US20150167542A1 - Actuating device and joint - Google Patents

Actuating device and joint Download PDF

Info

Publication number
US20150167542A1
US20150167542A1 US14/412,657 US201314412657A US2015167542A1 US 20150167542 A1 US20150167542 A1 US 20150167542A1 US 201314412657 A US201314412657 A US 201314412657A US 2015167542 A1 US2015167542 A1 US 2015167542A1
Authority
US
United States
Prior art keywords
bearing face
bearing
coupling member
face
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/412,657
Other versions
US9353676B2 (en
Inventor
Peter Reinisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of US20150167542A1 publication Critical patent/US20150167542A1/en
Assigned to MAHLE INTERNATIONAL GMBH reassignment MAHLE INTERNATIONAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REINISCH, PETER
Application granted granted Critical
Publication of US9353676B2 publication Critical patent/US9353676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • F02B37/186Arrangements of actuators or linkage for bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/105Final actuators by passing part of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0661Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the two co-operative parts each having both convex and concave interfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32606Pivoted
    • Y10T403/32631Universal ball and socket

Definitions

  • the present invention relates to an actuating device for bi-directionally adjusting an actuator, in particular of an internal combustion engine, having the features of the preamble of claim 1 .
  • the invention also relates to a joint for such an actuating device.
  • the present invention finally relates to an exhaust gas turbocharger that is equipped with such an actuating device.
  • EP 0 976 919 B1 discloses an actuating device for bi-directionally adjusting a wastegate valve of a turbocharger of an internal combustion engine.
  • the actuating device comprises an actuator drive for generating actuation forces and a coupling device for transmitting the actuation forces from the actuator drive to the actuator formed by the wastegate valve.
  • the coupling device is drive-connected on one side to the actuator drive and on the other side to the actuator.
  • the coupling device comprises at least a first coupling member, a second coupling member and a joint that connects the two coupling members to each other in an articulated manner.
  • the joint is configured as a ball joint, which comprises a ball formed on the first coupling member and a cylindrical ball receptacle formed on the second coupling member, into which the ball is inserted axially.
  • the actuator drive is configured in the known actuation device as a pneumatic drive, which drives the first coupling member linearly.
  • the second coupling member is connected via a lever arrangement to the wastegate valve, which is mounted such that is can be displaced pivotably about a pivot axis. A linear adjustment movement of the actuator is thus converted into a rotary adjustment movement of the wastegate valve, that is, the actuator, inside the coupling device.
  • actuating devices which couple kinematically different actuation movements with each other, for example a translatory movement with a rotary movement
  • at least one joint must be present inside the coupling device in order to avoid stresses inside the coupling device.
  • the joint is designed such that it allows different inclination angles between the coupling members.
  • actuating devices that can likewise have such a construction can be used for example for adjusting a variable turbine geometry or for adjusting flaps of a fresh air system, for example control flaps, tumble flaps or swirl flaps.
  • the configuration of the joint as a ball joint can be problematic if comparatively large compressive forces must be transmitted but at the same time only comparatively little installation space is available. Reduced installation space limits the maximum ball diameter that can be used. The smaller the ball diameter, the larger the surface pressure and the smaller the compressive forces that can be transmitted.
  • the present invention is concerned with the problem of specifying an improved embodiment for an actuating device of the above-mentioned type and for an exhaust gas turbocharger equipped therewith and for an associated joint, which is characterised in particular in that comparatively large compressive forces can be transmitted with a compact design.
  • the invention is based on the general concept of using only a ball segment instead of a virtually complete ball inside the joint. Since the ball segment can utilise the entire installation space, the associated ball diameter can be selected to be much larger than in the case where a virtually complete ball must be accommodated in the same installation space. In other words, the ball segment used has a ball diameter, the associated sphere of which is much greater than the installation space provided to accommodate the ball segment. The enlarged ball diameter results in reduced surface pressure, which allows larger compressive forces to be transmitted.
  • the joint according to the invention comprises a housing, which is fixedly connected to the first coupling member and has a bearing chamber, which is open towards the second coupling member and has a spherical-segment-shaped first bearing face facing away from the first coupling member, the centre of rotation of which bearing face lies on the longitudinal centre axis of the housing.
  • the centre of rotation of the first bearing face corresponds to the centre point of the associated virtual sphere.
  • the joint further comprises a bearing shell, which is fixedly connected to a shaft of the second coupling member and is arranged in the bearing chamber and has a spherical-segment-shaped first counter bearing face, which faces the first coupling member, is shaped in a complementary manner to the first bearing face and bears flat against the latter. Since the first counter bearing face is shaped in a complementary manner to the first bearing face and bears flat against the latter, a centre of rotation of the first counter bearing face and the centre of rotation of the first bearing face are identical.
  • the ball segment of the interacting bearing faces can expediently be dimensioned such that a maximum deflection that can be expected between the two coupling members when the joint is used properly and as intended is reliably covered by the size of the ball segment selected in each case.
  • An outer limit of the bearing shell is preferably selected in such a manner that a connection line of the outermost point of the first counter bearing face on the bearing shell from the ball centre point does not exceed the longitudinal centre axis of the housing even with maximum deflection between the two coupling members.
  • the above-mentioned bearing shell can also have a spherical-segment-shaped second counter bearing face, which faces away from the first coupling member and the centre of rotation of which coincides with the centre of rotation of the first counter bearing face.
  • the joint also comprises in this case a clamping ring, which encloses the shaft of the second coupling member, which projects from the open side of the bearing chamber into the bearing chamber, and is fastened to the housing and has a spherical-segment-shaped second bearing face, which faces the first coupling member, is shaped in a complementary manner to the second counter bearing face and bears flat against the latter.
  • a centre of rotation of the second bearing face corresponds identically to the centre of rotation of the second counter bearing face.
  • the bearing shell thus defines with its two counter bearing faces two ball segments, the associated spheres of which are arranged concentrically and correspondingly have the same sphere centre point.
  • a first radius of the first bearing face and of the first counter bearing face can be greater than half an outer diameter of the housing. Additionally or alternatively, a second radius of the second bearing face and of the second counter bearing face can be greater than half an outer diameter of the housing.
  • first bearing face and the first counter bearing face can bear against each other over their entire area. According to an advantageous embodiment, however, it can be provided for the first bearing face and the first counter bearing face only to bear flat against each other in an annular region, while they are spaced apart axially from each other in a central region enclosed by the annular region. This design makes it possible to make the joint more compact overall in the axial direction.
  • the first bearing face can be defined by a spherical-segment-shaped annular region that encloses a flat central region.
  • the first counter bearing face can then have in a complementary manner thereto a spherical-segment-shaped annular region and an open central region enclosed thereby.
  • the second bearing face can be formed by a spherical-segment-shaped annular region. Additionally or alternatively, the second counter bearing face can be formed by a spherical-segment-shaped annular region.
  • the bearing shell in principle, it is conceivable for the bearing shell to be formed integrally on the shaft. However, an embodiment is preferred in which the bearing shell is a separate component from the shaft and is connected fixedly to the shaft. A variant constructed in this manner simplifies the production of the individual parts.
  • the bearing shell designed as a separate component can have a shaft-receiving opening, which passes through the bearing shell and into which the shaft is inserted axially, an axial end face of the shaft being spaced apart axially from the first bearing face.
  • the shaft is thus supported only indirectly on the housing by means of the bearing shell.
  • the first bearing face can be formed on an insertion part, which is a separate component from the housing and is inserted into the bearing chamber.
  • the use of such an insertion part makes it possible to produce the first bearing face with high precision outside the housing or independently of the housing, as a result of which the production of the housing is simplified.
  • an alternative embodiment is also conceivable, in which the first bearing face is formed integrally on the housing.
  • the insertion part can then be provided for the insertion part to be prestressed against the bearing shell by means of at least one spring element.
  • the faces that interact with each other thus always remain in contact, as a result of which relative movements, noise and wear can be reduced.
  • the clamping ring can enclose the shaft with radial play.
  • This radial play which is situated at a point at a distance from the centre of rotation of the joint, means that the freedom of movement of the shaft relative to the housing or relative to the clamping ring can be predefined.
  • the shaft can deflected about the centre of rotation of the joint up to no more than 20° or up to no more than 10° out of a coaxial orientation between shaft and housing.
  • the radial play can thus be used to define a movement stop between shaft and clamping ring.
  • the clamping ring can have an external thread.
  • the housing can have an internal thread, which is shaped in a complementary manner to the external thread of the clamping ring, in an end region that has the open side of the bearing chamber.
  • the clamping ring can then be screwed into the housing.
  • a tightening torque for the clamping ring can be used for example to set a bearing play or a bearing friction inside the joint.
  • the clamping ring can have a radial collar, which projects radially and runs around in the circumferential direction and can act as an axial stop between clamping ring and housing.
  • the first bearing face, the first counter bearing face, the second bearing face and the second counter bearing face can be curved in a convex manner towards the second coupling member.
  • a design for the joint that is particularly compact in the axial direction can be realised thereby.
  • an embodiment is also conceivable in which the first bearing face, the first counter bearing face, the second bearing face and the second counter bearing face can be curved in a concave manner towards the second coupling member.
  • an exhaust gas turbocharger in order to be able to operate a wastegate valve or a variable turbine geometry.
  • An exhaust gas turbocharger usually has a compressor to compress fresh air and a turbine to expand exhaust gas, compressor and turbine being drive-connected to each other by means of a common drive shaft.
  • the exhaust gas turbocharger or the turbine thereof can have a wastegate valve, preferably in a petrol engine.
  • the turbine can also be provided with a variable turbine geometry for power regulation, preferably in a diesel engine.
  • the wastegate valve can be used e.g. for rapid heating of a downstream catalytic converter.
  • a joint according to the invention which can be used for producing an articulated connection that can transmit compressive and tensile forces between a first coupling member and a second coupling member, is thus characterised by a housing that can be connected fixedly to the first coupling member and has a bearing chamber, which has an axial bearing chamber opening and a spherical-segment-shaped first bearing face facing the bearing chamber opening, the centre of rotation of which lies on the longitudinal centre axis of the housing.
  • the joint further comprises a bearing shell, which can be fixedly connected to a shaft of the second coupling member and is arranged in the bearing chamber and has a spherical-segment-shaped first counter bearing face, which faces away from the bearing chamber opening, is shaped in a complementary manner to the first bearing face and bears flat against the latter. So that the joint can also transmit tensile forces, it can optionally be provided for the bearing shell also to have a spherical-segment-shaped second counter bearing face, which faces the bearing chamber opening and the centre of rotation of which coincides with the centre of rotation of the first counter bearing face.
  • the joint further comprises a clamping ring, which projects axially through the bearing chamber opening into the bearing chamber, is fastened to the housing and has a spherical-segment-shaped second bearing face, which faces away from the bearing chamber opening, is shaped in a complementary manner to the second counter bearing face and bears flat against the latter.
  • FIG. 1 schematically shows a highly simplified diagram of an actuating device
  • FIG. 2 schematically shows a sectional view through a joint of the actuating device
  • FIG. 3 schematically shows sectional views through the joint of FIG. 2 , but in different assembly states a to e.
  • an actuating device 1 with the aid of which an actuator 2 can be adjusted bi-directionally according to a double arrow 3 , comprises an actuator drive 4 and a coupling device 5 .
  • the actuator 2 is a wastegate valve of a turbocharger 6 in the example of FIG. 1 .
  • the actuator drive 4 is for example an electric motor and can generate actuation forces that can be both compressive forces and tensile forces.
  • the coupling device 5 is drive-connected on one side to the actuator drive 4 and on the other side to the actuator 2 .
  • the coupling device 5 comprises at least a first coupling member 7 , a second coupling member 8 and a joint 9 that connects the two coupling members 7 , 8 to each other in an articulated manner.
  • the joint 9 can further transmit the tensile and compressive forces of the actuator drive 4 between the two coupling members 7 , 8 .
  • the actuator drive 4 is connected to the second coupling member 8 , which in this case is rod-shaped and can be adjusted bi-directionally and in a linear and/or translatory manner according to a double arrow 10 with the aid of the actuator drive 4 .
  • the first coupling member 7 is however drive-connected to the actuator 2 by means of a lever arrangement 11 .
  • the lever arrangement 11 comprises a spindle 12 , which is mounted such that it can be displaced in a rotary manner about a rotation axis 13 , so that the lever arrangement 11 and thus the actuator 2 can be adjusted bi-directionally and in a rotary manner in relation to the rotation axis 13 according to a double arrow 14 .
  • the coupling device 5 thus forms the coupling of a translatory actuation movement of the actuating device 4 with a rotary actuation movement of the actuator 2 .
  • the joint 9 has a corresponding degree of freedom. At the same time, the joint 9 must be able to transmit the comparatively large forces in the tensile and compressive directions.
  • the joint 9 comprises a housing 15 , which is connected fixedly to the first coupling member 7 when in the installed state.
  • the housing 15 has a bearing chamber 16 , which is open towards the second coupling member 8 and has a bearing chamber opening 17 .
  • FIG. 2 shows a shaft 18 of the second coupling member 8 , which can either be formed integrally on the second coupling member 8 or attached to the second coupling member 8 .
  • the bearing chamber 16 further has a spherical-segment-shaped first bearing face 19 , which faces the bearing chamber opening 17 and faces away from the first coupling member 7 when in the installed state, the centre of rotation 20 of which lies on a longitudinal centre axis 21 of the housing 15 .
  • the joint 9 also has a bearing shell 22 , which can be connected fixedly to the shaft 18 or is connected fixedly when the joint 9 and actuating device 1 are in the assembled state.
  • the bearing shell 22 is arranged in the bearing chamber 16 and has a first counter bearing face 23 , which faces away from the bearing chamber opening 17 and is shaped in a complementary manner to the first bearing face 19 , that is, is likewise spherical-segment-shaped and bears flat against the first bearing face 19 .
  • the bearing shell 22 also has a second counter bearing face 24 , which faces the bearing chamber opening 17 and is likewise spherical-segment-shaped, and the centre of rotation 25 of which coincides with the centre of rotation 20 of the first counter bearing face 23 .
  • the centre of rotation 20 is identical for the first bearing face 19 and the first counter bearing face 23 .
  • the second counter bearing face 24 is likewise spherical-segment-shaped.
  • the joint 9 also comprises a clamping ring 26 , which encloses the shaft 18 when in the assembled state and is inserted from the open side of the bearing chamber 16 into the bearing chamber opening 17 and projects into the bearing chamber 16 .
  • the bearing ring 26 is fastened to the housing 15 and has a second bearing face 27 , which is spherical-segment-shaped, is shaped in a complementary manner to the second counter bearing face 24 and faces away from the bearing chamber opening 17 .
  • the second bearing face 27 bears flat against the second counter bearing face 24 and has the same centre of rotation 25 .
  • centres of rotation of the four spherical-segment-shaped faces ultimately coincide in a common centre point 28 , which forms a centre point of concentric spheres, on which the spherical-segment faces of the first bearing face 19 and of the first counter bearing face 23 on one side and of the second bearing face 27 and of the second counter bearing face 24 on the other side lie.
  • the housing 15 has an outer diameter 29 .
  • the first bearing face 19 and the first counter bearing face 23 have a first radius 30 in relation to the common centre point 28 and in relation to the common centre of rotation 20 .
  • the second bearing face 27 and the second counter bearing face 24 have a second radius 31 in relation to the common centre point 28 and in relation to the common centre of rotation 25 .
  • the first radius 30 and the second radius 31 are each greater than half the outer diameter 29 .
  • a first sphere diameter belonging to the first bearing face 19 and to the first counter bearing face 23 is greater than the outer diameter 29 .
  • the first bearing face 19 and the first counter bearing face 23 bear flat against each other only in an annular region 32 .
  • the first bearing face 19 and the first counter bearing face 23 are however spaced apart from each other in a central region 33 enclosed by the ring region 32 .
  • the axial direction is defined by the longitudinal centre axis 21 of the housing 15 .
  • the first bearing face 19 has a spherical-segment-shaped annular region 34 and a flat central region 35 enclosed by the annular region 34 .
  • the first counter bearing face 23 has a spherical-segment-shaped annular region 36 and an open central region 37 enclosed by the annular region 36 .
  • the second bearing face 27 is formed by a spherical-segment-shaped annular region 38 .
  • the second counter bearing face 24 is formed by a spherical-segment-shaped annular region 39 .
  • the bearing shell 22 is a separate component from the shaft 18 and is connected fixedly to the shaft 18 .
  • a welded connection 40 which is expediently formed in the open central region 37 , is preferably provided here for the connection.
  • the bearing shell 22 has a shaft-receiving opening 41 , which passes through the bearing shell 22 .
  • the shaft 18 is inserted axially into this shaft-receiving opening 41 .
  • An axial end face 42 of the shaft 18 delimits the open central region 37 and is spaced apart axially from the first bearing face 19 .
  • the flat end face 42 in particular lies opposite the flat central region 35 . At least in the starting position shown in FIG. 1 , in which the longitudinal centre axis 21 of the housing 15 coincides with a longitudinal centre axis 43 of the shaft 18 .
  • the first bearing face 19 is formed on an insertion part 44 .
  • the insertion part 44 forms a separate component from the housing 15 and is inserted into the bearing chamber 16 .
  • a spring element 45 is indicated, which can be provided to prestress the insertion part 44 against the bearing shell 22 .
  • the spring element 45 can be supported on one side on a rear side 46 of the insertion part 44 that faces away from the first bearing face 19 and on the other side on a bearing chamber bottom 47 opposite the bearing chamber opening 17 or in a recess cut into the bottom 47 .
  • the clamping ring 26 has a radial play 48 in relation to the shaft 18 , which surrounds the shaft 18 uniformly in the circumferential direction in the starting position shown in FIG. 2 .
  • the shaft 18 can thereby be rotated spatially about the centre point 28 in relation to the housing 15 .
  • the radial play 48 is dimensioned such that a predefined ability to be displaced in a pivotable manner can thereby be ensured for the shaft 18 relative to the housing 15 .
  • the shaft 18 should be pivotable by up to no more than 20° or up to no more than 10° relative to the housing 15 , the respective pivot angle forming between the longitudinal centre axis 21 of the housing 15 and the longitudinal centre axis 43 of the shaft 18 , which intersect at the centre point 28 .
  • the clamping ring 26 has an external thread 49
  • the housing 15 has an internal thread 51 , which is formed in a complementary manner to the external thread 49 , in an end region 50 having the bearing chamber opening 17 .
  • the clamping ring 26 is thus screwed into the housing 15 .
  • the screw-in depth and/or a tightening torque of the clamping ring 26 can be used to set a bearing play in the sliding bearings formed by the first bearing face 19 and the first counter bearing face 23 and by the second bearing face 27 and the second counter bearing face 24 .
  • first bearing face 19 , the first counter bearing face 23 , the second bearing face 27 and the second counter bearing face 24 are curved in a convex manner towards the bearing chamber opening 17 .
  • said faces 19 , 23 , 27 , 24 could also be curved in a concave manner.
  • FIG. 2 A possible assembly of the joint 9 shown in FIG. 2 is explained in more detail below using FIGS. 3 a - 3 e.
  • the shaft 18 is inserted into the bearing shell 22 and connected fixedly thereto, for example by means of a welded connection 40 , according to FIG. 3 a.
  • the insertion part 44 that has the first bearing face 19 is inserted into the housing 15 and into the bearing chamber 16 thereof.
  • the shaft 18 with the bearing shell 22 is then inserted into the bearing receptacle 16 , the first counter bearing face 23 then being supported on the first bearing face 19 .
  • the clamping ring 26 is then mounted until the second bearing face 27 makes contact with the second counter bearing face 24 .
  • the faces 19 , 23 and 24 , 27 that interact with each other should bear against each other in a play-free manner.
  • the joint 9 thus allows pivot movements between the housing 15 and the shaft 18 about the centre point 28 .

Abstract

An actuating device for bi-directionally adjusting an actuator may include an actuator drive and a coupling device drive-connected to the actuator drive and the actuator. The coupling device may include a first coupling member, a second coupling member and a joint connecting the first coupling member and the second coupling member to each other in an articulated manner. The joint may have a housing which is fixedly connected to the first coupling member. The housing may define a bearing chamber having a first bearing face facing away from the first coupling member. The joint may include a bearing shell fixedly connected to a shaft of the second coupling member. The bearing shell may be arranged in the bearing chamber and have a first counter bearing face facing the first coupling member. The bearing shell may have a second counter bearing face facing away from the first coupling member.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to German Patent Application No. 10 2012 211 535.8, filed Jul. 3, 2012, and International Patent Application No. PCT/EP2013/063631, filed Jun. 28, 2013, both of which are hereby incorporated by reference in their entirety.
  • TECHNICAL FIELD
  • The present invention relates to an actuating device for bi-directionally adjusting an actuator, in particular of an internal combustion engine, having the features of the preamble of claim 1. The invention also relates to a joint for such an actuating device. The present invention finally relates to an exhaust gas turbocharger that is equipped with such an actuating device.
  • BACKGROUND
  • EP 0 976 919 B1 discloses an actuating device for bi-directionally adjusting a wastegate valve of a turbocharger of an internal combustion engine. The actuating device comprises an actuator drive for generating actuation forces and a coupling device for transmitting the actuation forces from the actuator drive to the actuator formed by the wastegate valve. To this end, the coupling device is drive-connected on one side to the actuator drive and on the other side to the actuator. The coupling device comprises at least a first coupling member, a second coupling member and a joint that connects the two coupling members to each other in an articulated manner. In the known actuation device, the joint is configured as a ball joint, which comprises a ball formed on the first coupling member and a cylindrical ball receptacle formed on the second coupling member, into which the ball is inserted axially. The actuator drive is configured in the known actuation device as a pneumatic drive, which drives the first coupling member linearly. The second coupling member is connected via a lever arrangement to the wastegate valve, which is mounted such that is can be displaced pivotably about a pivot axis. A linear adjustment movement of the actuator is thus converted into a rotary adjustment movement of the wastegate valve, that is, the actuator, inside the coupling device.
  • In such actuating devices, which couple kinematically different actuation movements with each other, for example a translatory movement with a rotary movement, at least one joint must be present inside the coupling device in order to avoid stresses inside the coupling device. The joint is designed such that it allows different inclination angles between the coupling members.
  • Other actuating devices that can likewise have such a construction can be used for example for adjusting a variable turbine geometry or for adjusting flaps of a fresh air system, for example control flaps, tumble flaps or swirl flaps.
  • The configuration of the joint as a ball joint can be problematic if comparatively large compressive forces must be transmitted but at the same time only comparatively little installation space is available. Reduced installation space limits the maximum ball diameter that can be used. The smaller the ball diameter, the larger the surface pressure and the smaller the compressive forces that can be transmitted.
  • SUMMARY
  • The present invention is concerned with the problem of specifying an improved embodiment for an actuating device of the above-mentioned type and for an exhaust gas turbocharger equipped therewith and for an associated joint, which is characterised in particular in that comparatively large compressive forces can be transmitted with a compact design.
  • This problem is solved according to the invention by the subject matter of the independent claims. Advantageous embodiments form the subject matter of the dependent claims.
  • The invention is based on the general concept of using only a ball segment instead of a virtually complete ball inside the joint. Since the ball segment can utilise the entire installation space, the associated ball diameter can be selected to be much larger than in the case where a virtually complete ball must be accommodated in the same installation space. In other words, the ball segment used has a ball diameter, the associated sphere of which is much greater than the installation space provided to accommodate the ball segment. The enlarged ball diameter results in reduced surface pressure, which allows larger compressive forces to be transmitted.
  • In detail, the joint according to the invention comprises a housing, which is fixedly connected to the first coupling member and has a bearing chamber, which is open towards the second coupling member and has a spherical-segment-shaped first bearing face facing away from the first coupling member, the centre of rotation of which bearing face lies on the longitudinal centre axis of the housing. The centre of rotation of the first bearing face corresponds to the centre point of the associated virtual sphere. The joint further comprises a bearing shell, which is fixedly connected to a shaft of the second coupling member and is arranged in the bearing chamber and has a spherical-segment-shaped first counter bearing face, which faces the first coupling member, is shaped in a complementary manner to the first bearing face and bears flat against the latter. Since the first counter bearing face is shaped in a complementary manner to the first bearing face and bears flat against the latter, a centre of rotation of the first counter bearing face and the centre of rotation of the first bearing face are identical.
  • The ball segment of the interacting bearing faces can expediently be dimensioned such that a maximum deflection that can be expected between the two coupling members when the joint is used properly and as intended is reliably covered by the size of the ball segment selected in each case. The larger the possible deflection between the coupling members, the larger the size of the ball segment must be selected. An outer limit of the bearing shell is preferably selected in such a manner that a connection line of the outermost point of the first counter bearing face on the bearing shell from the ball centre point does not exceed the longitudinal centre axis of the housing even with maximum deflection between the two coupling members.
  • According to a particularly advantageous embodiment, in which the joint is also suitable for transmitting comparatively large tensile forces, the above-mentioned bearing shell can also have a spherical-segment-shaped second counter bearing face, which faces away from the first coupling member and the centre of rotation of which coincides with the centre of rotation of the first counter bearing face. Furthermore, the joint also comprises in this case a clamping ring, which encloses the shaft of the second coupling member, which projects from the open side of the bearing chamber into the bearing chamber, and is fastened to the housing and has a spherical-segment-shaped second bearing face, which faces the first coupling member, is shaped in a complementary manner to the second counter bearing face and bears flat against the latter. In this case too, a centre of rotation of the second bearing face corresponds identically to the centre of rotation of the second counter bearing face. The bearing shell thus defines with its two counter bearing faces two ball segments, the associated spheres of which are arranged concentrically and correspondingly have the same sphere centre point.
  • According to an advantageous embodiment, a first radius of the first bearing face and of the first counter bearing face can be greater than half an outer diameter of the housing. Additionally or alternatively, a second radius of the second bearing face and of the second counter bearing face can be greater than half an outer diameter of the housing. These measures mean that the curvature of the spherical-segment-shaped faces is comparatively small, that is, has a relatively large radius and diameter. This leads to a reduction in the surface pressures occurring in the joint, as a result of which the compressive and/or tensile forces that can be transmitted can be increased.
  • In principle, the first bearing face and the first counter bearing face can bear against each other over their entire area. According to an advantageous embodiment, however, it can be provided for the first bearing face and the first counter bearing face only to bear flat against each other in an annular region, while they are spaced apart axially from each other in a central region enclosed by the annular region. This design makes it possible to make the joint more compact overall in the axial direction.
  • According to an advantageous development, it can be provided for the first bearing face to be defined by a spherical-segment-shaped annular region that encloses a flat central region. The first counter bearing face can then have in a complementary manner thereto a spherical-segment-shaped annular region and an open central region enclosed thereby.
  • Additionally or alternatively, it can be provided for the second bearing face to be formed by a spherical-segment-shaped annular region. Additionally or alternatively, the second counter bearing face can be formed by a spherical-segment-shaped annular region.
  • In principle, it is conceivable for the bearing shell to be formed integrally on the shaft. However, an embodiment is preferred in which the bearing shell is a separate component from the shaft and is connected fixedly to the shaft. A variant constructed in this manner simplifies the production of the individual parts.
  • According to an advantageous development, the bearing shell designed as a separate component can have a shaft-receiving opening, which passes through the bearing shell and into which the shaft is inserted axially, an axial end face of the shaft being spaced apart axially from the first bearing face. The shaft is thus supported only indirectly on the housing by means of the bearing shell.
  • According to another advantageous embodiment, the first bearing face can be formed on an insertion part, which is a separate component from the housing and is inserted into the bearing chamber. The use of such an insertion part makes it possible to produce the first bearing face with high precision outside the housing or independently of the housing, as a result of which the production of the housing is simplified. In principle, however, an alternative embodiment is also conceivable, in which the first bearing face is formed integrally on the housing.
  • In an advantageous development, it can then be provided for the insertion part to be prestressed against the bearing shell by means of at least one spring element. The faces that interact with each other thus always remain in contact, as a result of which relative movements, noise and wear can be reduced.
  • According to another advantageous embodiment, the clamping ring can enclose the shaft with radial play. This radial play, which is situated at a point at a distance from the centre of rotation of the joint, means that the freedom of movement of the shaft relative to the housing or relative to the clamping ring can be predefined. For example, the shaft can deflected about the centre of rotation of the joint up to no more than 20° or up to no more than 10° out of a coaxial orientation between shaft and housing. The radial play can thus be used to define a movement stop between shaft and clamping ring.
  • According to another advantageous embodiment, the clamping ring can have an external thread. The housing can have an internal thread, which is shaped in a complementary manner to the external thread of the clamping ring, in an end region that has the open side of the bearing chamber. The clamping ring can then be screwed into the housing. A tightening torque for the clamping ring can be used for example to set a bearing play or a bearing friction inside the joint. The clamping ring can have a radial collar, which projects radially and runs around in the circumferential direction and can act as an axial stop between clamping ring and housing.
  • According to a preferred embodiment, the first bearing face, the first counter bearing face, the second bearing face and the second counter bearing face can be curved in a convex manner towards the second coupling member. A design for the joint that is particularly compact in the axial direction can be realised thereby. Alternatively, however, an embodiment is also conceivable in which the first bearing face, the first counter bearing face, the second bearing face and the second counter bearing face can be curved in a concave manner towards the second coupling member.
  • In an exhaust gas turbocharger according to the invention, at least one actuating device of the above-described type is provided in order to be able to operate a wastegate valve or a variable turbine geometry. An exhaust gas turbocharger usually has a compressor to compress fresh air and a turbine to expand exhaust gas, compressor and turbine being drive-connected to each other by means of a common drive shaft. To regulate power, the exhaust gas turbocharger or the turbine thereof can have a wastegate valve, preferably in a petrol engine. Alternatively, the turbine can also be provided with a variable turbine geometry for power regulation, preferably in a diesel engine. In principle it is likewise possible to provide the turbine with both a wastegate valve and a variable turbine geometry. In this case, the wastegate valve can be used e.g. for rapid heating of a downstream catalytic converter.
  • A joint according to the invention, which can be used for producing an articulated connection that can transmit compressive and tensile forces between a first coupling member and a second coupling member, is thus characterised by a housing that can be connected fixedly to the first coupling member and has a bearing chamber, which has an axial bearing chamber opening and a spherical-segment-shaped first bearing face facing the bearing chamber opening, the centre of rotation of which lies on the longitudinal centre axis of the housing. The joint further comprises a bearing shell, which can be fixedly connected to a shaft of the second coupling member and is arranged in the bearing chamber and has a spherical-segment-shaped first counter bearing face, which faces away from the bearing chamber opening, is shaped in a complementary manner to the first bearing face and bears flat against the latter. So that the joint can also transmit tensile forces, it can optionally be provided for the bearing shell also to have a spherical-segment-shaped second counter bearing face, which faces the bearing chamber opening and the centre of rotation of which coincides with the centre of rotation of the first counter bearing face. The joint further comprises a clamping ring, which projects axially through the bearing chamber opening into the bearing chamber, is fastened to the housing and has a spherical-segment-shaped second bearing face, which faces away from the bearing chamber opening, is shaped in a complementary manner to the second counter bearing face and bears flat against the latter.
  • Further important features and advantages of the invention can be found in the subclaims, the drawings and the associated description of the figures using the drawings.
  • It is self-evident that the above-mentioned features and those still to be explained below can be used not only in the combination given in each case but also in other combinations or alone without departing from the scope of the present invention.
  • Preferred exemplary embodiments of the invention are shown in the drawings and are explained in more detail in the description below, the same reference symbols referring to the same or similar or functionally equivalent components.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the figures,
  • FIG. 1 schematically shows a highly simplified diagram of an actuating device,
  • FIG. 2 schematically shows a sectional view through a joint of the actuating device,
  • FIG. 3 schematically shows sectional views through the joint of FIG. 2, but in different assembly states a to e.
  • DETAILED DESCRIPTION
  • According to FIG. 1, an actuating device 1, with the aid of which an actuator 2 can be adjusted bi-directionally according to a double arrow 3, comprises an actuator drive 4 and a coupling device 5. The actuator 2 is a wastegate valve of a turbocharger 6 in the example of FIG. 1. The actuator drive 4 is for example an electric motor and can generate actuation forces that can be both compressive forces and tensile forces. The coupling device 5 is drive-connected on one side to the actuator drive 4 and on the other side to the actuator 2. The coupling device 5 comprises at least a first coupling member 7, a second coupling member 8 and a joint 9 that connects the two coupling members 7, 8 to each other in an articulated manner. The joint 9 can further transmit the tensile and compressive forces of the actuator drive 4 between the two coupling members 7, 8. In the example, the actuator drive 4 is connected to the second coupling member 8, which in this case is rod-shaped and can be adjusted bi-directionally and in a linear and/or translatory manner according to a double arrow 10 with the aid of the actuator drive 4. The first coupling member 7 is however drive-connected to the actuator 2 by means of a lever arrangement 11. The lever arrangement 11 comprises a spindle 12, which is mounted such that it can be displaced in a rotary manner about a rotation axis 13, so that the lever arrangement 11 and thus the actuator 2 can be adjusted bi-directionally and in a rotary manner in relation to the rotation axis 13 according to a double arrow 14. The coupling device 5 thus forms the coupling of a translatory actuation movement of the actuating device 4 with a rotary actuation movement of the actuator 2. In order to allow the relative movement between the two coupling members 7, 8 necessary for this, the joint 9 has a corresponding degree of freedom. At the same time, the joint 9 must be able to transmit the comparatively large forces in the tensile and compressive directions.
  • According to FIGS. 2 and 3, the joint 9 comprises a housing 15, which is connected fixedly to the first coupling member 7 when in the installed state. The housing 15 has a bearing chamber 16, which is open towards the second coupling member 8 and has a bearing chamber opening 17. FIG. 2 shows a shaft 18 of the second coupling member 8, which can either be formed integrally on the second coupling member 8 or attached to the second coupling member 8.
  • The bearing chamber 16 further has a spherical-segment-shaped first bearing face 19, which faces the bearing chamber opening 17 and faces away from the first coupling member 7 when in the installed state, the centre of rotation 20 of which lies on a longitudinal centre axis 21 of the housing 15. The joint 9 also has a bearing shell 22, which can be connected fixedly to the shaft 18 or is connected fixedly when the joint 9 and actuating device 1 are in the assembled state. The bearing shell 22 is arranged in the bearing chamber 16 and has a first counter bearing face 23, which faces away from the bearing chamber opening 17 and is shaped in a complementary manner to the first bearing face 19, that is, is likewise spherical-segment-shaped and bears flat against the first bearing face 19. The bearing shell 22 also has a second counter bearing face 24, which faces the bearing chamber opening 17 and is likewise spherical-segment-shaped, and the centre of rotation 25 of which coincides with the centre of rotation 20 of the first counter bearing face 23. The centre of rotation 20 is identical for the first bearing face 19 and the first counter bearing face 23. The second counter bearing face 24 is likewise spherical-segment-shaped.
  • The joint 9 also comprises a clamping ring 26, which encloses the shaft 18 when in the assembled state and is inserted from the open side of the bearing chamber 16 into the bearing chamber opening 17 and projects into the bearing chamber 16. The bearing ring 26 is fastened to the housing 15 and has a second bearing face 27, which is spherical-segment-shaped, is shaped in a complementary manner to the second counter bearing face 24 and faces away from the bearing chamber opening 17. The second bearing face 27 bears flat against the second counter bearing face 24 and has the same centre of rotation 25. The centres of rotation of the four spherical-segment-shaped faces ultimately coincide in a common centre point 28, which forms a centre point of concentric spheres, on which the spherical-segment faces of the first bearing face 19 and of the first counter bearing face 23 on one side and of the second bearing face 27 and of the second counter bearing face 24 on the other side lie.
  • The housing 15 has an outer diameter 29. The first bearing face 19 and the first counter bearing face 23 have a first radius 30 in relation to the common centre point 28 and in relation to the common centre of rotation 20. The second bearing face 27 and the second counter bearing face 24 have a second radius 31 in relation to the common centre point 28 and in relation to the common centre of rotation 25. The first radius 30 and the second radius 31 are each greater than half the outer diameter 29. Thus a first sphere diameter belonging to the first bearing face 19 and to the first counter bearing face 23 is greater than the outer diameter 29. The same applies correspondingly all the more to a second sphere diameter belonging to the second bearing face 27 and to the second counter bearing face 24.
  • The first bearing face 19 and the first counter bearing face 23 bear flat against each other only in an annular region 32. The first bearing face 19 and the first counter bearing face 23 are however spaced apart from each other in a central region 33 enclosed by the ring region 32. The axial direction is defined by the longitudinal centre axis 21 of the housing 15. For this design, the first bearing face 19 has a spherical-segment-shaped annular region 34 and a flat central region 35 enclosed by the annular region 34. The first counter bearing face 23 has a spherical-segment-shaped annular region 36 and an open central region 37 enclosed by the annular region 36. The second bearing face 27 is formed by a spherical-segment-shaped annular region 38. The second counter bearing face 24 is formed by a spherical-segment-shaped annular region 39.
  • In the preferred embodiment shown here, the bearing shell 22 is a separate component from the shaft 18 and is connected fixedly to the shaft 18. A welded connection 40, which is expediently formed in the open central region 37, is preferably provided here for the connection. For this design, the bearing shell 22 has a shaft-receiving opening 41, which passes through the bearing shell 22. The shaft 18 is inserted axially into this shaft-receiving opening 41. An axial end face 42 of the shaft 18 delimits the open central region 37 and is spaced apart axially from the first bearing face 19. The flat end face 42 in particular lies opposite the flat central region 35. At least in the starting position shown in FIG. 1, in which the longitudinal centre axis 21 of the housing 15 coincides with a longitudinal centre axis 43 of the shaft 18.
  • In the example shown here, the first bearing face 19 is formed on an insertion part 44. The insertion part 44 forms a separate component from the housing 15 and is inserted into the bearing chamber 16. In FIG. 2, a spring element 45 is indicated, which can be provided to prestress the insertion part 44 against the bearing shell 22. To this end, the spring element 45 can be supported on one side on a rear side 46 of the insertion part 44 that faces away from the first bearing face 19 and on the other side on a bearing chamber bottom 47 opposite the bearing chamber opening 17 or in a recess cut into the bottom 47.
  • The clamping ring 26 has a radial play 48 in relation to the shaft 18, which surrounds the shaft 18 uniformly in the circumferential direction in the starting position shown in FIG. 2. The shaft 18 can thereby be rotated spatially about the centre point 28 in relation to the housing 15. The radial play 48 is dimensioned such that a predefined ability to be displaced in a pivotable manner can thereby be ensured for the shaft 18 relative to the housing 15. For example, the shaft 18 should be pivotable by up to no more than 20° or up to no more than 10° relative to the housing 15, the respective pivot angle forming between the longitudinal centre axis 21 of the housing 15 and the longitudinal centre axis 43 of the shaft 18, which intersect at the centre point 28.
  • In the example, the clamping ring 26 has an external thread 49, while the housing 15 has an internal thread 51, which is formed in a complementary manner to the external thread 49, in an end region 50 having the bearing chamber opening 17. The clamping ring 26 is thus screwed into the housing 15. The screw-in depth and/or a tightening torque of the clamping ring 26 can be used to set a bearing play in the sliding bearings formed by the first bearing face 19 and the first counter bearing face 23 and by the second bearing face 27 and the second counter bearing face 24.
  • In the embodiment shown here, the first bearing face 19, the first counter bearing face 23, the second bearing face 27 and the second counter bearing face 24 are curved in a convex manner towards the bearing chamber opening 17. This produces a particularly compact construction in the axial direction. In principle, said faces 19, 23, 27, 24 could also be curved in a concave manner.
  • A possible assembly of the joint 9 shown in FIG. 2 is explained in more detail below using FIGS. 3 a-3 e.
  • First, the shaft 18 is inserted into the bearing shell 22 and connected fixedly thereto, for example by means of a welded connection 40, according to FIG. 3 a.
  • According to FIG. 3 b, the insertion part 44 that has the first bearing face 19 is inserted into the housing 15 and into the bearing chamber 16 thereof. According to FIG. 3 c, the shaft 18 with the bearing shell 22 is then inserted into the bearing receptacle 16, the first counter bearing face 23 then being supported on the first bearing face 19. According to FIG. 3 d, the clamping ring 26 is then mounted until the second bearing face 27 makes contact with the second counter bearing face 24. In particular, the faces 19, 23 and 24, 27 that interact with each other should bear against each other in a play-free manner.
  • According to FIG. 3 e, the joint 9 thus allows pivot movements between the housing 15 and the shaft 18 about the centre point 28.

Claims (20)

1. An actuating device for bi-directionally adjusting an actuator, comprising:
an actuator drive for generating actuation forces,
a coupling device, which is drive-connected to the actuator drive and drive-connected to the actuator to transmit the actuation forces from the actuator drive to the actuator,
the coupling device including a first coupling member, a second coupling member and a joint that connects the first coupling member and the second coupling member to each other in an articulated manner,
the joint having a housing, which is fixedly connected to the first coupling member and defines a bearing chamber, the bearing chamber being open towards the second coupling member and having a spherical-segment-shaped first bearing face facing away from the first coupling member, the first bearing face having a centre of rotation which lies on a longitudinal centre axis of the housing,
the joint including a bearing shell, which is fixedly connected to a shaft of the second coupling member, the bearing shell being arranged in the bearing chamber and having a spherical-segment-shaped first counter bearing face, which faces the first coupling member, the first counter bearing face being shaped in a complementary manner to the first bearing face and bears flat against the latter, and a spherical-segment-shaped second counter bearing face, which faces away from the first coupling member and includes a centre of rotation which coincides with a centre of rotation of the first counter bearing face,
the joint including a clamping ring, which encloses the shaft of the second coupling member, the clamping ring projecting from an open side of the bearing chamber into the bearing chamber, wherein the clamping ring secured to the housing and has a spherical-segment-shaped second bearing face, which faces the first coupling member, the second bearing face being shaped in a complementary manner to the second counter bearing face and bears flat against the latter.
2. The actuating device according to claim 1, wherein at least one of:
a radius of the first bearing face and the first counter bearing face is greater than half an outer diameter of the housing, and
a second radius of the second bearing face and the second counter bearing face is greater than half an outer diameter of the housing.
3. The actuating device according to claim 1, wherein the first bearing face and the first counter bearing face bear flat against each other only in an annular region, and wherein the first bearing face and the first counter bearing face are spaced apart from each other axially in a central region enclosed by the annular region.
4. The actuating device according to claim 1, wherein the bearing shell is a separate component from the shaft and is connected fixedly to the shaft.
5. The actuating device according to claim 4, wherein the bearing shell has a shaft-receiving opening, which passes through the bearing shell and in which the shaft is inserted axially, wherein an axial end face of the shaft is spaced apart axially from the first bearing face.
6. The actuating device according to claim 1, wherein the first bearing face is formed on an insertion part, the insertion part being a separate component from the housing and inserted into the bearing chamber.
7. The actuating device according to claim 6, wherein the insertion part is prestressed against the bearing shell via at least one spring element.
8. The actuating device according to claim 1, wherein the clamping ring encloses the shaft and defines a radial play.
9. The actuating device according to claim 1, wherein:
the clamping ring has an external thread,
the housing has an internal thread, which is shaped in a complementary manner to the external thread of the clamping ring, the internal thread being arranged in an end region having the open side of the bearing chamber, and
the clamping ring is screwed into the housing.
10. The actuating device according to claim 1, wherein the first bearing face, the first counter bearing face, the second bearing face and the second counter bearing face are curved in a convex manner towards the second coupling member.
11. An exhaust gas turbocharger for an internal combustion engine, comprising:
a compressor for charging fresh air to be supplied,
a turbine, which is drive-coupled to the compressor, for expanding exhaust gas to be discharged, and
an actuating device for operating at least one of a wastegate valve and a variable turbine geometry, the actuating device including:
an actuator device associated with an actuator;
a coupling device drive-connected to the actuator device and drive-connected to the actuator to transmit an actuation force from the actuator device to the actuator, the coupling device including a first coupling member connected in an articulated manner to a second coupling member via a joint;
wherein the joint includes a housing fixedly connected to the first coupling member and defining a bearing chamber, the bearing chamber being open towards the second coupling member and having a spherical-segment-shaped first bearing face facing away from the first coupling member, wherein the first bearing face has a centre of rotation corresponding to a longitudinal centre axis of the housing;
the joint including a bearing shell arranged in the bearing chamber and fixedly connected to a shaft of the second coupling member, the bearing shell including a spherical-segment-shaped first counter bearing face having a profile complementary to the first bearing face, the first bearing face and the first counter bearing face bearing flat against each other in an annular region and axially spaced apart from each other in a central region enclosed by the annular region, wherein the bearing shell further includes a spherical-segment-shaped second counter bearing face facing away from the first coupling member and including a centre of rotation which coincides with a centre of rotation of the first counter bearing face;
the joint including a clamping ring secured to the housing and enclosing the shaft of the second coupling member, the clamping ring projecting from an open side of the bearing chamber into the bearing chamber; wherein the clamping ring includes a spherical-segment-shaped second bearing face facing the first coupling member, the second bearing face having a profile shaped complementary to the second counter bearing face and bears flat against the latter, and
wherein at least one of (i) the first bearing face and the first counter bearing face includes a radius greater than half an outer diameter of the housing, and (ii) the second bearing face and the second counter bearing face includes a second radius greater than half an outer diameter of the housing.
12. A joint for an articulated connection to transmit compressive and tensile forces between a first coupling member and a second coupling member, comprising:
a housing configured to fixedly connect to the first coupling member, the housing defining a bearing chamber, which has an axial bearing chamber opening and a spherical-segment-shaped first bearing face, the first bearing face facing the bearing chamber opening and having a centre of rotation corresponding to a longitudinal centre axis of the housing,
a bearing shell configured to fixedly connect to a shaft of the second coupling member, the bearing shell arranged in the bearing chamber and including a spherical-segment-shaped first counter bearing face, which faces away from the bearing chamber opening, the counter bearing face being shaped in a complementary manner to the first bearing face and bears flat against the latter, the bearing shell further including a spherical-segment-shaped second counter bearing face, which faces the bearing chamber opening, the second counter bearing face having a centre of rotation which coincides with a centre of rotation of the first counter bearing face, and
a clamping ring, which projects axially through the bearing chamber opening into the bearing chamber, the clamping ring secured to the housing and having a spherical-segment-shaped second bearing face, which faces away from the bearing chamber opening, the second bearing face being shaped in a complementary manner to the second counter bearing face and bears flat against the latter.
13. The joint according to claim 12, wherein at least one of (i) the first bearing face and the first counter bearing face includes a radius greater than half an outer diameter of the housing, and (ii) the second bearing face and the second counter bearing face includes a second radius greater than half an outer diameter of the housing.
14. The joint according to claim 12, wherein the first bearing face and the first counter bearing face bear flat against each other in an annular region and are spaced axially apart in a central region enclosed by the annular region.
15. The joint according to claim 12, wherein the bearing shell is fixedly connected to the shaft.
16. The joint according to claim 15, wherein the bearing shell includes a shaft-receiving opening passing therethrough, wherein the shaft is inserted axially in the shaft-receiving opening and an axial end face of the shaft is spaced axially apart from the first bearing face.
17. The joint according to claim 12, wherein the first bearing face is arranged on an insertion part, the insertion part being a separate component from the housing and inserted into the bearing chamber.
18. The joint according to claim 17, wherein the insertion part is prestressed against the bearing shell via at least one spring element.
19. The joint according to claim 12, wherein the clamping ring encloses the shaft and defines a radial play.
20. The joint according to claim 12, wherein the first bearing face, the first counter bearing face, the second bearing face and the second counter bearing face include a curved profile shaped convex towards the second coupling member.
US14/412,657 2012-07-03 2013-06-28 Actuating device and joint Active US9353676B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012211535.8 2012-07-03
DE102012211535.8A DE102012211535A1 (en) 2012-07-03 2012-07-03 Actuator and joint
DE102012211535 2012-07-03
PCT/EP2013/063631 WO2014005941A1 (en) 2012-07-03 2013-06-28 Actuating device and joint

Publications (2)

Publication Number Publication Date
US20150167542A1 true US20150167542A1 (en) 2015-06-18
US9353676B2 US9353676B2 (en) 2016-05-31

Family

ID=48703529

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/412,657 Active US9353676B2 (en) 2012-07-03 2013-06-28 Actuating device and joint

Country Status (6)

Country Link
US (1) US9353676B2 (en)
EP (1) EP2870337A1 (en)
KR (1) KR101530507B1 (en)
CN (1) CN104334852B (en)
DE (1) DE102012211535A1 (en)
WO (1) WO2014005941A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140230582A1 (en) * 2011-09-30 2014-08-21 Pierburg Gmbh Actuating apparatus
US9896993B2 (en) 2013-07-11 2018-02-20 Continental Automotive Gmbh Device for actuating the wastegate flap of an exhaust gas turbocharger
US20180230899A1 (en) * 2015-10-14 2018-08-16 Continental Automotive Gmbh Adjusting device for actuating an actuator of a turbocharger, and turbocharger for an internal combustion engine
US10830242B2 (en) * 2016-02-17 2020-11-10 Bühler Motor GmbH Centrifugal pump with impeller centering and vibration dampening
US11585233B2 (en) 2018-10-09 2023-02-21 Vitesco Technologies GmbH Turbocharger having an actuator-actuated adjusting device and a transmission element with one-part component body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709087B2 (en) 2015-07-28 2017-07-18 Borgwarner Inc. Preload loss prevention system for a clamping ball stud
JP7094906B2 (en) * 2019-02-15 2022-07-04 三菱重工業株式会社 Fluid material discharge device
CN110685407A (en) * 2019-11-02 2020-01-14 房健 Adjustable eccentric steel bar connector

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US898391A (en) * 1906-08-08 1908-09-08 Thomas D Temple Chandelier-hanging device.
US1788566A (en) * 1929-12-26 1931-01-13 Dock Herman Piston
US2260240A (en) * 1938-08-16 1941-10-21 Metallic Tag Company Inc Piston and connecting rod construction
US2838330A (en) * 1954-12-15 1958-06-10 Thompson Prod Inc Self-righting ball joint assembly
US3414302A (en) * 1966-12-23 1968-12-03 Universal Fluid Dynamics Compa Coupling for misaligned reciprocal shafts
US4160626A (en) * 1977-09-19 1979-07-10 Vapor Corporation Drive rod coupling for positive displacement pump
US5115725A (en) * 1990-03-30 1992-05-26 Isuzu Motors Limited Piston and connecting rod assembly
US5413031A (en) * 1994-01-06 1995-05-09 Parker-Hannifin Corporation Alignment coupler for linear device
US5427067A (en) * 1993-06-08 1995-06-27 Isuzu Motors, Ltd. Piston and a connecting rod assembly
US5711709A (en) * 1996-03-07 1998-01-27 Douville-Johnston Corporation Self-aligning rod end coupler
US20020120339A1 (en) * 2001-02-27 2002-08-29 Incumed, Inc. Adjustable bone prostheses and related methods

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE506246C (en) * 1927-09-20 1930-09-01 Tatra Werke Ag Ball joint, in particular for transferring the movement of the steering wheel to the divided tie rods of the steering wheels with their ends rotatably arranged around a lever articulated on the vehicle frame
DE1940763U (en) * 1966-04-06 1966-06-16 Skf Kugellagerfabriken Gmbh BALL JOINT.
DE1916578B2 (en) * 1969-04-01 1974-11-14 Leopold F. 7000 Stuttgart Schmid Steering linkages for automobiles
DE1940763A1 (en) 1969-08-11 1971-01-14 Betten Zellekens Gmbh mattress
US4511276A (en) * 1983-05-04 1985-04-16 Doutt Kingsley A Cylinder piston rod coupler
JPH05302618A (en) * 1992-04-23 1993-11-16 K I Seiki:Kk Joint for cylinder
FR2707712A1 (en) 1993-07-12 1995-01-20 Mugnier Henri Sa Device making it possible to attach a pressure switch rigidly to an exhaust gas valve especially for the turbocompressors of combustion engines
US5487273A (en) * 1993-09-13 1996-01-30 Alliedsignal Inc. Turbocharger having pneumatic actuator with pilot valve
DE19519526A1 (en) * 1995-05-27 1996-11-28 Seele Gmbh Glass facade panel holder
DE19536331C2 (en) * 1995-09-29 1999-11-18 Seele Gmbh Building plate bracket
GB9816275D0 (en) 1998-07-27 1998-09-23 Holset Engineering Co Turbocharger with wastegate
FR2823795B1 (en) * 2001-04-18 2003-08-08 Emt 74 DEVICE FOR CONNECTING THE ROD OF A PRESSURE SWITCH TO A DISCHARGE VALVE OF A TURBOCHARGER, TURBOCHARGER AND INTERNAL COMBUSTION ENGINE THUS EQUIPPED
GB0111681D0 (en) * 2001-05-11 2001-07-04 Holset Engineering Co Turbo charger with waste gate
DE10138836A1 (en) * 2001-08-14 2003-02-27 Zf Lemfoerder Metallwaren Ag ball joint
JP5302618B2 (en) 2008-10-16 2013-10-02 三菱重工業株式会社 Nitrogen oxide treatment equipment
IT1396413B1 (en) * 2009-10-30 2012-11-19 Natali METHOD FOR THE CALIBRATION OF PNEUMATIC ACTUATORS AND ACTUATED CALIBRATION ACTUATOR.
DE102010004559B4 (en) 2010-01-14 2017-06-01 Bosch Mahle Turbo Systems Gmbh & Co. Kg loader
DE102010040583A1 (en) * 2010-09-10 2012-03-15 Bosch Mahle Turbo Systems Gmbh & Co. Kg Tolerance-adjusted actuator and related manufacturing process

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US898391A (en) * 1906-08-08 1908-09-08 Thomas D Temple Chandelier-hanging device.
US1788566A (en) * 1929-12-26 1931-01-13 Dock Herman Piston
US2260240A (en) * 1938-08-16 1941-10-21 Metallic Tag Company Inc Piston and connecting rod construction
US2838330A (en) * 1954-12-15 1958-06-10 Thompson Prod Inc Self-righting ball joint assembly
US3414302A (en) * 1966-12-23 1968-12-03 Universal Fluid Dynamics Compa Coupling for misaligned reciprocal shafts
US4160626A (en) * 1977-09-19 1979-07-10 Vapor Corporation Drive rod coupling for positive displacement pump
US5115725A (en) * 1990-03-30 1992-05-26 Isuzu Motors Limited Piston and connecting rod assembly
US5427067A (en) * 1993-06-08 1995-06-27 Isuzu Motors, Ltd. Piston and a connecting rod assembly
US5413031A (en) * 1994-01-06 1995-05-09 Parker-Hannifin Corporation Alignment coupler for linear device
US5711709A (en) * 1996-03-07 1998-01-27 Douville-Johnston Corporation Self-aligning rod end coupler
US20020120339A1 (en) * 2001-02-27 2002-08-29 Incumed, Inc. Adjustable bone prostheses and related methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140230582A1 (en) * 2011-09-30 2014-08-21 Pierburg Gmbh Actuating apparatus
US9896993B2 (en) 2013-07-11 2018-02-20 Continental Automotive Gmbh Device for actuating the wastegate flap of an exhaust gas turbocharger
US20180230899A1 (en) * 2015-10-14 2018-08-16 Continental Automotive Gmbh Adjusting device for actuating an actuator of a turbocharger, and turbocharger for an internal combustion engine
US10808605B2 (en) * 2015-10-14 2020-10-20 Vitesco Technologies GmbH Adjusting device for actuating an actuator of a turbocharger, and turbocharger for an internal combustion engine
US10830242B2 (en) * 2016-02-17 2020-11-10 Bühler Motor GmbH Centrifugal pump with impeller centering and vibration dampening
US11585233B2 (en) 2018-10-09 2023-02-21 Vitesco Technologies GmbH Turbocharger having an actuator-actuated adjusting device and a transmission element with one-part component body

Also Published As

Publication number Publication date
EP2870337A1 (en) 2015-05-13
DE102012211535A1 (en) 2014-01-09
KR101530507B1 (en) 2015-06-19
KR20150003927A (en) 2015-01-09
CN104334852A (en) 2015-02-04
WO2014005941A1 (en) 2014-01-09
US9353676B2 (en) 2016-05-31
CN104334852B (en) 2015-08-05

Similar Documents

Publication Publication Date Title
US9353676B2 (en) Actuating device and joint
US10280835B2 (en) Exhaust-gas turbocharger
KR102467417B1 (en) Compressor with variable compressor inlet
US9494045B2 (en) Exhaust-gas turbocharger
US10408125B2 (en) Valve drive apparatus and supercharger having the same
US9109713B2 (en) Control device and use thereof
US20160348574A1 (en) Actuating device
US10808605B2 (en) Adjusting device for actuating an actuator of a turbocharger, and turbocharger for an internal combustion engine
JP6453309B2 (en) Desmodromic valve system and method of operation thereof
CN111173767A (en) Bearing system
CN110121609B (en) Mounting structure of reversible torsion spring and rotary gear
US20210277821A1 (en) Wastegate assembly and turbocharger including the same
US11060447B2 (en) Charging device with a wastegate valve device
CN217107210U (en) Turbocharger actuator assembly
US11834955B1 (en) Variable turbine geometry assembly
CN216044015U (en) Valve flap assembly for a charging device, turbine and charging device
KR101516918B1 (en) Valve drive apparatus and supercharger having the same
CN112805461A (en) Exhaust turbine of an exhaust gas turbocharger with a sealed wastegate valve arrangement, and exhaust gas turbocharger
KR20200020892A (en) Waste gate valve actuator system and exhaust system of exhaust system
WO2011135864A1 (en) Valve actuator

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAHLE INTERNATIONAL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REINISCH, PETER;REEL/FRAME:038323/0366

Effective date: 20160215

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY