite shadow ring assembly for heat dissipation in plasma chamber

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OUYE, ALAN HIROSHI;REEL/FRAME:032478/0499

Effective date: 20140317

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION