US20150159336A1 - Container for collecting pollution - Google Patents

Container for collecting pollution Download PDF

Info

Publication number
US20150159336A1
US20150159336A1 US14/563,292 US201414563292A US2015159336A1 US 20150159336 A1 US20150159336 A1 US 20150159336A1 US 201414563292 A US201414563292 A US 201414563292A US 2015159336 A1 US2015159336 A1 US 2015159336A1
Authority
US
United States
Prior art keywords
container
container according
oil
collapsed
flexible material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/563,292
Inventor
Hugo Svendsen
Rudi Salvesen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norlense AS
Original Assignee
Norlense AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norlense AS filed Critical Norlense AS
Assigned to NORLENSE AS reassignment NORLENSE AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SALVESEN, RUDI, SVENDSEN, HUGO
Publication of US20150159336A1 publication Critical patent/US20150159336A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/048Oil collectors moved over the water skimming the water surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0211Separation of non-miscible liquids by sedimentation with baffles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/045Separating means for recovering oil floating on a surface of open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/046Collection of oil using vessels, i.e. boats, barges
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/08Devices for reducing the polluted area with or without additional devices for removing the material
    • E02B15/0842Devices for reducing the polluted area with or without additional devices for removing the material adapted to be towed for operation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/10Devices for removing the material from the surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Definitions

  • the present invention relates to equipment used for collection and retrieval of pollution from sea water, and in particular a container for storing collected pollution and separating the pollution such as oil spills and the like, from water.
  • Oil spills are often collected from water by means of a V-shaped oil boom combined with a skimmer towed behind a vessel.
  • a collection bag for the recovered oil spills.
  • the amount of oil spills that may be collected in the bag is normally dependent on the towing speed of the vessel, which determines how much the all spills are lifted above the normal water level.
  • an oil boom must be towed at a speed which is low enough to prevent the pollution from being entrained into the water. Dispersed oil will easily slip out below the boom. Also, when the towing ceases, the oil spills will normally easily escape from the bag.
  • NO 315 619 discloses such a system.
  • a flexible open container or bag acting as a basin for collected all.
  • a tapered tunnel increasing the water pressure and lifting the water level.
  • the water is released through a bottom valve, while the oil spills are trapped in the bag.
  • a known problem with such oil spill collecting systems is that the thickness of the oil layer inside the bag, when the bag is open to drain out water, depends on the density difference between oil and water and the height in relation to the waterline at the outlet of the oil boom whereto the bag is connected. The height depends on the speed in which the system is towed. For instance with a conventional crude oil from the North Sea having density of 0.8 g/cm 3 and with a relative flow speed between the oil and water of about 2 knots (1 m/s), the maximum or greatest thickness of the oil inside the bag will be about 20-25 cm.
  • Another known problem is that by supplying oil and water directly to the collection bag, turbulence and a front wave between the oil and water is created inside the bag. This prevents the desired separation between oil and water and renders only a small volume of the bag available for oil storage.
  • An object of the present invention is to provide a container for collecting pollution floating on water, wherein the amount of collected pollution is nearly independent of the density difference between pollution and water and/or the tugging speed of the system.
  • the container comprises an upper wall, a lower wall, side walls, an inlet section and an end section, wherein a partition wall located inside the container near the inlet section divides the container in an inlet part and an interior part, with a slot between the partition wall and the lower wall admitting fluids to pass the partition wall, and an outlet located in the lower wall in the interior part of the container.
  • the partition wall may be vertical or inclined, fastened to the upper wall and the side walls, or hinged to the upper wall.
  • the invention allows oil slips to be concentrated and transferred directly from an oil boom to the container without using pumps.
  • the oil is mechanically dispersed into the water such that the viscosity of the mixture will correspond to the viscosity of seawater. This is obtained by designing the inlet of the container to obtain sufficient turbulence in this area (the relative velocity between the oil and water must exceed 1 knot).
  • the oil boom, the design of the container inlet and the flow of the mixture that includes less than 20-30% by volume oil in water (dependent on the viscosity of the oil) provide for a proper dispersion of oil in water, and which will pass the partition wall with as little friction as possible. It is important that this mixture is kept in dispersion until it has passed the partition wall.
  • the separation of oil from water will occur inside the container behind the partition wall.
  • the oil may be transferred to the pulling ship for storage by simply hoisting the container from the water, or optionally, by pumping the oil to a storage tank on board.
  • the container may also include a perforated hose along the upper wall, the hose being conducted out of the container and into a position above the waterline.
  • the hose prevents air from being entrapped within the container. Such entrapped air will lower the capacity of the container.
  • the container should preferably include an inlet tube with a conical coupling for connection to an oil boom. This arrangement allows a full container to be released from the oil boom, and to be replaced by an empty container. The full container may then be collected from the sea by another vessel.
  • the container may include a level meter for detecting the level of the pollution inside said container, the level meter being adapted to issue a warning signal when the container is filled to a predetermined level.
  • the purpose of this arrangement is to avoid the container from becoming overfilled. If the container becomes too full, the pollution will flow straight through.
  • the container may also include at least one coalescent element in the interior of the container, the element preferably including polypropylene split fibers that may be fastened to the partition wall.
  • a coalescent element will speed up the separation of pollution from water, which means that the retention time in the container is diminished, again allowing the container to be designed more compact.
  • the container may also have a double hull to prevent leakage of collected pollutant if the outer fabric is accidentally punctured.
  • FIG. 1 shows a cross section of an embodiment of the container according to the invention
  • FIG. 2 is a perspective view of the container of FIG. 1 ;
  • FIG. 3 shows the container installed in a system for collecting oil spills.
  • FIG. 3 illustrates the intended use of the inventive device.
  • the figure shows an oil boom (oil trawl) 15 to be towed behind a vessel (not shown).
  • the open end of the all boom will collect pollution floating on the water, such as oil spills, and concentrate the pollution at the apex.
  • the boom 15 tapers towards a narrow channel at the apex. At the other end of the channel there is a container 1 for collecting the pollution/oil spill.
