US20150080404A1 - Novel compositions and methods - Google Patents

Novel compositions and methods Download PDF

Info

Publication number
US20150080404A1
US20150080404A1 US14/394,470 US201314394470A US2015080404A1 US 20150080404 A1 US20150080404 A1 US 20150080404A1 US 201314394470 A US201314394470 A US 201314394470A US 2015080404 A1 US2015080404 A1 US 2015080404A1
Authority
US
United States
Prior art keywords
dementia
disease
compound
alkyl
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/394,470
Inventor
Sharon Mates
Robert Davis
Kimberly Vanover
Lawrence Wennogle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intra Cellular Therapies Inc
Original Assignee
Intra Cellular Therapies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intra Cellular Therapies Inc filed Critical Intra Cellular Therapies Inc
Priority to US14/394,470 priority Critical patent/US20150080404A1/en
Publication of US20150080404A1 publication Critical patent/US20150080404A1/en
Assigned to INTRA-CELLULAR THERAPIES, INC. reassignment INTRA-CELLULAR THERAPIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VANOVER, KIMBERLY, DAVIS, ROBERT, MATES, SHARON, WENNOGLE, LAWRENCE
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/16Peri-condensed systems

Definitions

  • the present invention relates to use of particular substituted heterocycle fused gamma-carbolines as described herein, in free, pharmaceutically acceptable salt or prodrug form, and pharmaceutical composition comprising the same, optionally in combination with one or more agents, for the prophylaxis or treatment of one or more disorders associated with dementia, particularly behavioral or mood disturbances (e.g., agitation/aggression), psychosis, depression and/or sleep disturbances among other disorders in patients suffering from dementia.
  • behavioral or mood disturbances e.g., agitation/aggression
  • psychosis e.g., depression and/or sleep disturbances among other disorders in patients suffering from dementia.
  • Dementia is a disorder characterized by the loss of cognitive abilities affecting memory, reasoning, judgment and behavior.
  • MCI mild cognitive impairment
  • incipient dementia or isolated memory impairment
  • AD dementia cognitive impairment beyond that expected based on the age and education of the individual, but which is not significant enough to interfere with their daily activities.
  • MCI mild cognitive impairment
  • Alzheimer's disease is the most common type of dementia and is an irreversible, progressive neurodegenerative disease that disrupts memory, perception, reasoning, judgment, information processing, emotional behavior, personality as well as social and occupational functions.
  • 5.4 million of Americans are believed to be living with Alzheimer's and nearly 36 million people worldwide are believed to be living with this disease or other dementias.
  • acetylcholinesterase inhibitors e.g., Tacrine, rivastigmine (Exelon), donepezil (Aricept), and galantamine (Razadyne, formerly called Reminyl)
  • NMDA receptor antagonist e.g., memantine (Namenda)
  • these drugs do not treat affective symptoms and/or other behavior disruptions such as mood swing, agitation, aggressive/assaultive behavior and paranoia which are common in dementias.
  • memantine a drug approved for Alzheimer's disease and often used for dementias in general, may have some adverse effects on neuropsychiatric functioning, particularly agitation/aggression, delusions or hallucinations.
  • antipsychotic drugs are used to control aggression and psychosis in dementia, particularly in Alzheimer's disease.
  • antipsychotic drugs such as haloperidol, risperidone and quetiapine are associated with serious side effects including extrapyramidal side effects (akinesia or akathisia), bone marrow suppression, seizure, orthostatic hypotension, insomnia, sedation, somnolence and weight gain.
  • Many atypical antipsychotic agents also have a higher risk of heart failure. Therefore, the use of these antipsychotic agents in combination with anticholinesterase inhibitor or NMDA receptor antagonist is undesirable.
  • SCN suprachiasmatic nucleus
  • agents such as temazepam (Restoril), zolpidem (Ambien), or zaleplon (Sonata), or sedating antidepressants, such as trazodone (Desyrel, Molipaxin), may be useful in managing insomnia, failure of these drugs to improve sleep quality in addition to the associated risk of falling due to drowsiness and psychomotor impairment caused by these agents render them undesirable for dementia, particularly Alzheimer's patients.
  • Substituted heterocycle fused gamma-carbolines are known to be agonists or antagonists of 5-HT2 receptors, particularly 5-HT2A and 5-HT2C receptors, in treating central nervous system disorders.
  • 5-HT2A and 5-HT2C receptors are known to be agonists or antagonists of 5-HT2 receptors, particularly 5-HT2A and 5-HT2C receptors, in treating central nervous system disorders.
  • These compounds have been disclosed in U.S. Pat. Nos. 6,548,493; 7,238,690; 6,552,017; 6,713,471; U.S. RE39680, and U.S. RE39679, as novel compounds useful for the treatment of disorders associated with 5-HT2A receptor modulation such as obesity, anxiety, depression, psychosis, schizophrenia, sleep disorders, sexual disorders, migraine, conditions associated with cephalic pain, social phobias, and gastrointestinal disorders such as dysfunction of the gastrointestinal tract motility.
  • PCT/US08/03340 and U.S. Pat. No. 7,081,455 also disclose methods of making substituted heterocycle fused gamma-carbolines and uses of these gamma-carbolines as serotonin agonists and antagonists useful for the control and prevention of central nervous system disorders such as addictive behavior and sleep disorders.
  • WO 2009/145900 discloses use of specific compounds of substituted heterocycle fused gamma-carbolines for the treatment of a combination of psychosis and depressive disorders as well as sleep, depressive and/or mood disorders in patients with psychosis or Parkinson's disease.
  • 5-HT 2A receptors Specific genetic polymorphisms of 5-HT 2A receptors are associated with aggression and impulsivity. These Compounds also exhibit efficacy in reducing behavioral disturbances such as agitation and irritability as well as sleep disturbances and symptoms of depression and psychosis. Due to their low off target receptor interactions, the Compounds of the Invention have reduced sedation, cognitive impairment, motor impairment and lower risk of falls. Therefore, Compound of Formula I as described below are effective in treating 5-HT 2A related disorders without having the extrapyramidal side effects, psychomotor sedation, cognitive impairment or cardiovascular safety issues such as QTc prolongation.
  • the invention provides a method (Method I) for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paraminenculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, comprising administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula I:
  • the invention provides Method I as follows:
  • the invention provides a pharmaceutical composition (Pharmaceutical Composition I) comprising the compound of Formula I or any of formulae 1.1-1.18 in combination with one or more therapeutic agents useful for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paraminenculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease in admixture with a pharmaceutically acceptable diluent or carrier.
  • a pharmaceutical composition comprising the compound of Formula I or any of formulae 1.1-1.18 in combination with one or more therapeutic agents useful for the prophylaxis or treatment of one or more disorders associated with dementia, e.
  • the invention provides the Pharmaceutical Composition I as hereinbefore described wherein the therapeutic agent(s) useful for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paraminenculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, is a cholinesterase inhibitor (e.g., acetylcholinesterase inhibitor) or an N-Methyl D-Asparate (NMDA) receptor antagonist) as described in any of formulae 2.17-2.23.
  • a cholinesterase inhibitor e.g., acetylcholinesterase inhibitor
  • NMDA N-Met
  • the invention provides the Pharmaceutical Composition I as hereinbefore described wherein the therapeutic agent(s) useful for the prophylaxis or treatment of one or more disorders associated with dementia is selected from: antidepressant compounds, compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission), a GABA-B agonist, a 5-HT modulator (e.g., a 5-HT 1A agonist, a 5-HT 2A antagonist, a 5-HT 2A inverse agonist, etc.), a melatonin agonist, an ion channel modulator (e.g., blocker), a serotonin-2 antagonist/reuptake inhibitor (SARIs), an orexin receptor antagonist, an H3 agonist, a noradrenergic antagonist, a galanin agonist, a CRH antagonist, human growth hormone, a growth hormone agonist, estrogen, an estrogen agonist, a neurokinin-1 drug, and an antipsychotic agent, e.g., an antidepressant compounds, compounds that
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the Compound of Formula I or any of formulae 1.1-1.18 in admixture with a pharmaceutically acceptable diluent or carrier, or the Pharmaceutical Composition I as hereinbefore described, for use (in the manufacture of a medicament) for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paraminenculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, as disclosed in Method I or any of formulae 2.1-2.24.
  • disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease,
  • the invention provides use of the Compound of Formula I or any of formulae 1.1-1.18 (in the manufacture of a medicament) for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., one or more disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paraminenculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, as disclosed in Method I or any of formulae 2.1-2.24.
  • dementia e.g., one or more disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paramine with Lewy bodies, vascular dementia, Huntington's disease, Parkinson
  • the invention provides the Pharmaceutical Composition of the Invention as described herein for use in the manufacture of a medicament for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paraminenculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease as disclosed in Method I or any of formulae 2.1-2.24.
  • disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paramine with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis,
  • the Compounds of the Invention as hereinbefore described have a selective receptor profile wherein they fully saturate the 5-HT 2A receptors at a low dose and also bind to dopamine receptors and serotonin reuptake transporter (SERT) at a higher dose.
  • SERT serotonin reuptake transporter
  • the Compounds of the Invention are effective in treating one or more disorders associated with dementia, e.g., one or more disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paraminenculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, particularly behavioral/mood disturbances (e.g., agitation, aggressive/assaultive behavior) and sleep disorders, which are inadequately treated by the current marketed drugs for dementia and Alzheimer's disease, as well as treating psychosis and depressive disorders in patients suffering from dementia.
  • dementia e.g., one or more disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease,
  • the compounds of the Invention may be used in a combination therapy wherein the Compound of Formula I may be administered simultaneously, separately or sequentially with another active agent to treat dementia or dementing illnesses as hereinbefore described, particularly Alzheimer's disease or symptoms thereof.
  • the Compound of Formula I, in free, pharmaceutically acceptable salt or prodrug form may be administered in a composition, wherein said Compound of Formula I as hereinbefore described in free, pharmaceutically acceptable salt or prodrug form, is in admixture with a pharmaceutically acceptable diluent or carrier.
  • the combination may be administered as a fixed combination (wherein the therapeutic agents are in a single dosage form, e.g., the Pharmaceutical Composition I hereinbefore described) or as a free combination (wherein therapeutic agents are in a separate dosage form).
  • the second or further therapeutic agents useful for the prophylaxis or treatment of dementia as hereinbefore described, particularly Alzheimer's disease described in Method I or any of formulae 2.17-2.24 of the invention include but not limited to a cholinesterase inhibitor and/or N-Methyl D-Asparate (NMDA) receptor antagonist.
  • NMDA N-Methyl D-Asparate
  • Cholinesterase inhibitors e.g., acetylcholinesterase inhibitors
  • acetylcholinesterase inhibitors are known in the art and/or are described e.g., in U.S. Pat. No. 4,895,841; and U.S. Pat. No. 4,948,807, the contents of each of which are incorporated by reference in their entirety.
  • Preferred cholinesterase inhibitors to be used with the compound of the present invention include donepezil, rivastignmine, galantamine and tacrine.
  • the antidepressant useful for the invention may be selected from amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fluvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenelzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, and velafaxine, in free or pharmaceutically acceptable salt form.
  • the antidepressant(s) is a selective serotonin reuptake inhibitor (SSRI).
  • SSRI selective serotonin reuptake inhibitor
  • the SSRI compound is selected from the group consisting of citalopram, escitalopram oxalate, fluoxetine, fluvoxamine maleate, paroxetine, sertraline, and dapoxetine, in free or pharmaceutically acceptable salt form.
  • the amount of antidepressant to be administered in combination with the compound of Formula I is about 0.01 mg to about 2000 mg, in another embodiment about 0.1 mg to about 200 mg, in another embodiment about 10 mg to about 200 mg.
  • the additional therapeutic agent e.g., the antidepressant SSRI is sertraline and the daily dosage of sertraline is between about 20 mg and 100 mg.
  • Method I comprises administering (1) a Compound of Formula I at a dosage lower than 100 mg once daily, preferably less than 50 mg, more preferably less than 40 mg, still more preferably less than 30 mg, still more preferably less than 20 mg, still more preferably less than 10 mg; and (2) antidepressant, for example a SSRI such as sertaline, at a daily dosage of less than 50 mg, more preferably, less than 20 mg, still more preferably, less than 10 mg, most preferably less than 6 mg, in free or pharmaceutically acceptable salt form.
  • antidepressant for example a SSRI such as sertaline
  • GABA refers to gamma-aminobutyric acid.
  • the GABA compounds are compounds which bind to the GABA receptor, and include, but are not limited to one or more of doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals) or estazolam.
  • 5HT 2A antagonists include ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, pimavanserin (ACP-103), MDL 100907 (Sanofi-Aventis, France), HY10275 (Eli Lilly), APD125 (Arena Pharmaceuticals, San Diego, Calif.), AVE8488 (Sanofi-Aventis, France) and pizotifen.
  • 5HT 1A agonists include repinotan, sarizotan, eptapirone, buspirone and MN-305 (MediciNova, San Diego, Calif.).
  • Ion channel blockers such as lamotrigine, gabapentin or pregabalin.
  • Serotonin-2 antagonist/reuptake inhibitors include Org 50081 (Organon-Netherlands), ritanserin, nefazodone, serzone and trazodone.
  • Neurokinin-1 drugs include Casopitant (GlaxoSmithKline).
  • additional therapeutic agents useful for the current invention include modafinil, armodafinil, doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals), estazolam, ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, pimavanserin (ACP-103), pizotifen, MDL 100907 (Sanane
  • the compounds of Formula I and their pharmaceutically acceptable salts and salt crystals may be made using the methods as described and exemplified in any of the following patents or applications: U.S. Pat. Nos. 6,548,493; 7,238,690; 6,552,017; 6,713,471; U.S. RE39680; U.S. RE39679; PCT/US08/03340; U.S. application Ser. No. 10/786,935; WO 2009/114181 and WO 2011/133224, the contents of each of which are incorporated by reference in their entirety. If not commercially available, starting materials for these processes may be made by procedures, which are selected from the chemical art using techniques which are similar or analogous to the synthesis of known compounds. All references cited herein are hereby incorporated in their entirety by reference.
  • treatment and “treating” are to be understood accordingly as embracing prophylaxis and treatment or amelioration of symptoms of disease and/or treatment of the cause of the disease.
  • the word “treatment” and “treating” refers to prophylaxis or amelioration of symptoms of the disease.
  • patient may include a human or non-human patient.
  • dementia is intended to refer to a condition or disorder characterized by the loss of cognitive ability affecting memory, thinking, language, judgment and behavior.
  • Early symptoms of dementia may include difficulty performing tasks that require some thought (balancing a checkbook, playing games (such as bridge); learning new information; getting lost on familiar routes; having language difficulties (difficulties in finding name of familiar objects); losing interest in things previously enjoy; losing social skills.
  • More severe symptoms of dementia include change in sleep patterns, often waking up at night; difficulty performing basic tasks such as brushing teeth or preparing a meal; forgetting details about current events; having hallucinations, violent behavior, delusions, depression, agitation; difficulty reading or writing; having poor judgment or loss of ability to recognize danger; losing the ability to recognize family members or understand language.
  • dementia refers to any of the dementing illnesses as described herein regardless of etiology and therefore shall include but not limited to mild or severe cognition impairment and dementing illnesses such as senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, paraminenculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease.
  • dementia refers to mild cognitive impairment.
  • dementia refers to Alzheimer's disease.
  • disorder associated with dementia means common co-morbid psychiatric disorders or conditions associated with dementia, which include but not limited to (1) behavioral or mood disorders such as agitation/irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts; (2) psychosis; (3) depression; and (4) sleep disorders.
  • the disorders associated with dementia are disorders associated Alzheimer's disease.
  • MCI mimetic cognitive impairment
  • incipient dementia or isolated memory impairment
  • MCI cognitive impairment beyond that expected based on the age and education of the individual, but which is not significant enough to interfere with their daily activities. Symptoms of MCI include difficulty performing more than one task at a time, solving problems or making decisions, forgetting recent events or conversations and taking longer to perform more difficult mental activities.
  • Compounds of the Invention refer to Compounds of Formula I, which include any of formulae 1.1-1.18, in free, salt or prodrug form.
  • the compounds contain acidic substituents, in base addition salt form or where the compounds contain a basic substituent, in acid addition salt form.
  • the Compounds of the Invention are intended for use as pharmaceuticals, therefore pharmaceutically acceptable salts are preferred. Salts which are unsuitable for pharmaceutical uses may be useful, for example, for the isolation or purification of free Compounds of the Invention or their pharmaceutically acceptable salts, are therefore also included.
  • Pharmaceutically acceptable salts include, for example, the hydrochloride and tosylate salts. Where dosage amounts of salts are given by weight, e.g., milligrams per day or milligrams per unit dose, the dosage amount of the salt is given as the weight of the corresponding free base, unless otherwise indicated.
  • a prodrug form is compound which converts in the body to a Compound of the Invention.
  • these substituents may form physiologically hydrolysable and acceptable esters.
  • physiologically hydrolysable and acceptable ester means esters of Compounds of the Invention which are hydrolysable under physiological conditions to yield acids (in the case of Compounds of the Invention which have hydroxy substituents) or alcohols (in the case of Compounds of the Invention which have carboxy substituents) which are themselves physiologically tolerable at doses to be administered.
  • Y of the compound of Formula I is —C(H)(OR 1 )
  • R 1 is —C(O)—C 1-21 alkyl, e.g., —C(O)—C 3 alkyl or —C(O)—C 9 alkyl
  • these compounds may hydrolyze under physiological condition to yield a compound of Formula I wherein Y is —C(H)(OH) on the one hand and C 1-21 alkyl-C(O)OH, e.g., C 3 alkyl-C(O)OH or C 9 alkyl-C(O)OH on the other hand.
  • the term thus embraces conventional pharmaceutical prodrug forms.
  • a prodrug e.g., the compound of formula (I) wherein R 1 is —C(O)—C 1-21 alkyl
  • the dosage amount is calculated based on the amount of the compound of formula (I) wherein Y is C( ⁇ O) in free base form.
  • disorder(s) associated with Alzheimer's disease includes, but is not limited to (1) behavioral or mood disorders such as agitation/irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts; (2) psychosis; (3) depression; and (4) sleep disorders in patients suffering from Alzheimer's disease.
  • an amount of the Compound of the Invention for administration refers to or is based on the amount of the Compound of the Invention in free base form (i.e., the calculation of the amount is based on the free base amount).
  • a prodrug e.g., the compound of formula (I) wherein R 1 is —C(O)—C 1-21 alkyl
  • the dosage amount is calculated based on the amount of the compound of formula (I) wherein Y is C( ⁇ O) in free base form.
  • Compounds of the Invention may be administered by any suitable route, including orally, intra-muscularly, subcutaneously, parenterally or transdermally, but are preferably administered orally.
  • Compounds of the Invention may be administered by any suitable route, including orally, parenterally or transdermally, but are preferably administered orally.
  • the compound of the invention may be administered at a lower dosage, e.g., about 1-10 mg, e.g., 2.5 mg-5 mg, e.g., 2.5 mg, 3 mg, 4 mg, 5 mg or 10 mg, of a Compound of Formula I or any of formulae 1.1-1.18, in free, pharmaceutically acceptable salt or prodrug form, once or more than once daily, preferably via oral administration.
  • the compounds of the invention may be administered at a higher dosage, e.g., about 1 mg to 100 mg to 140 mg once daily, preferably 2.5 mg-60 mg, e.g., 20 mg-60 mg, 20 mg-40 mg, e.g., 2.5 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg or 60 mg, once or more than once daily, for example, greater than 20 mg per day, preferably via oral administration.
  • a higher dosage e.g., about 1 mg to 100 mg to 140 mg once daily, preferably 2.5 mg-60 mg, e.g., 20 mg-60 mg, 20 mg-40 mg, e.g., 2.5 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg or 60 mg, once or more than once daily, for example, greater than 20 mg per day, preferably via oral administration.
  • Dosages of the second or further therapeutic agent(s) useful for the prophylaxis or treatment of dementia, particularly for the prophylaxis or treatment of Alzheimer's disease or symptoms thereof can vary in range known to a person skilled in the art.
  • the dosages can range from about 1 mg to 100 mg.
  • the compound of the Invention may be combined with the second or further therapeutic agent(s) useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof as follows:
  • any disclosure of a numerical range, e.g., “up to X” amount is intended to include the upper numerical limit X. Therefore, a disclosure of “up to 60 mg” is intended to include 60 mg.
  • compositions comprising compounds of the Invention may be prepared using conventional diluents or excipients and techniques known in the galenic art.
  • oral dosage forms may include tablets, capsules, solutions, suspensions and the like.
  • the videotapes are then scored for the total time each mouse spent during a 10 min period in specified open-field quadrants.
  • the total time (sec) spent by mice representing each drug treatment group in the Interaction Zone in proximity to the resident intruder mouse or, in the Corner Zones, at a distance from the intruder mouse is expressed as a mean ( ⁇ SEM).
  • Decreased social function is a core feature of the ‘negative’ symptoms of schizophrenia that are poorly addressed by existing antipsychotic medications.
  • the social defeat/resident intruder model can be used to measure social isolation behavior in rodents. Isolation behavior has been shown to be reversed using this model, after chronic administration of anti-depressant medications with potent SERT activity, including fluoxetine (Berton et al., Science (2006) 311:864-868). Neither acute administration of anti-depressant medications or chronic treatment with anti-anxiety medications, like chlordiazepoxide, are similarly effective in this paradigm (Berton et. al., Science (2006) 311:864-868). Thus, the model has been proposed for the identification of compounds to address social isolation behavior, such as social isolation behavior resulted from repeated stress. This assay is therefore used to demonstrate reversal of social isolation behavior.
  • mice are subjected to exposure to an aggressive resident intruder mouse in the social defeat/resident intruder paradigm as described in Berton et al., Science (2006) 311:864-868. They are then dosed chronically, once daily for 30 d, with either vehicle or Compound A (1 mg/kg, IP) in vehicle.
  • vehicle or Compound A (1 mg/kg, IP) in vehicle.
  • the mice are placed in the open field in the presence of a resident intruder mouse and the total time each mouse spent during a 10 min period in defined open-field quadrants in close proximity to the intruder or in isolation to the intruder is measured.
  • exposure to the aggressor mouse significantly reduced the amount of time resident mice spent in proximity to the intruder (p ⁇ .0.05 compared with vehicle).
  • mice treated with Compound A following exposure to the intruder paradigm showed no significant reduction in time spent in proximity to the intruder (NS, compared with Compound A alone).
  • Compound A treatment alone did not result in differences in time spent in the Interaction Zone, compared with untreated control mice.
  • the data indicate that chronic treatment with Compound A results in a reversal of social defeat behavior comparable to that seen after chronic treatment with anti-depressant medications such as fluoxetine.
  • This experiment shows that Compound A is effective in reversing social isolation resulted from repeated stress. This experiment also shows that Compound A has functional anti-depressant activity.

Abstract

The present invention relates to use of particular substituted heterocycle fused gamma-carbolines as described herein, in free, pharmaceutically acceptable salt or prodrug form, and pharmaceutical composition comprising the same optionally in combination with one or more agents, for the prophylaxis or treatment of one or more disorders associated with dementia, particularly behavioral or mood disturbances (e.g., agitation/aggression), psychosis, depression and sleep disturbances among others in patients suffering from dementia.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a national phase application filed under 35 U.S.C. §371 of International Application No. PCT/US2013/036515, filed on Apr. 14, 2013, which International Application claims priority from U.S. Provisional Application Nos. 61/624,293, 61/624,292 and 61/624,291, all filed on Apr. 14, 2012; and U.S. Provisional Application Nos. 61/671,723 and 61/671,713, both filed on Jul. 14, 2012, the contents of each of which are incorporated by reference in their entirety.
  • TECHNICAL FIELD
  • The present invention relates to use of particular substituted heterocycle fused gamma-carbolines as described herein, in free, pharmaceutically acceptable salt or prodrug form, and pharmaceutical composition comprising the same, optionally in combination with one or more agents, for the prophylaxis or treatment of one or more disorders associated with dementia, particularly behavioral or mood disturbances (e.g., agitation/aggression), psychosis, depression and/or sleep disturbances among other disorders in patients suffering from dementia.
  • BACKGROUND OF THE INVENTION
  • Dementia is a disorder characterized by the loss of cognitive abilities affecting memory, reasoning, judgment and behavior. At an early stage of dementia, people may experience mild cognitive impairment (MCI, also known as incipient dementia, or isolated memory impairment) which is cognitive impairment beyond that expected based on the age and education of the individual, but which is not significant enough to interfere with their daily activities. Studies suggest that these individuals tend to progress to probable Alzheimer's disease at a rate of approximately 10% to 15% per year. Alzheimer's disease is the most common type of dementia and is an irreversible, progressive neurodegenerative disease that disrupts memory, perception, reasoning, judgment, information processing, emotional behavior, personality as well as social and occupational functions. Of date, 5.4 million of Americans are believed to be living with Alzheimer's and nearly 36 million people worldwide are believed to be living with this disease or other dementias.
  • Currently, there is no cure or standard of treatment for dementia. Available treatments are palliative and symptomatic in nature aiming to manage and slow the progression of the cognitive manifestation of the disease. Drugs approved in the United States for the treatment of Alzheimer's disease, which is also used to treat dementia in general include acetylcholinesterase inhibitors (e.g., Tacrine, rivastigmine (Exelon), donepezil (Aricept), and galantamine (Razadyne, formerly called Reminyl)) and NMDA receptor antagonist (e.g., memantine (Namenda)). While these drugs improve mental function (such as memory, attention, social interaction, reasoning ability, language ability, and ability to perform activities of daily living), they often cause side effects including stomach upset, diarrhea, nausea, vomiting, muscle cramps, fatigue, difficulty falling or staying asleep or excess sleepiness, depression, bradycardia and other side effects. In addition, these drugs do not treat affective symptoms and/or other behavior disruptions such as mood swing, agitation, aggressive/assaultive behavior and paranoia which are common in dementias. In fact, some studies have shown that memantine, a drug approved for Alzheimer's disease and often used for dementias in general, may have some adverse effects on neuropsychiatric functioning, particularly agitation/aggression, delusions or hallucinations. These untreated and sometimes aggravated behavioral disruptions often prevent the patients from integrating back into society, causing further distress to the caregivers and eventually leading to the patients' institutionalization. To control aggression and psychosis in dementia, particularly in Alzheimer's disease, antipsychotic drugs are used. However, antipsychotic drugs such as haloperidol, risperidone and quetiapine are associated with serious side effects including extrapyramidal side effects (akinesia or akathisia), bone marrow suppression, seizure, orthostatic hypotension, insomnia, sedation, somnolence and weight gain. Many atypical antipsychotic agents also have a higher risk of heart failure. Therefore, the use of these antipsychotic agents in combination with anticholinesterase inhibitor or NMDA receptor antagonist is undesirable.
  • In addition to behavior and mood disturbances, many dementia patients, particularly those at a more serious stage of the disease also commonly experience sleep disturbances wherein the patients either have difficulty falling asleep, maintaining sleep or experience changes in their sleep-wake cycle/pattern. These patients may also feel restless or agitated in the late afternoon or early evening (often called “sundowning”). In fact, studies have shown evidence that a loss in the suprachiasmatic nucleus (SCN) neuronal population coincides with Alzheimer's patients' stage of dementia. This loss of SCN neuronal population appears to be causative in the observed disturbances in melantonin rhythm which may underlie accompanying sleep disturbances. While agents such as temazepam (Restoril), zolpidem (Ambien), or zaleplon (Sonata), or sedating antidepressants, such as trazodone (Desyrel, Molipaxin), may be useful in managing insomnia, failure of these drugs to improve sleep quality in addition to the associated risk of falling due to drowsiness and psychomotor impairment caused by these agents render them undesirable for dementia, particularly Alzheimer's patients.
  • There remains an urgent need for an effective therapeutic regime for the prophylaxis or treatment of dementia and disorders associated thereof, particularly to alleviate behavioral/mood disturbances (e.g., agitation, aggressive/assaultive behavior) and sleep disturbances in patients suffering from dementia.
  • Substituted heterocycle fused gamma-carbolines are known to be agonists or antagonists of 5-HT2 receptors, particularly 5-HT2A and 5-HT2C receptors, in treating central nervous system disorders. These compounds have been disclosed in U.S. Pat. Nos. 6,548,493; 7,238,690; 6,552,017; 6,713,471; U.S. RE39680, and U.S. RE39679, as novel compounds useful for the treatment of disorders associated with 5-HT2A receptor modulation such as obesity, anxiety, depression, psychosis, schizophrenia, sleep disorders, sexual disorders, migraine, conditions associated with cephalic pain, social phobias, and gastrointestinal disorders such as dysfunction of the gastrointestinal tract motility. PCT/US08/03340 and U.S. Pat. No. 7,081,455 also disclose methods of making substituted heterocycle fused gamma-carbolines and uses of these gamma-carbolines as serotonin agonists and antagonists useful for the control and prevention of central nervous system disorders such as addictive behavior and sleep disorders. WO 2009/145900 discloses use of specific compounds of substituted heterocycle fused gamma-carbolines for the treatment of a combination of psychosis and depressive disorders as well as sleep, depressive and/or mood disorders in patients with psychosis or Parkinson's disease. These references, however, do not teach use for the treatment or prophylaxis of disorders associated with dementia, particularly behavioral or mood disturbances such as agitation, irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts and psychosis and sleep disorders associated with dementia.
  • SUMMARY OF THE INVENTION
  • It has been discovered that the Compounds of the Invention (i.e., the Compounds of Formula I as described hereinbelow) fully saturate 5-HT2A receptors at a low dose. Altered serotonergic function has consistently been implicated in the pathophysiology of aggression. In animal models, 5-HT2A antagonists attenuate aggressive & impulsive behaviors. Human platelet 5-HT2A levels are associated with aggression in personality disordered patients, but not in healthy control subjects. Postmortem studies also show that 5-HT2A receptor expressions in prefrontal cortical regions are correlated positively with lifetime aggression in subjects who committed suicide. Orbitofrontal 5-HT2A receptor availability is greater in patients with current physical aggression compared with patients without current physical aggression and healthy control subjects. Specific genetic polymorphisms of 5-HT2A receptors are associated with aggression and impulsivity. These Compounds also exhibit efficacy in reducing behavioral disturbances such as agitation and irritability as well as sleep disturbances and symptoms of depression and psychosis. Due to their low off target receptor interactions, the Compounds of the Invention have reduced sedation, cognitive impairment, motor impairment and lower risk of falls. Therefore, Compound of Formula I as described below are effective in treating 5-HT2A related disorders without having the extrapyramidal side effects, psychomotor sedation, cognitive impairment or cardiovascular safety issues such as QTc prolongation. This discovery gives the Compounds of the current Invention particular utility in the treatment or prophylaxis of one or more disorders associated with dementia, particularly behavioral or mood disturbances such as agitation, irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts and sleep disturbances, which conditions are often left untreated by current marketed drugs, as well as psychosis and depressive disorders in dementia patients.
  • Therefore, in the first aspect, the invention provides a method (Method I) for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, comprising administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula I:
  • Figure US20150080404A1-20150319-C00001
    • wherein:
    • X is —N(H)—, —N(CH3)— or —O—;
    • Y is —C(═O), —C(H)(OH) or —C(H)(OR1);
    • R1 is —C(O)—C1-21alkyl (e.g., —C(O)—C1-5alkyl, —C(O)—C6-15alkyl or —C(O)—C16-21alkyl), preferably said alkyl is a straight chain, optionally saturated or unsaturated and optionally substituted with one or more hydroxy or C1-22alkoxy (e.g., ethoxy) groups, for example R1 is —C(O)—C6alkyl, —C(O)—C7alkyl, —C(O)—C9alkyl, —C(O)—C11alkyl, —C(O)—C13alkyl or —C(O)—C15alkyl wherein such compound hydrolyzes to form the residue of a natural or unnatural, saturated or unsaturated fatty acid, e.g., the compound hydrolyzes to form the hydroxy compound on the one hand and octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid or hexadecanoic acid on the other hand),
      in free, pharmaceutically acceptable salt or prodrug form.
  • In a further embodiment, the invention provides the following formulae:
      • 1.1. Method I, wherein X in the compound of Formula I is —N(H)—, —N(CH3)— or —O—;
      • 1.2. Method 1 or 1.1, wherein X in the compound of Formula I is —N(H);
      • 1.3. Method 1 or 1.1, wherein X in the compound of Formula I is —N(CH3)—;
      • 1.4. Method 1 or 1.1, wherein X in the compound of Formula I is —O—;
      • 1.5. Method I or any of formulae 1.1-1.4, wherein Y in the compound of Formula I is —C(═O), —C(H)(OH) or —C(H)(OR1);
      • 1.6. Method I or any of formulae 1.1-1.4, wherein Y in the compound of Formula I is —C(═O);
      • 1.7. Method I or any of formulae 1.1-1.4, wherein Y in the compound of Formula I is —C(H)(OH);
      • 1.8. Method I or any of formulae 1.1-1.4, wherein Y in the compound of Formula I is —C(H)(OR1);
      • 1.9. Method 1 or 1.8, wherein R1 is —C(O)—C1-21alkyl (e.g., —C(O)—C1-5alkyl, —C(O)—C6-15alkyl or —C(O)—C16-21alkyl), preferably said alkyl is a straight chain, optionally saturated or unsaturated and optionally substituted with one or more hydroxy or C1-22alkoxy (e.g., ethoxy) groups, for example R1 is —C(O)—C6alkyl, —C(O)—C7alkyl, —C(O)—C9alkyl, —C(O)—C1alkyl, —C(O)—C13alkyl or —C(O)—C15alkyl wherein such compound hydrolyzes to form the residue of a natural or unnatural, saturated or unsaturated fatty acid, e.g., the compound hydrolyzes to form the hydroxy compound on the one hand and octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid or hexadecanoic acid on the other hand);
      • 1.10. Method 1 or 1.8, wherein R1 is —C(O)—C6-15alkyl, e.g., —C(O)—C9alkyl;
      • 1.11. Method 1 or 1.8, wherein R1 is —C(O)—C1-5alkyl, e.g., —C(O)—C3alkyl;
      • 1.12. Method I or any of formulae 1.1-1.5 or 1.7, wherein the Compound is:
  • Figure US20150080404A1-20150319-C00002
    • 1.13. Method I or any of formulae 1.1-1.5 or 1.7, wherein the Compound is:
  • Figure US20150080404A1-20150319-C00003
      • 1.14. Method I or any of formulae 1.1-1.5 or 1.7, wherein the Compound is:
  • Figure US20150080404A1-20150319-C00004
      • 1.15. Method I or any of formulae 1.1, 1.3, 1.5 or 1.7, wherein the Compound is:
  • Figure US20150080404A1-20150319-C00005
      • 1.16. Method I or any of formulae 1.1, 1.3, 1.5 or 1.6, wherein the Compound is:
  • Figure US20150080404A1-20150319-C00006
      • 1.17. Method I or any of formulae 1.1, 1.3, 1.5, 1.8 or 1.9, wherein the Compound is:
  • Figure US20150080404A1-20150319-C00007
      • 1.18. Method I or any of formulae 1.1, 1.3, 1.5, 1.8 or 1.9, wherein the Compound is:
  • Figure US20150080404A1-20150319-C00008
  • in free, pharmaceutically acceptable salt or prodrug form.
  • In a further embodiment of the first aspect, the invention provides Method I as follows:
      • 2.1. Method I or any of 1.1-1.18, wherein the disorders associated with dementia are disorders associated with Huntington's disease, Parkinson's disease, Mulitple sclerosis, Amyotrophic lateral sclerosis, Down syndrome, Eldery depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease;
      • 2.2. Method I or any of 1.1-1.18, wherein the disorders associated with dementia are disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies and vascular dementia;
      • 2.3. Method I or any of 1.1-1.18 or 2.1, wherein the disorders associated with dementia are disorders associated with senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies and vascular dementia;
      • 2.4. Method I or any of 1.1-1.18 or 2.1, wherein the disorders associated with dementia are disorders associated with Alzheimer's disease;
      • 2.5. Method I or any of 1.1-1.18 or 2.1, wherein the disorders associated with dementia are disorders associated with mild cognition impairment;
      • 2.6. Method I or any of 1.1-1.18 or 2.1-2.5, wherein the disorder associated dementia to be treated is selected from the group consisting of (1) behavioral or mood disorders such as agitation/irritation, aggressive/as saultive behavior, anger, physical or emotional outbursts; (2) psychosis; (3) depression; and (4) sleep disorders in patients suffering from dementia, particularly Alzheimer's disease;
      • 2.7. Method I or any of 1.1-1.18 or 2.1-2.6, wherein the disorder to be treated is psychosis in a patient with dementia, particularly Alzheimer's disease;
      • 2.8. Method I or any of 1.1-1.18 or 2.1-2.7, wherein the disorder to be treated is depression in a patient with dementia, particularly Alzheimer's disease;
      • 2.9. Method I or any of 1.1-1.18 or 2.1-2.8, wherein the dosage of the Compound of Formula I, or any of 1.1-1.18 is 10-100 mg;
      • 2.10. Method I or any of 1.1-1.18 or 2.1-2.9, wherein the disorder to be treated is behavioral or mood disorders such as agitation/irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts in a patient with dementia, particularly Alzheimer's disease;
      • 2.11. Method I or any of 1.1-1.18 or 2.1-2.10, wherein the disorder to be treated is sleep disorders in a patient with dementia, particularly Alzheimer's disease;
      • 2.12. Method I or any of 1.1-1.18 or 2.1-2.11, wherein the disorder to be treated is sleep maintenance insomnia, frequent awakenings, and waking up feeling unrefreshed in a patient with dementia, particularly Alzheimer's disease;
      • 2.13. Method I or any of 1.1-1.18 or 2.1-2.12, wherein the disorder to be treated is sleep maintenance insomnia in a patient with dementia, particularly Alzheimer's disease;
      • 2.14. Method I or any of 1.1-1.18 or 2.1-2.12, wherein the disorder to be treated is advanced sleep-phase syndrome in a patient with dementia, particularly Alzheimer's disease;
      • 2.15. Method I or any of 1.1-1.18 or 2.1-2.12, wherein the disorder to be treated is delayed sleep-phase syndrome in a patient with dementia, particularly Alzheimer's disease;
      • 2.16. Method I or any of 1.1-1.18, 2.1-2.6 or 2.10-2.15, wherein the dosage of the Compound of Formula I, or any of 1.1-1.18 is 1-10 mg;
      • 2.17. Method I or any of 1.1-1.18 or 2.1-2.16, further comprises administering one or more therapeutic agents useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease;
      • 2.18. Method I or any of 1.1-1.18 or 2.17, wherein the therapeutic agent useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease is a cholinesterase inhibitor (e.g., acetylcholinesterase inhibitor) or an N-Methyl D-Asparate (NMDA) receptor antagonist, in free or pharmaceutically acceptable salt form;
      • 2.19. Method I or any of 1.1-1.18 or 2.17-2.18, wherein the cholinesterase inhibitor (e.g., acetylcholinesterase inhibitor) is selected from the group consisting of Tacrine, rivastigmine (Exelon), donepezil (Aricept), and galantamine (Razadyne, formerly called Reminyl)) in free or pharmaceutically acceptable salt form;
      • 2.20. Method I or any of 1.1-1.18 or 2.17-2.19, wherein the cholinesterase inhibitor (e.g., acetylcholinesterase inhibitor) is donepezil in free or pharmaceutically acceptable salt form;
      • 2.21. Method I or any of 1.1-1.18 or 2.17-2.18, wherein the NMDA receptor antagonist is memantine in free or pharmaceutically acceptable salt form;
      • 2.22. Method I or any of 1.1-1.18 or 2.17-2.18, wherein the therapeutic agent useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease is a combination of a cholinesterase inhibitor (e.g., acetylcholinesterase inhibitor) and an N-Methyl D-Asparate (NMDA) receptor antagonist, in free or pharmaceutically;
      • 2.23. Method I or any of 1.1-1.18 or 2.22, wherein the one or more therapeutic agent(s) useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof is a combination of donepezil and memantine in free or pharmaceutically acceptable salt form.
      • 2.24. Method I or any of the foregoing methods further comprises administering one or more therapeutic agents selected from antidepressant compounds, compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission), a GABA-B agonist, a 5-HT modulator (e.g., a 5-HT1A agonist, a 5-HT2A antagonist, a 5-HT2A inverse agonist, etc.), a melatonin agonist, an ion channel modulator (e.g., blocker), a serotonin-2 antagonist/reuptake inhibitor (SARIs), an orexin receptor antagonist, an H3 agonist, a noradrenergic antagonist, a galanin agonist, a CRH antagonist, human growth hormone, a growth hormone agonist, estrogen, an estrogen agonist, a neurokinin-1 drug, and an antipsychotic agent, e.g., an atypical antipsychotic agent, in free or pharmaceutically acceptable salt form.
  • In a second aspect, the invention provides a pharmaceutical composition (Pharmaceutical Composition I) comprising the compound of Formula I or any of formulae 1.1-1.18 in combination with one or more therapeutic agents useful for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease in admixture with a pharmaceutically acceptable diluent or carrier.
  • In a further embodiment of the second aspect, the invention provides the Pharmaceutical Composition I as hereinbefore described wherein the therapeutic agent(s) useful for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, is a cholinesterase inhibitor (e.g., acetylcholinesterase inhibitor) or an N-Methyl D-Asparate (NMDA) receptor antagonist) as described in any of formulae 2.17-2.23.
  • In another embodiment of the second aspect, the invention provides the Pharmaceutical Composition I as hereinbefore described wherein the therapeutic agent(s) useful for the prophylaxis or treatment of one or more disorders associated with dementia is selected from: antidepressant compounds, compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission), a GABA-B agonist, a 5-HT modulator (e.g., a 5-HT1A agonist, a 5-HT2A antagonist, a 5-HT2A inverse agonist, etc.), a melatonin agonist, an ion channel modulator (e.g., blocker), a serotonin-2 antagonist/reuptake inhibitor (SARIs), an orexin receptor antagonist, an H3 agonist, a noradrenergic antagonist, a galanin agonist, a CRH antagonist, human growth hormone, a growth hormone agonist, estrogen, an estrogen agonist, a neurokinin-1 drug, and an antipsychotic agent, e.g., an atypical antipsychotic agent, in free or pharmaceutically acceptable salt form.
  • In a third aspect, the invention provides a pharmaceutical composition comprising the Compound of Formula I or any of formulae 1.1-1.18 in admixture with a pharmaceutically acceptable diluent or carrier, or the Pharmaceutical Composition I as hereinbefore described, for use (in the manufacture of a medicament) for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, as disclosed in Method I or any of formulae 2.1-2.24.
  • In the fourth aspect, the invention provides use of the Compound of Formula I or any of formulae 1.1-1.18 (in the manufacture of a medicament) for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., one or more disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, as disclosed in Method I or any of formulae 2.1-2.24.
  • In the fifth aspect, the invention provides the Pharmaceutical Composition of the Invention as described herein for use in the manufacture of a medicament for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease as disclosed in Method I or any of formulae 2.1-2.24.
  • DETAILED DESCRIPTION
  • The Compounds of the Invention as hereinbefore described have a selective receptor profile wherein they fully saturate the 5-HT2A receptors at a low dose and also bind to dopamine receptors and serotonin reuptake transporter (SERT) at a higher dose. Therefore the Compounds of the Invention are effective in treating one or more disorders associated with dementia, e.g., one or more disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, particularly behavioral/mood disturbances (e.g., agitation, aggressive/assaultive behavior) and sleep disorders, which are inadequately treated by the current marketed drugs for dementia and Alzheimer's disease, as well as treating psychosis and depressive disorders in patients suffering from dementia. The compounds of the Invention (i.e., Formula I as hereinbefore described) may be used in a combination therapy wherein the Compound of Formula I may be administered simultaneously, separately or sequentially with another active agent to treat dementia or dementing illnesses as hereinbefore described, particularly Alzheimer's disease or symptoms thereof.
  • The Compound of Formula I, in free, pharmaceutically acceptable salt or prodrug form may be administered in a composition, wherein said Compound of Formula I as hereinbefore described in free, pharmaceutically acceptable salt or prodrug form, is in admixture with a pharmaceutically acceptable diluent or carrier. Wherein the Compound of Formula I is administered in a combination therapy, the combination may be administered as a fixed combination (wherein the therapeutic agents are in a single dosage form, e.g., the Pharmaceutical Composition I hereinbefore described) or as a free combination (wherein therapeutic agents are in a separate dosage form).
  • The second or further therapeutic agents useful for the prophylaxis or treatment of dementia as hereinbefore described, particularly Alzheimer's disease described in Method I or any of formulae 2.17-2.24 of the invention include but not limited to a cholinesterase inhibitor and/or N-Methyl D-Asparate (NMDA) receptor antagonist.
  • Cholinesterase inhibitors, e.g., acetylcholinesterase inhibitors, are known in the art and/or are described e.g., in U.S. Pat. No. 4,895,841; and U.S. Pat. No. 4,948,807, the contents of each of which are incorporated by reference in their entirety. Preferred cholinesterase inhibitors to be used with the compound of the present invention include donepezil, rivastignmine, galantamine and tacrine.
  • NMDA receptor antagonists are also known in the art and are described in U.S. Pat. No. 5,061,703, the contents of which are incorporated by reference in their entirety. Preferred NMDA receptor antagonist to be used with the compound of the present invention is memantine.
  • Unlike dopamine receptor antagonists, Compounds of Formula I normalize brain dopamine activity, particularly in the prefrontal cortex. The Compounds of Formula I bind to 5-HT2A and dopamine D2 receptors. Compounds of Formula I also exhibit nanomolar binding affinity for SERT compared to known antidepressants. Therefore, the compounds of Formula I are useful for the treatment of (1) behavioral or mood disorders such as agitation/irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts; (2) psychosis; (3) depression; and (4) sleep disorders in patients suffering from dementia, particularly Alzheimer's disease. Therefore, in addition to the therapeutic agents useful for the treatment of dementia, the methods of the invention as hereinbefore described may optionally further comprises one or more therapeutic agents selected from antidepressant compounds, compounds that modulate GABA activity (e.g., enhances the activity and facilitates GABA transmission), a GABA-B agonist, a 5-HT modulator (e.g., a 5-HT1A agonist, a 5-HT2A antagonist, a 5-HT2A inverse agonist, etc.), a melatonin agonist, an ion channel modulator (e.g., blocker), a serotonin-2 antagonist/reuptake inhibitor (SARIs), an orexin receptor antagonist, an H3 agonist, a noradrenergic antagonist, a galanin agonist, a CRH antagonist, human growth hormone, a growth hormone agonist, estrogen, an estrogen agonist, a neurokinin-1 drug, and an antipsychotic agent, e.g., an atypical antipsychotic agent, in free or pharmaceutically acceptable salt form. In such methods, the therapeutic agents may be adjunctive to the compounds of the invention. As used herein the term “adjunctive” refers to any treatment that is used in conjunction with another to increase the chance of cure, or to increase the first treatment's efficacy. In other words, adjunctive therapy acts as an aid to the primary treatment. The combinations of the invention can include mixtures of the combined drugs, as well as two or more separate compositions of the drugs, which individual compositions can be, for example, co-administered together to a patient at the same of different times.
  • The antidepressant useful for the invention may be selected from amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fluvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenelzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, and velafaxine, in free or pharmaceutically acceptable salt form. In certain embodiment, the antidepressant(s) is a selective serotonin reuptake inhibitor (SSRI). In a further embodiment, the SSRI compound is selected from the group consisting of citalopram, escitalopram oxalate, fluoxetine, fluvoxamine maleate, paroxetine, sertraline, and dapoxetine, in free or pharmaceutically acceptable salt form.
  • The dosages of a compound of Formula I and/or the antidepressant of Method I can be the same as or lower than the approved dosage for the drug, the clinical or literature test dosage or the dosage used for the drug as a monotherapy. For example the daily dosage of compound of Formula Ito be administered in combination with an antidepressant is about 1 mg to about 140 mg, in another embodiment about 1 mg to about 100 mg, in another embodiment about 10 mg to about 100 mg, in another embodiment about 10 mg to about 50 mg, in another embodiment about 10 mg to about 40 mg, in another embodiment about 20 mg to about 40 mg and in another embodiment about 1 mg to about 10 mg. The amount of antidepressant to be administered in combination with the compound of Formula I is about 0.01 mg to about 2000 mg, in another embodiment about 0.1 mg to about 200 mg, in another embodiment about 10 mg to about 200 mg. In particular embodiments, the additional therapeutic agent, e.g., the antidepressant SSRI is sertraline and the daily dosage of sertraline is between about 20 mg and 100 mg.
  • In a specific embodiment, the dosages of a compound of Formula I and/or the second therapeutic agents are lower than when used in a monotherapy. Therefore, in a particular embodiment, the daily dosage of a compound of Formula I is lower than 100 mg once daily, or less than 50 mg, or less than 40 mg, or less than 30 mg, or less than 20 mg, or less than 10 mg. In another preferred embodiment, the dosages of both the Compound of Formula I and the antidepressant agent are lower than the dosages used for the individual drug as a monotherapy. Therefore, in a particular embodiment, for example, Method I comprises administering (1) a Compound of Formula I at a dosage lower than 100 mg once daily, preferably less than 50 mg, more preferably less than 40 mg, still more preferably less than 30 mg, still more preferably less than 20 mg, still more preferably less than 10 mg; and (2) antidepressant, for example a SSRI such as sertaline, at a daily dosage of less than 50 mg, more preferably, less than 20 mg, still more preferably, less than 10 mg, most preferably less than 6 mg, in free or pharmaceutically acceptable salt form.
  • The term “GABA” refers to gamma-aminobutyric acid. The GABA compounds are compounds which bind to the GABA receptor, and include, but are not limited to one or more of doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, Zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals) or estazolam.
  • 5HT2A antagonists include ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, pimavanserin (ACP-103), MDL 100907 (Sanofi-Aventis, France), HY10275 (Eli Lilly), APD125 (Arena Pharmaceuticals, San Diego, Calif.), AVE8488 (Sanofi-Aventis, France) and pizotifen.
  • 5HT1A agonists include repinotan, sarizotan, eptapirone, buspirone and MN-305 (MediciNova, San Diego, Calif.).
  • Melatonin agonists include melatonin, ramelteon (ROZEREM®, Takeda Pharmaceuticals, Japan), VEC-162 (Vanda Pharmaceuticals, Rockville, Md.), PD-6735 (Phase II Discovery and agomelatine.
  • Ion channel blockers such as lamotrigine, gabapentin or pregabalin.
  • Orexin receptor antagonists include orexin, a 1,3-biarylurea, SB-334867-a (GlaxoSmithKline, UK), GW649868 (GlaxoSmithKline) and a benzamide derivative, for example.
  • Serotonin-2 antagonist/reuptake inhibitors (SARI) include Org 50081 (Organon-Netherlands), ritanserin, nefazodone, serzone and trazodone.
  • Neurokinin-1 drugs include Casopitant (GlaxoSmithKline).
  • Specific examples of additional therapeutic agents useful for the current invention include modafinil, armodafinil, doxepin, alprazolam, bromazepam, clobazam, clonazepam, clorazepate, diazepam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, oxazepam, temazapam, triazolam, indiplon, zopiclone, eszopiclone, zaleplon, zolpidem, gabaxadol, vigabatrin, tiagabine, EVT 201 (Evotec Pharmaceuticals), estazolam, ketanserin, risperidone, eplivanserin, volinanserin (Sanofi-Aventis, France), pruvanserin, pimavanserin (ACP-103), pizotifen, MDL 100907 (Sanofi-Aventis, France), HY10275 (Eli Lilly), APD125 (Arena Pharmaceuticals, San Diego, Calif.), AVE8488 (Sanofi-Aventis, France), repinotan, sarizotan, eptapirone, buspirone, MN-305 (MediciNova, San Diego, Calif.), melatonin, ramelteon (ROZEREM®, Takeda Pharmaceuticals, Japan), VEC-162 (Vanda Pharmaceuticals, Rockville, Md.), PD-6735 (Phase II Discovery), agomelatine, lamotrigine, gabapentin, pregabalin, orexin, a 1,3-biarylurea, SB-334867-a (GlaxoSmithKline, UK), GW649868 (GlaxoSmithKline), a benzamide derivative, Org 50081 (Organon-Netherlands), ritanserin, nefazodone, serzone, trazodone, Casopitant (GlaxoSmithKline), amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, duloxetine, escitaloprame, fluoxetine, fluvoxamine, imipramine, isocarboxazid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenylzine sulfate, protiptyline, sertraline, tranylcypromine, trazodone, trimipramine, velafaxine, chlorpromazine, haloperidol, droperidol, fluphenazine, loxapine, mesoridazine molidone, perphenazine, pimozide, prochlorperazine promazine, thioridazine, thiothixene, trifluoperazine, clozapine, aripiparazole, olanzapine, quetiapine, risperidone, ziprasidone and paliperidone, asenapine, lurasidone, iloperidone and cariprazine, in free or pharmaceutically acceptable salt form.
  • The compounds of Formula I and their pharmaceutically acceptable salts and salt crystals may be made using the methods as described and exemplified in any of the following patents or applications: U.S. Pat. Nos. 6,548,493; 7,238,690; 6,552,017; 6,713,471; U.S. RE39680; U.S. RE39679; PCT/US08/03340; U.S. application Ser. No. 10/786,935; WO 2009/114181 and WO 2011/133224, the contents of each of which are incorporated by reference in their entirety. If not commercially available, starting materials for these processes may be made by procedures, which are selected from the chemical art using techniques which are similar or analogous to the synthesis of known compounds. All references cited herein are hereby incorporated in their entirety by reference.
  • The words “treatment” and “treating” are to be understood accordingly as embracing prophylaxis and treatment or amelioration of symptoms of disease and/or treatment of the cause of the disease. In particular embodiment, the word “treatment” and “treating” refers to prophylaxis or amelioration of symptoms of the disease.
  • The term “patient” may include a human or non-human patient.
  • The term “dementia” is intended to refer to a condition or disorder characterized by the loss of cognitive ability affecting memory, thinking, language, judgment and behavior. Early symptoms of dementia may include difficulty performing tasks that require some thought (balancing a checkbook, playing games (such as bridge); learning new information; getting lost on familiar routes; having language difficulties (difficulties in finding name of familiar objects); losing interest in things previously enjoy; losing social skills. More severe symptoms of dementia include change in sleep patterns, often waking up at night; difficulty performing basic tasks such as brushing teeth or preparing a meal; forgetting details about current events; having hallucinations, violent behavior, delusions, depression, agitation; difficulty reading or writing; having poor judgment or loss of ability to recognize danger; losing the ability to recognize family members or understand language. The term “dementia” refers to any of the dementing illnesses as described herein regardless of etiology and therefore shall include but not limited to mild or severe cognition impairment and dementing illnesses such as senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease. In a particular embodiment, dementia refers to mild cognitive impairment. In another embodiment, dementia refers to Alzheimer's disease.
  • The term “disorder associated with dementia” means common co-morbid psychiatric disorders or conditions associated with dementia, which include but not limited to (1) behavioral or mood disorders such as agitation/irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts; (2) psychosis; (3) depression; and (4) sleep disorders. In particular embodiment of the invention, the disorders associated with dementia are disorders associated Alzheimer's disease.
  • The term “mild cognitive impairment” or “mild cognition impairment” (MCI, also known as incipient dementia, or isolated memory impairment) is cognitive impairment beyond that expected based on the age and education of the individual, but which is not significant enough to interfere with their daily activities. Symptoms of MCI include difficulty performing more than one task at a time, solving problems or making decisions, forgetting recent events or conversations and taking longer to perform more difficult mental activities.
  • If not otherwise specified or clear from context, the following terms herein have the following meanings:
      • a. “Alkyl” as used herein is a saturated or unsaturated hydrocarbon moiety, e.g., one to twenty-one carbon atoms in length, which may be linear or branched (e.g., n-butyl or tert-butyl), preferably linear, unless otherwise specified. For example, “C1-21 alkyl” denotes alkyl having 1 to 21 carbon atoms. In one embodiment, alkyl is optionally substituted with one or more hydroxy or C1-22alkoxy (e.g., ethoxy) groups. In another embodiment, alkyl contains 1 to 21 carbon atoms, preferably straight chain and optionally saturated or unsaturated, for example R1 is an alkyl chain containing 1 to 21 carbon atoms, preferably 6-15 carbon atoms, 16-21 carbon atoms, e.g., so that together with the —C(O)— to which it attaches, e.g., when cleaved from the compound of Formula I, forms the residue of a natural or unnatural, saturated or unsaturated fatty acid.
  • Compounds of the Invention refer to Compounds of Formula I, which include any of formulae 1.1-1.18, in free, salt or prodrug form. For example, where the compounds contain acidic substituents, in base addition salt form or where the compounds contain a basic substituent, in acid addition salt form. The Compounds of the Invention are intended for use as pharmaceuticals, therefore pharmaceutically acceptable salts are preferred. Salts which are unsuitable for pharmaceutical uses may be useful, for example, for the isolation or purification of free Compounds of the Invention or their pharmaceutically acceptable salts, are therefore also included. Pharmaceutically acceptable salts include, for example, the hydrochloride and tosylate salts. Where dosage amounts of salts are given by weight, e.g., milligrams per day or milligrams per unit dose, the dosage amount of the salt is given as the weight of the corresponding free base, unless otherwise indicated.
  • Compounds of the Invention may in some cases also exist in prodrug form. A prodrug form is compound which converts in the body to a Compound of the Invention. For example when the Compounds of the Invention contain hydroxy or carboxy substituents, these substituents may form physiologically hydrolysable and acceptable esters. As used herein, “physiologically hydrolysable and acceptable ester” means esters of Compounds of the Invention which are hydrolysable under physiological conditions to yield acids (in the case of Compounds of the Invention which have hydroxy substituents) or alcohols (in the case of Compounds of the Invention which have carboxy substituents) which are themselves physiologically tolerable at doses to be administered. For example, wherein Y of the compound of Formula I is —C(H)(OR1), and R1 is —C(O)—C1-21alkyl, e.g., —C(O)—C3alkyl or —C(O)—C9alkyl, these compounds may hydrolyze under physiological condition to yield a compound of Formula I wherein Y is —C(H)(OH) on the one hand and C1-21alkyl-C(O)OH, e.g., C3alkyl-C(O)OH or C9alkyl-C(O)OH on the other hand. As will be appreciated the term thus embraces conventional pharmaceutical prodrug forms. Wherein a prodrug (e.g., the compound of formula (I) wherein R1 is —C(O)—C1-21alkyl) is used, the dosage amount is calculated based on the amount of the compound of formula (I) wherein Y is C(═O) in free base form.
  • The term “simultaneously” when referring to a therapeutic use means administration of two or more active ingredients at or about the same time by the same route of administration.
  • The term “separately” when referring to a therapeutic use means administration of two or more active ingredients at or about the same time by different route of administration.
  • The phrase “disorder(s) associated with Alzheimer's disease” includes, but is not limited to (1) behavioral or mood disorders such as agitation/irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts; (2) psychosis; (3) depression; and (4) sleep disorders in patients suffering from Alzheimer's disease.
  • Dosages employed in practicing the present invention will of course vary depending, e.g. on the particular disease or condition to be treated, the particular Compound of the Invention used, the mode of administration, and the therapy desired. Unless otherwise indicated, an amount of the Compound of the Invention for administration (whether administered as a free base or as a salt form) refers to or is based on the amount of the Compound of the Invention in free base form (i.e., the calculation of the amount is based on the free base amount). Wherein a prodrug (e.g., the compound of formula (I) wherein R1 is —C(O)—C1-21alkyl) is used, the dosage amount is calculated based on the amount of the compound of formula (I) wherein Y is C(═O) in free base form. Compounds of the Invention may be administered by any suitable route, including orally, intra-muscularly, subcutaneously, parenterally or transdermally, but are preferably administered orally. Compounds of the Invention may be administered by any suitable route, including orally, parenterally or transdermally, but are preferably administered orally.
  • In general, satisfactory results for Method I and any of formulae 2.1-2.23 for the treatment or prophylaxis of various disorders associated with dementia such as a combination of at least behavioral disorders such as aggressive/assaultive behavior, anger, physical or emotional outbursts; sleep disorders; mood disorders such as agitation/irritation; depression; and/or psychosis in a patient suffering from dementia, particularly Alzheimer's disease, as set forth above are indicated to be obtained on oral administration at dosages of the order from about 1 mg to 100 mg to 140 mg once or more than once daily, preferably 2.5 mg-60 mg, e.g., 2.5 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg or 60 mg, once daily of the compound of Formula I or any of formulae 1.1-1.18 in free, pharmaceutically acceptable salt or prodrug form, preferably via oral administration. Satisfactory results for Method I and any of formulae 2.1-2.24 for the treatment of sleep disorders and/or behavioral or mood disorders alone such as aggressive/assaultive behavior, anger, physical, emotional outbursts or agitation/irritation in patients with dementia, particularly Alzheimer's disease (e.g., patients without symptoms of psychosis) are indicated to be obtained on oral administration at dosages of the order from about 1-10 mg, e.g., 2.5 mg-5 mg, e.g., 2.5 mg, 3 mg, 4 mg, 5 mg or 10 mg, of a Compound of Formula I or any of formulae 1.1-1.18, in free, pharmaceutically acceptable salt or prodrug form, once daily, preferably via oral administration.
  • For combination therapy, one skilled in the art can design a combination based on the level of severity (staging) of and/or the symptoms manifested in dementia, particularly Alzheimer's disease to enhance efficacy with reduce side effects. Wherein the symptoms/disorders to be treated are behavioral/mood disorders such as aggressive/assaultive behavior, anger, physical or emotional outbursts and/or agitation/irritation; or sleep disorders, but the patients do not have psychosis, the compound of the invention may be administered at a lower dosage, e.g., about 1-10 mg, e.g., 2.5 mg-5 mg, e.g., 2.5 mg, 3 mg, 4 mg, 5 mg or 10 mg, of a Compound of Formula I or any of formulae 1.1-1.18, in free, pharmaceutically acceptable salt or prodrug form, once or more than once daily, preferably via oral administration. Wherein the symptoms/disorders to be treated are psychosis as well as behavioral/mood disorders such as aggressive/assaultive behavior, anger, physical or emotional outbursts and/or agitation/irritation; or sleep disorders, the compounds of the invention may be administered at a higher dosage, e.g., about 1 mg to 100 mg to 140 mg once daily, preferably 2.5 mg-60 mg, e.g., 20 mg-60 mg, 20 mg-40 mg, e.g., 2.5 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg or 60 mg, once or more than once daily, for example, greater than 20 mg per day, preferably via oral administration.
  • Dosages of the second or further therapeutic agent(s) useful for the prophylaxis or treatment of dementia, particularly for the prophylaxis or treatment of Alzheimer's disease or symptoms thereof, e.g., cholinesterase inhibitor, e.g., acetylcholinesterase inhibitor or NMDA receptor antagonist can vary in range known to a person skilled in the art. The dosages can range from about 1 mg to 100 mg. In particular embodiments, the compound of the Invention may be combined with the second or further therapeutic agent(s) useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof as follows:
      • i) about 5 mg, 10 mg or 23 mg dosage of donepezil, in free or pharmaceutically acceptable salt form; and/or
      • ii) about 1.5 mg, 2 mg, 3 mg, 4.5 mg, 4.6 mg, 6 mg or 9.5 mg of rivastigmine, in free or pharmaceutically acceptable salt form; and/or
      • iii) about 4 mg, 8 mg, 12 mg, 16 mg or 24 mg of galantamine, in free or pharmaceutically acceptable salt form; and/or
      • iv) about 2 mg, 5 mg, 7 mg, 10 mg, 14 mg, 21 mg or 28 mg of memantine, in free or pharmaceutically acceptable salt form;
        in combination with the Compound of the Invention as hereinbefore described, in free, pharmaceutically acceptable salt or prodrug form.
  • For the avoidance of doubt, any disclosure of a numerical range, e.g., “up to X” amount is intended to include the upper numerical limit X. Therefore, a disclosure of “up to 60 mg” is intended to include 60 mg.
  • Pharmaceutical compositions comprising compounds of the Invention may be prepared using conventional diluents or excipients and techniques known in the galenic art. Thus oral dosage forms may include tablets, capsules, solutions, suspensions and the like.
  • Example 1 Effect of Compound A on Reversal of Social Isolation resulted from Repeated Stress
  • Mice are tested for social isolation behavior after repeated exposure (once daily for 10 days) to an aggressive resident intruder mouse in the social defeat/resident intruder paradigm as describe by Berton et al., Science (2006) 311:864-868, the contents of which are incorporated by reference. Mice are then dosed chronically, once daily for 30 d, with either vehicle (5% DMSO/5% Tween-20/15% PEG400/75% water, 6.7 ml/kg volume) or Compound A (1 mg/kg, ip) in vehicle solution. On the day after the last drug or vehicle treatment, the mice are placed in the open field in the presence of a resident intruder mouse and the animal's behavior recorded by videotape for 10 min. The videotapes are then scored for the total time each mouse spent during a 10 min period in specified open-field quadrants. The total time (sec) spent by mice representing each drug treatment group in the Interaction Zone in proximity to the resident intruder mouse or, in the Corner Zones, at a distance from the intruder mouse is expressed as a mean (±SEM).
  • Results:
  • Decreased social function is a core feature of the ‘negative’ symptoms of schizophrenia that are poorly addressed by existing antipsychotic medications. The social defeat/resident intruder model can be used to measure social isolation behavior in rodents. Isolation behavior has been shown to be reversed using this model, after chronic administration of anti-depressant medications with potent SERT activity, including fluoxetine (Berton et al., Science (2006) 311:864-868). Neither acute administration of anti-depressant medications or chronic treatment with anti-anxiety medications, like chlordiazepoxide, are similarly effective in this paradigm (Berton et. al., Science (2006) 311:864-868). Thus, the model has been proposed for the identification of compounds to address social isolation behavior, such as social isolation behavior resulted from repeated stress. This assay is therefore used to demonstrate reversal of social isolation behavior.
  • In the experiment described or similarly described above, mice are subjected to exposure to an aggressive resident intruder mouse in the social defeat/resident intruder paradigm as described in Berton et al., Science (2006) 311:864-868. They are then dosed chronically, once daily for 30 d, with either vehicle or Compound A (1 mg/kg, IP) in vehicle. On the day after the last drug or vehicle treatment the mice are placed in the open field in the presence of a resident intruder mouse and the total time each mouse spent during a 10 min period in defined open-field quadrants in close proximity to the intruder or in isolation to the intruder is measured. As anticipated, exposure to the aggressor mouse significantly reduced the amount of time resident mice spent in proximity to the intruder (p<.0.05 compared with vehicle). However, mice treated with Compound A following exposure to the intruder paradigm, showed no significant reduction in time spent in proximity to the intruder (NS, compared with Compound A alone). Compound A treatment alone did not result in differences in time spent in the Interaction Zone, compared with untreated control mice. The data indicate that chronic treatment with Compound A results in a reversal of social defeat behavior comparable to that seen after chronic treatment with anti-depressant medications such as fluoxetine. This experiment shows that Compound A is effective in reversing social isolation resulted from repeated stress. This experiment also shows that Compound A has functional anti-depressant activity.

Claims (22)

1. A method for the prophylaxis or treatment of one or more disorders associated with dementia, e.g., disorders associated with mild cognition impairment and dementing illnesses including senile dementia, Alzheimer's disease, Pick's disease, frontotemporal dementia, parasupranculear palsy, dementia with Lewy bodies, vascular dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Down syndrome, elderly depression, Wernicke-Korsakoff's syndrome, corticobasal degenerations, and prion disease, comprising administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula I:
Figure US20150080404A1-20150319-C00009
wherein:
X is —N(H)—, —N(CH3)— or —O—;
Y is —C(═O), —C(H)(OH) or —C(H)(OR1);
R1 is —C(O)—C1-21alkyl (e.g., —C(O)—C1-5alkyl, —C(O)—C6-15alkyl or —C(O)—C16-21alkyl), preferably said alkyl is a straight chain, optionally saturated or unsaturated and optionally substituted with one or more hydroxy or C1-22alkoxy (e.g., ethoxy) groups, for example R1 is —C(O)—C6alkyl, —C(O)—C7alkyl, —C(O)—C9alkyl, —C(O)—C11alkyl, —C(O)—C13alkyl or —C(O)—C15alkyl wherein such compound hydrolyzes to form the residue of a natural or unnatural, saturated or unsaturated fatty acid, e.g., the compound hydrolyzes to form the hydroxy compound on the one hand and octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid or hexadecanoic acid on the other hand),
in free, pharmaceutically acceptable salt or prodrug form.
2. The method according to claim 1, wherein the compound of Formula I is selected from the group consisting of:
Figure US20150080404A1-20150319-C00010
in free, pharmaceutically acceptable salt or prodrug form.
3. The method according to claim 1, wherein the disorder associated with dementia is a disorder associated with Alzheimer's disease.
4. The method according to claim 1, wherein the disorder associated with dementia is a disorder associated with mild cognition impairment.
5. The method according to claim 1, wherein the disorder associated with dementia to be treated is selected from the group consisting of (1) behavioral or mood disorders such as agitation/irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts; (2) psychosis; (3) depression; and (4) sleep disorders.
6. The method according to claim 1, wherein the disorder associated with dementia to be treated is behavioral or mood disorders.
7. The method according to claim 1, wherein the dosage of the Compound of Formula I in free, pharmaceutically acceptable salt or prodrug form is about 10-100 mg.
8. The method according to claim 1, wherein the disorder associated with dementia to be treated is agitation/irritation, aggressive/assaultive behavior, anger, physical or emotional outbursts.
9. The method according to claim 1, wherein the disorder associated with dementia to be treated is sleep disorders.
10. The method according to claim 8, wherein the dosage of the Compound of Formula I in free, pharmaceutically acceptable salt or prodrug form is about 1-10 mg.
11. The method according to claim 1, further comprises administering one or more therapeutic agents useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof.
12. The method according to claim 11, wherein the therapeutic agent useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof is an acetylcholinesterase inhibitor or an N-Methyl D-Asparate (NMDA) receptor antagonist.
13. The method according to claim 11, wherein the therapeutic agent useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof is selected from the group consisting of Tacrine, rivastigmine, donepezil and galantamine.
14. The method according to claim 11, wherein the therapeutic agent useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof is donepezil.
15. The method according to claim 14, wherein the dosage of the compound of Formula I is about 1-10 mg and the dosage of donepezil is about 5 mg, 10 mg or 23 mg, in free or pharmaceutically acceptable salt form.
16. The method according to claim 11, wherein the therapeutic agents useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof are donepezil and memantine.
17. A pharmaceutical composition comprising the compound of Formula I according to claim 1, in combination with one or more therapeutic agents useful for the prophylaxis or treatment of one or more disorders associated with dementia (e.g., cholinesterase inhibitor (e.g., acetylcholinesterase inhibitor) or an N-Methyl D-Asparate (NMDA) receptor antagonist), in admixture with a pharmaceutically acceptable diluent or carrier.
18. The pharmaceutical composition according to claim 17, wherein the therapeutic agent useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof is an acetylcholinesterase inhibitor.
19. The pharmaceutical composition according to claim 17, wherein the therapeutic agent useful for the prophylaxis or treatment of dementia, particularly Alzheimer's disease or symptoms thereof is donepezil in free or pharmaceutically acceptable salt form.
20. A pharmaceutical composition comprising about 1-10 mg of the compound according to claim 1 and about 5 mg, 10 mg or 23 mg of donepezil, in free or pharmaceutically acceptable salt form, in admixture with a pharmaceutically acceptable diluents or carrier.
21. (canceled)
22. (canceled)
US14/394,470 2012-04-14 2013-04-14 Novel compositions and methods Abandoned US20150080404A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/394,470 US20150080404A1 (en) 2012-04-14 2013-04-14 Novel compositions and methods

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261624292P 2012-04-14 2012-04-14
US201261624293P 2012-04-14 2012-04-14
US201261624291P 2012-04-14 2012-04-14
US201261671713P 2012-07-14 2012-07-14
US201261671723P 2012-07-14 2012-07-14
US14/394,470 US20150080404A1 (en) 2012-04-14 2013-04-14 Novel compositions and methods
PCT/US2013/036515 WO2013155506A1 (en) 2012-04-14 2013-04-14 Novel compositions and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/036515 A-371-Of-International WO2013155506A1 (en) 2012-04-14 2013-04-14 Novel compositions and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/585,251 Continuation US11124514B2 (en) 2012-04-14 2019-09-27 Compositions and methods

Publications (1)

Publication Number Publication Date
US20150080404A1 true US20150080404A1 (en) 2015-03-19

Family

ID=49328233

Family Applications (7)

Application Number Title Priority Date Filing Date
US14/394,469 Active 2033-09-22 US11053245B2 (en) 2012-04-14 2013-04-14 Methods
US14/394,470 Abandoned US20150080404A1 (en) 2012-04-14 2013-04-14 Novel compositions and methods
US14/394,467 Active US9428506B2 (en) 2012-04-14 2013-04-14 Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for the treatment of nervous system disorders
US16/585,251 Active US11124514B2 (en) 2012-04-14 2019-09-27 Compositions and methods
US16/926,552 Pending US20210002280A1 (en) 2012-04-14 2020-07-10 Novel methods
US16/926,551 Pending US20200407362A1 (en) 2012-04-14 2020-07-10 Novel methods
US17/405,736 Active 2033-06-22 US11958852B2 (en) 2012-04-14 2021-08-18 Compounds and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/394,469 Active 2033-09-22 US11053245B2 (en) 2012-04-14 2013-04-14 Methods

Family Applications After (5)

Application Number Title Priority Date Filing Date
US14/394,467 Active US9428506B2 (en) 2012-04-14 2013-04-14 Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for the treatment of nervous system disorders
US16/585,251 Active US11124514B2 (en) 2012-04-14 2019-09-27 Compositions and methods
US16/926,552 Pending US20210002280A1 (en) 2012-04-14 2020-07-10 Novel methods
US16/926,551 Pending US20200407362A1 (en) 2012-04-14 2020-07-10 Novel methods
US17/405,736 Active 2033-06-22 US11958852B2 (en) 2012-04-14 2021-08-18 Compounds and methods

Country Status (13)

Country Link
US (7) US11053245B2 (en)
EP (4) EP2836212A4 (en)
JP (6) JP6242855B2 (en)
KR (1) KR20140146192A (en)
CN (1) CN104519886B (en)
AU (1) AU2013245702A1 (en)
CA (1) CA2870303A1 (en)
ES (1) ES2727815T3 (en)
HK (1) HK1206630A1 (en)
IN (1) IN2014DN08562A (en)
MX (1) MX2014012374A (en)
RU (1) RU2014145682A (en)
WO (3) WO2013155505A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199995B2 (en) 2008-03-12 2015-12-01 Intra-Cellular Therapies, Inc. 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-yl)-1-(4-fluorophenyl)-1-butanone toluenesulfonic acid addition salt and salt crystals
US9315504B2 (en) 2007-03-12 2016-04-19 Intra-Cellular Therapies, Inc. Preparation of 4-((6BR,10AS)-3-methyl-2,3,6B,9,10, 10A-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo [1,2,3-de]quinoxalin-8-(7H)-yl)-1-(4-fluorophenyl)-1-butanone or a pharmaceutically acceptable salt thereof
US9371324B2 (en) 2010-04-22 2016-06-21 Intra-Cellular Therapies, Inc. Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for the treatment of nervous system disorders
US9428506B2 (en) 2012-04-14 2016-08-30 Intra-Cellular Therapies, Inc. Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for the treatment of nervous system disorders
US9616061B2 (en) 2008-05-27 2017-04-11 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
US9708322B2 (en) 2013-03-15 2017-07-18 Intra-Cellular Therapies, Inc. Substituted pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalines for inhibiting serotonin reuptake transporter activity
US9745300B2 (en) 2014-04-04 2017-08-29 Intra-Cellular Therapies, Inc. Organic compounds
US9956227B2 (en) 2013-12-03 2018-05-01 Intra-Cellular Therapies, Inc. Method for the treatment of residual symptoms of schizophrenia
US10077267B2 (en) 2014-04-04 2018-09-18 Intra-Cellular Therapies, Inc. Organic compounds
WO2019023063A1 (en) * 2017-07-26 2019-01-31 Intra-Cellular Therapies, Inc. Organic compounds
US10245260B2 (en) 2016-01-26 2019-04-02 Intra-Cellular Therapies, Inc. Organic compounds
WO2019246384A1 (en) 2018-06-21 2019-12-26 Aquestive Therapeutics, Inc. System and method for making personalized individual unit doses containing pharmaceutical actives
WO2020051317A1 (en) 2018-09-07 2020-03-12 Aquestive Therapeutics, Inc. Oral film compositions and dosage forms having precise active dissolution profiles
US10654854B2 (en) 2016-03-28 2020-05-19 Intra-Cellular Therapies, Inc. Salts and crystals of ITI-007
US10682354B2 (en) 2016-03-28 2020-06-16 Intra-Cellular Therapies, Inc. Compositions and methods
US10688097B2 (en) 2016-03-25 2020-06-23 Intra-Cellular Therapies, Inc. Organic compounds
US10695345B2 (en) 2018-08-31 2020-06-30 Intra-Cellular Therapies, Inc. Pharmaceutical capsule compositions comprising lumateperone mono-tosylate
US10716786B2 (en) 2017-03-24 2020-07-21 Intra-Cellular Therapies, Inc. Transmucosal and subcutaneous compositions
US10906906B2 (en) 2016-12-29 2021-02-02 Intra-Cellular Therapies, Inc. Organic compounds
US10961245B2 (en) 2016-12-29 2021-03-30 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines for treatment of central nervous system disorders
WO2021087359A1 (en) 2019-11-01 2021-05-06 Aquestive Therapeutics, Inc. Prodrug compositions and methods of treatment
WO2021097247A1 (en) 2019-11-14 2021-05-20 Aquestive Therapeutics, Inc. Multimodal compositions and methods of treatment
US11014925B2 (en) 2016-03-28 2021-05-25 Intra-Cellular Therapies, Inc. Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide
US11311536B2 (en) 2016-10-12 2022-04-26 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US11376249B2 (en) 2017-07-26 2022-07-05 Intra-Cellular Therapies, Inc. Organic compounds
WO2022155544A1 (en) 2021-01-15 2022-07-21 Aquestive Therapeutics, Inc. Prodrug compositions and methods of treatment
US11440911B2 (en) 2017-09-26 2022-09-13 Intra-Cellular Therapies, Inc. Salts and crystals
WO2022192476A1 (en) 2021-03-09 2022-09-15 Aquestive Therapeutics, Inc. Dosage forms having equivalent biocomparable profiles
US11453670B2 (en) 2018-06-11 2022-09-27 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines synthesis
EP4134101A1 (en) 2019-07-07 2023-02-15 Intra-Cellular Therapies, Inc. Deuterated lumateperone for the treatment of the bipolar ii disorder
US11957791B2 (en) 2018-08-31 2024-04-16 Intra-Cellular Therapies, Inc. Methods

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039813B2 (en) 2012-02-07 2018-08-07 Massachusetts Institute Of Technology Use of antagonists of ghrelin or ghrelin receptor to prevent or treat stress-sensitive psychiatric illness
US9724396B2 (en) 2013-03-15 2017-08-08 Massachusetts Institute Of Technology Use of antagonists of growth hormone or growth hormone receptor to prevent or treat stress-sensitive psychiatric illness
CN104003987B (en) * 2014-06-03 2016-03-23 中国药科大学 The multi-functional anticholinesterase of the different two disjunctor class of tacrine-β-carboline
US10179776B2 (en) 2014-06-09 2019-01-15 Intra-Cellular Therapies, Inc. Compounds and methods of use to treat schizophrenia
US10317418B2 (en) 2015-02-24 2019-06-11 Massachusetts Institute Of Technology Use of ghrelin or functional ghrelin receptor agonists to prevent and treat stress-sensitive psychiatric illness
WO2016205631A1 (en) * 2015-06-17 2016-12-22 Massachusetts Institute Of Technology Serotonin 2c receptor antagonists to prevent and treat stress-related trauma disorders
CA3053540A1 (en) 2017-02-15 2018-08-23 The Regents Of The University Of California Improved light therapy system and methods of use
US11433253B2 (en) 2017-02-15 2022-09-06 The Regents Of The University Of California Light therapy system and methods of use
JP2020513023A (en) 2017-04-10 2020-04-30 ドクター・レディーズ・ラボラトリーズ・リミテッド Amorphous Form and Solid Dispersion of Lumateperone p-Tosylate
CA3099116A1 (en) 2018-05-04 2019-11-07 Incyte Corporation Salts of an fgfr inhibitor
EP3801527A4 (en) * 2018-06-08 2022-03-30 Intra-Cellular Therapies, Inc. Novel methods
WO2021119334A1 (en) 2019-12-11 2021-06-17 Intra-Cellular Therapies, Inc. Organic compound
US20230372336A1 (en) 2022-05-18 2023-11-23 Intra-Cellular Therapies, Inc. Novel methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071186B2 (en) * 1999-06-15 2006-07-04 Bristol-Myers Squibb Pharma Co. Substituted heterocycle fused gamma-carbolines
US8598119B2 (en) * 2008-05-27 2013-12-03 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
US9586960B2 (en) * 2008-03-12 2017-03-07 Intra-Cellular Therapies, Inc. 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de] quinoxalin-8(7H)-yl)-1-(4-fluorophenyl)-1-butanone toluenesulfonic acid salt crystal forms

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2490813A (en) 1944-11-29 1949-12-13 Standard Oil Co Continuous process for making aryl amines
US3299078A (en) 1962-10-01 1967-01-17 Smith Kline French Lab Pyrido [3', 4': 4, 5] pyrrolo [3, 2, 1-hi] indoles and-[3, 2, 1-ij] quinolines
US3813392A (en) 1969-06-09 1974-05-28 J Sellstedt Pyrrolo(1,2,3-alpha epsilon)quinoxalin-2(3h)-ones and related compounds
US3606908A (en) 1969-11-26 1971-09-21 Trico Products Corp Ventilation system for volatile fluid
US4238607A (en) 1972-06-19 1980-12-09 Endo Laboratories Inc. Pyridopyrrolo benzheterocycles
US3914421A (en) 1972-06-19 1975-10-21 Endo Lab Pyridopyrrolobenzheterocycles for combatting depression
US4183936A (en) 1972-06-19 1980-01-15 Endo Laboratories, Inc. Pyridopyrrolobenzheterocycles
US4115577A (en) 1972-06-19 1978-09-19 Endo Laboratories, Inc. Pyridopyrrolobenzheterocycles
JPS5014494A (en) * 1973-06-11 1975-02-15
IE41352B1 (en) 1974-04-01 1979-12-19 Pfizer 5-aryl-1,2,3,4-tetrahydro- -carbolines
US4001263A (en) 1974-04-01 1977-01-04 Pfizer Inc. 5-Aryl-1,2,3,4-tetrahydro-γ-carbolines
US4219550A (en) 1978-11-09 1980-08-26 E. I. Du Pont De Nemours And Company Cis- and trans- octahydropyridopyrrolobenzheterocycles
US4389330A (en) 1980-10-06 1983-06-21 Stolle Research And Development Corporation Microencapsulation process
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
US4530840A (en) 1982-07-29 1985-07-23 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4522944A (en) 1982-12-23 1985-06-11 Erba Farmitalia Carboxamido-derivatives of 5H-1,3,4-thiadiazolo[3,2-a]pyrimidines, compositions and use
SE8304361D0 (en) * 1983-08-10 1983-08-10 Ferrosan Ab NOVEL 1-ACYLPIPERAZINE DERIVATIVES NOVEL 1-ACYLPIPERAZINE DERIVATIVES
CH656884A5 (en) 1983-08-26 1986-07-31 Sandoz Ag POLYOLESTERS, THEIR PRODUCTION AND USE.
JPS6175A (en) * 1984-03-06 1986-01-06 ブリストル−マイア−ズ コムパニ− Antipsychotic 1-fluorophenylbutyl-4-(2-pyrimidinyl) piperazine derivative
IL74497A (en) 1985-03-05 1990-02-09 Proterra Ag Pharmaceutical compositions containing phenyl carbamate derivatives and certain phenyl carbamate derivatives
ATE90683T1 (en) 1986-03-19 1993-07-15 Kumiai Chemical Industry Co 5H-1,3,4-THIAZOLE(3,2-A>PYRIMIDIN-5-ONE DERIVATIVES AND FUNGICIDE PREPARATIONS CONTAINING THEM.
ATE91129T1 (en) 1986-04-07 1993-07-15 Kumiai Chemical Industry Co 5H-1,3,4-THIADIAZOLO(3,2-A>PYRIMIDIN-5-ONE DERIVATIVES AND HORTICULTURAL AND AGRICULTURAL FUNGICIDES CONTAINING THEM.
FI95572C (en) 1987-06-22 1996-02-26 Eisai Co Ltd Process for the preparation of a medicament useful as a piperidine derivative or its pharmaceutical salt
US5114976A (en) 1989-01-06 1992-05-19 Norden Michael J Method for treating certain psychiatric disorders and certain psychiatric symptoms
ES2059602T3 (en) 1989-04-14 1994-11-16 Merz & Co Gmbh & Co USE OF ADAMANTANE DERIVATIVES FOR THE PREVENTION AND TREATMENT OF BRAIN ISCHEMIA.
US5538739A (en) 1989-07-07 1996-07-23 Sandoz Ltd. Sustained release formulations of water soluble peptides
IT1271352B (en) 1993-04-08 1997-05-27 Boehringer Ingelheim Italia INDOLE DERIVATIVES USEFUL IN THE TREATMENT OF DISORDERS OF THE CENTRAL NERVOUS SYSTEM
ES2236700T3 (en) 1993-11-19 2005-07-16 Janssen Pharmaceutica N.V. 1,2-MICROENCAPSULATED BENZAZOLS.
US5576460A (en) 1994-07-27 1996-11-19 Massachusetts Institute Of Technology Preparation of arylamines
US5648542A (en) 1996-02-29 1997-07-15 Xerox Corporation Arylamine processes
US5648539A (en) 1996-02-29 1997-07-15 Xerox Corporation Low temperature arylamine processes
US5654482A (en) 1996-02-29 1997-08-05 Xerox Corporation Triarylamine processes
US5847166A (en) 1996-10-10 1998-12-08 Massachusetts Institute Of Technology Synthesis of aryl ethers
US5705697A (en) 1997-01-30 1998-01-06 Xerox Corporation Arylamine processes
US5723669A (en) 1997-01-30 1998-03-03 Xerox Corporation Arylamine processes
US5723671A (en) 1997-01-30 1998-03-03 Xerox Corporation Arylamine processes
TWI242011B (en) 1997-03-31 2005-10-21 Eisai Co Ltd 1,4-substituted cyclic amine derivatives
US6323366B1 (en) 1997-07-29 2001-11-27 Massachusetts Institute Of Technology Arylamine synthesis
GB2328686B (en) 1997-08-25 2001-09-26 Sankio Chemical Co Ltd Method for producing arylamine
US6395939B1 (en) 1997-10-06 2002-05-28 Massachusetts Institute Of Technology Diaryl ether condensation reactions
JP4647780B2 (en) 1998-02-26 2011-03-09 マサチューセッツ インスティテュート オブ テクノロジー Metal-catalyzed arylation and vinylation of hydrazine, hydrazone, hydroxylamine and oximes
US6235936B1 (en) 1998-02-26 2001-05-22 Massachusetts Institute Of Technology Metal-catalyzed arylations of hydrazines, hydrazones, and related substrates
US5902901A (en) 1998-05-07 1999-05-11 Xerox Corporation Arylamine processes
US6395916B1 (en) 1998-07-10 2002-05-28 Massachusetts Institute Of Technology Ligands for metals and improved metal-catalyzed processes based thereon
DK1097158T3 (en) 1998-07-10 2006-05-29 Massachusetts Inst Technology Ligands for metals and metal-catalyzed methods
US7223879B2 (en) 1998-07-10 2007-05-29 Massachusetts Institute Of Technology Ligands for metals and improved metal-catalyzed processes based thereon
US6307087B1 (en) 1998-07-10 2001-10-23 Massachusetts Institute Of Technology Ligands for metals and improved metal-catalyzed processes based thereon
US20010008942A1 (en) 1998-12-08 2001-07-19 Buchwald Stephen L. Synthesis of aryl ethers
ATE260642T1 (en) 1998-12-17 2004-03-15 Alza Corp CONVERSION OF LIQUID-FILLED GELATIN CAPSULES INTO SYSTEMS WITH CONTROLLED ACTIVE RELEASE THROUGH MULTIPLE COATINGS
US6407092B1 (en) 1999-04-23 2002-06-18 Pharmacia & Upjohn Company Tetracyclic azepinoindole compounds
PE20010052A1 (en) 1999-04-23 2001-01-27 Upjohn Co AZEPININDOL TETRACYCLIC COMPOUNDS AS AGONISTS OR ANTAGONISTS OF THE 5-HT RECEPTOR
US6713471B1 (en) 1999-06-15 2004-03-30 Bristol-Myers Squibb Pharma Company Substituted heterocycle fused gamma-carbolines
US6552017B1 (en) 1999-06-15 2003-04-22 Bristol-Myers Squibb Pharma Company Substituted heterocycle fused gamma-carbolines
US6541639B2 (en) 2000-07-26 2003-04-01 Bristol-Myers Squibb Pharma Company Efficient ligand-mediated Ullmann coupling of anilines and azoles
RU2003121304A (en) 2000-12-20 2005-01-27 Бристол-Маерс Сквибб Компани (Us) SUBSTITUTED PYRIDOINDOLES AS SEROTONIN AGONISTS AND ANTAGONISTS
US6849619B2 (en) 2000-12-20 2005-02-01 Bristol-Myers Squibb Company Substituted pyridoindoles as serotonin agonists and antagonists
EP1390340B1 (en) 2001-04-24 2017-03-01 Massachusetts Institute Of Technology Copper-catalyzed formation of carbon-heteroatom and carbon-carbon bonds
JP2005526691A (en) 2001-08-08 2005-09-08 ファルマシア・アンド・アップジョン・カンパニー・エルエルシー Therapeutic agent 1H-pyrido [4,3-b] indole
US20050232995A1 (en) 2002-07-29 2005-10-20 Yam Nyomi V Methods and dosage forms for controlled delivery of paliperidone and risperidone
PT1539115E (en) 2002-07-29 2008-01-14 Alza Corp Methods and dosage forms for controlled delivery of paliperidone
KR20050032107A (en) 2002-08-02 2005-04-06 메사추세츠 인스티튜트 오브 테크놀로지 Copper-catalyzed formation of carbon-heteroatom and carbon-carbon bonds
WO2004041281A1 (en) 2002-11-01 2004-05-21 Oregon Health And Science University Treatment of hyperkinetic movement disorder with donepezil
US7223870B2 (en) 2002-11-01 2007-05-29 Pfizer Inc. Methods for preparing N-arylated oxazolidinones via a copper catalyzed cross coupling reaction
US7109339B2 (en) 2002-12-19 2006-09-19 Bristol-Myers Squibb Company Substituted tricyclic gamma-carbolines as serotonin receptor agonists and antagonists
US7601740B2 (en) 2003-01-16 2009-10-13 Acadia Pharmaceuticals, Inc. Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases
US7462641B2 (en) 2003-07-21 2008-12-09 Smithkline Beecham Corporation (2S,4S)-4-fluoro-1-[4-fluoro-beta-(4-fluorophenyl)-L-phenylalanyl]-2-pyrrolidinecarbonitrile p-toluenesulfonic acid salt and anhydrous crystalline forms thereof
JP2005259113A (en) 2004-02-12 2005-09-22 Ricoh Co Ltd Process editing apparatus, process management apparatus, process editing program, process management program, recording medium, process editing method and process management method
CA2564018A1 (en) 2004-03-05 2005-10-13 Pharma C S.A. 8-phenoxy-.gamma. carboline derivatives
US7592454B2 (en) 2004-04-14 2009-09-22 Bristol-Myers Squibb Company Substituted hexahydro-pyridoindole derivatives as serotonin receptor agonists and antagonists
DE602005027714D1 (en) * 2004-09-20 2011-06-09 Sinai School Medicine USE OF MEMANTINE (NAMENDA) FOR THE TREATMENT OF AUTISM, FORCED BEHAVIOR AND IMPULSIVITY
CA2581023A1 (en) 2004-09-21 2006-03-30 Pfizer Products Inc. N-methyl hydroxyethylamine useful in treating cns conditions
RU2007121768A (en) 2004-12-15 2009-01-27 Ф. Хоффманн-Ля Рош Аг (Ch) BI- AND TRICYCLIC SUBSTITUTED PHENYLMETHANONES AS Glycine 1 (GLYT-1) CARRIER INHIBITORS FOR TREATMENT OF ALZHEIMER'S DISEASE
KR20140022114A (en) * 2005-06-06 2014-02-21 다케다 야쿠힌 고교 가부시키가이샤 Organic compounds
KR101805914B1 (en) 2007-03-12 2017-12-06 인트라-셀룰라 써래피스, 인코퍼레이티드. Substituted heterocycle fused gamma-carbolines synthesis
WO2009017836A1 (en) 2007-08-01 2009-02-05 Medivation Neurology, Inc. Methods and compositions for treating schizophrenia using antipsychotic combination therapy
EP2262502A4 (en) 2008-02-05 2011-12-28 Clera Inc Compositions and methods for alleviating depression or improving cognition
US8993572B2 (en) 2010-04-22 2015-03-31 Intra-Cellular Therapies, Inc. Pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines derivatives and [1,4]oxazino[2,3,4-hi]pyrido[4,3-b]indole derivatives
US11053245B2 (en) 2012-04-14 2021-07-06 Intra-Cellular Therapies, Inc. Methods
WO2014005194A1 (en) 2012-07-06 2014-01-09 The University Of Melbourne Immunological reagents and uses therefor
PT2968320T (en) 2013-03-15 2021-01-28 Intra Cellular Therapies Inc Organic compounds
US9161061B2 (en) 2013-03-15 2015-10-13 Pictech Management Limited Data storage and exchange device for color space encoded images
EP3666271A1 (en) 2013-12-03 2020-06-17 Intra-Cellular Therapies, Inc. Miscrospheres comprising a plga matrix for medical use
EP3125893B1 (en) 2014-04-04 2023-09-20 Intra-Cellular Therapies, Inc. Deuterated heterocycle fused gamma-carbolines as antagonists of 5-ht2a receptors
EP3125892A4 (en) 2014-04-04 2017-12-27 Intra-Cellular Therapies, Inc. Organic compounds
US10179776B2 (en) 2014-06-09 2019-01-15 Intra-Cellular Therapies, Inc. Compounds and methods of use to treat schizophrenia
EP3407888B1 (en) 2016-01-26 2020-12-30 Intra-Cellular Therapies, Inc. Pyridopyrroloquinoxaline compounds, their compositions and uses
EP3888656A1 (en) 2016-03-25 2021-10-06 Intra-Cellular Therapies, Inc. Deuterated heterocyclic gamma-carboline compounds and their use in the treatment or prophylaxis of a central nervous system disorder
JP2019513143A (en) 2016-03-28 2019-05-23 イントラ−セルラー・セラピーズ・インコーポレイテッドIntra−Cellular Therapies, Inc. Novel salts and crystals
JP7013454B2 (en) 2016-10-12 2022-02-15 イントラ-セルラー・セラピーズ・インコーポレイテッド Amorphous solid dispersion
MX2021013640A (en) 2017-03-24 2022-08-31 Intra Cellular Therapies Inc Novel compositions and methods.
CA3071119A1 (en) 2017-07-26 2019-01-31 Intra-Cellular Therapies, Inc. Organic compounds
JP7224333B2 (en) 2017-07-26 2023-02-17 イントラ-セルラー・セラピーズ・インコーポレイテッド organic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071186B2 (en) * 1999-06-15 2006-07-04 Bristol-Myers Squibb Pharma Co. Substituted heterocycle fused gamma-carbolines
US9586960B2 (en) * 2008-03-12 2017-03-07 Intra-Cellular Therapies, Inc. 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de] quinoxalin-8(7H)-yl)-1-(4-fluorophenyl)-1-butanone toluenesulfonic acid salt crystal forms
US8598119B2 (en) * 2008-05-27 2013-12-03 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
US9168258B2 (en) * 2008-05-27 2015-10-27 Intra-Cellular Therapries, Inc. Methods and compositions for sleep disorders and other disorders
US9616061B2 (en) * 2008-05-27 2017-04-11 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Lopez et al., "Psychiatric Symptoms Vary with the Severity of Dementia in Probable Alzheimer's Disease," J. Neuropsychiatry Clin. Neurosci., Summer 2003; 15(3): pp. 346-353. *
Taragano et al., "A Double-Blind, Randomized, Fixed-Dose Trial of Fluoxetine vs. Amitriptyline in the Treatment of Major Depression Complicating Alzheimer's Disease," Psychosomatics, 1997; 38(3): pp. 246-252. *
Tariot et al., "Memantine Treatment in Patients With Moderate to Severe Alzheimer Disease Already Receiving Donepezil," JAMA, 2004; 291(3): pp. 317-324. *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9751883B2 (en) 2007-03-12 2017-09-05 Intra-Cellular Therapies, Inc. Preparation of certain [((6BR,10AS)-2,3,6B,7,8,9,10, 10A-octahydro-1H-pyrido[3′,4′:4,5]pyrrolo [1,2,3-de]quinoxalines and pharmaceutically acceptable salts thereof
US9315504B2 (en) 2007-03-12 2016-04-19 Intra-Cellular Therapies, Inc. Preparation of 4-((6BR,10AS)-3-methyl-2,3,6B,9,10, 10A-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo [1,2,3-de]quinoxalin-8-(7H)-yl)-1-(4-fluorophenyl)-1-butanone or a pharmaceutically acceptable salt thereof
US11066407B2 (en) 2007-03-12 2021-07-20 Intra-Cellular Therapies, Inc. Preparation of certain substituted 1H-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalines and pharmaceutically acceptable salts thereof
US10597395B2 (en) 2007-03-12 2020-03-24 Intra-Cellular Therapies, Inc. Preparation of certain substituted 1-(4-fluorophenyl)-4-(2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-YL)butan-1-ones and pharmaceutically acceptable salts thereof
US11407751B2 (en) 2007-03-12 2022-08-09 Intra-Cellular Therapies, Inc. Hydrochloric acid salt of (6bR,10aS)-3-methyl-2,3,6b,7,8,9,10,10a-octahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxaline
US10464938B2 (en) 2007-03-12 2019-11-05 Intra-Cellular Therapies, Inc. Pharmaceutical compositions comprising ((6bR,10aS)-1-(4-fluorophenyl)-4-(3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-yl)butan-1-one or pharmaceutically acceptable salts thereof
US10221176B2 (en) 2007-03-12 2019-03-05 Intra-Cellular Therapies, Inc. Preparation of certain substituted [((6bR,10aS)-2,3,6b,7,8,9,10,10a-octahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines and pharmaceutically acceptable salts thereof
USRE48825E1 (en) 2008-03-12 2021-11-23 Intra-Cellular Therapies, Inc. 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-yl)-1-(4-fluorophenyl)-1-butanone toluenesulfonic acid salt crystal forms
US9199995B2 (en) 2008-03-12 2015-12-01 Intra-Cellular Therapies, Inc. 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-yl)-1-(4-fluorophenyl)-1-butanone toluenesulfonic acid addition salt and salt crystals
US9586960B2 (en) 2008-03-12 2017-03-07 Intra-Cellular Therapies, Inc. 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de] quinoxalin-8(7H)-yl)-1-(4-fluorophenyl)-1-butanone toluenesulfonic acid salt crystal forms
US10702522B2 (en) 2008-05-27 2020-07-07 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
USRE48839E1 (en) 2008-05-27 2021-12-07 Intra-Cellular Therapies, Inc Methods and compositions for sleep disorders and other disorders
US10117867B2 (en) 2008-05-27 2018-11-06 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
US9616061B2 (en) 2008-05-27 2017-04-11 Intra-Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
US9371324B2 (en) 2010-04-22 2016-06-21 Intra-Cellular Therapies, Inc. Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for the treatment of nervous system disorders
US11053245B2 (en) 2012-04-14 2021-07-06 Intra-Cellular Therapies, Inc. Methods
US9428506B2 (en) 2012-04-14 2016-08-30 Intra-Cellular Therapies, Inc. Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for the treatment of nervous system disorders
US10844061B2 (en) 2013-03-15 2020-11-24 Intra-Cellular Therapies, Inc. Pharmaceutical compositions comprising 4-(6BR,10AS)-3-methyl-2,3,6B,9,10,10A-hexahydro-1h, 7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-1-(4-fluorophenyl)butan-1-one and methods of treating conditions of the central nervous system
US9708322B2 (en) 2013-03-15 2017-07-18 Intra-Cellular Therapies, Inc. Substituted pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalines for inhibiting serotonin reuptake transporter activity
US10472359B2 (en) 2013-03-15 2019-11-12 Intra-Cellular Therapies, Inc. Pharmaceutical compositions comprising 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-1-(4-fluorophenyl) butan-1-one for inhibiting serotonin reuptake transporter activity
US11680065B2 (en) 2013-03-15 2023-06-20 Intra-Cellular Therapies, Inc. Pharmaceutical compositions comprising 4-(6Br,10aS)-3-methyl-2, 3, 6b, 9, 10, 10a-hexahydro-1H, 7H-pyrido[3′, 4′, 5] pyrolo[1,2,3-de] quinoxalin-8YL)-1-(4-fluorophenyl)-butane-1-one and methods of treating conditions of the central nervous system
US10072010B2 (en) 2013-03-15 2018-09-11 Intra-Cellular Therapies, Inc. Substituted pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalines for inhibiting serotonin reuptake transporter activity
US9956227B2 (en) 2013-12-03 2018-05-01 Intra-Cellular Therapies, Inc. Method for the treatment of residual symptoms of schizophrenia
US11026951B2 (en) 2013-12-03 2021-06-08 Intra-Cellular Therapies, Inc. Methods of treating bipolar disorder
US10960009B2 (en) 2013-12-03 2021-03-30 Intra-Cellular Therapies, Inc. Methods of treating schizophrenia and depression
US10960010B2 (en) 2013-12-03 2021-03-30 Intra-Cellular Therapies, Inc. Pharmaceutical compositions for sustained or delayed release
US10322134B2 (en) 2013-12-03 2019-06-18 Intra-Cellular Therapies, Inc. Methods
US10597394B2 (en) 2014-04-04 2020-03-24 Intra-Cellular Therapies, Inc. Organic compounds
US10899762B2 (en) 2014-04-04 2021-01-26 Intra-Cellular Therapies, Inc. Organic compounds
US10077267B2 (en) 2014-04-04 2018-09-18 Intra-Cellular Therapies, Inc. Organic compounds
US9745300B2 (en) 2014-04-04 2017-08-29 Intra-Cellular Therapies, Inc. Organic compounds
US11560382B2 (en) 2014-04-04 2023-01-24 Intra-Cellular Therapies, Inc. Organic compounds
US10245260B2 (en) 2016-01-26 2019-04-02 Intra-Cellular Therapies, Inc. Organic compounds
US11844757B2 (en) 2016-01-26 2023-12-19 Intra-Cellular Therapies, Inc. Organic compounds
US10799500B2 (en) * 2016-01-26 2020-10-13 Intra-Cellular Therapies, Inc. Organic compounds
US20190175590A1 (en) * 2016-01-26 2019-06-13 Intra-Cellular Therapies, Inc. Organic compounds
US10688097B2 (en) 2016-03-25 2020-06-23 Intra-Cellular Therapies, Inc. Organic compounds
US11096944B2 (en) 2016-03-25 2021-08-24 Intra-Cellular Therapies, Inc. Organic compounds
US10654854B2 (en) 2016-03-28 2020-05-19 Intra-Cellular Therapies, Inc. Salts and crystals of ITI-007
US11014925B2 (en) 2016-03-28 2021-05-25 Intra-Cellular Therapies, Inc. Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide
US10682354B2 (en) 2016-03-28 2020-06-16 Intra-Cellular Therapies, Inc. Compositions and methods
US11331316B2 (en) 2016-10-12 2022-05-17 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US11872223B2 (en) 2016-10-12 2024-01-16 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US11826367B2 (en) 2016-10-12 2023-11-28 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US11311536B2 (en) 2016-10-12 2022-04-26 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
US10961245B2 (en) 2016-12-29 2021-03-30 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines for treatment of central nervous system disorders
US10906906B2 (en) 2016-12-29 2021-02-02 Intra-Cellular Therapies, Inc. Organic compounds
US10716786B2 (en) 2017-03-24 2020-07-21 Intra-Cellular Therapies, Inc. Transmucosal and subcutaneous compositions
US11806347B2 (en) 2017-03-24 2023-11-07 Intra-Cellular Therapies, Inc. Transmucosal methods for treating psychiatric and neurological conditions
US11052083B2 (en) 2017-03-24 2021-07-06 Intra-Cellular Therapies, Inc. Transmucosal methods for treating psychiatric and neurological conditions
WO2019023063A1 (en) * 2017-07-26 2019-01-31 Intra-Cellular Therapies, Inc. Organic compounds
US11427587B2 (en) 2017-07-26 2022-08-30 Intra-Cellular Therapies, Inc. Organic compounds
US11376249B2 (en) 2017-07-26 2022-07-05 Intra-Cellular Therapies, Inc. Organic compounds
US11440911B2 (en) 2017-09-26 2022-09-13 Intra-Cellular Therapies, Inc. Salts and crystals
US11453670B2 (en) 2018-06-11 2022-09-27 Intra-Cellular Therapies, Inc. Substituted heterocycle fused gamma-carbolines synthesis
WO2019246384A1 (en) 2018-06-21 2019-12-26 Aquestive Therapeutics, Inc. System and method for making personalized individual unit doses containing pharmaceutical actives
US10695345B2 (en) 2018-08-31 2020-06-30 Intra-Cellular Therapies, Inc. Pharmaceutical capsule compositions comprising lumateperone mono-tosylate
US11957791B2 (en) 2018-08-31 2024-04-16 Intra-Cellular Therapies, Inc. Methods
US11052084B2 (en) 2018-08-31 2021-07-06 Intra-Cellular Therapies, Inc. Pharmaceutical capsule compositions comprising lumateperone mono-tosylate
US11541002B2 (en) 2018-09-07 2023-01-03 Aquestive Therapeutics, Inc. Oral film compositions and dosage forms having precise active dissolution profiles
WO2020051317A1 (en) 2018-09-07 2020-03-12 Aquestive Therapeutics, Inc. Oral film compositions and dosage forms having precise active dissolution profiles
EP4134101A1 (en) 2019-07-07 2023-02-15 Intra-Cellular Therapies, Inc. Deuterated lumateperone for the treatment of the bipolar ii disorder
WO2021087359A1 (en) 2019-11-01 2021-05-06 Aquestive Therapeutics, Inc. Prodrug compositions and methods of treatment
WO2021097247A1 (en) 2019-11-14 2021-05-20 Aquestive Therapeutics, Inc. Multimodal compositions and methods of treatment
WO2022155544A1 (en) 2021-01-15 2022-07-21 Aquestive Therapeutics, Inc. Prodrug compositions and methods of treatment
WO2022192476A1 (en) 2021-03-09 2022-09-15 Aquestive Therapeutics, Inc. Dosage forms having equivalent biocomparable profiles

Also Published As

Publication number Publication date
EP2836213A1 (en) 2015-02-18
AU2013245702A1 (en) 2014-11-13
JP2021098724A (en) 2021-07-01
US20150079172A1 (en) 2015-03-19
HK1206630A1 (en) 2016-01-15
EP2836212A4 (en) 2015-09-09
EP2836213B1 (en) 2018-07-04
EP2836213A4 (en) 2015-09-09
JP2015514135A (en) 2015-05-18
JP6242855B2 (en) 2017-12-06
JP6334511B2 (en) 2018-05-30
US11124514B2 (en) 2021-09-21
US11958852B2 (en) 2024-04-16
EP2836211B1 (en) 2019-03-20
IN2014DN08562A (en) 2015-05-22
JP2015516395A (en) 2015-06-11
CN104519886A (en) 2015-04-15
KR20140146192A (en) 2014-12-24
WO2013155506A1 (en) 2013-10-17
CA2870303A1 (en) 2013-10-17
CN104519886B (en) 2017-09-12
US20200017499A1 (en) 2020-01-16
MX2014012374A (en) 2015-04-17
JP2018168161A (en) 2018-11-01
US11053245B2 (en) 2021-07-06
WO2013155505A1 (en) 2013-10-17
JP2023159345A (en) 2023-10-31
ES2727815T3 (en) 2019-10-18
JP2015512951A (en) 2015-04-30
EP2836212A1 (en) 2015-02-18
US20200407362A1 (en) 2020-12-31
WO2013155504A1 (en) 2013-10-17
EP3791879A1 (en) 2021-03-17
US20210371421A1 (en) 2021-12-02
RU2014145682A (en) 2016-06-10
US9428506B2 (en) 2016-08-30
US20210002280A1 (en) 2021-01-07
US20150072964A1 (en) 2015-03-12
EP2836211A4 (en) 2015-09-09
EP2836211A1 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
US11958852B2 (en) Compounds and methods
US10682354B2 (en) Compositions and methods
US20190284196A1 (en) Benzodiazepine derivatives, compositions, and methods for treating cognitive impairment
US20230134844A1 (en) Benzodiazepine derivatives, compositions, and methods for treating cognitive impairment
US11414425B2 (en) Benzodiazepine derivatives, compositions, and methods for treating cognitive impairment
US11312721B2 (en) Benzodiazepine derivatives, compositions, and methods for treating cognitive impairment
JP2017509686A5 (en)
US20230098667A1 (en) Benzodiazepine derivatives, compositions, and methods for treating cognitive impairment
CN116940362A (en) Use of benzodiazepine to increase sensitivity to oudemansiella radicata following a chronic SSRI regimen
US20210253588A1 (en) Benzodiazepine derivatives, compositions, and methods for treating cognitive impairment
US20240132513A1 (en) Benzazepine derivatives, compositions, and methods for treating cognitive impairment
RU2667954C2 (en) Pharmaceutical composition for treatment of functional mental disorders
WO2024039886A1 (en) Benzazepine derivatives, compositions, and methods for treating cognitive impairment
AP et al. Update 2006-Treatment of Psychiatric Disorders

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTRA-CELLULAR THERAPIES, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATES, SHARON;DAVIS, ROBERT;VANOVER, KIMBERLY;AND OTHERS;SIGNING DATES FROM 20141111 TO 20160929;REEL/FRAME:046667/0655

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCC Information on status: application revival

Free format text: WITHDRAWN ABANDONMENT, AWAITING EXAMINER ACTION

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION