Connect public, paid and private patent data with Google Patents Public Datasets

Superabrasive tools having substantially leveled particle tips and associated methods

Download PDF

Info

Publication number
US20150072601A1
US20150072601A1 US14120976 US201414120976A US2015072601A1 US 20150072601 A1 US20150072601 A1 US 20150072601A1 US 14120976 US14120976 US 14120976 US 201414120976 A US201414120976 A US 201414120976A US 2015072601 A1 US2015072601 A1 US 2015072601A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
superabrasive
particles
monolayer
layer
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14120976
Inventor
Chien-Min Sung
Original Assignee
Chien-Min Sung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING, OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0072Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using adhesives for bonding abrasive particles or grinding elements to a support, e.g. by gluing
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

Superabrasive tools and methods for making and using the same are provided. In one aspect, for example, a CMP pad dresser includes a first monolayer of superabrasive particles disposed on and coupled to one side of a metal support layer and a second monolayer of superabrasive particles disposed on and coupled to the metal support layer on an opposite side from the first monolayer. The superabrasive particles of the second monolayer are positioned to have substantially the same distribution as the superabrasive particles of the first monolayer.

Description

    PRIORITY DATA
  • [0001]
    This application is a continuation of U.S. patent application Ser. No. 13/239,198, filed on Sep. 27, 2012, which claims the benefit of U.S. Provisional Patent Application Ser. Nos. 61/384,976 and 61/468,917, filed on Sep. 21, 2010 and Mar. 29, 2011 respectively, all of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The semiconductor industry currently spends in excess of one billion U.S. dollars each year manufacturing silicon wafers that must exhibit very flat and smooth surfaces. Known techniques to manufacture smooth and even-surfaced silicon wafers are plentiful. The most common of these involves the process known as Chemical Mechanical Polishing (CMP) which includes the use of a polishing pad in combination with an abrasive slurry. Of central importance in all CMP processes is the attainment of high performance levels in aspects such as uniformity of polished wafer, smoothness of the IC circuitry, removal rate for productivity, longevity of consumables for CMP economics, etc.
  • SUMMARY OF THE INVENTION
  • [0003]
    The present disclosure provides superabrasive tools and methods for making and using the same. In one aspect, for example, a CMP pad dresser is provided. Such a dresser includes a first monolayer of superabrasive particles disposed on and coupled to one side of a metal support layer and a second monolayer of superabrasive particles disposed on and coupled to the metal support layer on an opposite side from the first monolayer. The superabrasive particles of the second monolayer are positioned to have substantially the same distribution as the superabrasive particles of the first monolayer. In another aspect, the superabrasive particles of the second monolayer are positioned to have the same distribution as the superabrasive particles of the first monolayer. In yet another aspect, a rigid support can be coupled to the second monolayer of superabrasive particles opposite the first monolayer.
  • [0004]
    Various materials are contemplated for use as superabrasive particles in the first monolayer and/or the second monolayer, and any known superabrasive particle material is considered to be within the present scope. Non-limiting examples of superabrasive particle materials include diamond materials, nitride materials, ceramics, and the like, including combinations thereof. In one specific aspect, the superabrasive particles include a diamond material. In another specific aspect, the superabrasive particles include a cubic boron nitride material.
  • [0005]
    The present disclosure additionally provides methods of making CMP pad dressers. In one aspect, a method of making a CMP pad dresser can include disposing a first monolayer of superabrasive particles on a metal support layer, and disposing a second monolayer of superabrasive particles on the metal support layer on a side opposite the first monolayer, where the superabrasive particles of the second monolayer are positioned to have substantially the same distribution as the superabrasive particles of the first monolayer. The method further includes bonding the first monolayer of superabrasive particles and the second monolayer of superabrasive particles to the metal support layer such that symmetrical forces due to the substantially similar distribution between the first monolayer and the second monolayer precludes substantial warping of the metal support layer.
  • [0006]
    The superabrasive particles of the first monolayer and/or the second monolayer can be coupled to the metal support layer using a variety of contemplated techniques. It is understood that any technique for coupling superabrasive particles to a support is considered to be within the present scope. Non-limiting examples can include brazing, pressurized heating, sintering, electroplating, polymeric binding, and the like, including combinations thereof. In one specific aspect, at least one of the first monolayer of superabrasive particles or the second monolayer of superabrasive particles is coupled to the metal support layer with a braze alloy. In another aspect, both the first monolayer of superabrasive particles and the second monolayer of superabrasive particles are coupled to the metal support layer with a braze alloy. In yet another aspect, the bonding of at least one of the first monolayer or the second monolayer is under heat and pressure. In a further aspect, the heat and pressure bonds at least one of the first monolayer or the second monolayer directly to the metal support layer. In another aspect, the bonding of at least one of the first monolayer and the second monolayer further includes disposing a sintering compound on the metal support layer in contact with at least one of the first monolayer or the second monolayer, and sintering the sintering compound to bond the at least one of the first monolayer or the second monolayer to the metal support layer. In one specific aspect the method can also include infiltrating the sintering compound with a braze material during bonding.
  • [0007]
    In one aspect, the method can further include coupling the second monolayer of superabrasive particles to a rigid support. Various techniques for coupling the rigid support to the second monolayer are contemplated, and any known technique is considered to be within the present scope. Non-limiting aspects of such techniques include hot pressing, brazing, sintering, soldering, electroplating, polymeric binding, and combinations thereof. In one specific aspect, the coupling of the second monolayer of superabrasive particles to the rigid support is accomplished by polymeric bonding.
  • [0008]
    The present disclosure additionally provides methods of inimizing warpage of a CMP pad dresser during manufacture. In one aspect, such a method can include substantially equalizing warping forces on opposing sides of a metal support layer during bonding of a plurality of superabrasive particles thereto, where warpage of the support layer is minimized during bonding due to the equalized forces on opposing sides. In one specific aspect, substantially equalizing forces includes arranging the plurality of superabrasive particles on opposing sides of the support layer such that the plurality of superabrasive particles has substantially the same distribution on either side of the support layer to substantially equalize warping forces during bonding.
  • [0009]
    There has thus been outlined, rather broadly, various features of the invention so that the detailed description thereof that follows may be better understood, and so that the present contribution to the art may be better appreciated. Other features of the present invention will become clearer from the following detailed description of the invention, taken with the accompanying claims, or may be learned by the practice of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0010]
    FIG. 1 is a schematic side view of a CMP pad dresser in accordance with an embodiment of the present invention;
  • [0011]
    FIG. 2 is a schematic side view of a CMP pad dresser in accordance with an embodiment of the present invention;
  • [0012]
    FIG. 3 is a schematic side view of a CMP pad dresser in accordance with an embodiment of the present invention; and
  • [0013]
    FIG. 4 is a schematic side view of a CMP pad dresser in accordance with an embodiment of the present invention.
  • [0014]
    It will be understood that the above figures are merely for illustrative purposes in furthering an understanding of the invention. Further, the figures are not drawn to scale, thus dimensions, particle sizes, and other aspects may, and generally are, exaggerated to make illustrations thereof clearer. Therefore, departure can be made from the specific dimensions and aspects shown in the figures in order to produce the heat spreaders of the present invention.
  • DETAILED DESCRIPTION
  • [0015]
    Before the present invention is disclosed and described, it is to be understood that this invention is not limited to the particular structures, method steps, or materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting.
  • [0016]
    It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an” and, “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a diamond particle” includes one or more of such particles and reference to “the layer” includes reference to one or more of such layers.
  • DEFINITIONS
  • [0017]
    In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set forth below.
  • [0018]
    As used herein, the terms “conditioner” and “dresser” can be used interchangeably, and refer to a tool used to condition or dress a pad, such as a CMP pad.
  • [0019]
    As used herein, “superabrasive” may be used to refer to any crystalline, or polycrystalline material, or mixture of such materials which has a Mohr's hardness of about 8 or greater. In some aspects, the Mohr's hardness may be about 9.5 or greater. Such materials include but are not limited to diamond, polycrystalline diamond (PCD), cubic boron nitride (cBN), polycrystalline cubic boron nitride (PcBN), corundum and sapphire, as well as other superabrasive materials known to those skilled in the art. Superabrasive materials may be incorporated into aspects of the present disclosure in a variety of forms including particles, grits, films, layers, pieces, segments, etc.
  • [0020]
    As used herein, “particle” refers to a particulate form of a material. Such particles may take a variety of shapes, including round, oblong, square, euhedral, etc., can be either single crystal or polycrystalline, and can have a number of mesh sizes. As is known in the art, “mesh” refers to the number of holes per unit area as in the case of U.S. meshes. All mesh sizes referred to herein are U.S. mesh unless otherwise indicated. Further, mesh sizes are generally understood to indicate an average mesh size of a given collection of particles since each particle within a particular “mesh size” may actually vary over a small distribution of sizes.
  • [0021]
    As used herein, the process of “brazing” is intended to refer to the creation of chemical bonds between the atoms of the superabrasive particles/materials and the braze material. Further, “chemical bond” means a covalent bond, such as a carbide or boride bond, rather than mechanical or weaker inter-atom attractive forces. Thus, when “brazing” is used in connection with superabrasive particles a true chemical bond is being formed. However, when “brazing” is used in connection with metal to metal bonding the term is used in the more traditional sense of a metallurgical bond. Therefore, brazing of a superabrasive segment to a tool body does not necessarily require the presence of a carbide former.
  • [0022]
    As used herein, “sintering” refers to the joining of two or more individual particles to form a continuous solid mass. The process of sintering involves the consolidation of particles to at least partially eliminate voids between particles. Sintering of diamond particles generally is facilitated by ultrahigh pressures and the presence of a carbon solvent as a diamond sintering aid.
  • [0023]
    The term “metallic” refers to both metals and metalloids. Metals include those compounds typically considered metals found within the transition metals, alkali and alkali earth metals. Examples of metals are Ag, Au, Cu, Al, and Fe. Metalloids include specifically Si, B, Ge, Sb, As, and Te. Metallic materials also include alloys or mixtures that include metallic materials. Such alloys or mixtures may further include additional additives. In the present invention, carbide formers and carbon wetting agents may be included as alloys or mixtures, but are not anticipated to be the only metallic component. Examples of such carbide formers are Sc, Y, Ti, Zr, Hf, V, Nb, Cr, Mo, Mn, Ta, W, and Tc. Examples of carbon wetting agents are Co, Ni, Mn, and Cr.
  • [0024]
    As used herein, “infiltrating” refers to when a material is heated to its melting point and then flows as a liquid through the interstitial voids between particles.
  • [0025]
    As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained.
  • [0026]
    The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. For example, a composition that is “substantially free of” particles would either completely lack particles, or so nearly completely lack particles that the effect would be the same as if it completely lacked particles. In other words, a composition that is “substantially free of” an ingredient or element may still actually contain such item as long as there is no measurable effect thereof.
  • [0027]
    As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.
  • [0028]
    As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
  • [0029]
    Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually. This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.
  • [0030]
    The Invention
  • [0031]
    The present disclosure generally provides superabrasive tools and methods for the making and use thereof. In one aspect, such superabrasive tools can include CMP pad dressers that can be utilized in conditioning (e.g., smoothing, polishing, dressing) a CMP pad. CMP pad dressers according to aspects the present disclosure can be advantageously utilized, for example, in dressing CMP pads that are used in polishing, finishing or otherwise affecting semiconductor materials. These dressers can be made such that they have superabrasive particles with substantially leveled tips. Traditional CMP pad dresser manufacturing methods, even many of those describing techniques for leveling superabrasive particle tips prior to fixation, generally contain significant variation in tip height across the surface of the dresser. Often, the superabrasive particles are affixed to the CMP pad dresser support in a manner that disrupts any leveling that has occurred. For example, fixation techniques that utilize high heat and/or pressure can cause warping of the dresser support as the dresser cools. Thus, unless steps are taken to avoid such warpage, superabrasive particles are not maintained in their leveled state following cooling of the dresser. This can be particularly problematic with brazing techniques.
  • [0032]
    Accordingly, minimizing the warpage of the metal support layer can maintain a greater degree of leveling of superabrasive particle tips in the finished tool. When heat and/or pressure are used to make a superabrasive tool, warpage of the metal support layer can cause great variations in tip height level, even for those particles that were leveled prior to heating and/or applying pressure. By distributing the warpage forces equally or substantially equally on both sides of the metal support layer through the arrangement of the superabrasive particles, these forces effectively cancel each other with respect to the degree of warping occurring in the metal support layer, thus also minimizing the relative height movement of the superabrasive particles relative to one another.
  • [0033]
    The present CMP pad dressers include a layer of superabrasive particles having substantially leveled tips across the working surface of the finished CMP pad dresser. A CMP pad dresser having such substantially leveled tip arrangements can have a low scratch rate because superabrasive particles are less likely to pull out of the matrix layer due to their more uniform protrusion distribution compared to traditional dressers. Additionally, the more uniform protrusion distributions of such a dressers allows the conditioning of CMP pads in such a manner as to facilitate good polishing rates while at the same time extending the effective working life of the dresser. These benefits can be affected by, for example, uniform asperity spacing and size distribution in the CMP pad.
  • [0034]
    In one aspect of the present disclosure, superabrasive tip leveling can be accomplished by manufacturing the CMP pad dresser in such a way that the effects of warpage are minimized. For example, in one aspect a CMP pad dresser can be made in at least a two stage process, where the first stage is performed in a manner that minimizes perturbations of the leveled tips in a process that would normally significantly move the superabrasive tips out of a leveled arrangement, such as, for example, by brazing. The second stage of the process can further enhance the leveling of superabrasive particle tips across the CMP pad dresser.
  • [0035]
    Various exemplary configurations of CMP pad dressers having substantially leveled tips are contemplated. In one aspect, for example, a CMP pad dresser can include a first monolayer of superabrasive particles disposed on and coupled to one side of a metal support layer and a second monolayer of superabrasive particles disposed on and coupled to the metal support layer on an opposite side from the first monolayer. The superabrasive particles of the second monolayer are positioned to have substantially the same distribution as the superabrasive particles of the first monolayer. In one aspect, a rigid support is coupled to the second monolayer of superabrasive particles opposite the first monolayer to provide support to the dresser. The disposition of a single superabrasive particle layer on each side of the metal support layer can moderate the thermal shrinkage from a high temperature process such as brazing that would otherwise buckle a distribution of diamond on one side. By applying a superabrasive layer to each side of the metal support layer, warping forces such as thermal movement and pressure can be equalized or substantially equalized on both sides. As such, the warpage of the metal or support layer can be minimized. In other words, the forces responsible for warping are applied substantially equally to each side of the metal support layer and can thus cancel one another out, thus minimizing warpage that can otherwise occur.
  • [0036]
    In one aspect, as is shown in FIG. 1 for example, a first monolayer of superabrasive particles 12 is arranged on a surface of a metal support layer 14. A second monolayer of superabrasive particles 16 is arranged on the metal support layer 14 on a side that is opposite to the first monolayer. As is discussed further below, in some cases the first and second monolayers of superabrasive particles can be arranged such that corresponding superabrasive particles across the metal support layer are in substantial alignment, as is shown in FIG. 1. In other cases, the superabrasive particles of the first and second monolayers can be arranged in a substantially similar distribution, but may or may not be substantially aligned with one another across the metal support layer.
  • [0037]
    A variety of materials are contemplated for use as superabrasive particles. Any superabrasive known that can be utilized in a CMP pad dresser should be considered to be within the present scope. Non-limiting examples of such materials include diamond materials, nitride materials, ceramics, and the like. In one aspect, the superabrasive particles include diamond materials. Such diamond materials can include natural or synthetic diamond, single crystal, polycrystalline, and the like. In another aspect, the superabrasive particles include cubic boron nitride materials. Additionally, various diamond particles sizes can be used, including mesh sizes such as 10/20, 30/40, 80/90, 90/100, 100/120, 120/140, 140/170, 170/200, 200/230, 230/270, 270/325, and 325/400.
  • [0038]
    The metal support layer can be any material capable of supporting the diamond monolayer during tool formation. Such materials can include, without limitation, metal materials, metal alloy materials, braze alloy materials, ceramic materials, composites, and the like, including combinations thereof. It should be noted that the metal support layer can be of a variety of configurations. In one aspect, for example, a metal support layer can be a solid metal such as a metal plate or a metal foil. In another aspect, a metal support layer can be a pressed powder. For example, a metal powder can be placed in a mold and cold pressed to form a metal support layer.
  • [0039]
    Additionally, the metal support layer can be any thickness capable of supporting the superabrasive particles. For example, in one aspect the metal support layer can be greater than about 10 mm thick. In another aspect, the metal support layer can be from about 2 mm thick to about 10 mm thick. In another aspect, the metal support layer can be from about 1 μm to about 200 μm thick. In yet another aspect, the metal support layer can be from about 1 μm to about 100 μm thick. In a further aspect, the metal support layer can be from about 100 μm to about 3 mm. In a yet further aspect, the metal support layer can be from about 500 μm to about 2 mm.
  • [0040]
    In some aspects, the superabrasive particles of either or both of the monolayers can be arranged into a predetermined pattern. Such a pattern can be a uniformly distributed pattern or a non-uniformly distributed pattern. Additionally, a variety of techniques are contemplated to facilitate the arrangement of superabrasive particles into a predetermined pattern. Predetermined is understood to mean a non-random pattern that has been determined prior to arranging the superabrasive particles. In one aspect, a predetermined pattern can also apply to a predetermined spacing between particles. Non-limiting examples of such techniques include arrangement by a template, arrangement using spots of adhesives, arrangement on a first substrate followed by a pattern specific transfer from the first substrate to the metal support layer, and the like, including combinations thereof. The superabrasive particles from either of the monolayers can be temporarily held in position in the predetermined pattern using a variety of techniques, including, without limitation, adhesives, dimpled locations on the metal support matrix, a supporting compound such as, for example, a wax, and the like, including combinations thereof. In one specific aspect, the superabrasive particles can be temporarily coupled to the metal support layer using an adhesive that then volatilizes away and is eliminated during construction of the dresser.
  • [0041]
    The disposition of a monolayer of superabrasive particles on each side of the metal layer thus moderates the thermal shrinkage from the brazing temperature that would otherwise buckle a distribution of superabrasive particles arranged on just one side. By applying a monolayer to each side of the metal support layer, warping forces such as thermal movement and pressure can be equalized or substantially equalized on both sides. As such, the warpage of the metal support layer can be minimized. In other words, the forces responsible for warping are applied substantially equally to each side of the metal layer and can thus at least partially cancel one another out, thus minimizing warpage that can otherwise occur. In some aspects, the superabrasive particles making up the monolayers on each side of the metal layer can have matching configurations, patterns, or orientations to one another. In this way there can be a substantially matching spatial arrangement of superabrasive particles on each side of the metal layer. In another aspect, the configurations, patterns, or orientations can be different or varied from one another, or may be partially matching. In yet another aspect, the patterned placement of the superabrasive particles on one side of the metal support layer can be substantially aligned with the pattern of superabrasive particles on the other side of the metal layer so that particle locations match one another. In some aspects, there can be a direct correspondence between the spatial positioning of superabrasive particles on one side of the metal support layer and the spatial positioning of superabrasive particles on the other side of the metal support layer. In another aspect, the patterns of superabrasive particles may match or substantially match one another, but may be offset on opposite sides of the metal support layer so that particle locations do not match one another.
  • [0042]
    In another aspect, as is shown in FIG. 2, a first monolayer of superabrasive particles 22 is arranged on a surface of a metal support layer 24. A second monolayer of superabrasive particles 26 is arranged on the metal support layer 24 on a side that is opposite to the first monolayer. A bonding material 28 secures the first monolayer and the second monolayer to the metal support layer 24. The bonding material can be any material capable of securing the first and second monolayer to the metal support layer. In some aspect, the bonding material can be the same for securing the first monolayer and the second monolayer, while in other aspects the bonding material can be different for securing the first monolayer and the second monolayer.
  • [0043]
    The bonding material can be any material capable of securing superabrasive particles therein. Non-limiting examples of bonding materials include metal brazes, metal braze alloys, organic matrix materials, sintered materials, electroplated materials, and the like, including combinations thereof.
  • [0044]
    In one aspect, for example, the superabrasive particles can be brazed to the metal support layer, and thus the bonding material can be a metal braze or metal braze alloy. Metal brazing techniques are known in the art. A green braze material can be applied to the metal support layer on or around the superabrasive particles. The metal braze can be applied in any know configuration, including braze sheets, powders, pastes, sprays, and the like, including combinations thereof. Once applied to the metal support layer, the braze can be heated and melted to coat at least a portion of the metal support layer and to bond the superabrasive particles. The heating temperature can vary depending on the braze material used, but in one aspect can be from about 700° C. to about 1200° C. The superabrasive particles in the first and second monolayer are thus arranged such that thermal forces exerted on the metal support layer during heating and cooling are substantially equalize in order to minimize warping.
  • [0045]
    In one non-limiting example, the superabrasive particles can be bonded to the metal support layer by brazing with a nickel-based alloy, with or without chromium. In another example, the brazing can include pressing the superabrasive particles with a flat ceramic material that cannot be bonded to the braze in order to level the superabrasive particle tips. Various braze alloys are contemplated, including non-limiting examples such as BNi2, BNi7, and the like.
  • [0046]
    Additionally, in one aspect at least one of the first and second monolayers of superabrasive particles can be coupled to the metal support layer by an electrodeposition process, and thus the bonding material can be an electrodeposited metal material. In one aspect, a monolayer of superabrasive particles can be disposed on the metal support layer which is then placed into an ionic solution containing metal ions. An electrical current is introduced into the ionic solution such that a metal layer is electroplated onto the metal substrate to secure the superabrasive particles. Thus by this method, the superabrasive particles are coupled to the metal support layer. As an example of a suitable method for positioning and retaining superabrasive materials prior to and during the electrodeposition process, a mold can be used that includes an insulating material that can effectively prevent the accumulation of electrodeposited material on the molding surface. Superabrasive particles can thus be held on the molding surface of the mold during electrodeposition. As such, the accumulation of electrodeposited material can be prevented from occurring on the particle tips and the working surface of the pad conditioner substrate. Such techniques are described in U.S. patent application Ser. No. 11/292,938, filed Dec. 2, 2005, which is hereby incorporated herein by reference.
  • [0047]
    In another aspect, the superabrasive particles can be bonded to the metal support layer by sintering, and thus the bonding material can include a sintering material. For example, the bonding of the superabrasive particles to the metal support layer can include disposing a sintering compound on the metal support layer in contact with at least one of the first monolayer and the second monolayer and sintering the sintering compound to bond the superabrasive particles to the metal support layer. Suitable sintering methods will be readily appreciated by one of ordinary skill in the art having possession of this disclosure. Basically, a sintering compound is applied around the superabrasive particles and in contact with the metal support layer. The sintering compound can be any known sintering material that can be used to secure superabrasive particles to a substrate. Non-limiting examples of such materials can include metal and metal alloy powders, ceramic powders, and the like. One specific non-limiting example of a sintering compound is cobalt powder. Once the sintering compound has been applied around the superabrasive particles and to the metal support substrate, heat and in some cases pressure can be applied to cause sintering to occur. In some aspects, a braze or braze alloy can be infiltrated into the sintering compound during bonding to further strengthen the bonding material matrix.
  • [0048]
    In another aspect, as is shown in FIG. 3, heat and pressure can be applied to bond the first monolayer of superabrasive particles 32 and/or the second monolayer of superabrasive particles 36 directly into the metal support layer 34. Thus, upon the application of heat and pressure, the metal support layer 34 is softened or partially melted. The superabrasive particles in one or more of the monolayers are then pressed into the metal support layer. A planar leveling surface can be used to apply pressure to the monolayer and thus maintain the level nature of the superabrasive particle tips as the superabrasive particles are pressed into the metal support layer. Upon cooling, the distribution of superabrasive particles on either side of the metal support layer at least partially equalizes the thermal forces acting on the metal support layer, thus minimizing warping. Additionally, heat and pressures useful in making such a device can vary depending on the materials and equipment used. In one aspect, for example, the heat is from about 700° C. to about 1000° C. In another aspect, the pressure is from about 10 MPa to about 50 MPa.
  • [0049]
    In yet another aspect, as is shown in FIG. 4, a CMP pad dresser can include a first monolayer of superabrasive particles 42 and a second monolayer of superabrasive particles 46 coupled to a metal support layer 44. The superabrasive particles can be coupled to the metal support layer directly or via a bonding material. The second monolayer of superabrasive particles 46 is coupled to a rigid support 48. A portion of the rigid support 48 is shown removed in FIG. 4 to expose the second monolayer. The rigid support 48 can facilitate handling and use of the CMP pad dresser. By bonding the superabrasive particles of the second monolayer to the rigid support, the first monolayer of superabrasive particles remains exposed for CMP pad conditioning operations.
  • [0050]
    The rigid support can be made from any material compatible with the abrading or dressing process. Such materials can include polymeric materials, metal materials, ceramic materials, glasses, composites, and the like. In one aspect, the rigid support can be a polymeric material and the second monolayer of superabrasive particles can be embedded therein using heat, pressure, adhesives, etc. In some aspects, the rigid support can be a non-polymeric material such as a metal layer. In such cases, the superabrasive particles can be bonded to the rigid support by adhesive attachment, soldering, brazing, electroplating, and the like. For brazing techniques, care can be taken to minimize or eliminate warpage in the metal layer during the heating and cooling process. In another aspect, one or more magnetic elements can be placed into the rigid support to attract and hold the CMP pad dresser in place, thus forming a temporary attachment. An optional locking mechanism can be utilized to further immobilize the CMP pad dresser to the rigid support during use. In some aspects the rigid support can include surface features to hold the dresser in place during rotational movement against a CMP pad. The rigid support can have approximately the same diameter as the metal support layer, a larger diameter than the metal support layer, or, in some cases, a smaller diameter than the metal support layer.
  • [0051]
    Various polymeric materials are contemplated for use as a rigid support. Examples of suitable materials include, without limitation, amino resins, acrylate resins, alkyd resins, polyester resins, polyamide resins, polyimide resins, polyurethane resins, phenolic resins, phenolic/latex resins, epoxy resins, isocyanate resins, isocyanurate resins, polysiloxane resins, reactive vinyl resins, polyethylene resins, polypropylene resins, polystyrene resins, phenoxy resins, perylene resins, polysulfone resins, acrylonitrile-butadiene-styrene resins, acrylic resins, polycarbonate resins, polyimide resins, and mixtures thereof. In one specific aspect, the polymeric material can be an epoxy resin. In another aspect, the polymeric material can be a polyimide resin. In yet another aspect, the polymeric material can be a polyurethane resin.
  • [0052]
    When an polymeric material is utilized, methods of curing the polymeric material can be a variety of processes known to one skilled in the art that cause a phase transition in the polymeric material from at least a pliable state to at least a rigid state. Curing can occur, without limitation, by exposing the polymeric material to energy in the form of heat, electromagnetic radiation, such as ultraviolet, infrared, and microwave radiation, particle bombardment, such as an electron beam, organic catalysts, inorganic catalysts, or any other curing method known to one skilled in the art.
  • [0053]
    In one aspect of the present invention, the polymeric material can be a thermoplastic material. Thermoplastic materials can be reversibly hardened and softened by cooling and heating respectively. In another aspect, the polymeric material layer may be a thermosetting material. Thermosetting materials cannot be reversibly hardened and softened as with the thermoplastic materials. In other words, once curing has occurred, the process can be essentially irreversible, if desired.
  • [0054]
    Additionally, in one aspect a coupling agent or an organometallic compound may be coated onto the surface of a superabrasive material to facilitate the retention of the superabrasive particles in the polymeric material via chemical bonding. A wide variety of organic and organometallic compounds is known to those of ordinary skill in the art and may be used. Organometallic coupling agents can form chemicals bonds between the superabrasive materials and the polymeric material, thus increasing the bonding between the second monolayer of superabrasive particles and the polymeric material. In this way, the organometallic coupling agent can serve as a bridge to form bonds between the polymeric material and the surface of the superabrasive material. In one aspect, the organometallic coupling agent can be a titanate, zirconate, silane, or mixture thereof. The amount of organometallic coupling agent used can depend upon the coupling agent and on the surface area of the superabrasive material. In one aspect, 0.05% to 10% by weight of the polymeric material layer can be sufficient.
  • [0055]
    In another aspect of the present disclosure, a method of making a CMP pad dresser can include disposing a first monolayer of superabrasive particles on a metal support layer, and disposing a second monolayer of superabrasive particles on the metal support layer on a side opposite the first monolayer. The superabrasive particles of the second monolayer are positioned to have substantially the same distribution as the superabrasive particles of the first monolayer. The method can further include bonding the first monolayer of superabrasive particles and the second monolayer of superabrasive particles to the metal support layer such that symmetrical forces due to the substantially similar distribution between the first monolayer and the second monolayer precludes substantial warping of the metal support layer.
  • [0056]
    In yet another aspect, disposing at least one of the first monolayer of superabrasive particles or the second monolayer of superabrasive particles can include adhering a plurality of superabrasive particles to an adhesive transfer sheet in a predetermined pattern established by apertures in a template, and removing the template from the adhesive transfer sheet such that the plurality of superabrasive particles remain adhered to the adhesive transfer sheet in the predetermined pattern. The plurality of superabrasive particles is then transferred with the adhesive transfer sheet to the metal support layer, and the adhesive transfer sheet is removed from the plurality of superabrasive particles to form at least one of the first monolayer of superabrasive particles or the second monolayer of superabrasive particles.
  • [0057]
    In a further aspect of the present disclosure, a method of minimizing warpage of a CMP pad dresser during manufacture can include substantially equalizing warping forces on opposing sides of a metal support layer during bonding of a plurality of superabrasive particles thereto, wherein warpage of the support layer is minimized during bonding due to the equalized forces on opposing sides. In one aspect, substantially equalizing forces includes arranging the plurality of superabrasive particles on opposing sides of the support layer such that the plurality of superabrasive particles has substantially the same distribution on either side of the support layer to substantially equalize warping forces during bonding.
  • [0058]
    It is noted that, while the above disclosure refers primarily to CMP pad dressers, other precision grinding and/or abrading tools are considered to be within the present scope. As such, the techniques and teaching disclosed herein can additionally be applied to such tools.
  • [0059]
    The following examples present various methods for making the heat spreaders of the present invention. Such examples are illustrative only, and no limitation on the present invention is meant thereby.
  • EXAMPLES Example 1
  • [0060]
    A thin metal layer (e.g. Cu 100 microns thick) has an adhesive (e.g. 3M manufacture, 25 microns, fugitive, i.e. can vaporize to leave no residue carbon behind) on each side. Ti coated diamond particles (e.g. about 50 microns) are spread on both sides create a diamond particle monolayer on each side. Excess diamond particles are removed. The layer is placed in a graphite mold that is covered with a thin layer of Cu powder. An additional layer of Cu powder is applied on top of the layer. The assembly is then hot pressed (e.g. 900 C for 20 minutes) under vacuum or in an inert atmosphere to form a disk having diamond particles protruding from both sides. Due to the presence of Ti coating, Cu can bond the diamond particles firmly. The flatness of the disk is maintained by the flat mold surface.
  • Example 2
  • [0061]
    Same as with Example 1, with the exception that the thin metal Cu layer has a braze alloy layer (e.g. Cu—Sn—Ti or Ag—Cu—Ti) coupled to each side. Uncoated diamond particles are then arranged on the exposed sides of the braze alloy layers with the adhesive. The assembly is then heated to melt the braze in a vacuum furnace, resulting in a copper layer covered with diamond particles on both sides.
  • Example 3
  • [0062]
    The diamond-attached layer of Example 2 is suspended in an electrolyte of CuSO4 solution with connection to a cathode. The anode is a copper electrode. After passing current through the electrolyte, Cu will be plated on the copper layer and in the gaps between the diamond particles to strengthen the bonding of the diamond particles to the Cu metal layer.
  • Example 4
  • [0063]
    Same as Example 2, with the exception that that the Cu layer is replaced with a thin Ni layer, and the braze layers are Ni—Cr—B—Si (BNi2, e.g. Nichrobraze LM made by Wall Colmonoy), and the diamond particles (e.g. 150 microns) are arranged in a grid pattern (e.g. pitch of 500 microns intervals).
  • Example 5
  • [0064]
    The article of Example 4 is pressed against a flat substrate (108 mm in diameter by 6.5 mm in thickness) and heated with a thermal plastic adhesive in between (e.g. 150 C for 10 minutes). The result is a tool such as a CMP pad conditioner having a flat surface. A layer on each side moderates the thermal shrinkage from the brazing temperature (e.g. 1020 C for 10 minutes) that would buckle an asymmetrical distribution of diamond on one side.
  • [0065]
    Of course, it is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended claims are intended to cover such modifications and arrangements. Thus, while the present invention has been described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiments of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein.

Claims (23)

What is claimed is:
1. A CMP pad dresser, comprising:
a first monolayer of superabrasive particles disposed on and coupled to one side of a metal support layer; and
a second monolayer of superabrasive particles disposed on and coupled to the metal support layer on an opposite side from the first monolayer, wherein the superabrasive particles of the second monolayer are positioned to have substantially the same distribution as the superabrasive particles of the first monolayer.
2. The dresser of claim 1, wherein the superabrasive particles in the first monolayer include a member selected from the group consisting of diamond materials, nitride materials, ceramics, or a combination thereof.
3. The dresser of claim 1, wherein the superabrasive particles in the first monolayer are a diamond material.
4. The dresser of claim 1, wherein the superabrasive particles in the first monolayer are a cubic boron nitride material.
5. The dresser of claim 1, wherein the superabrasive particles in the second monolayer include a member selected from the group consisting of diamond materials, nitride materials, ceramics, or a combination thereof.
6. The dresser of claim 1, wherein the superabrasive particles in the second monolayer are a diamond material.
7. The dresser of claim 1, wherein the superabrasive particles in the second monolayer are a cubic boron nitride material.
8. The dresser of claim 1, further comprising a rigid support coupled to the second monolayer of superabrasive particles opposite the first monolayer.
9. The dresser of claim 1, wherein at least one of the first monolayer of superabrasive particles or the second monolayer of superabrasive particles is coupled to the metal support layer with a braze alloy.
10. The dresser of claim 1, wherein both the first monolayer of superabrasive particles and the second monolayer of superabrasive particles are coupled to the metal support layer with a braze alloy.
11. The dresser of claim 1, wherein the superabrasive particles of the second monolayer are positioned to have the same distribution as the superabrasive particles of the first monolayer.
12. A method of making a CMP pad dresser, comprising:
disposing a first monolayer of superabrasive particles on a metal support layer;
disposing a second monolayer of superabrasive particles on the metal support layer on a side opposite the first monolayer, wherein the superabrasive particles of the second monolayer are positioned to have substantially the same distribution as the superabrasive particles of the first monolayer; and
bonding the first monolayer of superabrasive particles and the second monolayer of superabrasive particles to the metal support layer such that symmetrical forces due to the substantially similar distribution between the first monolayer and the second monolayer precludes substantial warping of the metal support layer.
13. The method of claim 12, wherein the bonding of at least one of the first monolayer or the second monolayer is by brazing with a braze alloy.
14. The method of claim 12, wherein the bonding of at least one of the first monolayer or the second monolayer is under heat and pressure.
15. The method of claim 14, wherein the bonding of at least one of the first monolayer and the second monolayer further includes:
disposing a sintering compound on the metal support layer in contact with at least one of the first monolayer or the second monolayer; and
sintering the sintering compound to bond the at least one of the first monolayer or the second monolayer to the metal support layer.
16. The method of claim 15, further comprising infiltrating the sintering compound with a braze material during bonding.
17. The method of claim 14, wherein the heat and pressure bonds at least one of the first monolayer or the second monolayer directly to the metal support layer.
18. The method of claim 12, wherein the superabrasive particles of the second monolayer are positioned to align with the superabrasive particles of the first monolayer.
19. The method of claim 12, further comprising coupling the second monolayer of superabrasive particles to a rigid support.
20. The method of claim 19, wherein the coupling of the second monolayer of superabrasive particles to the rigid support is accomplished by a technique selected from the group consisting of hot pressing, brazing, sintering, soldering, electroplating, polymeric bonding, and combinations thereof.
21. The method of claim 19, wherein the coupling of the second monolayer of superabrasive particles to the rigid support is accomplished by polymeric bonding.
22. A method of minimizing warpage of a CMP pad dresser during manufacture, comprising:
substantially equalizing warping forces on opposing sides of a metal support layer during bonding of a plurality of superabrasive particles thereto, wherein warpage of the support layer is minimized during bonding due to the equalized forces on opposing sides.
23. The method of claim 22, wherein substantially equalizing forces includes arranging the plurality of superabrasive particles on opposing sides of the support layer such that the plurality of superabrasive particles has substantially the same distribution on either side of the support layer to substantially equalize warping forces during bonding.
US14120976 2010-09-21 2014-07-15 Superabrasive tools having substantially leveled particle tips and associated methods Abandoned US20150072601A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US38497610 true 2010-09-21 2010-09-21
US201161468917 true 2011-03-29 2011-03-29
US13239198 US8777699B2 (en) 2010-09-21 2011-09-21 Superabrasive tools having substantially leveled particle tips and associated methods
US14120976 US20150072601A1 (en) 2010-09-21 2014-07-15 Superabrasive tools having substantially leveled particle tips and associated methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14120976 US20150072601A1 (en) 2010-09-21 2014-07-15 Superabrasive tools having substantially leveled particle tips and associated methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13239198 Continuation US8777699B2 (en) 2010-09-21 2011-09-21 Superabrasive tools having substantially leveled particle tips and associated methods

Publications (1)

Publication Number Publication Date
US20150072601A1 true true US20150072601A1 (en) 2015-03-12

Family

ID=45874363

Family Applications (4)

Application Number Title Priority Date Filing Date
US13239189 Expired - Fee Related US8531026B2 (en) 2010-09-21 2011-09-21 Diamond particle mololayer heat spreaders and associated methods
US13239198 Active 2032-04-10 US8777699B2 (en) 2010-09-21 2011-09-21 Superabrasive tools having substantially leveled particle tips and associated methods
US14022052 Abandoned US20140235018A1 (en) 2010-09-21 2013-09-09 Diamond particle mololayer heat spreaders and associated methods
US14120976 Abandoned US20150072601A1 (en) 2010-09-21 2014-07-15 Superabrasive tools having substantially leveled particle tips and associated methods

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13239189 Expired - Fee Related US8531026B2 (en) 2010-09-21 2011-09-21 Diamond particle mololayer heat spreaders and associated methods
US13239198 Active 2032-04-10 US8777699B2 (en) 2010-09-21 2011-09-21 Superabrasive tools having substantially leveled particle tips and associated methods
US14022052 Abandoned US20140235018A1 (en) 2010-09-21 2013-09-09 Diamond particle mololayer heat spreaders and associated methods

Country Status (3)

Country Link
US (4) US8531026B2 (en)
CN (2) CN103299418A (en)
WO (2) WO2012040374A3 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US9221154B2 (en) 1997-04-04 2015-12-29 Chien-Min Sung Diamond tools and methods for making the same
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US9199357B2 (en) 1997-04-04 2015-12-01 Chien-Min Sung Brazed diamond tools and methods for making the same
US8393934B2 (en) 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US8622787B2 (en) 2006-11-16 2014-01-07 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US9011563B2 (en) 2007-12-06 2015-04-21 Chien-Min Sung Methods for orienting superabrasive particles on a surface and associated tools
US8678878B2 (en) 2009-09-29 2014-03-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
CN103299418A (en) 2010-09-21 2013-09-11 铼钻科技股份有限公司 Diamond particle mololayer heat spreaders and associated methods
US9138862B2 (en) * 2011-05-23 2015-09-22 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
WO2012162430A3 (en) 2011-05-23 2013-03-28 Chien-Min Sung Cmp pad dresser having leveled tips and associated methods
US20130134574A1 (en) * 2011-11-25 2013-05-30 Fujitsu Semiconductor Limited Semiconductor device and method for fabricating the same
US9180572B2 (en) * 2012-11-07 2015-11-10 Kinik Company Chemical mechanical polishing conditioner and manufacturing methods thereof
US9259822B2 (en) * 2013-03-15 2016-02-16 Kinik Company Chemical mechanical polishing conditioner and manufacturing methods thereof
CN104726735B (en) * 2013-12-23 2017-02-08 北京有色金属研究总院 Directional high thermally conductive material and a process for preparing compound having the structure
RU2552810C1 (en) * 2013-12-30 2015-06-10 Федеральное государственное бюджетное учреждение науки Институт физико-технических проблем Севера им. В.П. Ларионова Сибирского отделения Российской академии наук Alloy for diamond monocrystal connection with metals
CN105093776A (en) * 2014-05-13 2015-11-25 深圳市绎立锐光科技开发有限公司 Wavelength conversion device, light source system and projection system
US9616550B2 (en) * 2014-10-23 2017-04-11 Kinik Company Grinding tool and method of manufacturing the same
US9812375B2 (en) * 2015-02-05 2017-11-07 Ii-Vi Incorporated Composite substrate with alternating pattern of diamond and metal or metal alloy
US20160265858A1 (en) * 2015-03-11 2016-09-15 Lockheed Martin Corporation Heat spreaders fabricated from metal nanoparticles

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US187593A (en) * 1877-02-20 Improvement in emery grinding-wheels
US238946A (en) * 1881-03-15 Heel-restorer
US296756A (en) * 1884-04-15 Car-coupling
US1854071A (en) * 1930-07-14 1932-04-12 Behr Manning Corp Method of manufacturing abrasives
US1988065A (en) * 1931-09-26 1935-01-15 Carborundum Co Manufacture of open-spaced abrasive fabrics
US2027307A (en) * 1928-07-30 1936-01-07 Behr Manning Corp Method of coating and apparatus therefor and product
US2027087A (en) * 1928-10-03 1936-01-07 Behr Manning Corp Abrasive sheet and process of making the same
US2033991A (en) * 1935-07-09 1936-03-17 Carborundum Co Coating apparatus
US2035521A (en) * 1932-10-26 1936-03-31 Carborundum Co Granular coated web and method of making same
US2075354A (en) * 1935-06-10 1937-03-30 Monier Namee Collapsible game table
USRE20660E (en) * 1938-02-22 Method of coaxing and apparatus
US2184348A (en) * 1932-10-27 1939-12-26 Carborundum Co Coating apparatus
US2187624A (en) * 1932-10-10 1940-01-16 Carborundum Co Apparatus for the manufacture of coated webs
US2194253A (en) * 1932-10-27 1940-03-19 Carborundum Co Coating apparatus
US2268663A (en) * 1939-09-19 1942-01-06 J K Smit & Sons Inc Abrasive tool
US2281558A (en) * 1933-03-06 1942-05-05 Minnesota Mining & Mfg Manufacture of abrasive articles and apparatus therefor
US2307461A (en) * 1928-05-02 1943-01-05 Minnesota Mining & Mfg Sheeted abrasive
US2318570A (en) * 1930-01-20 1943-05-04 Minnesota Mining & Mfg Manufacture of abrasives
US2334572A (en) * 1941-12-29 1943-11-16 Carborundum Co Manufacture of abrasive materials
US2612348A (en) * 1949-09-14 1952-09-30 Wheel Trueing Tool Co Diamond set core bit
US2652951A (en) * 1951-03-13 1953-09-22 Esposito Augustus Salt and pepper shaker
US2725693A (en) * 1954-12-15 1955-12-06 Smith Joseph Leigh Abrasive roll and method of making
US2811960A (en) * 1957-02-26 1957-11-05 Fessel Paul Abrasive cutting body
US2867086A (en) * 1954-12-20 1959-01-06 Emmett L Haley Portable pressure fluid power devices
US2876086A (en) * 1954-06-21 1959-03-03 Minnesota Mining & Mfg Abrasive structures and method of making
US2947608A (en) * 1955-08-29 1960-08-02 Gen Electric Diamond synthesis
US2952951A (en) * 1952-07-28 1960-09-20 Simpson Harry Arthur Abrasive or like materials and articles
US3067551A (en) * 1958-09-22 1962-12-11 Bethlehem Steel Corp Grinding method
US3121981A (en) * 1960-09-23 1964-02-25 Rexall Drug Chemical Abrasive wheels and method of making the same
US3127715A (en) * 1960-04-27 1964-04-07 Christensen Diamond Prod Co Diamond cutting devices
US3146560A (en) * 1960-06-14 1964-09-01 Rexall Drug Chemical Abrasive products
US3276852A (en) * 1962-11-20 1966-10-04 Jerome H Lemelson Filament-reinforced composite abrasive articles
US3293012A (en) * 1962-11-27 1966-12-20 Exxon Production Research Co Process of infiltrating diamond particles with metallic binders
US3372010A (en) * 1965-06-23 1968-03-05 Wall Colmonoy Corp Diamond abrasive matrix
US3377411A (en) * 1961-12-04 1968-04-09 Osborn Mfg Co Method of manufacturing grinding wheels and the like
US3416560A (en) * 1965-08-23 1968-12-17 Bruno Peter Fluid leak monitoring apparatus
US3440774A (en) * 1963-05-13 1969-04-29 Naradi Narodni Podnik Diamond tool
US3608134A (en) * 1969-02-10 1971-09-28 Norton Co Molding apparatus for orienting elongated particles
US3625666A (en) * 1968-06-19 1971-12-07 Ind Distributors 1946 Ltd Method of forming metal-coated diamond abrasive wheels
US3630699A (en) * 1969-09-02 1971-12-28 Remington Arms Co Inc Method for producing armored saber saws
US3631638A (en) * 1969-06-17 1972-01-04 Nippon Toki Kk Process for the manufacture of a grinding stone
US3743489A (en) * 1971-07-01 1973-07-03 Gen Electric Abrasive bodies of finely-divided cubic boron nitride crystals
US3767371A (en) * 1971-07-01 1973-10-23 Gen Electric Cubic boron nitride/sintered carbide abrasive bodies
US3802130A (en) * 1971-05-12 1974-04-09 Edenvale Eng Works And like grinding wheels
US3819814A (en) * 1972-11-01 1974-06-25 Megadiamond Corp Plural molded diamond articles and their manufacture from diamond powders under high temperature and pressure
US3852078A (en) * 1970-12-24 1974-12-03 M Wakatsuki Mass of polycrystalline cubic system boron nitride and composites of polycrystalline cubic system boron nitride and other hard materials, and processes for manufacturing the same
US3894673A (en) * 1971-11-04 1975-07-15 Abrasive Tech Inc Method of manufacturing diamond abrasive tools
US3905571A (en) * 1971-03-26 1975-09-16 Joseph Lombardo Nursing bottle holder
US3982358A (en) * 1973-10-09 1976-09-28 Heijiro Fukuda Laminated resinoid wheels, method for continuously producing same and apparatus for use in the method
US4028576A (en) * 1975-07-21 1977-06-07 David Wofsey Sonic spark plug
US4078906A (en) * 1976-09-29 1978-03-14 Elgin Diamond Products Co., Inc. Method for making an abrading tool with discontinuous diamond abrading surfaces
US4149881A (en) * 1978-06-28 1979-04-17 Western Gold And Platinum Company Nickel palladium base brazing alloy
US4182628A (en) * 1978-07-03 1980-01-08 GTE Sylvania Products, Inc. Partially amorphous silver-copper-indium brazing foil
US4188194A (en) * 1976-10-29 1980-02-12 General Electric Company Direct conversion process for making cubic boron nitride from pyrolytic boron nitride
US4211294A (en) * 1978-04-21 1980-07-08 Acker Drill Company, Inc. Impregnated diamond drill bit
US4211924A (en) * 1976-09-03 1980-07-08 Siemens Aktiengesellschaft Transmission-type scanning charged-particle beam microscope
US4224380A (en) * 1978-03-28 1980-09-23 General Electric Company Temperature resistant abrasive compact and method for making same
US4228214A (en) * 1978-03-01 1980-10-14 Gte Products Corporation Flexible bilayered sheet, one layer of which contains abrasive particles in a volatilizable organic binder and the other layer of which contains alloy particles in a volatilizable binder, method for producing same and coating produced by heating same
US4229186A (en) * 1977-03-03 1980-10-21 Wilson William I Abrasive bodies
US4273561A (en) * 1975-08-27 1981-06-16 Fernandez Moran Villalobos Hum Ultrasharp polycrystalline diamond edges, points, and improved diamond composites, and methods of making and irradiating same
US4287168A (en) * 1975-01-27 1981-09-01 General Electric Company Apparatus and method for isolation of diamond seeds for growing diamonds
US4289503A (en) * 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst
US4341532A (en) * 1977-01-18 1982-07-27 Daichiku Co., Ltd. Laminated rotary grinder and method of fabrication
US4355489A (en) * 1980-09-15 1982-10-26 Minnesota Mining And Manufacturing Company Abrasive article comprising abrasive agglomerates supported in a fibrous matrix
US4481016A (en) * 1978-08-18 1984-11-06 Campbell Nicoll A D Method of making tool inserts and drill bits
US4525179A (en) * 1981-07-27 1985-06-25 General Electric Company Process for making diamond and cubic boron nitride compacts
US4547257A (en) * 1984-09-25 1985-10-15 Showa Denko Kabushiki Kaisha Method for growing diamond crystals
US4551195A (en) * 1984-09-25 1985-11-05 Showa Denko Kabushiki Kaisha Method for growing boron nitride crystals of cubic system
US4565034A (en) * 1984-01-03 1986-01-21 Disco Abrasive Systems, Ltd. Grinding and/or cutting endless belt
US4610699A (en) * 1984-01-18 1986-09-09 Sumitomo Electric Industries, Ltd. Hard diamond sintered body and the method for producing the same
US4617181A (en) * 1983-07-01 1986-10-14 Sumitomo Electric Industries, Ltd. Synthetic diamond heat sink
US4629373A (en) * 1983-06-22 1986-12-16 Megadiamond Industries, Inc. Polycrystalline diamond body with enhanced surface irregularities
US4632817A (en) * 1984-04-04 1986-12-30 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
US4662896A (en) * 1986-02-19 1987-05-05 Strata Bit Corporation Method of making an abrasive cutting element
US4669522A (en) * 1985-04-02 1987-06-02 Nl Petroleum Products Limited Manufacture of rotary drill bits
US4680199A (en) * 1986-03-21 1987-07-14 United Technologies Corporation Method for depositing a layer of abrasive material on a substrate
US4712552A (en) * 1982-03-10 1987-12-15 William W. Haefliger Cushioned abrasive composite
US4749514A (en) * 1985-10-12 1988-06-07 Research Development Corp. Of Japan Graphite intercalation compound film and method of preparing the same
US4770907A (en) * 1987-10-17 1988-09-13 Fuji Paudal Kabushiki Kaisha Method for forming metal-coated abrasive grain granules
US4776861A (en) * 1983-08-29 1988-10-11 General Electric Company Polycrystalline abrasive grit
US4780274A (en) * 1983-12-03 1988-10-25 Reed Tool Company, Ltd. Manufacture of rotary drill bits
US4797241A (en) * 1985-05-20 1989-01-10 Sii Megadiamond Method for producing multiple polycrystalline bodies
US4828582A (en) * 1983-08-29 1989-05-09 General Electric Company Polycrystalline abrasive grit
US4849602A (en) * 1988-08-12 1989-07-18 Iscar Ltd. Method for fabricating cutting pieces
US4866888A (en) * 1986-04-17 1989-09-19 Sumitomo Electric Industries, Ltd. Wire incrusted with abrasive grain
US4883500A (en) * 1988-10-25 1989-11-28 General Electric Company Sawblade segments utilizing polycrystalline diamond grit
US4908046A (en) * 1989-02-14 1990-03-13 Wiand Ronald C Multilayer abrading tool and process
US4916869A (en) * 1988-08-01 1990-04-17 L. R. Oliver & Company, Inc. Bonded abrasive grit structure
US4923490A (en) * 1988-12-16 1990-05-08 General Electric Company Novel grinding wheels utilizing polycrystalline diamond or cubic boron nitride grit
US4925457A (en) * 1989-01-30 1990-05-15 Dekok Peter T Abrasive tool and method for making
US4927619A (en) * 1982-06-25 1990-05-22 Sumitomo Electric Industries, Ltd. Diamond single crystal
US4943488A (en) * 1986-10-20 1990-07-24 Norton Company Low pressure bonding of PCD bodies and method for drill bits and the like
US4945686A (en) * 1989-02-14 1990-08-07 Wiand Ronald C Multilayer abrading tool having an irregular abrading surface and process
US4949511A (en) * 1986-02-10 1990-08-21 Toshiba Tungaloy Co., Ltd. Super abrasive grinding tool element and grinding tool
US4954139A (en) * 1989-03-31 1990-09-04 The General Electric Company Method for producing polycrystalline compact tool blanks with flat carbide support/diamond or CBN interfaces
US4968326A (en) * 1989-10-10 1990-11-06 Wiand Ronald C Method of brazing of diamond to substrate
US5000273A (en) * 1990-01-05 1991-03-19 Norton Company Low melting point copper-manganese-zinc alloy for infiltration binder in matrix body rock drill bits
US5011513A (en) * 1989-05-31 1991-04-30 Norton Company Single step, radiation curable ophthalmic fining pad
US5022895A (en) * 1988-02-14 1991-06-11 Wiand Ronald C Multilayer abrading tool and process

Family Cites Families (303)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642779A (en) 1909-06-30 1997-07-01 Sumitomo Electric Industries, Ltd. Heat sink and a process for the production of the same
US1382080A (en) 1919-09-18 1921-06-21 William Haas Company Radiator-valve
US2078354A (en) 1935-04-25 1937-04-27 Norton Co Abrasive article
US3574580A (en) 1968-11-08 1971-04-13 Atomic Energy Commission Process for producing sintered diamond compact and products
US3678995A (en) 1970-06-22 1972-07-25 Rca Corp Support for electrical components and method of making the same
US3829544A (en) 1970-12-09 1974-08-13 Megadiamond Corp Method of making a unitary polycrystalline diamond composite and diamond composite produced thereby
US3913280A (en) 1971-01-29 1975-10-21 Megadiamond Corp Polycrystalline diamond composites
GB1393934A (en) 1971-07-30 1975-05-14 De Beers Ind Diamond Diamond particle particularly for use in heat sinks
US4018576A (en) 1971-11-04 1977-04-19 Abrasive Technology, Inc. Diamond abrasive tool
GB1382080A (en) 1972-12-01 1975-01-29 Inst Fiziki Vysokikh Davleny Method of preparing a diamond-metal compact
US3912500A (en) 1972-12-27 1975-10-14 Leonid Fedorovich Vereschagin Process for producing diamond-metallic materials
US3872496A (en) 1973-09-13 1975-03-18 Sperry Rand Corp High frequency diode having simultaneously formed high strength bonds with respect to a diamond heat sink and said diode
US3949263A (en) 1974-12-20 1976-04-06 Raytheon Company Diamond brazing method for slow wave energy propagating structures
US4231195A (en) 1979-05-24 1980-11-04 General Electric Company Polycrystalline diamond body and process
US4378233A (en) 1981-07-24 1983-03-29 Norton Company Metal bonded grinding wheel containing diamond or CBN abrasive
US4518659A (en) 1982-04-02 1985-05-21 General Electric Company Sweep through process for making polycrystalline compacts
US4425195A (en) 1982-11-10 1984-01-10 Martin Marietta Corporation Method of fabricating a diamond heat sink
US4534773A (en) 1983-01-10 1985-08-13 Cornelius Phaal Abrasive product and method for manufacturing
GB8325320D0 (en) 1983-09-21 1983-10-26 Plessey Co Plc Diamond heatsink assemblies
US4649992A (en) 1984-10-05 1987-03-17 Plessey Overseas Limited Diamond heatsink assemblies
DE3585226D1 (en) 1984-08-24 1992-02-27 Univ Australian Diamond units and their production.
US4664705A (en) 1985-07-30 1987-05-12 Sii Megadiamond, Inc. Infiltrated thermally stable polycrystalline diamond
DE3545308A1 (en) 1985-12-20 1987-06-25 Feldmuehle Ag Grinding wheel with damping
US5116568A (en) 1986-10-20 1992-05-26 Norton Company Method for low pressure bonding of PCD bodies
US5030276A (en) 1986-10-20 1991-07-09 Norton Company Low pressure bonding of PCD bodies and method
DE3751506D1 (en) 1986-10-20 1995-10-12 Baker Hughes Inc Connecting poli crystalline diamond shaped bodies at low pressure.
DK99288D0 (en) 1987-02-27 1988-02-25 Diabrasive Int Ltd Sharpening Topic
US5195404A (en) 1987-06-18 1993-03-23 Notter Theo A Drill bit with cutting insert
CA1298980C (en) 1988-02-26 1992-04-21 Clyde D. Calhoun Abrasive sheeting having individually positioned abrasive granules
US5273730A (en) 1988-03-08 1993-12-28 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
US5151107A (en) 1988-07-29 1992-09-29 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
DE68910242T2 (en) 1988-08-31 1994-03-03 De Beers Ind Diamond Manufacture of abrasive products.
US5130771A (en) 1988-10-11 1992-07-14 Amoco Corporation Diamond composite heat sink for use with semiconductor devices
US5008737A (en) 1988-10-11 1991-04-16 Amoco Corporation Diamond composite heat sink for use with semiconductor devices
US5024680A (en) 1988-11-07 1991-06-18 Norton Company Multiple metal coated superabrasive grit and methods for their manufacture
US5043120A (en) 1988-11-10 1991-08-27 The General Electric Company Process for preparing polycrystalline CBN ceramic masses
US6413589B1 (en) 1988-11-29 2002-07-02 Chou H. Li Ceramic coating method
US5094985A (en) 1989-01-30 1992-03-10 Kazunori Kijima Kyoto Sintered silicon carbide body with high thermal conductivity and process of producing the same
US5049165B1 (en) 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Composite material
US5190568B1 (en) 1989-01-30 1996-03-12 Ultimate Abrasive Syst Inc Abrasive tool with contoured surface
US5133782A (en) 1989-02-14 1992-07-28 Wiand Ronald C Multilayer abrading tool having an irregular abrading surface and process
DE69016240T3 (en) 1989-04-06 1999-03-11 Sumitomo Electric Industries Diamond for Abrichtungsvorrichtung
US5224017A (en) 1989-05-17 1993-06-29 The Charles Stark Draper Laboratory, Inc. Composite heat transfer device
NL9002600A (en) 1989-12-11 1991-07-01 Gen Electric Single crystal diamond with a very high thermal conductivity and a method for their preparation, in addition to objects wholly or partly made from this diamond.
US5096465A (en) 1989-12-13 1992-03-17 Norton Company Diamond metal composite cutter and method for making same
US5203881A (en) 1990-02-02 1993-04-20 Wiand Ronald C Abrasive sheet and method
US5131924A (en) 1990-02-02 1992-07-21 Wiand Ronald C Abrasive sheet and method
US5164247A (en) 1990-02-06 1992-11-17 The Pullman Company Wear resistance in a hardfaced substrate
GB9006703D0 (en) 1990-03-26 1990-05-23 De Beers Ind Diamond Abrasive product
JP2940099B2 (en) 1990-08-09 1999-08-25 住友電気工業株式会社 Method for synthesizing a high thermal conductivity diamond single crystal
US5045972A (en) 1990-08-27 1991-09-03 The Standard Oil Company High thermal conductivity metal matrix composite
US5120495A (en) 1990-08-27 1992-06-09 The Standard Oil Company High thermal conductivity metal matrix composite
DE69109033T2 (en) 1990-09-26 1995-09-14 De Beers Ind Diamond Multilayer grinding tool with diamonds.
CA2054050C (en) 1990-11-16 1998-07-07 Louis K. Bigelow Method and apparatus for making grit and abrasive media
DE69117268T2 (en) 1990-11-26 1996-08-14 De Beers Ind Diamond A cutting insert for a rotary cutting tool
US5197249A (en) 1991-02-07 1993-03-30 Wiand Ronald C Diamond tool with non-abrasive segments
US5070936A (en) 1991-02-15 1991-12-10 United States Of America As Represented By The Secretary Of The Air Force High intensity heat exchanger system
GB9104366D0 (en) 1991-03-01 1991-04-17 De Beers Ind Diamond Composite cutting insert
CA2065581C (en) 1991-04-22 2002-03-12 Andal Corp. Plasma enhancement apparatus and method for physical vapor deposition
US6478831B2 (en) 1995-06-07 2002-11-12 Ultimate Abrasive Systems, L.L.C. Abrasive surface and article and methods for making them
US5380390B1 (en) 1991-06-10 1996-10-01 Ultimate Abras Systems Inc Patterned abrasive material and method
DE69209175T2 (en) 1991-07-12 1996-07-25 De Beers Ind Diamond diamond synthesis
US5820721A (en) 1991-07-17 1998-10-13 Beane; Alan F. Manufacturing particles and articles having engineered properties
JP2546558B2 (en) 1991-07-22 1996-10-23 住友電気工業株式会社 The method of synthetic diamond abrasive grains
US5492774A (en) 1991-07-23 1996-02-20 Sony Corporation Perpendicular magnetic recording medium and process for production of the same
US5247765A (en) 1991-07-23 1993-09-28 Abrasive Technology Europe, S.A. Abrasive product comprising a plurality of discrete composite abrasive pellets in a resilient resin matrix
US5194071A (en) 1991-07-25 1993-03-16 General Electric Company Inc. Cubic boron nitride abrasive and process for preparing same
US5266236A (en) 1991-10-09 1993-11-30 General Electric Company Thermally stable dense electrically conductive diamond compacts
US5295402A (en) 1991-10-15 1994-03-22 General Electric Company Method for achieving high pressure using isotopically-pure diamond anvils
US5246884A (en) 1991-10-30 1993-09-21 International Business Machines Corporation Cvd diamond or diamond-like carbon for chemical-mechanical polish etch stop
US5437754A (en) 1992-01-13 1995-08-01 Minnesota Mining And Manufacturing Company Abrasive article having precise lateral spacing between abrasive composite members
US5314513A (en) 1992-03-03 1994-05-24 Minnesota Mining And Manufacturing Company Abrasive product having a binder comprising a maleimide binder
US5176155A (en) 1992-03-03 1993-01-05 Rudolph Jr James M Method and device for filing nails
JPH0639729A (en) 1992-05-29 1994-02-15 Canon Inc Precision grinding wheel and its manufacture
US5443032A (en) 1992-06-08 1995-08-22 Air Products And Chemicals, Inc. Method for the manufacture of large single crystals
US5243790A (en) 1992-06-25 1993-09-14 Abrasifs Vega, Inc. Abrasive member
US5264011A (en) 1992-09-08 1993-11-23 General Motors Corporation Abrasive blade tips for cast single crystal gas turbine blades
US5271547A (en) 1992-09-15 1993-12-21 Tunco Manufacturing, Inc. Method for brazing tungsten carbide particles and diamond crystals to a substrate and products made therefrom
US5985228A (en) 1992-12-22 1999-11-16 General Electric Company Method for controlling the particle size distribution in the production of multicrystalline cubic boron nitride
US6238454B1 (en) 1993-04-14 2001-05-29 Frank J. Polese Isotropic carbon/copper composites
GB9310500D0 (en) 1993-05-21 1993-07-07 De Beers Ind Diamond Cutting tool
US5674572A (en) 1993-05-21 1997-10-07 Trustees Of Boston University Enhanced adherence of diamond coatings employing pretreatment process
DE69406446D1 (en) 1993-06-17 1997-11-27 Minnesota Mining & Mfg Patterned abrasives and methods for making the same
US5681612A (en) 1993-06-17 1997-10-28 Minnesota Mining And Manufacturing Company Coated abrasives and methods of preparation
US5382314A (en) 1993-08-31 1995-01-17 At&T Corp. Method of shaping a diamond body
WO1995006544A1 (en) 1993-09-01 1995-03-09 Speedfam Corporation Backing pad for machining operations
KR100269924B1 (en) 1993-10-08 2000-11-01 하지메 히토추야나기 A synthetic diamond and process for producing the same
US5453106A (en) 1993-10-27 1995-09-26 Roberts; Ellis E. Oriented particles in hard surfaces
US5542471A (en) 1993-11-16 1996-08-06 Loral Vought System Corporation Heat transfer element having the thermally conductive fibers
US5486131A (en) 1994-01-04 1996-01-23 Speedfam Corporation Device for conditioning polishing pads
US5454343A (en) 1994-01-18 1995-10-03 Korea Institute Of Science And Technology Method for production of diamond particles
US5547417A (en) 1994-03-21 1996-08-20 Intel Corporation Method and apparatus for conditioning a semiconductor polishing pad
DE69516863D1 (en) 1994-04-08 2000-06-15 Ultimate Abrasive Systems Llc A process for the manufacture of powder preforms and produced thereof abrasives
US5518443A (en) 1994-05-13 1996-05-21 Norton Company Superabrasive tool
US6264882B1 (en) 1994-05-20 2001-07-24 The Regents Of The University Of California Process for fabricating composite material having high thermal conductivity
US6466446B1 (en) 1994-07-01 2002-10-15 Saint Gobain/Norton Industrial Ceramics Corporation Integrated circuit package with diamond heat sink
CN1112728C (en) 1994-07-11 2003-06-25 国际商业机器公司 Chip carrier modules and its producing method
US5536202A (en) 1994-07-27 1996-07-16 Texas Instruments Incorporated Semiconductor substrate conditioning head having a plurality of geometries formed in a surface thereof for pad conditioning during chemical-mechanical polish
US5551959A (en) 1994-08-24 1996-09-03 Minnesota Mining And Manufacturing Company Abrasive article having a diamond-like coating layer and method for making same
US5492771A (en) * 1994-09-07 1996-02-20 Abrasive Technology, Inc. Method of making monolayer abrasive tools
DE69530780T2 (en) 1994-09-30 2004-03-18 Minnesota Mining And Mfg. Co., St. Paul Coated abrasive article and method for its manufacture
EP0712941B1 (en) 1994-11-18 2004-05-19 Agency Of Industrial Science And Technology Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
JP3401107B2 (en) 1995-01-23 2003-04-28 松下電器産業株式会社 Module of the package ic
US5527424A (en) 1995-01-30 1996-06-18 Motorola, Inc. Preconditioner for a polishing pad and method for using the same
JPH08222669A (en) 1995-02-10 1996-08-30 Fuji Dies Kk Heat sink and production thereof
JPH08337498A (en) 1995-04-13 1996-12-24 Sumitomo Electric Ind Ltd Diamond granule, granule for diamond synthesis, compact and their production
US5801073A (en) 1995-05-25 1998-09-01 Charles Stark Draper Laboratory Net-shape ceramic processing for electronic devices and packages
US5816891A (en) 1995-06-06 1998-10-06 Advanced Micro Devices, Inc. Performing chemical mechanical polishing of oxides and metals using sequential removal on multiple polish platens to increase equipment throughput
US5560754A (en) 1995-06-13 1996-10-01 General Electric Company Reduction of stresses in the polycrystalline abrasive layer of a composite compact with in situ bonded carbide/carbide support
US5609286A (en) 1995-08-28 1997-03-11 Anthon; Royce A. Brazing rod for depositing diamond coating metal substrate using gas or electric brazing techniques
DE19536463C2 (en) 1995-09-29 2002-02-07 Infineon Technologies Ag A method for fabricating a plurality of laser diode components
US5660894A (en) 1995-10-16 1997-08-26 National Science Council Process for depositing diamond by chemical vapor deposition
DE69629651T2 (en) 1995-12-21 2004-02-26 Element Six (Pty) Ltd. diamond synthesis
US5725421A (en) 1996-02-27 1998-03-10 Minnesota Mining And Manufacturing Company Apparatus for rotative abrading applications
JP3111892B2 (en) 1996-03-19 2000-11-27 ヤマハ株式会社 Polishing apparatus
US5834337A (en) 1996-03-21 1998-11-10 Bryte Technologies, Inc. Integrated circuit heat transfer element and method
JPH106218A (en) 1996-06-27 1998-01-13 Minnesota Mining & Mfg Co <3M> Abrasive product for dressing
US5719441A (en) 1996-07-11 1998-02-17 Larimer; William R. Transistor package with integral heatsink
US6371838B1 (en) 1996-07-15 2002-04-16 Speedfam-Ipec Corporation Polishing pad conditioning device with cutting elements
US6284315B1 (en) 1996-07-29 2001-09-04 Aurburn University Method of polishing diamond films
US6544599B1 (en) 1996-07-31 2003-04-08 Univ Arkansas Process and apparatus for applying charged particles to a substrate, process for forming a layer on a substrate, products made therefrom
US5833519A (en) 1996-08-06 1998-11-10 Micron Technology, Inc. Method and apparatus for mechanical polishing
US5851138A (en) 1996-08-15 1998-12-22 Texas Instruments Incorporated Polishing pad conditioning system and method
US5779743A (en) 1996-09-18 1998-07-14 Minnesota Mining And Manufacturing Company Method for making abrasive grain and abrasive articles
KR100328108B1 (en) 1996-10-15 2002-03-09 아사무라 타카싯 Semiconductor substrate polishing pad dresser, method of manufacturing the same, and chemicomechanical polishing method using the same dresser
US6167948B1 (en) 1996-11-18 2001-01-02 Novel Concepts, Inc. Thin, planar heat spreader
US5976205A (en) 1996-12-02 1999-11-02 Norton Company Abrasive tool
US5746931A (en) 1996-12-05 1998-05-05 Lucent Technologies Inc. Method and apparatus for chemical-mechanical polishing of diamond
GB9626221D0 (en) 1996-12-18 1997-02-05 Smiths Industries Plc Diamond surfaces
US5916011A (en) 1996-12-26 1999-06-29 Motorola, Inc. Process for polishing a semiconductor device substrate
US5895972A (en) 1996-12-31 1999-04-20 Intel Corporation Method and apparatus for cooling the backside of a semiconductor device using an infrared transparent heat slug
US6206942B1 (en) 1997-01-09 2001-03-27 Minnesota Mining & Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
JP3617232B2 (en) 1997-02-06 2005-02-02 住友電気工業株式会社 Heat sink and a manufacturing method thereof for a semiconductor and a semiconductor package using the same
US8545583B2 (en) 2000-11-17 2013-10-01 Wayne O. Duescher Method of forming a flexible abrasive sheet article
US5855314A (en) 1997-03-07 1999-01-05 Norton Company Abrasive tool containing coated superabrasive grain
US7404857B2 (en) 1997-04-04 2008-07-29 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US7124753B2 (en) 1997-04-04 2006-10-24 Chien-Min Sung Brazed diamond tools and methods for making the same
US7368013B2 (en) 1997-04-04 2008-05-06 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US6039641A (en) 1997-04-04 2000-03-21 Sung; Chien-Min Brazed diamond tools by infiltration
US7323049B2 (en) 1997-04-04 2008-01-29 Chien-Min Sung High pressure superabrasive particle synthesis
US6286498B1 (en) 1997-04-04 2001-09-11 Chien-Min Sung Metal bond diamond tools that contain uniform or patterned distribution of diamond grits and method of manufacture thereof
US6679243B2 (en) 1997-04-04 2004-01-20 Chien-Min Sung Brazed diamond tools and methods for making
CN100563932C (en) 1997-04-04 2009-12-02 宋健民 Abrasive tools with patterned grit and manufacture thereof
US6497853B1 (en) 1997-04-17 2002-12-24 Moosa Mahomed Adia Diamond growth
US5921855A (en) 1997-05-15 1999-07-13 Applied Materials, Inc. Polishing pad having a grooved pattern for use in a chemical mechanical polishing system
JP3244454B2 (en) 1997-06-05 2002-01-07 理化学研究所 Cutting grinding dual-purpose tool
US5961373A (en) 1997-06-16 1999-10-05 Motorola, Inc. Process for forming a semiconductor device
US5885137A (en) 1997-06-27 1999-03-23 Siemens Aktiengesellschaft Chemical mechanical polishing pad conditioner
US6054183A (en) 1997-07-10 2000-04-25 Zimmer; Jerry W. Method for making CVD diamond coated substrate for polishing pad conditioning head
US5921856A (en) 1997-07-10 1999-07-13 Sp3, Inc. CVD diamond coated substrate for polishing pad conditioning head and method for making same
US6024824A (en) 1997-07-17 2000-02-15 3M Innovative Properties Company Method of making articles in sheet form, particularly abrasive articles
US6093280A (en) 1997-08-18 2000-07-25 Lsi Logic Corporation Chemical-mechanical polishing pad conditioning systems
JP3893681B2 (en) 1997-08-19 2007-03-14 住友電気工業株式会社 Semiconductor heat sink and a manufacturing method thereof
EP1019337B1 (en) 1997-09-05 2002-09-25 Frenton Limited Method of manufacturing a diamond-silicon carbide-silicon composite and a composite produced by this method
US6027659A (en) 1997-12-03 2000-02-22 Intel Corporation Polishing pad conditioning surface having integral conditioning points
US6196911B1 (en) 1997-12-04 2001-03-06 3M Innovative Properties Company Tools with abrasive segments
DE69806502T3 (en) 1997-12-11 2007-04-19 Element Six (Pty) Ltd. crystal growth
JP4623774B2 (en) 1998-01-16 2011-02-02 住友電気工業株式会社 Heat sink and a method of manufacturing the same
US6335863B1 (en) 1998-01-16 2002-01-01 Sumitomo Electric Industries, Ltd. Package for semiconductors, and semiconductor module that employs the package
CA2261491C (en) 1998-03-06 2005-05-24 Smith International, Inc. Cutting element with improved polycrystalline material toughness and method for making same
US6001174A (en) 1998-03-11 1999-12-14 Richard J. Birch Method for growing a diamond crystal on a rheotaxy template
US6123612A (en) 1998-04-15 2000-09-26 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
JP3295888B2 (en) 1998-04-22 2002-06-24 株式会社藤森技術研究所 Polishing machines for polishing dresser of chemical machine polisher
JP3682379B2 (en) 1998-04-25 2005-08-10 三星電子株式会社Samsung Electronics Co.,Ltd. Cmp pad conditioning disks and a manufacturing method of the disk
US6077601A (en) 1998-05-01 2000-06-20 3M Innovative Properties Company Coated abrasive article
US6354918B1 (en) 1998-06-19 2002-03-12 Ebara Corporation Apparatus and method for polishing workpiece
US6258418B1 (en) 1998-06-24 2001-07-10 Ronald A. Rudder Method for producing diamond-tiled cooking utensils and other workpieces for durable stick-resistant surfaces
US6299508B1 (en) 1998-08-05 2001-10-09 3M Innovative Properties Company Abrasive article with integrally molded front surface protrusions containing a grinding aid and methods of making and using
US6280496B1 (en) 1998-09-14 2001-08-28 Sumitomo Electric Industries, Ltd. Silicon carbide based composite material and manufacturing method thereof
US6709747B1 (en) 1998-09-28 2004-03-23 Skeleton Technologies Ag Method of manufacturing a diamond composite and a composite produced by same
CA2355171C (en) * 1998-12-15 2009-12-15 Parker-Hannifin Corporation Method of applying a phase change thermal interface material
US6605798B1 (en) 1998-12-22 2003-08-12 Barry James Cullen Cutting of ultra-hard materials
US6258237B1 (en) 1998-12-30 2001-07-10 Cerd, Ltd. Electrophoretic diamond coating and compositions for effecting same
US6309277B1 (en) 1999-03-03 2001-10-30 Advanced Micro Devices, Inc. System and method for achieving a desired semiconductor wafer surface profile via selective polishing pad conditioning
US6447852B1 (en) 1999-03-04 2002-09-10 Ambler Technologies, Inc. Method of manufacturing a diamond composite and a composite produced by same
US6346202B1 (en) 1999-03-25 2002-02-12 Beaver Creek Concepts Inc Finishing with partial organic boundary layer
JP2000303126A (en) 1999-04-15 2000-10-31 Sumitomo Electric Ind Ltd Aluminum/diamond composite material and its manufacture
EP1044938A1 (en) 1999-04-16 2000-10-18 Misapor AG Flowable and curable castable masses, in particular lightweight concrete, element or building material, and method for obtaining structured surfaces thereon
GB2354470B (en) 1999-05-24 2004-02-04 Honda Motor Co Ltd Cutting tip and manufacturing method thereof
JP3387851B2 (en) 1999-05-28 2003-03-17 株式会社ノリタケカンパニーリミテド Grinding wheel and a manufacturing method thereof
US6517221B1 (en) 1999-06-18 2003-02-11 Ciena Corporation Heat pipe heat sink for cooling a laser diode
US6319108B1 (en) 1999-07-09 2001-11-20 3M Innovative Properties Company Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece
US6755720B1 (en) 1999-07-15 2004-06-29 Noritake Co., Limited Vitrified bond tool and method of manufacturing the same
US6215661B1 (en) 1999-08-11 2001-04-10 Motorola, Inc. Heat spreader
US6281129B1 (en) 1999-09-20 2001-08-28 Agere Systems Guardian Corp. Corrosion-resistant polishing pad conditioner
US6627168B1 (en) 1999-10-01 2003-09-30 Showa Denko Kabushiki Kaisha Method for growing diamond and cubic boron nitride crystals
US6439986B1 (en) 1999-10-12 2002-08-27 Hunatech Co., Ltd. Conditioner for polishing pad and method for manufacturing the same
US6325709B1 (en) 1999-11-18 2001-12-04 Chartered Semiconductor Manufacturing Ltd Rounded surface for the pad conditioner using high temperature brazing
US6368198B1 (en) 1999-11-22 2002-04-09 Kinik Company Diamond grid CMP pad dresser
US6884155B2 (en) * 1999-11-22 2005-04-26 Kinik Diamond grid CMP pad dresser
US7201645B2 (en) 1999-11-22 2007-04-10 Chien-Min Sung Contoured CMP pad dresser and associated methods
US6337513B1 (en) 1999-11-30 2002-01-08 International Business Machines Corporation Chip packaging system and method using deposited diamond film
US20020023733A1 (en) 1999-12-13 2002-02-28 Hall David R. High-pressure high-temperature polycrystalline diamond heat spreader
US6293980B2 (en) 1999-12-20 2001-09-25 Norton Company Production of layered engineered abrasive surfaces
JP3527448B2 (en) 1999-12-20 2004-05-17 株式会社リード Cmp dresser for a polishing cloth and a method of manufacturing the same
US6369455B1 (en) 2000-01-04 2002-04-09 Siliconware Precision Industries Co., Ltd. Externally-embedded heat-dissipating device for ball grid array integrated circuit package
US6448642B1 (en) 2000-01-27 2002-09-10 William W. Bewley Pressure-bonded heat-sink system
US6517424B2 (en) * 2000-03-10 2003-02-11 Abrasive Technology, Inc. Protective coatings for CMP conditioning disk
US6534792B1 (en) 2000-05-18 2003-03-18 The Boeing Company Microelectronic device structure with metallic interlayer between substrate and die
US6749485B1 (en) 2000-05-27 2004-06-15 Rodel Holdings, Inc. Hydrolytically stable grooved polishing pads for chemical mechanical planarization
JP2001354492A (en) 2000-06-07 2001-12-25 Sumitomo Electric Ind Ltd Method and device for forming diamond film
EP1309732B1 (en) 2000-08-08 2005-04-20 Element Six (PTY) Ltd Method of producing an abrasive product containing diamond
US6407922B1 (en) 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
US20020042200A1 (en) 2000-10-02 2002-04-11 Clyde Fawcett Method for conditioning polishing pads
US6390181B1 (en) 2000-10-04 2002-05-21 David R. Hall Densely finned tungsten carbide and polycrystalline diamond cooling module
US6551176B1 (en) 2000-10-05 2003-04-22 Applied Materials, Inc. Pad conditioning disk
WO2002028980A3 (en) 2000-10-06 2003-07-24 3M Innovative Properties Co Agglomerate abrasive grain and a method of making the same
JP3957632B2 (en) 2000-10-12 2007-08-15 エレメント シックス (プロプライエタリイ)リミテッド Polycrystalline abrasive grit particles
US20030207659A1 (en) 2000-11-03 2003-11-06 3M Innovative Properties Company Abrasive product and method of making and using the same
CN100344410C (en) 2000-11-07 2007-10-24 中国砂轮企业股份有限公司 Reparing and milling device for chemical-mechanical polishing soft pad and its producing method
WO2002038264A3 (en) 2000-11-09 2002-07-25 De Beers Ind Diamond A method of producing ultra-hard abrasive particles
RU2206502C2 (en) 2000-11-21 2003-06-20 Акционерное общество закрытого типа "Карбид" Composite material
US6482248B1 (en) 2000-11-28 2002-11-19 Magnum Research, Inc. Aluminum composite for gun barrels
US6653730B2 (en) 2000-12-14 2003-11-25 Intel Corporation Electronic assembly with high capacity thermal interface
WO2002049807A1 (en) 2000-12-21 2002-06-27 Nippon Steel Corporation Cmp conditioner, method for arranging rigid grains used for cmp conditioner, and method for manufacturing cmp conditioner
US6672943B2 (en) 2001-01-26 2004-01-06 Wafer Solutions, Inc. Eccentric abrasive wheel for wafer processing
US6541115B2 (en) 2001-02-26 2003-04-01 General Electric Company Metal-infiltrated polycrystalline diamond composite tool formed from coated diamond particles
US6409580B1 (en) 2001-03-26 2002-06-25 Speedfam-Ipec Corporation Rigid polishing pad conditioner for chemical mechanical polishing tool
US20020139680A1 (en) * 2001-04-03 2002-10-03 George Kosta Louis Method of fabricating a monolayer abrasive tool
US6538892B2 (en) 2001-05-02 2003-03-25 Graftech Inc. Radial finned heat sink
DE10139762A1 (en) 2001-08-13 2003-02-27 Hilti Ag grinding wheel
US6616725B2 (en) 2001-08-21 2003-09-09 Hyun Sam Cho Self-grown monopoly compact grit
US6692547B2 (en) * 2001-08-28 2004-02-17 Sun Abrasives Corporation Method for preparing abrasive articles
KR100442695B1 (en) 2001-09-10 2004-08-02 삼성전자주식회사 Method for manufacturing flip chip package devices with heat spreaders
KR100428947B1 (en) 2001-09-28 2004-04-29 이화다이아몬드공업 주식회사 Diamond Tool
US6394886B1 (en) 2001-10-10 2002-05-28 Taiwan Semiconductor Manufacturing Company, Ltd Conformal disk holder for CMP pad conditioner
US7528413B2 (en) 2001-11-09 2009-05-05 Sumitomo Electric Industries, Ltd. Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it
US6758263B2 (en) 2001-12-13 2004-07-06 Advanced Energy Technology Inc. Heat dissipating component using high conducting inserts
US20030168731A1 (en) 2002-03-11 2003-09-11 Matayabas James Christopher Thermal interface material and method of fabricating the same
US6872127B2 (en) 2002-07-11 2005-03-29 Taiwan Semiconductor Manufacturing Co., Ltd Polishing pad conditioning disks for chemical mechanical polisher
US6899592B1 (en) 2002-07-12 2005-05-31 Ebara Corporation Polishing apparatus and dressing method for polishing tool
WO2004038759A3 (en) 2002-08-23 2004-10-14 Jonathan S Dahm Method and apparatus for using light emitting diodes
JP4216025B2 (en) 2002-09-09 2009-01-28 株式会社リード Abrasive cloth for the dresser and a dressing method for a polishing cloth using the same
US6915796B2 (en) 2002-09-24 2005-07-12 Chien-Min Sung Superabrasive wire saw and associated methods of manufacture
US20050189647A1 (en) 2002-10-11 2005-09-01 Chien-Min Sung Carbonaceous composite heat spreader and associated methods
US20060113546A1 (en) 2002-10-11 2006-06-01 Chien-Min Sung Diamond composite heat spreaders having low thermal mismatch stress and associated methods
US20080019098A1 (en) 2002-10-11 2008-01-24 Chien-Min Sung Diamond composite heat spreader and associated methods
JP2006511098A (en) 2002-10-11 2006-03-30 チエン−ミン・ソン How to carbonaceous heat spreader and related
US7173334B2 (en) 2002-10-11 2007-02-06 Chien-Min Sung Diamond composite heat spreader and associated methods
JP2004146413A (en) 2002-10-22 2004-05-20 Sumitomo Electric Ind Ltd Package for housing semiconductor element and semiconductor device
US20040079033A1 (en) 2002-10-25 2004-04-29 Alex Long Abrasive article and manufacturing method thereof
JP2004142083A (en) 2002-10-28 2004-05-20 Elpida Memory Inc Wafer polishing device and wafer polishing method
US7067903B2 (en) 2002-11-07 2006-06-27 Kabushiki Kaisha Kobe Seiko Sho Heat spreader and semiconductor device and package using the same
JP2004175626A (en) 2002-11-28 2004-06-24 Sumitomo Electric Ind Ltd High thermal conductivity diamond sintered compact, heat sink for mounting semiconductor using the same, and its manufacturing method
JP2004200346A (en) 2002-12-18 2004-07-15 Allied Material Corp Package for accommodating semiconductor device, its manufacturing method, and semiconductor apparatus
US20040192178A1 (en) 2003-03-28 2004-09-30 Barak Yardeni Diamond conditioning of soft chemical mechanical planarization/polishing (CMP) polishing pads
US7367872B2 (en) 2003-04-08 2008-05-06 Applied Materials, Inc. Conditioner disk for use in chemical mechanical polishing
US7014093B2 (en) 2003-06-26 2006-03-21 Intel Corporation Multi-layer polymer-solder hybrid thermal interface material for integrated heat spreader and method of making same
US20050019114A1 (en) 2003-07-25 2005-01-27 Chien-Min Sung Nanodiamond PCD and methods of forming
US20050025973A1 (en) 2003-07-25 2005-02-03 Slutz David E. CVD diamond-coated composite substrate containing a carbide-forming material and ceramic phases and method for making same
US7160178B2 (en) 2003-08-07 2007-01-09 3M Innovative Properties Company In situ activation of a three-dimensional fixed abrasive article
KR200339181Y1 (en) 2003-09-13 2004-01-31 장성만 Diamond electrodeposited conditioner for CMP pad
US20050060941A1 (en) 2003-09-23 2005-03-24 3M Innovative Properties Company Abrasive article and methods of making the same
JP2005262341A (en) 2004-03-16 2005-09-29 Noritake Co Ltd Cmp pad conditioner
US20050260939A1 (en) 2004-05-18 2005-11-24 Saint-Gobain Abrasives, Inc. Brazed diamond dressing tool
US6945857B1 (en) 2004-07-08 2005-09-20 Applied Materials, Inc. Polishing pad conditioner and methods of manufacture and recycling
US7658666B2 (en) 2004-08-24 2010-02-09 Chien-Min Sung Superhard cutters and associated methods
US8393934B2 (en) 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US7384436B2 (en) 2004-08-24 2008-06-10 Chien-Min Sung Polycrystalline grits and associated methods
US7762872B2 (en) 2004-08-24 2010-07-27 Chien-Min Sung Superhard cutters and associated methods
US8622787B2 (en) 2006-11-16 2014-01-07 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US8398466B2 (en) 2006-11-16 2013-03-19 Chien-Min Sung CMP pad conditioners with mosaic abrasive segments and associated methods
US7150677B2 (en) 2004-09-22 2006-12-19 Mitsubishi Materials Corporation CMP conditioner
US7491116B2 (en) * 2004-09-29 2009-02-17 Chien-Min Sung CMP pad dresser with oriented particles and associated methods
US7066795B2 (en) 2004-10-12 2006-06-27 Applied Materials, Inc. Polishing pad conditioner with shaped abrasive patterns and channels
KR100636793B1 (en) 2004-12-13 2006-10-23 이화다이아몬드공업 주식회사 Conditioner for Chemical Mechanical Planarization Pad
US7169029B2 (en) 2004-12-16 2007-01-30 3M Innovative Properties Company Resilient structured sanding article
US7258708B2 (en) 2004-12-30 2007-08-21 Chien-Min Sung Chemical mechanical polishing pad dresser
US7413918B2 (en) 2005-01-11 2008-08-19 Semileds Corporation Method of making a light emitting diode
US20060185836A1 (en) 2005-02-24 2006-08-24 Scott Garner Thermally coupled surfaces having controlled minimum clearance
KR100693251B1 (en) 2005-03-07 2007-03-13 삼성전자주식회사 Pad conditioner for improving removal rate and roughness of polishing pad and chemical mechanical polishing apparatus using the same
US7595507B2 (en) 2005-04-13 2009-09-29 Group4 Labs Llc Semiconductor devices having gallium nitride epilayers on diamond substrates
US20060254154A1 (en) 2005-05-12 2006-11-16 Wei Huang Abrasive tool and method of making the same
US20060258276A1 (en) 2005-05-16 2006-11-16 Chien-Min Sung Superhard cutters and associated methods
US20070060026A1 (en) 2005-09-09 2007-03-15 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US7300338B2 (en) 2005-09-22 2007-11-27 Abrasive Technology, Inc. CMP diamond conditioning disk
US7594845B2 (en) 2005-10-20 2009-09-29 3M Innovative Properties Company Abrasive article and method of modifying the surface of a workpiece
US20070128994A1 (en) 2005-12-02 2007-06-07 Chien-Min Sung Electroplated abrasive tools, methods, and molds
US7494404B2 (en) * 2006-02-17 2009-02-24 Chien-Min Sung Tools for polishing and associated methods
US20070232074A1 (en) * 2006-03-31 2007-10-04 Kramadhati Ravi Techniques for the synthesis of dense, high-quality diamond films using a dual seeding approach
US7771498B2 (en) 2006-05-17 2010-08-10 Chien-Min Sung Superabrasive tools having improved caustic resistance
US7498191B2 (en) * 2006-05-22 2009-03-03 Chien-Min Sung Semiconductor-on-diamond devices and associated methods
US20080271384A1 (en) * 2006-09-22 2008-11-06 Saint-Gobain Ceramics & Plastics, Inc. Conditioning tools and techniques for chemical mechanical planarization
US20080096479A1 (en) 2006-10-18 2008-04-24 Chien-Min Sung Low-melting point superabrasive tools and associated methods
US20080292869A1 (en) 2007-05-22 2008-11-27 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20080296756A1 (en) * 2007-05-30 2008-12-04 Koch James L Heat spreader compositions and materials, integrated circuitry, methods of production and uses thereof
US7791188B2 (en) 2007-06-18 2010-09-07 Chien-Min Sung Heat spreader having single layer of diamond particles and associated methods
WO2009010762A1 (en) 2007-07-19 2009-01-22 Photonstar Led Limited Vertical led with conductive vias
US9011563B2 (en) 2007-12-06 2015-04-21 Chien-Min Sung Methods for orienting superabrasive particles on a surface and associated tools
US20100022174A1 (en) * 2008-07-28 2010-01-28 Kinik Company Grinding tool and method for fabricating the same
US20100104494A1 (en) 2008-10-24 2010-04-29 Meng Yu-Fei Enhanced Optical Properties of Chemical Vapor Deposited Single Crystal Diamond by Low-Pressure/High-Temperature Annealing
KR101501599B1 (en) 2008-10-27 2015-03-11 삼성전자주식회사 Gras how to remove the carbonization catalyst from a graphene sheet and a method for transferring a pen sheet
US20100186479A1 (en) 2009-01-26 2010-07-29 Araca, Inc. Method for counting and characterizing aggressive diamonds in cmp diamond conditioner discs
US20100203811A1 (en) 2009-02-09 2010-08-12 Araca Incorporated Method and apparatus for accelerated wear testing of aggressive diamonds on diamond conditioning discs in cmp
US20100213175A1 (en) 2009-02-22 2010-08-26 General Electric Company Diamond etching method and articles produced thereby
US7892881B2 (en) 2009-02-23 2011-02-22 Raytheon Company Fabricating a device with a diamond layer
US7851819B2 (en) 2009-02-26 2010-12-14 Bridgelux, Inc. Transparent heat spreader for LEDs
US20100212727A1 (en) 2009-02-26 2010-08-26 Ji Ung Lee Apparatus and methods for continuously growing carbon nanotubes and graphene sheets
KR101413030B1 (en) 2009-03-24 2014-07-02 생-고벵 아브라시프 Abrasive tool for use as a chemical mechanical planarization pad conditioner
US20100261419A1 (en) 2009-04-10 2010-10-14 Chien-Min Sung Superabrasive Tool Having Surface Modified Superabrasive Particles and Associated Methods
US20110275288A1 (en) 2010-05-10 2011-11-10 Chien-Min Sung Cmp pad dressers with hybridized conditioning and related methods
CN103299418A (en) 2010-09-21 2013-09-11 铼钻科技股份有限公司 Diamond particle mololayer heat spreaders and associated methods

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US187593A (en) * 1877-02-20 Improvement in emery grinding-wheels
US238946A (en) * 1881-03-15 Heel-restorer
US296756A (en) * 1884-04-15 Car-coupling
USRE20660E (en) * 1938-02-22 Method of coaxing and apparatus
US2307461A (en) * 1928-05-02 1943-01-05 Minnesota Mining & Mfg Sheeted abrasive
US2027307A (en) * 1928-07-30 1936-01-07 Behr Manning Corp Method of coating and apparatus therefor and product
US2027087A (en) * 1928-10-03 1936-01-07 Behr Manning Corp Abrasive sheet and process of making the same
US2318570A (en) * 1930-01-20 1943-05-04 Minnesota Mining & Mfg Manufacture of abrasives
US1854071A (en) * 1930-07-14 1932-04-12 Behr Manning Corp Method of manufacturing abrasives
US1988065A (en) * 1931-09-26 1935-01-15 Carborundum Co Manufacture of open-spaced abrasive fabrics
US2187624A (en) * 1932-10-10 1940-01-16 Carborundum Co Apparatus for the manufacture of coated webs
US2035521A (en) * 1932-10-26 1936-03-31 Carborundum Co Granular coated web and method of making same
US2184348A (en) * 1932-10-27 1939-12-26 Carborundum Co Coating apparatus
US2194253A (en) * 1932-10-27 1940-03-19 Carborundum Co Coating apparatus
US2281558A (en) * 1933-03-06 1942-05-05 Minnesota Mining & Mfg Manufacture of abrasive articles and apparatus therefor
US2075354A (en) * 1935-06-10 1937-03-30 Monier Namee Collapsible game table
US2033991A (en) * 1935-07-09 1936-03-17 Carborundum Co Coating apparatus
US2268663A (en) * 1939-09-19 1942-01-06 J K Smit & Sons Inc Abrasive tool
US2334572A (en) * 1941-12-29 1943-11-16 Carborundum Co Manufacture of abrasive materials
US2612348A (en) * 1949-09-14 1952-09-30 Wheel Trueing Tool Co Diamond set core bit
US2652951A (en) * 1951-03-13 1953-09-22 Esposito Augustus Salt and pepper shaker
US2952951A (en) * 1952-07-28 1960-09-20 Simpson Harry Arthur Abrasive or like materials and articles
US2876086A (en) * 1954-06-21 1959-03-03 Minnesota Mining & Mfg Abrasive structures and method of making
US2725693A (en) * 1954-12-15 1955-12-06 Smith Joseph Leigh Abrasive roll and method of making
US2867086A (en) * 1954-12-20 1959-01-06 Emmett L Haley Portable pressure fluid power devices
US2947608A (en) * 1955-08-29 1960-08-02 Gen Electric Diamond synthesis
US2811960A (en) * 1957-02-26 1957-11-05 Fessel Paul Abrasive cutting body
US3067551A (en) * 1958-09-22 1962-12-11 Bethlehem Steel Corp Grinding method
US3127715A (en) * 1960-04-27 1964-04-07 Christensen Diamond Prod Co Diamond cutting devices
US3146560A (en) * 1960-06-14 1964-09-01 Rexall Drug Chemical Abrasive products
US3121981A (en) * 1960-09-23 1964-02-25 Rexall Drug Chemical Abrasive wheels and method of making the same
US3377411A (en) * 1961-12-04 1968-04-09 Osborn Mfg Co Method of manufacturing grinding wheels and the like
US3276852A (en) * 1962-11-20 1966-10-04 Jerome H Lemelson Filament-reinforced composite abrasive articles
US3293012A (en) * 1962-11-27 1966-12-20 Exxon Production Research Co Process of infiltrating diamond particles with metallic binders
US3440774A (en) * 1963-05-13 1969-04-29 Naradi Narodni Podnik Diamond tool
US3372010A (en) * 1965-06-23 1968-03-05 Wall Colmonoy Corp Diamond abrasive matrix
US3416560A (en) * 1965-08-23 1968-12-17 Bruno Peter Fluid leak monitoring apparatus
US3625666A (en) * 1968-06-19 1971-12-07 Ind Distributors 1946 Ltd Method of forming metal-coated diamond abrasive wheels
US3608134A (en) * 1969-02-10 1971-09-28 Norton Co Molding apparatus for orienting elongated particles
US3631638A (en) * 1969-06-17 1972-01-04 Nippon Toki Kk Process for the manufacture of a grinding stone
US3630699A (en) * 1969-09-02 1971-12-28 Remington Arms Co Inc Method for producing armored saber saws
US3852078A (en) * 1970-12-24 1974-12-03 M Wakatsuki Mass of polycrystalline cubic system boron nitride and composites of polycrystalline cubic system boron nitride and other hard materials, and processes for manufacturing the same
US3905571A (en) * 1971-03-26 1975-09-16 Joseph Lombardo Nursing bottle holder
US3802130A (en) * 1971-05-12 1974-04-09 Edenvale Eng Works And like grinding wheels
US3767371A (en) * 1971-07-01 1973-10-23 Gen Electric Cubic boron nitride/sintered carbide abrasive bodies
US3743489A (en) * 1971-07-01 1973-07-03 Gen Electric Abrasive bodies of finely-divided cubic boron nitride crystals
US3894673A (en) * 1971-11-04 1975-07-15 Abrasive Tech Inc Method of manufacturing diamond abrasive tools
US3819814A (en) * 1972-11-01 1974-06-25 Megadiamond Corp Plural molded diamond articles and their manufacture from diamond powders under high temperature and pressure
US3982358A (en) * 1973-10-09 1976-09-28 Heijiro Fukuda Laminated resinoid wheels, method for continuously producing same and apparatus for use in the method
US4287168A (en) * 1975-01-27 1981-09-01 General Electric Company Apparatus and method for isolation of diamond seeds for growing diamonds
US4028576A (en) * 1975-07-21 1977-06-07 David Wofsey Sonic spark plug
US4273561A (en) * 1975-08-27 1981-06-16 Fernandez Moran Villalobos Hum Ultrasharp polycrystalline diamond edges, points, and improved diamond composites, and methods of making and irradiating same
US4211924A (en) * 1976-09-03 1980-07-08 Siemens Aktiengesellschaft Transmission-type scanning charged-particle beam microscope
US4078906A (en) * 1976-09-29 1978-03-14 Elgin Diamond Products Co., Inc. Method for making an abrading tool with discontinuous diamond abrading surfaces
US4188194A (en) * 1976-10-29 1980-02-12 General Electric Company Direct conversion process for making cubic boron nitride from pyrolytic boron nitride
US4341532A (en) * 1977-01-18 1982-07-27 Daichiku Co., Ltd. Laminated rotary grinder and method of fabrication
US4229186A (en) * 1977-03-03 1980-10-21 Wilson William I Abrasive bodies
US4228214A (en) * 1978-03-01 1980-10-14 Gte Products Corporation Flexible bilayered sheet, one layer of which contains abrasive particles in a volatilizable organic binder and the other layer of which contains alloy particles in a volatilizable binder, method for producing same and coating produced by heating same
US4224380A (en) * 1978-03-28 1980-09-23 General Electric Company Temperature resistant abrasive compact and method for making same
US4211294A (en) * 1978-04-21 1980-07-08 Acker Drill Company, Inc. Impregnated diamond drill bit
US4149881A (en) * 1978-06-28 1979-04-17 Western Gold And Platinum Company Nickel palladium base brazing alloy
US4182628A (en) * 1978-07-03 1980-01-08 GTE Sylvania Products, Inc. Partially amorphous silver-copper-indium brazing foil
US4481016A (en) * 1978-08-18 1984-11-06 Campbell Nicoll A D Method of making tool inserts and drill bits
US4289503A (en) * 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst
US4355489A (en) * 1980-09-15 1982-10-26 Minnesota Mining And Manufacturing Company Abrasive article comprising abrasive agglomerates supported in a fibrous matrix
US4525179A (en) * 1981-07-27 1985-06-25 General Electric Company Process for making diamond and cubic boron nitride compacts
US4712552A (en) * 1982-03-10 1987-12-15 William W. Haefliger Cushioned abrasive composite
US4927619A (en) * 1982-06-25 1990-05-22 Sumitomo Electric Industries, Ltd. Diamond single crystal
US4629373A (en) * 1983-06-22 1986-12-16 Megadiamond Industries, Inc. Polycrystalline diamond body with enhanced surface irregularities
US4617181A (en) * 1983-07-01 1986-10-14 Sumitomo Electric Industries, Ltd. Synthetic diamond heat sink
US4776861A (en) * 1983-08-29 1988-10-11 General Electric Company Polycrystalline abrasive grit
US4828582A (en) * 1983-08-29 1989-05-09 General Electric Company Polycrystalline abrasive grit
US4780274A (en) * 1983-12-03 1988-10-25 Reed Tool Company, Ltd. Manufacture of rotary drill bits
US4565034A (en) * 1984-01-03 1986-01-21 Disco Abrasive Systems, Ltd. Grinding and/or cutting endless belt
US4610699A (en) * 1984-01-18 1986-09-09 Sumitomo Electric Industries, Ltd. Hard diamond sintered body and the method for producing the same
US4632817A (en) * 1984-04-04 1986-12-30 Sumitomo Electric Industries, Ltd. Method of synthesizing diamond
US4547257A (en) * 1984-09-25 1985-10-15 Showa Denko Kabushiki Kaisha Method for growing diamond crystals
US4551195A (en) * 1984-09-25 1985-11-05 Showa Denko Kabushiki Kaisha Method for growing boron nitride crystals of cubic system
US4669522A (en) * 1985-04-02 1987-06-02 Nl Petroleum Products Limited Manufacture of rotary drill bits
US4797241A (en) * 1985-05-20 1989-01-10 Sii Megadiamond Method for producing multiple polycrystalline bodies
US4749514A (en) * 1985-10-12 1988-06-07 Research Development Corp. Of Japan Graphite intercalation compound film and method of preparing the same
US4949511A (en) * 1986-02-10 1990-08-21 Toshiba Tungaloy Co., Ltd. Super abrasive grinding tool element and grinding tool
US4662896A (en) * 1986-02-19 1987-05-05 Strata Bit Corporation Method of making an abrasive cutting element
US4680199A (en) * 1986-03-21 1987-07-14 United Technologies Corporation Method for depositing a layer of abrasive material on a substrate
US4866888A (en) * 1986-04-17 1989-09-19 Sumitomo Electric Industries, Ltd. Wire incrusted with abrasive grain
US4943488A (en) * 1986-10-20 1990-07-24 Norton Company Low pressure bonding of PCD bodies and method for drill bits and the like
US4770907A (en) * 1987-10-17 1988-09-13 Fuji Paudal Kabushiki Kaisha Method for forming metal-coated abrasive grain granules
US5022895A (en) * 1988-02-14 1991-06-11 Wiand Ronald C Multilayer abrading tool and process
US4916869A (en) * 1988-08-01 1990-04-17 L. R. Oliver & Company, Inc. Bonded abrasive grit structure
US4849602A (en) * 1988-08-12 1989-07-18 Iscar Ltd. Method for fabricating cutting pieces
US4883500A (en) * 1988-10-25 1989-11-28 General Electric Company Sawblade segments utilizing polycrystalline diamond grit
US4923490A (en) * 1988-12-16 1990-05-08 General Electric Company Novel grinding wheels utilizing polycrystalline diamond or cubic boron nitride grit
US4925457B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Method for making an abrasive tool
US4925457A (en) * 1989-01-30 1990-05-15 Dekok Peter T Abrasive tool and method for making
US4908046A (en) * 1989-02-14 1990-03-13 Wiand Ronald C Multilayer abrading tool and process
US4945686A (en) * 1989-02-14 1990-08-07 Wiand Ronald C Multilayer abrading tool having an irregular abrading surface and process
US4954139A (en) * 1989-03-31 1990-09-04 The General Electric Company Method for producing polycrystalline compact tool blanks with flat carbide support/diamond or CBN interfaces
US5011513A (en) * 1989-05-31 1991-04-30 Norton Company Single step, radiation curable ophthalmic fining pad
US4968326A (en) * 1989-10-10 1990-11-06 Wiand Ronald C Method of brazing of diamond to substrate
US5000273A (en) * 1990-01-05 1991-03-19 Norton Company Low melting point copper-manganese-zinc alloy for infiltration binder in matrix body rock drill bits

Also Published As

Publication number Publication date Type
US8531026B2 (en) 2013-09-10 grant
CN103299418A (en) 2013-09-11 application
WO2012040373A3 (en) 2012-06-21 application
WO2012040374A2 (en) 2012-03-29 application
US20120241943A1 (en) 2012-09-27 application
US8777699B2 (en) 2014-07-15 grant
US20120244790A1 (en) 2012-09-27 application
US20140235018A1 (en) 2014-08-21 application
WO2012040373A2 (en) 2012-03-29 application
CN103221180A (en) 2013-07-24 application
WO2012040374A3 (en) 2012-07-05 application

Similar Documents

Publication Publication Date Title
US7044990B2 (en) Vitrified bond tool and method of manufacturing the same
US3517464A (en) Method of making abrasive tools by electro-deposition
US6915796B2 (en) Superabrasive wire saw and associated methods of manufacture
US20060073774A1 (en) CMP pad dresser with oriented particles and associated methods
US5980678A (en) Patterned abrasive material and method
US4539018A (en) Method of manufacturing cutter elements for drill bits
EP1371451A1 (en) Abrasive tools with precisely controlled abrasive array and method of fabrication
US5203881A (en) Abrasive sheet and method
USRE35812E (en) Bonded abrasive grit structure
US6537140B1 (en) Patterned abrasive tools
US6190240B1 (en) Method for producing pad conditioner for semiconductor substrates
US7198553B2 (en) Corrosion resistant abrasive article and method of making
US5380390A (en) Patterned abrasive material and method
US20040079033A1 (en) Abrasive article and manufacturing method thereof
US4968326A (en) Method of brazing of diamond to substrate
US6540597B1 (en) Polishing pad conditioner
US5842912A (en) Apparatus for conditioning polishing pads utilizing brazed diamond technology
US20050215073A1 (en) Wafer supporting member
US6371838B1 (en) Polishing pad conditioning device with cutting elements
US6096107A (en) Superabrasive products
US20090145045A1 (en) Methods for Orienting Superabrasive Particles on a Surface and Associated Tools
US6884155B2 (en) Diamond grid CMP pad dresser
US20100022174A1 (en) Grinding tool and method for fabricating the same
US5131924A (en) Abrasive sheet and method
US20020182401A1 (en) Pad conditioner with uniform particle height