  • the oil spill collected by the oil boom can have a quite high viscosity, in the range of 100-2000 cP. If water is emulsified into the oil, the apparent viscosity may reach 300 000 cP measured at a shear velocity of 1 sek ⁇ 1 .
  • oil spill and pollution as used here may be any fluid, mixture of fluids or emulsion of fluid in water or water in fluid, that have a density lower than water and being immiscible with water. Oil may mean anything from thin oil, such as diesel, floating on the water to lumps of nearly solidified oil, possibly incorporating solids such as sand/pebbles/granulated materials or absorbing materials.
  • the inventive container 15 is shown in detail in FIGS. 1 and 2 .
  • the container includes sidewalls 10 , 11 and lower and upper walls 4 , 5 .
  • the ends of the container include tapered sections.
  • the tapered section is terminated in an inlet tube 2 .
  • the inlet tube 2 may be terminated in a conical coupling ring, for connection to a mating coupling device on the oil boom.
  • At the lagging end of the container (as seen in the towing direction) there is a tapered section 6 closing the container.
  • the partition plate B close to the inlet tube 2 and an opening with an outlet tube 7 near the aft of the container.
  • the partition plate 8 may be fastened to the walls of the container leaving a slot 9 near the bottom.
  • the partition wall 8 may be vertical or it may be inclined as shown in the figures.
  • the plate divides the container into an inlet part upstream of the plate, and an interior part downstream of the plate.
  • the container may be designed with stiff walls, e.g. from a fiber-reinforced plastic material, but is preferably made from a flexible material allowing the container to be fully collapsed in storage.
  • the container may also have a double hull to prevent leakage of collected pollutant if the outer fabric is accidentally punctured.
  • the flow area is substantially enlarged, the oil velocity lowered and the turbulence lowered. This means that the linear velocity of dispersion is reduced below the termination velocity of the oil drops.
  • the oil/pollution will start to separate and collect on top of the water and be trapped between the walls of the container, the underlying water and the partition plate.
  • the partition plate prevents oil reflux through the inlet tube.
  • the outlet of the container is arranged below the waterline at the bottom of the container, preferably near the aft section.
  • the outlet may be a fixed opening, or a controllable (closable) outlet means arranged in the outlet tube.
  • the area of the outlet should be equal to or preferably larger than the smallest area of the inlet part of the container; this means either the inlet itself or the area of the opening Into the interior chamber below the partition plate. When the area of the outlet is larger, the flow through the outlet will have equal or lower velocity than the flow through the inlet.
  • oleophilic coalescence elements may be installed inside the container.
  • the coalescence elements should preferably be fastened to the partition plate on the side opposite the inlet.
  • the elements may also be fastened to a net or frame arranged between the partition plate and the bottom of the container, the elements extending backwards co-currently with the water flow.
  • the coalescence elements should have an oleophilic surface, a suitable material being polypropylene fibers.
  • the pollution will separate from the water, be trapped by the walls (and plate) and slowly fill the container.
  • the outlet of the container is in the lower part, and preferably at the bottom, only water will be drained out.
  • the surface of the water will sink until it is at the level with the outlet. Then, the container is full and pollution entering the container will flow out again.
  • a level meter 13 may be installed in the interior chamber.
  • the level meter will actually measure the level of the oil-water interface.
  • the meter is adapted to emit a warning signal if the oil level exceeds a predefined value, i.e. when the container is full.
  • the warning signal may be realized as an optical signal emitted by a lamp mounted on top of the container, or as a wireless signal transmitted to a device on the towing vessel or an accompanying vessel, or to a mobile phone.
  • a perforated hose 16 has been provided from the upper part of the container to the connection to the oil boom. This air channel drains entrapped air from the container.
  • the hose or draining channel may be realized as a longitudinal pocket conducting air from the interior chamber to the container inlet. Inside the pocket there is a rope (not shown) preventing collapsing of the pocket. The rope is fastened in T-flipps at each end of the pocket.
  • a full container may be dismounted from the oil boom and left floating in the sea for collection by another vessel.
  • the container is released from the oil boom, it is essential that the collected oil spills stay inside the container. This is particularly important when a flexible container is used, and is to be lifted on board another vessel.
  • the container is designed to avoid oil spills from the container during this operation, with the partition plate preventing reflux and the water outlet being located at the bottom of the container.
  • the security against loss of oil may be improved by several means.
  • the partition plate may be designed as a rotatable flap hinged to the upper wall. If the container is detached from the oil boom, the plate may swing back towards the inlet and close the inlet.
  • a second measure is to produce the inlet tube from a flexible hose and weighting the inlet coupling ring.
  • the inlet tube When the container is detached from the oil boom, the inlet tube will sink and close the flexible hose.
  • the outlet tube may be produced from a flexible hose.
  • a rope may be fastened to the end of this flexible outlet tube. When the container is detached from the oil boom, the outlet tube may be hauled in and elevated over the waterline by pulling this rope.
  • the container 1 shown in FIG. 1 also comprises an opening 12 for emptying, for instance by using a suction nozzle.
  • the container may be emptied when floating in the sea.

Abstract

It is disclosed a container for collecting pollution floating on water, comprising an upper wall (5), a lower wall (4), side walls (10, 11), an inlet section and an end section (6). The container further includes a partition wall (8) located inside the container (1) near the inlet section dividing the container (1) in an inlet part and an interior part, with a slot (9) between the partition wall (8) and the lower wall (4) admitting fluids to pass the partition wall (8), and an outlet located in the lower wall (4) in the interior part of the container. The container is intended to be connected to the apex of an oil boom through an inlet tube (2). Pollution and water will flow through the tube (2) into the inlet section, below the partition wall and into the interior part of the container. In the interior part of the container, the pollution will separate from the water and become trapped in the upper part of the container.

Description

    FIELD OF THE INVENTION
  • The present invention relates to equipment used for collection and retrieval of pollution from sea water, and in particular a container for storing collected pollution and separating the pollution such as oil spills and the like, from water.
  • BACKGROUND
  • Oil spills are often collected from water by means of a V-shaped oil boom combined with a skimmer towed behind a vessel. At the apex of the skimmer section of the all boom there is installed a collection bag for the recovered oil spills. The amount of oil spills that may be collected in the bag is normally dependent on the towing speed of the vessel, which determines how much the all spills are lifted above the normal water level. However, an oil boom must be towed at a speed which is low enough to prevent the pollution from being entrained into the water. Dispersed oil will easily slip out below the boom. Also, when the towing ceases, the oil spills will normally easily escape from the bag.
  • NO 315 619 discloses such a system. At the apex of the oil boom there is a flexible open container or bag acting as a basin for collected all. At the entrance to the bag there is a tapered tunnel increasing the water pressure and lifting the water level. Thus, the oil spills are lifted into the bag. The water is released through a bottom valve, while the oil spills are trapped in the bag.
  • A known problem with such oil spill collecting systems, is that the thickness of the oil layer inside the bag, when the bag is open to drain out water, depends on the density difference between oil and water and the height in relation to the waterline at the outlet of the oil boom whereto the bag is connected. The height depends on the speed in which the system is towed. For instance with a conventional crude oil from the North Sea having density of 0.8 g/cm3 and with a relative flow speed between the oil and water of about 2 knots (1 m/s), the maximum or greatest thickness of the oil inside the bag will be about 20-25 cm. Another known problem is that by supplying oil and water directly to the collection bag, turbulence and a front wave between the oil and water is created inside the bag. This prevents the desired separation between oil and water and renders only a small volume of the bag available for oil storage.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a container for collecting pollution floating on water, wherein the amount of collected pollution is nearly independent of the density difference between pollution and water and/or the tugging speed of the system.
  • It is yet another object of the invention to provide a container which is safe and will not allow collected pollution to escape even if the container is disconnected from the oil booms, or in case the tugging speed of the oil spill collecting system is reduced to zero.
  • These objects are met by a container as defined in the appended claims.
  • In particular the container comprises an upper wall, a lower wall, side walls, an inlet section and an end section, wherein a partition wall located inside the container near the inlet section divides the container in an inlet part and an interior part, with a slot between the partition wall and the lower wall admitting fluids to pass the partition wall, and an outlet located in the lower wall in the interior part of the container.
  • This arrangement will disperse the pollution into the water. The dispersion will easily flow beneath the partition plate to become entrapped inside the container. This is in opposition to prior art methods, which depend on using a plate to skim off the pollution from the water.
  • According to different embodiments of the invention, the partition wall may be vertical or inclined, fastened to the upper wall and the side walls, or hinged to the upper wall.
  • The invention allows oil slips to be concentrated and transferred directly from an oil boom to the container without using pumps. The oil is mechanically dispersed into the water such that the viscosity of the mixture will correspond to the viscosity of seawater. This is obtained by designing the inlet of the container to obtain sufficient turbulence in this area (the relative velocity between the oil and water must exceed 1 knot). The oil boom, the design of the container inlet and the flow of the mixture that includes less than 20-30% by volume oil in water (dependent on the viscosity of the oil) provide for a proper dispersion of oil in water, and which will pass the partition wall with as little friction as possible. It is important that this mixture is kept in dispersion until it has passed the partition wall. The separation of oil from water will occur inside the container behind the partition wall. The oil may be transferred to the pulling ship for storage by simply hoisting the container from the water, or optionally, by pumping the oil to a storage tank on board.
  • The container may also include a perforated hose along the upper wall, the hose being conducted out of the container and into a position above the waterline. The hose prevents air from being entrapped within the container. Such entrapped air will lower the capacity of the container.
  • The container should preferably include an inlet tube with a conical coupling for connection to an oil boom. This arrangement allows a full container to be released from the oil boom, and to be replaced by an empty container. The full container may then be collected from the sea by another vessel.
  • In another embodiment, the container may include a level meter for detecting the level of the pollution inside said container, the level meter being adapted to issue a warning signal when the container is filled to a predetermined level. The purpose of this arrangement is to avoid the container from becoming overfilled. If the container becomes too full, the pollution will flow straight through.
  • The container may also include at least one coalescent element in the interior of the container, the element preferably including polypropylene split fibers that may be fastened to the partition wall. Such a coalescent element will speed up the separation of pollution from water, which means that the retention time in the container is diminished, again allowing the container to be designed more compact.
  • The container may also have a double hull to prevent leakage of collected pollutant if the outer fabric is accidentally punctured.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be described in detail, by way of example only, with reference to the accompanying drawings, in which:
  • FIG. 1 shows a cross section of an embodiment of the container according to the invention;
  • FIG. 2 is a perspective view of the container of FIG. 1; and
  • FIG. 3 shows the container installed in a system for collecting oil spills.
  • DETAILED DESCRIPTION
  • FIG. 3 illustrates the intended use of the inventive device. The figure shows an oil boom (oil trawl) 15 to be towed behind a vessel (not shown). The open end of the all boom will collect pollution floating on the water, such as oil spills, and concentrate the pollution at the apex. The boom 15 tapers towards a narrow channel at the apex. At the other end of the channel there is a container 1 for collecting the pollution/oil spill.
  • The oil spill collected by the oil boom can have a quite high viscosity, in the range of 100-2000 cP. If water is emulsified into the oil, the apparent viscosity may reach 300 000 cP measured at a shear velocity of 1 sek−1. Note that the terms oil spill and pollution as used here may be any fluid, mixture of fluids or emulsion of fluid in water or water in fluid, that have a density lower than water and being immiscible with water. Oil may mean anything from thin oil, such as diesel, floating on the water to lumps of nearly solidified oil, possibly incorporating solids such as sand/pebbles/granulated materials or absorbing materials.
  • The inventive container 15 is shown in detail in FIGS. 1 and 2. The container includes sidewalls 10, 11 and lower and upper walls 4, 5. The ends of the container include tapered sections. At the front end of the container, the tapered section is terminated in an inlet tube 2. The inlet tube 2 may be terminated in a conical coupling ring, for connection to a mating coupling device on the oil boom. At the lagging end of the container (as seen in the towing direction) there is a tapered section 6 closing the container.
  • Inside the container there is a partition plate B close to the inlet tube 2 and an opening with an outlet tube 7 near the aft of the container. The partition plate 8 may be fastened to the walls of the container leaving a slot 9 near the bottom. The partition wall 8 may be vertical or it may be inclined as shown in the figures. The plate divides the container into an inlet part upstream of the plate, and an interior part downstream of the plate.
  • The container may be designed with stiff walls, e.g. from a fiber-reinforced plastic material, but is preferably made from a flexible material allowing the container to be fully collapsed in storage. The container may also have a double hull to prevent leakage of collected pollutant if the outer fabric is accidentally punctured.
  • When a mixture of oil and water enters the container through the inlet tube, it will be forced as an oil in water dispersion to flow down along the partition plate, in the channel between the partition plate and the upfront wall 4, and enter the interior chamber. When less than about 20%-30% oil spill is dispersed into the water, the dispersion will obtain a viscosity near the viscosity of water alone (1 cP). This means that the pollution will flow easily below the partition wall and be trapped in the interior chamber. In general, to achieve this effect the velocity of the water in the inlet section must exceed 1 knot. Then, waves are formed in the oil-water contact dispersing (entraining) the oil into the water. Technically, for the system to work efficiently, the velocity of the fluids in the channel between the partition plate and the container wall should exceed the termination velocity of the oil drops in the water.
  • When the dispersion has passed under the partition plate entering the interior chamber, the flow area is substantially enlarged, the oil velocity lowered and the turbulence lowered. This means that the linear velocity of dispersion is reduced below the termination velocity of the oil drops. Thus, the oil/pollution will start to separate and collect on top of the water and be trapped between the walls of the container, the underlying water and the partition plate. The partition plate prevents oil reflux through the inlet tube.
  • The outlet of the container is arranged below the waterline at the bottom of the container, preferably near the aft section. The outlet may be a fixed opening, or a controllable (closable) outlet means arranged in the outlet tube. The area of the outlet should be equal to or preferably larger than the smallest area of the inlet part of the container; this means either the inlet itself or the area of the opening Into the interior chamber below the partition plate. When the area of the outlet is larger, the flow through the outlet will have equal or lower velocity than the flow through the inlet.
  • When inside the interior part with its quiet conditions, the oil will separate from the water. In order to speed the separation of oil and water, oleophilic coalescence elements may be installed inside the container. The coalescence elements should preferably be fastened to the partition plate on the side opposite the inlet. The elements may also be fastened to a net or frame arranged between the partition plate and the bottom of the container, the elements extending backwards co-currently with the water flow. The coalescence elements should have an oleophilic surface, a suitable material being polypropylene fibers.
  • Inside the container, behind the partition plate, the pollution will separate from the water, be trapped by the walls (and plate) and slowly fill the container. As the outlet of the container is in the lower part, and preferably at the bottom, only water will be drained out. As the container is filled, the surface of the water will sink until it is at the level with the outlet. Then, the container is full and pollution entering the container will flow out again.
  • A level meter 13 may be installed in the interior chamber. The level meter will actually measure the level of the oil-water interface. The meter is adapted to emit a warning signal if the oil level exceeds a predefined value, i.e. when the container is full. The warning signal may be realized as an optical signal emitted by a lamp mounted on top of the container, or as a wireless signal transmitted to a device on the towing vessel or an accompanying vessel, or to a mobile phone.
  • If the oil boom is towed at speeds above approximately 1 knot, air will also easily become dispersed into the water and be collected behind the partition plate. This means that the container will float high in the sea reducing the effective collection capacity of the container. Also, the container will be more exposed to waves in the surrounding sea. To prevent this effect, a perforated hose 16 has been provided from the upper part of the container to the connection to the oil boom. This air channel drains entrapped air from the container. In case the container is made in a flexible material, the hose or draining channel may be realized as a longitudinal pocket conducting air from the interior chamber to the container inlet. Inside the pocket there is a rope (not shown) preventing collapsing of the pocket. The rope is fastened in T-flipps at each end of the pocket.
  • A full container may be dismounted from the oil boom and left floating in the sea for collection by another vessel. When the container is released from the oil boom, it is essential that the collected oil spills stay inside the container. This is particularly important when a flexible container is used, and is to be lifted on board another vessel. The container is designed to avoid oil spills from the container during this operation, with the partition plate preventing reflux and the water outlet being located at the bottom of the container. However, the security against loss of oil may be improved by several means. For example, the partition plate may be designed as a rotatable flap hinged to the upper wall. If the container is detached from the oil boom, the plate may swing back towards the inlet and close the inlet. A second measure is to produce the inlet tube from a flexible hose and weighting the inlet coupling ring. When the container is detached from the oil boom, the inlet tube will sink and close the flexible hose. Lastly, also the outlet tube may be produced from a flexible hose. A rope may be fastened to the end of this flexible outlet tube. When the container is detached from the oil boom, the outlet tube may be hauled in and elevated over the waterline by pulling this rope.
  • The container 1 shown in FIG. 1 also comprises an opening 12 for emptying, for instance by using a suction nozzle. Thus, the container may be emptied when floating in the sea.

Claims (20)

1. A container for collecting pollution floating on water, comprising an upper wall (5), a lower wall (4), side walls (10, 11), an inlet section and an end section (6),
characterized in a partition wall (8) located inside the container (1) near the inlet section dividing the container (1) in an inlet part and an interior part, with a slot (9) between the partition wall (8) and the lower wall (4) admitting fluids to pass the partition wall (8), and an outlet located in the lower wall (4) in the interior part of the container.
2. A container according to claim 1, wherein the partition wall (8) is vertical or inclined with its upper part nearest the inlet section.
3. A container according to claim 1, wherein the partition wall (8) is fastened to the upper wall (5) and the side walls (10, 11).
4. A container according to claim 1, wherein the partition wall (8) is hinged to the upper wall (5).
5. A container according to claim 1, further including a perforated hose (16) installed in the container along the upper wall (5), the hose being conducted out of the container (1) and into a position above the waterline.
6. A container according to claim 1, further including an inlet tube (2) with a conical coupling (3) for connection to an oil boom.
7. A container according to claim 1, further including a level meter (13) for detecting the level of the pollution inside said container (1), the level meter (13) being adapted to issue a warning signal when the container (1) is filled to a predetermined level.
8. A container according to claim 1, further including at least one coalescent element in the interior of the container.
9. A container according to claim 8, wherein the said at least one coalescent element includes polypropylene fibers.
10. A container according to claim 9, wherein the polypropylene fibers are fastened to the partition wall.
11. A container according to any of the preceding claims claim 1, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
12. A container according to claim 2, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
13. A container according to claim 3, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
14. A container according to claim 4, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
15. A container according to claim 5, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
16. A container according to claim 6, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
17. A container according to claim 7, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
18. A container according to claim 8, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
19. A container according to claim 9, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
20. A container according to claim 10, wherein the container is made of a flexible material allowing the container to be collapsed in storage, the outer walls preferably being double layered.
US14/563,292 2013-12-06 2014-12-08 Container for collecting pollution Abandoned US20150159336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20131621 2013-12-06
NO20131621A NO340323B1 (en) 2013-12-06 2013-12-06 System for collecting pollutants floating on water

Publications (1)

Publication Number Publication Date
US20150159336A1 true US20150159336A1 (en) 2015-06-11

Family

ID=53270578

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/563,292 Abandoned US20150159336A1 (en) 2013-12-06 2014-12-08 Container for collecting pollution

Country Status (2)

Country Link
US (1) US20150159336A1 (en)
NO (1) NO340323B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108547272A (en) * 2018-05-02 2018-09-18 扬州三江环安设备有限公司 A kind of unpiloted oil spilling automatic recovery system and its working method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1591024A (en) * 1923-08-31 1926-07-06 Texas Co Oil-recovery apparatus
US1612557A (en) * 1923-09-26 1926-12-28 Edwin C Weisgerber Oil and water separator
US3417015A (en) * 1966-11-22 1968-12-17 Exxon Research Engineering Co Coalescer and separator for oily water
US3523611A (en) * 1969-04-01 1970-08-11 Ocean Pollution Control Inc Oil skimming apparatus
US4381994A (en) * 1976-11-02 1983-05-03 Shell Oil Company Spilled oil skimmer kit
US5073261A (en) * 1990-08-17 1991-12-17 Trond Conradi Method and apparatus for separating oil from water and storing the oil
US5478480A (en) * 1992-09-21 1995-12-26 Kenron Trading Limited Method and apparatus for separating fluids using a vessel with a controllable outlet
US20050126989A1 (en) * 2003-02-19 2005-06-16 Thacker Kris O. Water clarification system with coalescing media
US20130118998A1 (en) * 2010-05-13 2013-05-16 Christopher Wood Collector Apparatus
US20130146519A1 (en) * 2011-12-09 2013-06-13 Md Group As Device for collecting pollution on a water surface
US20140083950A1 (en) * 2012-09-24 2014-03-27 David Usher Oil decanting system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO773442L (en) * 1977-10-07 1979-04-10 Nylands Verksted DEVICE FOR COLLECTING OIL E.L. PAA VANN
GB2074887B (en) * 1980-05-02 1984-11-21 Reid D Oil recovery apparatus and method
NO313704B1 (en) * 1997-12-22 2002-11-18 Amoco Norway Oil Co Oil collection system on water
NO20093049A1 (en) * 2009-09-24 2011-03-25 Norlense As Separatorlense
US9145308B2 (en) * 2012-01-13 2015-09-29 Fluor Technologies Corporation Oil spill cleanup from water

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1591024A (en) * 1923-08-31 1926-07-06 Texas Co Oil-recovery apparatus
US1612557A (en) * 1923-09-26 1926-12-28 Edwin C Weisgerber Oil and water separator
US3417015A (en) * 1966-11-22 1968-12-17 Exxon Research Engineering Co Coalescer and separator for oily water
US3523611A (en) * 1969-04-01 1970-08-11 Ocean Pollution Control Inc Oil skimming apparatus
US4381994A (en) * 1976-11-02 1983-05-03 Shell Oil Company Spilled oil skimmer kit
US5073261A (en) * 1990-08-17 1991-12-17 Trond Conradi Method and apparatus for separating oil from water and storing the oil
US5478480A (en) * 1992-09-21 1995-12-26 Kenron Trading Limited Method and apparatus for separating fluids using a vessel with a controllable outlet
US20050126989A1 (en) * 2003-02-19 2005-06-16 Thacker Kris O. Water clarification system with coalescing media
US20130118998A1 (en) * 2010-05-13 2013-05-16 Christopher Wood Collector Apparatus
US20130146519A1 (en) * 2011-12-09 2013-06-13 Md Group As Device for collecting pollution on a water surface
US20140083950A1 (en) * 2012-09-24 2014-03-27 David Usher Oil decanting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108547272A (en) * 2018-05-02 2018-09-18 扬州三江环安设备有限公司 A kind of unpiloted oil spilling automatic recovery system and its working method

Also Published As

Publication number Publication date
NO20131621A1 (en) 2015-06-08
NO340323B1 (en) 2017-04-03

Similar Documents

Publication Publication Date Title
US3615017A (en) Oil entrapment and containment watercraft
RU2759135C2 (en) Pumping system and method
US3754653A (en) Apparatus and method for collection of oil from surface of the sea
US4120793A (en) Polluting oil recovery apparatus
US3508652A (en) Method of and apparatus for separating oil from water
US9068313B2 (en) Systems and methods for recovering oil from water
US9169610B2 (en) Collector apparatus
KR100786450B1 (en) Apparatus for the containment of oil spills
US20150159336A1 (en) Container for collecting pollution
US3557960A (en) Oil skimming apparatus
US9120034B1 (en) Self-adjusting gravity separator and a method of using
KR102457093B1 (en) Jellyfish blocking device
WO2011087368A1 (en) Sweeper for collecting impurities at sea
JP5165128B1 (en) Drainage device for clay ship
EP0059717B1 (en) Method and apparatus for cleaning up surface water
US20130284657A1 (en) System for Collection of Chemical Spill
RU2200794C2 (en) Device for cleaning water surfaces from petroleum products
CN110667793A (en) Overflow oil recovery ship based on through flow system
NO770862L (en) DEVICE FOR COLLECTING OIL E.L. PAA VANN
NO148862B (en) TRAFFIC OR TRAIL-like tools for collecting and removing oil from the sea surface
JPS5820345B2 (en) High head sediment water flow down pipeline equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: NORLENSE AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SALVESEN, RUDI;SVENDSEN, HUGO;REEL/FRAME:034642/0274

Effective date: 20141219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION