US20150053860A1 - Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor - Google Patents

Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor Download PDF

Info

Publication number
US20150053860A1
US20150053860A1 US14/501,983 US201414501983A US2015053860A1 US 20150053860 A1 US20150053860 A1 US 20150053860A1 US 201414501983 A US201414501983 A US 201414501983A US 2015053860 A1 US2015053860 A1 US 2015053860A1
Authority
US
United States
Prior art keywords
nanowire
substrate
wavelengths
layer
light detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/501,983
Inventor
Peter Duane
Young-June Yu
Munib Wober
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zena Technologies Inc
Original Assignee
Zena Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/945,492 priority Critical patent/US9515218B2/en
Priority to US14/501,983 priority patent/US20150053860A1/en
Application filed by Zena Technologies Inc filed Critical Zena Technologies Inc
Assigned to Zena Technologies, Inc. reassignment Zena Technologies, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUANE, PETER, WOBER, MUNIB, YU, YOUNG-JUNE
Publication of US20150053860A1 publication Critical patent/US20150053860A1/en
Priority to US14/632,739 priority patent/US9601529B2/en
Priority to US14/704,143 priority patent/US20150303333A1/en
Priority to US14/705,380 priority patent/US9337220B2/en
Priority to US15/057,153 priority patent/US20160178840A1/en
Priority to US15/082,514 priority patent/US20160211394A1/en
Priority to US15/090,155 priority patent/US20160216523A1/en
Priority to US15/093,928 priority patent/US20160225811A1/en
Priority to US15/149,252 priority patent/US20160254301A1/en
Priority to US15/225,264 priority patent/US20160344964A1/en
Assigned to WU, XIANHONG reassignment WU, XIANHONG SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Assigned to HABBAL, FAWWAZ reassignment HABBAL, FAWWAZ SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Assigned to PILLSBURY WINTHROP SHAW PITTMAN LLP reassignment PILLSBURY WINTHROP SHAW PITTMAN LLP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zena Technologies, Inc.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less

Definitions

  • the embodiments relate to manufacturing light detecting devices such as a photodiode (PD) comprising of a nanowire grown on a back-side-illuminated image sensor.
  • PD photodiode
  • An image sensor has a large number of identical sensor elements (pixels), generally greater than 1 million, in a Cartesian (square) grid.
  • the distance between adjacent pixels is called the pitch (p).
  • the area of a pixel is p 2 .
  • the area of the photosensitive element i.e., the area of the pixel that is sensitive to light for conversion to an electrical signal, is normally only about 20% to 30% of the overall surface area of the pixel.
  • RGBGB red, green, and blue filters
  • CMOS Complementary metal-oxide semiconductor
  • CIS Complementary metal-oxide semiconductor
  • IC integrated circuits
  • BSI back-side-illuminated
  • CMOS image sensors Smaller pixels result in higher resolution, smaller devices, and lower power and cost.
  • CMOS image sensors should be designed without degrading performance and image quality. As smaller and smaller pixels are fabricated on CMOS image sensors, however, the area of the photosensitive region becomes smaller thus leading to image quality deteriorates.
  • BSI CIS Backside Illumination (BSI) Architecture next for CMOS Image Sensors,” Semiconductor International, Aug. 3, 2008.
  • OmniVision is an example of such companies. OmniVision announced in May 2008 that it had developed the OmniBSITM technology that involves turning the image sensor upside down and applying the color filters and micro lenses to the backside of the pixels so that the sensor can collect light through the area that has no circuitry, i.e. the backside.
  • the reason for the better performance of the BSI is higher fill factor, i.e. the amount of light that can be collected in a single pixel.
  • the various metal layers on top of a front-illuminated sensor limit the light that can be collected in a pixel. As pixel sizes get smaller, the fill factor gets worse.
  • BSI provides the most direct path for light to travel into the pixel, avoiding light blockage by the metal interconnect and dielectric layers on the top-side of the sensor die (see FIG. 1 ; source: OmniVision).
  • the FSI pixel is a front side illuminated pixel while the BSI pixel is a back-side illuminated pixel. Note that as shown in FIG. 1 , the terms back and front in BSI and FSI relates to the side from where the pixel is illuminated with relation to the side where the various metal layers are located.
  • OmniVision's BSI CMOS sensor has a pixel size of 0.9-1.4 ⁇ m for an 8-megapixel product.
  • Sony announced a BSI technology for CMOS sensors for 5-Mpixel camcorders or digital cameras with 1.75 ⁇ m CMOS pixel technology.
  • QE quantum efficiency
  • ST Micro's technology is based on SOI, wafer bonding and thinning technologies.
  • a passivation layer and subsequent oxide wafer-bonding layer WBL are deposited.
  • the WBL is planarized and a support wafer is bonded to the processed wafer, the CIS wafer is then thinned.
  • Sarnoff (now a subsidiary of SRI International) has also announced entry into the CIS technology arena.
  • Sarnoff introduced Ultra-SenseTM, a thinning technology that they have developed for high-performance, SOI based, back-illuminated image sensors. After processes are completed on the frontside of the CIS wafer, the wafer backside is thinned.
  • Sarnoff indicated that its backside thinning process using SOI wafers gives better control of the thinning process that improves pixel quality, lowers cost and improves the yield.
  • the image sensors use of RBG filters such that two of the components of light are filtered out for each pixel using a filter.
  • the red pixel has a filter that absorbs green and blue light, only allowing red light to pass to the sensor.
  • the photosensitive element such as a photodiode and converted into electrons.
  • the embodiments herein relate to a method comprising defining a local catalyst spot on a back side of a substrate having a front side and the back side, growing a nanowire from the local catalyst spot, and forming a nanostructured waveguide, wherein the back-side of the substrate is exposed to an incoming source of radiation.
  • the substrate comprises a Si substrate and the nanowire is disposed on or within the Si substrate.
  • the defining the local catalyst spot is performed by using a lithography method.
  • the lithography method comprises an electron beam lithography.
  • the growing the nanowire from the local catalyst spot comprises selecting growth parameters for a catalytic wire growth.
  • the method further comprises growing different concentric layers around the nanowire.
  • the different concentric layers comprise cladding layers.
  • the method further comprises forming contacts on the nanowire.
  • the contacts are connected to the substrate.
  • the method further comprises placing an optical coupler on top of the nanostructured waveguide to increase radiation coupling to the nanostructured waveguide, optionally wherein the optical coupler is electrically conductive.
  • Another illustrative embodiment relates to a method comprising forming a nanostructured waveguide comprising a nanowire on a substrate having a front side and a back-side that is exposed to incoming radiation and manufacturing a device comprising the nanostructured waveguide, the device comprising the nanowire disposed on or within the substrate and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the radiation of wavelengths up to the selective wavelength transmitted through the nanowire.
  • the nanowire is not transparent and disposed within a cavity in the substrate, the front side is not exposed to the incoming radiation, and the image sensing circuit is on or within a layer on the front-side of the substrate.
  • the device does not include a color filter nor infra-red filter.
  • the nanowire comprises a semiconductor.
  • the device can further comprise, for example, a lens structure or an optical coupler over the nanowire.
  • the lens structure or the optical coupler is operably coupled to the nanowire.
  • the device can further comprise, for example, an anti-reflective layer disposed on the substrate.
  • the active element is configured to be a photodiode, a charge storage capacitor, or combinations thereof.
  • the device is an image sensor.
  • the selective wavelength is a function of the diameter of the nanowire.
  • the nanowire is configured to convert energy of the electromagnetic radiation transmitted through the nanowire and to generate electron hole-pairs (excitons).
  • the nanowire comprises a pn or pin junction that is configured to detect the excitons generated in the nanowire.
  • the device can further comprise, for example, an insulator layer around the nanowire and a metal layer around the insulator layer to form a capacitor that is configured to collect the excitons generated in the nanowire and store charge in the capacitor.
  • the device can further comprise, for example, metal contacts that connect to the metal layer and nanowire to control and detect the charge stored in the capacitor.
  • the device can further comprise, for example, a cladding.
  • the cladding is configured to be a channel to transmit the wavelengths of the electromagnetic radiation beam that do not transmit through the nanowire.
  • the device can further comprise, for example, a cladding.
  • the cladding comprises a passive waveguide.
  • the device can further comprise, for example, a peripheral photosensitive element.
  • the peripheral photosensitive element is operably coupled to the cladding.
  • cladding comprises more than one layers.
  • the more than one layers have indices of refraction consecutively smaller than a index of refraction the nanowire.
  • the peripheral photosensitive element is located on or within a substrate.
  • the lens structure or the optical coupler comprises a first opening and a second opening with the first opening being larger than the second opening, and a connecting surface extending between the first and second openings.
  • the connecting surface comprises a reflective surface.
  • the device can further comprise, for example, a color or IR filter.
  • Another illustrative embodiment relates to a method comprising forming a compound light detector comprising forming at least two different devices, the device comprising a substrate having a front side and a back-side that is exposed to incoming radiation, a waveguide comprising a nanowire disposed on or within the substrate and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths of the incoming radiation up to a selective wavelength and an active element to detect the wavelengths of the incoming radiation up to the selective wavelength transmitted through the nanowire, and the compound light detector is configured to reconstruct a spectrum of wavelengths of an electromagnetic radiation beam.
  • the at least two different devices have nanowires having different diameters.
  • the compound light detector can further comprise, for example, a cladding surrounding the nanowire and of one or more different materials.
  • the cladding permits electromagnetic radiation of wavelengths beyond the selective wavelength to remains within the cladding and be transmitted to a peripheral photosensitive element.
  • a plurality of light detectors are arranged on a regular tessellation, a square lattice, an hexagonal lattice, or in a different lattice arrangement.
  • the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof.
  • the first device comprises a core of a different diameter than that of the second device and the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof.
  • the compound light detector is configured to resolve black and white or luminescence information contained in the electromagnetic radiation beam.
  • the compound light detector is configured to detect energies of the electromagnetic radiation of four different ranges of wavelengths.
  • the energies of the electromagnetic radiation of the four different ranges of wavelengths are combined to construct red, green and blue colors.
  • At least some of the at least one of the devices does not include a color or infra-red filter.
  • Yet another illustrative embodiment relates to a method comprising forming a waveguide comprising forming at least one upstanding nanowire protruding from a substrate and forming a pn-junction or a pin junction contributing to the formation of an active region to absorb light.
  • a shell-like structure encloses the nanowire or portion thereof.
  • the nanowire has a first effective refractive index, n w and a material surrounding at least a portion of the nanowire to form a cladding having a second effective refractive index, n c , and the first refractive index is larger than the second refractive index, n w >n c configured to create waveguiding properties of the waveguide.
  • the waveguide forms a defined angle with the substrate and the defined angle between nanowire and substrate is selected to create a vertical or close to vertical orientation.
  • the waveguide is provided with at least one cladding layer.
  • the one cladding layer is an optical cladding layer configured to enhance wave-guiding properties of the waveguide.
  • a plurality of cladding layers provide a graded refractive index towards a boundary of the waveguide to enhance wave-guiding properties of the waveguide.
  • the cladding layer comprises a metal to create electrical connection, and/or reduce the cross talk between the adjacent pixels.
  • a diameter of the waveguide is larger than ⁇ /2n w , wherein, ⁇ is the wavelength of the confined light and n w is the refractive index of the waveguide.
  • the active region is arranged within the nanowire.
  • the pn junction associated with the active region is formed by doping the silicon nanowire.
  • the nanowire is arranged to direct light in downward direction towards the substrate.
  • the waveguide can further comprise, for example, a planar photodetector and a plurality of nanowires arranged in an upstanding configuration on the planar photodetector surface and in epitaxial connection with the planar photodetector layer.
  • FIG. 1 shows an illustrative embodiment of a cross sectional view of a conventional front illumination sensor and a back-illuminated sensor.
  • FIG. 2 shows an illustrative embodiment of a cross-sectional view of a back-illuminated image sensor.
  • FIG. 3A shows an illustrative embodiment of a nanostructured waveguide with dimensions therein.
  • FIGS. 3B and 3C show illustrative embodiments of a cross-sectional view of a waveguide structure, such as a nanowire, containing backside-illuminated image sensor with nanowires located on the backside of the image sensor.
  • FIGS. 4A-B shows illustrative embodiments of different back side illuminated image sensors having photodiodes therein.
  • FIGS. 4C-M shows different steps for the formation of backside-illuminated image sensors.
  • VPG 1 (VP Gate 1) The first vertical photogate VPG 2 (VP Gate 1) The second vertical photogate TX Gate Transfer gate FD Transfer drain RG Reset gate RD Reset drain Sub Substrate VDD Positive transistor voltage Vout Output voltage NW (nw) Nanowire De Dielectric layer PG Photogate I (i) Current n+, n ⁇ Semiconducting material with excess donors, n+ is heavily doped, n ⁇ is lightly doped P+, p ⁇ Semiconducting material with excess acceptors, p+ is heavily doped, p ⁇ is lightly doped
  • Nanowire refers to a structure that has a thickness or diameter of the order of nanometers, for example, 100 nanometers or less and an unconstrained length.
  • Nanowires can include metallic (e.g., Ni, Pt, Au), semiconducting (e.g., Si, InP, GaN, etc.), and insulating (e.g., SiO 2 ,TiO 2 ) materials.
  • Molecular nanowires are composed of repeating molecular units either organic or inorganic. Nanowires can exhibit aspect ratios (length-to-width ratio) of 1000 or more. As such they can be referred to as 1-dimensional (1D) materials. Nanowires can have many interesting properties that are not seen in bulk or 3-D materials.
  • nanowires can have discrete values of electrical and optical conductance.
  • examples of nanowires include inorganic molecular nanowires (Mo 6 S 9-x I x , Li 2 Mo 6 Se 6 ), which can have a diameter of the range of few nanometers, and can be hundreds of micrometers long.
  • semiconductors such as InP, Si, GaN, etc., dielectrics (e.g. SiO 2 ,TiO 2 ), or metals (e.g. Ni, Pt).
  • excitons refer to electron-hole pairs.
  • An active element is any type of circuit component with the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). Components incapable of controlling current by means of another electrical signal are called passive elements. Resistors, capacitors, inductors, transformers, and even diodes are all considered passive elements. Active elements include in embodiments disclosed herein, but are not limited to, an active waveguide, transistors, silicon-controlled rectifiers (SCRs), light emitting diodes, and photodiodes.
  • a waveguide is a system or material designed to confine and direct electromagnetic radiation of selective wavelengths in a direction determined by its physical boundaries.
  • the selective wavelength is a function of the diameter of the waveguide.
  • An active waveguide is a waveguide that has the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). This ability of the active waveguide, for example, is one reason why the active waveguide can be considered to be “active” and within the genus of an active element.
  • An optical pipe is an element to confine and transmit an electromagnetic radiation that impinges on the optical pipe.
  • the optical pipe can include a core and a cladding.
  • the core can be a nanowire.
  • the optical pipe can be configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and the cladding, wherein the core is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core.
  • a core and a cladding are generally complimentary components of the optical pipe and are configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and cladding.
  • a photogate is a gate used in an optoelectronic device.
  • the photogate comprises a metal-oxide-semiconductor (MOS) structure.
  • MOS metal-oxide-semiconductor
  • the photogate accumulates photo generated charges during the integration time of the photodiode and controls the transfer of charges when integration is over.
  • a photodiode comprises a pn junction, however, a photogate can be placed on any type semiconductor material.
  • a vertical photogate is a new structure. Normally, photogates are placed on a planar photodiode devices. In a nanowire device, however, the photogate can be formed in a vertical direction. That is, standing up covering the lateral surface of the nanowire.
  • a transfer gate is a gate of a switch transistor used in a pixel. The transfer gate's role is to transfer the charges from one side of a device to another. In some embodiments, the transfer gate is used to transfer the charges from the photodiode to the sensing node (or floating diffusion).
  • a reset gate is a gate used for resetting a device. In some embodiments, the device is the sense node which is formed by an n+ region. Reset means to restore to original voltage level set by a certain voltage. In some embodiments, the voltage of the reset drain (RD) is the voltage used as a reset level.
  • a floating capacitor is a capacitor which floats relative to the substrate.
  • a capacitor consists of two electrodes and an insulator between them.
  • both of the electrodes are connected to other device or signal lines.
  • one of the electrodes may not be connected to a structure.
  • This unconnected, isolated area forms the floating capacitor with respect to the substrate.
  • the isolated area comprises one electrode which is floating.
  • the substrate comprises the other electrode which is normally connected to the ground.
  • a depletion region between them comprises the insulator.
  • a global connection is a connection in which many branch nodes are connected to a single line electrically so that one signal line can control the multiple branched devices at the same time.
  • a source-follower amplifier is a common drain transistor amplifier. That is, a transistor amplifier whose source node follows the same phase as the gate node. The gate terminal of the transistor serves as the input, the source is the output, and the drain is common to both (input and output).
  • a shallow layer is a doped layer that is physically located near the surface of the substrate. For example, a p+ layer may be intentionally formed shallow by using low energy when ion implantation is used. Normally the junction depth of a shallow layer is 0.01 ⁇ m ⁇ 0.2 ⁇ m. In contrast, a deep layer may be as deep as a few ⁇ m to tens of ⁇ m.
  • An intrinsic semiconductor also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present.
  • the number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities.
  • the conductivity of intrinsic semiconductors can be due to crystal defects or to thermal excitation.
  • the number of electrons in the conduction band is equal to the number of holes in the valence band.
  • Shallow trench isolation also known as ‘Box Isolation Technique’, is an integrated circuit feature which prevents electrical current leakage between adjacent semiconductor device components.
  • STI is generally used on CMOS process technology nodes of 250 nanometers and smaller. Older CMOS technologies and non-MOS technologies commonly use isolation based on LOCal Oxidation of Silicon (LOCOS).
  • LOCOS LOCal Oxidation of Silicon
  • STI is typically created early during the semiconductor device fabrication process, before transistors are formed. Steps of the STI process include etching a pattern of trenches in the silicon, depositing one or more dielectric materials (such as silicon dioxide) to fill the trenches, and removing the excess dielectric using a technique such as chemical-mechanical planarization.
  • a plurality of nanowires are arranged on a regular tessellation.
  • a coupler that may take the shape of a micro lens efficiently can be located on the optical pipe to collect and guide the electromagnetic radiation into the optical pipe.
  • the optical pipe can comprise of a nanowire core of refractive index n 1 surrounded by a cladding of refractive index n 2 .
  • the optical pipe of the embodiments of this invention it is possible to eliminate pigmented color filters that absorb about 2 ⁇ 3 of the light that impinges on the image sensor.
  • the core functions as an active waveguide and the cladding of the optical pipe can function as a passive waveguide with a peripheral photosensitive element surrounding the core to detect the electromagnetic radiation transmitted through the passive waveguide of the cladding.
  • Passive waveguides do not absorb light like color filters, but can be designed to selectively transmit selected wavelengths.
  • a waveguide whether passive or active, has a cutoff wavelength that is the lowest frequency that the waveguide can propagate.
  • the diameter of the semiconductor nanowire of the core serves as the control parameter for the cutoff wavelength of the nanowire.
  • the nanowire can also serve as a photodiode by absorbing the confined light and generating electron-hole pairs (excitons).
  • Excitons so generated can be detected by using at least one of the following two designs: (1) A core is made up of a three layers, semiconductor, insulator and metal thus forming a capacitor to collect the charge generated by the light induced carriers. Contacts are made to the metal and to the semiconductor to control and detect the stored charge.
  • the core can be formed by growing a nanowire and depositing an insulator layer and a metal layer surrounding the nanowire.
  • the PIN junction in the core can be formed by growing a nanowire and doping the nanowire core while it is growing as a PIN junction and contacting it at the appropriate points using the various metal layers that are part of any device. ITO also can be used as a electrically conductive material.
  • the photosensitive elements of the embodiments typically comprise a photodiode, although not limited to only a photodiode.
  • the photodiode is doped to a concentration from about 1 ⁇ 10 16 to about 1 ⁇ 10 18 dopant atoms per cubic centimeter, while using an appropriate dopant.
  • the image sensor can have different stacking layers.
  • the stacking layers can comprise dielectric material-containing and metal-containing layers.
  • the dielectric materials include as but not limited to oxides, nitrides and oxynitrides of silicon having a dielectric constant from about 4 to about 20, measured in vacuum. Also included, and also not limiting, are generally higher dielectric constant gate dielectric materials having a dielectric constant from about 20 to at least about 100. These higher dielectric constant dielectric materials may include, but are not limited to hafnium oxides, hafnium silicates, titanium oxides, barium-strontium titanates (BSTs) and lead-zirconate titanates (PZTs).
  • the dielectric material-containing layers may be formed using methods appropriate to their materials of composition.
  • methods include thermal or plasma oxidation or nitridation methods, chemical vapor deposition methods (including atomic layer chemical vapor deposition methods) and physical vapor deposition methods.
  • the metal-containing layers can function as electrodes.
  • Non-limiting examples include certain metals, metal alloys, metal silicides and metal nitrides, as well as doped polysilicon materials (i.e., having a dopant concentration from about 1 ⁇ 10 18 to about 1 ⁇ 10 22 dopant atoms per cubic centimeter) and polycide (i.e., doped polysilicon/metal silicide stack) materials.
  • the metal-containing layers may be deposited using any of several methods. Non-limiting examples include chemical vapor deposition methods (also including atomic layer chemical vapor deposition methods) and physical vapor deposition methods.
  • the metal-containing layers can comprise a doped polysilicon material (having a thickness typically in the range 1000 to 1500 Angstrom.
  • the dielectric and metallization stack layer comprises a series of dielectric passivation layers. Also embedded within the stack layer are interconnected metallization layers. Components for the pair of interconnected metallization layers include, but are not limited to contact studs, interconnection layers, interconnection studs.
  • the individual metallization interconnection studs and metallization interconnection layers that can be used within the interconnected metallization layers may comprise any of several metallization materials that are conventional in the semiconductor fabrication art. Non-limiting examples include certain metals, metal alloys, metal nitrides and metal silicides. Most common are aluminum metallization materials and copper metallization materials, either of which often includes a barrier metallization material, as discussed in greater detail below. Types of metallization materials may differ as a function of size and location within a semiconductor structure. Smaller and lower-lying metallization features typically comprise copper containing conductor materials. Larger and upper-lying metallization features typically comprise aluminum containing conductor materials.
  • the series of dielectric passivation layers may also comprise any of several dielectric materials that are conventional in the semiconductor fabrication art. Included are generally higher dielectric constant dielectric materials having a dielectric constant from 4 to about 20. Non-limiting examples that are included within this group are oxides, nitrides and oxynitrides of silicon. For example, the series of dielectric layers may also comprise generally lower dielectric constant dielectric materials having a dielectric constant from about 2 to about 4.
  • hydrogels such as silicon hydrogel, aerogels like silicon Al, or carbon aerogel, silsesquioxane spin-on-glass dielectric materials, fluorinated glass materials, organic polymer materials, and other low dielectric constant materials such as doped silicon dioxide (e.g., doped with carbon, fluorine), and porous silicon dioxide.
  • the dielectric and metallization stack layer can comprise interconnected metallization layers and discrete metallization layers comprising at least one of copper metallization materials and aluminum metallization materials.
  • the dielectric and metallization stack layer also comprises dielectric passivation layers that also comprise at least one of the generally lower dielectric constant dielectric materials disclosed above.
  • the dielectric and metallization stack layer can have an overall thickness from about 1 to about 4 microns. It may comprise from about 2 to about 4 discrete horizontal dielectric and metallization component layers within a stack.
  • the layers of the stack layer can be patterned to form patterned dielectric and metallization stack layer using methods and materials that are conventional in the semiconductor fabrication art, and appropriate to the materials from which are formed the series of dielectric passivation layers.
  • the dielectric and metallization stack layer may not be patterned at a location that includes a metallization feature located completely therein.
  • the dielectric and metallization stack layer may be patterned using wet chemical etch methods, dry plasma etch methods or aggregate methods thereof. Dry plasma etch methods as well as e-beam etching if the dimension needs to be small, are generally preferred insofar as they provide enhanced sidewall profile control when forming the series of patterned dielectric and metallization stack layer.
  • a planarizing layer may comprise any of several optically transparent planarizing materials. Non-limiting examples include spin-on-glass planarizing materials and organic polymer planarizing materials.
  • the planarizing layer can extend above the optical pipe such that the planarizing layer can have a thickness sufficient to at least planarize the opening of the optical pipe, thus providing a planar surface for fabrication of additional structures within the CMOS image sensor.
  • the planarizing layer can be patterned to form the patterned planarizing layer.
  • the series of color filter layers located upon the patterned planarizing layer.
  • the series of color filter layers would typically include either the primary colors of red, green and blue, or the complementary colors of yellow, cyan and magenta.
  • the series of color filter layers would typically comprise a series of dyed or pigmented patterned photoresist layers that are intrinsically imaged to form the series of color filter layers.
  • the series of color filter layers may comprise dyed or pigmented organic polymer materials that are otherwise optically transparent, but extrinsically imaged while using an appropriate mask layer.
  • Alternative color filter materials may also be used.
  • the filter can also be filter for a black and white, or IR sensors wherein the filter cuts off visible and pass IR predominantly.
  • the spacer layer can be one or more layers made of any material that physically, but not optically, separates the stacking layers from a micro lens on the top of the optical pipe near the incident electromagnetic radiation beam receiving end of the image sensor.
  • the function of the micro lens or in more general terms is to be a coupler, i.e., to couple the incident electromagnetic radiation beam into the optical pipe. If one were to choose a micro lens as the coupler in this embodiment, its distance from the optical pipe would be much shorter than to the photosensitive element, so the constraints on its curvature are much less stringent, thereby making it implementable with existing fabrication technology.
  • the spacer layer can be formed of a dielectric spacer material or a laminate of dielectric spacer materials, although spacer layers formed of conductor materials are also known.
  • Oxides, nitrides and oxynitrides of silicon are commonly used as dielectric spacer materials. Oxides, nitrides and oxynitrides of other elements such as ITO (Indium tin oxide) are not excluded.
  • the dielectric spacer materials may be deposited using methods analogous, equivalent or identical to the methods described above.
  • the spacer layer can be formed using a blanket layer deposition and etchback method that provides the spacer layer with the characteristic inward pointed shape.
  • the micro lens may comprise any of several optically transparent lens materials that are known in the art. Non-limiting examples include optically transparent inorganic materials, optically transparent organic materials and optically transparent composite materials. Most common are optically transparent organic materials.
  • the lens layers can be formed incident to patterning and reflow of an organic polymer material that has a glass transition temperature lower than the series of color filter layers, if present, or the patterned planarizing layer.
  • the high index material in the core can, for example, be silicon nitride having a refractive index of about 2.0.
  • the lower index cladding layer material can, for example, be a glass, for example a material selected from Table I, having a refractive index about 1.5.
  • the core can be Silicon having refractive index in the range 5-6, and the cladding can be silicon oxide having a refractive index of about 1.5.
  • the high index material in the core can, be surrounded by a cladding having two or more cladding have different materials of consecutively lesser index of refraction.
  • a first layer of silicon nitride can be used, followed by another layer of silicon oxides. In this configuration, the indices are reduced from 5-6 in the core to about 2 in the first layer and then to about 1.5 in the second cladding layer.
  • the two or more concentric dielectric layers perform a light guiding function.
  • one aspect of this embodiment is the absence of a metal layer.
  • the successive concentric dielectric layers of the two or more concentric dielectric layers have a lower index of refraction with increasing radius. That is, concentric dielectric layers with a larger radius have a lower index of refraction than concentric dielectric layers having a smaller radius.
  • adjacent concentric dielectric layers have alternating higher and lower indexes of refraction.
  • the waveguiding nanowire structure includes a high refractive index core with one or more surrounding cladding with refractive indexes less than that of the core.
  • the structure has either a circular symmetry, or close to being of circular symmetry.
  • the materials of the different members of the nanostructured wire are such that the nanowire will have good waveguiding properties with respect to the surrounding materials, i.e. the refractive index of the material in the nanowire should be larger than the refractive indices of the surrounding materials. If the nanowire has a first refracting index, n w , the material surrounding the nanowire typically cover one or more layer graded refractive index, for example, n 3 ⁇ n 2 ⁇ n 1 ⁇ n w .
  • the shape of the optical pipe can be different for different embodiments.
  • the optical pipe can cylindrical, that is, the diameter of the pipe remains the substantially the same throughout the length of the optical pipe.
  • the optical pipe can conical, where the upper diameter of the cross sectional area of the optical pipe can be greater or smaller than the lower diameter of the cross sectional area of the optical pipe.
  • the terms “upper” and “lower” refer to the ends of the optical pipe located closer to the incident electromagnetic radiation beam receiving and exiting ends of the image sensor.
  • Other shapes include a stack of conical sections.
  • Table I lists several different glasses and their refractive indices. These glasses can be used for the manufacture of the optical pipe such that refractive index of the core is higher than that of the cladding.
  • the image sensors of the embodiments can be fabricated using different transparent glasses having different refractive indices without the use of pigmented color filters.
  • an array of image sensors can be configured to obtain complementary colors having wavelengths of electromagnetic radiation separated at a cutoff wavelength in the core and cladding of each optical pipe of every image sensor.
  • the complementary colors are generally two colors when mixed in the proper proportion produce a neutral color (grey), white, or black.
  • This configuration also enables the capture and guiding of most of the electromagnetic radiation incident beam impinging on the micro lens to the photosensitive elements (i.e., photodiodes) located at the lower end of the optical pipe.
  • Two adjacent or substantially adjacent image sensors with different color complementary separation can provide complete information to reconstruct a full color scene according to embodiments described herein.
  • This technology of embodiments disclosed herein can further supplant pigment based color reconstruction for image sensing which suffers from the inefficiency of discarding (through absorption) the non-selected color for each pixel.
  • Each physical pixel of a device containing an image sensor of the embodiments disclosed herein can have two outputs representing the complementary colors, e.g., cyan (or red) designated as output type 1 and yellow (or blue) designated as output type 2. These outputs would be arranged in tessellations as follows:
  • Each physical pixel can have complete luminance information obtained by combining its two complementary outputs.
  • the two complementary outputs can be measured by the photodiode in the optical pipe and by one or more photodiodes in the substrate.
  • the same image sensor can be used either as a full resolution black and white or full color sensor.
  • the full spectrum of wavelengths of the incident electromagnetic radiation beam (e.g., the full color information of the incident light) can be obtained by the appropriate combination of two adjacent pixels either horizontally or vertically as opposed to 4 pixels for the conventional Bayer pattern.
  • each pixel containing an image sensor of the embodiments disclosed herein can be as small as 1 micron or less in pitch and yet have sufficient sensitivity. This can open the way for contact imaging of small structures such as biological systems.
  • An embodiment of a compound pixel comprises a system of two pixels, each having a core of a different diameter such that cores have diameters d 1 and d 2 for directing light of different wavelengths (for example, ⁇ G , ⁇ B or ⁇ R ).
  • the two cores can also serve as photodiodes to capture light of wavelengths ⁇ B , ⁇ G , or ⁇ R .
  • the claddings of the two image sensors serve for transmitting the light of wave length ⁇ w-B , ⁇ w-G or ⁇ w-R .
  • the light of wave length ⁇ w-B , ⁇ w-G or ⁇ w-R transmitted through the cladding is detected by the peripheral photosensitive elements surrounding the cores.
  • (w) refers to the wavelength of white light. Signals from the 4 photodiodes (two located in the cores and two located in or on the substrate surrounding the core) in the compound pixel are used to construct color.
  • the embodiments include a nanostructured photodiode (PD) according to the embodiments comprise a substrate and an upstanding nanowire protruding from the substrate.
  • PD nanostructured photodiode
  • a pn-junction giving an active region to detect light may be present within the structure.
  • the nanowire, a part of the nanowire, or a structure in connection with the nanowire, forms a waveguide directing and detecting at least a portion of the light that impinges on the device.
  • the waveguide doubles up as spectral filter that enables the determination of the color range of the impinging light.
  • a nanostructured PD comprises of an upstanding nanowire.
  • an upstanding nanowire should be interpreted as a nanowire protruding from the substrate in some angle, the upstanding nanowire for example being grown epitaxially from the substrate, for example, by as vapor-liquid-solid (VLS) grown nanowires.
  • VLS vapor-liquid-solid
  • the angle with the substrate will typically be a result of the materials in the substrate and the nanowire, the surface of the substrate and growth conditions. By controlling these parameters it is possible to produce nanowires pointing in only one direction, for example vertical, or in a limited set of directions.
  • Semiconductor nanowires can be grown normal to the substrate, and silicon nanowires can be grown in the [111] directions with substrate in the (111) crystal plan.
  • Nanowires and substrates of zinc-blende and diamond semiconductors composed of elements from columns III, V and IV of the periodic table can be grown in the [111] directions and then be grown in the normal direction to any ⁇ 111 ⁇ substrate surface.
  • Other directions given as the angle between normal to the surface and the axial direction of the nanowire include 70,53° ⁇ 111 ⁇ , 54,73° ⁇ 100 ⁇ , and 35,27° and 90°, both to ⁇ 110 ⁇ .
  • the nanowires define one, or a limited set, of directions.
  • a part of the nanowire or structure formed from the nanowire can be used as a waveguide directing and confining at least a portion of the light impinging on the nanostructured PD in a direction given by the upstanding nanowire.
  • the waveguiding nanostructured PD structure can include a high refractive index core with one or more surrounding cladding with refractive indices less than that of the core.
  • the structure can be either circular symmetrical or close to being circular symmetrical. Light waveguiding in circular symmetrical structures are well know for fiber-optic applications and many parallels can be made to the area of rare-earth-doped fiber optic devices.
  • NA Numerical Aperture
  • the typical values of the refractive indexes for III-V semiconductor core material are in the range from 2.5 to 5.5 when combined with glass type of cladding material (such as SiO 2 or Si 3 N 4 ) having refractive indexes ranging from 1.4 to 2.3.
  • a larger angle of capture means light impinging at larger angles can be coupled into the waveguide for better capture efficiency.
  • One consideration in the optimization of light capture is to provide a coupler into the nanowire structure to optimize light capture into the structure.
  • a nanostructured PD according to the embodiments can comprise a substrate and a nanowire epitaxially grown from the substrate in an defined angle ⁇ .
  • a portion of or all of the nanowire can be arranged to act as a waveguiding portion directing at least a portion of the impinging light in a direction given by the elongated direction of the nanowire, and will be referred to as a waveguide.
  • a pn-junction necessary for the diode functionality can be formed by varying the doping of the wire along its length while it is growing.
  • Two contact can be provided on the nanowire for example one on top or in a wrapping configuration on the circumferential outer surface and the other contact can be provided in the substrate.
  • the substrate and part of the upstanding structure may be covered by a cover layer, for example as a thin film as illustrated or as material filling the space surrounding the nanostructured PD.
  • the nanowire can have a diameter in the order of 50 nm to 500 nm,
  • the length of the nanowire can be of the order of 1 to 10 ⁇ m.
  • the length of the nanowire is preferably in the order of 4-10 ⁇ m, providing enough volume for creating an active pn junction.
  • the pn junction results in an active region arranged in the nanowire.
  • Impinging photons in the nanowire are converted to electron hole pairs and in one implementation are subsequently separated by the electric fields generated by the PN junction along the length of the nanowire.
  • the materials of the different members of the nanostructured PD are chosen so that the nanowire will have good waveguiding properties vis-a-vis the surrounding materials, i.e. the refractive index of the material in the nanowire should preferably be larger than the refractive indices of the surrounding materials.
  • the nanowire may be provided with one or more layers.
  • a first layer may be introduced to improve the surface properties (i.e., reduce charge leakage) of the nanowire.
  • Further layers, for example an optical layer may be introduced specifically to improve the waveguiding properties of the nanowire, in manners similar to what is well established in the area of fiber optics.
  • the optical layer typically has a refractive index in between the refractive index of the nanowire and the surrounding cladding region material.
  • the intermediate layer has a graded refractive index, which has been shown to improve light transmission in certain cases. If an optical layer is utilized the refractive index of the nanowire, n w , should define an effective refractive index for both the nanowire and the layers.
  • the ability to grow nanowires with well defined diameters can be to optimize the waveguiding properties of the nanowire or at least the waveguide with regards to the wavelength of the light confined and converted by the nanostructured PD.
  • the diameter of the nanowire can be chosen so as to have a favorable correspondence to the wavelength of the desired light.
  • the dimensions of the nanowire are such that a uniform optical cavity, optimized for the specific wavelength of the produced light, is provided along the nanowire.
  • the core nanowire must be sufficiently wide to capture the desired light.
  • a rule of thumb would be that diameter must be larger than ⁇ /2n w , wherein ⁇ is the wavelength of the desired light and n w is the refractive index of the nanowire.
  • a diameter of about 60 nm may be appropriate to confine blue light only and one 80 nm may be appropriate for to confine both blue and green light only in a silicon nanowire.
  • a diameter above 100 nm would be sufficient.
  • An approximate preferred upper limit for the diameter of the nanowire is given by the growth constrains, and can be in the order of 500 nm.
  • the length of the nanowire is typically and preferably in the order of 1-10 ⁇ m, providing enough volume for the light conversion region
  • a reflective layer can be in one embodiment, provided on the substrate and extending under the wire.
  • the purpose of the reflective layer is to reflect light that is guided by the wire but has not been absorbed and converted to carriers in the nanostructured PD.
  • the reflective layer is preferably provided in the form of a multilayered structure comprising repeated layers of silicates for example, or as a metal film. If the diameter of the nanowire is sufficiently smaller than the wavelength of the light a large fraction of the directed light mode will extend outside the waveguide, enabling efficient reflection by a reflective layer surrounding the narrow the nanowire waveguide
  • An alternative approach to getting a reflection in the lower end of the waveguide core can be to arrange a reflective layer in the substrate underneath the nanowire.
  • Yet another alternative can be to introduce reflective means within the waveguide.
  • Such reflective means can be a multilayered structure provided during the growth process of the nanowire, the multilayered structure comprising repeated layers of for example SiN x /SiO x (dielectric).
  • At least part of the nanostructure is preferably doped. This can be done by either changing dopants during the growth of the nanowire or using a radial shallow implant method on the nanowire once it is grown.
  • VLS vapor-liquid-solid
  • the ability to alter between radial and axial growth by altering growth conditions enables the procedure (nanowire growth, mask formation, and subsequent selective growth) can be repeated to form nanowire/3D-sequences of higher order.
  • nanowire growth and selective growth are not distinguished by separate growth conditions it may be better to first grow the nanowire along the length and by different selective growth steps grow different types of 3D regions.
  • a fabrication method according to the embodiments of a light detecting pn-diode/array with active nanowire region(s) formed of Si, comprises the steps of:
  • the growth process can be varied in known ways, for example, to include heterostructures in the nanowires, provide reflective layers etc.
  • Suitable materials for the substrate include, but is not limited to: Si, GaAs, GaP, GaP:Zn, GaAs, InAs, InP, GaN, Al 2 O 3 , SiC, Ge, GaSb, ZnO, InSb, SOI (silicon-on-insulator), CdS, ZnSe, CdTe.
  • Suitable materials for the nanowire 110 include, but is not limited to: Si, GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, BN, InP, InAsP, GaInP, InGaP:Si, InGaP:Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb.
  • Possible donor dopants for e.g. GaP, Te, Se, S, etc, and acceptor dopants for the same material are Zn, Fe, Mg, Be, Cd, etc.
  • the nanowire technology makes it possible to use nitrides such as SiN, GaN, InN and AlN, which facilitates fabrication of PDs detecting light in wavelength regions not easily accessible by conventional technique.
  • nitrides such as SiN, GaN, InN and AlN
  • Other combinations of particular commercial interest include, but is not limited to GaAs, GaInP, GaAlInP, GaP systems. Typical doping levels range from 10 18 to 10 20 per cubic centimeter. A person skilled in the art is though familiar with these and other materials and realizes that other materials and material combinations are possible.
  • low resistivity contact materials are dependent on the material to be deposited on, but metal, metal alloys as well as non-metal compounds like Al, Al—Si, TiSi2, TiN, W, ITO (InSnO), MoSi2, PtSi, CoSi2, WSi2, In, AuGa, AuSb, AuGe, PeGe, Ti/Pt/Au, Ti/Al/Ti/Au, Pd/Au, etc. and combinations of e.g. metal and ITO can be used.
  • the substrate can be an integral part of the device, since it also contains the photodiodes necessary to detect light that has not been confined to the nanowire.
  • the substrate in addition also contains standard CMOS circuits to control the biasing, amplification and readout of the PD as well as any other CMOS circuit deemed necessary and useful.
  • the substrate include substrates having active devices therein. Suitable materials for the substrates include silicon and silicon-containing materials.
  • each sensor element of the embodiments include a nanostructured PD structure comprise a nanowire, a cladding enclosing at least a portion of the nanowire, a coupler and two contacts.
  • the fabrication of the nanostructured PDs on silicon is possible to the degree that the nanowires are uniformly aligned the (111) direction normal to the substrates and essentially no nanowires are grown in the three declined (111) directions that also extends out from the substrate.
  • the well aligned growth of III-V nanowires in predefined array structures on silicon substrates is preferred for successful large scale fabrication of optical devices, as well as most other applications.
  • PD devices build on silicon nanowires are of high commercial interest due to their ability to detect light of selected wavelengths not possible with other material combinations. In addition they allow the design of a compound photodiode that allows the detection of most of the light that impinges on a image sensor.
  • FIG. 2 An example of a back-side illuminated image sensor having a fully processed wafer containing a substrate photodiode but without the nanowires on the back-side of the substrate is shown in FIG. 2 .
  • FIG. 3A shows an illustrative embodiment of a nanostructured waveguide with dimensions therein.
  • the dimensions therein are purely for illustrative purpose to show the dimensions that one could use in an illustrative embodiment. However, other dimensions can also be used without deviating from the scope of the invention.
  • FIG. 3B is an embodiment showing nano-wires on the back-side of a fully processed wafer containing substrate photodiodes.
  • three nanowires, of different diameters are grown, and are used to select and absorb radiations of different wavelengths Red, Green and Blue.
  • FIG. 3C is an embodiment showing nano-wires on the back-side of a fully processed wafer containing substrate photodiodes.
  • two nanowires, of different diameters are grown, and used to select and absorb radiation, and with every nanowire there is a planar photodiode, or more than one, built into the substrate.
  • the planner photodiodes absorb the radiation that was not allowed to propagate in the nanowires.
  • the BSI image sensor is useful for a variety of embodiments.
  • as light detector devices by: (A) Creating the nanowire and associate structures on a silicon area located on the back of a conventional CMOS sensor circuitry, using the BSI image sensor. This method of back-illumination can be used for CCD and for enhancing the performance of a conventional CMOS imager. See for example: “A Back-Illuminated Mega Pixel CMOS Image Sensor” by: B. Pain et all in Proc 2007 Int. Image sensor Workshop, Pages 5-8, 2007; “Back-illuminated ultraviolet image sensor in silicon-on-sapphire” by: Jon Hyuk Park; E.
  • the substrate might be a dielectric.
  • the process diagrams here are for a case of silicon nanowires (NW) grown on a layer of silicon.
  • the process can apply for growing Si NW on dielectric layer, or for III-V compound grown on the appropriate substrate, including Si substrate with or without a thin Molybdenum layer.
  • the device structure can include a low-doped ( ⁇ 3 ⁇ 10 14 /cm 3 ) epitaxial p-type silicon, with the photo-detecting junction formed by a front-implanted n-well and the p-type epitaxial silicon. Photons enter the detector from the backside, and the resultant photo-electrons are collected in the front-side p-n well junction.
  • One embodiment can relate to a back-side illuminated image sensor having an optical pipe on the back-side of the substrate, the optical pipe comprising a core and a cladding so as to create a capacitor surrounding nanowire.
  • the core can be made up of three layers, a semiconductor nanowire, an insulator and metal thus forming a capacitor to collect the charge generated by the light induced carriers in the nanowire. Contacts can be made to the metal and to the semiconductor nanowire to control and detect the stored charge.
  • the core of the embodiments can function as a waveguide and a photodiode.
  • the cladding can comprise a peripheral waveguide and a peripheral photodiode located in or on the silicon substrate of the optical sensor.
  • the integrated circuit (IC) in the silicon wafer substrate may optionally have active devices therein, a peripheral photodiode in or on the silicon wafer, stacking layers containing metallization layers and intermetal dielectric layers, and a passivation layer.
  • the thickness of the stacking layers can generally be around 6 to 10 ⁇ m.
  • the method of manufacturing the IC by planar deposition techniques is well-known to persons of ordinary skill in the art.
  • a substrate containing the IC shown in FIG. 2 can be starting point for the manufacture of the embodiments of back-side illuminated sensor.
  • the substrate can then be thinned at an individual die level using a frame-thinning approach.
  • the pixel area can be thinned down to about 7-10 pm thickness (corresponding to epitaxial silicon thickness), leaving a thick peripheral region (about 1 mm wide).
  • a surface passivation step can then be applied to the thinned silicon layer.
  • the resultant structure provides increased mechanical stability, a significant ease of die handling, and protection against wrinkling of the thinned die. This approach is well suited for a CMOS imager, since the imager consists not only of the pixels, but the support and signal chain electronics along the periphery of the pixel array.
  • Backside thinning can be carried out as follows. First, the front-side of the die would be attached to a protective wax. Then a protective frame on the backside would be created through deposition and patterning of a Si 3 N 4 mask. The unmasked p + silicon substrate (with doping about 1 ⁇ 10 19 /cm 3 ) can then be etched using hot KOH, for example, down to within about 10 ⁇ m of the final silicon thickness. The remainder of the etching can be carried out in a bath having hydrofluoric acid, nitric acid and acetic acid solution (HF:HNO 3 :CH 3 COOH called HNA). HNA etches silicon through a redox reaction where the silicon oxidation rate is dependent on the doping concentration.
  • HNA hydrofluoric acid, nitric acid and acetic acid solution
  • the etch-rate significantly slows down when the silicon substrate is etched, leaving an optically flat thin (about 10 pm thick) epitaxial silicon layer.
  • the front-side wax can be removed, and the die can packaged in a standard pin-grid array (PGA) package (with its central portion removed to let light in) using a standard wire-bonding technique.
  • PGA pin-grid array
  • delta-doping technique can optionally be used for surface passivation.
  • the technique includes a low temperature molecular beam epitaxy (MBE) that places an extremely high density of dopant atoms (>10 17 Boron/cm 2 ) within a few atomic layers of the surface with no observable crystal defects and no requirement for post-growth annealing, making it compatible with post-metallization processing.
  • MBE low temperature molecular beam epitaxy
  • Delta-doping should be carried out under ultra-high vacuum conditions (10 ⁇ 10 torr) using electron-beam evaporation of elemental silicon and thermal evaporation of elemental boron.
  • the process steps can be as follows.
  • a 1 nm-thick (p+) silicon layer can be grown first, followed by depositing about 30% of a monolayer of boron atoms. 1.5 nm-thick capping layer of epitaxial silicon was then grown. After removal from the MBE system, oxidation of the silicon capping layer protects the buried delta-doped layer.
  • the resultant optically flat surface allows easy deposition of anti-reflection coating using deposited oxides and plasma-enhanced silicon nitrides.
  • the subsequent steps for the manufacture of the embodiments of the back-side illuminated sensor can be as follows.
  • the silicon nanowire of the embodiments disclosed herein can be made as follows.
  • a substrate can be a silicon optionally having a silicon dioxide surface.
  • Si substrate in the (111) orientation can be used.
  • the gold patches can normally be deposited on this surface
  • the surface can be modified with a surface treatment to promote adsorption of a gold nanoparticle.
  • the gold nanoparticle can be formed by deposition of a gold layer, followed by removal of the gold layer over regions other than desired location of the gold nanoparticle.
  • the gold nanoparticle can be surface treated to provide for steric stabilization.
  • tethered, sterically stabilized gold nanoparticles can be used as seeds for further synthesis of nanowires, wherein the gold nanoparticles are adsorbed to the modified silicon substrate.
  • DPS diphenyl silane
  • the silicon atoms attach to the gold nanoparticle and a silicon nanowire crystallizes from the gold nanoparticle seed upon saturation of the gold nanoparticle with silicon atoms. Note that the thickness and diameter of the gold particle left behind on the back-side surface determines the diameter of the nanowire.
  • silicon NWs are be grown using the vapor-liquid-solid (VLS) growth method.
  • VLS vapor-liquid-solid
  • a metal droplet catalyzes the decomposition of a Si-containing source gas. Silicon atoms from the gas dissolves into the droplet forming a eutectic liquid. The eutectic liquid functions as a Si reservoir. As more silicon atoms enter into solution, the eutectic liquid becomes supersaturated in silicon, eventually causing the precipitation of Si atoms. Typically, the Si precipitates out of the bottom of the drop, resulting in bottom up growth of a Si—NW with the metal catalyst drop on top.
  • gold is used as the metal catalyst for the growth of silicon NWs.
  • Other metals may be used, including, but not limited to, Al, GA, In, Pt, Pd, Cu, Ni, Ag, and combinations thereof.
  • Solid gold may be deposited and patterned on silicon wafers using conventional CMOS technologies, such as sputtering, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), evaporation, etc. Patterning may be performed, for example, with optical lithography, electron-beam lithography, or any other suitable technique.
  • the silicon wafer can then be heated, causing the gold to form droplets on the silicon wafer. Silicon and gold form a eutectic at 19% Au having a melting temperature at 363° C. That is, a liquid drop of Si—Au eutectic forms at 363° C., a moderate temperature suitable for the processing of silicon devices.
  • the substrates have a (111) orientation. Other orientations, however, may also be used, including, but not limited to (100).
  • a common silicon source gas for NW production is SiH 4 . Other gases, however, may be used including, but not limited to, SiCl 4 .
  • NW growth may be conducted, for example, with SiH 4 at pressures of 80-400 mTorr and temperatures in the range of 450-600° C. In some embodiments, the temperature is in a range of 470-540° C. Typically, lower partial pressures of SiH 4 result in the production of a higher percentage of vertical nanowires (NW).
  • NWs may be grown which are essentially round. In other embodiments, the NW are hexagonal.
  • NW growth is conducted in a hot wall low pressure CVD reactor. After cleaning the Si substrates with acetone and isopropanol the samples may be dipped in a buffered HF solution to remove any native oxide. Successive thin Ga and Au metal layers (nominally 1-4 nm thick) may deposited on the substrates by thermal evaporation. Typically, the Ga layer is deposited before the Au layer. In an embodiment, after evacuating the CVD-chamber down to approximately 10 ⁇ 7 torr, the substrates can be heated up in vacuum to 600° C. to form metal droplets. The Si—NWs can be grown, for example, at a total pressure of 3 mbar using a 100 sccm flow of SiH4 (2% in a He mixture) in a temperature range from 500° C. to 700° C.
  • the size and length of the Si—NWs grown with a Au—Ga catalyst are relatively homogeneous, with most of the wires oriented along the four ⁇ 111> directions.
  • Si—NWs grown with a pure Au catalyst nucleate and grow with lengths and diameters of the NWs more randomly distributed.
  • NWs grown with a Au—Ga catalyst tend to have a taper along the axial direction.
  • the tip diameters of NWs grown for a long time are the same as those grown for a short time and are determined by the catalyst diameter.
  • the footprints of the NWs tend to increase during the course of the growth. This indicates that NW tapering is caused primarily by sidewall deposition (radial growth) of silicon.
  • NWs may be grown having a diameter at the foot (base) of 1500 nm, while the diameter of the tip may less than 70 nm over a length of 15 ⁇ m. Further, the NW diameter is a function of growth temperature. Higher growth temperatures result in NW with smaller diameters. For example, the average diameter of NWs grown with the Ga/Au catalyst at 600° C. is about 60 nm but the average diameter decreases down to about 30 nm for growth at 500° C. Additionally, the variation in diameters tends to narrow as deposition temperature is lowered.
  • vertical NWs may be grown. That is, nanowires which are essentially perpendicular to the substrate surface. Typically, not all NW will be perfectly vertical. That is, the NWs may be tilted at an angle to the surface other than 90 degrees. Commonly observed tilted NWs include, but are not limited to, the three 70.5°-inclined ⁇ 111> epitaxial growth directions and three additional 70.5°-inclined directions, which are rotated by 60°.
  • the VLS process may be used to grow doped NWs.
  • a doping profile in the growing wire can be produced.
  • the NW can be made p-type by adding diborane (B 2 H 2 ) or trimethyl borane (TMB) to the source gas.
  • Other gases that add acceptor atoms to the silicon NW may also be used.
  • the NW can be made n-type by adding PH 3 or AsH 3 to the source gas.
  • Other gases that add donor atoms to the silicon NW may also be used.
  • Doping profiles which can be produced include but are not limited to, n-p-n, p-n-p, and p-i-n.
  • VLS method may be used to grow NWs.
  • Other methods or variation include, but are not limited to, (1) CVD, (2) reactive atmosphere, (3) Evaporation, (4) molecular beam epitaxy (MBE), (5) laser ablation, and (6) solution methods.
  • a volatile gaseous silicon precursor is provided.
  • Example silicon precursor gases include SiH 4 and SiCl 4 .
  • CVD may be used for epitaxial growth.
  • doping can be accomplished by adding volatile doping precursors to the silicon precursor Annealing in a reactive atmosphere comprises heating the substrate in a gas that reacts with the substrate. For example, if silicon is annealed in an atmosphere including hydrogen, the hydrogen locally reacts with the silicon substrate, forming SiH 4 . The SiH 4 can then react with the catalyst metal drop, thereby initiating NW growth. This growth process can be used for non-CMOS processes.
  • a SiO 2 source is heated under conditions that result in the production of SiO gas.
  • SiO gas adsorbs on the metal catalyst droplets, it forms Si and SiO 2 .
  • This method may also be performed without a metal catalyst drop. Absent a metal catalyst, SiO 2 has been observed to catalyze silicon NW growth.
  • a high purity silicon source is heated until Si atoms evaporate. A gaseous beam of Si directed toward the substrate. The gaseous silicon atoms adsorb onto and dissolve into the metal droplet, thereby initiating growth of NWs.
  • a laser beam is aimed at source which includes both silicon and catalyst atoms.
  • the ablated atoms cool by colliding with inert gas molecules and condense to form droplets with the same composition as the original target. That is, droplets having both silicon and catalyst atoms.
  • the laser ablation method may also be performed with a target consisting essentially of pure silicon.
  • Solution based techniques typically use organic fluids. Specifically, the organic fluids generally comprise highly pressurized supercritical organic fluids enriched with a silicon source and catalyst particles. At a reaction temperature above the metal-silicon eutectic, the silicon precursor decomposes, forming an alloy with the metal. Upon supersaturation, silicon precipitates out, growing the NW.
  • Nanowire growth techniques are all bottom up techniques. Nanowires, however may also be fabricated with top down techniques.
  • Top down techniques typically involve patterning and etching a suitable substrate, for example silicon. Patterning can be accomplished via lithography, for, example, electron beam lithography, nanosphere lithography and nanoprint lithography. Etching may be performed either dry or wet. Dry etching techniques include, but are not limited to, reactive ion etching. Wet etching may be performed with either standard etches or via the metal-assisted etching process. In the metal-assisted etching process, Si is wet-chemically etched, with the Si dissolution reaction being catalyzed by the presence of a noble metal that is added as a salt to the etching solution.
  • Subsequent steps can relate to the forming of one or more of the dielectric layers around the nanowire on the back-side of the substrate.
  • a conformal dielectric coating by chemical vapor deposition (CVD), atomic layer deposition (ALD), oxidation or nitration can be made around the nanowire.
  • doped glass dielectric layer can be formed on the conformal dielectric coating by plasma enhanced chemical vapor deposition, spin-on coating or sputtering, optionally with an initial atomic layer deposition.
  • the deposited doped glass dielectric layer can be etched back by chemical-mechanical planarization or other methods of etching.
  • a funnel and a lens on the funnel to channel electromagnetic radiation such as light into the nanowire waveguide can then be made as follows: deposition of a glass/oxide/dielectric layer by CVD, sputter deposition or spin-on coating; application of a photoresist on the deposited glass/oxide/dielectric layer; removal of the photoresist outside an opening centered over the nanowire within the deep cavity; and forming a coupler by semi-isotropic etching in the glass/oxide/dielectric layer.
  • Subsequent steps can relate to the forming of a metal layer around the one or more dielectric layers by depositing a metal such a copper on the vertical walls of the nanowire surrounding the one or more dielectric layers.
  • Another embodiment can relate to a back-side illuminated image sensor having an optical pipe comprising a core and a cladding with a PIN or PN photodiode in a nanowire in the core.
  • the core can have a PN or PIN junction that induces a potential gradient in the core wire.
  • the PN or PIN junction in the core can be formed by growing a nanowire and doping the nanowire core while it is growing as a PIN junction.
  • the doping of the nonowire can have two levels of doping to form N and P, or in other embodiments, the nanowire can comprise P, I and N regions to form a PIN photodiode.
  • another possibility is doping the wire along its length in concentric circles to form P and N or P, I and N regions to form a PN or PIN photodiode.
  • the PN or PIN junction nanowire (also referred to as a PN or PIN photodiode) is contacted at the appropriate points along PN or PIN junction nanowire using the various metal layers that are part of any device to detect the charge generated by the light induced carriers in the PN or PIN junction nanowire.
  • the cladding of the embodiments can comprise a peripheral waveguide and a peripheral photodiode located in or on the silicon substrate of the optical sensor.
  • the method of making the embodiments wherein the nanowire has a PN or PIN junction is similar in many ways to the method of making the embodiment where the optical pipe has a capacitor type photodiode described above except that a modified version of the nanowire growth step is carried out, the step of depositing a conformal dielectric coating is omitted, and the step of depositing a metal on the vertical walls of the nanowire is omitted.
  • the nanowire growth step includes growing a nanowire having two or more different doped regions to form a PN phototdiode by growing a N-doped (n-doped) nanowire followed by growing a P-doped (p-doped) nanowire or a PIN photodiode by first growing a N-doped (n-doped) nanowire, then growing an I-doped nanowire (also referred to as the I-region of the nanowire), and finally growing a p-doped nanowire.
  • the doping of the nanowire can be carried out by methods well known in the art.
  • the embodiments herein relate to additional manufacturing processes for a backside thinned image sensor. Examples of the structures of the backside thinned image sensor having photodiodes therein are shown in FIG. 4A and FIG. 4A .
  • FIGS. 4C-4M illustrates embodiments of a manufacturing process for a backside thinned image sensor which can optionally have an integrated lens stack.
  • the manufacturing process starts with a substrate.
  • the substrate can be semiconductor wafer or a dielectric.
  • the substrate is a silicon-on-insulator wafer (SOI).
  • SOI silicon-on-insulator wafer
  • the substrate can be a special epitaxial wafer, such as a silicon-on-sapphire (SOS), some other type of epitaxial wafer, or a wafer that has a thinning control layer embodied at some depth.
  • SOS silicon-on-sapphire
  • a layer of appropriate catalyst to grow the desired nanowire on the back-side of the substrate is deposited.
  • the catalyst layer can a layer of gold or an alloy of gold-gallium as shown in FIG. 4C .
  • the substrate can be a part of a structure that contains the appropriate circuits to perform the total functions of the device, be it light detecting, amplification, and manipulation, or light emitting circuit or the combinations. Manufacturing techniques for such wafers are know to one of ordinary skill in the art.
  • circuit features can fabricated on or within the substrate.
  • the substrate can includes pixel array and backend stack.
  • Pixel array can include an array of metal oxide semiconductor technology (MOS-technology) image sensing circuits (“pixels”). MOS-technology image sensors are known in the art.
  • Backend stack can include the signal routing layers for the semiconductor wafer.
  • the substrate can includes thinning control layer in the substrate.
  • Thinning control layer provides a chemical stop for the etching process used to remove part of the substrate in a later manufacturing step.
  • thinning control layer can be a Separation by IMplantation of OXygen (SIMOX) layer.
  • SIMOX Separation by IMplantation of OXygen
  • One method of creating a SIMOX layer is to use an oxygen ion beam implantation process followed by high temperature annealing to create a buried SiO 2 layer. Based on the etch selectivity of Si to SiO 2 in alkaline aqueous solutions, for example, this SiO 2 layer is employed as an etch-stop in preparation of Silicon-on-insulator (SOI) materials.
  • SOI Silicon-on-insulator
  • thinning control layer may be another type of etch stop, such as a carbon-implanted etch-stop.
  • etch stopping techniques may be based on selective etch speed differences between materials or between different dopant types or dopant concentration levels, or by electro-chemical etch stopping on a junction, or by partial mechanical grinding, polishing. Such etch stopping techniques are known to one of ordinary skill in the art; accordingly, a detailed discussion is not provided.
  • a handle wafer can be bonded (in a de-bondable manner) to the substrate.
  • Handle wafer can be used to handle the semiconductor and to provide mechanical support for the substrate during subsequent manufacturing steps.
  • a mask is created.
  • the mask is to be used to create predetermined areas where the nanowires (and hence the pixels for emitting or detecting light) are to be located.
  • the catalyst layer is patterned by using a lithography method such an electron beam lithography using a photoresist and the mask.
  • a lithography method such an electron beam lithography using a photoresist and the mask.
  • the techniques for patterning are known to one of ordinary skill in the art. Patterning may be accomplished for example with a lithographic process.
  • a photoresist material is deposited on the surface of the substrate.
  • the resist may be either positive or negative.
  • a positive resist is a type of photoresist in which the portion of the photoresist that is exposed to light becomes soluble to the photoresist developer.
  • a negative resist is a type of photoresist in which the portion of the photoresist that is exposed to light becomes insoluble to the photoresist developer.
  • the unexposed portion of the photoresist is dissolved by the photoresist developer.
  • the portion of the photoresist that is unexposed remains insoluble to the photoresist developer.
  • optical photolithography light is then shined through a mask to develop the photoresist.
  • electron beam lithography the light source is replaced with an electron beam source. Because of the smaller wavelength of the electron beam, smaller features can be produced with electron beam lithography than with optical lithography.
  • the pattern of the catalyst spots is exposed by removing the mask and the photoresist layer.
  • the techniques removing the mask and the photoresist layer are known to one of ordinary skill in the art; accordingly, a detailed discussion is not provided.
  • the catalyst spots pattern can also be generated by a direct write e-beam.
  • the next steps relate to creating the photodiodes of the embodiments having nanowires with associated layers.
  • Example of the structures of the photodiodes are shown in FIG. 4A and FIG. 4B . Notice that the nanowire does not need to be fully covered by the insulating layer or the metallic layer as shown in FIG. 4B .
  • the nanowires with associated layers can be made by two methods: Method A or Method B.
  • the next step after the steps outlined above can be to first grow the nanowires to the required length, and then grow the associated layers.
  • the next optional step after growing the nanowire to the required length can be to epitaxially grow a low index of refraction material (dielectric layer) engulfing the nanowire. This can be followed by epitaxially depositing the metallic layer around the dielectric layer.
  • the next step can be to remove all materials from top of the nanowire including the gold catalyst—thus exposing the nanowire to light. Note that only one layer may need to be grown on the nanowire, for example, only a metallic layer might be employed.
  • Method B starts with step 5 B, in which a spin coat of a positive photoresist (PR) is applied on the substrate with the catalyst spots thereon as shown in FIG. 4G .
  • PR positive photoresist
  • Such a positive PR increases its solubility when exposed to radiation.
  • the PR is a high resolution and also capable of creating high aspect ratio structures.
  • the next step 6 B as illustrated in FIG. 4H , relates to creating a mask to pattern the PR and exposing through the pattern and developing the PR to create opening in the PR as shown in FIG. 4H .
  • the next step 7 B is depositing a material A in the opening created in the PR in step 6 B.
  • Material A should preferably be deposited to the appropriate height.
  • Material A can be an insulator or a metal depending on the structure of the photodiode desired.
  • material A should be of index of refraction such that index of refraction of material A should be less than the index of refraction of the material of the nanowire.
  • Material A can be SiO 2 and SiN 3 .
  • the next step 8 B is creating a second mask to pattern the PR and expose the PR through the pattern and developing the PR. The wafer is now ready for depositing or growing material B.
  • the next step 9 B as illustrated in FIG.
  • FIG. 4K is depositing or growing material B to the appropriate height in cavity surrounding material B.
  • Material B can be a an insulator or a metal depending on the structure of the photodiode desired.
  • FIG. 4K shows the structure after the removal of materials deposited on top of the PR and after performing a planarization.
  • the next step 10 B is depositing material C or an insulating material between material B. A mask is used to create a cavity between material B. If there is no need for a layer of material C in the cavity between material B, then the cavity between material B is filled with SiO 2 or Si 2 N 3 .
  • the next step 11 B is illustrated in FIG. 4M .
  • the PR is removed, and the structure is placed in the proper environment to grow the nanowire.
  • SiH 4 gas is introduced and the material is heated such as a vapor-liquid-solid (VLS) growth mechanism takes place.
  • VLS vapor-liquid-solid
  • the Au—Ga catalyst might be better than Au as it requires lower temperature to grow the nanowire.
  • the catalyst metal is then removed and the system is completed.
  • material may be removed from the substrate to thin the region over which nanowires are formed.
  • the material is removed from substrate by grinding, lapping, or etching.
  • grinding can be used to remove most of the material from the substrate, while the remainder of the material is removed by etching down to thinning control layer. Thinning control layer can then be exposed and etched.
  • etching or grinding can be used to remove all the material from substrate.
  • techniques such as wafer cleaving the water-jet-into-porous-Si are used to remove the material from the substrate.
  • the substrate is thin enough to facilitate the detection of light by pixels in pixel array through the backside surface of the substrate.
  • the backside surface has no circuit features to reflect or absorb incident light, so the amount of light that reaches pixel array significantly increases.
  • the electrons freed by the incident light travel a shorter distance within the substrate before encroaching on the collection region of a pixel. Hence, the electrons scattered under a given pixel are more likely to be collected by that pixel. This reduces the amount of optical cross-talk between the pixels in pixel array.
  • the substrate in order to facilitate the detection of visible light, the substrate is fabricated to be approximately 5-10 micrometers thick. Alternatively, thinner or thicker substrates may be used to detect selected wavelengths of electromagnetic waves. For example, a slightly thicker substrate can be used to detect infrared light.
  • the substrate is so thin, the substrate can be vulnerable to damage from handling during subsequent manufacturing steps. However, this issue can be mitigated by the handling wafer that provides the handling means and mechanical support necessary to protect the substrate.
  • a shallow p-type implant can be disposed in the backside of the substrate.
  • P-type implant can prevent electrons from within the substrate from gathering at backside surface of the substrate. If allowed to gather at the backside surface, these electrons can cause a portion of the incident light to be reflected, diminishing the amount of light incident on pixel array.
  • a color filter array can be disposed on the backside of the substrate. Color filter array filters the light by color before the light illuminates the backside of the substrate.
  • an anti-reflective layer may be disposed on the substrate. The anti-reflective layer further reduces the reflection of incident light from the backside surface of the substrate.
  • an anti-reflection layer may be disposed in other regions, for example, between the image sensor and an integrated lens stack.
  • Integrated lens stack can serve many purposes, such as focusing light, attenuating light, or concentrating one wavelength of light on the backside of the substrate.
  • Integrated lens stack may include layers such as collimating lenses, focusing lenses, spacers, and mirrored layers.
  • the layers of integrated lens stack can be bonded together using a thermosetting resin.
  • the layers of integrated lens stack can be coupled together using a UV-setting bonding process or another type of bonding process.
  • Integrated lens stack also provides additional mechanical support. Embodiments of integrated lens stack with five lens layers or two lens layers can be commercially obtained through Anteryon BV, The Netherlands. Alternatively, integrated lens stacks with different numbers of lens layers from other lens manufacturers can be used.
  • the backside surface is thinned until the substrate of image sensor wafer is approximately 1-10 micrometers thick, facilitating the detection of visible light.
  • the backside of image sensor wafer is the proper depth to facilitate the detection of selected wavelengths of electromagnetic radiation, such as infrared light.
  • the pixel array is located, as much as possible, approximately in the center of a die, with electronics surrounding pixel array.
  • pixel array can be located off-center on die, with electronics distributed on the remainder of die.
  • backside thinned image sensor with an integrated lens stack might be used in various applications.
  • backside thinned image sensor with an integrated lens stack may be used in a digital camera system, for example, for general-purpose photography (e.g., camera phone, still camera, video camera) or special-purpose photography.
  • Digital camera can include a display, device, and subsystems that are coupled together via bus.
  • the subsystems may include, for example, hardware, firmware and/or software for storage, control, and interface operations of the camera system that are known to one of ordinary skill in the art; accordingly, a detailed description is not provided.
  • image sensor can be used in other types of applications, for example, machine vision, document scanning, microscopy, security, biometrics, etc.
  • strategies for minimizing the reflection of incident light on the substrate of the cavity is to provide an anti-reflective coating in or on the substrate of the cavity.
  • An anti-reflective coating acts to reduce the reflection at the surface, allowing a higher level of visible light transmission.
  • Anti-reflective or antireflection (AR) coatings are a type of optical coating applied to the surface of optical devices to reduce reflection. This improves the efficiency of the system since less light is lost.
  • the methods for implementing anti-reflective coatings include the use of alternating layers of a low-index material like silica and a higher-index material to obtain reflectivity as low as 0.1% at a single wavelength or over a range of wavelengths.
  • the anti-reflective material can work near a single light frequency.
  • Other embodiments can use a green antireflective coating, for example, on the substrate of the cavity containing the blue absorbing nanowire, and a red anti-reflective coating with a cyan absorbing nanowire.
  • AR coatings have transparent thin film structures with alternating layers of contrasting refractive index. Layer thicknesses are chosen to produce destructive interference in the beams reflected from the interfaces, and constructive interference in the corresponding transmitted beams. This makes the structure's performance change with wavelength and incident angle, so that color effects often appear at oblique angles.
  • a wavelength range must be specified when designing or ordering such coatings, but good performance can often be achieved for a relatively wide range of frequencies: usually a choice of IR, visible, or UV is offered.
  • the simplest interference AR coating can be a single quarter-wave layer of transparent material whose refractive index is the square root of the substrate's refractive index. This theoretically gives zero reflectance at the center wavelength and decreased reflectance for wavelengths in a broad band around the center.
  • alternating layers of a low-index material like silica and a higher-index material it is possible to obtain reflectivities as low as 0.1% at a single wavelength.
  • One embodiment of the AR coating can be ultraviolet anti-reflection (UAR) coating.
  • This ultraviolet anti-reflection coating can reduce surface reflection from quartz, fused silica, semiconductor silicon substrates to less than 0.3% from 0.2 to 0.3 microns.
  • UAR coatings are designed to promote effective transmission of light in the ultraviolet wavelengths.
  • Anti-reflective coatings include several different sub-layers comprising many different materials such as, but not limited to, Al 2 O 3 , ZrO 3 , MgF 2 , SiO 2 , cryolite, LiF ThF 4 , CeF 3 , PbF 2 , ZnS, ZnSc, Si, Te, MgO, Y 2 O 3 , Sc 2 O 3 , SiO, HfO 2 , ZrO 2 , CeO 2 , Nb 2 O 3 , Ta 2 O 5 , and TiO 2 .
  • the thickness of each sublayer is often related to an even whole number division of the wavelength of light that is most preferred to be transmitted through the coated material.
  • the recognition of color and luminance by the embodiments of the image sensors can be done by color reconstruction.
  • Each compound pixel has complete luminance information obtained by combining its two complementary outputs.
  • the same image sensor can be used either as a full resolution black and white or full color sensor.
  • the color reconstruction can be done to obtain full color information by the appropriate combination of two adjacent pixels, which can be one embodiment of a compound pixel, either horizontally or vertically.
  • the support over which color information is obtained is less than the dimension of two pixels as opposed to 4 for the Bayer pattern.
  • Each physical pixel of a device containing an image sensor of the embodiments disclosed herein can have two outputs representing the complementary colors, e.g., cyan, red (C, R) designated as output type 1 or yellow, blue (Y, B) designated as output type 2.
  • These four outputs of two pixels of a compound pixel can be resolved to reconstruct a full color scene of an image viewed by a device containing the image sensors of the embodiments described herein.
  • the two pixels can have two outputs representing the complementary colors, e.g., white-Red, Red (W-R, R) designated as output type 1 or white-Blue, Blue (W-B, B) designated as output type 2.
  • Another embodiment relates to the manufacturing an array of nanostructured waveguides having 3 types of color pixels (red, green, and blue in conventional tessellation) or 2 color pixels only (for example, blue and green) when planar photodiodes are added, in each pixel, to the nanowire photodetector.

Abstract

An embodiment relates to a method of manufacturing a device comprising a substrate having a front side and a back-side, a nanowire disposed on the back-side and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 12/633,297, filed Dec. 8, 2009. This application is related to The disclosures of U.S. patent application Ser. No. 12/204,686, filed Sep. 4, 2008 (now U.S. Pat. No. 7,646,943, issued Jan. 12, 2010), 12/648,942, filed Dec. 29, 2009 (now U.S. Pat. No. 8,229,255, issued Jul. 24, 2012), 13/556,041, filed Jul. 23, 2012, Ser. No. 12/270,233, filed Nov. 13, 2008 (now U.S. Pat. No. 8,274,039, issued Sep. 25, 2012), 13/925,429, filed Jun. 24, 2013, Ser. No. 13/570,027, filed Aug. 8, 2012 (now U.S. Pat. No. 8,471,190, issued Jun. 25, 2013), 12/472,264, filed May 26, 2009 (now U.S. Pat. No. 8,269,985, issued Sep. 18, 2012), 13/621,607, filed Sep. 17, 2012 (now U.S. Pat. No. 8,514,411, issued Aug. 20, 2013), 13/971,523, filed Aug. 20, 2013 (now U.S. Pat. No. 8,810,808, issued Aug. 19, 2014), 12/472,271, filed May 26, 2009 (now abandoned), 12/478,598, filed Jun. 4, 2009 (now U.S. Pat. No. 8,546,742, issued Oct. 1, 2013), 14/021,672, filed Sep. 9, 2013, Ser. No. 12/573,582, filed Oct. 5, 2009 (now U.S. Pat. No. 8,791,470, issued Jul. 29, 2014), 14/274,448, filed May 9, 2014, Ser. No. 12/575,221, filed Oct. 7, 2009 (now U.S. Pat. No. 8,384,007, issued Feb. 26, 2013), 12/633,323, filed Dec. 8, 2009 (now U.S. Pat. No. 8,735,797, issued May 27, 2014), 14/068,864, filed Oct. 31, 2013, Ser. No. 14/281,108, filed May 19, 2014, Ser. No. 13/494,661, filed Jun. 12, 2012 (now U.S. Pat. No. 8,754,359, issued Jun. 17, 2014), 12/633,318, filed Dec. 8, 2009 (now U.S. Pat. No. 8,519,379, issued Aug. 27, 2013), 13/975,553, filed Aug. 26, 2013 (now U.S. Pat. No. 8,710,488, issued Apr. 29, 2014), 12/633,313, filed Dec. 8, 2009, Ser. No. 12/633,305, filed Dec. 8, 2009 (now U.S. Pat. No. 8,299,472, issued Oct. 30, 2012), 13/543,556, filed Jul. 6, 2012 (now U.S. Pat. No. 8,766,272, issued Jul. 1, 2014), 14/293,164, filed Jun. 2, 2014, Ser. No. 12/621,497, filed Nov. 19, 2009 (now abandoned), 12/982,269, filed Dec. 30, 2010, Ser. No. 12/966,573, filed Dec. 13, 2010, Ser. No. 12/967,880, filed Dec. 14, 2010 (now U.S. Pat. No. 8,748,799, issued Jun. 10, 2014), 14/291,888, filed May 30, 2014 12/966,514, filed Dec. 13, 2010, Ser. No. 12/974,499, filed Dec. 21, 2010 (now U.S. Pat. No. 8,507,840, issued Aug. 13, 2013), 12/966,535, filed Dec. 13, 2010, Ser. No. 12/910,664, filed Oct. 22, 2010, Ser. No. 12/945,492, filed Nov. 12, 2010, Ser. No. 13/047,392, filed Mar. 14, 2011 (now allowed), 14/450,812, filed Aug. 4, 2014, Ser. No. 13/048,635, filed Mar. 15, 2011 (now allowed), 13/106,851, filed May 12, 2011, Ser. No. 13/288,131, filed Nov. 3, 2011, Ser. No. 14/334,848, filed Jul. 18, 2014, Ser. No. 14/032,166, filed Sep. 19, 2013, Ser. No. 13/543,307, filed Jul. 6, 2012, Ser. No. 13/963,847, filed Aug. 9, 2013, Ser. No. 13/693,207, filed Dec. 4, 2012, 61/869,727, filed Aug. 25, 2013, Ser. No. 14/322,503, filed Jul. 2, 2014, and 14/311,954, filed Jun. 23, 2014, are each hereby incorporated by reference in their entirety.
  • FIELD OF INVENTION
  • The embodiments relate to manufacturing light detecting devices such as a photodiode (PD) comprising of a nanowire grown on a back-side-illuminated image sensor.
  • BACKGROUND
  • An image sensor has a large number of identical sensor elements (pixels), generally greater than 1 million, in a Cartesian (square) grid. The distance between adjacent pixels is called the pitch (p). The area of a pixel is p2. The area of the photosensitive element, i.e., the area of the pixel that is sensitive to light for conversion to an electrical signal, is normally only about 20% to 30% of the overall surface area of the pixel.
  • Conventional color image sensors are fabricated with colored filters arranged in a Bayer configuration. An example of a conventional Bayer filter pattern has a color scheme including red, green, and blue filters (RGB). The Bayer filter pattern is 50% green, 25% red and 25% blue, hence is also referred to GRGB or other permutation such as RGGB. In this arrangement, there are twice as many green elements as red or blue. This is used to mimic the human eye's greater sensitivity to the green light.
  • Complementary metal-oxide semiconductor (CMOS) Image Sensor (CIS) has been one of the early adopters of 3D integrated circuits (IC) integration to offer low cost/low volume cameras for cell phones and other applications. One type of CIS are back-side-illuminated (BSI) CIS. Smaller pixels result in higher resolution, smaller devices, and lower power and cost. Shrinking pixel size in CMOS image sensors should be designed without degrading performance and image quality. As smaller and smaller pixels are fabricated on CMOS image sensors, however, the area of the photosensitive region becomes smaller thus leading to image quality deteriorates.
  • The trends in BSI CIS are described in an article entitled “Backside Illumination (BSI) Architecture next for CMOS Image Sensors,” Semiconductor International, Aug. 3, 2008.
  • To solve this problem, companies worked on backside-illuminated (BSI) technology. OmniVision is an example of such companies. OmniVision announced in May 2008 that it had developed the OmniBSI™ technology that involves turning the image sensor upside down and applying the color filters and micro lenses to the backside of the pixels so that the sensor can collect light through the area that has no circuitry, i.e. the backside.
  • The reason for the better performance of the BSI is higher fill factor, i.e. the amount of light that can be collected in a single pixel. The various metal layers on top of a front-illuminated sensor limit the light that can be collected in a pixel. As pixel sizes get smaller, the fill factor gets worse. BSI provides the most direct path for light to travel into the pixel, avoiding light blockage by the metal interconnect and dielectric layers on the top-side of the sensor die (see FIG. 1; source: OmniVision). In FIG. 1, the FSI pixel is a front side illuminated pixel while the BSI pixel is a back-side illuminated pixel. Note that as shown in FIG. 1, the terms back and front in BSI and FSI relates to the side from where the pixel is illuminated with relation to the side where the various metal layers are located.
  • OmniVision's BSI CMOS sensor has a pixel size of 0.9-1.4 μm for an 8-megapixel product. On the heels of the OmniVision announcement, Sony announced a BSI technology for CMOS sensors for 5-Mpixel camcorders or digital cameras with 1.75 μm CMOS pixel technology.
  • ST Micro has also demonstrated the feasibility of manufacturing 3-megapixel 1.45 μm CMOS image sensors using BSI technology. It claims to obtain a quantum efficiency (QE) (QE=the percentage of photons that are converted into electrons) of greater than 60%. ST Micro's technology is based on SOI, wafer bonding and thinning technologies. In the ST Micro BSI scheme, after the final metal layers are created, a passivation layer and subsequent oxide wafer-bonding layer (WBL) are deposited. The WBL is planarized and a support wafer is bonded to the processed wafer, the CIS wafer is then thinned. Reported ST Micro Process flow:
      • SOI wafer
      • CMOS process
      • Wafer bonding layer (WBL) deposit and planarize
      • Wafer bonding
      • Thinning
      • Anti-reflective coating (ARC)
      • Pad opening
      • Color filters and micro-lens attached
  • A quick search of the patent landscape turned up U.S. Pat. No. 6,429,036 “Backside illumination of CMOS image sensor” (Micron); U.S. Pat. No. 5,244,817 “Method of making backside illuminated image sensors” (Kodak); US Pub. No. 2007/0152250 “CMOS image sensor with backside illumination” (MagnaChip); US Pub. No. 2008/0044984 “Methods of avoiding wafer breakage during manufacture of backside illuminated image sensors.” (TSMC); U.S. Pat. No. 6,168,965 “Method for Making Backside Illuminated Image Sensor” (Tower Semi); US Pub. No. 2007/0052050 “Backside thinned image sensor with integrated lens stack” (IMEC).
  • Sarnoff (now a subsidiary of SRI International) has also announced entry into the CIS technology arena. At the 2008 Semicon West, Sarnoff introduced Ultra-Sense™, a thinning technology that they have developed for high-performance, SOI based, back-illuminated image sensors. After processes are completed on the frontside of the CIS wafer, the wafer backside is thinned. Sarnoff indicated that its backside thinning process using SOI wafers gives better control of the thinning process that improves pixel quality, lowers cost and improves the yield. In order to distinguish the three components of light so that the colors from a full color scene can be reproduced, the image sensors use of RBG filters such that two of the components of light are filtered out for each pixel using a filter. For example, the red pixel has a filter that absorbs green and blue light, only allowing red light to pass to the sensor. Thus, generally less than about one-third of the photon impinging on the image sensor are transmitted to the photosensitive element such as a photodiode and converted into electrons.
  • SUMMARY
  • The embodiments herein relate to a method comprising defining a local catalyst spot on a back side of a substrate having a front side and the back side, growing a nanowire from the local catalyst spot, and forming a nanostructured waveguide, wherein the back-side of the substrate is exposed to an incoming source of radiation.
  • In one illustrative embodiment, the substrate comprises a Si substrate and the nanowire is disposed on or within the Si substrate.
  • In one illustrative embodiment, the defining the local catalyst spot is performed by using a lithography method.
  • In one illustrative embodiment, the lithography method comprises an electron beam lithography.
  • In one illustrative embodiment, the growing the nanowire from the local catalyst spot comprises selecting growth parameters for a catalytic wire growth.
  • In one illustrative embodiment, the method further comprises growing different concentric layers around the nanowire.
  • In one illustrative embodiment, the different concentric layers comprise cladding layers.
  • In one illustrative embodiment, the method further comprises forming contacts on the nanowire.
  • In one illustrative embodiment, the contacts are connected to the substrate.
  • In one illustrative embodiment, the method further comprises placing an optical coupler on top of the nanostructured waveguide to increase radiation coupling to the nanostructured waveguide, optionally wherein the optical coupler is electrically conductive.
  • Another illustrative embodiment relates to a method comprising forming a nanostructured waveguide comprising a nanowire on a substrate having a front side and a back-side that is exposed to incoming radiation and manufacturing a device comprising the nanostructured waveguide, the device comprising the nanowire disposed on or within the substrate and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the radiation of wavelengths up to the selective wavelength transmitted through the nanowire.
  • In one illustrative embodiment, the nanowire is not transparent and disposed within a cavity in the substrate, the front side is not exposed to the incoming radiation, and the image sensing circuit is on or within a layer on the front-side of the substrate.
  • In one illustrative embodiment, the device does not include a color filter nor infra-red filter.
  • In one illustrative embodiment, the nanowire comprises a semiconductor.
  • The device can further comprise, for example, a lens structure or an optical coupler over the nanowire.
  • In one illustrative embodiment, the lens structure or the optical coupler is operably coupled to the nanowire.
  • The device can further comprise, for example, an anti-reflective layer disposed on the substrate.
  • In one illustrative embodiment, the active element is configured to be a photodiode, a charge storage capacitor, or combinations thereof.
  • In one illustrative embodiment, the device is an image sensor.
  • In one illustrative embodiment, the selective wavelength is a function of the diameter of the nanowire.
  • In one illustrative embodiment, the nanowire is configured to convert energy of the electromagnetic radiation transmitted through the nanowire and to generate electron hole-pairs (excitons).
  • In one illustrative embodiment, the nanowire comprises a pn or pin junction that is configured to detect the excitons generated in the nanowire.
  • The device can further comprise, for example, an insulator layer around the nanowire and a metal layer around the insulator layer to form a capacitor that is configured to collect the excitons generated in the nanowire and store charge in the capacitor.
  • The device can further comprise, for example, metal contacts that connect to the metal layer and nanowire to control and detect the charge stored in the capacitor.
  • The device can further comprise, for example, a cladding. In one illustrative embodiment, the cladding is configured to be a channel to transmit the wavelengths of the electromagnetic radiation beam that do not transmit through the nanowire.
  • The device can further comprise, for example, a cladding. In one illustrative embodiment, the cladding comprises a passive waveguide.
  • The device can further comprise, for example, a peripheral photosensitive element. In one illustrative embodiment, the peripheral photosensitive element is operably coupled to the cladding.
  • In one illustrative embodiment, cladding comprises more than one layers. In one illustrative embodiment, the more than one layers have indices of refraction consecutively smaller than a index of refraction the nanowire.
  • In one illustrative embodiment, the peripheral photosensitive element is located on or within a substrate.
  • In one illustrative embodiment, the lens structure or the optical coupler comprises a first opening and a second opening with the first opening being larger than the second opening, and a connecting surface extending between the first and second openings.
  • In one illustrative embodiment, the connecting surface comprises a reflective surface.
  • The device can further comprise, for example, a color or IR filter.
  • Another illustrative embodiment relates to a method comprising forming a compound light detector comprising forming at least two different devices, the device comprising a substrate having a front side and a back-side that is exposed to incoming radiation, a waveguide comprising a nanowire disposed on or within the substrate and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths of the incoming radiation up to a selective wavelength and an active element to detect the wavelengths of the incoming radiation up to the selective wavelength transmitted through the nanowire, and the compound light detector is configured to reconstruct a spectrum of wavelengths of an electromagnetic radiation beam.
  • In one illustrative embodiment, the at least two different devices have nanowires having different diameters.
  • The compound light detector can further comprise, for example, a cladding surrounding the nanowire and of one or more different materials. In one illustrative embodiment, the cladding permits electromagnetic radiation of wavelengths beyond the selective wavelength to remains within the cladding and be transmitted to a peripheral photosensitive element.
  • In one illustrative embodiment, a plurality of light detectors are arranged on a regular tessellation, a square lattice, an hexagonal lattice, or in a different lattice arrangement.
  • In one illustrative embodiment, the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof.
  • In one illustrative embodiment, the first device comprises a core of a different diameter than that of the second device and the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof.
  • In one illustrative embodiment, the compound light detector is configured to resolve black and white or luminescence information contained in the electromagnetic radiation beam.
  • In one illustrative embodiment, the compound light detector is configured to detect energies of the electromagnetic radiation of four different ranges of wavelengths.
  • In one illustrative embodiment, the energies of the electromagnetic radiation of the four different ranges of wavelengths are combined to construct red, green and blue colors.
  • In one illustrative embodiment, at least some of the at least one of the devices does not include a color or infra-red filter.
  • Yet another illustrative embodiment relates to a method comprising forming a waveguide comprising forming at least one upstanding nanowire protruding from a substrate and forming a pn-junction or a pin junction contributing to the formation of an active region to absorb light.
  • In one illustrative embodiment, a shell-like structure encloses the nanowire or portion thereof.
  • In one illustrative embodiment, the nanowire has a first effective refractive index, nw and a material surrounding at least a portion of the nanowire to form a cladding having a second effective refractive index, nc, and the first refractive index is larger than the second refractive index, nw>nc configured to create waveguiding properties of the waveguide.
  • In one illustrative embodiment, the waveguide forms a defined angle with the substrate and the defined angle between nanowire and substrate is selected to create a vertical or close to vertical orientation.
  • In one illustrative embodiment, the waveguide is provided with at least one cladding layer.
  • In one illustrative embodiment, the one cladding layer is an optical cladding layer configured to enhance wave-guiding properties of the waveguide.
  • In one illustrative embodiment, a plurality of cladding layers provide a graded refractive index towards a boundary of the waveguide to enhance wave-guiding properties of the waveguide.
  • In one illustrative embodiment, the cladding layer comprises a metal to create electrical connection, and/or reduce the cross talk between the adjacent pixels.
  • In one illustrative embodiment, a diameter of the waveguide is larger than λ/2nw, wherein, λ is the wavelength of the confined light and nw is the refractive index of the waveguide.
  • In one illustrative embodiment, the active region is arranged within the nanowire.
  • In one illustrative embodiment, the pn junction associated with the active region is formed by doping the silicon nanowire.
  • In one illustrative embodiment, the nanowire is arranged to direct light in downward direction towards the substrate.
  • The waveguide can further comprise, for example, a planar photodetector and a plurality of nanowires arranged in an upstanding configuration on the planar photodetector surface and in epitaxial connection with the planar photodetector layer.
  • The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
  • DESCRIPTION OF THE FIGURES
  • FIG. 1 shows an illustrative embodiment of a cross sectional view of a conventional front illumination sensor and a back-illuminated sensor.
  • FIG. 2 shows an illustrative embodiment of a cross-sectional view of a back-illuminated image sensor.
  • FIG. 3A shows an illustrative embodiment of a nanostructured waveguide with dimensions therein.
  • FIGS. 3B and 3C show illustrative embodiments of a cross-sectional view of a waveguide structure, such as a nanowire, containing backside-illuminated image sensor with nanowires located on the backside of the image sensor.
  • FIGS. 4A-B shows illustrative embodiments of different back side illuminated image sensors having photodiodes therein.
  • FIGS. 4C-M shows different steps for the formation of backside-illuminated image sensors.
  • DETAILED DESCRIPTION
  • Symbols for elements illustrated in the figures are summarized in the following table. The elements are described in more detail below.
  • Symbol Element
    VPG 1 (VP Gate 1) The first vertical photogate
    VPG 2 (VP Gate 1) The second vertical photogate
    TX Gate Transfer gate
    FD Transfer drain
    RG Reset gate
    RD Reset drain
    Sub Substrate
    VDD Positive transistor voltage
    Vout Output voltage
    NW (nw) Nanowire
    De Dielectric layer
    PG Photogate
    I (i) Current
    n+, n− Semiconducting material with excess donors,
    n+ is heavily doped, n− is lightly doped
    P+, p− Semiconducting material with excess
    acceptors, p+ is heavily doped, p− is lightly
    doped
  • In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
  • The term nanowire refers to a structure that has a thickness or diameter of the order of nanometers, for example, 100 nanometers or less and an unconstrained length. Nanowires can include metallic (e.g., Ni, Pt, Au), semiconducting (e.g., Si, InP, GaN, etc.), and insulating (e.g., SiO2,TiO2) materials. Molecular nanowires are composed of repeating molecular units either organic or inorganic. Nanowires can exhibit aspect ratios (length-to-width ratio) of 1000 or more. As such they can be referred to as 1-dimensional (1D) materials. Nanowires can have many interesting properties that are not seen in bulk or 3-D materials. This is because electrons in nanowires can be quantum confined laterally and thus occupy energy levels that can be different from the traditional continuum of energy levels or bands found in bulk materials. As a result, nanowires can have discrete values of electrical and optical conductance. Examples of nanowires include inorganic molecular nanowires (Mo6S9-xIx, Li2Mo6Se6), which can have a diameter of the range of few nanometers, and can be hundreds of micrometers long. Other important examples are based on semiconductors such as InP, Si, GaN, etc., dielectrics (e.g. SiO2,TiO2), or metals (e.g. Ni, Pt).
  • The term excitons refer to electron-hole pairs.
  • An active element is any type of circuit component with the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). Components incapable of controlling current by means of another electrical signal are called passive elements. Resistors, capacitors, inductors, transformers, and even diodes are all considered passive elements. Active elements include in embodiments disclosed herein, but are not limited to, an active waveguide, transistors, silicon-controlled rectifiers (SCRs), light emitting diodes, and photodiodes.
  • A waveguide is a system or material designed to confine and direct electromagnetic radiation of selective wavelengths in a direction determined by its physical boundaries. Preferably, the selective wavelength is a function of the diameter of the waveguide. An active waveguide is a waveguide that has the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). This ability of the active waveguide, for example, is one reason why the active waveguide can be considered to be “active” and within the genus of an active element.
  • An optical pipe is an element to confine and transmit an electromagnetic radiation that impinges on the optical pipe. The optical pipe can include a core and a cladding. The core can be a nanowire. The optical pipe can be configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and the cladding, wherein the core is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core. A core and a cladding are generally complimentary components of the optical pipe and are configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and cladding.
  • A photogate is a gate used in an optoelectronic device. Typically the photogate comprises a metal-oxide-semiconductor (MOS) structure. The photogate accumulates photo generated charges during the integration time of the photodiode and controls the transfer of charges when integration is over. A photodiode comprises a pn junction, however, a photogate can be placed on any type semiconductor material. A vertical photogate is a new structure. Normally, photogates are placed on a planar photodiode devices. In a nanowire device, however, the photogate can be formed in a vertical direction. That is, standing up covering the lateral surface of the nanowire.
  • A transfer gate is a gate of a switch transistor used in a pixel. The transfer gate's role is to transfer the charges from one side of a device to another. In some embodiments, the transfer gate is used to transfer the charges from the photodiode to the sensing node (or floating diffusion). A reset gate is a gate used for resetting a device. In some embodiments, the device is the sense node which is formed by an n+ region. Reset means to restore to original voltage level set by a certain voltage. In some embodiments, the voltage of the reset drain (RD) is the voltage used as a reset level.
  • A floating capacitor is a capacitor which floats relative to the substrate. Normally a capacitor consists of two electrodes and an insulator between them. Typically, both of the electrodes are connected to other device or signal lines. In a pixel, often one of the electrodes may not be connected to a structure. This unconnected, isolated area forms the floating capacitor with respect to the substrate. In other words, the isolated area comprises one electrode which is floating. The substrate comprises the other electrode which is normally connected to the ground. A depletion region between them comprises the insulator.
  • A global connection is a connection in which many branch nodes are connected to a single line electrically so that one signal line can control the multiple branched devices at the same time. A source-follower amplifier is a common drain transistor amplifier. That is, a transistor amplifier whose source node follows the same phase as the gate node. The gate terminal of the transistor serves as the input, the source is the output, and the drain is common to both (input and output). A shallow layer is a doped layer that is physically located near the surface of the substrate. For example, a p+ layer may be intentionally formed shallow by using low energy when ion implantation is used. Normally the junction depth of a shallow layer is 0.01 μm˜0.2 μm. In contrast, a deep layer may be as deep as a few μm to tens of μm.
  • An intrinsic semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities. In intrinsic semiconductors, the number of excited electrons and the number of holes are equal: n=p. The conductivity of intrinsic semiconductors can be due to crystal defects or to thermal excitation. In an intrinsic semiconductor, the number of electrons in the conduction band is equal to the number of holes in the valence band.
  • Shallow trench isolation (STI), also known as ‘Box Isolation Technique’, is an integrated circuit feature which prevents electrical current leakage between adjacent semiconductor device components. STI is generally used on CMOS process technology nodes of 250 nanometers and smaller. Older CMOS technologies and non-MOS technologies commonly use isolation based on LOCal Oxidation of Silicon (LOCOS). STI is typically created early during the semiconductor device fabrication process, before transistors are formed. Steps of the STI process include etching a pattern of trenches in the silicon, depositing one or more dielectric materials (such as silicon dioxide) to fill the trenches, and removing the excess dielectric using a technique such as chemical-mechanical planarization.
  • In yet other embodiments, a plurality of nanowires are arranged on a regular tessellation.
  • In yet other embodiments, a coupler that may take the shape of a micro lens efficiently can be located on the optical pipe to collect and guide the electromagnetic radiation into the optical pipe. The optical pipe can comprise of a nanowire core of refractive index n1 surrounded by a cladding of refractive index n2.
  • In the configuration of the optical pipe of the embodiments of this invention, it is possible to eliminate pigmented color filters that absorb about ⅔ of the light that impinges on the image sensor. The core functions as an active waveguide and the cladding of the optical pipe can function as a passive waveguide with a peripheral photosensitive element surrounding the core to detect the electromagnetic radiation transmitted through the passive waveguide of the cladding. Passive waveguides do not absorb light like color filters, but can be designed to selectively transmit selected wavelengths.
  • A waveguide, whether passive or active, has a cutoff wavelength that is the lowest frequency that the waveguide can propagate. The diameter of the semiconductor nanowire of the core serves as the control parameter for the cutoff wavelength of the nanowire.
  • The nanowire can also serve as a photodiode by absorbing the confined light and generating electron-hole pairs (excitons).
  • Excitons so generated can be detected by using at least one of the following two designs:
    (1) A core is made up of a three layers, semiconductor, insulator and metal thus forming a capacitor to collect the charge generated by the light induced carriers. Contacts are made to the metal and to the semiconductor to control and detect the stored charge. The core can be formed by growing a nanowire and depositing an insulator layer and a metal layer surrounding the nanowire.
    (2) A core having a PIN junction that induces a potential gradient in the core wire. The PIN junction in the core can be formed by growing a nanowire and doping the nanowire core while it is growing as a PIN junction and contacting it at the appropriate points using the various metal layers that are part of any device. ITO also can be used as a electrically conductive material.
  • The photosensitive elements of the embodiments typically comprise a photodiode, although not limited to only a photodiode. Typically, the photodiode is doped to a concentration from about 1×1016 to about 1×1018 dopant atoms per cubic centimeter, while using an appropriate dopant.
  • The image sensor can have different stacking layers. The stacking layers can comprise dielectric material-containing and metal-containing layers. The dielectric materials include as but not limited to oxides, nitrides and oxynitrides of silicon having a dielectric constant from about 4 to about 20, measured in vacuum. Also included, and also not limiting, are generally higher dielectric constant gate dielectric materials having a dielectric constant from about 20 to at least about 100. These higher dielectric constant dielectric materials may include, but are not limited to hafnium oxides, hafnium silicates, titanium oxides, barium-strontium titanates (BSTs) and lead-zirconate titanates (PZTs).
  • The dielectric material-containing layers may be formed using methods appropriate to their materials of composition. Non-limiting examples of methods include thermal or plasma oxidation or nitridation methods, chemical vapor deposition methods (including atomic layer chemical vapor deposition methods) and physical vapor deposition methods.
  • The metal-containing layers can function as electrodes. Non-limiting examples include certain metals, metal alloys, metal silicides and metal nitrides, as well as doped polysilicon materials (i.e., having a dopant concentration from about 1×1018 to about 1×1022 dopant atoms per cubic centimeter) and polycide (i.e., doped polysilicon/metal silicide stack) materials. The metal-containing layers may be deposited using any of several methods. Non-limiting examples include chemical vapor deposition methods (also including atomic layer chemical vapor deposition methods) and physical vapor deposition methods. The metal-containing layers can comprise a doped polysilicon material (having a thickness typically in the range 1000 to 1500 Angstrom.
  • The dielectric and metallization stack layer comprises a series of dielectric passivation layers. Also embedded within the stack layer are interconnected metallization layers. Components for the pair of interconnected metallization layers include, but are not limited to contact studs, interconnection layers, interconnection studs.
  • The individual metallization interconnection studs and metallization interconnection layers that can be used within the interconnected metallization layers may comprise any of several metallization materials that are conventional in the semiconductor fabrication art. Non-limiting examples include certain metals, metal alloys, metal nitrides and metal silicides. Most common are aluminum metallization materials and copper metallization materials, either of which often includes a barrier metallization material, as discussed in greater detail below. Types of metallization materials may differ as a function of size and location within a semiconductor structure. Smaller and lower-lying metallization features typically comprise copper containing conductor materials. Larger and upper-lying metallization features typically comprise aluminum containing conductor materials.
  • The series of dielectric passivation layers may also comprise any of several dielectric materials that are conventional in the semiconductor fabrication art. Included are generally higher dielectric constant dielectric materials having a dielectric constant from 4 to about 20. Non-limiting examples that are included within this group are oxides, nitrides and oxynitrides of silicon. For example, the series of dielectric layers may also comprise generally lower dielectric constant dielectric materials having a dielectric constant from about 2 to about 4. Included but not limiting within this group are hydrogels such as silicon hydrogel, aerogels like silicon Al, or carbon aerogel, silsesquioxane spin-on-glass dielectric materials, fluorinated glass materials, organic polymer materials, and other low dielectric constant materials such as doped silicon dioxide (e.g., doped with carbon, fluorine), and porous silicon dioxide.
  • The dielectric and metallization stack layer can comprise interconnected metallization layers and discrete metallization layers comprising at least one of copper metallization materials and aluminum metallization materials. The dielectric and metallization stack layer also comprises dielectric passivation layers that also comprise at least one of the generally lower dielectric constant dielectric materials disclosed above. The dielectric and metallization stack layer can have an overall thickness from about 1 to about 4 microns. It may comprise from about 2 to about 4 discrete horizontal dielectric and metallization component layers within a stack.
  • The layers of the stack layer can be patterned to form patterned dielectric and metallization stack layer using methods and materials that are conventional in the semiconductor fabrication art, and appropriate to the materials from which are formed the series of dielectric passivation layers. The dielectric and metallization stack layer may not be patterned at a location that includes a metallization feature located completely therein. The dielectric and metallization stack layer may be patterned using wet chemical etch methods, dry plasma etch methods or aggregate methods thereof. Dry plasma etch methods as well as e-beam etching if the dimension needs to be small, are generally preferred insofar as they provide enhanced sidewall profile control when forming the series of patterned dielectric and metallization stack layer.
  • A planarizing layer may comprise any of several optically transparent planarizing materials. Non-limiting examples include spin-on-glass planarizing materials and organic polymer planarizing materials. The planarizing layer can extend above the optical pipe such that the planarizing layer can have a thickness sufficient to at least planarize the opening of the optical pipe, thus providing a planar surface for fabrication of additional structures within the CMOS image sensor. The planarizing layer can be patterned to form the patterned planarizing layer.
  • Optionally, there can be a series of color filter layers located upon the patterned planarizing layer. The series of color filter layers, if present, would typically include either the primary colors of red, green and blue, or the complementary colors of yellow, cyan and magenta. The series of color filter layers would typically comprise a series of dyed or pigmented patterned photoresist layers that are intrinsically imaged to form the series of color filter layers. Alternatively, the series of color filter layers may comprise dyed or pigmented organic polymer materials that are otherwise optically transparent, but extrinsically imaged while using an appropriate mask layer. Alternative color filter materials may also be used. The filter can also be filter for a black and white, or IR sensors wherein the filter cuts off visible and pass IR predominantly.
  • The spacer layer can be one or more layers made of any material that physically, but not optically, separates the stacking layers from a micro lens on the top of the optical pipe near the incident electromagnetic radiation beam receiving end of the image sensor. The function of the micro lens or in more general terms is to be a coupler, i.e., to couple the incident electromagnetic radiation beam into the optical pipe. If one were to choose a micro lens as the coupler in this embodiment, its distance from the optical pipe would be much shorter than to the photosensitive element, so the constraints on its curvature are much less stringent, thereby making it implementable with existing fabrication technology. The spacer layer can be formed of a dielectric spacer material or a laminate of dielectric spacer materials, although spacer layers formed of conductor materials are also known. Oxides, nitrides and oxynitrides of silicon are commonly used as dielectric spacer materials. Oxides, nitrides and oxynitrides of other elements such as ITO (Indium tin oxide) are not excluded. The dielectric spacer materials may be deposited using methods analogous, equivalent or identical to the methods described above. The spacer layer can be formed using a blanket layer deposition and etchback method that provides the spacer layer with the characteristic inward pointed shape.
  • The micro lens may comprise any of several optically transparent lens materials that are known in the art. Non-limiting examples include optically transparent inorganic materials, optically transparent organic materials and optically transparent composite materials. Most common are optically transparent organic materials. Typically the lens layers can be formed incident to patterning and reflow of an organic polymer material that has a glass transition temperature lower than the series of color filter layers, if present, or the patterned planarizing layer.
  • In the optical pipe, the high index material in the core can, for example, be silicon nitride having a refractive index of about 2.0. The lower index cladding layer material can, for example, be a glass, for example a material selected from Table I, having a refractive index about 1.5. The core can be Silicon having refractive index in the range 5-6, and the cladding can be silicon oxide having a refractive index of about 1.5.
  • In the optical pipe, the high index material in the core can, be surrounded by a cladding having two or more cladding have different materials of consecutively lesser index of refraction. For example, if silicon is the material of the core, a first layer of silicon nitride can be used, followed by another layer of silicon oxides. In this configuration, the indices are reduced from 5-6 in the core to about 2 in the first layer and then to about 1.5 in the second cladding layer.
  • In this embodiment, the two or more concentric dielectric layers perform a light guiding function. Thus, one aspect of this embodiment is the absence of a metal layer. In another aspect, the successive concentric dielectric layers of the two or more concentric dielectric layers have a lower index of refraction with increasing radius. That is, concentric dielectric layers with a larger radius have a lower index of refraction than concentric dielectric layers having a smaller radius. In another aspect, adjacent concentric dielectric layers have alternating higher and lower indexes of refraction.
  • In one embodiment, the waveguiding nanowire structure includes a high refractive index core with one or more surrounding cladding with refractive indexes less than that of the core. The structure has either a circular symmetry, or close to being of circular symmetry. The materials of the different members of the nanostructured wire are such that the nanowire will have good waveguiding properties with respect to the surrounding materials, i.e. the refractive index of the material in the nanowire should be larger than the refractive indices of the surrounding materials. If the nanowire has a first refracting index, nw, the material surrounding the nanowire typically cover one or more layer graded refractive index, for example, n3<n2<n1<nw.
  • TABLE I
    Typical Material Index of Refraction
    Micro Lens (Polymer) 1.583
    Spacer 1.512
    Color Filter 1.541
    Planarization 1.512
    PESiN 2.00
    PESiO 1.46
    SiO 1.46

    In Table I, PESiN refers to plasma enhanced SiN and PESiO refers to plasma enhanced SiO.
  • The shape of the optical pipe can be different for different embodiments. In one configuration, the optical pipe can cylindrical, that is, the diameter of the pipe remains the substantially the same throughout the length of the optical pipe. In another configuration, the optical pipe can conical, where the upper diameter of the cross sectional area of the optical pipe can be greater or smaller than the lower diameter of the cross sectional area of the optical pipe. The terms “upper” and “lower” refer to the ends of the optical pipe located closer to the incident electromagnetic radiation beam receiving and exiting ends of the image sensor. Other shapes include a stack of conical sections.
  • Table I lists several different glasses and their refractive indices. These glasses can be used for the manufacture of the optical pipe such that refractive index of the core is higher than that of the cladding. The image sensors of the embodiments can be fabricated using different transparent glasses having different refractive indices without the use of pigmented color filters.
  • By nesting optical pipes that function as waveguides and using a micro lens coupler, an array of image sensors can be configured to obtain complementary colors having wavelengths of electromagnetic radiation separated at a cutoff wavelength in the core and cladding of each optical pipe of every image sensor. The complementary colors are generally two colors when mixed in the proper proportion produce a neutral color (grey), white, or black. This configuration also enables the capture and guiding of most of the electromagnetic radiation incident beam impinging on the micro lens to the photosensitive elements (i.e., photodiodes) located at the lower end of the optical pipe. Two adjacent or substantially adjacent image sensors with different color complementary separation can provide complete information to reconstruct a full color scene according to embodiments described herein. This technology of embodiments disclosed herein can further supplant pigment based color reconstruction for image sensing which suffers from the inefficiency of discarding (through absorption) the non-selected color for each pixel.
  • Each physical pixel of a device containing an image sensor of the embodiments disclosed herein can have two outputs representing the complementary colors, e.g., cyan (or red) designated as output type 1 and yellow (or blue) designated as output type 2. These outputs would be arranged in tessellations as follows:
  • 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
  • Each physical pixel can have complete luminance information obtained by combining its two complementary outputs. The two complementary outputs can be measured by the photodiode in the optical pipe and by one or more photodiodes in the substrate. As a result, the same image sensor can be used either as a full resolution black and white or full color sensor.
  • In the embodiments of the image sensors disclosed herein, the full spectrum of wavelengths of the incident electromagnetic radiation beam (e.g., the full color information of the incident light) can be obtained by the appropriate combination of two adjacent pixels either horizontally or vertically as opposed to 4 pixels for the conventional Bayer pattern.
  • Depending on minimum transistor sizes, each pixel containing an image sensor of the embodiments disclosed herein can be as small as 1 micron or less in pitch and yet have sufficient sensitivity. This can open the way for contact imaging of small structures such as biological systems.
  • The embodiments, which include a plurality of embodiments of an image sensor, as well as methods for fabrication thereof, will be described in further detail within the context of the following description. The description is further understood within the context of the drawings described above. The drawings are for illustrative purposes and as such are not necessarily drawn to scale.
  • An embodiment of a compound pixel comprises a system of two pixels, each having a core of a different diameter such that cores have diameters d1 and d2 for directing light of different wavelengths (for example, λG, λB or λR). The two cores can also serve as photodiodes to capture light of wavelengths λB, λG, or λR. The claddings of the two image sensors serve for transmitting the light of wave length λw-B, λw-G or λw-R. The light of wave length λw-B, λw-G or λw-R transmitted through the cladding is detected by the peripheral photosensitive elements surrounding the cores. Note that (w) refers to the wavelength of white light. Signals from the 4 photodiodes (two located in the cores and two located in or on the substrate surrounding the core) in the compound pixel are used to construct color.
  • The embodiments include a nanostructured photodiode (PD) according to the embodiments comprise a substrate and an upstanding nanowire protruding from the substrate.
  • A pn-junction giving an active region to detect light may be present within the structure. The nanowire, a part of the nanowire, or a structure in connection with the nanowire, forms a waveguide directing and detecting at least a portion of the light that impinges on the device. In addition the waveguide doubles up as spectral filter that enables the determination of the color range of the impinging light.
  • A nanostructured PD according to the embodiments comprises of an upstanding nanowire. For the purpose of this application an upstanding nanowire should be interpreted as a nanowire protruding from the substrate in some angle, the upstanding nanowire for example being grown epitaxially from the substrate, for example, by as vapor-liquid-solid (VLS) grown nanowires. The angle with the substrate will typically be a result of the materials in the substrate and the nanowire, the surface of the substrate and growth conditions. By controlling these parameters it is possible to produce nanowires pointing in only one direction, for example vertical, or in a limited set of directions. Semiconductor nanowires can be grown normal to the substrate, and silicon nanowires can be grown in the [111] directions with substrate in the (111) crystal plan. Nanowires and substrates of zinc-blende and diamond semiconductors composed of elements from columns III, V and IV of the periodic table, such nanowires can be grown in the [111] directions and then be grown in the normal direction to any {111} substrate surface. Other directions given as the angle between normal to the surface and the axial direction of the nanowire include 70,53° {111}, 54,73° {100}, and 35,27° and 90°, both to {110}. Thus, the nanowires define one, or a limited set, of directions.
  • According to the embodiments, a part of the nanowire or structure formed from the nanowire can be used as a waveguide directing and confining at least a portion of the light impinging on the nanostructured PD in a direction given by the upstanding nanowire. The waveguiding nanostructured PD structure can include a high refractive index core with one or more surrounding cladding with refractive indices less than that of the core. The structure can be either circular symmetrical or close to being circular symmetrical. Light waveguiding in circular symmetrical structures are well know for fiber-optic applications and many parallels can be made to the area of rare-earth-doped fiber optic devices. However, one difference is that fiber amplifier are optically pumped to enhance the light guided through them while the described nanostructured PD can be seen as an efficient light to electricity converter. One well known figure of merit is the so called Numerical Aperture, NA. The NA determines the angle of light captured by the waveguide. The NA and angle of captured light is an important parameter in the optimization of a new PD structure.
  • For a PD operating in IR and above IR, using GaAs can be good, but for a PD operating in the visible light region, silicon would be preferable. For example to create circuits, Si and doped Si materials are preferable. Similarly, for a PD working in the visible range of light, one would prefer to use Si.
  • In one embodiment, the typical values of the refractive indexes for III-V semiconductor core material are in the range from 2.5 to 5.5 when combined with glass type of cladding material (such as SiO2 or Si3N4) having refractive indexes ranging from 1.4 to 2.3. A larger angle of capture means light impinging at larger angles can be coupled into the waveguide for better capture efficiency.
  • One consideration in the optimization of light capture is to provide a coupler into the nanowire structure to optimize light capture into the structure. In general, it would be preferred to have the NA be highest where the light collection takes place. This would maximize the light captured and guided into the PD.
  • A nanostructured PD according to the embodiments can comprise a substrate and a nanowire epitaxially grown from the substrate in an defined angle θ. A portion of or all of the nanowire can be arranged to act as a waveguiding portion directing at least a portion of the impinging light in a direction given by the elongated direction of the nanowire, and will be referred to as a waveguide. In one possible implementation, a pn-junction necessary for the diode functionality can be formed by varying the doping of the wire along its length while it is growing. Two contact can be provided on the nanowire for example one on top or in a wrapping configuration on the circumferential outer surface and the other contact can be provided in the substrate. The substrate and part of the upstanding structure may be covered by a cover layer, for example as a thin film as illustrated or as material filling the space surrounding the nanostructured PD.
  • The nanowire can have a diameter in the order of 50 nm to 500 nm, The length of the nanowire can be of the order of 1 to 10 μm. The length of the nanowire is preferably in the order of 4-10 μm, providing enough volume for creating an active pn junction. The pn junction results in an active region arranged in the nanowire. Impinging photons in the nanowire are converted to electron hole pairs and in one implementation are subsequently separated by the electric fields generated by the PN junction along the length of the nanowire. The materials of the different members of the nanostructured PD are chosen so that the nanowire will have good waveguiding properties vis-a-vis the surrounding materials, i.e. the refractive index of the material in the nanowire should preferably be larger than the refractive indices of the surrounding materials.
  • In addition, the nanowire may be provided with one or more layers. A first layer, may be introduced to improve the surface properties (i.e., reduce charge leakage) of the nanowire. Further layers, for example an optical layer may be introduced specifically to improve the waveguiding properties of the nanowire, in manners similar to what is well established in the area of fiber optics. The optical layer typically has a refractive index in between the refractive index of the nanowire and the surrounding cladding region material. Alternatively the intermediate layer has a graded refractive index, which has been shown to improve light transmission in certain cases. If an optical layer is utilized the refractive index of the nanowire, nw, should define an effective refractive index for both the nanowire and the layers.
  • The ability to grow nanowires with well defined diameters, as described above and exemplified below, can be to optimize the waveguiding properties of the nanowire or at least the waveguide with regards to the wavelength of the light confined and converted by the nanostructured PD. The diameter of the nanowire can be chosen so as to have a favorable correspondence to the wavelength of the desired light. Preferably the dimensions of the nanowire are such that a uniform optical cavity, optimized for the specific wavelength of the produced light, is provided along the nanowire. The core nanowire must be sufficiently wide to capture the desired light. A rule of thumb would be that diameter must be larger than λ/2nw, wherein λ is the wavelength of the desired light and nw is the refractive index of the nanowire. As an example a diameter of about 60 nm may be appropriate to confine blue light only and one 80 nm may be appropriate for to confine both blue and green light only in a silicon nanowire.
  • In the infra-red and near infra-red a diameter above 100 nm would be sufficient. An approximate preferred upper limit for the diameter of the nanowire is given by the growth constrains, and can be in the order of 500 nm. The length of the nanowire is typically and preferably in the order of 1-10 μm, providing enough volume for the light conversion region
  • A reflective layer can be in one embodiment, provided on the substrate and extending under the wire. The purpose of the reflective layer is to reflect light that is guided by the wire but has not been absorbed and converted to carriers in the nanostructured PD. The reflective layer is preferably provided in the form of a multilayered structure comprising repeated layers of silicates for example, or as a metal film. If the diameter of the nanowire is sufficiently smaller than the wavelength of the light a large fraction of the directed light mode will extend outside the waveguide, enabling efficient reflection by a reflective layer surrounding the narrow the nanowire waveguide
  • An alternative approach to getting a reflection in the lower end of the waveguide core can be to arrange a reflective layer in the substrate underneath the nanowire. Yet another alternative can be to introduce reflective means within the waveguide. Such reflective means can be a multilayered structure provided during the growth process of the nanowire, the multilayered structure comprising repeated layers of for example SiNx/SiOx (dielectric).
  • To form the pn-junction necessary for light detection at least part of the nanostructure is preferably doped. This can be done by either changing dopants during the growth of the nanowire or using a radial shallow implant method on the nanowire once it is grown.
  • Considering systems where nanowire growth is locally enhanced by a substance, as vapor-liquid-solid (VLS) grown nanowires, the ability to alter between radial and axial growth by altering growth conditions enables the procedure (nanowire growth, mask formation, and subsequent selective growth) can be repeated to form nanowire/3D-sequences of higher order. For systems where nanowire growth and selective growth are not distinguished by separate growth conditions it may be better to first grow the nanowire along the length and by different selective growth steps grow different types of 3D regions.
  • A fabrication method according to the embodiments of a light detecting pn-diode/array with active nanowire region(s) formed of Si, comprises the steps of:
  • 1. Defining of local catalyst/catalysts on a silicon substrate by lithography.
    2. Growing silicon nanowire from local catalyst. The growth parameters adjusted for catalytic wire growth.
    3. Radial growing of other semiconductor, passivation, thin insulator or metal concentric layer around the nanowire (cladding layer).
    4. Forming contacts on the PD nanwire and to the substrate and to other metal layers in a CMOS circuit.
  • The growth process can be varied in known ways, for example, to include heterostructures in the nanowires, provide reflective layers etc.
  • Depending on the intended use of the nanostructured PD, availability of suitable production processes, costs for materials etc., a wide range of materials can be used for the different parts of the structure. In addition, the nanowire based technology allows for defect free combinations of materials that otherwise would be impossible to combine. The III-V semiconductors are of particular interest due to their properties facilitating high speed and low power electronics. Suitable materials for the substrate include, but is not limited to: Si, GaAs, GaP, GaP:Zn, GaAs, InAs, InP, GaN, Al2O3, SiC, Ge, GaSb, ZnO, InSb, SOI (silicon-on-insulator), CdS, ZnSe, CdTe. Suitable materials for the nanowire 110 include, but is not limited to: Si, GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, BN, InP, InAsP, GaInP, InGaP:Si, InGaP:Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb. Possible donor dopants for e.g. GaP, Te, Se, S, etc, and acceptor dopants for the same material are Zn, Fe, Mg, Be, Cd, etc. It should be noted that the nanowire technology makes it possible to use nitrides such as SiN, GaN, InN and AlN, which facilitates fabrication of PDs detecting light in wavelength regions not easily accessible by conventional technique. Other combinations of particular commercial interest include, but is not limited to GaAs, GaInP, GaAlInP, GaP systems. Typical doping levels range from 1018 to 1020 per cubic centimeter. A person skilled in the art is though familiar with these and other materials and realizes that other materials and material combinations are possible.
  • The appropriateness of low resistivity contact materials are dependent on the material to be deposited on, but metal, metal alloys as well as non-metal compounds like Al, Al—Si, TiSi2, TiN, W, ITO (InSnO), MoSi2, PtSi, CoSi2, WSi2, In, AuGa, AuSb, AuGe, PeGe, Ti/Pt/Au, Ti/Al/Ti/Au, Pd/Au, etc. and combinations of e.g. metal and ITO can be used.
  • The substrate can be an integral part of the device, since it also contains the photodiodes necessary to detect light that has not been confined to the nanowire. The substrate in addition also contains standard CMOS circuits to control the biasing, amplification and readout of the PD as well as any other CMOS circuit deemed necessary and useful. The substrate include substrates having active devices therein. Suitable materials for the substrates include silicon and silicon-containing materials. Generally, each sensor element of the embodiments include a nanostructured PD structure comprise a nanowire, a cladding enclosing at least a portion of the nanowire, a coupler and two contacts.
  • The fabrication of the nanostructured PDs on silicon is possible to the degree that the nanowires are uniformly aligned the (111) direction normal to the substrates and essentially no nanowires are grown in the three declined (111) directions that also extends out from the substrate. The well aligned growth of III-V nanowires in predefined array structures on silicon substrates, is preferred for successful large scale fabrication of optical devices, as well as most other applications.
  • PD devices build on silicon nanowires are of high commercial interest due to their ability to detect light of selected wavelengths not possible with other material combinations. In addition they allow the design of a compound photodiode that allows the detection of most of the light that impinges on a image sensor.
  • EXAMPLES Example 1
  • An example of a back-side illuminated image sensor having a fully processed wafer containing a substrate photodiode but without the nanowires on the back-side of the substrate is shown in FIG. 2.
  • FIG. 3A shows an illustrative embodiment of a nanostructured waveguide with dimensions therein. The dimensions therein are purely for illustrative purpose to show the dimensions that one could use in an illustrative embodiment. However, other dimensions can also be used without deviating from the scope of the invention.
  • FIG. 3B is an embodiment showing nano-wires on the back-side of a fully processed wafer containing substrate photodiodes. In FIG. 3B, three nanowires, of different diameters are grown, and are used to select and absorb radiations of different wavelengths Red, Green and Blue.
  • FIG. 3C is an embodiment showing nano-wires on the back-side of a fully processed wafer containing substrate photodiodes. In FIG. 3C, two nanowires, of different diameters are grown, and used to select and absorb radiation, and with every nanowire there is a planar photodiode, or more than one, built into the substrate. The planner photodiodes absorb the radiation that was not allowed to propagate in the nanowires.
  • The BSI image sensor is useful for a variety of embodiments. For examples, as light detector devices by: (A) Creating the nanowire and associate structures on a silicon area located on the back of a conventional CMOS sensor circuitry, using the BSI image sensor. This method of back-illumination can be used for CCD and for enhancing the performance of a conventional CMOS imager. See for example: “A Back-Illuminated Mega Pixel CMOS Image Sensor” by: B. Pain et all in Proc 2007 Int. Image sensor Workshop, Pages 5-8, 2007; “Back-illuminated ultraviolet image sensor in silicon-on-sapphire” by: Jon Hyuk Park; E. Culurciello, in IEEE International Symposium on Circuits and Systems (ISCAS 2008) Seattle, Wash., 18-21 May 2008 Pages:1854-1857. (B) Creating the nanowire and associate structures on an area located on top of the area that is normally designated for a photodiode. Thus, the substrate might be a dielectric.
  • The process diagrams here are for a case of silicon nanowires (NW) grown on a layer of silicon. The process can apply for growing Si NW on dielectric layer, or for III-V compound grown on the appropriate substrate, including Si substrate with or without a thin Molybdenum layer.
  • The device structure can include a low-doped (˜3×1014/cm3) epitaxial p-type silicon, with the photo-detecting junction formed by a front-implanted n-well and the p-type epitaxial silicon. Photons enter the detector from the backside, and the resultant photo-electrons are collected in the front-side p-n well junction.
  • One embodiment can relate to a back-side illuminated image sensor having an optical pipe on the back-side of the substrate, the optical pipe comprising a core and a cladding so as to create a capacitor surrounding nanowire. The core can be made up of three layers, a semiconductor nanowire, an insulator and metal thus forming a capacitor to collect the charge generated by the light induced carriers in the nanowire. Contacts can be made to the metal and to the semiconductor nanowire to control and detect the stored charge. The core of the embodiments can function as a waveguide and a photodiode. The cladding can comprise a peripheral waveguide and a peripheral photodiode located in or on the silicon substrate of the optical sensor.
  • The integrated circuit (IC) in the silicon wafer substrate may optionally have active devices therein, a peripheral photodiode in or on the silicon wafer, stacking layers containing metallization layers and intermetal dielectric layers, and a passivation layer. The thickness of the stacking layers can generally be around 6 to 10 μm. The method of manufacturing the IC by planar deposition techniques is well-known to persons of ordinary skill in the art. A substrate containing the IC shown in FIG. 2 can be starting point for the manufacture of the embodiments of back-side illuminated sensor.
  • The substrate can then be thinned at an individual die level using a frame-thinning approach. The pixel area can be thinned down to about 7-10 pm thickness (corresponding to epitaxial silicon thickness), leaving a thick peripheral region (about 1 mm wide). A surface passivation step can then be applied to the thinned silicon layer. The resultant structure provides increased mechanical stability, a significant ease of die handling, and protection against wrinkling of the thinned die. This approach is well suited for a CMOS imager, since the imager consists not only of the pixels, but the support and signal chain electronics along the periphery of the pixel array.
  • Backside thinning can be carried out as follows. First, the front-side of the die would be attached to a protective wax. Then a protective frame on the backside would be created through deposition and patterning of a Si3N4 mask. The unmasked p+ silicon substrate (with doping about 1×1019/cm3) can then be etched using hot KOH, for example, down to within about 10 μm of the final silicon thickness. The remainder of the etching can be carried out in a bath having hydrofluoric acid, nitric acid and acetic acid solution (HF:HNO3:CH3COOH called HNA). HNA etches silicon through a redox reaction where the silicon oxidation rate is dependent on the doping concentration. Due to its doping concentration dependence, the etch-rate significantly slows down when the silicon substrate is etched, leaving an optically flat thin (about 10 pm thick) epitaxial silicon layer. Following thinning, the front-side wax can be removed, and the die can packaged in a standard pin-grid array (PGA) package (with its central portion removed to let light in) using a standard wire-bonding technique.
  • Subsequent to thinning, delta-doping technique can optionally be used for surface passivation. The technique includes a low temperature molecular beam epitaxy (MBE) that places an extremely high density of dopant atoms (>1017 Boron/cm2) within a few atomic layers of the surface with no observable crystal defects and no requirement for post-growth annealing, making it compatible with post-metallization processing. Delta-doping should be carried out under ultra-high vacuum conditions (10−10 torr) using electron-beam evaporation of elemental silicon and thermal evaporation of elemental boron. The process steps can be as follows. A 1 nm-thick (p+) silicon layer can be grown first, followed by depositing about 30% of a monolayer of boron atoms. 1.5 nm-thick capping layer of epitaxial silicon was then grown. After removal from the MBE system, oxidation of the silicon capping layer protects the buried delta-doped layer. The resultant optically flat surface allows easy deposition of anti-reflection coating using deposited oxides and plasma-enhanced silicon nitrides.
  • The subsequent steps for the manufacture of the embodiments of the back-side illuminated sensor can be as follows. The silicon nanowire of the embodiments disclosed herein can be made as follows. A substrate can be a silicon optionally having a silicon dioxide surface. For example, for growing vertically oriented nanowires, Si substrate in the (111) orientation can be used. The gold patches can normally be deposited on this surface The surface can be modified with a surface treatment to promote adsorption of a gold nanoparticle. Onto this modified surface, the gold nanoparticle can be formed by deposition of a gold layer, followed by removal of the gold layer over regions other than desired location of the gold nanoparticle. The gold nanoparticle can be surface treated to provide for steric stabilization. In other words, tethered, sterically stabilized gold nanoparticles can be used as seeds for further synthesis of nanowires, wherein the gold nanoparticles are adsorbed to the modified silicon substrate. The degradation of diphenyl silane (DPS) to forms silicon atoms. The silicon atoms attach to the gold nanoparticle and a silicon nanowire crystallizes from the gold nanoparticle seed upon saturation of the gold nanoparticle with silicon atoms. Note that the thickness and diameter of the gold particle left behind on the back-side surface determines the diameter of the nanowire.
  • In some embodiments, silicon NWs (SiNW) are be grown using the vapor-liquid-solid (VLS) growth method. In this method, a metal droplet catalyzes the decomposition of a Si-containing source gas. Silicon atoms from the gas dissolves into the droplet forming a eutectic liquid. The eutectic liquid functions as a Si reservoir. As more silicon atoms enter into solution, the eutectic liquid becomes supersaturated in silicon, eventually causing the precipitation of Si atoms. Typically, the Si precipitates out of the bottom of the drop, resulting in bottom up growth of a Si—NW with the metal catalyst drop on top.
  • In some embodiments, gold is used as the metal catalyst for the growth of silicon NWs. Other metals, however, may be used, including, but not limited to, Al, GA, In, Pt, Pd, Cu, Ni, Ag, and combinations thereof. Solid gold may be deposited and patterned on silicon wafers using conventional CMOS technologies, such as sputtering, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), evaporation, etc. Patterning may be performed, for example, with optical lithography, electron-beam lithography, or any other suitable technique. The silicon wafer can then be heated, causing the gold to form droplets on the silicon wafer. Silicon and gold form a eutectic at 19% Au having a melting temperature at 363° C. That is, a liquid drop of Si—Au eutectic forms at 363° C., a moderate temperature suitable for the processing of silicon devices.
  • In some embodiments, the substrates have a (111) orientation. Other orientations, however, may also be used, including, but not limited to (100). A common silicon source gas for NW production is SiH4. Other gases, however, may be used including, but not limited to, SiCl4. In some embodiments, NW growth may be conducted, for example, with SiH4 at pressures of 80-400 mTorr and temperatures in the range of 450-600° C. In some embodiments, the temperature is in a range of 470-540° C. Typically, lower partial pressures of SiH4 result in the production of a higher percentage of vertical nanowires (NW). For example, at 80 mTorr partial pressure and 470° C., up to 60% of the SiNWs grow in the vertical <111> direction. In some embodiments, NWs may be grown which are essentially round. In other embodiments, the NW are hexagonal.
  • In one embodiment, NW growth is conducted in a hot wall low pressure CVD reactor. After cleaning the Si substrates with acetone and isopropanol the samples may be dipped in a buffered HF solution to remove any native oxide. Successive thin Ga and Au metal layers (nominally 1-4 nm thick) may deposited on the substrates by thermal evaporation. Typically, the Ga layer is deposited before the Au layer. In an embodiment, after evacuating the CVD-chamber down to approximately 10−7 torr, the substrates can be heated up in vacuum to 600° C. to form metal droplets. The Si—NWs can be grown, for example, at a total pressure of 3 mbar using a 100 sccm flow of SiH4 (2% in a He mixture) in a temperature range from 500° C. to 700° C.
  • The size and length of the Si—NWs grown with a Au—Ga catalyst are relatively homogeneous, with most of the wires oriented along the four <111> directions. For comparison, Si—NWs grown with a pure Au catalyst nucleate and grow with lengths and diameters of the NWs more randomly distributed. Further, NWs grown with a Au—Ga catalyst tend to have a taper along the axial direction. The tip diameters of NWs grown for a long time are the same as those grown for a short time and are determined by the catalyst diameter. The footprints of the NWs, however, tend to increase during the course of the growth. This indicates that NW tapering is caused primarily by sidewall deposition (radial growth) of silicon. NWs may be grown having a diameter at the foot (base) of 1500 nm, while the diameter of the tip may less than 70 nm over a length of 15 μm. Further, the NW diameter is a function of growth temperature. Higher growth temperatures result in NW with smaller diameters. For example, the average diameter of NWs grown with the Ga/Au catalyst at 600° C. is about 60 nm but the average diameter decreases down to about 30 nm for growth at 500° C. Additionally, the variation in diameters tends to narrow as deposition temperature is lowered.
  • Using the VLS process, vertical NWs may be grown. That is, nanowires which are essentially perpendicular to the substrate surface. Typically, not all NW will be perfectly vertical. That is, the NWs may be tilted at an angle to the surface other than 90 degrees. Commonly observed tilted NWs include, but are not limited to, the three 70.5°-inclined <111> epitaxial growth directions and three additional 70.5°-inclined directions, which are rotated by 60°.
  • In addition to growing vertical NWs, the VLS process may be used to grow doped NWs. Indeed, by changing the composition of the source gases, a doping profile in the growing wire can be produced. For example, the NW can be made p-type by adding diborane (B2H2) or trimethyl borane (TMB) to the source gas. Other gases that add acceptor atoms to the silicon NW may also be used. The NW can be made n-type by adding PH3 or AsH3 to the source gas. Other gases that add donor atoms to the silicon NW may also be used. Doping profiles which can be produced, include but are not limited to, n-p-n, p-n-p, and p-i-n.
  • Additionally, other methods or variations of the VLS method may be used to grow NWs. Other methods or variation include, but are not limited to, (1) CVD, (2) reactive atmosphere, (3) Evaporation, (4) molecular beam epitaxy (MBE), (5) laser ablation, and (6) solution methods. In the CVD process, a volatile gaseous silicon precursor is provided. Example silicon precursor gases include SiH4 and SiCl4. CVD may be used for epitaxial growth. Further, doping can be accomplished by adding volatile doping precursors to the silicon precursor Annealing in a reactive atmosphere comprises heating the substrate in a gas that reacts with the substrate. For example, if silicon is annealed in an atmosphere including hydrogen, the hydrogen locally reacts with the silicon substrate, forming SiH4. The SiH4 can then react with the catalyst metal drop, thereby initiating NW growth. This growth process can be used for non-CMOS processes.
  • In the evaporation method, a SiO2 source is heated under conditions that result in the production of SiO gas. When the SiO gas adsorbs on the metal catalyst droplets, it forms Si and SiO2. This method may also be performed without a metal catalyst drop. Absent a metal catalyst, SiO2 has been observed to catalyze silicon NW growth. In the MBE method, a high purity silicon source is heated until Si atoms evaporate. A gaseous beam of Si directed toward the substrate. The gaseous silicon atoms adsorb onto and dissolve into the metal droplet, thereby initiating growth of NWs.
  • In the laser ablation method, a laser beam is aimed at source which includes both silicon and catalyst atoms. The ablated atoms cool by colliding with inert gas molecules and condense to form droplets with the same composition as the original target. That is, droplets having both silicon and catalyst atoms. The laser ablation method may also be performed with a target consisting essentially of pure silicon. Solution based techniques typically use organic fluids. Specifically, the organic fluids generally comprise highly pressurized supercritical organic fluids enriched with a silicon source and catalyst particles. At a reaction temperature above the metal-silicon eutectic, the silicon precursor decomposes, forming an alloy with the metal. Upon supersaturation, silicon precipitates out, growing the NW.
  • The above nanowire growth techniques are all bottom up techniques. Nanowires, however may also be fabricated with top down techniques. Top down techniques typically involve patterning and etching a suitable substrate, for example silicon. Patterning can be accomplished via lithography, for, example, electron beam lithography, nanosphere lithography and nanoprint lithography. Etching may be performed either dry or wet. Dry etching techniques include, but are not limited to, reactive ion etching. Wet etching may be performed with either standard etches or via the metal-assisted etching process. In the metal-assisted etching process, Si is wet-chemically etched, with the Si dissolution reaction being catalyzed by the presence of a noble metal that is added as a salt to the etching solution.
  • Subsequent steps can relate to the forming of one or more of the dielectric layers around the nanowire on the back-side of the substrate. For example, a conformal dielectric coating by chemical vapor deposition (CVD), atomic layer deposition (ALD), oxidation or nitration can be made around the nanowire. Then, doped glass dielectric layer can be formed on the conformal dielectric coating by plasma enhanced chemical vapor deposition, spin-on coating or sputtering, optionally with an initial atomic layer deposition. The deposited doped glass dielectric layer can be etched back by chemical-mechanical planarization or other methods of etching.
  • A funnel and a lens on the funnel to channel electromagnetic radiation such as light into the nanowire waveguide can then be made as follows: deposition of a glass/oxide/dielectric layer by CVD, sputter deposition or spin-on coating; application of a photoresist on the deposited glass/oxide/dielectric layer; removal of the photoresist outside an opening centered over the nanowire within the deep cavity; and forming a coupler by semi-isotropic etching in the glass/oxide/dielectric layer.
  • Subsequent steps can relate to the forming of a metal layer around the one or more dielectric layers by depositing a metal such a copper on the vertical walls of the nanowire surrounding the one or more dielectric layers.
  • Another embodiment can relate to a back-side illuminated image sensor having an optical pipe comprising a core and a cladding with a PIN or PN photodiode in a nanowire in the core.
  • The core can have a PN or PIN junction that induces a potential gradient in the core wire. The PN or PIN junction in the core can be formed by growing a nanowire and doping the nanowire core while it is growing as a PIN junction. For example, the doping of the nonowire can have two levels of doping to form N and P, or in other embodiments, the nanowire can comprise P, I and N regions to form a PIN photodiode. Yet, another possibility is doping the wire along its length in concentric circles to form P and N or P, I and N regions to form a PN or PIN photodiode. The PN or PIN junction nanowire (also referred to as a PN or PIN photodiode) is contacted at the appropriate points along PN or PIN junction nanowire using the various metal layers that are part of any device to detect the charge generated by the light induced carriers in the PN or PIN junction nanowire. The cladding of the embodiments can comprise a peripheral waveguide and a peripheral photodiode located in or on the silicon substrate of the optical sensor.
  • The method of making the embodiments wherein the nanowire has a PN or PIN junction is similar in many ways to the method of making the embodiment where the optical pipe has a capacitor type photodiode described above except that a modified version of the nanowire growth step is carried out, the step of depositing a conformal dielectric coating is omitted, and the step of depositing a metal on the vertical walls of the nanowire is omitted.
  • The nanowire growth step includes growing a nanowire having two or more different doped regions to form a PN phototdiode by growing a N-doped (n-doped) nanowire followed by growing a P-doped (p-doped) nanowire or a PIN photodiode by first growing a N-doped (n-doped) nanowire, then growing an I-doped nanowire (also referred to as the I-region of the nanowire), and finally growing a p-doped nanowire. The doping of the nanowire can be carried out by methods well known in the art.
  • Example 2
  • The embodiments herein relate to additional manufacturing processes for a backside thinned image sensor. Examples of the structures of the backside thinned image sensor having photodiodes therein are shown in FIG. 4A and FIG. 4A.
  • FIGS. 4C-4M illustrates embodiments of a manufacturing process for a backside thinned image sensor which can optionally have an integrated lens stack. The manufacturing process starts with a substrate. The substrate can be semiconductor wafer or a dielectric. In one embodiment, the substrate is a silicon-on-insulator wafer (SOI). Alternatively, the substrate can be a special epitaxial wafer, such as a silicon-on-sapphire (SOS), some other type of epitaxial wafer, or a wafer that has a thinning control layer embodied at some depth.
  • During the first steps in the manufacturing process, a layer of appropriate catalyst to grow the desired nanowire on the back-side of the substrate is deposited. For example, to grow a Si nanowire, the catalyst layer can a layer of gold or an alloy of gold-gallium as shown in FIG. 4C.
  • The substrate can be a part of a structure that contains the appropriate circuits to perform the total functions of the device, be it light detecting, amplification, and manipulation, or light emitting circuit or the combinations. Manufacturing techniques for such wafers are know to one of ordinary skill in the art.
  • For example, during the first steps of the manufacturing process, circuit features can fabricated on or within the substrate. Following these manufacturing steps, the substrate can includes pixel array and backend stack. Pixel array can include an array of metal oxide semiconductor technology (MOS-technology) image sensing circuits (“pixels”). MOS-technology image sensors are known in the art. Backend stack can include the signal routing layers for the semiconductor wafer.
  • In one embodiment, the substrate can includes thinning control layer in the substrate. Thinning control layer provides a chemical stop for the etching process used to remove part of the substrate in a later manufacturing step. In one embodiment, thinning control layer can be a Separation by IMplantation of OXygen (SIMOX) layer. One method of creating a SIMOX layer is to use an oxygen ion beam implantation process followed by high temperature annealing to create a buried SiO2 layer. Based on the etch selectivity of Si to SiO2 in alkaline aqueous solutions, for example, this SiO2 layer is employed as an etch-stop in preparation of Silicon-on-insulator (SOI) materials. In an alternative embodiment, thinning control layer may be another type of etch stop, such as a carbon-implanted etch-stop. Alternatively, other etch stopping techniques may be based on selective etch speed differences between materials or between different dopant types or dopant concentration levels, or by electro-chemical etch stopping on a junction, or by partial mechanical grinding, polishing. Such etch stopping techniques are known to one of ordinary skill in the art; accordingly, a detailed discussion is not provided.
  • In one embodiment, during the first steps in the manufacturing process, a handle wafer can be bonded (in a de-bondable manner) to the substrate. Handle wafer can be used to handle the semiconductor and to provide mechanical support for the substrate during subsequent manufacturing steps.
  • During the next step in the manufacturing process, as illustrated in FIG. 4D, a mask is created. The mask is to be used to create predetermined areas where the nanowires (and hence the pixels for emitting or detecting light) are to be located.
  • In the next step, as illustrated in FIG. 4E, the catalyst layer is patterned by using a lithography method such an electron beam lithography using a photoresist and the mask. The techniques for patterning are known to one of ordinary skill in the art. Patterning may be accomplished for example with a lithographic process. In a lithographic process, a photoresist material is deposited on the surface of the substrate. The resist may be either positive or negative. A positive resist is a type of photoresist in which the portion of the photoresist that is exposed to light becomes soluble to the photoresist developer. A negative resist is a type of photoresist in which the portion of the photoresist that is exposed to light becomes insoluble to the photoresist developer. The unexposed portion of the photoresist is dissolved by the photoresist developer. The portion of the photoresist that is unexposed remains insoluble to the photoresist developer. In optical photolithography, light is then shined through a mask to develop the photoresist. In electron beam lithography, the light source is replaced with an electron beam source. Because of the smaller wavelength of the electron beam, smaller features can be produced with electron beam lithography than with optical lithography.
  • In the next step, as illustrated in FIG. 4F, after exposing the photoresist and patterning the catalyst layer, the pattern of the catalyst spots is exposed by removing the mask and the photoresist layer. The techniques removing the mask and the photoresist layer are known to one of ordinary skill in the art; accordingly, a detailed discussion is not provided. Optionally, the catalyst spots pattern can also be generated by a direct write e-beam.
  • The next steps relate to creating the photodiodes of the embodiments having nanowires with associated layers. Example of the structures of the photodiodes are shown in FIG. 4A and FIG. 4B. Notice that the nanowire does not need to be fully covered by the insulating layer or the metallic layer as shown in FIG. 4B.
  • The nanowires with associated layers can be made by two methods: Method A or Method B.
  • Method A for Forming Nanowires and Associated Layers
  • The next step after the steps outlined above can be to first grow the nanowires to the required length, and then grow the associated layers. The next optional step after growing the nanowire to the required length can be to epitaxially grow a low index of refraction material (dielectric layer) engulfing the nanowire. This can be followed by epitaxially depositing the metallic layer around the dielectric layer. The next step can be to remove all materials from top of the nanowire including the gold catalyst—thus exposing the nanowire to light. Note that only one layer may need to be grown on the nanowire, for example, only a metallic layer might be employed.
  • Method B for Forming Nanowires and Associated Layers
  • In this method, the associated layers are created first, and then the nanowire is grown. This is then followed by a step to remove the catalyst. The steps for Method B are shown in FIG. 4G to FIG. 4M. Method B starts with step 5B, in which a spin coat of a positive photoresist (PR) is applied on the substrate with the catalyst spots thereon as shown in FIG. 4G. Such a positive PR increases its solubility when exposed to radiation. Preferably, the PR is a high resolution and also capable of creating high aspect ratio structures. The next step 6B, as illustrated in FIG. 4H, relates to creating a mask to pattern the PR and exposing through the pattern and developing the PR to create opening in the PR as shown in FIG. 4H. The next step 7B, as illustrated in FIG. 4I, is depositing a material A in the opening created in the PR in step 6B. Material A should preferably be deposited to the appropriate height. Material A can be an insulator or a metal depending on the structure of the photodiode desired. For light guiding structures, material A should be of index of refraction such that index of refraction of material A should be less than the index of refraction of the material of the nanowire. Material A can be SiO2 and SiN3. The next step 8B, as illustrated in FIG. 4J, is creating a second mask to pattern the PR and expose the PR through the pattern and developing the PR. The wafer is now ready for depositing or growing material B. The next step 9B, as illustrated in FIG. 4K, is depositing or growing material B to the appropriate height in cavity surrounding material B. Material B can be a an insulator or a metal depending on the structure of the photodiode desired. FIG. 4K shows the structure after the removal of materials deposited on top of the PR and after performing a planarization. The next step 10B, as illustrated in FIG. 4L, is depositing material C or an insulating material between material B. A mask is used to create a cavity between material B. If there is no need for a layer of material C in the cavity between material B, then the cavity between material B is filled with SiO2 or Si2N3. The next step 11B is illustrated in FIG. 4M. In this step the PR is removed, and the structure is placed in the proper environment to grow the nanowire. In the case of Si Nanowires, SiH4 gas is introduced and the material is heated such as a vapor-liquid-solid (VLS) growth mechanism takes place. The Au—Ga catalyst might be better than Au as it requires lower temperature to grow the nanowire. The catalyst metal is then removed and the system is completed.
  • Note that in both Method A and B, material may be removed from the substrate to thin the region over which nanowires are formed. In one embodiment, the material is removed from substrate by grinding, lapping, or etching. For example, grinding can be used to remove most of the material from the substrate, while the remainder of the material is removed by etching down to thinning control layer. Thinning control layer can then be exposed and etched. Alternatively, etching or grinding can be used to remove all the material from substrate. In another embodiment, techniques such as wafer cleaving the water-jet-into-porous-Si are used to remove the material from the substrate.
  • Following the removal of the material from the substrate, the substrate is thin enough to facilitate the detection of light by pixels in pixel array through the backside surface of the substrate. Unlike the front side surface, the backside surface has no circuit features to reflect or absorb incident light, so the amount of light that reaches pixel array significantly increases. In addition, the electrons freed by the incident light travel a shorter distance within the substrate before encroaching on the collection region of a pixel. Hence, the electrons scattered under a given pixel are more likely to be collected by that pixel. This reduces the amount of optical cross-talk between the pixels in pixel array. In one embodiment, in order to facilitate the detection of visible light, the substrate is fabricated to be approximately 5-10 micrometers thick. Alternatively, thinner or thicker substrates may be used to detect selected wavelengths of electromagnetic waves. For example, a slightly thicker substrate can be used to detect infrared light.
  • Because the substrate is so thin, the substrate can be vulnerable to damage from handling during subsequent manufacturing steps. However, this issue can be mitigated by the handling wafer that provides the handling means and mechanical support necessary to protect the substrate.
  • In one embodiment, a shallow p-type implant can be disposed in the backside of the substrate. P-type implant can prevent electrons from within the substrate from gathering at backside surface of the substrate. If allowed to gather at the backside surface, these electrons can cause a portion of the incident light to be reflected, diminishing the amount of light incident on pixel array. While preferably no color filter is disposed in the BSI image sensor, in one embodiment, a color filter array can be disposed on the backside of the substrate. Color filter array filters the light by color before the light illuminates the backside of the substrate. In one embodiment, an anti-reflective layer may be disposed on the substrate. The anti-reflective layer further reduces the reflection of incident light from the backside surface of the substrate. Alternatively, an anti-reflection layer may be disposed in other regions, for example, between the image sensor and an integrated lens stack.
  • Integrated lens stack can serve many purposes, such as focusing light, attenuating light, or concentrating one wavelength of light on the backside of the substrate. Integrated lens stack may include layers such as collimating lenses, focusing lenses, spacers, and mirrored layers. In one embodiment, the layers of integrated lens stack can be bonded together using a thermosetting resin. Alternatively, the layers of integrated lens stack can be coupled together using a UV-setting bonding process or another type of bonding process. Integrated lens stack also provides additional mechanical support. Embodiments of integrated lens stack with five lens layers or two lens layers can be commercially obtained through Anteryon BV, The Netherlands. Alternatively, integrated lens stacks with different numbers of lens layers from other lens manufacturers can be used.
  • In one embodiment, the backside surface is thinned until the substrate of image sensor wafer is approximately 1-10 micrometers thick, facilitating the detection of visible light. In an alternative embodiment, the backside of image sensor wafer is the proper depth to facilitate the detection of selected wavelengths of electromagnetic radiation, such as infrared light.
  • In one embodiment the pixel array is located, as much as possible, approximately in the center of a die, with electronics surrounding pixel array. Alternatively, pixel array can be located off-center on die, with electronics distributed on the remainder of die.
  • It should be noted that the backside thinned image sensor with an integrated lens stack discussed herein might be used in various applications. In one embodiment, backside thinned image sensor with an integrated lens stack may be used in a digital camera system, for example, for general-purpose photography (e.g., camera phone, still camera, video camera) or special-purpose photography. Digital camera can include a display, device, and subsystems that are coupled together via bus. The subsystems may include, for example, hardware, firmware and/or software for storage, control, and interface operations of the camera system that are known to one of ordinary skill in the art; accordingly, a detailed description is not provided. Alternatively, image sensor can be used in other types of applications, for example, machine vision, document scanning, microscopy, security, biometrics, etc.
  • According to the embodiments of the invention, strategies for minimizing the reflection of incident light on the substrate of the cavity is to provide an anti-reflective coating in or on the substrate of the cavity. An anti-reflective coating acts to reduce the reflection at the surface, allowing a higher level of visible light transmission. Anti-reflective or antireflection (AR) coatings are a type of optical coating applied to the surface of optical devices to reduce reflection. This improves the efficiency of the system since less light is lost. The methods for implementing anti-reflective coatings include the use of alternating layers of a low-index material like silica and a higher-index material to obtain reflectivity as low as 0.1% at a single wavelength or over a range of wavelengths.
  • In one embodiment, the anti-reflective material can work near a single light frequency. Other embodiments can use a green antireflective coating, for example, on the substrate of the cavity containing the blue absorbing nanowire, and a red anti-reflective coating with a cyan absorbing nanowire.
  • Many AR coatings have transparent thin film structures with alternating layers of contrasting refractive index. Layer thicknesses are chosen to produce destructive interference in the beams reflected from the interfaces, and constructive interference in the corresponding transmitted beams. This makes the structure's performance change with wavelength and incident angle, so that color effects often appear at oblique angles. A wavelength range must be specified when designing or ordering such coatings, but good performance can often be achieved for a relatively wide range of frequencies: usually a choice of IR, visible, or UV is offered.
  • The simplest interference AR coating can be a single quarter-wave layer of transparent material whose refractive index is the square root of the substrate's refractive index. This theoretically gives zero reflectance at the center wavelength and decreased reflectance for wavelengths in a broad band around the center. By using alternating layers of a low-index material like silica and a higher-index material it is possible to obtain reflectivities as low as 0.1% at a single wavelength.
  • One embodiment of the AR coating can be ultraviolet anti-reflection (UAR) coating. This ultraviolet anti-reflection coating can reduce surface reflection from quartz, fused silica, semiconductor silicon substrates to less than 0.3% from 0.2 to 0.3 microns. UAR coatings are designed to promote effective transmission of light in the ultraviolet wavelengths.
  • Anti-reflective coatings include several different sub-layers comprising many different materials such as, but not limited to, Al2O3, ZrO3, MgF2, SiO2, cryolite, LiF ThF4, CeF3, PbF2, ZnS, ZnSc, Si, Te, MgO, Y2O3, Sc2O3, SiO, HfO2, ZrO2, CeO2, Nb2O3, Ta2O5, and TiO2. The thickness of each sublayer is often related to an even whole number division of the wavelength of light that is most preferred to be transmitted through the coated material.
  • In other embodiments, the can be multiple nanowires in a single deep cavity having a silicon substrate on which there is an array of nanowires over which can be a coupler, and over the coupler can be a region through which light comes in to the coupler.
  • The recognition of color and luminance by the embodiments of the image sensors can be done by color reconstruction. Each compound pixel has complete luminance information obtained by combining its two complementary outputs. As a result, the same image sensor can be used either as a full resolution black and white or full color sensor.
  • The color reconstruction can be done to obtain full color information by the appropriate combination of two adjacent pixels, which can be one embodiment of a compound pixel, either horizontally or vertically. The support over which color information is obtained is less than the dimension of two pixels as opposed to 4 for the Bayer pattern.
  • Each physical pixel of a device containing an image sensor of the embodiments disclosed herein can have two outputs representing the complementary colors, e.g., cyan, red (C, R) designated as output type 1 or yellow, blue (Y, B) designated as output type 2. These four outputs of two pixels of a compound pixel can be resolved to reconstruct a full color scene of an image viewed by a device containing the image sensors of the embodiments described herein. The two pixels can have two outputs representing the complementary colors, e.g., white-Red, Red (W-R, R) designated as output type 1 or white-Blue, Blue (W-B, B) designated as output type 2.
  • Another embodiment relates to the manufacturing an array of nanostructured waveguides having 3 types of color pixels (red, green, and blue in conventional tessellation) or 2 color pixels only (for example, blue and green) when planar photodiodes are added, in each pixel, to the nanowire photodetector.
  • All references, including but not limited to patents, patent applications, and non-patent literature are hereby incorporated by reference herein in their entirety.
  • While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (42)

We claim:
1. A device comprising
a substrate having a front side, and a back side;
a nanowire disposed on or in the back side of the substrate;
an image sensing circuit disposed on or in the front side,
wherein the nanowire is configured to be a channel to transmit wavelengths up to a selective wavelength.
2. The device of claim 1, wherein the nanowire is configured to be an active element to detect the radiation of wavelengths up to the selective wavelength transmitted through the nanowire.
3. The device of claim 1, wherein the nanowire is not transparent and disposed within a cavity in the substrate, the front side is not exposed to incoming radiation, and the image sensing circuit is on or within a layer on the front side of the substrate.
4. The device of claim 1, wherein the device does not include a color filter nor infra-red filter.
5. The device of claim 1, wherein the nanowire comprises a semiconductor.
6. The device of claim 1, further comprising a lens structure or an optical coupler over the nanowire, wherein the lens structure or the optical coupler is operably coupled to the nanowire, optionally wherein the optical coupler is electrically conductive.
7. The device of claim 1, further comprising an anti-reflective layer on the substrate.
8. The device of claim 2, wherein the active element is configured to be a photodiode, a charge storage capacitor, or combinations thereof.
9. The device of claim 1, wherein the device is an image sensor.
10. The device of claim 1, wherein the selective wavelength is a function of the diameter of the nanowire.
11. The device of claim 1, wherein the nanowire is configured to convert energy of the electromagnetic radiation transmitted through the nanowire and to generate electron hole-pairs (excitons).
12. The device of claim 11, wherein the nanowire comprises a PN or PIN junction that is configured to detect the excitons generated in the nanowire.
13. The device of claim 11, further comprising an insulator layer around the nanowire and a metal layer around the insulator layer, wherein the insulator layer and the metal layer form a capacitor that is configured to collect the excitons generated in the nanowire and store charge in the capacitor.
14. The device of claim 13, further comprising metal contacts that connect to the metal layer and nanowire to control and detect the charge stored in the capacitor.
15. The device of claim 1, further comprising a cladding, wherein the cladding is configured to be a channel to transmit the wavelengths of the electromagnetic radiation beam that do not transmit through the nanowire.
16. The device of claim 1, further comprising a cladding, wherein the cladding comprises a passive waveguide.
17. The device of claim 1, further comprising a peripheral photosensitive element, wherein the peripheral photosensitive element is operably coupled to a cladding.
18. The device of claim 15, wherein cladding comprises more than one layers, wherein the more than one layers have indices of refraction consecutively smaller than an index of refraction the nanowire.
19. The device of claim 17, wherein the peripheral photosensitive element is located on or within a substrate.
20. The device of claim 6, wherein the lens structure or the optical coupler comprises a first opening and a second opening with the first opening being larger than the second opening, and a connecting surface extending between the first and second openings.
21. The device of claim 20, wherein the connecting surface comprises a reflective surface.
22. A compound light detector comprising
at least two devices, each comprising a substrate having a front side, and a back-side that is exposed to incoming radiation, a waveguide comprising a nanowire disposed on or within the substrate and an image sensing circuit disposed on the front side,
wherein the nanowire is configured to be a channel to transmit wavelengths of the incoming radiation up to a selective wavelength, and the compound light detector is configured to reconstruct a spectrum of wavelengths of an electromagnetic radiation beam.
23. The compound light detector of claim 22, wherein the nanowire is configured to be an active element to detect the wavelengths of the incoming radiation up to the selective wavelength transmitted through the nanowire
24. The compound light detector of claim 22, wherein the nanowires in the at least two devices have different diameters.
25. The compound light detector of claim 22, further comprising a cladding surrounding the nanowire and of one or more different materials, wherein the cladding permits electromagnetic radiation of wavelengths beyond the selective wavelength to remains within the cladding and be transmitted to a peripheral photosensitive element.
26. The compound light detector of claim 22, wherein the at least two devices are arranged on a regular tessellation, a square lattice, a hexagonal lattice, or in a different lattice arrangement.
27. The compound light detector of claim 22, wherein the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof.
28. The compound light detector of claim 22, wherein a first device comprises a core of a different diameter than that of a second device and the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof.
29. The compound light detector of claim 22, wherein the compound light detector is configured to resolve black and white or luminescence information contained in the electromagnetic radiation beam.
30. The compound light detector of claim 22, wherein the compound light detector is configured to detect energies of the electromagnetic radiation of four different ranges of wavelengths.
31. The compound light detector of claim 30, wherein the energies of the electromagnetic radiation of the four different ranges of wavelengths are combined to construct red, green and blue colors.
32. The compound light detector of claim 22, wherein at least one of the at least two devices does not include a color or infra-red filter.
33. The compound light detector of claim 22, wherein at least one of the at least two devices includes a color or infra-red filter.
34. A method of sensing an image, comprising
transmitting and detecting radiation of wavelengths up to a selective wavelength through a nanowire disposed on or in a back side of the substrate;
sensing an image from the radiation with an image sensing circuit disposed on or in a front side of the substrate.
35. The method of claim 34, further comprising exposing the nanowire to the radiation.
36. The method of claim 34, further comprising generating electron hole-pairs (excitons) by converting energy of the radiation.
37. A method of making a device, comprising:
obtaining a substrate having a front side and a back side, the substrate comprising a photodetector on or in the front side, and
placing or forming a nanowire on or in the back side.
38. The method of claim 37, wherein the nanowire is configured to be a channel to transmit wavelengths up to a selective wavelength.
39. The method of claim 37, wherein the nanowire is configured to be an active element to detect the radiation of wavelengths up to the selective wavelength transmitted through the nanowire.
40. A method of making a device, comprising:
obtaining a substrate having a front side and a back side, the substrate comprising a nanowire on or in the back side, and
placing or forming a photodetector on or in the front side.
41. The method of claim 40, wherein the nanowire is configured to be a channel to transmit wavelengths up to a selective wavelength.
42. The method of claim 40, wherein the nanowire is configured to be an active element to detect the radiation of wavelengths up to the selective wavelength transmitted through the nanowire.
US14/501,983 2008-09-04 2014-09-30 Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor Abandoned US20150053860A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US12/945,492 US9515218B2 (en) 2008-09-04 2010-11-12 Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US14/501,983 US20150053860A1 (en) 2009-12-08 2014-09-30 Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US14/632,739 US9601529B2 (en) 2008-09-04 2015-02-26 Light absorption and filtering properties of vertically oriented semiconductor nano wires
US14/704,143 US20150303333A1 (en) 2008-09-04 2015-05-05 Passivated upstanding nanostructures and methods of making the same
US14/705,380 US9337220B2 (en) 2008-09-04 2015-05-06 Solar blind ultra violet (UV) detector and fabrication methods of the same
US15/057,153 US20160178840A1 (en) 2008-09-04 2016-03-01 Optical waveguides in image sensors
US15/082,514 US20160211394A1 (en) 2008-11-13 2016-03-28 Nano wire array based solar energy harvesting device
US15/090,155 US20160216523A1 (en) 2008-09-04 2016-04-04 Vertical waveguides with various functionality on integrated circuits
US15/093,928 US20160225811A1 (en) 2008-09-04 2016-04-08 Nanowire structured color filter arrays and fabrication method of the same
US15/149,252 US20160254301A1 (en) 2008-09-04 2016-05-09 Solar blind ultra violet (uv) detector and fabrication methods of the same
US15/225,264 US20160344964A1 (en) 2008-09-04 2016-08-01 Methods for fabricating and using nanowires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/633,297 US8889455B2 (en) 2009-12-08 2009-12-08 Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US14/501,983 US20150053860A1 (en) 2009-12-08 2014-09-30 Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/633,297 Continuation US8889455B2 (en) 2008-09-04 2009-12-08 Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor

Publications (1)

Publication Number Publication Date
US20150053860A1 true US20150053860A1 (en) 2015-02-26

Family

ID=44082433

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/633,297 Expired - Fee Related US8889455B2 (en) 2008-09-04 2009-12-08 Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US14/501,983 Abandoned US20150053860A1 (en) 2008-09-04 2014-09-30 Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/633,297 Expired - Fee Related US8889455B2 (en) 2008-09-04 2009-12-08 Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor

Country Status (3)

Country Link
US (2) US8889455B2 (en)
TW (2) TWI459548B (en)
WO (1) WO2011072034A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394000A (en) * 2017-08-08 2017-11-24 中国电子科技集团公司第四十四研究所 Silicon substrate platinum nano-tube detector and preparation method thereof
CN107431078A (en) * 2015-04-07 2017-12-01 索尼半导体解决方案公司 Solid-state imager and electronic equipment
WO2018125226A1 (en) * 2016-12-30 2018-07-05 Intel Corporation Transmission lines using bending fins from local stress
WO2019180165A1 (en) * 2018-03-22 2019-09-26 Iee International Electronics & Engineering S.A. Photodetector
LU100953B1 (en) * 2018-10-03 2020-04-03 Iee Sa Photodetector
CN111933748A (en) * 2020-07-22 2020-11-13 中国电子科技集团公司第十三研究所 Back-incident solar blind ultraviolet detector and manufacturing method thereof

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084467A (en) 2008-04-14 2011-06-01 班德加普工程有限公司 Process for fabricating nanowire arrays
US8464952B2 (en) * 2009-11-18 2013-06-18 Hand Held Products, Inc. Optical reader having improved back-illuminated image sensor
US8828852B2 (en) * 2009-12-10 2014-09-09 California Institute Of Technology Delta-doping at wafer level for high throughput, high yield fabrication of silicon imaging arrays
US9013612B2 (en) * 2010-08-20 2015-04-21 Semiconductor Components Industries, Llc Image sensors with antireflective layers
JP4969711B2 (en) 2010-08-31 2012-07-04 京セラ株式会社 OPTICAL TRANSMITTER, ITS MANUFACTURING METHOD, AND OPTICAL TRANSMISSION MODULE
US9057827B2 (en) * 2010-08-31 2015-06-16 Kyocera Corporation Optical transmission structure and method for manufacturing the same, and optical transmission module
US8525284B2 (en) * 2011-01-21 2013-09-03 Aptina Imaging Corporation System for reducing sensor area in a back side illuminated CMOS active pixel sensor
US9800805B2 (en) * 2011-02-02 2017-10-24 The Boeing Company Frequency selective imaging system
CN103650083A (en) * 2011-05-10 2014-03-19 技术研究及发展基金有限公司 Ultrathin film solar cells
US20130050506A1 (en) * 2011-08-26 2013-02-28 Mark Allen Lanoue Pixel level carbon nanotube sensor array and real time image processing system
CN102386281B (en) * 2011-11-15 2013-05-08 上海大学 Manufacturing method for zinc oxide (ZnO)/nanocrystalline-diamond-thin-film-based hetero junction photoelectric detector
KR101951320B1 (en) * 2012-02-07 2019-02-22 삼성전자주식회사 Varifocal lens
WO2013123066A1 (en) 2012-02-14 2013-08-22 Bandgap Engineering, Inc. Screen printing electrical contacts to nanowire areas
CN104969000A (en) * 2012-08-13 2015-10-07 哈佛大学校长及研究员协会 Multispectral imaging using silicon nanowires
MY164421A (en) * 2012-12-06 2017-12-15 Mimos Berhad A method of producing vertical nanowires
US9310185B2 (en) * 2013-06-12 2016-04-12 Medlumics, S.L. Electro-optical silicon-based phase modulator with null residual amplitude modulation
US9778197B2 (en) * 2013-08-05 2017-10-03 Lawrence Livermore National Security, Llc Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy
DE102013221758B4 (en) * 2013-10-25 2019-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. DEVICES FOR TRANSMITTING AND / OR RECEIVING ELECTROMAGNETIC RADIATION AND METHOD FOR PROVIDING THEM
CN105682780B (en) * 2013-10-30 2018-03-13 惠普发展公司,有限责任合伙企业 not parallel island etching
KR101453688B1 (en) * 2013-11-05 2014-11-04 포항공과대학교 산학협력단 Method for fabricating light incident angle controlled electronic device
KR102020847B1 (en) * 2014-08-27 2019-09-16 한국전자통신연구원 Semiconductor device and method for manufacturing the same
US9852902B2 (en) * 2014-10-03 2017-12-26 Applied Materials, Inc. Material deposition for high aspect ratio structures
FR3031238B1 (en) 2014-12-30 2016-12-30 Aledia OPTOELECTRONIC DEVICE WITH LIGHT EMITTING DIODES
US10535709B2 (en) 2014-12-30 2020-01-14 Aledia Optoelectronic device with light-emitting diodes
US9570494B1 (en) * 2015-09-29 2017-02-14 Semiconductor Components Industries, Llc Method for forming a semiconductor image sensor device
WO2017070030A1 (en) 2015-10-21 2017-04-27 Massachusetts Institute Of Technology Nanowire fet imaging system and related techniques
US11522098B2 (en) * 2016-04-01 2022-12-06 Trustees Of Dartmouth College UV/VIS/IR backside-illuminated photon-counting sensor
TWI623945B (en) * 2016-06-20 2018-05-11 國立清華大學 Sensing device and methods of forming the same
KR20180064134A (en) * 2016-12-05 2018-06-14 삼성전자주식회사 Stacked type image sensor comprising metafilter
US10910508B1 (en) * 2018-05-04 2021-02-02 National Technology & Engineering Solutions Of Sandia, Llc Method of fabricating photosensitive devices with reduced process-temperature budget
CN111446267B (en) * 2019-01-17 2023-01-03 联华电子股份有限公司 Photodetector and method for manufacturing the same
US11768262B2 (en) 2019-03-14 2023-09-26 Massachusetts Institute Of Technology Interface responsive to two or more sensor modalities
US11652176B2 (en) * 2019-12-04 2023-05-16 Semiconductor Components Industries, Llc Semiconductor devices with single-photon avalanche diodes and light scattering structures with different densities
TWI775332B (en) * 2021-03-02 2022-08-21 力晶積成電子製造股份有限公司 Backside illuminated image sensor and manufacturing method therefore

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090152664A1 (en) * 2007-04-18 2009-06-18 Ethan Jacob Dukenfield Klem Materials, Systems and Methods for Optoelectronic Devices

Family Cites Families (383)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1918848A (en) 1929-04-26 1933-07-18 Norwich Res Inc Polarizing refracting bodies
US3903427A (en) 1973-12-28 1975-09-02 Hughes Aircraft Co Solar cell connections
US4017332A (en) 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4357415A (en) 1980-03-06 1982-11-02 Eastman Kodak Company Method of making a solid-state color imaging device having a color filter array using a photocrosslinkable barrier
FR2495412A1 (en) 1980-12-02 1982-06-04 Thomson Csf DIRECTLY MODULATED INFORMATION TRANSMISSION SYSTEM FOR OPTICALLY BANDWIDTH OPTICALLY LINKED LIGHT EXTENDED TO LOW FREQUENCIES AND CONTINUOUS
US4400221A (en) 1981-07-08 1983-08-23 The United States Of America As Represented By The Secretary Of The Air Force Fabrication of gallium arsenide-germanium heteroface junction device
US4387265A (en) 1981-07-17 1983-06-07 University Of Delaware Tandem junction amorphous semiconductor photovoltaic cell
US5696863A (en) 1982-08-06 1997-12-09 Kleinerman; Marcos Y. Distributed fiber optic temperature sensors and systems
US5247349A (en) 1982-11-16 1993-09-21 Stauffer Chemical Company Passivation and insulation of III-V devices with pnictides, particularly amorphous pnictides having a layer-like structure
US4678772A (en) 1983-02-28 1987-07-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Compositions containing glycyrrhizin
US4513168A (en) 1984-04-19 1985-04-23 Varian Associates, Inc. Three-terminal solar cell circuit
US4620237A (en) 1984-10-22 1986-10-28 Xerox Corporation Fast scan jitter measuring system for raster scanners
US4638484A (en) 1984-11-20 1987-01-20 Hughes Aircraft Company Solid state laser employing diamond having color centers as a laser active material
JPS61250605A (en) 1985-04-27 1986-11-07 Power Reactor & Nuclear Fuel Dev Corp Image fiber with optical waveguide
US4827335A (en) 1986-08-29 1989-05-02 Kabushiki Kaisha Toshiba Color image reading apparatus with two color separation filters each having two filter elements
EP0275063A3 (en) 1987-01-12 1992-05-27 Sumitomo Electric Industries Limited Light emitting element comprising diamond and method for producing the same
JPH0721562B2 (en) 1987-05-14 1995-03-08 凸版印刷株式会社 Color filter
JPH0288498A (en) 1988-06-13 1990-03-28 Sumitomo Electric Ind Ltd Diamond laser crystal and its formation
FR2633101B1 (en) 1988-06-16 1992-02-07 Commissariat Energie Atomique PHOTODIODE AND MATRIX OF PHOTODIODES ON HGCDTE AND METHODS OF MAKING SAME
US5311047A (en) 1988-11-16 1994-05-10 National Science Council Amorphous SI/SIC heterojunction color-sensitive phototransistor
US5124543A (en) 1989-08-09 1992-06-23 Ricoh Company, Ltd. Light emitting element, image sensor and light receiving element with linearly varying waveguide index
US5401968A (en) 1989-12-29 1995-03-28 Honeywell Inc. Binary optical microlens detector array
US4971928A (en) 1990-01-16 1990-11-20 General Motors Corporation Method of making a light emitting semiconductor having a rear reflecting surface
US5362972A (en) 1990-04-20 1994-11-08 Hitachi, Ltd. Semiconductor device using whiskers
US5096520A (en) 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
GB9025837D0 (en) 1990-11-28 1991-01-09 De Beers Ind Diamond Light emitting diamond device
US5272518A (en) 1990-12-17 1993-12-21 Hewlett-Packard Company Colorimeter and calibration system
US5374841A (en) 1991-12-18 1994-12-20 Texas Instruments Incorporated HgCdTe S-I-S two color infrared detector
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
DE59403063D1 (en) 1993-02-17 1997-07-17 Hoffmann La Roche Optical component
US5468652A (en) 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
US5625210A (en) 1995-04-13 1997-04-29 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US5747796A (en) 1995-07-13 1998-05-05 Sharp Kabushiki Kaisha Waveguide type compact optical scanner and manufacturing method thereof
JP3079969B2 (en) 1995-09-14 2000-08-21 日本電気株式会社 Complete contact image sensor and method of manufacturing the same
US5767507A (en) 1996-07-15 1998-06-16 Trustees Of Boston University Polarization sensitive photodetectors and detector arrays
US5671914A (en) 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5723945A (en) 1996-04-09 1998-03-03 Electro Plasma, Inc. Flat-panel display
US5853446A (en) 1996-04-16 1998-12-29 Corning Incorporated Method for forming glass rib structures
GB2312524A (en) 1996-04-24 1997-10-29 Northern Telecom Ltd Planar optical waveguide cladding by PECVD method
US6074892A (en) 1996-05-07 2000-06-13 Ciena Corporation Semiconductor hetero-interface photodetector
US5986297A (en) 1996-05-22 1999-11-16 Eastman Kodak Company Color active pixel sensor with electronic shuttering, anti-blooming and low cross-talk
US5612780A (en) 1996-06-05 1997-03-18 Harris Corporation Device for detecting light emission from optical fiber
US5943463A (en) 1996-06-17 1999-08-24 Sharp Kabushiki Kaisha Color image sensor and a production method of an optical waveguide array for use therein
JP2917920B2 (en) 1996-06-27 1999-07-12 日本電気株式会社 Solid-state imaging device and method of manufacturing the same
AUPO281896A0 (en) 1996-10-04 1996-10-31 Unisearch Limited Reactive ion etching of silica structures for integrated optics applications
US6388648B1 (en) 1996-11-05 2002-05-14 Clarity Visual Systems, Inc. Color gamut and luminance matching techniques for image display systems
US5798535A (en) 1996-12-20 1998-08-25 Motorola, Inc. Monolithic integration of complementary transistors and an LED array
ATE224228T1 (en) 1997-04-17 2002-10-15 De Beers Ind Diamond SINTERING PROCESS FOR DIAMONDS AND DIAMOND GROWING
GB9710062D0 (en) 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US5968528A (en) 1997-05-23 1999-10-19 The Procter & Gamble Company Skin care compositions
US5857053A (en) 1997-06-17 1999-01-05 Lucent Technologies Inc. Optical fiber filter
US5900623A (en) 1997-08-11 1999-05-04 Chrontel, Inc. Active pixel sensor using CMOS technology with reverse biased photodiodes
US6046466A (en) 1997-09-12 2000-04-04 Nikon Corporation Solid-state imaging device
KR100250448B1 (en) 1997-11-06 2000-05-01 정선종 Fabrication of silicon nano-structures using silicon nitride
US5880495A (en) 1998-01-08 1999-03-09 Omnivision Technologies, Inc. Active pixel with a pinned photodiode
KR20010040506A (en) 1998-02-02 2001-05-15 유니액스 코포레이션 Image Sensors Made from Organic Semiconductors
US6771314B1 (en) 1998-03-31 2004-08-03 Intel Corporation Orange-green-blue (OGB) color system for digital image sensor applications
US6301420B1 (en) 1998-05-01 2001-10-09 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Multicore optical fibre
TW417383B (en) 1998-07-01 2001-01-01 Cmos Sensor Inc Silicon butting contact image sensor chip with line transfer and pixel readout (LTPR) structure
US6463204B1 (en) 1998-12-18 2002-10-08 Fujitsu Network Communications, Inc. Modular lightpipe system
US6326649B1 (en) 1999-01-13 2001-12-04 Agere Systems, Inc. Pin photodiode having a wide bandwidth
WO2000052765A1 (en) 1999-03-01 2000-09-08 Photobit Corporation Active pixel sensor with fully-depleted buried photoreceptor
GB2348399A (en) 1999-03-31 2000-10-04 Univ Glasgow Reactive ion etching with control of etch gas flow rate, pressure and rf power
JP3706527B2 (en) 1999-06-30 2005-10-12 Hoya株式会社 Electron beam drawing mask blanks, electron beam drawing mask, and method of manufacturing electron beam drawing mask
US6124167A (en) 1999-08-06 2000-09-26 Micron Technology, Inc. Method for forming an etch mask during the manufacture of a semiconductor device
US6407439B1 (en) 1999-08-19 2002-06-18 Epitaxial Technologies, Llc Programmable multi-wavelength detector array
US6805139B1 (en) 1999-10-20 2004-10-19 Mattson Technology, Inc. Systems and methods for photoresist strip and residue treatment in integrated circuit manufacturing
US6465824B1 (en) 2000-03-09 2002-10-15 General Electric Company Imager structure
US6610351B2 (en) 2000-04-12 2003-08-26 Quantag Systems, Inc. Raman-active taggants and their recognition
US20020020846A1 (en) 2000-04-20 2002-02-21 Bo Pi Backside illuminated photodiode array
JP2002057359A (en) 2000-06-01 2002-02-22 Sharp Corp Laminated solar battery
US7555333B2 (en) 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
US6690871B2 (en) 2000-07-10 2004-02-10 Massachusetts Institute Of Technology Graded index waveguide
AU2001281132A1 (en) 2000-08-11 2002-02-25 Bellataire International Llc High pressure and high temperature production of diamonds
US6542231B1 (en) 2000-08-22 2003-04-01 Thermo Finnegan Llc Fiber-coupled liquid sample analyzer with liquid flow cell
US20060175601A1 (en) 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
EP1314189B1 (en) 2000-08-22 2013-02-27 President and Fellows of Harvard College Electrical device comprising doped semiconductor nanowires and method for its production
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
JP2002151715A (en) 2000-11-08 2002-05-24 Sharp Corp Thin-film solar cell
US6800870B2 (en) 2000-12-20 2004-10-05 Michel Sayag Light stimulating and collecting methods and apparatus for storage-phosphor image plates
EP1344392B1 (en) 2000-12-21 2006-02-22 STMicroelectronics N.V. Image sensor device comprising central locking
EP1365455A4 (en) 2001-01-31 2006-09-20 Shinetsu Handotai Kk Solar cell and method for producing the same
JP3809342B2 (en) 2001-02-13 2006-08-16 喜萬 中山 Light emitting / receiving probe and light emitting / receiving probe apparatus
US7171088B2 (en) 2001-02-28 2007-01-30 Sony Corporation Image input device
MXPA03008935A (en) 2001-03-30 2004-06-30 Univ California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom.
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US20040058407A1 (en) 2001-04-10 2004-03-25 Miller Scott E. Reactor systems having a light-interacting component
US20030006363A1 (en) 2001-04-27 2003-01-09 Campbell Scott Patrick Optimization of alignment between elements in an image sensor
US6709929B2 (en) 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US8816443B2 (en) 2001-10-12 2014-08-26 Quantum Semiconductor Llc Method of fabricating heterojunction photodiodes with CMOS
US7109517B2 (en) 2001-11-16 2006-09-19 Zaidi Saleem H Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors
FR2832995B1 (en) 2001-12-04 2004-02-27 Thales Sa CATALYTIC GROWTH PROCESS OF NANOTUBES OR NANOFIBERS COMPRISING A DIFFUSION BARRIER OF THE NISI ALLOY TYPE
US6987258B2 (en) 2001-12-19 2006-01-17 Intel Corporation Integrated circuit-based compound eye image sensor using a light pipe bundle
US6720594B2 (en) 2002-01-07 2004-04-13 Xerox Corporation Image sensor array with reduced pixel crosstalk
US6566723B1 (en) 2002-01-10 2003-05-20 Agilent Technologies, Inc. Digital color image sensor with elevated two-color photo-detector and related circuitry
RU2317395C2 (en) 2002-01-14 2008-02-20 Чайна Петролеум Энд Кемикал Корпорейшн Fluid-driven percussion device and method of usage thereof
US7078296B2 (en) 2002-01-16 2006-07-18 Fairchild Semiconductor Corporation Self-aligned trench MOSFETs and methods for making the same
US20040026684A1 (en) 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US6852619B2 (en) 2002-05-31 2005-02-08 Sharp Kabushiki Kaisha Dual damascene semiconductor devices
US6660930B1 (en) 2002-06-12 2003-12-09 Rwe Schott Solar, Inc. Solar cell modules with improved backskin
US7311889B2 (en) 2002-06-19 2007-12-25 Fujitsu Limited Carbon nanotubes, process for their production, and catalyst for production of carbon nanotubes
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
AU2003261205A1 (en) 2002-07-19 2004-02-09 President And Fellows Of Harvard College Nanoscale coherent optical components
KR100541320B1 (en) 2002-07-19 2006-01-10 동부아남반도체 주식회사 A pinned photodiode for a CMOS image sensor and fabricating method thereof
EP2399970A3 (en) 2002-09-05 2012-04-18 Nanosys, Inc. Nanocomposites
JP3672900B2 (en) 2002-09-11 2005-07-20 松下電器産業株式会社 Pattern formation method
US8120079B2 (en) 2002-09-19 2012-02-21 Quantum Semiconductor Llc Light-sensing device for multi-spectral imaging
JP2004128060A (en) 2002-09-30 2004-04-22 Canon Inc Growth method of silicon film, manufacturing method of solar cell, semiconductor substrate, and solar cell
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7135728B2 (en) 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
WO2004031746A1 (en) 2002-10-02 2004-04-15 Lumen Health Innovations, Inc. Apparatus and methods relating to high speed spectroscopy and excitation-emission matrices
US7507293B2 (en) * 2002-10-28 2009-03-24 Hewlett-Packard Development Company, L.P. Photonic crystals with nanowire-based fabrication
DE60333715D1 (en) 2002-10-30 2010-09-23 Hitachi Ltd Process for the preparation of functional substrates having columnar microcolumns
GB0227261D0 (en) 2002-11-21 2002-12-31 Element Six Ltd Optical quality diamond material
US7163659B2 (en) 2002-12-03 2007-01-16 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and method for detecting an analyte in a fluid
AU2003294822A1 (en) 2002-12-09 2004-06-30 Quantum Semiconductor Llc Cmos image sensor
US6969897B2 (en) 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
US6837212B2 (en) 2002-12-19 2005-01-04 Caterpillar Inc. Fuel allocation at idle or light engine load
FR2850882B1 (en) 2003-02-11 2005-03-18 Eurecat Sa PASSIVATION OF SULFIDE HYDROCONVERSION CATALYST
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
US7061028B2 (en) 2003-03-12 2006-06-13 Taiwan Semiconductor Manufacturing, Co., Ltd. Image sensor device and method to form image sensor device
US7050660B2 (en) 2003-04-07 2006-05-23 Eksigent Technologies Llc Microfluidic detection device having reduced dispersion and method for making same
US6888974B2 (en) 2003-04-23 2005-05-03 Intel Corporation On-chip optical signal routing
US8212138B2 (en) 2003-05-16 2012-07-03 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Reverse bias protected solar array with integrated bypass battery
US7462774B2 (en) 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7465661B2 (en) 2003-05-28 2008-12-16 The United States Of America As Represented By The Secretary Of The Navy High aspect ratio microelectrode arrays
US20070025504A1 (en) 2003-06-20 2007-02-01 Tumer Tumay O System for molecular imaging
US7265037B2 (en) * 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
US7416911B2 (en) 2003-06-24 2008-08-26 California Institute Of Technology Electrochemical method for attaching molecular and biomolecular structures to semiconductor microstructures and nanostructures
DE102004031950A1 (en) 2003-06-26 2005-02-10 Kyocera Corp. Semiconductor / electrode contact structure and such a semiconductor device using
US7170001B2 (en) 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US7649141B2 (en) 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
US7148528B2 (en) 2003-07-02 2006-12-12 Micron Technology, Inc. Pinned photodiode structure and method of formation
US7335259B2 (en) 2003-07-08 2008-02-26 Brian A. Korgel Growth of single crystal nanowires
DE602004016347D1 (en) * 2003-07-11 2008-10-16 Koninkl Philips Electronics Nv METHOD AND SCALING UNIT FOR SCALING A THREE-DIMENSIONAL MODEL
US6960526B1 (en) 2003-10-10 2005-11-01 The United States Of America As Represented By The Secretary Of The Army Method of fabricating sub-100 nanometer field emitter tips comprising group III-nitride semiconductors
US7330404B2 (en) 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
US7019402B2 (en) 2003-10-17 2006-03-28 International Business Machines Corporation Silicon chip carrier with through-vias using laser assisted chemical vapor deposition of conductor
US7823783B2 (en) 2003-10-24 2010-11-02 Cognex Technology And Investment Corporation Light pipe illumination system and method
US20050116271A1 (en) 2003-12-02 2005-06-02 Yoshiaki Kato Solid-state imaging device and manufacturing method thereof
US6969899B2 (en) 2003-12-08 2005-11-29 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with light guides
US7208094B2 (en) 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same
DE10360274A1 (en) 2003-12-18 2005-06-02 Tesa Ag Optical data storer with a number of superposed storage sites each having a reflection layer, preferably a metal layer, where the absorption or reflection can be altered selectively by thermal treatment useful for storage of optical data
EP1700329A2 (en) 2003-12-22 2006-09-13 Koninklijke Philips Electronics N.V. Fabricating a set of semiconducting nanowires, and electric device comprising a set of nanowires
JP2007515639A (en) 2003-12-22 2007-06-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical nanowire biosensor based on energy transfer
JP2007516620A (en) 2003-12-23 2007-06-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Semiconductor device having PN heterojunction
US7647695B2 (en) 2003-12-30 2010-01-19 Lockheed Martin Corporation Method of matching harnesses of conductors with apertures in connectors
US7052927B1 (en) 2004-01-27 2006-05-30 Raytheon Company Pin detector apparatus and method of fabrication
US6969568B2 (en) 2004-01-28 2005-11-29 Freescale Semiconductor, Inc. Method for etching a quartz layer in a photoresistless semiconductor mask
US6927145B1 (en) 2004-02-02 2005-08-09 Advanced Micro Devices, Inc. Bitline hard mask spacer flow for memory cell scaling
JP2005252210A (en) 2004-02-03 2005-09-15 Sharp Corp Solar cell
US7254287B2 (en) 2004-02-12 2007-08-07 Panorama Labs, Pty Ltd. Apparatus, method, and computer program product for transverse waveguided display system
JP2005251804A (en) 2004-03-01 2005-09-15 Canon Inc Imaging device
US7471428B2 (en) 2004-03-12 2008-12-30 Seiko Epson Corporation Contact image sensor module and image reading device equipped with the same
US7638808B2 (en) 2004-03-18 2009-12-29 Phoseon Technology, Inc. Micro-reflectors on a substrate for high-density LED array
US7115971B2 (en) 2004-03-23 2006-10-03 Nanosys, Inc. Nanowire varactor diode and methods of making same
US7223641B2 (en) 2004-03-26 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, liquid crystal television and EL television
US7019391B2 (en) 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
US7061106B2 (en) 2004-04-28 2006-06-13 Advanced Chip Engineering Technology Inc. Structure of image sensor module and a method for manufacturing of wafer level package
CA2564220A1 (en) 2004-04-30 2005-12-15 Nanosys, Inc. Systems and methods for nanowire growth and harvesting
US8280214B2 (en) 2004-05-13 2012-10-02 The Regents Of The University Of California Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices
KR101746412B1 (en) 2004-06-04 2017-06-14 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Methods and devices for fabricating and assembling printable semiconductor elements
JP2006013403A (en) 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Solar cell, solar cell module, its manufacturing method, and its reparing method
US8035142B2 (en) 2004-07-08 2011-10-11 Micron Technology, Inc. Deuterated structures for image sensors and methods for forming the same
US7427798B2 (en) 2004-07-08 2008-09-23 Micron Technology, Inc. Photonic crystal-based lens elements for use in an image sensor
FR2873492B1 (en) 2004-07-21 2006-11-24 Commissariat Energie Atomique PHOTOACTIVE NANOCOMPOSITE AND METHOD OF MANUFACTURING THE SAME
WO2006013890A1 (en) 2004-08-04 2006-02-09 Matsushita Electric Industrial Co., Ltd. Coherent light source
US7713849B2 (en) 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
CN102759466A (en) 2004-09-15 2012-10-31 英特基因有限公司 Microfluidic devices
US20060071290A1 (en) 2004-09-27 2006-04-06 Rhodes Howard E Photogate stack with nitride insulating cap over conductive layer
EP1643565B1 (en) 2004-09-30 2020-03-04 OSRAM Opto Semiconductors GmbH Radiation detector
US20080260225A1 (en) 2004-10-06 2008-10-23 Harold Szu Infrared Multi-Spectral Camera and Process of Using Infrared Multi-Spectral Camera
US7544977B2 (en) 2006-01-27 2009-06-09 Hewlett-Packard Development Company, L.P. Mixed-scale electronic interface
US7208783B2 (en) 2004-11-09 2007-04-24 Micron Technology, Inc. Optical enhancement of integrated circuit photodetectors
KR100745595B1 (en) 2004-11-29 2007-08-02 삼성전자주식회사 Microlens of an image sensor and method for forming the same
US7193289B2 (en) 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
US7306963B2 (en) 2004-11-30 2007-12-11 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
TWI263802B (en) 2004-12-03 2006-10-11 Innolux Display Corp Color filter
US7235475B2 (en) 2004-12-23 2007-06-26 Hewlett-Packard Development Company, L.P. Semiconductor nanowire fluid sensor and method for fabricating the same
US7342268B2 (en) 2004-12-23 2008-03-11 International Business Machines Corporation CMOS imager with Cu wiring and method of eliminating high reflectivity interfaces therefrom
US7245370B2 (en) 2005-01-06 2007-07-17 Hewlett-Packard Development Company, L.P. Nanowires for surface-enhanced Raman scattering molecular sensors
KR100688542B1 (en) 2005-03-28 2007-03-02 삼성전자주식회사 Vertical type nanotube semiconductor device and method of manufacturing the same
US7655860B2 (en) 2005-04-01 2010-02-02 North Carolina State University Nano-structured photovoltaic solar cell and related methods
US20070238265A1 (en) 2005-04-05 2007-10-11 Keiichi Kurashina Plating apparatus and plating method
KR101145146B1 (en) 2005-04-07 2012-05-14 엘지디스플레이 주식회사 TFT and method of fabricating of the same
US7272287B2 (en) 2005-05-11 2007-09-18 Fitel Usa Corp Optical fiber filter for suppression of amplified spontaneous emission
US7230286B2 (en) 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
TWI429066B (en) 2005-06-02 2014-03-01 Sony Corp Semiconductor image sensor module and manufacturing method thereof
GB0511300D0 (en) 2005-06-03 2005-07-13 Ct For Integrated Photonics Th Control of vertical axis for passive alignment of optical components with wave guides
US7262408B2 (en) 2005-06-15 2007-08-28 Board Of Trustees Of Michigan State University Process and apparatus for modifying a surface in a work region
US20090050204A1 (en) 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
US8084728B2 (en) 2005-07-06 2011-12-27 Capella Microsystems, Corp. Optical sensing device
DE102005033455A1 (en) 2005-07-18 2007-01-25 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Drive device for linear movement of elongated bodies
US20090153961A1 (en) 2005-07-22 2009-06-18 Zeon Corporation Grid Polarizer and Method for Manufacturing the Same
ATE392013T1 (en) 2005-07-29 2008-04-15 Imec Inter Uni Micro Electr WAVELENGTH SENSITIVE PHOTO DETECTOR WITH ENGINEERED NANOSTRUCTURES
US7683407B2 (en) 2005-08-01 2010-03-23 Aptina Imaging Corporation Structure and method for building a light tunnel for use with imaging devices
US7307327B2 (en) 2005-08-04 2007-12-11 Micron Technology, Inc. Reduced crosstalk CMOS image sensors
KR100750933B1 (en) 2005-08-14 2007-08-22 삼성전자주식회사 Top-emitting White Light Emitting Devices Using Nano-structures of Rare-earth Doped Transparent Conducting ZnO And Method Of Manufacturing Thereof
US7485908B2 (en) 2005-08-18 2009-02-03 United States Of America As Represented By The Secretary Of The Air Force Insulated gate silicon nanowire transistor and method of manufacture
US7265328B2 (en) 2005-08-22 2007-09-04 Micron Technology, Inc. Method and apparatus providing an optical guide for an imager pixel having a ring of air-filled spaced slots around a photosensor
US7649665B2 (en) 2005-08-24 2010-01-19 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
JP2009506546A (en) 2005-08-24 2009-02-12 ザ トラスティーズ オブ ボストン カレッジ Apparatus and method for solar energy conversion using nanoscale co-metallic structures
US7623746B2 (en) 2005-08-24 2009-11-24 The Trustees Of Boston College Nanoscale optical microscope
US7736954B2 (en) 2005-08-26 2010-06-15 Sematech, Inc. Methods for nanoscale feature imprint molding
US20070052050A1 (en) 2005-09-07 2007-03-08 Bart Dierickx Backside thinned image sensor with integrated lens stack
US8592136B2 (en) 2005-09-13 2013-11-26 Affymetrix, Inc. Methods for producing codes for microparticles
US7608823B2 (en) 2005-10-03 2009-10-27 Teledyne Scientific & Imaging, Llc Multimode focal plane array with electrically isolated commons for independent sub-array biasing
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7286740B2 (en) 2005-10-07 2007-10-23 Sumitomo Electric Industries, Ltd. Optical fiber, optical transmission line, optical module and optical transmission system
US7585474B2 (en) 2005-10-13 2009-09-08 The Research Foundation Of State University Of New York Ternary oxide nanostructures and methods of making same
CN1956223A (en) 2005-10-26 2007-05-02 松下电器产业株式会社 Semiconductor device and method for fabricating the same
US20070104441A1 (en) 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Laterally-integrated waveguide photodetector apparatus and related coupling methods
WO2007056753A2 (en) 2005-11-08 2007-05-18 General Atomics Apparatus and methods for use in flash detection
US7728277B2 (en) 2005-11-16 2010-06-01 Eastman Kodak Company PMOS pixel structure with low cross talk for active pixel image sensors
US7262400B2 (en) 2005-12-02 2007-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device having an active layer overlying a substrate and an isolating region in the active layer
US8337721B2 (en) 2005-12-02 2012-12-25 Vanderbilt University Broad-emission nanocrystals and methods of making and using same
US7439560B2 (en) 2005-12-06 2008-10-21 Canon Kabushiki Kaisha Semiconductor device using semiconductor nanowire and display apparatus and image pick-up apparatus using the same
JP2007158119A (en) 2005-12-06 2007-06-21 Canon Inc Electric element having nano wire and its manufacturing method, and electric element assembly
US7524694B2 (en) 2005-12-16 2009-04-28 International Business Machines Corporation Funneled light pipe for pixel sensors
JP4745816B2 (en) 2005-12-20 2011-08-10 富士通セミコンダクター株式会社 Image processing circuit and image processing method
US20070155025A1 (en) 2006-01-04 2007-07-05 Anping Zhang Nanowire structures and devices for use in large-area electronics and methods of making the same
US7368779B2 (en) 2006-01-04 2008-05-06 Taiwan Semiconductor Manufacturing Co., Ltd. Hemi-spherical structure and method for fabricating the same
KR100767629B1 (en) 2006-01-05 2007-10-17 한국과학기술원 Complementary Metal Oxide Semiconductor image sensor having high photosensitivity and method for fabricating thereof
JP4952227B2 (en) 2006-01-06 2012-06-13 富士通株式会社 Fine particle size sorter
US20070290193A1 (en) 2006-01-18 2007-12-20 The Board Of Trustees Of The University Of Illinois Field effect transistor devices and methods
JP2007226935A (en) 2006-01-24 2007-09-06 Sony Corp Audio reproducing device, audio reproducing method, and audio reproducing program
JP2007201091A (en) 2006-01-25 2007-08-09 Fujifilm Corp Process for fabricating solid state image sensor
US20070187787A1 (en) 2006-02-16 2007-08-16 Ackerson Kristin M Pixel sensor structure including light pipe and method for fabrication thereof
US7358583B2 (en) 2006-02-24 2008-04-15 Tower Semiconductor Ltd. Via wave guide with curved light concentrator for image sensing devices
WO2008048704A2 (en) 2006-03-10 2008-04-24 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
US7859587B2 (en) 2006-03-24 2010-12-28 Panasonic Corporation Solid-state image pickup device
US7718347B2 (en) 2006-03-31 2010-05-18 Applied Materials, Inc. Method for making an improved thin film solar cell interconnect using etch and deposition process
US20070246689A1 (en) 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
US7381966B2 (en) 2006-04-13 2008-06-03 Integrated Micro Sensors, Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7566875B2 (en) 2006-04-13 2009-07-28 Integrated Micro Sensors Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7582857B2 (en) 2006-04-18 2009-09-01 The Trustees Of The University Of Pennsylvania Sensor and polarimetric filters for real-time extraction of polarimetric information at the focal plane
US7924413B2 (en) 2006-04-28 2011-04-12 Hewlett-Packard Development Company, L.P. Nanowire-based photonic devices
US20070272828A1 (en) 2006-05-24 2007-11-29 Micron Technology, Inc. Method and apparatus providing dark current reduction in an active pixel sensor
US7696964B2 (en) 2006-06-09 2010-04-13 Philips Lumileds Lighting Company, Llc LED backlight for LCD with color uniformity recalibration over lifetime
US7718995B2 (en) 2006-06-20 2010-05-18 Panasonic Corporation Nanowire, method for fabricating the same, and device having nanowires
US7579593B2 (en) 2006-07-25 2009-08-25 Panasonic Corporation Night-vision imaging apparatus, control method of the same, and headlight module
US20080044984A1 (en) 2006-08-16 2008-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of avoiding wafer breakage during manufacture of backside illuminated image sensors
US7786376B2 (en) 2006-08-22 2010-08-31 Solexel, Inc. High efficiency solar cells and manufacturing methods
US7893348B2 (en) 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
JP4321568B2 (en) 2006-08-29 2009-08-26 ソニー株式会社 Solid-state imaging device and imaging device
JP2008066497A (en) 2006-09-07 2008-03-21 Sony Corp Photodetector and method for manufacturing photodetector
CN101140637A (en) 2006-09-08 2008-03-12 鸿富锦精密工业(深圳)有限公司 System and method for turn electric order list to work list
EP2064744A2 (en) 2006-09-19 2009-06-03 QuNano AB Assembly of nanoscaled field effect transistors
US7361989B1 (en) 2006-09-26 2008-04-22 International Business Machines Corporation Stacked imager package
JP4296193B2 (en) 2006-09-29 2009-07-15 株式会社東芝 Optical device
KR100772114B1 (en) 2006-09-29 2007-11-01 주식회사 하이닉스반도체 Method of manufacturing semiconductor device
JP5116277B2 (en) 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus
US7525170B2 (en) 2006-10-04 2009-04-28 International Business Machines Corporation Pillar P-i-n semiconductor diodes
US7427525B2 (en) 2006-10-13 2008-09-23 Hewlett-Packard Development Company, L.P. Methods for coupling diamond structures to photonic devices
US7608905B2 (en) 2006-10-17 2009-10-27 Hewlett-Packard Development Company, L.P. Independently addressable interdigitated nanowires
US7888159B2 (en) 2006-10-26 2011-02-15 Omnivision Technologies, Inc. Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
US7537951B2 (en) 2006-11-15 2009-05-26 International Business Machines Corporation Image sensor including spatially different active and dark pixel interconnect patterns
US7781781B2 (en) 2006-11-17 2010-08-24 International Business Machines Corporation CMOS imager array with recessed dielectric
EP1926211A3 (en) 2006-11-21 2013-08-14 Imec Diamond enhanced thickness shear mode resonator
US7335062B1 (en) * 2006-12-01 2008-02-26 Lotes Co., Ltd. Electric connector
KR101232179B1 (en) 2006-12-04 2013-02-12 엘지디스플레이 주식회사 Apparatus And Method of Fabricating Thin Film Pattern
US20080128760A1 (en) 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Schottky barrier nanowire field effect transistor and method for fabricating the same
KR100993056B1 (en) 2006-12-05 2010-11-08 주식회사 엘지화학 Method for high resolution ink-jet print using pre-patterned substrate and conductive substrate manufactured using the same
JP4795214B2 (en) 2006-12-07 2011-10-19 チェイル インダストリーズ インコーポレイテッド Wire grid polarizer and manufacturing method thereof
US8183587B2 (en) * 2006-12-22 2012-05-22 Qunano Ab LED with upstanding nanowire structure and method of producing such
KR20090096704A (en) 2006-12-22 2009-09-14 큐나노 에이비 Led with upstanding nanowire structure and method of producing such
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
KR100830587B1 (en) 2007-01-10 2008-05-21 삼성전자주식회사 Image sensor and method of displaying a image using the same
WO2008084830A1 (en) 2007-01-10 2008-07-17 Nec Corporation Optical control element
US8003883B2 (en) 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
US7977568B2 (en) 2007-01-11 2011-07-12 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
US7960807B2 (en) 2007-02-09 2011-06-14 Intersil Americas Inc. Ambient light detectors using conventional CMOS image sensor process
US8440997B2 (en) 2007-02-27 2013-05-14 The Regents Of The University Of California Nanowire photodetector and image sensor with internal gain
EP1971129A1 (en) 2007-03-16 2008-09-17 STMicroelectronics (Research & Development) Limited Improvements in or relating to image sensors
US20080233280A1 (en) 2007-03-22 2008-09-25 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate by treating a surface of a stamp
SE532485C2 (en) 2007-03-27 2010-02-02 Qunano Ab Nanostructure for charge storage
US7906778B2 (en) 2007-04-02 2011-03-15 Hewlett-Packard Development Company, L.P. Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
US7803698B2 (en) 2007-04-09 2010-09-28 Hewlett-Packard Development Company, L.P. Methods for controlling catalyst nanoparticle positioning and apparatus for growing a nanowire
US8027086B2 (en) 2007-04-10 2011-09-27 The Regents Of The University Of Michigan Roll to roll nanoimprint lithography
US7652280B2 (en) 2007-04-11 2010-01-26 General Electric Company Light-emitting device and article
ATE545036T1 (en) 2007-04-19 2012-02-15 Oerlikon Solar Ag TEST EQUIPMENT FOR AUTOMATED QUALITY CONTROL OF THIN FILM SOALR MODULES
US7719688B2 (en) 2007-04-24 2010-05-18 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
US7719678B2 (en) 2007-04-25 2010-05-18 Hewlett-Packard Development Company, L.P. Nanowire configured to couple electromagnetic radiation to selected guided wave, devices using same, and methods of fabricating same
US8212235B2 (en) * 2007-04-25 2012-07-03 Hewlett-Packard Development Company, L.P. Nanowire-based opto-electronic device
EP2156471A2 (en) 2007-05-07 2010-02-24 Nxp B.V. A photosensitive device and a method of manufacturing a photosensitive device
TW200915551A (en) 2007-05-10 2009-04-01 Koninkl Philips Electronics Nv Spectrum detector and manufacturing method therefore
JP2008288243A (en) 2007-05-15 2008-11-27 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging device
KR100901236B1 (en) 2007-05-16 2009-06-08 주식회사 동부하이텍 Image Sensor and Method for Manufacturing thereof
KR101426941B1 (en) 2007-05-30 2014-08-06 주성엔지니어링(주) Solar cell and method for fabricating the same
US7812692B2 (en) 2007-06-01 2010-10-12 Georgia Tech Research Corporation Piezo-on-diamond resonators and resonator systems
CN106206780B (en) 2007-06-19 2017-12-05 昆南诺股份有限公司 Solar battery structure based on nano wire
US7736979B2 (en) 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7663202B2 (en) 2007-06-26 2010-02-16 Hewlett-Packard Development Company, L.P. Nanowire photodiodes and methods of making nanowire photodiodes
CN101842909A (en) 2007-07-19 2010-09-22 加利福尼亚技术学院 Structures of ordered arrays of semiconductors
SG177175A1 (en) 2007-08-01 2012-01-30 Silverbrook Res Pty Ltd Handheld printer
JP5285880B2 (en) 2007-08-31 2013-09-11 シャープ株式会社 Photoelectric conversion element, photoelectric conversion element connector, and photoelectric conversion module
US8885987B2 (en) 2007-09-06 2014-11-11 Quantum Semiconductor Llc Photonic via waveguide for pixel arrays
US7786440B2 (en) 2007-09-13 2010-08-31 Honeywell International Inc. Nanowire multispectral imaging array
US7623560B2 (en) 2007-09-27 2009-11-24 Ostendo Technologies, Inc. Quantum photonic imagers and methods of fabrication thereof
US8619168B2 (en) 2007-09-28 2013-12-31 Regents Of The University Of Minnesota Image sensor with high dynamic range imaging and integrated motion detection
FR2923602B1 (en) 2007-11-12 2009-11-20 Commissariat Energie Atomique ELECTROMAGNETIC RADIATION DETECTOR WITH NANOFIL THERMOMETER AND METHOD OF MAKING SAME
US7822300B2 (en) 2007-11-20 2010-10-26 Aptina Imaging Corporation Anti-resonant reflecting optical waveguide for imager light pipe
US8588920B2 (en) 2007-11-21 2013-11-19 The Trustees Of Boston College Apparatus and methods for visual perception using an array of nanoscale waveguides
KR101385250B1 (en) 2007-12-11 2014-04-16 삼성전자주식회사 CMOS image sensor
KR101000064B1 (en) 2007-12-18 2010-12-10 엘지전자 주식회사 Hetero-junction silicon solar cell and fabrication method thereof
US8106289B2 (en) 2007-12-31 2012-01-31 Banpil Photonics, Inc. Hybrid photovoltaic device
US7880207B2 (en) 2008-01-14 2011-02-01 International Business Machines Corporation Photo detector device
US8030729B2 (en) 2008-01-29 2011-10-04 Hewlett-Packard Development Company, L.P. Device for absorbing or emitting light and methods of making the same
US20090189145A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Photodetectors, Photovoltaic Devices And Methods Of Making The Same
US20090188552A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Nanowire-Based Photovoltaic Cells And Methods For Fabricating The Same
US20090199597A1 (en) 2008-02-07 2009-08-13 Danley Jeffrey D Systems and methods for collapsing air lines in nanostructured optical fibers
US20090201400A1 (en) 2008-02-08 2009-08-13 Omnivision Technologies, Inc. Backside illuminated image sensor with global shutter and storage capacitor
WO2009102280A1 (en) 2008-02-15 2009-08-20 Agency For Science, Technology And Research Photodetector with valence-mending adsorbate region and a method of fabrication thereof
US20090206405A1 (en) 2008-02-15 2009-08-20 Doyle Brian S Fin field effect transistor structures having two dielectric thicknesses
WO2009142787A2 (en) 2008-02-18 2009-11-26 Board Of Regents, The University Of Texas System Photovoltaic devices based on nanostructured polymer films molded from porous template
US8101526B2 (en) 2008-03-12 2012-01-24 City University Of Hong Kong Method of making diamond nanopillars
US8016993B2 (en) 2008-03-14 2011-09-13 Stuart Alfred Hoenig Electrostatic desalination and water purification
WO2009116018A2 (en) 2008-03-21 2009-09-24 Oerlikon Trading Ag, Trübbach Photovoltaic cell and methods for producing a photovoltaic cell
KR101448152B1 (en) 2008-03-26 2014-10-07 삼성전자주식회사 Distance measuring sensor having vertical photogate and three dimensional color image sensor having the same
JP4770857B2 (en) 2008-03-27 2011-09-14 日本テキサス・インスツルメンツ株式会社 Semiconductor device
KR20090105732A (en) 2008-04-03 2009-10-07 삼성전자주식회사 Solar cell
CN102084467A (en) 2008-04-14 2011-06-01 班德加普工程有限公司 Process for fabricating nanowire arrays
KR20090109980A (en) * 2008-04-17 2009-10-21 한국과학기술연구원 Visible-range semiconductor nanowire-based photosensor and method for manufacturing the same
WO2009135078A2 (en) 2008-04-30 2009-11-05 The Regents Of The University Of California Method and apparatus for fabricating optoelectromechanical devices by structural transfer using re-usable substrate
US7902540B2 (en) 2008-05-21 2011-03-08 International Business Machines Corporation Fast P-I-N photodetector with high responsitivity
US8138493B2 (en) 2008-07-09 2012-03-20 Qunano Ab Optoelectronic semiconductor device
US7863625B2 (en) 2008-07-24 2011-01-04 Hewlett-Packard Development Company, L.P. Nanowire-based light-emitting diodes and light-detection devices with nanocrystalline outer surface
KR101435519B1 (en) 2008-07-24 2014-08-29 삼성전자주식회사 Image sensor having light focusing structure
US8198706B2 (en) 2008-07-25 2012-06-12 Hewlett-Packard Development Company, L.P. Multi-level nanowire structure and method of making the same
US8198796B2 (en) 2008-07-25 2012-06-12 Konica Minolta Holdings, Inc. Transparent electrode and production method of same
WO2010019887A1 (en) 2008-08-14 2010-02-18 Brookhaven Science Associates Structured pillar electrodes
US20100304061A1 (en) 2009-05-26 2010-12-02 Zena Technologies, Inc. Fabrication of high aspect ratio features in a glass layer by etching
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8274039B2 (en) * 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8384007B2 (en) 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US7646943B1 (en) 2008-09-04 2010-01-12 Zena Technologies, Inc. Optical waveguides in image sensors
CN102144298B (en) 2008-09-04 2013-07-31 昆南诺股份有限公司 Nanostructured photodiode
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8269985B2 (en) * 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US20100148221A1 (en) 2008-11-13 2010-06-17 Zena Technologies, Inc. Vertical photogate (vpg) pixel structure with nanowires
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
KR101143706B1 (en) 2008-09-24 2012-05-09 인터내셔널 비지네스 머신즈 코포레이션 Nanoelectronic device
US7972885B1 (en) 2008-09-25 2011-07-05 Banpil Photonics, Inc. Broadband imaging device and manufacturing thereof
US20110247676A1 (en) 2008-09-30 2011-10-13 The Regents Of The University Of California Photonic Crystal Solar Cell
US8591661B2 (en) 2009-12-11 2013-11-26 Novellus Systems, Inc. Low damage photoresist strip method for low-K dielectrics
US20100090341A1 (en) 2008-10-14 2010-04-15 Molecular Imprints, Inc. Nano-patterned active layers formed by nano-imprint lithography
EP2180526A2 (en) 2008-10-23 2010-04-28 Samsung Electronics Co., Ltd. Photovoltaic device and method for manufacturing the same
WO2010048607A2 (en) 2008-10-24 2010-04-29 Carnegie Institution Of Washington Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing
FR2937791B1 (en) 2008-10-24 2010-11-26 Thales Sa POLARIMETRIC IMAGING DEVICE OPTIMIZED IN RELATION TO THE POLARIZATION CONTRAST
US8932940B2 (en) 2008-10-28 2015-01-13 The Regents Of The University Of California Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication
KR20100063536A (en) 2008-12-03 2010-06-11 삼성에스디아이 주식회사 Light emission device and display device using same as light source
CN102326258A (en) 2008-12-19 2012-01-18 惠普开发有限公司 Photovoltaic structure and on short column, adopt the manufacturing approach of nano wire
KR20100079058A (en) 2008-12-30 2010-07-08 주식회사 동부하이텍 Image sensor and method for manufacturing thereof
US20100200065A1 (en) 2009-02-12 2010-08-12 Kyu Hyun Choi Photovoltaic Cell and Fabrication Method Thereof
TW201034212A (en) 2009-03-13 2010-09-16 guo-hong Shen Thin-film solar cell structure
US8242353B2 (en) 2009-03-16 2012-08-14 International Business Machines Corporation Nanowire multijunction solar cell
US7888155B2 (en) 2009-03-16 2011-02-15 Industrial Technology Research Institute Phase-change memory element and method for fabricating the same
TWI425643B (en) 2009-03-31 2014-02-01 Sony Corp Solid-state imaging device, fabrication method thereof, imaging apparatus, and fabrication method of anti-reflection structure
US20100244108A1 (en) 2009-03-31 2010-09-30 Glenn Eric Kohnke Cmos image sensor on a semiconductor-on-insulator substrate and process for making same
JP2012523365A (en) 2009-04-09 2012-10-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Glass composition used in conductors for photovoltaic cells
CN102395873A (en) 2009-04-13 2012-03-28 奥林巴斯株式会社 Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte
WO2010129163A2 (en) 2009-05-06 2010-11-11 Thinsilicon Corporation Photovoltaic cells and methods to enhance light trapping in semiconductor layer stacks
US8809672B2 (en) 2009-05-27 2014-08-19 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
JP5504695B2 (en) 2009-05-29 2014-05-28 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US8211735B2 (en) 2009-06-08 2012-07-03 International Business Machines Corporation Nano/microwire solar cell fabricated by nano/microsphere lithography
WO2010144866A2 (en) 2009-06-11 2010-12-16 The Arizona Board Of Regents On Behalf Of The University Of Arizona Microgrid imaging polarimeters with frequency domain reconstruction
US8304759B2 (en) 2009-06-22 2012-11-06 Banpil Photonics, Inc. Integrated image sensor system on common substrate
US8558336B2 (en) 2009-08-17 2013-10-15 United Microelectronics Corp. Semiconductor photodetector structure and the fabrication method thereof
EP2290718B1 (en) 2009-08-25 2015-05-27 Samsung Electronics Co., Ltd. Apparatus for generating electrical energy and method for manufacturing the same
US8115097B2 (en) 2009-11-19 2012-02-14 International Business Machines Corporation Grid-line-free contact for a photovoltaic cell
US8563395B2 (en) 2009-11-30 2013-10-22 The Royal Institute For The Advancement Of Learning/Mcgill University Method of growing uniform semiconductor nanowires without foreign metal catalyst and devices thereof
JP5608384B2 (en) 2010-02-05 2014-10-15 東京エレクトロン株式会社 Semiconductor device manufacturing method and plasma etching apparatus
US8194197B2 (en) 2010-04-13 2012-06-05 Sharp Kabushiki Kaisha Integrated display and photovoltaic element
US8431817B2 (en) 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
US8324010B2 (en) 2010-06-29 2012-12-04 Himax Imaging, Inc. Light pipe etch control for CMOS fabrication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090152664A1 (en) * 2007-04-18 2009-06-18 Ethan Jacob Dukenfield Klem Materials, Systems and Methods for Optoelectronic Devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431078A (en) * 2015-04-07 2017-12-01 索尼半导体解决方案公司 Solid-state imager and electronic equipment
WO2018125226A1 (en) * 2016-12-30 2018-07-05 Intel Corporation Transmission lines using bending fins from local stress
US10761264B2 (en) 2016-12-30 2020-09-01 Intel Corporation Transmission lines using bending fins from local stress
CN107394000A (en) * 2017-08-08 2017-11-24 中国电子科技集团公司第四十四研究所 Silicon substrate platinum nano-tube detector and preparation method thereof
WO2019180165A1 (en) * 2018-03-22 2019-09-26 Iee International Electronics & Engineering S.A. Photodetector
CN111886704A (en) * 2018-03-22 2020-11-03 Iee国际电子工程股份公司 Light detector
US11437531B2 (en) 2018-03-22 2022-09-06 Iee International Electronics & Engineering S.A. Photodetector
LU100953B1 (en) * 2018-10-03 2020-04-03 Iee Sa Photodetector
CN111933748A (en) * 2020-07-22 2020-11-13 中国电子科技集团公司第十三研究所 Back-incident solar blind ultraviolet detector and manufacturing method thereof

Also Published As

Publication number Publication date
US8889455B2 (en) 2014-11-18
WO2011072034A1 (en) 2011-06-16
TWI459548B (en) 2014-11-01
TW201448189A (en) 2014-12-16
US20110136288A1 (en) 2011-06-09
TW201143057A (en) 2011-12-01
TWI581410B (en) 2017-05-01

Similar Documents

Publication Publication Date Title
US8889455B2 (en) Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US9123841B2 (en) Nanowire photo-detector grown on a back-side illuminated image sensor
JP5985670B2 (en) Vertical photogate (VPG) pixel structure with nanowires
US8710488B2 (en) Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US9082673B2 (en) Passivated upstanding nanostructures and methods of making the same
US8274039B2 (en) Vertical waveguides with various functionality on integrated circuits
TWI435444B (en) Nano wire based passive pixel image sensor
US20160071898A1 (en) Array of nanowires in a single cavity with anti-reflective coating on substrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZENA TECHNOLOGIES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUANE, PETER;YU, YOUNG-JUNE;WOBER, MUNIB;REEL/FRAME:033852/0333

Effective date: 20100224

AS Assignment

Owner name: WU, XIANHONG, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:041901/0038

Effective date: 20151015

AS Assignment

Owner name: HABBAL, FAWWAZ, MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:041941/0895

Effective date: 20161230

AS Assignment

Owner name: PILLSBURY WINTHROP SHAW PITTMAN LLP, VIRGINIA

Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:042107/0543

Effective date: 20170320

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION