US20150079896A1 - Two-Piece Ventilation Units, Apparatus, Systems, and Related Methods - Google Patents

Two-Piece Ventilation Units, Apparatus, Systems, and Related Methods Download PDF

Info

Publication number
US20150079896A1
US20150079896A1 US14/329,596 US201414329596A US2015079896A1 US 20150079896 A1 US20150079896 A1 US 20150079896A1 US 201414329596 A US201414329596 A US 201414329596A US 2015079896 A1 US2015079896 A1 US 2015079896A1
Authority
US
United States
Prior art keywords
housing
fan
solar panel
ventilation unit
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/329,596
Inventor
Roy R. Stocker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solar Royal LLC
Original Assignee
Solar Royal LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Royal LLC filed Critical Solar Royal LLC
Priority to US14/329,596 priority Critical patent/US20150079896A1/en
Publication of US20150079896A1 publication Critical patent/US20150079896A1/en
Priority to US17/018,076 priority patent/US11788744B2/en
Priority to US18/375,541 priority patent/US20240027084A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/02Roof ventilation
    • F24F7/025Roof ventilation with forced air circulation by means of a built-in ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Definitions

  • fans require power to operate and power might/might not be available in close proximity to the location for particular roof mounted fan.
  • wires, cables, conduits, etc. must be run to the fan and connected thereto.
  • solar panels can be eye soars, take up space on the roof, etc.
  • the current disclosure provides systems, apparatus, methods, etc. for ventilating attics (and/or other spaces) and, more a particularly, two-piece ventilations units with adjustable (and flush fitting) solar panels and/or quick attachment fittings whereby fan assemblies of the ventilation units can be quickly attached to/detached from bases of the ventilation units.
  • Embodiments provide two-piece fans for use in ventilating spaces such as attics, crawlways, etc. These fans can require relatively low power and can possess high reliability. Moreover, fans of the current embodiment can be powered via solar panels, solar systems, etc. and/or power systems available in the buildings in/on which they might be installed. Fans of embodiments can be used in residential, commercial and/or utility applications, can be thermostat controlled, and can be windstorm certified per ASTM-E330 (and/or in accordance with other techniques).
  • Fans of embodiments are technologically, functionally and aesthetically superior to heretofore-available fans. Such fans can are rugged, durable, practical, windstorm certified and relatively inexpensive to manufacture, install, operate, maintain, modify, etc. Fans of embodiments possess elegant low profiles, blend nicely into their environments, and can be painted to match/complement their surroundings.
  • fans of embodiments possess adjustable solar panels. Such fans can include adjustable brackets with multiple locking states which support the solar panels and allow their positions to be adjusted.
  • Fans of embodiments can be used to provide proper ventilation for many spaces. In some situations these fans ventilate spaces to reduce temperatures inside enclosed spaces throughout the year such as attics, crawl spaces, warehouses, storage areas, sheds, barns, etc. In the summer, in particular, solar powered attic fans of embodiments help make such areas more comfortable by converting passive ventilation to active ventilation.
  • Fans of embodiments can reduce HVAC (heating, ventilation, and air conditioning) costs and reduce cooling cycles thereby saving energy and money. Furthermore, by reducing interior temperatures these fans can reduce premature deterioration of shingles, roof boards, sheathing, siding, insulation, stored valuables, etc. Proper ventilation can also prevent/reduce moisture (from relatively warm air) condensing on the under sides of relatively cool roofs, beams, rafters, etc. Moreover, because fans of some embodiments are solar powered, they can cost the owner/operator little or nothing to operate. Various embodiments provide fans with solar panels (and their adjustable brackets) which appear to be embedded in the fan housings rather than appearing as add-ons or appearing as if they have been glued onto the fans.
  • HVAC heating, ventilation, and air conditioning
  • Some embodiments provide two-piece ventilation units comprising bottom bases, top housings, solar panels, locks, and biasing members.
  • the bottom bases of the current embodiment define flashing which is shaped and dimensioned to divert runoff around the fans. They also define riser portions extending from the flashing and further define first halves of twist-on, quick attachment couplings.
  • the top housings of the current embodiment contain fans and define second halves of the twist-on, quick attachment couplings.
  • the top housings are releasably coupled to the bottom bases via the twist-on/off quick attachment couplings.
  • the solar panels couple to the top housings and are pivotable between stowed positions in which they lie flush with the top housings and extended positions in which they extend at an angle from the top housings.
  • the solar panels are in electrical communication with the fans.
  • the locks operatively couple with the bottom bases and the top housings and, when in their locked positions, lock the twist-on, quick attachment couplings in their coupled positions.
  • the biasing members operatively couple with the locks and urge the locks toward their coupled positions.
  • Ventilation units comprising bases (defining flashing portions) and housings which define, respectively, first and second halves of quick attachment couplings.
  • the quick attachment couplings allow the housings to be releasably coupled to the bases.
  • the ventilation units further comprise solar panels coupled to the housings which are pivotable between stowed positions in which they lay flush with the housings and elevated positions in which they extend from the top housings.
  • the quick attachment couplings of the current embodiment can be twist-on (twist-off) quick attachment couplings.
  • the ventilation units can further comprise locks operatively coupled to the bases and, which when in locked positions, can lock the twist-on, quick attachment couplings in coupled positions.
  • biasing members can operatively couple with the locks and urge the locks toward their locked positions.
  • Risers of some embodiments can be adapted to releasable couple between the bases and the housings.
  • the flashing portions can be adapted to be mounted on pitched roofs and the ventilation units can comprise fans contained in the housings.
  • the ventilation units of the current embodiment further comprise electrical connections adapted to receive 120 VAC (volts alternating current).
  • Embodiments provide ventilation units comprising bases, housings (coupled to the bases), and solar panels.
  • the solar panels couple with the housings and pivot between stowed positions in which they lie flush with the housings and extended positions in which they extend from the housings at angles.
  • the ventilation units further comprise fans and electrical connections adapted to receive 120 VAC.
  • Ventilation units of various embodiments possess bases and housings which define quick attachment couplings by which the housings are releasably coupled to the bases.
  • the bases define riser portions extending from the flashings and further defining the quick attachment couplings.
  • the quick attachment couplings can be twist-on quick attachment couplings.
  • the quick attachment couplings can be locked and can be biased toward their locked positions.
  • FIG. 1 illustrates a building
  • FIG. 2 illustrates a user installing a roof-mounted fan.
  • FIG. 3 further illustrates a user installing a roof-mounted fan.
  • FIG. 4 still further illustrates a user installing a roof-mounted fan.
  • FIG. 5 illustrates a two-piece fan with a solar panel in an extended position.
  • FIG. 6 further illustrates a two-piece fan with a solar panel in a stowed position.
  • FIG. 7 illustrates aspects of a two-piece fan.
  • FIG. 8 illustrates a fan assembly of a two-piece fan.
  • FIG. 9 illustrates a top plan view of a housing of a two-piece fan.
  • FIG. 10 further illustrates an exploded view of a fan assembly for a two-piece fan.
  • FIG. 11 illustrates a cross-sectional view of a two-piece fan.
  • FIG. 12 illustrates a top plan view of a pair of closures for two-piece fans.
  • FIG. 13 illustrates an exploded view of a two-piece fan.
  • FIG. 14 illustrates a two-piece fan installed on a roof.
  • FIG. 15 illustrates an exploded view of a two-piece fan and a riser.
  • FIG. 16 illustrates a two-piece fan and a riser installed on a roof.
  • FIG. 17 illustrates a corrugated roof and bases for two-piece fans.
  • FIG. 18 illustrates one half of a quick attachment coupling for two-piece fans.
  • FIG. 18A illustrates a cross-sectional view as seen along line AA in FIG. 18 .
  • FIG. 19 illustrates another two-piece fan and a roof curb.
  • FIG. 19A illustrates a cross-sectional view of the base of FIG. 19 .
  • FIG. 20 illustrates a schematic of a circuit associated with a two-piece fan.
  • FIG. 21 illustrates a flowchart of a method related to two-piece fans.
  • FIG. 22 illustrates a quick attachment coupling for multi-piece fans.
  • the current disclosure provides systems, apparatus, methods, etc. for ventilating attics (and/or similar spaces) and, more a particularly, two-piece ventilations units with adjustable (and flush fitting) solar panels and/or quick attachment fittings whereby fan assemblies of the ventilation units can be quickly attached to/detached from bases of the ventilation units.
  • FIG. 1 illustrates a building. More particularly, FIG. 1 illustrates a building 100 , walls 101 , a ceiling 102 , air-conditioned spaces 103 , a roof 104 , a crawl way 105 , HVAC (heating, ventilation, and air-conditioning) equipment 106 , ducts 108 , an air conditioner (evaporator) 110 , a roof vent 112 , and an roof-mounted fan 114 .
  • the building 100 could be a residential building (as shown), a commercial building, an industrial building, etc.
  • the building 100 exists in a region in which the sun and other heat sources create a heat load on the building 100 . It also exists in an area where neighboring property owners might wish to maintain the aesthetic appearance of the neighborhood. Thus, the owner of the building 100 might wish to manage the heat load of the building 100 while not adversely affecting the aesthetic qualities of the building 100 , the neighborhood, etc.
  • the building 100 also includes a number of walls 101 as well as or, in the alternative to, other structures. Typically, these structures define one or more of the “air-conditioned” spaces 103 and one or more of the crawlways 105 .
  • the air-conditioned spaces 103 are said to be “air-conditioned” in the sense that the condition of the air therein might be maintained more or less at some given state and, more specifically, at some desired temperature. Yet the external heat load (from the sun and/or other sources) and, potentially, internal heat loads (for instance, from lighting, electrical/mechanical equipment, occupants, etc.) can affect the temperature of those air-conditioned spaces 103 .
  • the crawl way 105 (or attic) is included in the design of the building 100 to provide a degree of separation between the air-conditioned spaces 103 and the external environment (and its heat loads). Yet, that crawlway 105 itself can become warm thereby exposing the air-conditioned spaces 103 to heat flux from the crawl way 105 itself and/or reduce the amount of heat which would otherwise escape from the air-conditioned spaces 103 through that space.
  • HVAC equipment 106 often convey air-conditioned air and, even if insulated, allow that air-conditioned air to absorb heat from the air in the crawl way 105 .
  • heat from the HVAC equipment 106 and other heat sources can be conveyed into the air-conditioned spaces 103 via the ducts 108 .
  • the roof 104 along with the ceiling 102 defines the crawl way 105 and tends to trap heat in that crawl way 105 . Indeed, warm (or even hot) air in the crawl way 105 can rise to the crown or apex of the roof 104 where it becomes trapped unless vented. As a result, a temperature gradient can exist as sensed at various heights in the crawl way 105 with the hottest air frequently being found near the apex of the roof 104 .
  • roof vent 112 on the roof 104 to vent the crawl way 105 . If placed near the apex of the roof 104 , the roof vent 112 therefore allows the warmer air in the crawlway 105 to rise through itself and therefore escape from the crawl way 105 .
  • passive roof vents 112 rely on natural convection to drive the flow of the warm air and might not therefore be that effective in managing the heat load(s) affecting the crawl way 105 (and/or the air-conditioned spaces 103 ). Indeed, natural convection typically does not happen in a substantial manner until the crawl way 105 temperature reaches about 136 degrees F.
  • some users include a roof-mounted fan 114 on the roof 104 to actively ventilate the crawl way 105 .
  • FIG. 2 illustrates a user installing a roof-mounted fan 214 on a building 200 .
  • FIG. 2 also illustrates a roof 204 , a user 216 , and a ladder 218 .
  • the user 216 is installing the roof-mounted fan 214 near the apex of an angled roof 204 .
  • the user 216 has managed to carry the bulky roof-mounted fan 214 up the ladder 218 at something of a risk of dropping the fan and/or falling off the ladder 218 (or otherwise damaging the fan and/or injuring him/her self).
  • the user 216 must now perch at the top of the ladder 218 , maneuver it into place, and mount it to the roof. 204 . To do so, the user 216 must often reach around the roof-mounted fan 214 to its opposite side which the user 216 cannot see, much less reach conveniently.
  • the user 216 must then access the under side of the roof-mounted fan 214 from the attic of the building 200 to provide power to the roof-mounted fan 214 . That power might or might not be available at the location of the roof-mounted fan 214 . Thus, the user 216 might need to run wires, a conduit, etc. to the roof-mounted fan 214 as well as wire it to a thermostat if thermostatic control of the roof-mounted fan 214 is desired. In the alternative, the user 216 might have purchased a roof-mounted fan 214 with an add-ons solar panel. However, solar panels are often considered eyesores and add-on solar panels typically aggravate this condition. Indeed, some homeowners associations (HOA), municipalities, etc. place restrictions on the use of solar panels on roofs 204 (and/or other locations).
  • HOA homeowners associations
  • the solar panels are simply added to the fans with little or no attempt to incorporate the solar panels into the aesthetic design of these fans.
  • these solar panels detract from the aesthetic features of these heretofore-available roof-mounted fans 214 .
  • the solar panels (on installed roof-mounted fans 214 ) might/might not point toward the sun thereby reducing their efficiency to a point at which they might not be able to adequately drive the fans.
  • FIG. 3 further illustrates a user installing a roof-mounted fan 214 . More particularly, FIG. 3 illustrates a flashing 320 , a penetration 322 , rafters 324 , a roof deck 326 , roofing materials 328 , and tools 330 .
  • the user could be a worker, home (or building) owner, a maintenance technician (electrician or mechanic perhaps), or other user. Nonetheless, the roof-mounted fan 214 is often so bulky that the user 216 can barely get their arms around it and must carry it in a position whereat its center of gravity is relatively distant from the user 216 .
  • Heretofore-available roof-mounted fans 214 also happen to be heavy making carrying and maneuvering these roof-mounted fans 214 that much more difficult difficult. More specifically, the user 216 must (despite these challenges) maneuver the roof-mounted fan 214 over the penetration 322 , center it, and secure it to the roof deck 326 .
  • roof deck 326 rests on numerous rafters 324 .
  • the rafters 324 are long 2′′ ⁇ 4′′ boards which (laid in an appropriate manner) can support the weight of the roof deck 326 , material (for instance, snow, water, etc.) on it, users 216 , wind loads (with appropriate bracing), etc.
  • the rafters 324 are spaced apart by 24 inches and/or correspond (in spacing) to the typical 4 ⁇ 8 foot size of the plywood panels that make up the roof deck 326 . Other rafter 324 spacing dimensions are possible though.
  • the rafters 324 and/or roof deck 326 are typically pitched at angles corresponding to a rise/fall of 3 inches per foot although buildings having different roof pitches (for instance, 7 and 10 roof pitches) are certainly in existence and within the scope of the current disclosure. Indeed, some roofs 304 are flat (or have pitches much less than 3 inches per foot) and might have rafters 324 with increased dimensions to better bear the loads associated with such roof pitches.
  • the roof deck 326 itself is typically made of 4 ⁇ 8 foot sheets of plywood on which the roofing materials 328 are secured.
  • those roofing materials 328 include an underlying layer(s) of tarpaper and one or more layers of shingles.
  • the tarpaper serves to waterproof the roof 304 so that rain, snowmelt, and/or other forms of water cannot penetrate the roof 304 and/or seep into the building.
  • the tarpaper typically rests on the plywood of the roof deck 326 with the shingles overlying it.
  • the shingles are thicker and more durable than the tarpaper and primarily serve to protect the tarpaper from damage by the elements, workers, objects falling (or being blown) onto the roof 304 , etc.
  • Shingles are typically applied to the roof 304 in overlapping rows with the lower ends of shingles in higher rows resting on the upper ends of the shingles in lower rows. Moreover, shingles in adjacent rows are positioned such that the gaps between shingles of a given row do not align with gaps in adjacent rows. Thus, these features tend to waterproof the roof 304 when taken together so long as no penetration through the roofing materials 328 occurs. Note that roofs with ceramic tiles, concrete tiles, sheet metal (corrugated or otherwise), wooden shakes, etc. are within the scope of the current disclosure.
  • installing a roof-mounted fan 214 on a roof 204 typically requires that a relatively large penetration 322 be made in the roof 204 and roofing materials 328 .
  • most users 216 would enter the crawl way 105 beneath the roof 204 and select a location (usually near the roof apex) for the fan. They would then find a space between two rafters 324 for the fan. If the space is large enough to accommodate the fan, the user 216 often drills a hole (hammers a nail, etc.) through the roof deck 326 at the desired location for the center of the fan.
  • the user 216 then typically marks the location of the intended periphery of the penetration 322 in accordance with the diameter of the fan. Then, using an appropriate saw or other tool(s), the user 214 cuts through the shingles, tarpaper, other roofing materials 328 , and the roof deck 326 to form the penetration 322 .
  • FIG. 4 still further illustrates a user installing a roof-mounted fan.
  • the user 216 maneuvers the bulky roof-mounted fan 214 into position roughly over the penetration 322 . But, provision must usually be made to prevent water from entering the building 200 through the penetration 322 .
  • the roof-mounted fan 214 includes the flashing 220 around its lower end that, if properly installed (each time a roof-mounted fan 214 is installed, replaced, etc.), will exclude such water.
  • the user 214 must lift the roofing material 328 near one of the sides of the penetration 322 and apply caulk (or some other sealant) to the roof deck 326 before sliding the flashing 320 underneath the temporarily lifted roofing material 328 .
  • the user 216 must repeat these actions for every side of the penetration 322 /fan.
  • the user 214 must do so without damaging the remaining roofing material 328 ; while not being able to see around the fan; and by maneuvering that bulky, awkward, roof-mounted fan 214 to make even small positional adjustments.
  • roof-mounted fans 214 heretofore-available, it is quite likely that the installation will fail in at least some of these regards thereby allowing water to penetrate the building 200 (not to mention perhaps leading to an installation with an un workman-like appearance).
  • the user 214 can then tamp the roofing material 328 down over the flashing 320 of the fan and hope that wind does not “get under it” and remove it from the roof 204 thereby leading to yet more damage to the building.
  • the user 216 typically also has to reenter the crawl way 105 (from the other side of the roof 204 ) and connect power to the roof-mounted fan 214 . Accordingly, the installation of each heretofore-available fans 214 tends to be time-consuming, expensive, and prone to failures, errors, omissions, etc.
  • FIGS. 5-8 illustrate a two-piece fan with a solar panel in various positions.
  • the two-piece fan 500 of the current embodiment comprises at least two-pieces: a fan housing 502 and a base 504 .
  • the two-piece fan 500 of the current embodiment also includes a solar panel 506 and adjustable bracket 508 as well as flashing 510 .
  • the fan housing 502 contains a fan, motor, and associated bearings, races, etc. and airflow guides, vanes, etc. It therefore contains the active mechanical components of the two-piece fan 500 of the current embodiment.
  • the solar panel 506 and adjustable bracket 508 operationally couple with the fan housing 502 .
  • the fan housing 502 additionally, can include wiring to electrically connect the solar panel 506 to the fan and perhaps some controls (for instance, thermostats, thermal cut-off switches, remote control circuitry, etc.) for the fan motor.
  • the adjustable bracket 508 operatively couples the solar panel 506 to the fan housing 502 .
  • the adjustable bracket 508 includes one or more “stops,” at which it can be locked, to position the solar panel 506 in a corresponding number of positions relative to the fan housing 502 .
  • the solar panel 506 pivots about the fan housing 502 through an angle a1 between its stowed position (see FIG. 6 ) and its extended position ( FIG. 5 ) and through the various intermediate stop-related positions. These positions allow a user 214 to more accurately point the solar panel 506 at the sun or other light source as might be desired.
  • users 214 can orient the solar panel 506 to point generally toward the sun in many if not all locations including many north-facing roofs.
  • a range of angle a1 from 0 degrees in the stowed position to about 45 degrees has been found to be satisfactory for such purposes.
  • the solar panel 506 rests in the fan housing 502 with its surface flush with the nominally upper surface of the fan housing 502 .
  • the adjustable brackets fold into the housing thereby allowing the solar panel 506 to appear to be embedded in the housing and/or flush with its surface.
  • the fan housing 502 also defines one or more vents/drains 512 .
  • These vents/drains 512 provide a flow path around the solar panel 506 when the solar panel 506 is in its stowed position, flush with (or embedded in) the fan housing 502 . In this way, even when the solar panel 506 is stowed some air can flow beneath it and cool it.
  • These vents/drains 512 can also serve as finger holds for users 214 to reach underneath the solar panel 506 and lift it to one of its non-stowed positions. They also allow for water to drain from under the solar panel 506 .
  • the fan housing 502 of the current embodiment defines a low profile and has an overall oblong, rounded shape.
  • the vents/drains contribute to this low profile (a height less than about 7′′ in some embodiments and less than about 3′′ in the current embodiment), rounded appearance in that they are formed integrally with the (nominally) upper portions of the sides of the fan housing 502 .
  • the vents/drains 512 are also rounded at least in part for aesthetic considerations.
  • the fan housing can be made of some paintable material such as ABS (Acrylonitrile butadiene styrene) plastic so that the two-piece fan 214 can be painted in accordance with user desires, local aesthetic rules, deed restrictions, ordinances, etc.
  • FIGS. 5-7 illustrate the two pieces (the fan housing 502 and the base 504 ) of the two-piece fan 500 of the current embodiment being coupled together.
  • FIG. 8 illustrates the fan housing 502 separate and apart from any base 504 .
  • the bases 504 can be installed on various roofs 204 with the fan housings 502 being installed at some different time and/or interchanged with one another.
  • the fan housings 502 can be interchanged with one another, removed, replaced, etc. without disturbing the roof 204 , the roof deck 326 , the roofing materials 328 , etc. and without tools 330 and the like.
  • the user can “install” a “fan” by merely carrying a fan housing 502 to the already installed base 504 , placing it on the base 504 , and removably coupling that fan housing 502 to the base 502 .
  • the user 214 need not carry or maneuver the (bulk of the) base 504 , flashing 510 , etc.
  • the current embodiment facilitates the installation (and/or replacement, maintenance, etc.) of fans while eliminating much of the work, expense, and inconvenience associated therewith.
  • FIG. 9 illustrates a top plan view of a housing of a two-piece fan. More particularly, FIG. 9 illustrates a fan housing 900 , vents/drains 912 , a body 918 , sides 919 , a recess 920 , and ribs 922 .
  • the body 918 of the fan housing 900 contains a fan, its blades, etc. and defines the vent/drains 912 .
  • the body 918 also defines the recess 920 into which the solar panel 506 fits and/or appears to be embedded (when stowed) in the housing.
  • Those solar panels 506 can be polycrystalline, multicrystaline, monocrystaline, etc.
  • the body 918 also defines one or more of the ribs 922 on its nominally upper surface in the recess 920 .
  • These ribs 922 can provide a degree of rigidity to that surface and can allow some space between it and the solar panel 506 (when stowed). This space can allow the solar panel 506 to breath and thus remain relatively cool during operation (and during non-operation). This space also allows the area under/behind the solar panel 506 to drain should moisture be present.
  • FIG. 10 further illustrates an exploded view of a housing for a two-piece fan. More particularly, FIG. 10 illustrates the fan 1000 and its housing 1002 , solar panel 1006 , adjustable brackets 1008 , cowling 1030 , closure 1032 , fan motor 1034 , fan blades 1036 , bosses 1038 , fastener holes 1039 , and rails/locks 1040 .
  • the fan motor and blades 1034 and 1036 (as a unit) respectively fit inside the cowling 1030 which fits inside the housing 1002 .
  • the closure 1032 along with the housing 1002 (and appropriate fasteners) closes the fan 1000 as an assembly and clamps it together. As is disclosed further with regard to FIG.
  • the closure 1032 defines at least one aperture that allows the fan to draw air into itself while the cowling 1030 is shaped and dimensioned to smoothly turn that flowing air with relatively low head loss back toward the closure 1032 in a relatively small axial distance (less than 4-7′′ in many embodiments).
  • the cowling 1030 eliminates air pockets and associated energy wasting eddy currents therein.
  • the cowling 1030 can also include guide vanes for the air if desired.
  • the closure 1032 also defines at least one aperture which allows the (turned) airflow to exit the fan 1000 .
  • the air flows upward through the closure 1032 , through the fan blades 1036 (which drive the airflow at least in part), through the turn guided by the cowling 1030 , and then back out through the closure 1032 .
  • the closure 1032 defines one or more bosses 1038 with holes adapted to receive closure fasteners. Those holes align with the fastener holes 1039 on the housing 1002 .
  • fasteners can be used to assemble the fan 1000 into a separate, stand-alone unit.
  • FIG. 10 also shows that the solar panel 1006 can include or be operationally coupled to the adjustable brackets 1008 .
  • the adjustable bracket 1008 can cooperate with the corresponding rails/locks 1040 to allow users to adjust the position of the solar panel 1006 with respect to the housing 1002 .
  • the rail/locks 1040 can also, or in the alternative, cooperate with the adjustable brackets 1008 to lock the solar panel 1006 in one or more of those positions.
  • a frame 1041 surrounds, holds, and/or supports the solar panel 1006 . While the frame 1041 of the current embodiment can provide structural support to the solar panel, another function it provides is to shield the solar panel 1006 from the environment, physical damage/abuse, and form being seen. Thus, the frame 1041 aids in preserving the aesthetic appearance of the fan and/or its housings. Furthermore, the frame 1041 can be (spray) painted in accordance with user desires, homeowner association rules, ordinances, etc. A backing 1042 can also be applied to the side of the solar panel 1006 closest to the body of the two-piece fan 1000 . It too can be painted and/or it can be black so as to shield the backside of the solar panel from view and to aid in the aesthetic features of the fan.
  • FIG. 11 illustrates a cross-sectional view of a two-piece fan. More particularly it shows the fan motor 1034 and fan blades 1036 assembled within the cowling 1030 which is itself within the housing 1002 . Further, FIG. 11 illustrates the closure 1032 fastened to the housing (via fasteners in the fastener holes 1039 and bosses 1038 ) and clamping the fan assembly 1102 together. FIG. 11 also shows the two-piece fan 1100 with the solar panel 1006 operationally coupled to the housing assembly 1102 via the adjustable bracket 1008 . Moreover, FIG. 11 illustrates the base 1104 including the flashing 1110 releasably attached to the fan assembly 1102 .
  • the fan assembly 1102 and base 1104 can be separated from one another with, if desired, the base 1104 being coupled to and/or being installed on a roof or other structure.
  • the various components of the two-piece fan 1100 are coaxial with one another although they need not be for the practice of the current embodiment.
  • FIG. 11 illustrates a motor bracket 1120 .
  • the motor bracket 1120 defines various attachment points corresponding to various motors. Thus, it can allow for the interchange of motors as might be desired.
  • the motor bracket 1120 can also provide physical protection to the motor and/or its coupling to the fan blades against mechanical damage from, for instance, animals that might intrude into the fan housing. This feature helps keep the fan blades in balance, running smoothly, and without undue noise.
  • FIG. 12 illustrates a top plan view of a pair of closures for two-piece fans.
  • Both closures 1200 A and B include a generally planar body 1202 A and B shaped and dimensioned to fit into the open end of various housings 1002 .
  • the closures 1200 A and B also define, respectively, central apertures 1204 A and B through which the various fans (or fan blades 1136 ) can draw air.
  • the closures 1200 A and B also defined a plurality of apertures 1206 A and B through which air, driven by the fan blades 1136 , can flow from the fans.
  • the closures 1200 can include a screen over one or more of the apertures to, for instance, keep insects, birds, rodents, other animals, debris, water, etc. out of the fans.
  • FIG. 13 illustrates an exploded view of a two-piece fan. More particularly, FIG. 13 illustrates a two-piece fan 1300 including a fan assembly 1302 , a riser 1303 , and a base 1304 .
  • the fan assembly 1302 includes a fan (a motor and a set of blades in this embodiment), a housing, and a closure.
  • a solar panel is not shown although the two-piece fan 1300 could include a solar panel with or without adjustable brackets.
  • the base 1304 includes a flashing and is shaped and dimensioned to be attached to a roof, roof curb, or other structure and to lend the two-piece fan 1300 stability when installed.
  • the two-piece fan 1300 also includes the riser 1303 which could be considered as a part of the base 1304 or the fan assembly 1302 or even a third component/assembly of the “two-piece” fan 1300 .
  • the riser 1303 is shaped and dimensioned to reside between the fan assembly 1302 and the base 1304 . While it can be coaxial with the other pieces of the two-piece fan 1300 , it does add height to the two-piece fan 1300 .
  • the riser 1303 (or extender) spaces the fan assembly 1302 apart from the roof or other structure to which the two-piece fan 1300 might be mounted.
  • the extension need not be in a vertical direction to practice the current embodiment.
  • a two-piece fan 1300 (or rather a fan assembly 1302 of a two-piece fan 1300 ) can be installed even in the presence of that debris in many cases. Indeed, since 5-6′′ of snow is often considered to be good insulation, users can install fan assemblies on risers with lengths of about 6′′ without disturbing that snow. For roofs covered with sod, dirt, grass, sand, gravel, etc. two-piece fans (with risers and/or riser portions) of embodiments provide similar features.
  • FIG. 13 also illustrates that risers 1303 of the current embodiment can include two sets of quick attachment coupling halves 1310 and 1312 .
  • These coupling halves 1310 and 1312 can be shaped and dimensioned to mate with corresponding coupling halves 1314 on the bases 1304 and fan assemblies 1302 .
  • one set of the coupling halves 1310 or 1312 can be adapted to mate with corresponding coupling halves on the fan assemblies 1302 while the other set (on the riser 1303 ) can be adapted to mate with the coupling halves on the bases 1304 .
  • risers 1303 can be stacked one atop another to extend the fan assemblies 1302 to lengths determined by the dimensions of the selected risers 1303 and/or their numbers.
  • the various coupling halves 1310 , 1312 , and/or 1314 can be adapted to pull the various components/assemblies 1302 , 1303 , and/or 1304 into close fitting and/or weather proof alignment with one another.
  • these components 1302 , 1303 , and/or 1304 can be adapted to be used with gaskets, O-rings, sealants, and/or other weatherproofing techniques to prevent water intrusion, air infiltration, etc. through the joints there between.
  • FIG. 14 illustrates such a two-piece fan installed on a roof with a riser 1303 installed between the fan assembly 1302 and the base 1304 .
  • FIG. 15 illustrates an exploded view of a two-piece fan and multiple risers 1503 A and 1503 B installed therewith.
  • FIG. 15 also shows that such multi-riser two-piece fans 1500 can include a solar panel and adjustable brackets) coupled thereto.
  • FIG. 16 illustrates a two-piece fan and a riser installed on a roof.
  • the riser 1603 is configured to turn through an angle a2. That angle a2 could correspond to one of the common angles at which roofs are pitched although it need not do so.
  • the use of the angled riser 1603 can serve to turn the orientation of the two-piece fan (or fan assembly 1602 ) to some desired direction such as vertical (as shown).
  • one or more risers can be used in combination/conjunction with other risers whether straight, angled, or otherwise.
  • FIG. 16 also illustrates, in at least some sense, that the base 1604 can be considered an assembly.
  • the base 1604 could define or comprise a flashing portion 1610 coupled to a riser portion 1630 .
  • the riser portion 1630 could further define, comprise, be coupled to, etc. quick attachment couplings.
  • FIG. 17 illustrates a corrugated roof and bases for two-piece fans. More particularly, the corrugated roof 1700 of the current embodiment includes a portion 1702 which appears trapezoidal when viewed in cross-section and a portion 1704 which appears sinusoidal in cross-section. The corrugated roof 1700 also includes two bases 1706 and 1708 which, respectively define flashings with corresponding corrugated trapezoidal and sinusoidal cross-sections. Thus, embodiments allow two-piece fans to be installed on, mounted on, attached to, etc. corrugated roofs without altering the corresponding risers and/or fan assemblies.
  • FIG. 18 illustrates one half of a quick attachment coupling for a two-piece fan
  • FIG. 18A illustrates a cross-sectional view as seen along line AA in FIG. 18
  • FIGS. 18 and 18A illustrate that the quick attachment coupling 1800 of the current embodiment defines a male half 1802 and a female half 1804 with the two halves being designed to releasably engage each other and to releasably couple assemblies of two-piece fans together.
  • these male and female halves 1802 and 1804 can be shaped and dimensioned to withstand wind (and/or other) loads likely to be imposed on various two-piece fans with and/or without risers.
  • these coupling halves 1802 and 1804 can be shaped and dimensioned to draw the fan assemblies together with sufficient force to form a seal there between in the presence and/or absence of gaskets, O-rings, and/or other sealing structures/devices.
  • the female half 1804 of the current embodiment can define a relatively large aperture 1806 which can accept a corresponding and/or relatively large portion 1810 of the male half 1802 .
  • These structures allow the halves 1802 and 1804 to engage each other and disengage from each other.
  • the female half 1802 can also defines a narrow aperture 1812 which can accept a corresponding small portion 1814 of the male half 1802 .
  • the narrow portion 1814 of the male half 1802 can be slid along the narrow aperture 1812 of the female half 1804 so that the halves 1802 and 1804 can remain engaged with each other despite axial forces imposed on their corresponding fan assemblies.
  • the halves 1802 and 1804 can also remain in sliding engagement with one another (at least for some distance) in such circumstances even if some torsional forces attempt to rotate one fan assembly relative to the other in the current embodiment. Nonetheless, such features allow assemblies of embodiments to be releasably coupled to one another with a twist of one assembly relative to another.
  • FIGS. 18 and 18A also illustrate that the female and male halves 1802 and 1804 , respectively, define guide surfaces 1815 and 1816 .
  • These guide surfaces 1815 and 1816 can be shaped and dimensioned such that, as the coupling halves 1802 and 1804 slide relative to one another, the guide surfaces 1815 and 1816 urge the halves 1802 and 1804 toward one another (axially) thereby drawing the respective assemblies into abutting relationship.
  • the guide surfaces 1815 and 1816 can be configured to impart enough force on the respective fan assemblies to form a seal there between. That seal can be made, enhanced, etc. with a gasket, O-ring, etc. which might/might not be positioned in a groove 1820 in the surface of one fan assembly or another.
  • the quick attachment coupling 1800 includes a latch 1822 .
  • the latch 1822 can be positioned on the fan assembly with the female half 1804 to releasably capture the male half 1802 as the halves engage each other.
  • the latch 1822 (and the coupling halves 1802 and 1804 ) is configured and positioned to be released manually.
  • the latch 1822 can be biased into a position (for instance a locked/latched position) by a biasing members such as a spring 1824 .
  • FIG. 19 illustrates a base for a two-piece fan and FIG. 19A illustrates a cross-sectional of the base of FIG. 19 .
  • the base 1904 of the current embodiment mates with rectangular roof curbs 1906 so that two-piece fans can be mounted thereon in accordance with embodiments.
  • the base 1904 defines an adaptor 1910 shaped and dimensioned to mate with the roof curb 1906 and to seal thereto. Quick attachment couplings, fasteners, etc. can be used to secure the adaptor 1910 (and base 1904 ) to the roof curb 1906 .
  • the adaptor 1910 can further define a lip 1912 which can aid in registering the base 1904 with the roof curb 1906 .
  • the lip 1912 can also assist in sealing the joint between the base 1904 and the roof curb 1906 and can be used as a location for quick attachment couplings, fasteners, etc. for securing the base 1904 to the roof curb 1906 .
  • FIG. 20 illustrates a schematic of a circuit associated with a two-piece fan. More particularly, FIG. 20 illustrates a circuit 2000 which includes a fan motor 2002 , a solar panel (or cell) 2004 , a source of (120 VAC) line power 2006 , an inverter 2008 , an on/off switch And/or breaker) 2010 , a thermostat 2012 , a thermal cutoff switch 2014 , an isolator 2016 , and two pairs of contacts 2020 and 2022 , quick disconnects, etc.
  • the solar panel 2004 and line power 2006 are wired in parallel across the fan motor 2002 in the current embodiment.
  • the contacts 2020 allow those components on the fan assembly to be connected to (and disconnected from) line power 2006 while the contacts 2022 allow the solar panel to be electrically (dis) connected to the fan motor 2002 .
  • fans of embodiments could operate on only one of the solar panel 2004 or line power 2006 .
  • the circuit 2000 can be simplified accordingly. Indeed, where power is only available from the solar panel 2004 , the fan motor 2002 will slow down/stop as the light fades thereby allowing natural convection/breezes to ventilate the crawl way 105 during dark periods.
  • the inverter 2008 illustrated by FIG. 20 converts the line power 2006 to DC (direct current) power compatible with the fan motor 2002 which can be selected to be driven by DC power from either/both of the solar panel 2004 and/or the inverter 2008 (and, thus, line power 2006 ).
  • the isolator 2016 can be included in the circuit 2000 so as to protect the solar panel 2004 from being back-driven by that DC power.
  • the thermostat 2012 can determine when the fan motor 2002 runs responsive to the temperature sensed by the thermostat 2012 while on/off switch 2010 allows users to control the fan motor 2002 at least as far as line power 2006 might be involved.
  • the fan motor 2002 can be instrumented with the thermal cutoff switch 2013 to shut it off if it should over-heat.
  • FIG. 20 also schematically illustrates that the on/off switch 2010 and the source of line power 2006 can be located in/on the building on which the fan is to be mounted. Meanwhile, the remaining components illustrated by FIG. 20 can be located on the fan assembly (or if desired the base or riser) associated with the circuit 2000 .
  • a pair of wires 2024 can run through the fan assembly from the components there on toward the riser/base. These wires 1024 can be routed through the riser/base and thence to some connection point and can terminate in the contacts 2020 . In some embodiments, the wires 1024 run external to the fan assembly and can be routed through the building/environment outside of the fan, fan assembly, riser, base, etc. although they need not be so routed to practice embodiments.
  • Another pair of wires 1026 can be routed through the fan assembly/riser/base so that the thermostat 2012 can be removably (re) located in or near the inlet of the base, riser, fan assembly.
  • the those wires 1026 further comprise a 36 ′′ (or other length) cable allowing the thermostat 2012 to be located at a location with temperatures representative of the crawl way 105 .
  • the area/strata of air near the roof apex is often warmer than the overall crawl way 105 .
  • Placing the thermostat 2012 elsewhere (for instance lower) in the crawl way 105 by using the wires 2026 can allow for control of the fan motor 2002 responsive to temperatures more representative of overall conditions in the crawl way 105 .
  • FIG. 21 illustrates a flowchart of a method related to two-piece fans.
  • the method 2100 includes numerous activities such as identifying a desire for improved ventilation. See reference 2102 . That desire might arise from a user noticing that one or more air-conditioned spaces 103 in a building 100 has been and/or has become warmer than desired. In some cases that desire might arise from a user noticing that a crawl way 105 has become susceptible to mold, mildew, etc. Of course, many circumstances could prompt a user to desire improved ventilation and, indeed, these circumstances might occur in various combinations.
  • one response to such situations is to install (or change) a fan that ventilates the crawl way 105 of the building 100 . Doing so would probably remove warm air from the crawl way 105 and allow warm air from elsewhere to rise to the crawl way 105 where it would also be removed. Such airflow would tend to cool the crawl way 105 , the HVAC equipment 106 and/or ducts 108 therein as well as likely reducing the heat load(s) on the air-conditioned spaces 103 of FIG. 1 .
  • a user can select a fan assembly by size and/or type for use in ventilating the crawl way 105 .
  • a change or modification to that fan (or selection thereof) might necessitate a re-engineering/re-design of the installation-site as well as, perhaps, performing again most (if not all) of the installation procedures for the (newly) selected heretofore available fan.
  • changing a selection and/or replacing an existing fan could be comparatively expensive.
  • many of these adverse consequences can be avoided with two-piece fans of embodiments although doing so is not necessary for the practice of embodiments.
  • method 2100 can continue with a user selecting various assemblies with which to build/install a two-piece fan 1300 of embodiments.
  • a user can select a base 1304 by its diameter (or size as pertinent to HVAC considerations), the type of roof 104 it is to be installed on, its shape (for instance, round or rectangular), etc.
  • the user can select the base 1304 independently of their selection of the fan assembly 1302 . See reference 2104 .
  • the user can select one or more risers 1303 for use with the base 1304 . These risers 1303 can be straight, angled, etc. and the user can select more than one riser 1303 if desired.
  • the user can design a two-piece fan 1300 while accommodating local concerns such as the possibility that rain, snow, ice, debris, etc. might accumulate on the roof 104 near the fan 1300 .
  • Method 2100 can continue with the user selecting a fan assembly 1302 .
  • the user can base this selection on the size of the fan desired (for instance, desired flow rate, head/pressure, energy consumption, etc.), its type (axial, centrifugal, mixed, etc.), etc. See reference 2106 .
  • the user can make the selection of the fan assembly 1302 and base 1304 (and riser) more or less independently of one another provided that they are generally the same size and shape at the joint where they are to be coupled to one another.
  • a user can install the base 1304 .
  • Installing the base 1304 can be performed at a different time, by different users, with different tools, etc. than the installation of the fan assembly 1302 (and/or riser 1303 ).
  • the installation of the base 1304 could be performed by a user(s) with mechanical/carpentry skills while installation of the fan assembly 1302 could be performed by a user with enough electronic skill to make the electrical connections and/or mechanical skills to install the fan assembly 1302 and/or the solar panel.
  • the installation of the base 1304 can include various activities. For instance, a user can enter the crawl way 105 (or other space opposite the intended location of the fan) and mark an appropriate location for the center of the fan. Often, the user will identify a location between two rafters 324 and mark that location with any convenient writing, marking, etc. tool. The user can then drill a hole through the roof 104 so that the desired location of the fan becomes apparent from the other side of the roof. The user, moreover, can then access the other side of the roof and use a compass or other tool to mark the outline of the duct-space defined by the base 1304 . Using that marking as a guide, the user can then cut through the roof to define the penetration 322 through which air will flow as induced by the fan. Thus, the user can locate the position of the to-be-installed fan as indicated at reference 2108 .
  • the user can lift the roofing material 328 of the roof 102 adjacent to the penetration 322 in preparation for installing the base 1302 and, if desired, apply caulking (or some other sealant) to the roof deck 326 in preparation for sealing the base 1304 to the roof.
  • the user can then, if desired, slide one side of the flashing 1310 under an appropriate portion of the roofing material 328 and then maneuver the base 1302 alone (sans the fan assembly 1302 , riser 1303 , etc.) into its final place on the roof 104 and/or over the penetration 322 .
  • This condition can facilitate the work, reduce associated expenses, and/or reduce the likelihood/severity of mistakes, oversights, etc.
  • the user can use fasteners to fasten the base 1304 to the roof deck 326 . See reference 2110 .
  • FIG. 21 also illustrates (at reference 2116 ) the user coupling a riser 1303 to the base 1304 . More particularly, in accordance with embodiments, the user can maneuver the riser 1303 to the vicinity of the base 1304 (after it is installed if desired) and roughly align the coupling halves 1802 and 1804 with one another. Once the halves 1802 and 1804 are roughly aligned, the user can engage the male half 1802 and the female half 1804 and then (by maneuvering/twisting the riser 1303 ) translate one relative to the other thereby causing the latch 1820 to latch/lock the halves together. Thus, the user can mount the riser 1303 to the base 1304 and do so without tools. Note that at this point that much of the overall two-piece fan (in terms of physical envelope size) is installed.
  • FIG. 21 illustrates the user installing the fan assembly 1302 as a separate piece on the base 1304 and/or riser 1303 . Since the user is doing so with only the fan assembly 1302 (and not the base 1304 or riser 1303 ) in their hands, such activities might be easier, more convenient, less awkward, etc. than would otherwise be the case. Thus, the user can maneuver the fan assembly 1302 into the proximity of the base/riser 1304 / 1303 and roughly align the corresponding coupling halves 1802 and 1804 . Moreover, the user can then latch the coupling in place with a twist.
  • types of couplings other than twist-on/off couplings can be used to couple the various assemblies together.
  • types of couplings other than twist-on/off couplings can be used to couple the various assemblies together.
  • bayonet fittings could be used.
  • the user could install the fan assembly 1302 with a riser 1303 attached thereto if desired.
  • the user can attend to certain electrical portions of the installation. For instance, the user can place the thermostat 2012 at a location where it can sense temperatures in (or associated with) the crawl way 105 . See reference 2120 . If the thermostat is a component of the fan assembly 1302 , the user might not need to do so though since it could be pre-located in the fan assembly 1302 (or attached thereto) during manufacture. In accordance with embodiments though, the user can connect the connectors 2020 to line power if desired. See reference 2121 .
  • Method 2100 also shows that the user can mount a solar panel to the fan assembly as at reference 2122 . If the solar panel 1306 is a separate component of the fan assembly 1302 , the user can also connect the connections 2022 . Additionally, in accordance with embodiments, the user can point the solar panel 1306 toward the sun by adjusting the adjustable brackets 1308 and, perhaps, locking them it in a selected position. Note also that with angled risers, the installation of the angled riser (disclosed elsewhere herein) can include adjusting the orientation of that angled riser to be compatible with obtaining a satisfactory “sun angle” for the solar panel 1306 . See reference 2124 . FIG. 21 also shows that the user can turn the fan on as indicated at reference 2128 and/or verify its operation.
  • FIG. 22 illustrates a quick attachment coupling for multi-piece fans.
  • the multi-piece fan 200 of the current embodiment comprises two assemblies 2202 and 2204 which can be bases, risers, fan assemblies etc.
  • the multi-piece fan 2200 includes a quick attachment coupling 2240 .
  • the quick attachment coupling 2240 includes a flexible detent 2250 , catch, dog, pawl, ratchet, etc. and a post 2256 or other protrusion which the flexible detent 2250 can engage.
  • the post 2256 on one assembly 2202
  • the flexible detent 2250 operationally couples with the assembly 2204 which defines the aperture in the current embodiment.
  • the flexible detent 2250 can be made of metal, plastic, etc.
  • the flexible detent 2250 is positioned relative to the aperture 2252 (and/or the post 2254 ) such that when the assemblies rotate and/or twist relative to one another, the flexible detent 2250 engages the post and flexes allowing the post 2250 to pass relative to itself.
  • a hook 2260 defined by the flexible detent 2250 can then catch on the post 2254 thereby securing the assemblies 2202 and 2204 to each other.
  • the flexibility of the flexible detent 2250 (and/or shape of the hook 2260 ) can be selected so that some select amount of torque must be applied (in the opposite direction of rotation) to overcome the detent and free the flexible detent 2250 from the post 2252 .
  • the quick attachment coupling 2240 can be disengaged, manually, with a tool, etc. by pressing on, pulling, etc. the flexible detent 2250 and/or post 2252 .
  • Embodiments provide two-piece fans with highly efficient solar panels. These solar panels can be monocrystaline and can produce 22 watts at 17.6 VDC/1.22 amps.
  • Fan motors of embodiments can be brushless, high reliability, high efficiency motors capable of operating at 6-100 VDC and in some embodiments (more specifically 12-36 VDC).
  • fans of embodiments can include sets of five nylon/polymeric blades. Fans comprising such motors and blades can ventilate areas of 1800 square feet and can induce 1300 CFM (cubic feet per minute) and/or more or less airflow.
  • the fan assemblies include one AC motor wired to interconnects at which it can receive AC power (for instance 120 VAC) from the building power system and one DC motor wired to interconnects at which it can receive DC power from a solar panel and/or other source.
  • AC power for instance 120 VAC
  • DC motor wired to interconnects at which it can receive DC power from a solar panel and/or other source for instance 120 VAC
  • Housings of embodiments can be made from aluminum, galvanized steel, various plastics such as automotive grade ABS, high-impact resistant plastic, etc. Housings of the current embodiment can also be UV (ultraviolet) stabilized and can include embedded fire retardant resin(s). These housings can also be configured to double lock with their respective (and separate) bases. In embodiments, the double locking can be via keyhole standoffs which guide the two connecting pieces together. A flexible metal pin on one or the other of the mating pieces/assemblies can be configured to snap in place to secure the assemblies together. Because the bases and housings/fan assemblies of embodiments are separate components, installation, support, maintenance, etc. can be easier than with heretofore-available fans.
  • fan assemblies can be about 24′′ by about 24′′ by about 7′′ in size and can weigh about 26 pounds.
  • Bases of the current embodiment can be about 28′′ by about 28′′ by about 11.′′
  • fans of embodiments comprise thermal switches and thermoballs (and/or other devices capable of measuring temperature which can regulate the various fans disclosed here) on (for instance) 36′′ cables.
  • Two-piece fans of embodiments convert passive ventilation to active ventilation and can extend the life of roofs, AC units, stored valuables, etc. and can reduce moisture and mildew.
  • Two-piece fans of embodiments are resistant to even extreme weather and windstorm rated and certified. Such fans reduce HVAC costs and cooling cycles. They also increase air exchanges so that even if solar heat causes temperatures to soar in attics, crawl spaces, and the like, properly balanced fans of embodiments increase air exchanges to as many as ten times per hour. The increased air exchange in accordance with embodiments keeps living spaces cooler and saves building owners money.

Abstract

Ventilation units of some embodiments comprise bases and housings which define (twist-on) quick attachment couplings via which the bases and housings releasable couple. Units of some embodiments comprise solar panels coupled to the housings and which are pivotable between stowed positions in which they are flush with the housings and extended positions in which they extend at an angle from the housings. Some embodiments provide units comprising bases, housings, and pivotable solar panels wherein the bases and houses couple to each other via quick attachment couplings. Units of embodiments further comprise locks to lock the quick attachment couplings in place and biasing members to bias the locks into their locked positions. Units of some embodiments comprise risers adapted to couple between the bases and housings and which are adapted to be mounted on angled roofs. Moreover, units can comprise fans and 120 VAC supplies.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. patent application No. 29/422,087 titled EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPRIETARY DESIGN, METHOD AND VISUAL ORNAMENTAL CHARACTERISTICS IS CLAIMED, THE ORNAMENTAL DESIGN FOR A VENTILATION SYSTEM (FAN/EXHAUST) UTILIZING SOLAR AND/OR ELECTRIC POWER, filed by Stocker et al. on May 16, 2012 the entirety of which is incorporated herein as if set forth in full. This application also claims priority to and is a non provisional application of U.S. provisional patent application No. 61/879,439 titled INTER-CHANGEABLE ATTIC FANS AND RELATED APPARATUS, SYSTEMS, AND METHODS, filed by Stocker on Sep. 18, 2013 the entirety of which is incorporated herein as if set forth in full.
  • BACKGROUND
  • Many workers are injured every year while installing ventilation fans on residential, commercial, industrial, agricultural, and other types of buildings, utility applications, etc. Take for instance the situation of installing a fan on a typical residential roof. These roofs, of course, are elevated necessitating the use of ladders, scaffolding, etc. to reach the worksite. Thus, frequently, the worker must stand on a ladder while installing the fan. These fans (and associated hardware such as housings, flashing, etc.) often weigh quite a bit and are bulky and awkward to work with. Maneuvering them while perched on a ladder, necessarily, increases the strain on the worker and the risk of falling (and other injuries) to which they are exposed. Angled roofs of various pitches aggravate these risks.
  • Moreover, to install a fan on a typical roof, the worker must carry the fan aloft on the ladder, position the fan with its flashing under the shingles, felt paper, tar paper, slate, metal sheeting, etc. on the roof and then fasten the fan to the roof. Of course, some roofing materials cannot so easily be “lifted.” For instance, some roofs include a layer of tar applied directly to the roof deck. While installing the fan, the worker often finds it difficult (if not impossible) to see around the fan and verify its positioning and that the flashing is underneath the roofing materials. As a result, these fans are often installed incorrectly resulting in an un-professional appearance fan and leaks of water (for instance, rain) in the proximity of the fan.
  • Additionally, fans require power to operate and power might/might not be available in close proximity to the location for particular roof mounted fan. Thus, wires, cables, conduits, etc. must be run to the fan and connected thereto. These activities complicate the installation, increase the cost thereof, and increase the number of technicians, workmen, crafts, etc. involved. In such situations, it might be desirable to use solar power to drive these fans. However, solar panels can be eye soars, take up space on the roof, etc.
  • Yet, building owners (and/or other interested parties) still desire the benefits associated with such fans (such as improved ventilation). For instance, if functional, these fans can ventilate the attics and/or other crawl ways underneath the roof. In turn, the ventilation decreases the temperature of these spaces thereby reducing air conditioning loads of the buildings.
  • SUMMARY
  • The following presents a simplified summary in order to provide an understanding of some aspects of the disclosed subject matter. This summary is not an extensive overview of the disclosed subject matter, and is not intended to identify key/critical elements or to delineate the scope of such subject matter. A purpose of the summary is to present some concepts in a simplified form as a prelude to the more detailed disclosure that is presented herein. The current disclosure provides systems, apparatus, methods, etc. for ventilating attics (and/or other spaces) and, more a particularly, two-piece ventilations units with adjustable (and flush fitting) solar panels and/or quick attachment fittings whereby fan assemblies of the ventilation units can be quickly attached to/detached from bases of the ventilation units.
  • Embodiments provide two-piece fans for use in ventilating spaces such as attics, crawlways, etc. These fans can require relatively low power and can possess high reliability. Moreover, fans of the current embodiment can be powered via solar panels, solar systems, etc. and/or power systems available in the buildings in/on which they might be installed. Fans of embodiments can be used in residential, commercial and/or utility applications, can be thermostat controlled, and can be windstorm certified per ASTM-E330 (and/or in accordance with other techniques).
  • Fans of embodiments are technologically, functionally and aesthetically superior to heretofore-available fans. Such fans can are rugged, durable, practical, windstorm certified and relatively inexpensive to manufacture, install, operate, maintain, modify, etc. Fans of embodiments possess elegant low profiles, blend nicely into their environments, and can be painted to match/complement their surroundings. In addition, or in the alternative, fans of embodiments possess adjustable solar panels. Such fans can include adjustable brackets with multiple locking states which support the solar panels and allow their positions to be adjusted.
  • Fans of embodiments can be used to provide proper ventilation for many spaces. In some situations these fans ventilate spaces to reduce temperatures inside enclosed spaces throughout the year such as attics, crawl spaces, warehouses, storage areas, sheds, barns, etc. In the summer, in particular, solar powered attic fans of embodiments help make such areas more comfortable by converting passive ventilation to active ventilation.
  • Fans of embodiments can reduce HVAC (heating, ventilation, and air conditioning) costs and reduce cooling cycles thereby saving energy and money. Furthermore, by reducing interior temperatures these fans can reduce premature deterioration of shingles, roof boards, sheathing, siding, insulation, stored valuables, etc. Proper ventilation can also prevent/reduce moisture (from relatively warm air) condensing on the under sides of relatively cool roofs, beams, rafters, etc. Moreover, because fans of some embodiments are solar powered, they can cost the owner/operator little or nothing to operate. Various embodiments provide fans with solar panels (and their adjustable brackets) which appear to be embedded in the fan housings rather than appearing as add-ons or appearing as if they have been glued onto the fans.
  • Some embodiments provide two-piece ventilation units comprising bottom bases, top housings, solar panels, locks, and biasing members. The bottom bases of the current embodiment define flashing which is shaped and dimensioned to divert runoff around the fans. They also define riser portions extending from the flashing and further define first halves of twist-on, quick attachment couplings. The top housings of the current embodiment contain fans and define second halves of the twist-on, quick attachment couplings. The top housings are releasably coupled to the bottom bases via the twist-on/off quick attachment couplings. Furthermore, the solar panels couple to the top housings and are pivotable between stowed positions in which they lie flush with the top housings and extended positions in which they extend at an angle from the top housings. Moreover, the solar panels are in electrical communication with the fans. The locks operatively couple with the bottom bases and the top housings and, when in their locked positions, lock the twist-on, quick attachment couplings in their coupled positions. The biasing members operatively couple with the locks and urge the locks toward their coupled positions.
  • Various embodiments provide ventilation units comprising bases (defining flashing portions) and housings which define, respectively, first and second halves of quick attachment couplings. The quick attachment couplings allow the housings to be releasably coupled to the bases. In some embodiments, the ventilation units further comprise solar panels coupled to the housings which are pivotable between stowed positions in which they lay flush with the housings and elevated positions in which they extend from the top housings.
  • If desired, the quick attachment couplings of the current embodiment can be twist-on (twist-off) quick attachment couplings. The ventilation units can further comprise locks operatively coupled to the bases and, which when in locked positions, can lock the twist-on, quick attachment couplings in coupled positions. Furthermore, biasing members can operatively couple with the locks and urge the locks toward their locked positions. Risers of some embodiments can be adapted to releasable couple between the bases and the housings. In some embodiments, the flashing portions can be adapted to be mounted on pitched roofs and the ventilation units can comprise fans contained in the housings. In addition, or in the alternative, the ventilation units of the current embodiment further comprise electrical connections adapted to receive 120 VAC (volts alternating current).
  • Embodiments provide ventilation units comprising bases, housings (coupled to the bases), and solar panels. The solar panels couple with the housings and pivot between stowed positions in which they lie flush with the housings and extended positions in which they extend from the housings at angles. In some cases, the ventilation units further comprise fans and electrical connections adapted to receive 120 VAC.
  • Ventilation units of various embodiments possess bases and housings which define quick attachment couplings by which the housings are releasably coupled to the bases. In the alternative, or in addition, the bases define riser portions extending from the flashings and further defining the quick attachment couplings. The quick attachment couplings can be twist-on quick attachment couplings. Moreover, the quick attachment couplings can be locked and can be biased toward their locked positions.
  • To the accomplishment of the foregoing and related ends, certain illustrative aspects are described herein in connection with the annexed figures. These aspects are indicative of various non-limiting ways in which the disclosed subject matter may be practiced, all of which are intended to be within the scope of the disclosed subject matter. Other novel and/or nonobvious features will become apparent from the following detailed disclosure when considered in conjunction with the figures and are also within the scope of the disclosure.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number usually corresponds to the figure in which the reference number first appears. The use of the same reference numbers in different figures usually indicates similar or identical items.
  • FIG. 1 illustrates a building.
  • FIG. 2 illustrates a user installing a roof-mounted fan.
  • FIG. 3 further illustrates a user installing a roof-mounted fan.
  • FIG. 4 still further illustrates a user installing a roof-mounted fan.
  • FIG. 5 illustrates a two-piece fan with a solar panel in an extended position.
  • FIG. 6 further illustrates a two-piece fan with a solar panel in a stowed position.
  • FIG. 7 illustrates aspects of a two-piece fan.
  • FIG. 8 illustrates a fan assembly of a two-piece fan.
  • FIG. 9 illustrates a top plan view of a housing of a two-piece fan.
  • FIG. 10 further illustrates an exploded view of a fan assembly for a two-piece fan.
  • FIG. 11 illustrates a cross-sectional view of a two-piece fan.
  • FIG. 12 illustrates a top plan view of a pair of closures for two-piece fans.
  • FIG. 13 illustrates an exploded view of a two-piece fan.
  • FIG. 14 illustrates a two-piece fan installed on a roof.
  • FIG. 15 illustrates an exploded view of a two-piece fan and a riser.
  • FIG. 16 illustrates a two-piece fan and a riser installed on a roof.
  • FIG. 17 illustrates a corrugated roof and bases for two-piece fans.
  • FIG. 18 illustrates one half of a quick attachment coupling for two-piece fans.
  • FIG. 18A illustrates a cross-sectional view as seen along line AA in FIG. 18.
  • FIG. 19 illustrates another two-piece fan and a roof curb.
  • FIG. 19A illustrates a cross-sectional view of the base of FIG. 19.
  • FIG. 20 illustrates a schematic of a circuit associated with a two-piece fan.
  • FIG. 21 illustrates a flowchart of a method related to two-piece fans.
  • FIG. 22 illustrates a quick attachment coupling for multi-piece fans.
  • DETAILED DESCRIPTION
  • The current disclosure provides systems, apparatus, methods, etc. for ventilating attics (and/or similar spaces) and, more a particularly, two-piece ventilations units with adjustable (and flush fitting) solar panels and/or quick attachment fittings whereby fan assemblies of the ventilation units can be quickly attached to/detached from bases of the ventilation units.
  • FIG. 1 illustrates a building. More particularly, FIG. 1 illustrates a building 100, walls 101, a ceiling 102, air-conditioned spaces 103, a roof 104, a crawl way 105, HVAC (heating, ventilation, and air-conditioning) equipment 106, ducts 108, an air conditioner (evaporator) 110, a roof vent 112, and an roof-mounted fan 114. The building 100 could be a residential building (as shown), a commercial building, an industrial building, etc. The building 100 exists in a region in which the sun and other heat sources create a heat load on the building 100. It also exists in an area where neighboring property owners might wish to maintain the aesthetic appearance of the neighborhood. Thus, the owner of the building 100 might wish to manage the heat load of the building 100 while not adversely affecting the aesthetic qualities of the building 100, the neighborhood, etc.
  • The building 100 also includes a number of walls 101 as well as or, in the alternative to, other structures. Typically, these structures define one or more of the “air-conditioned” spaces 103 and one or more of the crawlways 105. The air-conditioned spaces 103 are said to be “air-conditioned” in the sense that the condition of the air therein might be maintained more or less at some given state and, more specifically, at some desired temperature. Yet the external heat load (from the sun and/or other sources) and, potentially, internal heat loads (for instance, from lighting, electrical/mechanical equipment, occupants, etc.) can affect the temperature of those air-conditioned spaces 103. In many cases, the crawl way 105 (or attic) is included in the design of the building 100 to provide a degree of separation between the air-conditioned spaces 103 and the external environment (and its heat loads). Yet, that crawlway 105 itself can become warm thereby exposing the air-conditioned spaces 103 to heat flux from the crawl way 105 itself and/or reduce the amount of heat which would otherwise escape from the air-conditioned spaces 103 through that space.
  • Moreover, many building designers, owners, maintenance personnel, etc. are known to place various pieces of equipment in these crawl ways 105. For instance, building designers frequently locate HVAC equipment 106 and associated ducts 108 in these crawl ways 105. Some HVAC equipment 106, of course, represent sources of heat themselves. The ducts 108 often convey air-conditioned air and, even if insulated, allow that air-conditioned air to absorb heat from the air in the crawl way 105. Thus, heat from the HVAC equipment 106 and other heat sources can be conveyed into the air-conditioned spaces 103 via the ducts 108.
  • The roof 104 along with the ceiling 102 defines the crawl way 105 and tends to trap heat in that crawl way 105. Indeed, warm (or even hot) air in the crawl way 105 can rise to the crown or apex of the roof 104 where it becomes trapped unless vented. As a result, a temperature gradient can exist as sensed at various heights in the crawl way 105 with the hottest air frequently being found near the apex of the roof 104.
  • In many situations, users might place a roof vent 112 on the roof 104 to vent the crawl way 105. If placed near the apex of the roof 104, the roof vent 112 therefore allows the warmer air in the crawlway 105 to rise through itself and therefore escape from the crawl way 105. However, such passive roof vents 112 rely on natural convection to drive the flow of the warm air and might not therefore be that effective in managing the heat load(s) affecting the crawl way 105 (and/or the air-conditioned spaces 103). Indeed, natural convection typically does not happen in a substantial manner until the crawl way 105 temperature reaches about 136 degrees F. Thus, some users include a roof-mounted fan 114 on the roof 104 to actively ventilate the crawl way 105.
  • Such active ventilation equipment such as a roof-mounted fan 214, though comes with certain drawbacks. For one thing, heretofore-available roof-mounted fans 114 are bulky, awkward, and heavy and therefore difficult to install as FIGS. 2-4 illustrate. More particularly, FIG. 2 illustrates a user installing a roof-mounted fan 214 on a building 200. FIG. 2 also illustrates a roof 204, a user 216, and a ladder 218. As illustrated, the user 216 is installing the roof-mounted fan 214 near the apex of an angled roof 204. Indeed, the user 216 has managed to carry the bulky roof-mounted fan 214 up the ladder 218 at something of a risk of dropping the fan and/or falling off the ladder 218 (or otherwise damaging the fan and/or injuring him/her self). Moreover, having managed to carry the roof-mounted fan 214 aloft, the user 216 must now perch at the top of the ladder 218, maneuver it into place, and mount it to the roof. 204. To do so, the user 216 must often reach around the roof-mounted fan 214 to its opposite side which the user 216 cannot see, much less reach conveniently.
  • Further still, the user 216 must then access the under side of the roof-mounted fan 214 from the attic of the building 200 to provide power to the roof-mounted fan 214. That power might or might not be available at the location of the roof-mounted fan 214. Thus, the user 216 might need to run wires, a conduit, etc. to the roof-mounted fan 214 as well as wire it to a thermostat if thermostatic control of the roof-mounted fan 214 is desired. In the alternative, the user 216 might have purchased a roof-mounted fan 214 with an add-ons solar panel. However, solar panels are often considered eyesores and add-on solar panels typically aggravate this condition. Indeed, some homeowners associations (HOA), municipalities, etc. place restrictions on the use of solar panels on roofs 204 (and/or other locations).
  • Further still, with heretofore-available roof-mounted fans, the solar panels are simply added to the fans with little or no attempt to incorporate the solar panels into the aesthetic design of these fans. Thus, these solar panels detract from the aesthetic features of these heretofore-available roof-mounted fans 214. Moreover, the solar panels (on installed roof-mounted fans 214) might/might not point toward the sun thereby reducing their efficiency to a point at which they might not be able to adequately drive the fans.
  • FIG. 3 further illustrates a user installing a roof-mounted fan 214. More particularly, FIG. 3 illustrates a flashing 320, a penetration 322, rafters 324, a roof deck 326, roofing materials 328, and tools 330. The user, of course, could be a worker, home (or building) owner, a maintenance technician (electrician or mechanic perhaps), or other user. Nonetheless, the roof-mounted fan 214 is often so bulky that the user 216 can barely get their arms around it and must carry it in a position whereat its center of gravity is relatively distant from the user 216. Heretofore-available roof-mounted fans 214 also happen to be heavy making carrying and maneuvering these roof-mounted fans 214 that much more difficult difficult. More specifically, the user 216 must (despite these challenges) maneuver the roof-mounted fan 214 over the penetration 322, center it, and secure it to the roof deck 326.
  • As those skilled in the art will appreciate, roof deck 326 rests on numerous rafters 324. Typically, the rafters 324 are long 2″×4″ boards which (laid in an appropriate manner) can support the weight of the roof deck 326, material (for instance, snow, water, etc.) on it, users 216, wind loads (with appropriate bracing), etc. Typically, the rafters 324 are spaced apart by 24 inches and/or correspond (in spacing) to the typical 4×8 foot size of the plywood panels that make up the roof deck 326. Other rafter 324 spacing dimensions are possible though. Moreover, the rafters 324 and/or roof deck 326 are typically pitched at angles corresponding to a rise/fall of 3 inches per foot although buildings having different roof pitches (for instance, 7 and 10 roof pitches) are certainly in existence and within the scope of the current disclosure. Indeed, some roofs 304 are flat (or have pitches much less than 3 inches per foot) and might have rafters 324 with increased dimensions to better bear the loads associated with such roof pitches.
  • The roof deck 326 itself is typically made of 4×8 foot sheets of plywood on which the roofing materials 328 are secured. In many cases, those roofing materials 328 include an underlying layer(s) of tarpaper and one or more layers of shingles. The tarpaper serves to waterproof the roof 304 so that rain, snowmelt, and/or other forms of water cannot penetrate the roof 304 and/or seep into the building. The tarpaper typically rests on the plywood of the roof deck 326 with the shingles overlying it. The shingles are thicker and more durable than the tarpaper and primarily serve to protect the tarpaper from damage by the elements, workers, objects falling (or being blown) onto the roof 304, etc. Shingles are typically applied to the roof 304 in overlapping rows with the lower ends of shingles in higher rows resting on the upper ends of the shingles in lower rows. Moreover, shingles in adjacent rows are positioned such that the gaps between shingles of a given row do not align with gaps in adjacent rows. Thus, these features tend to waterproof the roof 304 when taken together so long as no penetration through the roofing materials 328 occurs. Note that roofs with ceramic tiles, concrete tiles, sheet metal (corrugated or otherwise), wooden shakes, etc. are within the scope of the current disclosure.
  • With continuing reference to FIG. 3, installing a roof-mounted fan 214 on a roof 204 typically requires that a relatively large penetration 322 be made in the roof 204 and roofing materials 328. Indeed, to install a roof-mounted fan 214 most users 216 would enter the crawl way 105 beneath the roof 204 and select a location (usually near the roof apex) for the fan. They would then find a space between two rafters 324 for the fan. If the space is large enough to accommodate the fan, the user 216 often drills a hole (hammers a nail, etc.) through the roof deck 326 at the desired location for the center of the fan. They then climb down out of the crawl way 105, exit the building, and climb to the top of the roof 204 where they would locate the previously drilled hole. Using a compass of sorts, the user 216 then typically marks the location of the intended periphery of the penetration 322 in accordance with the diameter of the fan. Then, using an appropriate saw or other tool(s), the user 214 cuts through the shingles, tarpaper, other roofing materials 328, and the roof deck 326 to form the penetration 322.
  • FIG. 4 still further illustrates a user installing a roof-mounted fan. Once the penetration 322 is prepared, the user 216 then maneuvers the bulky roof-mounted fan 214 into position roughly over the penetration 322. But, provision must usually be made to prevent water from entering the building 200 through the penetration 322. For such reasons, the roof-mounted fan 214 includes the flashing 220 around its lower end that, if properly installed (each time a roof-mounted fan 214 is installed, replaced, etc.), will exclude such water. Accordingly, the user 214 must lift the roofing material 328 near one of the sides of the penetration 322 and apply caulk (or some other sealant) to the roof deck 326 before sliding the flashing 320 underneath the temporarily lifted roofing material 328. The user 216 must repeat these actions for every side of the penetration 322/fan.
  • Moreover, the user 214 must do so without damaging the remaining roofing material 328; while not being able to see around the fan; and by maneuvering that bulky, awkward, roof-mounted fan 214 to make even small positional adjustments. With roof-mounted fans 214 heretofore-available, it is quite likely that the installation will fail in at least some of these regards thereby allowing water to penetrate the building 200 (not to mention perhaps leading to an installation with an un workman-like appearance). The user 214 can then tamp the roofing material 328 down over the flashing 320 of the fan and hope that wind does not “get under it” and remove it from the roof 204 thereby leading to yet more damage to the building. Of course, the user 216 typically also has to reenter the crawl way 105 (from the other side of the roof 204) and connect power to the roof-mounted fan 214. Accordingly, the installation of each heretofore-available fans 214 tends to be time-consuming, expensive, and prone to failures, errors, omissions, etc.
  • FIGS. 5-8 illustrate a two-piece fan with a solar panel in various positions. The two-piece fan 500 of the current embodiment comprises at least two-pieces: a fan housing 502 and a base 504. The two-piece fan 500 of the current embodiment also includes a solar panel 506 and adjustable bracket 508 as well as flashing 510. The fan housing 502 contains a fan, motor, and associated bearings, races, etc. and airflow guides, vanes, etc. It therefore contains the active mechanical components of the two-piece fan 500 of the current embodiment. Moreover, the solar panel 506 and adjustable bracket 508 operationally couple with the fan housing 502. The fan housing 502, additionally, can include wiring to electrically connect the solar panel 506 to the fan and perhaps some controls (for instance, thermostats, thermal cut-off switches, remote control circuitry, etc.) for the fan motor.
  • Mechanically, the adjustable bracket 508 operatively couples the solar panel 506 to the fan housing 502. In some embodiments, the adjustable bracket 508 includes one or more “stops,” at which it can be locked, to position the solar panel 506 in a corresponding number of positions relative to the fan housing 502. Thus, the solar panel 506 pivots about the fan housing 502 through an angle a1 between its stowed position (see FIG. 6) and its extended position (FIG. 5) and through the various intermediate stop-related positions. These positions allow a user 214 to more accurately point the solar panel 506 at the sun or other light source as might be desired. Indeed, by orienting the fan housing 502 and using the adjustable stops, users 214 can orient the solar panel 506 to point generally toward the sun in many if not all locations including many north-facing roofs. A range of angle a1 from 0 degrees in the stowed position to about 45 degrees has been found to be satisfactory for such purposes.
  • In the stowed position, though, the solar panel 506 rests in the fan housing 502 with its surface flush with the nominally upper surface of the fan housing 502. In this position, the adjustable brackets fold into the housing thereby allowing the solar panel 506 to appear to be embedded in the housing and/or flush with its surface.
  • The fan housing 502 also defines one or more vents/drains 512. These vents/drains 512 provide a flow path around the solar panel 506 when the solar panel 506 is in its stowed position, flush with (or embedded in) the fan housing 502. In this way, even when the solar panel 506 is stowed some air can flow beneath it and cool it. These vents/drains 512 can also serve as finger holds for users 214 to reach underneath the solar panel 506 and lift it to one of its non-stowed positions. They also allow for water to drain from under the solar panel 506.
  • Furthermore, the fan housing 502 of the current embodiment defines a low profile and has an overall oblong, rounded shape. The vents/drains contribute to this low profile (a height less than about 7″ in some embodiments and less than about 3″ in the current embodiment), rounded appearance in that they are formed integrally with the (nominally) upper portions of the sides of the fan housing 502. The vents/drains 512 are also rounded at least in part for aesthetic considerations. Note that the fan housing can be made of some paintable material such as ABS (Acrylonitrile butadiene styrene) plastic so that the two-piece fan 214 can be painted in accordance with user desires, local aesthetic rules, deed restrictions, ordinances, etc.
  • Note that FIGS. 5-7 illustrate the two pieces (the fan housing 502 and the base 504) of the two-piece fan 500 of the current embodiment being coupled together. FIG. 8, in contrast, illustrates the fan housing 502 separate and apart from any base 504. Indeed, the bases 504 can be installed on various roofs 204 with the fan housings 502 being installed at some different time and/or interchanged with one another. In accordance with the current embodiment, therefore, the fan housings 502 can be interchanged with one another, removed, replaced, etc. without disturbing the roof 204, the roof deck 326, the roofing materials 328, etc. and without tools 330 and the like. Furthermore, once a base 504 of suitable size is installed on a roof 204, the user can “install” a “fan” by merely carrying a fan housing 502 to the already installed base 504, placing it on the base 504, and removably coupling that fan housing 502 to the base 502. In the current scenario, the user 214 need not carry or maneuver the (bulk of the) base 504, flashing 510, etc. Thus, the current embodiment facilitates the installation (and/or replacement, maintenance, etc.) of fans while eliminating much of the work, expense, and inconvenience associated therewith.
  • FIG. 9 illustrates a top plan view of a housing of a two-piece fan. More particularly, FIG. 9 illustrates a fan housing 900, vents/drains 912, a body 918, sides 919, a recess 920, and ribs 922. As alluded to elsewhere herein, the body 918 of the fan housing 900 contains a fan, its blades, etc. and defines the vent/drains 912. Additionally, in the current embodiment, the body 918 also defines the recess 920 into which the solar panel 506 fits and/or appears to be embedded (when stowed) in the housing. Those solar panels 506 can be polycrystalline, multicrystaline, monocrystaline, etc. without departing from the scope of the current disclosure. In some embodiments, the body 918 also defines one or more of the ribs 922 on its nominally upper surface in the recess 920. These ribs 922 can provide a degree of rigidity to that surface and can allow some space between it and the solar panel 506 (when stowed). This space can allow the solar panel 506 to breath and thus remain relatively cool during operation (and during non-operation). This space also allows the area under/behind the solar panel 506 to drain should moisture be present.
  • FIG. 10 further illustrates an exploded view of a housing for a two-piece fan. More particularly, FIG. 10 illustrates the fan 1000 and its housing 1002, solar panel 1006, adjustable brackets 1008, cowling 1030, closure 1032, fan motor 1034, fan blades 1036, bosses 1038, fastener holes 1039, and rails/locks 1040. Generally, the fan motor and blades 1034 and 1036 (as a unit) respectively fit inside the cowling 1030 which fits inside the housing 1002. The closure 1032 along with the housing 1002 (and appropriate fasteners) closes the fan 1000 as an assembly and clamps it together. As is disclosed further with regard to FIG. 11, the closure 1032 defines at least one aperture that allows the fan to draw air into itself while the cowling 1030 is shaped and dimensioned to smoothly turn that flowing air with relatively low head loss back toward the closure 1032 in a relatively small axial distance (less than 4-7″ in many embodiments). In some embodiments, the cowling 1030 eliminates air pockets and associated energy wasting eddy currents therein. The cowling 1030 can also include guide vanes for the air if desired. The closure 1032 also defines at least one aperture which allows the (turned) airflow to exit the fan 1000. Thus, the air flows upward through the closure 1032, through the fan blades 1036 (which drive the airflow at least in part), through the turn guided by the cowling 1030, and then back out through the closure 1032.
  • As further illustrated by FIG. 10, the closure 1032 defines one or more bosses 1038 with holes adapted to receive closure fasteners. Those holes align with the fastener holes 1039 on the housing 1002. Thus, with the cowling 1032 and fan blades 1036 and fan motor 1034 in the housing 1002, fasteners can be used to assemble the fan 1000 into a separate, stand-alone unit.
  • FIG. 10 also shows that the solar panel 1006 can include or be operationally coupled to the adjustable brackets 1008. The adjustable bracket 1008 can cooperate with the corresponding rails/locks 1040 to allow users to adjust the position of the solar panel 1006 with respect to the housing 1002. The rail/locks 1040 can also, or in the alternative, cooperate with the adjustable brackets 1008 to lock the solar panel 1006 in one or more of those positions.
  • In the current embodiment, a frame 1041 surrounds, holds, and/or supports the solar panel 1006. While the frame 1041 of the current embodiment can provide structural support to the solar panel, another function it provides is to shield the solar panel 1006 from the environment, physical damage/abuse, and form being seen. Thus, the frame 1041 aids in preserving the aesthetic appearance of the fan and/or its housings. Furthermore, the frame 1041 can be (spray) painted in accordance with user desires, homeowner association rules, ordinances, etc. A backing 1042 can also be applied to the side of the solar panel 1006 closest to the body of the two-piece fan 1000. It too can be painted and/or it can be black so as to shield the backside of the solar panel from view and to aid in the aesthetic features of the fan.
  • FIG. 11 illustrates a cross-sectional view of a two-piece fan. More particularly it shows the fan motor 1034 and fan blades 1036 assembled within the cowling 1030 which is itself within the housing 1002. Further, FIG. 11 illustrates the closure 1032 fastened to the housing (via fasteners in the fastener holes 1039 and bosses 1038) and clamping the fan assembly 1102 together. FIG. 11 also shows the two-piece fan 1100 with the solar panel 1006 operationally coupled to the housing assembly 1102 via the adjustable bracket 1008. Moreover, FIG. 11 illustrates the base 1104 including the flashing 1110 releasably attached to the fan assembly 1102. Note that the fan assembly 1102 and base 1104 can be separated from one another with, if desired, the base 1104 being coupled to and/or being installed on a roof or other structure. In the embodiment illustrated by FIG. 11, furthermore, the various components of the two-piece fan 1100 are coaxial with one another although they need not be for the practice of the current embodiment.
  • Moreover, FIG. 11 illustrates a motor bracket 1120. In the current embodiment, the motor bracket 1120 defines various attachment points corresponding to various motors. Thus, it can allow for the interchange of motors as might be desired. The motor bracket 1120 can also provide physical protection to the motor and/or its coupling to the fan blades against mechanical damage from, for instance, animals that might intrude into the fan housing. This feature helps keep the fan blades in balance, running smoothly, and without undue noise.
  • FIG. 12 illustrates a top plan view of a pair of closures for two-piece fans. Both closures 1200A and B include a generally planar body 1202A and B shaped and dimensioned to fit into the open end of various housings 1002. The closures 1200A and B also define, respectively, central apertures 1204A and B through which the various fans (or fan blades 1136) can draw air. The closures 1200A and B also defined a plurality of apertures 1206A and B through which air, driven by the fan blades 1136, can flow from the fans. In some embodiments, the closures 1200 can include a screen over one or more of the apertures to, for instance, keep insects, birds, rodents, other animals, debris, water, etc. out of the fans.
  • FIG. 13 illustrates an exploded view of a two-piece fan. More particularly, FIG. 13 illustrates a two-piece fan 1300 including a fan assembly 1302, a riser 1303, and a base 1304. The fan assembly 1302, of the current embodiment, includes a fan (a motor and a set of blades in this embodiment), a housing, and a closure. In FIG. 13 a solar panel is not shown although the two-piece fan 1300 could include a solar panel with or without adjustable brackets. The base 1304 includes a flashing and is shaped and dimensioned to be attached to a roof, roof curb, or other structure and to lend the two-piece fan 1300 stability when installed.
  • In the current embodiment, the two-piece fan 1300 also includes the riser 1303 which could be considered as a part of the base 1304 or the fan assembly 1302 or even a third component/assembly of the “two-piece” fan 1300. The riser 1303 is shaped and dimensioned to reside between the fan assembly 1302 and the base 1304. While it can be coaxial with the other pieces of the two-piece fan 1300, it does add height to the two-piece fan 1300. In other words, the riser 1303 (or extender) spaces the fan assembly 1302 apart from the roof or other structure to which the two-piece fan 1300 might be mounted. Thus, should water, snow, ice, debris, etc. accumulate around the base 1304, the operation of the fan can remain relatively un-affected. But, the extension need not be in a vertical direction to practice the current embodiment.
  • Moreover, because the open end of the riser 1303 (when installed on a base 1304) might be clear of such debris, a two-piece fan 1300 (or rather a fan assembly 1302 of a two-piece fan 1300) can be installed even in the presence of that debris in many cases. Indeed, since 5-6″ of snow is often considered to be good insulation, users can install fan assemblies on risers with lengths of about 6″ without disturbing that snow. For roofs covered with sod, dirt, grass, sand, gravel, etc. two-piece fans (with risers and/or riser portions) of embodiments provide similar features.
  • FIG. 13 also illustrates that risers 1303 of the current embodiment can include two sets of quick attachment coupling halves 1310 and 1312. These coupling halves 1310 and 1312 can be shaped and dimensioned to mate with corresponding coupling halves 1314 on the bases 1304 and fan assemblies 1302. Also, if desired, one set of the coupling halves 1310 or 1312 can be adapted to mate with corresponding coupling halves on the fan assemblies 1302 while the other set (on the riser 1303) can be adapted to mate with the coupling halves on the bases 1304. In such manners, risers 1303 can be stacked one atop another to extend the fan assemblies 1302 to lengths determined by the dimensions of the selected risers 1303 and/or their numbers. If desired, the various coupling halves 1310, 1312, and/or 1314 can be adapted to pull the various components/ assemblies 1302, 1303, and/or 1304 into close fitting and/or weather proof alignment with one another. Additionally, or in the alternative, these components 1302, 1303, and/or 1304 can be adapted to be used with gaskets, O-rings, sealants, and/or other weatherproofing techniques to prevent water intrusion, air infiltration, etc. through the joints there between.
  • FIG. 14 illustrates such a two-piece fan installed on a roof with a riser 1303 installed between the fan assembly 1302 and the base 1304. FIG. 15 illustrates an exploded view of a two-piece fan and multiple risers 1503A and 1503B installed therewith. FIG. 15 also shows that such multi-riser two-piece fans 1500 can include a solar panel and adjustable brackets) coupled thereto. FIG. 16 illustrates a two-piece fan and a riser installed on a roof. In the embodiment illustrated in FIG. 16, the riser 1603 is configured to turn through an angle a2. That angle a2 could correspond to one of the common angles at which roofs are pitched although it need not do so. In such cases though, the use of the angled riser 1603 can serve to turn the orientation of the two-piece fan (or fan assembly 1602) to some desired direction such as vertical (as shown). Moreover, in some embodiments, one or more risers can be used in combination/conjunction with other risers whether straight, angled, or otherwise. FIG. 16 also illustrates, in at least some sense, that the base 1604 can be considered an assembly. For instance, the base 1604 could define or comprise a flashing portion 1610 coupled to a riser portion 1630. The riser portion 1630 could further define, comprise, be coupled to, etc. quick attachment couplings.
  • FIG. 17 illustrates a corrugated roof and bases for two-piece fans. More particularly, the corrugated roof 1700 of the current embodiment includes a portion 1702 which appears trapezoidal when viewed in cross-section and a portion 1704 which appears sinusoidal in cross-section. The corrugated roof 1700 also includes two bases 1706 and 1708 which, respectively define flashings with corresponding corrugated trapezoidal and sinusoidal cross-sections. Thus, embodiments allow two-piece fans to be installed on, mounted on, attached to, etc. corrugated roofs without altering the corresponding risers and/or fan assemblies.
  • FIG. 18 illustrates one half of a quick attachment coupling for a two-piece fan and FIG. 18A illustrates a cross-sectional view as seen along line AA in FIG. 18. More particularly, FIGS. 18 and 18A illustrate that the quick attachment coupling 1800 of the current embodiment defines a male half 1802 and a female half 1804 with the two halves being designed to releasably engage each other and to releasably couple assemblies of two-piece fans together. Thus, these male and female halves 1802 and 1804, respectively, can be shaped and dimensioned to withstand wind (and/or other) loads likely to be imposed on various two-piece fans with and/or without risers. Additionally, these coupling halves 1802 and 1804 can be shaped and dimensioned to draw the fan assemblies together with sufficient force to form a seal there between in the presence and/or absence of gaskets, O-rings, and/or other sealing structures/devices.
  • With continuing reference to FIG. 18, the female half 1804 of the current embodiment can define a relatively large aperture 1806 which can accept a corresponding and/or relatively large portion 1810 of the male half 1802. These structures allow the halves 1802 and 1804 to engage each other and disengage from each other. The female half 1802 can also defines a narrow aperture 1812 which can accept a corresponding small portion 1814 of the male half 1802. Thus, once the halves 1802 and 1804 are engaged with each other, the narrow portion 1814 of the male half 1802 can be slid along the narrow aperture 1812 of the female half 1804 so that the halves 1802 and 1804 can remain engaged with each other despite axial forces imposed on their corresponding fan assemblies. The halves 1802 and 1804 can also remain in sliding engagement with one another (at least for some distance) in such circumstances even if some torsional forces attempt to rotate one fan assembly relative to the other in the current embodiment. Nonetheless, such features allow assemblies of embodiments to be releasably coupled to one another with a twist of one assembly relative to another.
  • FIGS. 18 and 18A also illustrate that the female and male halves 1802 and 1804, respectively, define guide surfaces 1815 and 1816. These guide surfaces 1815 and 1816 can be shaped and dimensioned such that, as the coupling halves 1802 and 1804 slide relative to one another, the guide surfaces 1815 and 1816 urge the halves 1802 and 1804 toward one another (axially) thereby drawing the respective assemblies into abutting relationship. Moreover, the guide surfaces 1815 and 1816 can be configured to impart enough force on the respective fan assemblies to form a seal there between. That seal can be made, enhanced, etc. with a gasket, O-ring, etc. which might/might not be positioned in a groove 1820 in the surface of one fan assembly or another.
  • Further still, in some embodiments, the quick attachment coupling 1800 includes a latch 1822. The latch 1822 can be positioned on the fan assembly with the female half 1804 to releasably capture the male half 1802 as the halves engage each other. In some embodiments, the latch 1822 (and the coupling halves 1802 and 1804) is configured and positioned to be released manually. In addition, or in the alternative, the latch 1822 can be biased into a position (for instance a locked/latched position) by a biasing members such as a spring 1824.
  • FIG. 19 illustrates a base for a two-piece fan and FIG. 19A illustrates a cross-sectional of the base of FIG. 19. The base 1904 of the current embodiment mates with rectangular roof curbs 1906 so that two-piece fans can be mounted thereon in accordance with embodiments. Instead of a flashing, the base 1904 defines an adaptor 1910 shaped and dimensioned to mate with the roof curb 1906 and to seal thereto. Quick attachment couplings, fasteners, etc. can be used to secure the adaptor 1910 (and base 1904) to the roof curb 1906. Moreover, the adaptor 1910 can further define a lip 1912 which can aid in registering the base 1904 with the roof curb 1906. The lip 1912 can also assist in sealing the joint between the base 1904 and the roof curb 1906 and can be used as a location for quick attachment couplings, fasteners, etc. for securing the base 1904 to the roof curb 1906.
  • FIG. 20 illustrates a schematic of a circuit associated with a two-piece fan. More particularly, FIG. 20 illustrates a circuit 2000 which includes a fan motor 2002, a solar panel (or cell) 2004, a source of (120 VAC) line power 2006, an inverter 2008, an on/off switch And/or breaker) 2010, a thermostat 2012, a thermal cutoff switch 2014, an isolator 2016, and two pairs of contacts 2020 and 2022, quick disconnects, etc. Generally, the solar panel 2004 and line power 2006 are wired in parallel across the fan motor 2002 in the current embodiment. Moreover, the contacts 2020 allow those components on the fan assembly to be connected to (and disconnected from) line power 2006 while the contacts 2022 allow the solar panel to be electrically (dis) connected to the fan motor 2002.
  • Of course, fans of embodiments could operate on only one of the solar panel 2004 or line power 2006. In such embodiments, the circuit 2000 can be simplified accordingly. Indeed, where power is only available from the solar panel 2004, the fan motor 2002 will slow down/stop as the light fades thereby allowing natural convection/breezes to ventilate the crawl way 105 during dark periods.
  • Nonetheless, the inverter 2008 illustrated by FIG. 20 converts the line power 2006 to DC (direct current) power compatible with the fan motor 2002 which can be selected to be driven by DC power from either/both of the solar panel 2004 and/or the inverter 2008 (and, thus, line power 2006). The isolator 2016 can be included in the circuit 2000 so as to protect the solar panel 2004 from being back-driven by that DC power. Moreover, the thermostat 2012 can determine when the fan motor 2002 runs responsive to the temperature sensed by the thermostat 2012 while on/off switch 2010 allows users to control the fan motor 2002 at least as far as line power 2006 might be involved. Of course, if desired, the fan motor 2002 can be instrumented with the thermal cutoff switch 2013 to shut it off if it should over-heat.
  • FIG. 20 also schematically illustrates that the on/off switch 2010 and the source of line power 2006 can be located in/on the building on which the fan is to be mounted. Meanwhile, the remaining components illustrated by FIG. 20 can be located on the fan assembly (or if desired the base or riser) associated with the circuit 2000. A pair of wires 2024 can run through the fan assembly from the components there on toward the riser/base. These wires 1024 can be routed through the riser/base and thence to some connection point and can terminate in the contacts 2020. In some embodiments, the wires 1024 run external to the fan assembly and can be routed through the building/environment outside of the fan, fan assembly, riser, base, etc. although they need not be so routed to practice embodiments. Another pair of wires 1026 can be routed through the fan assembly/riser/base so that the thermostat 2012 can be removably (re) located in or near the inlet of the base, riser, fan assembly.
  • In some embodiments, though, the those wires 1026 further comprise a 36″ (or other length) cable allowing the thermostat 2012 to be located at a location with temperatures representative of the crawl way 105. For instance, the area/strata of air near the roof apex is often warmer than the overall crawl way 105. Placing the thermostat 2012 elsewhere (for instance lower) in the crawl way 105 by using the wires 2026 can allow for control of the fan motor 2002 responsive to temperatures more representative of overall conditions in the crawl way 105.
  • FIG. 21 illustrates a flowchart of a method related to two-piece fans. The method 2100 includes numerous activities such as identifying a desire for improved ventilation. See reference 2102. That desire might arise from a user noticing that one or more air-conditioned spaces 103 in a building 100 has been and/or has become warmer than desired. In some cases that desire might arise from a user noticing that a crawl way 105 has become susceptible to mold, mildew, etc. Of course, many circumstances could prompt a user to desire improved ventilation and, indeed, these circumstances might occur in various combinations.
  • With continuing reference to FIG. 21, one response to such situations is to install (or change) a fan that ventilates the crawl way 105 of the building 100. Doing so would probably remove warm air from the crawl way 105 and allow warm air from elsewhere to rise to the crawl way 105 where it would also be removed. Such airflow would tend to cool the crawl way 105, the HVAC equipment 106 and/or ducts 108 therein as well as likely reducing the heat load(s) on the air-conditioned spaces 103 of FIG. 1.
  • Therefore, given the size of the building 100, its air-conditioned spaces 103, the solar insolation in the building's environment, likely weather/climate conditions, the likely occupancy/use of the building, etc. a user can select a fan assembly by size and/or type for use in ventilating the crawl way 105. With heretofore available fans, once a user installs the selected fan, a change or modification to that fan (or selection thereof) might necessitate a re-engineering/re-design of the installation-site as well as, perhaps, performing again most (if not all) of the installation procedures for the (newly) selected heretofore available fan. Thus, with such fans, changing a selection and/or replacing an existing fan could be comparatively expensive. In contrast, many of these adverse consequences can be avoided with two-piece fans of embodiments although doing so is not necessary for the practice of embodiments.
  • With reference again to FIG. 21, method 2100 can continue with a user selecting various assemblies with which to build/install a two-piece fan 1300 of embodiments. For instance, a user can select a base 1304 by its diameter (or size as pertinent to HVAC considerations), the type of roof 104 it is to be installed on, its shape (for instance, round or rectangular), etc. Moreover, the user can select the base 1304 independently of their selection of the fan assembly 1302. See reference 2104. If desired, the user can select one or more risers 1303 for use with the base 1304. These risers 1303 can be straight, angled, etc. and the user can select more than one riser 1303 if desired. Thus, the user can design a two-piece fan 1300 while accommodating local concerns such as the possibility that rain, snow, ice, debris, etc. might accumulate on the roof 104 near the fan 1300.
  • Method 2100 can continue with the user selecting a fan assembly 1302. The user can base this selection on the size of the fan desired (for instance, desired flow rate, head/pressure, energy consumption, etc.), its type (axial, centrifugal, mixed, etc.), etc. See reference 2106. Again, the user can make the selection of the fan assembly 1302 and base 1304 (and riser) more or less independently of one another provided that they are generally the same size and shape at the joint where they are to be coupled to one another.
  • At some point, a user can install the base 1304. Installing the base 1304 can be performed at a different time, by different users, with different tools, etc. than the installation of the fan assembly 1302 (and/or riser 1303). Thus, for instance, the installation of the base 1304 could be performed by a user(s) with mechanical/carpentry skills while installation of the fan assembly 1302 could be performed by a user with enough electronic skill to make the electrical connections and/or mechanical skills to install the fan assembly 1302 and/or the solar panel.
  • The installation of the base 1304 can include various activities. For instance, a user can enter the crawl way 105 (or other space opposite the intended location of the fan) and mark an appropriate location for the center of the fan. Often, the user will identify a location between two rafters 324 and mark that location with any convenient writing, marking, etc. tool. The user can then drill a hole through the roof 104 so that the desired location of the fan becomes apparent from the other side of the roof. The user, moreover, can then access the other side of the roof and use a compass or other tool to mark the outline of the duct-space defined by the base 1304. Using that marking as a guide, the user can then cut through the roof to define the penetration 322 through which air will flow as induced by the fan. Thus, the user can locate the position of the to-be-installed fan as indicated at reference 2108.
  • Further still, the user can lift the roofing material 328 of the roof 102 adjacent to the penetration 322 in preparation for installing the base 1302 and, if desired, apply caulking (or some other sealant) to the roof deck 326 in preparation for sealing the base 1304 to the roof. The user can then, if desired, slide one side of the flashing 1310 under an appropriate portion of the roofing material 328 and then maneuver the base 1302 alone (sans the fan assembly 1302, riser 1303, etc.) into its final place on the roof 104 and/or over the penetration 322. Thus, much of the inconvenience, difficulty, awkwardness, etc. of working with these bulky, heretofore available fans can be eliminated. This condition can facilitate the work, reduce associated expenses, and/or reduce the likelihood/severity of mistakes, oversights, etc. Furthermore, the user can use fasteners to fasten the base 1304 to the roof deck 326. See reference 2110.
  • FIG. 21 also illustrates (at reference 2116) the user coupling a riser 1303 to the base 1304. More particularly, in accordance with embodiments, the user can maneuver the riser 1303 to the vicinity of the base 1304 (after it is installed if desired) and roughly align the coupling halves 1802 and 1804 with one another. Once the halves 1802 and 1804 are roughly aligned, the user can engage the male half 1802 and the female half 1804 and then (by maneuvering/twisting the riser 1303) translate one relative to the other thereby causing the latch 1820 to latch/lock the halves together. Thus, the user can mount the riser 1303 to the base 1304 and do so without tools. Note that at this point that much of the overall two-piece fan (in terms of physical envelope size) is installed.
  • In many situations, the fan assembly 1302 (including the fan motor) might be the heavier of the two (or three or more) pieces of the fan. Thus, at reference 2118, FIG. 21 illustrates the user installing the fan assembly 1302 as a separate piece on the base 1304 and/or riser 1303. Since the user is doing so with only the fan assembly 1302 (and not the base 1304 or riser 1303) in their hands, such activities might be easier, more convenient, less awkward, etc. than would otherwise be the case. Thus, the user can maneuver the fan assembly 1302 into the proximity of the base/riser 1304/1303 and roughly align the corresponding coupling halves 1802 and 1804. Moreover, the user can then latch the coupling in place with a twist. In the alternative, or in addition, types of couplings other than twist-on/off couplings can be used to couple the various assemblies together. For instance, bayonet fittings could be used. Of course, the user could install the fan assembly 1302 with a riser 1303 attached thereto if desired.
  • In some embodiments, the user can attend to certain electrical portions of the installation. For instance, the user can place the thermostat 2012 at a location where it can sense temperatures in (or associated with) the crawl way 105. See reference 2120. If the thermostat is a component of the fan assembly 1302, the user might not need to do so though since it could be pre-located in the fan assembly 1302 (or attached thereto) during manufacture. In accordance with embodiments though, the user can connect the connectors 2020 to line power if desired. See reference 2121.
  • Method 2100 also shows that the user can mount a solar panel to the fan assembly as at reference 2122. If the solar panel 1306 is a separate component of the fan assembly 1302, the user can also connect the connections 2022. Additionally, in accordance with embodiments, the user can point the solar panel 1306 toward the sun by adjusting the adjustable brackets 1308 and, perhaps, locking them it in a selected position. Note also that with angled risers, the installation of the angled riser (disclosed elsewhere herein) can include adjusting the orientation of that angled riser to be compatible with obtaining a satisfactory “sun angle” for the solar panel 1306. See reference 2124. FIG. 21 also shows that the user can turn the fan on as indicated at reference 2128 and/or verify its operation.
  • At some point, though, it might become desirable to change the fan. For instance, use of the building, occupancy of the building, heat loads, etc. could change or the user might desire a different fan. See reference 2130. Thus, the user could select another fan assembly 1302 and/or riser(s) 1303. Since the base 1304 is already installed, the user need not select another base 1304 although they could. See reference 2132. Such features allow suppliers of these fans to reduce their stocks of fans since they can mix and match fan assemblies, risers, bases, etc. as desired by end users. Moreover, here, the user could then repeat all or portions of method 2100 as indicated at reference 2134. Note that if the inter-change of a fan assembly is interrupted for some time, covering the aperture of the riser is generally easier, more convenient than trying to cover a raw penetration through the roof. For instance, a plastic bag can be stretched over the riser to close the aperture as opposed to having to place a tarp over a penetration and some how securing the tarp and excluding runoff from entering the penetration anyway. Of course, if the user is satisfied with the fan as installed or for other reasons, method 2100 can end.
  • FIG. 22 illustrates a quick attachment coupling for multi-piece fans. The multi-piece fan 200 of the current embodiment comprises two assemblies 2202 and 2204 which can be bases, risers, fan assemblies etc. As FIG. 22 illustrates the multi-piece fan 2200 includes a quick attachment coupling 2240. In the current embodiment, the quick attachment coupling 2240 includes a flexible detent 2250, catch, dog, pawl, ratchet, etc. and a post 2256 or other protrusion which the flexible detent 2250 can engage. When the two assemblies 2202 and 2204 are mated, the post 2256 (on one assembly 2202) extends through an aperture 2252 defined by the other assembly 2204. The flexible detent 2250 operationally couples with the assembly 2204 which defines the aperture in the current embodiment. The flexible detent 2250 can be made of metal, plastic, etc.
  • Moreover, the flexible detent 2250 is positioned relative to the aperture 2252 (and/or the post 2254) such that when the assemblies rotate and/or twist relative to one another, the flexible detent 2250 engages the post and flexes allowing the post 2250 to pass relative to itself. A hook 2260 defined by the flexible detent 2250 can then catch on the post 2254 thereby securing the assemblies 2202 and 2204 to each other. Note that the flexibility of the flexible detent 2250 (and/or shape of the hook 2260) can be selected so that some select amount of torque must be applied (in the opposite direction of rotation) to overcome the detent and free the flexible detent 2250 from the post 2252. In the alternative, or in addition, the quick attachment coupling 2240 can be disengaged, manually, with a tool, etc. by pressing on, pulling, etc. the flexible detent 2250 and/or post 2252.
  • While certain terms have been used herein which might imply certain directions or orientations, these terms are used merely for the sake of convenience and are non-limiting. For instance, the term “height” is a dimensional term as used herein but does not imply that that dimension necessarily lies along a vertical or even approximately vertical direction. Thus, fans, fan assemblies, risers, bases, etc. of embodiments disclosed herein are not limited to any particular orientation.
  • Embodiments provide two-piece fans with highly efficient solar panels. These solar panels can be monocrystaline and can produce 22 watts at 17.6 VDC/1.22 amps. Fan motors of embodiments can be brushless, high reliability, high efficiency motors capable of operating at 6-100 VDC and in some embodiments (more specifically 12-36 VDC). Moreover, fans of embodiments can include sets of five nylon/polymeric blades. Fans comprising such motors and blades can ventilate areas of 1800 square feet and can induce 1300 CFM (cubic feet per minute) and/or more or less airflow. In some embodiments, the fan assemblies include one AC motor wired to interconnects at which it can receive AC power (for instance 120 VAC) from the building power system and one DC motor wired to interconnects at which it can receive DC power from a solar panel and/or other source.
  • Housings of embodiments can be made from aluminum, galvanized steel, various plastics such as automotive grade ABS, high-impact resistant plastic, etc. Housings of the current embodiment can also be UV (ultraviolet) stabilized and can include embedded fire retardant resin(s). These housings can also be configured to double lock with their respective (and separate) bases. In embodiments, the double locking can be via keyhole standoffs which guide the two connecting pieces together. A flexible metal pin on one or the other of the mating pieces/assemblies can be configured to snap in place to secure the assemblies together. Because the bases and housings/fan assemblies of embodiments are separate components, installation, support, maintenance, etc. can be easier than with heretofore-available fans. In some embodiments, fan assemblies can be about 24″ by about 24″ by about 7″ in size and can weigh about 26 pounds. Bases of the current embodiment can be about 28″ by about 28″ by about 11.″ Furthermore, fans of embodiments comprise thermal switches and thermoballs (and/or other devices capable of measuring temperature which can regulate the various fans disclosed here) on (for instance) 36″ cables.
  • Two-piece fans of embodiments convert passive ventilation to active ventilation and can extend the life of roofs, AC units, stored valuables, etc. and can reduce moisture and mildew. Two-piece fans of embodiments are resistant to even extreme weather and windstorm rated and certified. Such fans reduce HVAC costs and cooling cycles. They also increase air exchanges so that even if solar heat causes temperatures to soar in attics, crawl spaces, and the like, properly balanced fans of embodiments increase air exchanges to as many as ten times per hour. The increased air exchange in accordance with embodiments keeps living spaces cooler and saves building owners money.
  • CONCLUSION
  • Although the subject matter has been disclosed in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts disclosed above. Rather, the specific features and acts described herein are disclosed as illustrative implementations of the claims.

Claims (20)

1. A two-piece ventilation unit comprising:
a bottom base defining a flashing shaped and dimensioned to divert runoff around the ventilation fan and defining a riser extending from the flashing and further defining a first half of a quick attachment coupling;
a top housing containing a fan and defining a second half of the quick attachment coupling by which the top housing is releasably coupled to the bottom base;
a thermostat operatively coupled to the top housing by a pair of wires; and
a solar panel coupled to the top housing and being pivotable between a stowed position in which the solar panel lies flush with the top housing and an elevated position in which the solar panel extends from the top housing, the solar panel being in electrical communication with the fan.
2. A ventilation unit comprising:
a base defining a flashing shaped and dimensioned to divert runoff around the base and defining a riser portion extending from the flashing and further defining a first half of a quick attachment coupling; and
a housing defining a second half of the quick attachment coupling by which the housing to be releasably coupled to the base.
3. The ventilation unit of claim 2 wherein the housing is releasably coupled to the housing.
4. The ventilation unit of claim 2 further comprising a thermostat operatively coupled to the housing by a pair of wires.
5. The ventilation unit of claim 2 further comprising a fan contained in the housing.
6. The ventilation unit of claim 2 further comprising a solar panel coupled to the housing and being pivotable between a stowed position in which the solar panel lies flush with the housing and an extended position in which the solar panel extends from the top housing
7. The ventilation unit of claim 6 wherein the housing defines at least one drain aperture positioned so as to allow water to drain from between the solar panel and the housing.
8. The ventilation unit of claim 7 wherein the housing defines four drain apertures further position on corresponding sides of the housing.
9. The ventilation unit of claim 6 wherein the solar panel is spaced apart from at least a portion of the housing whereby a space between the solar panel and the housing can breathe.
10. The ventilation unit of claim 2 further comprising an electrical connection adapted to receive 120 VAC (volts alternating current).
11. A ventilation unit comprising:
a base defining a flashing portion shaped and dimensioned to divert runoff around the base;
a housing coupled to the base; and
a solar panel coupled to the housing and being pivotable between a stowed position in which the solar panel lies flush with the housing and an extended position in which the solar panel extends from the housing.
12. The ventilation unit of claim 11 further comprising an electrical connection adapted to receive 120 VAC.
13. The ventilation unit of claim 11 wherein the base and the housing define a quick attachment coupling by which the housing is releasably coupled to the base.
14. The ventilation unit of claim 11 wherein the base defines a riser portion extending from the flashing and further defining the quick attachment coupling.
15. The ventilation unit of claim 11 wherein the housing defines at least one drain aperture positioned so as to allow water to drain from between the solar panel and the housing.
16. The ventilation unit of claim 15 wherein the housing defines four drain apertures further position on corresponding sides of the housing.
17. The ventilation unit of claim 11 wherein the solar panel is spaced apart from at least a portion of the housing whereby a space between the solar panel and the housing can breathe.
18. The ventilation unit of claim 11 further comprising a fan contained in the housing.
19. The ventilation unit of claim 11 further comprising a thermostat operatively coupled to the housing by a pair of wires.
20. The ventilation unit of claim 11 wherein the housing is releasably coupled to the base.
US14/329,596 2012-05-16 2014-07-11 Two-Piece Ventilation Units, Apparatus, Systems, and Related Methods Abandoned US20150079896A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/329,596 US20150079896A1 (en) 2013-09-18 2014-07-11 Two-Piece Ventilation Units, Apparatus, Systems, and Related Methods
US17/018,076 US11788744B2 (en) 2012-05-16 2020-09-11 Ventilation systems
US18/375,541 US20240027084A1 (en) 2012-05-16 2023-10-01 Ventilation systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361879439P 2013-09-18 2013-09-18
US14/329,596 US20150079896A1 (en) 2013-09-18 2014-07-11 Two-Piece Ventilation Units, Apparatus, Systems, and Related Methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US29/422,087 Continuation-In-Part USD762835S1 (en) 2012-05-16 2012-05-16 Fan with a solar panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/018,076 Continuation-In-Part US11788744B2 (en) 2012-05-16 2020-09-11 Ventilation systems

Publications (1)

Publication Number Publication Date
US20150079896A1 true US20150079896A1 (en) 2015-03-19

Family

ID=52668365

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/329,596 Abandoned US20150079896A1 (en) 2012-05-16 2014-07-11 Two-Piece Ventilation Units, Apparatus, Systems, and Related Methods

Country Status (1)

Country Link
US (1) US20150079896A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD762835S1 (en) * 2012-05-16 2016-08-02 Roy R. Stocker Fan with a solar panel
US20190309521A1 (en) * 2018-04-06 2019-10-10 Air Distribution Technologies Ip, Llc Curb for use with roof flashing
US20200181916A1 (en) * 2018-12-05 2020-06-11 Jonathan Martin Leinbach Roof vent for a corrugated metal roof
US11092350B1 (en) 2019-11-22 2021-08-17 Qc Manufacturing, Inc. Multifunction adaptive whole house fan system
US11175056B1 (en) * 2017-04-12 2021-11-16 Qc Manufacturing, Inc. Smart attic fan assembly
US20220077812A1 (en) * 2020-09-10 2022-03-10 Eric Robert ANDERSON Electricity Generation System and Method
US11788744B2 (en) 2012-05-16 2023-10-17 Solar Royal, LLC Ventilation systems

Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875678A (en) * 1954-07-06 1959-03-03 Shepherd Wyley Ventilators
US2900892A (en) * 1954-07-06 1959-08-25 Shepherd Wyley Ventilators
US2980008A (en) * 1959-07-14 1961-04-18 Noll Mfg Company Cap assembly
US3080633A (en) * 1960-06-29 1963-03-12 Hi Shear Rivet Tool Company Separable fastener
US3082677A (en) * 1960-03-16 1963-03-26 Dura Vent Corp Roof ventilator
US3093059A (en) * 1961-03-02 1963-06-11 Northwest Metal Products Inc Roof ventilator with removable hood
US3237904A (en) * 1963-05-21 1966-03-01 Abruzese Michael Beach blanket anchor
US3302551A (en) * 1964-06-22 1967-02-07 Kool O Matic Corp Ventilator
US3595201A (en) * 1969-10-20 1971-07-27 Theodorus Antonio Gerardo Oude Device appropriate for the identification of animals
US3952638A (en) * 1975-03-10 1976-04-27 Felter John V Fans for use with turbine ventilators, and methods and apparatus for supporting the same
US3960063A (en) * 1973-07-19 1976-06-01 Blech- Und Metallwarenfabrik Robert Fischbach Kg Roof fan
US4297818A (en) * 1980-03-27 1981-11-03 Anderson Metal Products Corp. Roof ventilating louver
US4470623A (en) * 1982-07-30 1984-09-11 Cargocaire Engineering Corp. Plate fastening system
US4759270A (en) * 1987-11-02 1988-07-26 Jack Lindeen Company, Inc. Vent cap cover
US5038674A (en) * 1989-11-17 1991-08-13 Phototronics Solartechnik Gmbh Solar ventilation arrangement for passenger compartments
US5185941A (en) * 1990-06-01 1993-02-16 Challenge Industries Dryer blower cleanout door assembly
US5328405A (en) * 1993-01-22 1994-07-12 Jarnot Frank R Ventilator with deck mount
JPH06241517A (en) * 1993-02-22 1994-08-30 Matsushita Electric Works Ltd Solar battery ventilation device
US5409266A (en) * 1994-03-15 1995-04-25 Skyline Metal Products, Inc. Adjustable roof jack
US5651732A (en) * 1996-04-02 1997-07-29 Security Chimneys International Inc. Leak-proof venting system
US5662522A (en) * 1993-11-12 1997-09-02 Noll Manufacturing Co. Exhaust vent
US5672101A (en) * 1991-02-25 1997-09-30 Thomas; Allen C. Solar operated vent cover
USD391632S (en) * 1996-04-17 1998-03-03 Thomas Allen C Combined air vent cover and solar panel
US5732867A (en) * 1996-11-26 1998-03-31 Crush Innovative Sports Systems, Inc. Releasable backpack
US5816909A (en) * 1996-12-20 1998-10-06 Wunder; Ernie Dual purpose attic fan
US6102794A (en) * 1999-05-21 2000-08-15 Cline; Roger M. Roof vent
US6152817A (en) * 1998-06-23 2000-11-28 Gelco Manufacturing, Inc. Chimney cover
US6293862B1 (en) * 1999-08-13 2001-09-25 Dundas Jafine, Inc. Roof vent
US6353978B1 (en) * 1999-04-28 2002-03-12 Morito Co., Ltd. Snap fastner having a detachment directionality
US6520852B2 (en) * 2000-05-29 2003-02-18 Canplas Industries Ltd. Vent for venting a building enclosure
US20050003755A1 (en) * 2003-07-03 2005-01-06 Juergen Koessler Vent apparatus with replaceable vent cover
US6932690B2 (en) * 2003-05-23 2005-08-23 Jean-Rock Ramsay Adjustable roof ventilator jack
US20060025067A1 (en) * 2003-12-24 2006-02-02 Juergen Koessler Vent apparatus
US7166023B2 (en) * 2002-06-21 2007-01-23 Transpec, Inc. Vent assembly with single piece cover
US20070068984A1 (en) * 1996-05-21 2007-03-29 Horst Leitner Vehicle cargo bed extender
USD574479S1 (en) * 2007-02-08 2008-08-05 Camco Manufacturing Inc. Recreational vehicle refrigerator vent cover
US7677964B1 (en) * 2006-11-17 2010-03-16 Chien Luen Industries Co., Ltd. Inc. Air exhausting apparatus with draining passage
US7780510B2 (en) * 2005-12-21 2010-08-24 Ross Manufacturing, Llc Attic vent
US20100257798A1 (en) * 2009-03-13 2010-10-14 Ward John F Roof vent and system
US20100304660A1 (en) * 2009-05-29 2010-12-02 Boehling Steven V Hybrid Solar Attic Vent
US20100330898A1 (en) * 2008-02-26 2010-12-30 Daniels Gregory S Roof ventilation system
US7882670B2 (en) * 2004-08-17 2011-02-08 West G Leonard Roof vent base plate and installation methods
US20110237177A1 (en) * 2010-03-26 2011-09-29 Trane International Inc. Modular Air Handling Unit
US20120178357A1 (en) * 2011-01-10 2012-07-12 Dan Joseph Rheaume Solar-powered fan that fits inside new and/or existing roof vents
US8240093B2 (en) * 2005-05-05 2012-08-14 Tapco International Corporation Housing assembly
US20120302154A1 (en) * 2010-01-27 2012-11-29 Thomas Bushey Solar powered vent fan system and kit of parts
US20130023200A1 (en) * 2011-07-20 2013-01-24 Louis Lepage Adjustable roof ventilator
US20130074428A1 (en) * 2011-09-22 2013-03-28 Digital Control Systems, Inc. Roof ridge ventilation system
US8535128B2 (en) * 2006-10-20 2013-09-17 Omni Containment, Llc Hinge assembly for supporting a fan on a roof
US8661753B2 (en) * 2009-11-16 2014-03-04 Sunpower Corporation Water-resistant apparatuses for photovoltaic modules
US20140106661A1 (en) * 2012-10-15 2014-04-17 Canplas Industries Ltd. Adjustable roof vent
US8898864B1 (en) * 2010-10-08 2014-12-02 David Porter Integrated rockably released leverage snap fastening system
US20150087216A1 (en) * 2013-09-24 2015-03-26 Stoett Industries Solar-powered fan for a recreation vehicle and solar-powered, fan equipped vent cover that fits on top of a recreational vehicle roof vent
US20150253021A1 (en) * 2014-03-06 2015-09-10 Gregory S. Daniels Roof vent with an integrated fan
US9266405B1 (en) * 2009-07-23 2016-02-23 Stephen R. Blanchard Roof top automobile ventilation system
US20160221418A1 (en) * 2013-09-24 2016-08-04 Stoett Industries Solar-powered fan for a recreation vehicle and solar-powered, vent cover that fits on top of a recreational vehicle roof having a fan
US9435556B1 (en) * 2006-10-20 2016-09-06 Omni Containment Systems, Llc Hinge assembly for supporting a fan on a roof

Patent Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875678A (en) * 1954-07-06 1959-03-03 Shepherd Wyley Ventilators
US2900892A (en) * 1954-07-06 1959-08-25 Shepherd Wyley Ventilators
US2980008A (en) * 1959-07-14 1961-04-18 Noll Mfg Company Cap assembly
US3082677A (en) * 1960-03-16 1963-03-26 Dura Vent Corp Roof ventilator
US3080633A (en) * 1960-06-29 1963-03-12 Hi Shear Rivet Tool Company Separable fastener
US3093059A (en) * 1961-03-02 1963-06-11 Northwest Metal Products Inc Roof ventilator with removable hood
US3237904A (en) * 1963-05-21 1966-03-01 Abruzese Michael Beach blanket anchor
US3302551A (en) * 1964-06-22 1967-02-07 Kool O Matic Corp Ventilator
US3595201A (en) * 1969-10-20 1971-07-27 Theodorus Antonio Gerardo Oude Device appropriate for the identification of animals
US3960063A (en) * 1973-07-19 1976-06-01 Blech- Und Metallwarenfabrik Robert Fischbach Kg Roof fan
US3952638A (en) * 1975-03-10 1976-04-27 Felter John V Fans for use with turbine ventilators, and methods and apparatus for supporting the same
US4297818A (en) * 1980-03-27 1981-11-03 Anderson Metal Products Corp. Roof ventilating louver
US4470623A (en) * 1982-07-30 1984-09-11 Cargocaire Engineering Corp. Plate fastening system
US4759270A (en) * 1987-11-02 1988-07-26 Jack Lindeen Company, Inc. Vent cap cover
US5038674A (en) * 1989-11-17 1991-08-13 Phototronics Solartechnik Gmbh Solar ventilation arrangement for passenger compartments
US5185941A (en) * 1990-06-01 1993-02-16 Challenge Industries Dryer blower cleanout door assembly
US5672101A (en) * 1991-02-25 1997-09-30 Thomas; Allen C. Solar operated vent cover
US5328405A (en) * 1993-01-22 1994-07-12 Jarnot Frank R Ventilator with deck mount
JPH06241517A (en) * 1993-02-22 1994-08-30 Matsushita Electric Works Ltd Solar battery ventilation device
US5662522A (en) * 1993-11-12 1997-09-02 Noll Manufacturing Co. Exhaust vent
US5409266A (en) * 1994-03-15 1995-04-25 Skyline Metal Products, Inc. Adjustable roof jack
US5651732A (en) * 1996-04-02 1997-07-29 Security Chimneys International Inc. Leak-proof venting system
USD391632S (en) * 1996-04-17 1998-03-03 Thomas Allen C Combined air vent cover and solar panel
US20070068984A1 (en) * 1996-05-21 2007-03-29 Horst Leitner Vehicle cargo bed extender
US5732867A (en) * 1996-11-26 1998-03-31 Crush Innovative Sports Systems, Inc. Releasable backpack
US5816909A (en) * 1996-12-20 1998-10-06 Wunder; Ernie Dual purpose attic fan
US6152817A (en) * 1998-06-23 2000-11-28 Gelco Manufacturing, Inc. Chimney cover
US6353978B1 (en) * 1999-04-28 2002-03-12 Morito Co., Ltd. Snap fastner having a detachment directionality
US6102794A (en) * 1999-05-21 2000-08-15 Cline; Roger M. Roof vent
US6293862B1 (en) * 1999-08-13 2001-09-25 Dundas Jafine, Inc. Roof vent
US6520852B2 (en) * 2000-05-29 2003-02-18 Canplas Industries Ltd. Vent for venting a building enclosure
US7166023B2 (en) * 2002-06-21 2007-01-23 Transpec, Inc. Vent assembly with single piece cover
US6932690B2 (en) * 2003-05-23 2005-08-23 Jean-Rock Ramsay Adjustable roof ventilator jack
US20050003755A1 (en) * 2003-07-03 2005-01-06 Juergen Koessler Vent apparatus with replaceable vent cover
US20060025067A1 (en) * 2003-12-24 2006-02-02 Juergen Koessler Vent apparatus
US7882670B2 (en) * 2004-08-17 2011-02-08 West G Leonard Roof vent base plate and installation methods
US8240093B2 (en) * 2005-05-05 2012-08-14 Tapco International Corporation Housing assembly
US7780510B2 (en) * 2005-12-21 2010-08-24 Ross Manufacturing, Llc Attic vent
US9435556B1 (en) * 2006-10-20 2016-09-06 Omni Containment Systems, Llc Hinge assembly for supporting a fan on a roof
US8535128B2 (en) * 2006-10-20 2013-09-17 Omni Containment, Llc Hinge assembly for supporting a fan on a roof
US7677964B1 (en) * 2006-11-17 2010-03-16 Chien Luen Industries Co., Ltd. Inc. Air exhausting apparatus with draining passage
USD574479S1 (en) * 2007-02-08 2008-08-05 Camco Manufacturing Inc. Recreational vehicle refrigerator vent cover
US20100330898A1 (en) * 2008-02-26 2010-12-30 Daniels Gregory S Roof ventilation system
US20100257798A1 (en) * 2009-03-13 2010-10-14 Ward John F Roof vent and system
US20100304660A1 (en) * 2009-05-29 2010-12-02 Boehling Steven V Hybrid Solar Attic Vent
US9266405B1 (en) * 2009-07-23 2016-02-23 Stephen R. Blanchard Roof top automobile ventilation system
US8661753B2 (en) * 2009-11-16 2014-03-04 Sunpower Corporation Water-resistant apparatuses for photovoltaic modules
US20120302154A1 (en) * 2010-01-27 2012-11-29 Thomas Bushey Solar powered vent fan system and kit of parts
US9494330B2 (en) * 2010-01-27 2016-11-15 Thomas Bushey Solar powered vent fan system and kit of parts
US20110237177A1 (en) * 2010-03-26 2011-09-29 Trane International Inc. Modular Air Handling Unit
US8898864B1 (en) * 2010-10-08 2014-12-02 David Porter Integrated rockably released leverage snap fastening system
US20120178357A1 (en) * 2011-01-10 2012-07-12 Dan Joseph Rheaume Solar-powered fan that fits inside new and/or existing roof vents
US20130023200A1 (en) * 2011-07-20 2013-01-24 Louis Lepage Adjustable roof ventilator
US20130074428A1 (en) * 2011-09-22 2013-03-28 Digital Control Systems, Inc. Roof ridge ventilation system
US20140106661A1 (en) * 2012-10-15 2014-04-17 Canplas Industries Ltd. Adjustable roof vent
US20150087216A1 (en) * 2013-09-24 2015-03-26 Stoett Industries Solar-powered fan for a recreation vehicle and solar-powered, fan equipped vent cover that fits on top of a recreational vehicle roof vent
US20160221418A1 (en) * 2013-09-24 2016-08-04 Stoett Industries Solar-powered fan for a recreation vehicle and solar-powered, vent cover that fits on top of a recreational vehicle roof having a fan
US20150253021A1 (en) * 2014-03-06 2015-09-10 Gregory S. Daniels Roof vent with an integrated fan

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD762835S1 (en) * 2012-05-16 2016-08-02 Roy R. Stocker Fan with a solar panel
US11788744B2 (en) 2012-05-16 2023-10-17 Solar Royal, LLC Ventilation systems
US11175056B1 (en) * 2017-04-12 2021-11-16 Qc Manufacturing, Inc. Smart attic fan assembly
US11460204B2 (en) 2017-04-12 2022-10-04 Qc Manufacturing, Inc. Automated cooling system for a building structure
US20190309521A1 (en) * 2018-04-06 2019-10-10 Air Distribution Technologies Ip, Llc Curb for use with roof flashing
US20200181916A1 (en) * 2018-12-05 2020-06-11 Jonathan Martin Leinbach Roof vent for a corrugated metal roof
US11092350B1 (en) 2019-11-22 2021-08-17 Qc Manufacturing, Inc. Multifunction adaptive whole house fan system
US11193687B2 (en) 2019-11-22 2021-12-07 Qc Manufacturing, Inc. Multifunction adaptive whole house fan system
US11415333B2 (en) 2019-11-22 2022-08-16 Qc Manufacturing, Inc. Fresh air cooling and ventilating system
US11435103B2 (en) 2019-11-22 2022-09-06 Qc Manufacturing, Inc. Multifunction adaptive whole house fan system
US11609015B2 (en) 2019-11-22 2023-03-21 Qc Manufacturing, Inc. Multifunction adaptive whole house fan system
US20220077812A1 (en) * 2020-09-10 2022-03-10 Eric Robert ANDERSON Electricity Generation System and Method

Similar Documents

Publication Publication Date Title
US20150079896A1 (en) Two-Piece Ventilation Units, Apparatus, Systems, and Related Methods
US11788744B2 (en) Ventilation systems
US10041693B2 (en) Solar-powered ridge vent fan unit
US9157239B2 (en) Roof ridge ventilation system
US20070060041A1 (en) Hybrid metal-plastic roof vent
EP3114413B1 (en) Roof vent with an integrated fan
US20090133342A1 (en) Insulated Access Cover
US20070243820A1 (en) Automatic roof ventilation system
US9879430B2 (en) Replacement flashing for exhaust gas vents beneath roof-mounted photovoltaic systems
US20070207725A1 (en) Apparatus and methods for ventilation of solar roof panels
US9410325B2 (en) Advanced frame design for roof-integrated solar panels
US5526626A (en) Roofing elements having vane members
US20120045983A1 (en) Solar Powered Active Roof Ridge Vent
US6733381B1 (en) Roof vent and method of installation
JP2013539509A (en) Roof ventilation articles on deck
US9869095B2 (en) Exhaust gas panel vent assembly for roof-mounted photovoltaic systems
US20100065040A1 (en) Heating and cooling system
US9909318B2 (en) Roof curb system and method of installing
US20240027084A1 (en) Ventilation systems
JP2009235677A (en) Thermal environment improving system
GB2497179A (en) Ventilation apparatus for attachment to a roof eave soffit.
US20100051019A1 (en) Solar powered furnace and furnace array
US11674701B2 (en) Powered roof ridge ventilation system
KR101590723B1 (en) Deck plate structure for a vertical ventilation
JP7370661B1 (en) Attic heating management system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION