US20150029516A1 - Device for optically scanning and measuring an environment - Google Patents

Device for optically scanning and measuring an environment Download PDF

Info

Publication number
US20150029516A1
US20150029516A1 US14/374,054 US201214374054A US2015029516A1 US 20150029516 A1 US20150029516 A1 US 20150029516A1 US 201214374054 A US201214374054 A US 201214374054A US 2015029516 A1 US2015029516 A1 US 2015029516A1
Authority
US
United States
Prior art keywords
measuring head
base
mounting device
laser scanner
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/374,054
Other versions
US9417056B2 (en
Inventor
Christoph Neundorf
Reinhard Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faro Technologies Inc
Original Assignee
Faro Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faro Technologies Inc filed Critical Faro Technologies Inc
Priority to US14/374,054 priority Critical patent/US9417056B2/en
Assigned to FARO TECHNOLOGIES, INC. reassignment FARO TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BECKER, REINHARD, NEUNDORF, CHRISTOPH
Publication of US20150029516A1 publication Critical patent/US20150029516A1/en
Application granted granted Critical
Publication of US9417056B2 publication Critical patent/US9417056B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/105Purely optical scan

Definitions

  • the invention relates to a device for optically scanning and measuring an environment.
  • a laser scanner device such as is known for example from German Patent Application No. DE 20 2006 005 643, the environment of the laser scanner can be optically scanned and measured.
  • Embodiments of the present invention are based on the object of improving a device of the type mentioned hereinabove.
  • Different operating modes can be provided for the laser scanner.
  • the laser scanner as a whole is moved by a cart on which the base of the laser scanner is mounted by a mounting device.
  • the measuring head of the laser scanner rests relative to the base, while the mirror of the laser scanner rotates about its horizontal axis relative to the measuring head.
  • the term “cart” may include any vehicle suitable for transporting the operating laser scanner.
  • the measuring head in addition to a fixed connection between the base and the mounting device, the measuring head is locked together with the mounting device through use of corresponding first and second locking mechanisms.
  • a pivot bearing between the measuring head and the base is thus bridged and relieved.
  • a mechanical connection of the base with the mounting device and/or the locking of the measuring head with the mounting device may take place without backlash, for example by providing conical elements or elements which taper in a wedge-shaped manner.
  • An electrical connection between the base and the mounting device may be optional and can be replaced, for example, by a direct connection (e.g., a cable) between the laser scanner, (for example, the base of the laser scanner) and the cart.
  • the base In another operating mode (e.g., a sphere mode) of the laser scanner, the base is stationary, and the mirror and the measuring head rotate about their axes.
  • a sphere mode e.g., a sphere mode
  • a “horizontal” arrangement of the axis of rotation of the mirror and the “vertical” arrangement of the axis of rotation of the measuring head refer to an ideal alignment of the laser scanner.
  • the terms “horizontal” and “vertical” are interpreted in a relatively broader sense.
  • the components of the laser scanner may be arranged in two parts of the measuring head and in a traverse of the carrying structure which connects the two parts together.
  • the carrying structure may form a part of the housing of the laser scanner, for example a bottom part and/or a central part between the two parts of the measuring head.
  • a shell may be provided as part of the housing, for example one shell each for each of the two parts of the measuring head, the shells comprising a relatively light material, for example plastic, and covering the corresponding components of the laser scanner for protection.
  • a yoke may be provided, for example one yoke for each shell, the yoke partially covering the outside of the shell and comprising a relatively light material as well, for example aluminum.
  • the yokes can be omitted in alternative embodiments, for example if the shells are configured in a more stable manner and connected with the carrying structure.
  • the carrying structure which, for reasons of weight, may comprise aluminum as well, and may be provided with walls which fix the components with the optics and with the rotating mirror.
  • the walls can also close the semi-open shells.
  • the yoke may extend along the outer edges and/or obliquely over the outer surfaces of the shell and is fixed to the carrying structure, for example at the ends thereof, and if required also in the center thereof, at one of the two walls.
  • further functions can be integrated in the yokes.
  • the first locking mechanism for example fixed notches, may be configured on the yokes.
  • a second locking mechanism may be provided, for example movable pawls, locks or similar, which are supported on the mounting device. The movable second locking mechanism then engages in the fixed first locking mechanism.
  • the assignment of the fixed and of the movable locking mechanisms to the measuring head and to the mounting device, respectively, may also be reversed.
  • the mechanical connection of the base with the mounting device and the first locking mechanism between the measuring head and the mounting device may be arranged crosswise, to obtain a relatively stable support of the laser scanner on the mounting device.
  • the terminal for the electrical connection with the cart may be located adjacent to the first locking mechanism and thus outside the space angle which can be reached by the emission light beam.
  • FIG. 1 is a schematic illustration of the laser scanner during operation, with a sketched cart
  • FIG. 2 is a perspective illustration of the laser scanner
  • FIG. 3 is a perspective illustration of the mounting device
  • FIG. 4 is an underside view of the laser scanner.
  • a laser scanner 10 is provided as a device for optically scanning and measuring the environment of the laser scanner 10 .
  • the laser scanner 10 has a measuring head 12 and a base 14 .
  • the measuring head 12 is mounted on the base 14 as a unit that can be rotated about a vertical axis.
  • the measuring head 12 has a rotary mirror 16 , which can be rotated about a horizontal axis.
  • the intersection point of the two axes of rotation is designated as the center C 10 of the laser scanner 10 .
  • the measuring head 12 is further provided with a light emitter 17 for emitting an emission light beam 18 .
  • the emission light beam 18 may be a laser beam in the range of approximately 300 to 1600 nm wave length, for example 790 nm, 905 nm or less than 400 nm; however, other electro-magnetic waves having, for example, a greater wave length can be used.
  • the emission light beam 18 is amplitude-modulated, for example with a sinusoidal or with a rectangular-waveform modulation signal.
  • the emission light beam 18 is emitted by the light emitter 17 onto the rotary mirror 16 , where it is deflected and emitted to the environment.
  • the direction of the emission light beam 18 and of the reception light beam 20 results from the angular positions of the rotary mirror 16 and the measuring head 12 , which depend on the positions of their corresponding rotary drives which, in turn, are registered by one encoder each.
  • a control and evaluation unit 22 has a data connection to the light emitter 17 and to the light receiver 21 in the measuring head 12 , whereby parts of the unit 22 can be arranged also outside the measuring head 12 , for example a computer connected to the base 14 .
  • the control and evaluation unit 22 determines, for a multitude of measuring points X, the distance d between the laser scanner 10 and the illuminated point at object O, from the propagation time of the emission light beam 18 and the reception light beam 20 . For this purpose, the phase shift between the two light beams 18 and 20 can, for example, be determined and evaluated.
  • Scanning takes place along a circle by means of the relatively quick rotation of the rotary mirror 16 .
  • the entire space is scanned step by step, by way of circles.
  • the entity of measuring points X of such a measurement is designated as a scan.
  • the center C 10 of the laser scanner 10 defines the origin of the local stationary reference system.
  • the base 14 rests in this local stationary reference system.
  • each measuring point X comprises a brightness information value which is determined by the control and evaluation unit 22 as well.
  • the brightness value is a gray-tone value which is determined, for example, by integration of the bandpass-filtered and amplified signal of the light receiver 21 over a measuring period which is attributed to the measuring point X.
  • a color camera can optionally generate pictures, by means of which colors (R, G, B) can be assigned to the measuring points as values.
  • a display device 24 is connected to the control and evaluation unit 22 .
  • the display device 24 is integrated into the laser scanner 10 , in the present case into the measuring head 12 .
  • the display device 24 shows a preview of the scan.
  • the laser scanner 10 has a carrying structure 30 which serves as a skeleton of the measuring head 12 and at which different components of the laser scanner 10 are fixed.
  • the metal carrying structure 30 is made of aluminum and in one piece.
  • the carrying structure 30 has a traverse 30 a which is visible from the outside and which, at both ends, carries two walls 30 b, which are parallel to one another and project upwards from the traverse 30 a.
  • Two shells 32 are configured as a housing which is open to one side.
  • the shells 32 may comprise a plastic material.
  • Each of the two shells 32 covers part of the components of the laser scanner 10 which are fixed to the carrying structure 30 and is assigned to one of the two walls 30 b, to which it is fixed (e.g., sealed with a sealing material).
  • the walls 30 b and the shells 32 thus serve as a housing of the laser scanner 10 .
  • each of the two shells 32 On the outer side of each of the two shells 32 a yoke 34 , which may comprise a metal material, is arranged, which partially covers and thus protects the corresponding shell 32 .
  • Each yoke 34 is fixed to the carrying structure 30 , and more precisely on the bottom of the traverse 30 a.
  • each yoke 34 is made of aluminum and is screwed to the traverse 30 a at the side of the base 14 .
  • Each yoke 34 extends from its fixing point at the bottom of the traverse 30 a obliquely to the next outer corner of the assigned shell 32 , from where it extends along the outer edge of shell 32 to the outer corner of shell 32 which is above, on the upper side of shell 32 obliquely up to the wall 30 b, a short distance along it, and then mirror-symmetrically to the described course on the upper side of shell 32 , obliquely to the other outer corner, along the outer edge of shell 32 to the outer corner of shell 32 which is below and obliquely to the other fastening point at the bottom side of traverse 30 a.
  • the two yokes 34 together circumscribe a convex space, within which the two shells 32 are completely arranged; i.e., the two yokes 34 together project over all outer edges and outer surfaces of the shells 32 .
  • the oblique sections of the yokes 34 project over the top and/or bottom of the shells 32 , on the four other sides, two sections each extending along an outer edge of the shells 32 .
  • the shells 32 are thus protected extensively.
  • each of the yokes 34 primarily has a protective function, particularly with respect to impacts which might damage the shells 32 and the components of the laser scanner 10 which are arranged below, further functions can be integrated in one or both of the yokes 34 , for example a gripping possibility for carrying the laser scanner 10 and/or an illumination.
  • two different operating modes may be provided for the laser scanner 10 .
  • the base 14 In a sphere mode, the base 14 is arranged in the environment in a stationary manner, the mirror 16 rotates about its horizontal axis, and the measuring head 12 rotates about its vertical axis.
  • the two rotations define a sphere, by which the laser scanner 10 scans its environment (e.g., completely).
  • the base 14 moves relative to its environment along a line, the mirror 16 rotates about its horizontal axis, and the measuring head 12 rests relative to the base 14 .
  • the rotation and the movement along the line define a helix, by which the laser scanner 10 scans its environment (e.g., partially).
  • the line can have any shape. However, the line may usually comprise straight and/or slightly curved sections.
  • the laser scanner 10 is mounted on a cart W, for example on a motor vehicle.
  • a mounting device 40 is provided for this purpose, which may be fixedly connected both mechanically and electrically with both the cart W and the laser scanner 10 .
  • the mounting device 40 has an approximately cylindrical body 40 a, the diameter of which is slightly bigger than that of the base 14 .
  • Two pairs of fixing pins 40 p protrude from the upper face of the body 40 a of the mounting device 40 .
  • the fixing pins 40 p interact with suitable fixing holes 14 p configured on the underside of the base 14 .
  • a pre-positioning by the fixing pins 40 p may likely be subject to backlash. This is why, from the upper face of the mounting device 40 , two additional positioning pins 40 f protrude which interact with suitable positioning holes 14 f on the underside of the base 14 .
  • Each of the positioning pins 40 f is arranged between the two fixing pins 40 p of a pair.
  • the fixing pins 40 p enter the assigned fixing holes 14 p (i.e., are screwed in)
  • the positioning pins 40 f enter the assigned positioning holes 14 f.
  • the positioning pins 40 f are configured to be fixed relative to the basic body 40 a.
  • At least one of the two positioning pins 40 f may have a conical end, which, when entering the assigned positioning hole 14 f, provides for an absence of backlash and a force closure.
  • electrical connecting elements are provided, in an exemplary embodiment on the upper face of the body 40 a, an integrated contact bushing 40 s with flat contacts and on the underside of the base 14 , an integrated mating contact plug 14 s with spring pins.
  • the mounting device 40 On the circumferential surface of the body 40 a, the mounting device 40 has at least two screw-in holes 40 u (or alternatively other fixation means) for the mechanical connection with the cart W and at least one terminal for the electrical connection with the cart W.
  • the electric connecting elements 14 s, 40 s and 40 v allow for transmission of both data and energy.
  • the assignments of male and female electric connecting elements to the base 14 and to the mounting device 40 can also be exchanged. The same applies to the mechanical connecting elements 14 f, 14 p and 40 f, 40 p.
  • the mounting device 40 is connected mechanically to the laser scanner 10 by the above-described mechanical connecting elements 14 f, 14 p, 40 f and 40 p (i.e., a mechanical connecting mechanism) at the base 14 of the laser scanner 10 .
  • the mounting device 40 is also connected electrically to the laser scanner 10 by the electric connecting elements 14 s and 40 s (i.e., an electrical connecting mechanism).
  • the measuring head 12 with its inertia may stress with changing moments its pivot bearing in the base 14 .
  • the mounting device 40 therefore is not only fixedly connected with the base 14 , but it is also locked with the measuring head 12 .
  • the mounting device 40 interacts with the yokes 34 , and consequently with the carrying structure 30 .
  • Each of the two yokes 34 has, in the immediate vicinity of the fixation of the yoke 34 to the carrying structure 30 (i.e., in an embodiment the screw points at the traverse 30 a ), a first locking mechanism 34 k.
  • the two first locking mechanisms 34 k are thus fixed to the carrying structure 30 .
  • Each first locking mechanism 34 k is configured, in an embodiment, as a notch in the yoke 34 with flanks which taper in a wedge-shaped manner, wherein the yoke 34 opens radially outward with respect to the axis of rotation of the measuring head 12 .
  • the two first locking mechanisms 34 k thereby open in opposite directions.
  • the two first locking mechanisms 34 k can also be formed on the carrying structure 30 (i.e., configured in one piece with the structure 30 ) or may be separate components which are fixed to the yokes 34 or to other parts of the carrying structure 30 .
  • the mounting device 40 has, on its body 40 a and offset to each of the pairs of fixing pins 40 p and positioning pins 40 f, a pillow block 40 i.
  • the pillow blocks 40 i are curved in an arc-shaped manner with an almost square cross section.
  • the pillow blocks 40 i which may be configured in one piece, have in their center a central area, as well as wing areas on the sides thereof.
  • the wing areas serve for fixing the corresponding pillow block 40 i, relatively more precisely for receiving fixing screws.
  • the wing areas may be omitted if the pillow block 40 i is fixed in another manner.
  • the central area is elevated with respect to the wing areas, so that the wing areas of the pillow blocks 40 i are spaced from the yokes 34 , if the base 14 bears on the upper face of the basic body 40 a.
  • the central area of each pillow block 40 i can be dimensioned in such a way that it engages between the assigned yokes 34 .
  • Each pillow block 40 i pivotably mounts a second locking mechanism 40 k which, in an embodiment, may be configured as a pin-shaped lock with a support which bears it.
  • the two second locking mechanisms 40 k can pivot from a radial initial position with respect to the body 40 a into an axial final position and back.
  • a pre-bias of each of the two second locking mechanisms 40 k is provided in the initial position and in the final position, for example by a spring which has a dead point between an initial position and a final position. In a modified embodiment, a pre-bias is provided only for the final position.
  • the two second locking mechanisms 40 k may be pivoted manually.
  • the positioning pins 40 f and the second locking mechanisms 40 k are arranged crosswise, i.e., the connection lines intersect, in an embodiment, at an angle of 90°.
  • Alternative arrangements are possible, however.
  • the at least one electrical connecting element 40 v for the electrical connection with the cart W may be located adjacent to the second locking mechanisms 40 k, in an embodiment below the central area of one of the pillow blocks 40 i and consequently outside the space angle which is reached by the emission light beam 18 .
  • the scanner 10 is placed with its base 14 on the body 40 a and is positioned by the positioning pins 40 f and the positioning holes 14 f, without backlash in the final position.
  • the contact plug 14 s is plugged into the contact bushing 40 s.
  • the fixing pins 40 p then are moved, i.e., screwed into the fixing holes 14 p, the base 14 thus being connected without backlash with the mounting device 40 .
  • the two second locking mechanisms 40 k are pivoted into their final position.
  • the corresponding one of the two first locking mechanisms 34 k which are configured as notches and finally engage therein, if necessary by sliding along the flanks of the notches (e.g., the flanks being tapered in a wedge-shaped manner), until the measuring head 12 is locked without backlash with the mounting device 40 .
  • a completely strain-free locking may be achieved by the measuring head 12 being aligned as precisely as possible with respect to its angle position relative to the base 14 at the latest before the two second locking mechanisms 40 k are pivoted into their final position, so that, by both the two first locking mechanisms 34 k and the two second locking mechanisms 40 k, only the backlash of the rotary drive of the measuring head 12 needs to be eliminated or reduced. Since the angle position of the measuring head 12 is registered by an encoder, a calibration of the encoder may be advantageous. Alternatively, a smoothly running idle movement of the rotary drive or a relatively large backlash of the same can be provided, so that the two first and second locking mechanisms 34 k and 40 k themselves carry out the relatively precise alignment of the measuring head 12 .

Abstract

A laser scanner device for optically scanning and measuring an environment includes a base, a measuring head which is rotatable relative to the base, and a mirror which is rotatably relative to the measuring head, wherein, in at least one operating mode, the laser scanner is mounted on a cart by a mounting device, the cart moves the base which is fixedly connected with the mounting device, the measuring head rests relative to the base, the mirror rotates, and the measuring head is locked with the mounting device by a locking mechanism.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present patent application is a National Stage Patent Application of, and which claims priority to, PCT Patent Application No. PCT/EP2012/075178, filed on Dec. 12, 2012, which claims the benefit of U.S. Provisional Patent Application No. 61/592,024, filed on Jan. 30, 2012, and of German Patent Application No. 10 2012 100 609.1, filed on Jan. 25, 2012, and all of which are hereby incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • The invention relates to a device for optically scanning and measuring an environment.
  • By a laser scanner device, such as is known for example from German Patent Application No. DE 20 2006 005 643, the environment of the laser scanner can be optically scanned and measured.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention are based on the object of improving a device of the type mentioned hereinabove.
  • Different operating modes can be provided for the laser scanner. In at least one operating mode (e.g., a helix mode), the laser scanner as a whole is moved by a cart on which the base of the laser scanner is mounted by a mounting device. The measuring head of the laser scanner rests relative to the base, while the mirror of the laser scanner rotates about its horizontal axis relative to the measuring head. The term “cart” may include any vehicle suitable for transporting the operating laser scanner.
  • According to embodiments of the present invention, in addition to a fixed connection between the base and the mounting device, the measuring head is locked together with the mounting device through use of corresponding first and second locking mechanisms. A pivot bearing between the measuring head and the base is thus bridged and relieved. In particular, static strains caused by a non-uniform clamping of the measuring head when the base is mounted on the mounting device and dynamic loads caused by moments of inertia of the measuring head are avoided.
  • A mechanical connection of the base with the mounting device and/or the locking of the measuring head with the mounting device may take place without backlash, for example by providing conical elements or elements which taper in a wedge-shaped manner. An electrical connection between the base and the mounting device may be optional and can be replaced, for example, by a direct connection (e.g., a cable) between the laser scanner, (for example, the base of the laser scanner) and the cart.
  • In another operating mode (e.g., a sphere mode) of the laser scanner, the base is stationary, and the mirror and the measuring head rotate about their axes.
  • A “horizontal” arrangement of the axis of rotation of the mirror and the “vertical” arrangement of the axis of rotation of the measuring head refer to an ideal alignment of the laser scanner. In case of an alignment of the laser scanner which is inclined with respect to the ideal alignment, the terms “horizontal” and “vertical” are interpreted in a relatively broader sense.
  • The components of the laser scanner may be arranged in two parts of the measuring head and in a traverse of the carrying structure which connects the two parts together. The carrying structure may form a part of the housing of the laser scanner, for example a bottom part and/or a central part between the two parts of the measuring head. To reduce the weight of the laser scanner, a shell may be provided as part of the housing, for example one shell each for each of the two parts of the measuring head, the shells comprising a relatively light material, for example plastic, and covering the corresponding components of the laser scanner for protection. To protect the shell, a yoke may be provided, for example one yoke for each shell, the yoke partially covering the outside of the shell and comprising a relatively light material as well, for example aluminum. The yokes can be omitted in alternative embodiments, for example if the shells are configured in a more stable manner and connected with the carrying structure.
  • The carrying structure which, for reasons of weight, may comprise aluminum as well, and may be provided with walls which fix the components with the optics and with the rotating mirror. The walls can also close the semi-open shells. The yoke may extend along the outer edges and/or obliquely over the outer surfaces of the shell and is fixed to the carrying structure, for example at the ends thereof, and if required also in the center thereof, at one of the two walls. In addition to the protective function, further functions can be integrated in the yokes.
  • The first locking mechanism, for example fixed notches, may be configured on the yokes. Also, a second locking mechanism may be provided, for example movable pawls, locks or similar, which are supported on the mounting device. The movable second locking mechanism then engages in the fixed first locking mechanism. The assignment of the fixed and of the movable locking mechanisms to the measuring head and to the mounting device, respectively, may also be reversed.
  • The mechanical connection of the base with the mounting device and the first locking mechanism between the measuring head and the mounting device may be arranged crosswise, to obtain a relatively stable support of the laser scanner on the mounting device. The terminal for the electrical connection with the cart may be located adjacent to the first locking mechanism and thus outside the space angle which can be reached by the emission light beam.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is explained in more detail below on the basis of an exemplary embodiment illustrated in the drawing, in which
  • FIG. 1 is a schematic illustration of the laser scanner during operation, with a sketched cart;
  • FIG. 2 is a perspective illustration of the laser scanner;
  • FIG. 3 is a perspective illustration of the mounting device, and
  • FIG. 4 is an underside view of the laser scanner.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIGS. 1-4, a laser scanner 10 is provided as a device for optically scanning and measuring the environment of the laser scanner 10. The laser scanner 10 has a measuring head 12 and a base 14. The measuring head 12 is mounted on the base 14 as a unit that can be rotated about a vertical axis. The measuring head 12 has a rotary mirror 16, which can be rotated about a horizontal axis. The intersection point of the two axes of rotation is designated as the center C10 of the laser scanner 10.
  • The measuring head 12 is further provided with a light emitter 17 for emitting an emission light beam 18. The emission light beam 18 may be a laser beam in the range of approximately 300 to 1600 nm wave length, for example 790 nm, 905 nm or less than 400 nm; however, other electro-magnetic waves having, for example, a greater wave length can be used. The emission light beam 18 is amplitude-modulated, for example with a sinusoidal or with a rectangular-waveform modulation signal. The emission light beam 18 is emitted by the light emitter 17 onto the rotary mirror 16, where it is deflected and emitted to the environment. A reception light beam 20 which is reflected in the environment by an object O or scattered otherwise, is captured again by the rotary mirror 16, deflected and directed onto a light receiver 21. The direction of the emission light beam 18 and of the reception light beam 20 results from the angular positions of the rotary mirror 16 and the measuring head 12, which depend on the positions of their corresponding rotary drives which, in turn, are registered by one encoder each.
  • A control and evaluation unit 22 has a data connection to the light emitter 17 and to the light receiver 21 in the measuring head 12, whereby parts of the unit 22 can be arranged also outside the measuring head 12, for example a computer connected to the base 14. The control and evaluation unit 22 determines, for a multitude of measuring points X, the distance d between the laser scanner 10 and the illuminated point at object O, from the propagation time of the emission light beam 18 and the reception light beam 20. For this purpose, the phase shift between the two light beams 18 and 20 can, for example, be determined and evaluated.
  • Scanning takes place along a circle by means of the relatively quick rotation of the rotary mirror 16. By virtue of the relatively slow rotation of the measuring head 12 relative to the base 14, the entire space is scanned step by step, by way of circles. The entity of measuring points X of such a measurement is designated as a scan. For such a scan, the center C10 of the laser scanner 10 defines the origin of the local stationary reference system. The base 14 rests in this local stationary reference system.
  • In addition to the distance d to the center C10 of the laser scanner 10, each measuring point X comprises a brightness information value which is determined by the control and evaluation unit 22 as well. The brightness value is a gray-tone value which is determined, for example, by integration of the bandpass-filtered and amplified signal of the light receiver 21 over a measuring period which is attributed to the measuring point X. A color camera can optionally generate pictures, by means of which colors (R, G, B) can be assigned to the measuring points as values.
  • A display device 24 is connected to the control and evaluation unit 22. The display device 24 is integrated into the laser scanner 10, in the present case into the measuring head 12. The display device 24 shows a preview of the scan.
  • The laser scanner 10 has a carrying structure 30 which serves as a skeleton of the measuring head 12 and at which different components of the laser scanner 10 are fixed. In an exemplary embodiment, the metal carrying structure 30 is made of aluminum and in one piece. Above the base 14, the carrying structure 30 has a traverse 30 a which is visible from the outside and which, at both ends, carries two walls 30 b, which are parallel to one another and project upwards from the traverse 30 a. Two shells 32 are configured as a housing which is open to one side. The shells 32 may comprise a plastic material. Each of the two shells 32 covers part of the components of the laser scanner 10 which are fixed to the carrying structure 30 and is assigned to one of the two walls 30 b, to which it is fixed (e.g., sealed with a sealing material). The walls 30 b and the shells 32 thus serve as a housing of the laser scanner 10.
  • On the outer side of each of the two shells 32 a yoke 34, which may comprise a metal material, is arranged, which partially covers and thus protects the corresponding shell 32. Each yoke 34 is fixed to the carrying structure 30, and more precisely on the bottom of the traverse 30 a. In an exemplary embodiment, each yoke 34 is made of aluminum and is screwed to the traverse 30 a at the side of the base 14. Each yoke 34 extends from its fixing point at the bottom of the traverse 30 a obliquely to the next outer corner of the assigned shell 32, from where it extends along the outer edge of shell 32 to the outer corner of shell 32 which is above, on the upper side of shell 32 obliquely up to the wall 30 b, a short distance along it, and then mirror-symmetrically to the described course on the upper side of shell 32, obliquely to the other outer corner, along the outer edge of shell 32 to the outer corner of shell 32 which is below and obliquely to the other fastening point at the bottom side of traverse 30 a.
  • The two yokes 34 together circumscribe a convex space, within which the two shells 32 are completely arranged; i.e., the two yokes 34 together project over all outer edges and outer surfaces of the shells 32. On top and on the bottom the oblique sections of the yokes 34 project over the top and/or bottom of the shells 32, on the four other sides, two sections each extending along an outer edge of the shells 32. The shells 32 are thus protected extensively. Although each of the yokes 34 primarily has a protective function, particularly with respect to impacts which might damage the shells 32 and the components of the laser scanner 10 which are arranged below, further functions can be integrated in one or both of the yokes 34, for example a gripping possibility for carrying the laser scanner 10 and/or an illumination.
  • Further details of the design of the laser scanner 10 are described for example in German Patent Application No. DE 10 2009 055 988 B3, the relevant disclosure of which is expressly incorporated by reference herein.
  • In embodiments of the present invention, two different operating modes may be provided for the laser scanner 10.
  • In a sphere mode, the base 14 is arranged in the environment in a stationary manner, the mirror 16 rotates about its horizontal axis, and the measuring head 12 rotates about its vertical axis. The two rotations define a sphere, by which the laser scanner 10 scans its environment (e.g., completely).
  • In a helix mode, the base 14 moves relative to its environment along a line, the mirror 16 rotates about its horizontal axis, and the measuring head 12 rests relative to the base 14. The rotation and the movement along the line define a helix, by which the laser scanner 10 scans its environment (e.g., partially). On principle, the line can have any shape. However, the line may usually comprise straight and/or slightly curved sections.
  • For the helix mode, the laser scanner 10 is mounted on a cart W, for example on a motor vehicle. A mounting device 40 is provided for this purpose, which may be fixedly connected both mechanically and electrically with both the cart W and the laser scanner 10.
  • In the exemplary embodiment, the mounting device 40 has an approximately cylindrical body 40 a, the diameter of which is slightly bigger than that of the base 14. Two pairs of fixing pins 40 p (e.g., rotatable screws) protrude from the upper face of the body 40 a of the mounting device 40. The fixing pins 40 p interact with suitable fixing holes 14 p configured on the underside of the base 14. A pre-positioning by the fixing pins 40 p may likely be subject to backlash. This is why, from the upper face of the mounting device 40, two additional positioning pins 40 f protrude which interact with suitable positioning holes 14 f on the underside of the base 14. Each of the positioning pins 40 f is arranged between the two fixing pins 40 p of a pair. When the fixing pins 40 p enter the assigned fixing holes 14 p (i.e., are screwed in), the positioning pins 40 f enter the assigned positioning holes 14 f. The positioning pins 40 f are configured to be fixed relative to the basic body 40 a. At least one of the two positioning pins 40 f may have a conical end, which, when entering the assigned positioning hole 14 f, provides for an absence of backlash and a force closure. In addition to the mechanical fixing elements, electrical connecting elements are provided, in an exemplary embodiment on the upper face of the body 40 a, an integrated contact bushing 40 s with flat contacts and on the underside of the base 14, an integrated mating contact plug 14 s with spring pins.
  • On the circumferential surface of the body 40 a, the mounting device 40 has at least two screw-in holes 40 u (or alternatively other fixation means) for the mechanical connection with the cart W and at least one terminal for the electrical connection with the cart W. The electric connecting elements 14 s, 40 s and 40 v allow for transmission of both data and energy. The assignments of male and female electric connecting elements to the base 14 and to the mounting device 40 can also be exchanged. The same applies to the mechanical connecting elements 14 f, 14 p and 40 f, 40 p.
  • The mounting device 40 is connected mechanically to the laser scanner 10 by the above-described mechanical connecting elements 14 f, 14 p, 40 f and 40 p (i.e., a mechanical connecting mechanism) at the base 14 of the laser scanner 10. The mounting device 40 is also connected electrically to the laser scanner 10 by the electric connecting elements 14 s and 40 s (i.e., an electrical connecting mechanism). In the event of an agitated movement of the cart W during the helix mode, the measuring head 12 with its inertia may stress with changing moments its pivot bearing in the base 14. According to embodiments of the present invention, the mounting device 40 therefore is not only fixedly connected with the base 14, but it is also locked with the measuring head 12. For this purpose, the mounting device 40 interacts with the yokes 34, and consequently with the carrying structure 30.
  • Each of the two yokes 34 has, in the immediate vicinity of the fixation of the yoke 34 to the carrying structure 30 (i.e., in an embodiment the screw points at the traverse 30 a), a first locking mechanism 34 k. The two first locking mechanisms 34 k are thus fixed to the carrying structure 30. Each first locking mechanism 34 k is configured, in an embodiment, as a notch in the yoke 34 with flanks which taper in a wedge-shaped manner, wherein the yoke 34 opens radially outward with respect to the axis of rotation of the measuring head 12. The two first locking mechanisms 34 k thereby open in opposite directions. The two first locking mechanisms 34 k can also be formed on the carrying structure 30 (i.e., configured in one piece with the structure 30) or may be separate components which are fixed to the yokes 34 or to other parts of the carrying structure 30.
  • The mounting device 40 has, on its body 40 a and offset to each of the pairs of fixing pins 40 p and positioning pins 40 f, a pillow block 40 i. The pillow blocks 40 i are curved in an arc-shaped manner with an almost square cross section. The pillow blocks 40 i, which may be configured in one piece, have in their center a central area, as well as wing areas on the sides thereof. The wing areas serve for fixing the corresponding pillow block 40 i, relatively more precisely for receiving fixing screws. The wing areas may be omitted if the pillow block 40 i is fixed in another manner. The central area is elevated with respect to the wing areas, so that the wing areas of the pillow blocks 40 i are spaced from the yokes 34, if the base 14 bears on the upper face of the basic body 40 a. For a pre-positioning, however, the central area of each pillow block 40 i can be dimensioned in such a way that it engages between the assigned yokes 34.
  • Each pillow block 40 i pivotably mounts a second locking mechanism 40 k which, in an embodiment, may be configured as a pin-shaped lock with a support which bears it. The two second locking mechanisms 40 k can pivot from a radial initial position with respect to the body 40 a into an axial final position and back. A pre-bias of each of the two second locking mechanisms 40 k is provided in the initial position and in the final position, for example by a spring which has a dead point between an initial position and a final position. In a modified embodiment, a pre-bias is provided only for the final position. The two second locking mechanisms 40 k may be pivoted manually. Regarded from above, the positioning pins 40 f and the second locking mechanisms 40 k are arranged crosswise, i.e., the connection lines intersect, in an embodiment, at an angle of 90°. Alternative arrangements are possible, however. The at least one electrical connecting element 40 v for the electrical connection with the cart W may be located adjacent to the second locking mechanisms 40 k, in an embodiment below the central area of one of the pillow blocks 40 i and consequently outside the space angle which is reached by the emission light beam 18.
  • To connect the mounting device 40 with the laser scanner 10, the scanner 10 is placed with its base 14 on the body 40 a and is positioned by the positioning pins 40 f and the positioning holes 14 f, without backlash in the final position. At the same time, the contact plug 14 s is plugged into the contact bushing 40 s. The fixing pins 40 p then are moved, i.e., screwed into the fixing holes 14 p, the base 14 thus being connected without backlash with the mounting device 40. Finally the two second locking mechanisms 40 k are pivoted into their final position. Shortly before reaching the final position, they approach from the radial direction the corresponding one of the two first locking mechanisms 34 k which are configured as notches and finally engage therein, if necessary by sliding along the flanks of the notches (e.g., the flanks being tapered in a wedge-shaped manner), until the measuring head 12 is locked without backlash with the mounting device 40.
  • A completely strain-free locking may be achieved by the measuring head 12 being aligned as precisely as possible with respect to its angle position relative to the base 14 at the latest before the two second locking mechanisms 40 k are pivoted into their final position, so that, by both the two first locking mechanisms 34 k and the two second locking mechanisms 40 k, only the backlash of the rotary drive of the measuring head 12 needs to be eliminated or reduced. Since the angle position of the measuring head 12 is registered by an encoder, a calibration of the encoder may be advantageous. Alternatively, a smoothly running idle movement of the rotary drive or a relatively large backlash of the same can be provided, so that the two first and second locking mechanisms 34 k and 40 k themselves carry out the relatively precise alignment of the measuring head 12.

Claims (9)

What is claimed is:
1. A laser scanner device for optically scanning and measuring an environment, the laser scanner comprising a base, a measuring head which is rotatable relative to the base, and a mirror which is rotatable relative to the measuring head, wherein, in at least one operating mode, the laser scanner is mounted on a cart by a mounting device, the cart moves the base which is fixedly connected with the mounting device, the measuring head rests relative to the base, and the mirror rotates, wherein in the at least one operating mode the measuring head is locked with the mounting device by at least one first locking mechanism, and wherein
mechanical and electric connecting mechanisms are provided which interact between the base and the mounting device to connect the base with the mounting device.
2. The device of claim 1, wherein the measuring head has a carrying structure, and wherein the at least one first locking mechanism is fixed to the carrying structure.
3. The device of claim 2, wherein as part of a housing of the laser scanner, at least one shell is provided on the measuring head, the outside of the shell being partly covered by at least one yoke serving as protection and being fixed to the carrying structure.
4. The device of claim 3, wherein the at least one first locking mechanism is configured on the yoke in the form of a notch which, with respect to an axis of rotation of the measuring head, points radially outwards.
5. The device of claim 1, wherein the mounting device supports at least one of a second locking mechanism.
6. The device of claim 5, wherein the mounting device has at least one pillow block, which pivotably supports the at least one of a second locking mechanism.
7. The device of claim 6, wherein the mounting device has a body on the face of which the base bears with its bottom side and on which the mechanical and electric connecting mechanisms are arranged.
8. The device of claim 7, wherein the pillow block is arranged on an upper face of the body.
9. The device of claim 1, wherein the measuring head includes a light emitter that emits an emission light beam which is deflected into the environment by the mirror, and a light receiver that receives a reception light beam which is reflected by an object in the environment or scattered otherwise, the device further comprising a a control and evaluation unit that determines, for a multitude of measuring points each, at least the distance to the object.
US14/374,054 2012-01-25 2012-12-12 Device for optically scanning and measuring an environment Active 2033-03-19 US9417056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/374,054 US9417056B2 (en) 2012-01-25 2012-12-12 Device for optically scanning and measuring an environment

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102012100609.1 2012-01-25
DE102012100609A DE102012100609A1 (en) 2012-01-25 2012-01-25 Device for optically scanning and measuring an environment
DE102012100609 2012-01-25
US201261592024P 2012-01-30 2012-01-30
US14/374,054 US9417056B2 (en) 2012-01-25 2012-12-12 Device for optically scanning and measuring an environment
PCT/EP2012/075178 WO2013110402A1 (en) 2012-01-25 2012-12-12 Device for optically scanning and measuring an environment

Publications (2)

Publication Number Publication Date
US20150029516A1 true US20150029516A1 (en) 2015-01-29
US9417056B2 US9417056B2 (en) 2016-08-16

Family

ID=48742313

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/374,054 Active 2033-03-19 US9417056B2 (en) 2012-01-25 2012-12-12 Device for optically scanning and measuring an environment

Country Status (6)

Country Link
US (1) US9417056B2 (en)
JP (1) JP6027141B2 (en)
CN (1) CN103857984B (en)
DE (1) DE102012100609A1 (en)
GB (1) GB2512515B (en)
WO (1) WO2013110402A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
CN108171733A (en) * 2016-12-07 2018-06-15 赫克斯冈技术中心 Scanner vis
USD823306S1 (en) * 2016-12-01 2018-07-17 Riegl Laser Measurement Systems Gmbh Laser scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
CN109520531A (en) * 2018-11-14 2019-03-26 深圳市铭利达精密机械有限公司 A kind of super more threaded hole Laser scanning inspection devices
US11662468B1 (en) 2022-01-21 2023-05-30 AGI Suretrack LLC LiDAR scanning system and methods
US11668433B1 (en) * 2022-01-21 2023-06-06 AGI Suretrack LLC Locking system for aligning a device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10380749B2 (en) 2016-09-26 2019-08-13 Faro Technologies, Inc. Device and method for indoor mobile mapping of an environment
TWI616646B (en) * 2017-02-24 2018-03-01 財團法人工業技術研究院 Laser based distance measurement device
CN109581360B (en) 2017-09-29 2023-06-02 英飞凌科技股份有限公司 Apparatus and method for light detection and ranging
US10782118B2 (en) 2018-02-21 2020-09-22 Faro Technologies, Inc. Laser scanner with photogrammetry shadow filling

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413907A (en) * 1980-11-07 1983-11-08 Robert F. Deike Remote control surveying
US4544236A (en) * 1981-11-02 1985-10-01 Olympus Optical Co., Ltd. Turret
US5745050A (en) * 1994-10-21 1998-04-28 Mitsubishi Denki Kabushiki Kaisha Obstacle detection apparatus for vehicles
US6922252B2 (en) * 2002-09-19 2005-07-26 Process Matrix, Llc Automated positioning method for contouring measurements using a mobile range measurement system
US20080075326A1 (en) * 2006-09-25 2008-03-27 Kabushiki Kaisha Topcon Surveying method, surveying system and surveying data processing program
US7403269B2 (en) * 2004-02-04 2008-07-22 Nidec Corporation Scanning rangefinder
US7477359B2 (en) * 2005-02-11 2009-01-13 Deltasphere, Inc. Method and apparatus for making and displaying measurements based upon multiple 3D rangefinder data sets
US8346480B2 (en) * 2006-03-16 2013-01-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
US8619265B2 (en) * 2011-03-14 2013-12-31 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9001312B2 (en) * 2010-03-23 2015-04-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Light scanning apparatus and separation distance measurement apparatus

Family Cites Families (761)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1535312A (en) 1923-09-15 1925-04-28 Hosking Richard Thomas Waterproof covering for cameras
US1538758A (en) 1924-09-17 1925-05-19 Taylor Claude Hunter Piston ring
US1918813A (en) 1932-02-02 1933-07-18 Kinzy Jacob Camera case
US2316573A (en) 1940-04-01 1943-04-13 W & L E Gurley Instrument case
US2333243A (en) 1942-12-07 1943-11-02 Morrison Brothers Company Detachable coupling
US2452033A (en) 1945-04-16 1948-10-26 Warner Electric Brake Mfg Co Tractor trailer brake control
US2702683A (en) 1951-08-17 1955-02-22 Harold L Green Magnetic holder for gasoline filling spout caps
US2748926A (en) 1952-03-17 1956-06-05 Matthew T Leahy Micrometer support
US2983367A (en) 1958-06-25 1961-05-09 Lee W Parmater Plural instrument carrying case
US2924495A (en) 1958-09-15 1960-02-09 Merz Engineering Inc Instrument case
GB894320A (en) 1959-03-13 1962-04-18 Famatex G M B H Fabrik Fur Tex Tentering device
US2966257A (en) 1959-11-03 1960-12-27 Gen Radio Co Instrument carrying case
US3066790A (en) 1961-11-13 1962-12-04 American Optical Corp Instrument carrying case
GB1112941A (en) 1965-01-02 1968-05-08 Smiths Industries Ltd Improvements in or relating to scanning apparatus
US3458167A (en) 1966-12-28 1969-07-29 Fmc Corp Balancing mechanism
AT307762B (en) 1971-04-28 1973-06-12 Eumig Method and device for distance measurement
US3899145A (en) 1973-07-20 1975-08-12 Us Navy Laser transmitting and receiving lens optics
US3945729A (en) 1974-12-30 1976-03-23 Stanford Research Institute Combined ranging and color sensor
US4138045A (en) 1977-06-15 1979-02-06 Engineered Products, Inc. Camera case
US4178515A (en) 1978-05-12 1979-12-11 Lockheed Electronics Co., Inc. Optical signal communicating apparatus
SE425331B (en) 1979-01-17 1982-09-20 Erling Nilsson DEVICE FOR DETECTING CIRCULAR RUBBING IN A PATIENT'S EXTREMITER BASED ON THE SKIN TEMPERATURE OF THE EXTREMITES
US4667231A (en) 1979-09-07 1987-05-19 Diffracto Ltd. Electro-optical part inspection in the presence of contamination and surface finish variation
US4340008A (en) 1980-09-22 1982-07-20 Mendelson Ralph R Tilt indicator for shipping containers
JPS57132015A (en) 1981-02-09 1982-08-16 Kosaka Kenkyusho:Kk Coordinate transformation device
US4561776A (en) 1981-03-25 1985-12-31 Diffracto Ltd. Electro-optical sensors for tool and robotic inspection
US4457625A (en) 1981-07-13 1984-07-03 Itek Corporation Self calibrating contour measuring system using fringe counting interferometers
DD201245A1 (en) 1981-10-16 1983-07-13 Rolf Jurenz OPTICAL ARRANGEMENT FOR AUTOMATIC SHARPENING
US4506448A (en) 1981-10-27 1985-03-26 British Aerospace Public Limited Company Teaching robots
US4424899A (en) 1982-03-08 1984-01-10 Western Electric Co., Inc. Instrument carrying case
JPS58171291A (en) 1982-03-31 1983-10-07 三菱電機株式会社 Detector for angle of inclination of robot
JPS58171291U (en) 1982-05-06 1983-11-15 江藤 明 Surface oil spill recovery equipment
JPS59133890A (en) 1983-01-19 1984-08-01 市野 勝男 Multitubular connecting joint device aiming at integral opposite arrangement of plurality of piping for same diameter
US4733961A (en) 1983-03-07 1988-03-29 Texas Instruments Incorporated Amplifier for integrated laser/FLIR rangefinder
US4537233A (en) 1983-06-21 1985-08-27 Continental Emsco Company Spring balance assembly
DE3340317A1 (en) 1983-11-08 1984-08-16 Walter 4790 Paderborn Hesse Test set for the simultaneous orientation and height determination of points in cavities where access is difficult
US4664588A (en) 1984-03-09 1987-05-12 Applied Robotics Inc. Apparatus and method for connecting and exchanging remote manipulable elements to a central control source
US4606696A (en) 1984-06-25 1986-08-19 Slocum Alexander H Mechanism to determine position and orientation in space
US4676002A (en) 1984-06-25 1987-06-30 Slocum Alexander H Mechanisms to determine position and orientation in space
JPS6162885U (en) 1984-09-28 1986-04-28
JPS61157095A (en) 1984-12-28 1986-07-16 Toshiba Corp Phase synchronizing circuit
US4659280A (en) 1985-01-22 1987-04-21 Gmf Robotics Corporation Robot with balancing mechanism having a variable counterbalance force
EP0367298B1 (en) 1985-02-28 1992-07-22 Symbol Technologies, Inc. Portable laser diode scanning head
AU6215186A (en) 1985-09-06 1987-03-12 University Of Liverpool, The Displacement measurement
US4663852A (en) 1985-09-19 1987-05-12 Digital Electronic Automation, Inc Active error compensation in a coordinated measuring machine
CA1268654A (en) 1985-10-24 1990-05-08 Arkady Kutman Camera support and housing
US4767257A (en) 1985-12-23 1988-08-30 Mitsubishi Denki Kabushiki Kaisha Industrial robot
US4816822A (en) 1986-02-14 1989-03-28 Ryan Instruments, Inc. Remote environmental monitor system
US4996909A (en) 1986-02-14 1991-03-05 Vache John P Housing for remote environmental monitor system
US4714339B2 (en) 1986-02-28 2000-05-23 Us Commerce Three and five axis laser tracking systems
DE3623343C1 (en) 1986-07-11 1989-12-21 Bodenseewerk Geraetetech Optical viewfinder with rosette scanning
US5576529A (en) 1986-08-08 1996-11-19 Norand Technology Corporation Hand-held optically readable information set reader focus with operation over a range of distances
US5969321A (en) 1986-08-08 1999-10-19 Norand Corporation Hand-held optically readable information set reader with operation over a range of distances
FR2603228B1 (en) 1986-08-28 1989-06-02 Aerospatiale PROCESS FOR PRODUCING RIGID LINKS OF COMPOSITE MATERIAL AND LINKS OF ROBOT ARMS INCLUDING APPLICATION.
EP0282585A4 (en) 1986-09-12 1990-05-14 Raychem Corp Manipulator.
JPS63135814A (en) 1986-11-28 1988-06-08 Hitachi Constr Mach Co Ltd Apparatus for controlling posture of probe
US4751950A (en) 1987-01-21 1988-06-21 Bock John S Camera and lens protector
US4790651A (en) 1987-09-30 1988-12-13 Chesapeake Laser Systems, Inc. Tracking laser interferometer
US4870274A (en) 1987-12-07 1989-09-26 Micro Video, Inc. Laser scanner with rotating mirror and housing which is transparent to the scanning radiation
US4964062A (en) 1988-02-16 1990-10-16 Ubhayakar Shivadev K Robotic arm systems
US5069524A (en) 1988-03-07 1991-12-03 Honda Giken Kogyo Kabushiki Kaisha Robot hand optical fiber connector coupling assembly
US4882806A (en) 1988-07-11 1989-11-28 Davis Thomas J Counterbalancing torsion spring mechanism for devices which move up and down and method of setting the torsion springs thereof
US6889903B1 (en) 1988-08-31 2005-05-10 Intermec Ip Corp. Method and apparatus for optically reading information
US5289855A (en) 1988-10-14 1994-03-01 Elkay Manufacturing Co. Liquid container support and probe-type hygienic liquid dispensing system
US5155684A (en) 1988-10-25 1992-10-13 Tennant Company Guiding an unmanned vehicle by reference to overhead features
DE8900878U1 (en) 1989-01-26 1989-03-16 Goedecke, Hans-Joachim, 8022 Gruenwald, De
US5027951A (en) 1989-06-20 1991-07-02 Johnson Level & Tool Mfg. Co., Inc. Apparatus and method for packaging of articles
US5205111A (en) 1989-06-20 1993-04-27 Johnson Level & Tool Mfg. Co., Inc. Packaging method for a level and case
US4984881A (en) 1989-12-19 1991-01-15 Ebara Corporation Rotation supporting device of a polygon mirror
US5068971A (en) 1990-03-23 1991-12-03 Simco Industries, Inc. Adjustable portable coordinate measuring machine
CA2038818A1 (en) 1990-03-30 1991-10-01 Akio Nagamune Distance measuring method and apparatus therefor
US5675326A (en) 1990-04-11 1997-10-07 Auto-Sense, Ltd. Method of determining optimal detection beam locations using reflective feature mapping
US5025966A (en) 1990-05-07 1991-06-25 Potter Stephen B Magnetic tool holder
US5168532A (en) 1990-07-02 1992-12-01 Varian Associates, Inc. Method for improving the dynamic range of an imaging system
IL95205A0 (en) 1990-07-27 1991-06-10 Optrotech Ltd Method and apparatus for optical inspection of substrates
SE466726B (en) 1990-08-20 1992-03-23 Kent Lennartsson DISTRIBUTED COMPUTER SYSTEM DEVICE
DE4027990C1 (en) 1990-09-04 1992-02-20 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier
JPH04115108A (en) 1990-09-05 1992-04-16 Matsushita Electric Ind Co Ltd Three-dimensional scanner
US5124524A (en) 1990-11-15 1992-06-23 Laser Design Inc. Laser alignment and control system
US5371347A (en) 1991-10-15 1994-12-06 Gap Technologies, Incorporated Electro-optical scanning system with gyrating scan head
JPH04208103A (en) 1990-11-30 1992-07-29 Sony Corp Carrying case for electronic appliance
JPH04225188A (en) 1990-12-27 1992-08-14 Nec Corp Object classification device
JP2969009B2 (en) 1991-02-22 1999-11-02 株式会社リコー Axial mirror deflector
US5211476A (en) 1991-03-04 1993-05-18 Allflex Europe S.A. Temperature recording system
FR2674017B1 (en) 1991-03-12 1995-01-13 Romer Srl DEVICE FOR MEASURING THE SHAPE OR POSITION OF AN OBJECT.
TW257898B (en) 1991-04-11 1995-09-21 Sumitomo Electric Industries
US5212738A (en) 1991-04-12 1993-05-18 Martin Marietta Magnesia Specialties Inc. Scanning laser measurement system
JP3189843B2 (en) 1991-04-15 2001-07-16 ソニー株式会社 Camera case
US5332315A (en) 1991-04-27 1994-07-26 Gec Avery Limited Apparatus and sensor unit for monitoring changes in a physical quantity with time
US5213240A (en) 1991-05-06 1993-05-25 H. Dietz & Company, Inc. Magnetic tool holder
US5373346A (en) 1991-06-13 1994-12-13 Onset Computer Corp. Data gathering computer and analysis display computer interface system and methodology
US5239855A (en) 1991-07-12 1993-08-31 Hewlett-Packard Company Positional calibration of robotic arm joints relative to the gravity vector
DE4125003A1 (en) 1991-07-27 1993-01-28 Index Werke Kg Hahn & Tessky TOOL REVOLVER, IN PARTICULAR LATHE
US5577130A (en) 1991-08-05 1996-11-19 Philips Electronics North America Method and apparatus for determining the distance between an image and an object
US5231470A (en) 1991-09-06 1993-07-27 Koch Stephen K Scanning system for three-dimensional object digitizing
DE4134546A1 (en) 1991-09-26 1993-04-08 Steinbichler Hans METHOD AND DEVICE FOR DETERMINING THE ABSOLUTE COORDINATES OF AN OBJECT
KR930007660A (en) 1991-10-29 1993-05-20 오오가 노리오 Image drawing device
GB9126269D0 (en) 1991-12-11 1992-02-12 Renishaw Metrology Ltd Temperature sensor for coordinate positioning apparatus
US5918029A (en) 1996-09-27 1999-06-29 Digital Equipment Corporation Bus interface slicing mechanism allowing for a control/data-path slice
DE4222642A1 (en) 1992-07-10 1994-01-13 Bodenseewerk Geraetetech Imaging sensor unit
US5313261A (en) 1992-07-13 1994-05-17 Applied Remote Technology Inc. Method and apparatus for faithful gray scale representation of under water laser images
US5319445A (en) 1992-09-08 1994-06-07 Fitts John M Hidden change distribution grating and use in 3D moire measurement sensors and CMM applications
US5329347A (en) 1992-09-16 1994-07-12 Varo Inc. Multifunction coaxial objective system for a rangefinder
DE4327250C5 (en) 1992-09-25 2008-11-20 Carl Zeiss Industrielle Messtechnik Gmbh Method for measuring coordinates on workpieces
US5402365A (en) 1992-10-28 1995-03-28 Motorola, Inc. Differential odometer dynamic calibration method and apparatus therefor
US5337149A (en) 1992-11-12 1994-08-09 Kozah Ghassan F Computerized three dimensional data acquisition apparatus and method
DE4340756C5 (en) 1992-12-08 2006-08-10 Sick Ag Laser range finding device
DE4303804C2 (en) 1993-02-10 1996-06-27 Leuze Electronic Gmbh & Co Distance measuring device
US5611147A (en) 1993-02-23 1997-03-18 Faro Technologies, Inc. Three dimensional coordinate measuring apparatus
US6535794B1 (en) 1993-02-23 2003-03-18 Faro Technologoies Inc. Method of generating an error map for calibration of a robot or multi-axis machining center
US5412880A (en) 1993-02-23 1995-05-09 Faro Technologies Inc. Method of constructing a 3-dimensional map of a measurable quantity using three dimensional coordinate measuring apparatus
US5402582A (en) 1993-02-23 1995-04-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus
JPH06313710A (en) 1993-04-28 1994-11-08 Hitachi Plant Eng & Constr Co Ltd Arm extension apparatus for three-dimensional space coordinate measuring machine
JP3256332B2 (en) 1993-05-24 2002-02-12 郁男 荒井 Distance measuring method and distance measuring device
US5455670A (en) 1993-05-27 1995-10-03 Associated Universities, Inc. Optical electronic distance measuring apparatus with movable mirror
JP2859514B2 (en) 1993-05-31 1999-02-17 株式会社カイジョー Doppler shift correction pulse type fishing net depth gauge
US5724264A (en) 1993-07-16 1998-03-03 Immersion Human Interface Corp. Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
US6553130B1 (en) 1993-08-11 2003-04-22 Jerome H. Lemelson Motor vehicle warning and control system and method
FR2710407B1 (en) 1993-09-20 1995-12-01 Romer Srl Positioning method for a three-dimensional measuring machine and device for implementing the method.
JPH07128051A (en) 1993-11-02 1995-05-19 Sekisui Chem Co Ltd Unevenness survey system
US5668631A (en) 1993-12-20 1997-09-16 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
JPH07209080A (en) * 1993-12-28 1995-08-11 Amberg Measuring Technik Ltd Optical scanner
JPH07218261A (en) 1994-02-03 1995-08-18 Nikon Corp Laser projector
IL108646A0 (en) 1994-02-14 1995-03-15 Israel State Opto-mechanical system
JPH07229963A (en) 1994-02-21 1995-08-29 Oki Electric Ind Co Ltd Method for track detection
US5563655A (en) 1994-02-28 1996-10-08 Eastman Kodak Company Intelligent digital image storage for an electronic camera
DE4410775C2 (en) 1994-03-28 2000-04-06 Daimler Chrysler Ag Control unit and operating method of an operating system for this control unit
DE4412044A1 (en) 1994-04-08 1995-10-12 Leuze Electronic Gmbh & Co Opto-electronic system for detecting objects in monitoring region
SE506753C2 (en) 1995-05-02 1998-02-09 Tokimec Inc Device for determining the shape of a road surface
US5430384A (en) 1994-07-22 1995-07-04 Onset Computer Corp. Temperature compensated soil moisture sensor
US5510977A (en) 1994-08-02 1996-04-23 Faro Technologies Inc. Method and apparatus for measuring features of a part or item
JP3619545B2 (en) 1994-08-23 2005-02-09 オリンパス株式会社 Camera ranging device
JPH0876039A (en) 1994-09-08 1996-03-22 Fuji Xerox Co Ltd Multi-beam laser recorder
US5517297A (en) 1994-10-13 1996-05-14 Hughes Aircraft Company Rangefinder with transmitter, receiver, and viewfinder on a single common optical axis
JPH08129145A (en) 1994-11-01 1996-05-21 Nec Eng Ltd Rotary deflection unit
JPH08136849A (en) 1994-11-08 1996-05-31 Konica Corp Optical scanner
JPH08166813A (en) 1994-12-14 1996-06-25 Fanuc Ltd Tracking control method for robot accompanied by weaving operation
US5623416A (en) 1995-01-06 1997-04-22 Onset Computer Corporation Contact closure data logger
US5793993A (en) 1995-01-26 1998-08-11 General Magic, Inc. Method for transmitting bus commands and data over two wires of a serial bus
US5535524A (en) 1995-01-27 1996-07-16 Brown & Sharpe Manufacturing Company Vibration damper for coordinate measuring machine
JP3582918B2 (en) * 1995-02-14 2004-10-27 株式会社トプコン Laser surveying machine
JPH08262361A (en) 1995-03-17 1996-10-11 Ebara Corp Attaching structure for polygon mirror
JPH08262140A (en) 1995-03-20 1996-10-11 Tokyo Gas Co Ltd Laser beam swinging mechanism for laser radar and laser device using it
CN2236119Y (en) 1995-03-22 1996-09-25 付文博 Single-jig measuring machine
US5682508A (en) 1995-03-23 1997-10-28 Onset Computer Corporation UART protocol that provides predictable delay for communication between computers of disparate ability
US5754449A (en) 1995-04-25 1998-05-19 Instrumented Sensor Technology, Inc. Method and apparatus for recording time history data of physical variables
US5825666A (en) 1995-06-07 1998-10-20 Freifeld; Daniel Optical coordinate measuring machines and optical touch probes
DE19521771A1 (en) 1995-06-20 1997-01-02 Jan Michael Mrosik FMCW distance measuring method
JP2729362B2 (en) 1995-07-05 1998-03-18 防衛庁技術研究本部長 Automatic target classifier
GB9515311D0 (en) 1995-07-26 1995-09-20 3D Scanners Ltd Stripe scanners and methods of scanning
US6697748B1 (en) 1995-08-07 2004-02-24 Immersion Corporation Digitizing system and rotary table for determining 3-D geometry of an object
US5832416A (en) 1995-09-01 1998-11-03 Brown & Sharpe Manufacturing Company Calibration system for coordinate measuring machine
DE19534535C2 (en) 1995-09-18 2000-05-31 Leitz Mestechnik Gmbh Coordinate measuring machine
US6204961B1 (en) 1995-09-18 2001-03-20 Litton Systems, Inc. Day and night sighting system
DE29515738U1 (en) 1995-10-04 1995-11-30 Vosseler Hans Guenther Measuring device for non-contact measurement analysis of bodies or surfaces
NO301999B1 (en) 1995-10-12 1998-01-05 Metronor As Combination of laser tracker and camera based coordinate measurement
WO1997016703A1 (en) 1995-10-30 1997-05-09 Kabushiki Kaisha Topcon Rotary laser system
DE19543763B4 (en) 1995-11-24 2005-07-21 Leitz Messtechnik Gmbh Method for automatically detecting different sensors in coordinate measuring machines and devices for carrying out the method
US5734417A (en) 1995-12-05 1998-03-31 Yokogawa Precision Corporation Visual presentation equipment
US20020014533A1 (en) 1995-12-18 2002-02-07 Xiaxun Zhu Automated object dimensioning system employing contour tracing, vertice detection, and forner point detection and reduction methods on 2-d range data maps
DE19601875C2 (en) 1996-01-19 1999-08-19 Siemens Ag Method and device for eliminating interference from FMCW radar
US6460004B2 (en) 1996-02-06 2002-10-01 Perceptron, Inc. Method and apparatus for calibrating a non-contact gauging sensor with respect to an external coordinate system
US6134507A (en) 1996-02-06 2000-10-17 Perceptron, Inc. Method and apparatus for calibrating a non-contact gauging sensor with respect to an external coordinate system
US5768792A (en) 1996-02-09 1998-06-23 Faro Technologies Inc. Method and apparatus for measuring and tube fitting
DE19607345A1 (en) 1996-02-27 1997-08-28 Sick Ag Laser distance determination device
US5936721A (en) 1996-03-18 1999-08-10 Kabushiki Kaisha Topcon Guide beam direction setting apparatus
JP3908297B2 (en) 1996-03-19 2007-04-25 株式会社トプコン Laser surveyor
JP3797704B2 (en) 1996-04-05 2006-07-19 株式会社ミツトヨ Optical measuring device
US5831719A (en) 1996-04-12 1998-11-03 Holometrics, Inc. Laser scanning system
US5829148A (en) 1996-04-23 1998-11-03 Eaton; Homer L. Spatial measuring device
US5988862A (en) 1996-04-24 1999-11-23 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three dimensional objects
JPH102714A (en) 1996-06-19 1998-01-06 Canon Inc Method and device for measurement
US6057915A (en) 1996-06-21 2000-05-02 Thermotrex Corporation Projectile tracking system
CA2183004A1 (en) 1996-08-23 1998-02-24 Nino Camurri Articulated-arm measuring machine and twist-net network
JP3842876B2 (en) 1996-09-27 2006-11-08 株式会社リコー Digital camera
AU4769097A (en) 1996-10-23 1998-05-15 Romeo Hudon Telemetric spacial data recorder
KR100268048B1 (en) 1996-10-28 2000-11-01 고바야시 마사키 Underwater laser imaging apparatus
US5752112A (en) 1996-11-06 1998-05-12 George Paddock, Inc. Mounting system for body mounted camera equipment
US5926782A (en) 1996-11-12 1999-07-20 Faro Technologies Inc Convertible three dimensional coordinate measuring machine
DE19647152A1 (en) 1996-11-14 1998-05-28 Sick Ag Laser distance determination device
US5997779A (en) 1996-12-18 1999-12-07 Aki Dryer Manufacturer, Inc. Temperature monitor for gypsum board manufacturing
DE29622033U1 (en) 1996-12-18 1997-02-27 Siemens Ag Control panel with integrated control elements and a display unit
GB9626825D0 (en) 1996-12-24 1997-02-12 Crampton Stephen J Avatar kiosk
US6282195B1 (en) 1997-01-09 2001-08-28 Silicon Graphics, Inc. Packetized data transmissions in a switched router architecture
JPH10246863A (en) 1997-03-05 1998-09-14 Sankyo Seiki Mfg Co Ltd Rotating polygon mirror type light deflector
AU6871898A (en) 1997-03-28 1998-10-22 Gary P. Thieltges Motion stable camera support system
DE19720049B4 (en) 1997-05-14 2006-01-19 Hexagon Metrology Gmbh Method for controlling a motor coordinate measuring machine and coordinate measuring machine for carrying out the method
US5956857A (en) 1997-05-19 1999-09-28 Faro Technologies, Inc. Mounting device for a coordinate measuring machine
US5898484A (en) 1997-05-30 1999-04-27 Harris; Steven E. Hand-held distance-measurement device with an enhanced viewfinder
DE19722969C1 (en) 1997-05-31 1998-09-03 Weinhold Karl Pipe coupling with C=shaped shells
US5983936A (en) 1997-06-12 1999-11-16 The Dover Corporation Torsion spring balance assembly and adjustment method
WO1999004686A1 (en) 1997-07-22 1999-02-04 Milner John A Apparatus and method for language translation between patient and caregiver, and for communication with speech deficient patients
US6069700A (en) 1997-07-31 2000-05-30 The Boeing Company Portable laser digitizing system for large parts
US6408252B1 (en) 1997-08-01 2002-06-18 Dynalog, Inc. Calibration system and displacement measurement device
WO1999010706A1 (en) 1997-08-29 1999-03-04 Perceptron, Inc. Digital 3-d light modulated position measurement system
US6060889A (en) 1998-02-11 2000-05-09 Onset Computer Corporation Sensing water and moisture using a delay line
DE19806288A1 (en) 1998-02-16 1999-08-26 Fraunhofer Ges Forschung Laser scanner measuring system
DE59905558D1 (en) 1998-03-10 2003-06-18 Riegl Laser Measurement Sys METHOD FOR MONITORING OBJECTS OR AN OBJECT SPACE
DE19811550C2 (en) 1998-03-18 2002-06-27 Bosch Gmbh Robert Method and circuit arrangement for generating frequency signals
EP0949524A1 (en) 1998-04-07 1999-10-13 Fujifilm Electronic Imaging Limited Rotatable mirror assembly
DE19816270A1 (en) 1998-04-11 1999-10-21 Werth Messtechnik Gmbh Method and arrangement for detecting the geometry of objects using a coordinate measuring machine
DE69915156T2 (en) 1998-04-24 2004-10-28 Inco Ltd., Toronto Automatic guiding and measuring device
DE19820307C2 (en) 1998-05-07 2003-01-02 Mycrona Ges Fuer Innovative Me Non-contact temperature detection on a multi-coordinate measuring and testing device
US6240651B1 (en) 1998-06-17 2001-06-05 Mycrona Gmbh Coordinate measuring machine having a non-sensing probe
US5996790A (en) 1998-06-26 1999-12-07 Asahi Research Corporation Watertight equipment cover
US6131299A (en) 1998-07-01 2000-10-17 Faro Technologies, Inc. Display device for a coordinate measurement machine
US6151789A (en) 1998-07-01 2000-11-28 Faro Technologies Inc. Adjustable handgrip for a coordinate measurement machine
US5978748A (en) 1998-07-07 1999-11-02 Faro Technologies, Inc. Host independent articulated arm
US6219928B1 (en) 1998-07-08 2001-04-24 Faro Technologies Inc. Serial network for coordinate measurement apparatus
USD441632S1 (en) 1998-07-20 2001-05-08 Faro Technologies Inc. Adjustable handgrip
GB2341203A (en) 1998-09-01 2000-03-08 Faro Tech Inc Flat web coupler for coordinate measurement systems
WO2000014474A1 (en) 1998-09-08 2000-03-16 Brown & Sharpe Manufacturing Company Coordinate measuring machine having a machine tool frame
US6163294A (en) 1998-09-10 2000-12-19 Trimble Navigation Limited Time-tagging electronic distance measurement instrument measurements to serve as legal evidence of calibration
JP3835016B2 (en) 1998-10-16 2006-10-18 三菱電機株式会社 Laser radar equipment
DE19850118A1 (en) 1998-10-30 2000-05-11 Siemens Ag Profile measurement system and method for implementation
GB9826093D0 (en) 1998-11-28 1999-01-20 Limited Locating arm for a probe on a coordinate positioning machine
US6253458B1 (en) 1998-12-08 2001-07-03 Faro Technologies, Inc. Adjustable counterbalance mechanism for a coordinate measurement machine
JP4088906B2 (en) 1998-12-16 2008-05-21 株式会社トプコン Photo detector of surveying instrument
JP2000190262A (en) 1998-12-22 2000-07-11 Denso Corp Control device for robot
US6112423A (en) 1999-01-15 2000-09-05 Brown & Sharpe Manufacturing Co. Apparatus and method for calibrating a probe assembly of a measuring machine
JP4180718B2 (en) 1999-01-29 2008-11-12 株式会社トプコン Rotating laser device
USD423534S (en) 1999-02-19 2000-04-25 Faro Technologies, Inc. Articulated arm
JP2000249546A (en) 1999-02-26 2000-09-14 Seiko Precision Inc Portable small-sized electronic measure
ATE347099T1 (en) 1999-03-19 2006-12-15 Titech Visionsort As MATERIAL INSPECTION
JP3443030B2 (en) 1999-03-31 2003-09-02 オークマ株式会社 measuring device
US7800758B1 (en) 1999-07-23 2010-09-21 Faro Laser Trackers, Llc Laser-based coordinate measuring device and laser-based method for measuring coordinates
GB9907644D0 (en) 1999-04-06 1999-05-26 Renishaw Plc Surface sensing device with optical sensor
TW396799U (en) 1999-04-14 2000-07-01 Dunchock Richard Stephen A kind of positioning device for an article
US6675122B1 (en) 1999-04-19 2004-01-06 Leica Geosystems Ag Indirect position determination with the aid of a tracker
DE10081029B8 (en) 1999-04-19 2013-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Image editing to prepare a texture analysis
DE19928958A1 (en) 1999-05-22 2000-11-23 Volkswagen Ag Laser scanner with reception unit having spherical lens having recess with optical axis orthogonal to axis of rotation, for use in automobiles
JP2000339468A (en) 1999-05-31 2000-12-08 Minolta Co Ltd Method and device for positioning three-dimensional data
JP2001013001A (en) 1999-06-29 2001-01-19 A & D Co Ltd Electronic weighing apparatus with built-in weight
EP1067361A1 (en) 1999-07-06 2001-01-10 Datalogic S.P.A. Method and a device for measuring the distance of an object
JP3822389B2 (en) 1999-07-09 2006-09-20 株式会社ミツトヨ Displacement measurement system
CA2278108C (en) 1999-07-20 2008-01-29 The University Of Western Ontario Three-dimensional measurement method and apparatus
US6166811A (en) 1999-08-12 2000-12-26 Perceptron, Inc. Robot-based gauging system for determining three-dimensional measurement data
JP2001056275A (en) 1999-08-18 2001-02-27 Shimadzu Corp Electromagnetic force type minute material testing machine with microscope
ATE219575T1 (en) 1999-08-31 2002-07-15 Leica Geosystems Ag TACHYMETER TELESCOPE
DE19949044B4 (en) 1999-10-11 2004-05-27 Leica Microsystems Wetzlar Gmbh Device for fine focusing an objective in an optical system and coordinate measuring device with a device for fine focusing an objective
JP2001154098A (en) 1999-11-30 2001-06-08 Mitsutoyo Corp Image probe
JP3546784B2 (en) 1999-12-14 2004-07-28 日本電気株式会社 Mobile device
JP2001208846A (en) 2000-01-28 2001-08-03 Mitsubishi Electric Corp Vehicle periphery monitoring device
EP2302476A3 (en) 2000-02-01 2012-10-24 Faro Technologies, Inc. Method, system and storage medium for providing an executable program to a coordinate measurement system
US6650402B2 (en) 2000-02-10 2003-11-18 Oceanit Laboratories, Inc. Omni-directional cloud height indicator
US6825923B2 (en) 2000-03-10 2004-11-30 Hamar Laser Instruments, Inc. Laser alignment system with plural lasers for impingement on a single target
FR2806657B1 (en) 2000-03-21 2002-08-16 Romain Granger POSITIONAL MARKING SYSTEM OF A THREE-DIMENSIONAL MACHINE IN A FIXED REFERENCE SYSTEM
GB0008303D0 (en) 2000-04-06 2000-05-24 British Aerospace Measurement system and method
DE20006504U1 (en) 2000-04-08 2000-08-17 Brown & Sharpe Gmbh Probe head with exchangeable stylus
US6204651B1 (en) 2000-04-18 2001-03-20 Sigmatel, Inc. Method and apparatus for regulating an output voltage of a switch mode converter
US6547397B1 (en) 2000-04-19 2003-04-15 Laser Projection Technologies, Inc. Apparatus and method for projecting a 3D image
DE10026357C2 (en) 2000-05-27 2002-09-12 Martin Argast Optoelectronic device
JP4613337B2 (en) 2000-05-29 2011-01-19 株式会社ニコン microscope
US6750873B1 (en) 2000-06-27 2004-06-15 International Business Machines Corporation High quality texture reconstruction from multiple scans
WO2002006765A1 (en) 2000-07-13 2002-01-24 Werth Messtechnik Gmbh Method for carrying out the non-contact measurement of geometries of objects
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
US6734410B2 (en) 2000-08-30 2004-05-11 Pentax Precision Co., Ltd. Surveying instrument having an optical distance meter and an autofocus system, and a surveying instrument having a detachable autofocus system
GB0022443D0 (en) 2000-09-13 2000-11-01 Bae Systems Plc Marking out method and system
US6639684B1 (en) 2000-09-13 2003-10-28 Nextengine, Inc. Digitizer using intensity gradient to image features of three-dimensional objects
TW519485B (en) 2000-09-20 2003-02-01 Ind Tech Res Inst Infrared 3D scanning system
EP1320720A2 (en) 2000-09-20 2003-06-25 Werth Messtechnik GmbH Assembly and method for the optical-tactile measurement of a structure
US7006084B1 (en) 2000-09-26 2006-02-28 Faro Technologies, Inc. Method and system for computer aided manufacturing measurement analysis
US6668466B1 (en) 2000-10-19 2003-12-30 Sandia Corporation Highly accurate articulated coordinate measuring machine
US6519860B1 (en) 2000-10-19 2003-02-18 Sandia Corporation Position feedback control system
US7076420B1 (en) 2000-10-26 2006-07-11 Cypress Semiconductor Corp. Emulator chip/board architecture and interface
US7200246B2 (en) 2000-11-17 2007-04-03 Honeywell International Inc. Object detection
FR2817339B1 (en) 2000-11-24 2004-05-14 Mensi THREE-DIMENSIONAL LIFTING DEVICE OF A LASER EMISSION SCENE
JP4595197B2 (en) 2000-12-12 2010-12-08 株式会社デンソー Distance measuring device
US7101300B2 (en) 2001-01-23 2006-09-05 Black & Decker Inc. Multispeed power tool transmission
US6796048B2 (en) 2001-02-01 2004-09-28 Faro Technologies, Inc. Method, system and storage medium for providing a tool kit for a coordinate measurement system
DE10108774A1 (en) 2001-02-23 2002-09-05 Zeiss Carl Coordinate measuring device for probing a workpiece, probe for a coordinate measuring device and method for operating a coordinate measuring device
US20020128790A1 (en) 2001-03-09 2002-09-12 Donald Woodmansee System and method of automated part evaluation including inspection, disposition recommendation and refurbishment process determination
DE10137241A1 (en) 2001-03-15 2002-09-19 Tecmath Ag Arrangement, for detecting and measuring objects, optically projects markers onto object, records partial views of object in global coordinate system using information re-detected markers
DE10112833C1 (en) 2001-03-16 2003-03-13 Hilti Ag Method and device for electro-optical distance measurement
ATE491961T1 (en) 2001-04-10 2011-01-15 Faro Tech Inc CHOPPER STABILIZED ABSOLUTE DISTANCE MEASUREMENT DEVICE
JP4530571B2 (en) 2001-04-16 2010-08-25 Hoya株式会社 3D image detection device
US6649208B2 (en) 2001-04-17 2003-11-18 Wayne E. Rodgers Apparatus and method for thin film deposition onto substrates
US6418774B1 (en) 2001-04-17 2002-07-16 Abb Ab Device and a method for calibration of an industrial robot
US6598306B2 (en) 2001-04-17 2003-07-29 Homer L. Eaton Self-loading spatial reference point array
DE10155488A1 (en) 2001-11-13 2003-05-28 Wilhelm Caspary Method for recording the condition of a road surface uses a vehicle heading along a road in a preset direction with a scanner emitting pulsed oscillating laser beams at predefined angular stages
WO2002101323A2 (en) 2001-06-12 2002-12-19 Hexagon Metrology Ab A communication method and common control bus interconnecting a controller and a precision measurement assembly
US6626339B2 (en) 2001-06-27 2003-09-30 All Rite Products Holder mounted bag
DE10131610C1 (en) 2001-06-29 2003-02-20 Siemens Dematic Ag Method for calibrating the optical system of a laser machine for processing electrical circuit substrates
CN2508896Y (en) 2001-07-08 2002-09-04 冯继武 Digital display multifunction moving three coordinate measuring machine
JP2003050128A (en) 2001-08-07 2003-02-21 Sokkia Co Ltd Instrument for measuring distance and angle
DE10140174B4 (en) 2001-08-22 2005-11-10 Leica Microsystems Semiconductor Gmbh Coordinate measuring table and coordinate measuring device
US7190465B2 (en) 2001-08-30 2007-03-13 Z + F Zoller & Froehlich Gmbh Laser measurement system
DE20208077U1 (en) 2001-08-30 2002-09-26 Z & F Zoller & Froehlich Gmbh Laser measurement system
DE10143060A1 (en) 2001-09-03 2003-03-20 Sick Ag Vehicle laser scanner transmits wide beam front towards moving deflector, causing reflective front to adopt various orientations in scanned space
AU2002362669A1 (en) 2001-10-11 2003-04-22 Laser Projection Technologies Inc. A Delaware Corporation Method and system for visualizing surface errors
JP3577028B2 (en) 2001-11-07 2004-10-13 川崎重工業株式会社 Robot cooperative control system
AT412028B (en) 2001-11-09 2004-08-26 Riegl Laser Measurement Sys DEVICE FOR RECORDING AN OBJECT SPACE
AU2002357737A1 (en) 2001-11-16 2003-06-10 Faro Technologies, Inc. Method and system for assisting a user taking measurements using a coordinate measurement machine
JP2003156330A (en) 2001-11-22 2003-05-30 Nec Corp Airborne topography-measuring apparatus and method
JP2003156562A (en) 2001-11-22 2003-05-30 Optec:Kk Electronic distance meter
US6753876B2 (en) 2001-12-21 2004-06-22 General Electric Company Method for high dynamic range image construction based on multiple images with multiple illumination intensities
US7049597B2 (en) 2001-12-21 2006-05-23 Andrew Bodkin Multi-mode optical imager
JP3613708B2 (en) 2001-12-27 2005-01-26 川崎重工業株式会社 Cross-sectional shape measuring device
JP2003216255A (en) 2002-01-18 2003-07-31 Matsushita Electric Ind Co Ltd Method for controlling converter in solar power generation device
US6759979B2 (en) 2002-01-22 2004-07-06 E-Businesscontrols Corp. GPS-enhanced system and method for automatically capturing and co-registering virtual models of a site
US6922234B2 (en) 2002-01-23 2005-07-26 Quantapoint, Inc. Method and apparatus for generating structural data from laser reflectance images
US7336602B2 (en) 2002-01-29 2008-02-26 Intel Corporation Apparatus and method for wireless/wired communications interface
US7073271B2 (en) 2002-02-14 2006-07-11 Faro Technologies Inc. Portable coordinate measurement machine
US6957496B2 (en) 2002-02-14 2005-10-25 Faro Technologies, Inc. Method for improving measurement accuracy of a portable coordinate measurement machine
US7881896B2 (en) 2002-02-14 2011-02-01 Faro Technologies, Inc. Portable coordinate measurement machine with integrated line laser scanner
US7246030B2 (en) 2002-02-14 2007-07-17 Faro Technologies, Inc. Portable coordinate measurement machine with integrated line laser scanner
USD479544S1 (en) 2002-02-14 2003-09-09 Faro Technolgoies, Inc. Portable coordinate measurement machine
US6952882B2 (en) 2002-02-14 2005-10-11 Faro Technologies, Inc. Portable coordinate measurement machine
USD472824S1 (en) 2002-02-14 2003-04-08 Faro Technologies, Inc. Portable coordinate measurement machine
US6973734B2 (en) 2002-02-14 2005-12-13 Faro Technologies, Inc. Method for providing sensory feedback to the operator of a portable measurement machine
JP2005517909A (en) 2002-02-14 2005-06-16 ファロ テクノロジーズ インコーポレーテッド Portable coordinate measuring instrument with articulated arm
USRE42082E1 (en) 2002-02-14 2011-02-01 Faro Technologies, Inc. Method and apparatus for improving measurement accuracy of a portable coordinate measurement machine
US7519493B2 (en) 2002-02-14 2009-04-14 Faro Technologies, Inc. Portable coordinate measurement machine with integrated line laser scanner
ATE333599T1 (en) 2002-02-26 2006-08-15 Faro Tech Inc STURDY VACUUM ADAPTER
AT411299B (en) 2002-03-04 2003-11-25 Riegl Laser Measurement Sys METHOD FOR RECORDING AN OBJECT SPACE
US7120092B2 (en) 2002-03-07 2006-10-10 Koninklijke Philips Electronics N. V. System and method for performing clock synchronization of nodes connected via a wireless local area network
DE60313854T2 (en) 2002-03-19 2008-01-10 Faro Technologies, Inc., Lake Mary TRIPOD STAND
JP4004316B2 (en) 2002-03-20 2007-11-07 株式会社トプコン Surveying device and method for acquiring image data using surveying device
DE10392410T5 (en) 2002-03-20 2005-04-14 Faro Technologies, Inc., Lake Mary Coordinate measuring system and method
JP2003308205A (en) 2002-04-12 2003-10-31 Aplix Corp Method for temporarily halting program
DE10219054B4 (en) 2002-04-24 2004-08-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for determining the spatial coordinates of an object
EP1361414B1 (en) 2002-05-08 2011-01-26 3D Scanners Ltd Method for the calibration and qualification simultaneously of a non-contact probe
GB0211473D0 (en) 2002-05-18 2002-06-26 Aea Technology Plc Railway surveying
JP2004037317A (en) 2002-07-04 2004-02-05 Murata Mfg Co Ltd Three-dimensional shape measuring method and three-dimensional shape measuring device
DE10232028C5 (en) 2002-07-16 2011-07-07 Leuze electronic GmbH + Co. KG, 73277 Optical sensor
JP2004109106A (en) 2002-07-22 2004-04-08 Fujitsu Ltd Method and apparatus for inspecting surface defect
JP4121803B2 (en) 2002-08-08 2008-07-23 株式会社トプコン Lightwave distance measuring device
US7230689B2 (en) 2002-08-26 2007-06-12 Lau Kam C Multi-dimensional measuring system
JP2004093504A (en) 2002-09-03 2004-03-25 Topcon Corp Surveying device
DE10244643A1 (en) 2002-09-25 2004-04-08 Ibeo Automobile Sensor Gmbh Optoelectronic position monitoring system for road vehicle has two pulsed lasers, sensor and mechanical scanner with rotating mirror at 45 degrees to shaft with calibration disk adjacent to reader
US7168748B2 (en) 2002-09-26 2007-01-30 Barrett Technology, Inc. Intelligent, self-contained robotic hand
WO2004036145A1 (en) 2002-10-12 2004-04-29 Leica Geosystems Ag Electronic display and control device for a measuring device
US6895347B2 (en) 2002-10-15 2005-05-17 Remote Data Systems, Inc. Computerized methods for data loggers
JP4228132B2 (en) 2002-10-18 2009-02-25 株式会社トプコン Position measuring device
US7069124B1 (en) 2002-10-28 2006-06-27 Workhorse Technologies, Llc Robotic modeling of voids
US7024032B2 (en) 2002-10-31 2006-04-04 Perceptron, Inc. Method for assessing fit and alignment of a manufactured part
GB2395261A (en) 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
WO2005008271A2 (en) 2002-11-26 2005-01-27 Munro James F An apparatus for high accuracy distance and velocity measurement and methods thereof
DE10257856A1 (en) 2002-12-11 2004-07-08 Leitz Messtechnik Gmbh Vibration damping method for a coordinate measuring machine and coordinate measuring machine
SE525290C2 (en) 2002-12-20 2005-01-25 Trimble Ab Geodetic measurement / release system and method of using the same
DE10261386A1 (en) 2002-12-30 2004-07-08 Robert Bosch Gmbh Device for terminating two-wire lines
SE526913C2 (en) 2003-01-02 2005-11-15 Arnex Navigation Systems Ab Procedure in the form of intelligent functions for vehicles and automatic loading machines regarding mapping of terrain and material volumes, obstacle detection and control of vehicles and work tools
US20040139265A1 (en) 2003-01-10 2004-07-15 Onset Corporation Interfacing a battery-powered device to a computer using a bus interface
US6826664B2 (en) 2003-01-10 2004-11-30 Onset Computer Corporation Interleaving synchronous data and asynchronous data in a single data storage file
JP2004245832A (en) 2003-01-22 2004-09-02 Pentax Corp Multiple beam scanning color inspection device
US7145926B2 (en) 2003-01-24 2006-12-05 Peter Vitruk RF excited gas laser
KR20040068691A (en) 2003-01-27 2004-08-02 삼성전자주식회사 Color illuminating system and projection type image display apparatus employing the same
DE10304188A1 (en) 2003-01-29 2004-08-19 Iqsun Gmbh Three-dimensional scanner has rotor consisting at least partly of transparent material and multiple parts and inclined rotatable mirror in form of mirroring on surface of rotor part
US7337344B2 (en) 2003-01-31 2008-02-26 Point Grey Research Inc. Methods and apparatus for synchronizing devices on different serial data buses
DE10305010B4 (en) 2003-02-07 2012-06-28 Robert Bosch Gmbh Apparatus and method for image formation
USD491210S1 (en) 2003-02-13 2004-06-08 Faro Technologies, Inc. Probe for a portable coordinate measurement machine
ITTO20030139A1 (en) 2003-02-27 2004-08-28 Comau Spa INDUSTRIAL ROBOT
JP2004257927A (en) 2003-02-27 2004-09-16 Pulstec Industrial Co Ltd Three-dimensional profile measuring system and method for measuring the same
JP4707306B2 (en) 2003-02-28 2011-06-22 株式会社小坂研究所 Articulated coordinate measuring device
DE102004010083B4 (en) 2003-03-22 2006-11-23 Hexagon Metrology Gmbh Probe of the measuring type for a coordinate measuring machine
US7106421B2 (en) 2003-04-04 2006-09-12 Omron Corporation Method of adjusting axial direction of monitoring apparatus
US7003892B2 (en) 2003-04-15 2006-02-28 Hexagon Metrology Ab Spatial coordinate-based method for identifying work pieces
KR20060015557A (en) 2003-04-28 2006-02-17 스티븐 제임스 크램톤 Cmm arm with exoskeleton
GB0309662D0 (en) 2003-04-28 2003-06-04 Crampton Stephen Robot CMM arm
US20040221790A1 (en) 2003-05-02 2004-11-11 Sinclair Kenneth H. Method and apparatus for optical odometry
JP4315327B2 (en) 2003-05-09 2009-08-19 極東産機株式会社 Laser distance measuring device and laser distance meter calibration method
JP4284644B2 (en) 2003-05-23 2009-06-24 財団法人生産技術研究奨励会 3D model construction system and 3D model construction program
US8123350B2 (en) 2003-06-03 2012-02-28 Hexagon Metrology Ab Computerized apparatus and method for applying graphics to surfaces
US9339266B2 (en) 2003-06-09 2016-05-17 St. Joseph Health System Method and apparatus for sharps protection
DE10326848B4 (en) 2003-06-14 2005-06-23 Leuze Lumiflex Gmbh + Co. Kg Optical sensor
US7460865B2 (en) 2003-06-18 2008-12-02 Fisher-Rosemount Systems, Inc. Self-configuring communication networks for use with process control systems
JP2005030937A (en) 2003-07-07 2005-02-03 Hitachi Metals Ltd Portable electronic apparatus
JP3875665B2 (en) 2003-07-31 2007-01-31 北陽電機株式会社 Scanning range sensor
US6764185B1 (en) 2003-08-07 2004-07-20 Mitsubishi Electric Research Laboratories, Inc. Projector as an input and output device
JP2005069700A (en) 2003-08-25 2005-03-17 East Japan Railway Co Three-dimensional data acquisition device
JP2005077379A (en) 2003-09-03 2005-03-24 Denso Corp Radar device
WO2005027039A2 (en) 2003-09-08 2005-03-24 Laser Projection Technologies, Inc. 3d projection with image recording
EP1682936B1 (en) 2003-09-10 2016-03-16 Nikon Metrology NV Laser projection systems and method
US7463368B2 (en) 2003-09-10 2008-12-09 Metris Canada Inc Laser projection system, intelligent data correction system and method
DE10348019A1 (en) 2003-10-15 2005-05-25 Henkel Kgaa Method for computer-aided simulation of a machine arrangement, simulation device, computer-readable storage medium and computer program element
US8417370B2 (en) 2003-10-17 2013-04-09 Hexagon Metrology Ab Apparatus and method for dimensional metrology
FR2861843B1 (en) 2003-10-29 2006-07-07 Romain Granger CONNECTING DEVICE ASSOCIATED WITH A THREE DIMENSIONAL MEASURING APPARATUS ARM WITH ARTICULATED ARMS
DE10350974B4 (en) 2003-10-30 2014-07-17 Hottinger Baldwin Messtechnik Gmbh Transducer element, device for detecting loads on fiber composite components and method of manufacturing the device
US7307701B2 (en) 2003-10-30 2007-12-11 Raytheon Company Method and apparatus for detecting a moving projectile
AT413453B (en) 2003-11-21 2006-03-15 Riegl Laser Measurement Sys DEVICE FOR RECORDING AN OBJECT ROOM
JP4344224B2 (en) 2003-11-21 2009-10-14 浜松ホトニクス株式会社 Optical mask and MOPA laser device
CN2665668Y (en) 2003-11-26 2004-12-22 万丙林 Utility type three-coordinates measuring machine
JP2005174887A (en) 2003-12-05 2005-06-30 Tse:Kk Sensor switch
DE10359415A1 (en) 2003-12-16 2005-07-14 Trimble Jena Gmbh Method for calibrating a surveying device
GB0329312D0 (en) 2003-12-18 2004-01-21 Univ Durham Mapping perceived depth to regions of interest in stereoscopic images
DE20320216U1 (en) 2003-12-29 2004-03-18 Iqsun Gmbh laser scanner
DE10361870B4 (en) 2003-12-29 2006-05-04 Faro Technologies Inc., Lake Mary Laser scanner and method for optically scanning and measuring an environment of the laser scanner
US7693325B2 (en) 2004-01-14 2010-04-06 Hexagon Metrology, Inc. Transprojection of geometry data
US7152456B2 (en) 2004-01-14 2006-12-26 Romer Incorporated Automated robotic measuring system
US6893133B1 (en) 2004-01-15 2005-05-17 Yin S. Tang Single panel color image projection system
JP2005215917A (en) 2004-01-29 2005-08-11 Hitachi Plant Eng & Constr Co Ltd Working drawing creation support method and replacement model creation method
FI123306B (en) 2004-01-30 2013-02-15 Wisematic Oy Robot tool system, and its control method, computer program and software product
WO2005075875A1 (en) 2004-02-07 2005-08-18 Chumdan Enpla Co., Ltd. Fluid coupling device
US7140213B2 (en) 2004-02-21 2006-11-28 Strattec Security Corporation Steering column lock apparatus and method
DE602005027180D1 (en) 2004-02-24 2011-05-12 Faro Tech Inc THROUGH A WINDOW COVERED RETROREFLECTOR
US7180072B2 (en) 2004-03-01 2007-02-20 Quantapoint, Inc. Method and apparatus for creating a registration network of a scene
JP2005257510A (en) 2004-03-12 2005-09-22 Alpine Electronics Inc Another car detection device and method
US7983835B2 (en) 2004-11-03 2011-07-19 Lagassey Paul J Modular intelligent transportation system
DE102004015111A1 (en) 2004-03-27 2005-10-20 Fraunhofer Ges Forschung Determining position, orientation of navigating system, e.g. robot, involves determining parameters of translation, rotation transformations of distance measurement curve to determine characteristic associations between transformed curves
DE102004015668B3 (en) 2004-03-31 2005-09-08 Hexagon Metrology Gmbh Apparatus for quick temperature measurement of a work piece on coordinate measurement apparatus with a measuring probe head and using a temperature sensor
FR2868349B1 (en) 2004-04-06 2006-06-23 Kreon Technologies Sarl MIXED, OPTICAL, AND MECHANICAL PROBE, AND METHOD OF RELOCATION THEREFOR
SE527421C2 (en) 2004-04-27 2006-02-28 Hexagon Metrology Ab Coordinate measuring machine composed of individually calibrated units
DE102004021892B4 (en) 2004-05-04 2010-02-04 Amatec Robotics Gmbh Robot-guided optical measuring arrangement and method and auxiliary device for measuring this measuring arrangement
EP1596160A1 (en) 2004-05-10 2005-11-16 Hexagon Metrology AB Method of inspecting workpieces on a measuring machine
JP4438053B2 (en) 2004-05-11 2010-03-24 キヤノン株式会社 Radiation imaging apparatus, image processing method, and computer program
US7199872B2 (en) 2004-05-18 2007-04-03 Leica Geosystems Ag Method and apparatus for ground-based surveying in sites having one or more unstable zone(s)
US6901673B1 (en) 2004-05-20 2005-06-07 The Boeing Company Tie-in device for the correlation of coordinate systems
US7508971B2 (en) 2004-05-28 2009-03-24 The Boeing Company Inspection system using coordinate measurement machine and associated method
DE102004028090A1 (en) 2004-06-09 2005-12-29 Robert Bosch Gmbh Method for calibrating a sensor for vehicle interior monitoring
JP4427389B2 (en) 2004-06-10 2010-03-03 株式会社トプコン Surveying instrument
EP1610091A1 (en) 2004-06-23 2005-12-28 Leica Geosystems AG Scanner system and method for surface acquisition
SE527248C2 (en) 2004-06-28 2006-01-31 Hexagon Metrology Ab Measuring probe for use in coordinate measuring machines
US7697748B2 (en) 2004-07-06 2010-04-13 Dimsdale Engineering, Llc Method and apparatus for high resolution 3D imaging as a function of camera position, camera trajectory and range
DE102004032822A1 (en) 2004-07-06 2006-03-23 Micro-Epsilon Messtechnik Gmbh & Co Kg Method for processing measured values
US20060017720A1 (en) 2004-07-15 2006-01-26 Li You F System and method for 3D measurement and surface reconstruction
US7630807B2 (en) 2004-07-15 2009-12-08 Hitachi, Ltd. Vehicle control system
EP1771701B1 (en) 2004-07-23 2013-03-06 Carl Zeiss Industrielle Messtechnik GmbH Sensor module for the scanning head of a tactile co-ordinate measuring device
JP2006038683A (en) 2004-07-28 2006-02-09 Sokkia Co Ltd Three-dimensional measuring instrument
JP4376150B2 (en) 2004-08-06 2009-12-02 株式会社デンソー Rotation angle detector
US7728833B2 (en) 2004-08-18 2010-06-01 Sarnoff Corporation Method for generating a three-dimensional model of a roof structure
US8930579B2 (en) 2004-09-13 2015-01-06 Keysight Technologies, Inc. System and method for synchronizing operations of a plurality of devices via messages over a communication network
US7940875B2 (en) 2004-09-13 2011-05-10 Agilent Technologies, Inc. System and method for coordinating the actions of a plurality of devices via scheduling the actions based on synchronized local clocks
US7561598B2 (en) 2004-09-13 2009-07-14 Agilent Technologies, Inc. Add-on module for synchronizing operations of a plurality of devices
US7360648B1 (en) 2004-09-15 2008-04-22 Tbac Investment Trust Gun protector
US7196509B2 (en) 2004-09-23 2007-03-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Thermopile temperature sensing with color contouring
CN101031817B (en) 2004-09-30 2011-02-09 Faro科技有限公司 Absolute distance meter that measures a moving retroreflector
JP4634770B2 (en) 2004-10-06 2011-02-16 株式会社東芝 X-ray CT apparatus and image reconstruction method
DE102004052075A1 (en) 2004-10-26 2006-04-27 Jungheinrich Ag Node for a bus network, bus network and method for configuring the network
GB0424729D0 (en) 2004-11-09 2004-12-08 Crampton Stephen Probe end module for articulated arms
US7268893B2 (en) 2004-11-12 2007-09-11 The Boeing Company Optical projection system
DE102005027208B4 (en) 2004-11-16 2011-11-10 Zoller & Fröhlich GmbH Method for controlling a laser scanner
EP1659417A1 (en) 2004-11-19 2006-05-24 Leica Geosystems AG Method for the determination of the orientation of an orientationindicator
US7319936B2 (en) 2004-11-22 2008-01-15 Teradyne, Inc. Instrument with interface for synchronization in automatic test equipment
GB2421383A (en) 2004-12-07 2006-06-21 Instro Prec Ltd Surface profile measurement
DE102004059468B3 (en) 2004-12-10 2006-06-14 Hexagon Metrology Gmbh A method of separating the mechanical connection between a stylus receptacle and a probe and means for severing the mechanical connection between a stylus receptacle and a probe
EP1672310B1 (en) 2004-12-15 2007-02-21 Hexagon Metrology GmbH Measuring head of the measuring type with vibration damping for coordinate measuring machine
US7701592B2 (en) 2004-12-17 2010-04-20 The Boeing Company Method and apparatus for combining a targetless optical measurement function and optical projection of information
DE102004061338B4 (en) 2004-12-20 2011-12-29 Steinbichler Optotechnik Gmbh Automatic component testing
US20060186301A1 (en) 2004-12-27 2006-08-24 Premier Mounts Mount and leveling system
US7510076B2 (en) 2005-01-05 2009-03-31 Panasonic Corporation Case
JP2006203404A (en) 2005-01-19 2006-08-03 Matsushita Electric Ind Co Ltd Device and method for radio communication
DE202005000983U1 (en) 2005-01-20 2005-03-24 Hexagon Metrology Gmbh Coordinate measurement machine has dovetail guide interface with electrical contact rows on circuit board
US7339783B2 (en) 2005-01-21 2008-03-04 Technology Advancement Group, Inc. System for protecting a portable computing device
US7464814B2 (en) 2005-01-28 2008-12-16 Carnevali Jeffrey D Dry box with movable protective cover
JP4468195B2 (en) 2005-01-31 2010-05-26 富士通株式会社 IDENTIFICATION UNIT AND PROCESSING DEVICE FOR PROCESSING DEVICE
US8085388B2 (en) 2005-02-01 2011-12-27 Laser Projection Technologies, Inc. Laser radar projection with object feature detection and ranging
WO2006104565A2 (en) 2005-02-01 2006-10-05 Laser Projection Technologies, Inc. Laser projection with object feature detection
US7477360B2 (en) 2005-02-11 2009-01-13 Deltasphere, Inc. Method and apparatus for displaying a 2D image data set combined with a 3D rangefinder data set
US7403268B2 (en) 2005-02-11 2008-07-22 Deltasphere, Inc. Method and apparatus for determining the geometric correspondence between multiple 3D rangefinder data sets
US7777761B2 (en) 2005-02-11 2010-08-17 Deltasphere, Inc. Method and apparatus for specifying and displaying measurements within a 3D rangefinder data set
US7974461B2 (en) 2005-02-11 2011-07-05 Deltasphere, Inc. Method and apparatus for displaying a calculated geometric entity within one or more 3D rangefinder data sets
JP2006226948A (en) 2005-02-21 2006-08-31 Tokyo Seimitsu Co Ltd Dimension measuring apparatus
AU2005200937A1 (en) 2005-03-02 2006-09-21 Maptek Pty Ltd Imaging system
JP4529018B2 (en) 2005-03-03 2010-08-25 Nok株式会社 Luminescent guidance sign
JP2006266821A (en) 2005-03-23 2006-10-05 Mitsubishi Electric Corp Radar apparatus
JP2006268260A (en) 2005-03-23 2006-10-05 Seiko Epson Corp Data transfer controller and electronic equipment
JP5016245B2 (en) 2005-03-29 2012-09-05 ライカ・ゲオジステームス・アクチェンゲゼルシャフト Measurement system for determining the six degrees of freedom of an object
US8945095B2 (en) 2005-03-30 2015-02-03 Intuitive Surgical Operations, Inc. Force and torque sensing for surgical instruments
CN101156044B (en) 2005-04-11 2011-02-02 Faro科技有限公司 Three-dimensional coordinate measuring device
US7400384B1 (en) 2005-04-12 2008-07-15 Lockheed Martin Corporation Method and apparatus for varying pixel spatial resolution for ladar systems
FR2884910B1 (en) 2005-04-20 2007-07-13 Romer Sa THREE-DIMENSIONAL MEASURING APPARATUS WITH ARTICULATED ARMS COMPRISING A PLURALITY OF JOINT AXES
JP4491687B2 (en) 2005-04-21 2010-06-30 パルステック工業株式会社 Coordinate transformation function correction method
DE102005018837A1 (en) 2005-04-22 2006-10-26 Robert Bosch Gmbh Method and device for synchronizing two bus systems and arrangement of two bus systems
US7986307B2 (en) 2005-04-22 2011-07-26 Microsoft Corporation Mechanism for allowing applications to filter out or opt into tablet input
US7860609B2 (en) 2005-05-06 2010-12-28 Fanuc Robotics America, Inc. Robot multi-arm control system
US7961717B2 (en) 2005-05-12 2011-06-14 Iposi, Inc. System and methods for IP and VoIP device location determination
EP1724609A1 (en) 2005-05-18 2006-11-22 Leica Geosystems AG Method of determining postion of receiver unit
JP2006344136A (en) 2005-06-10 2006-12-21 Fanuc Ltd Robot controller
CN101203730B (en) 2005-06-23 2010-08-25 Faro科技有限公司 Apparatus and method for relocating an articulating-arm coordinate measuring machine
FR2887482B1 (en) 2005-06-28 2008-08-08 Romer Sa DEVICE FOR MACHINING MECHANICAL PARTS USING A HOLLOW CYLINDRICAL TOOL
US7285793B2 (en) 2005-07-15 2007-10-23 Verisurf Software, Inc. Coordinate tracking system, apparatus and method of use
ATE504872T1 (en) 2005-07-26 2011-04-15 Macdonald Dettwiler & Associates Inc GUIDANCE, NAVIGATION AND CONTROL SYSTEM FOR A VEHICLE
GB2431723A (en) 2005-07-26 2007-05-02 Makex Ltd Coordinate measuring machine
SE529780C2 (en) 2005-08-04 2007-11-20 Hexagon Metrology Ab Measuring method and measuring device for use in measuring systems such as coordinate measuring machines
DE102005036929B4 (en) 2005-08-05 2010-06-17 Hexagon Metrology Gmbh probe magazine
GB0516276D0 (en) 2005-08-08 2005-09-14 Crampton Stephen Robust cmm arm with exoskeleton
US7299145B2 (en) 2005-08-16 2007-11-20 Metris N.V. Method for the automatic simultaneous synchronization, calibration and qualification of a non-contact probe
US20070050774A1 (en) 2005-08-24 2007-03-01 Eldson John C Time-aware systems
JP4842954B2 (en) 2005-08-25 2011-12-21 Thk株式会社 Exercise guidance device
US7298467B2 (en) 2005-09-01 2007-11-20 Romer Method of determining a horizontal profile line defined by walls that are essentially vertical, and an apparatus for implementing said method
US20070055806A1 (en) 2005-09-02 2007-03-08 John Bruce Stratton Adapting legacy instruments to an instrument system based on synchronized time
GB0518078D0 (en) 2005-09-06 2005-10-12 Renishaw Plc Signal transmission system
GB0518153D0 (en) 2005-09-07 2005-10-12 Rolls Royce Plc Apparatus for measuring wall thicknesses of objects
WO2007030026A1 (en) 2005-09-09 2007-03-15 Industrial Research Limited A 3d scene scanner and a position and orientation system
US7525276B2 (en) 2005-09-13 2009-04-28 Romer, Inc. Vehicle having an articulator
DE102005043931A1 (en) 2005-09-15 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. laser scanner
DE502005002357D1 (en) 2005-09-16 2008-02-07 Hexagon Metrology Gmbh Method for determining the squareness between the axes of a 3D coordinate measuring machine
US7551771B2 (en) 2005-09-20 2009-06-23 Deltasphere, Inc. Methods, systems, and computer program products for acquiring three-dimensional range information
JP6046325B2 (en) 2005-09-29 2016-12-14 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for the observation and analysis of one or more biological samples with progressively increased resolution
WO2011029140A1 (en) 2009-09-09 2011-03-17 Scanalyse Pty Ltd System and method for monitoring condition of surface subject to wear
AU2006306523B2 (en) 2005-10-21 2011-05-19 Deere & Company Systems and methods for switching between autonomous and manual operation of a vehicle
FR2892333B1 (en) 2005-10-21 2008-01-11 Romer Soc Par Actions Simplifi POSITIONAL POSITIONING SYSTEM OF A THREE-DIMENSIONAL MEASURING OR MACHINING MACHINE IN A FIXED REFERENTIAL
JP4375320B2 (en) 2005-10-27 2009-12-02 株式会社日立製作所 Mobile robot
WO2007051972A1 (en) 2005-10-31 2007-05-10 Qinetiq Limited Navigation system
TWI287103B (en) 2005-11-04 2007-09-21 Univ Nat Chiao Tung Embedded network controlled optical flow image positioning omni-direction motion system
DE102005056265A1 (en) 2005-11-14 2007-05-16 Pilz Gmbh & Co Kg Device and method for monitoring a room area, in particular for securing a danger zone of an automated system
SE531462C2 (en) 2005-11-17 2009-04-14 Hexagon Metrology Ab Adjusting device for a measuring head
US20070118269A1 (en) 2005-11-18 2007-05-24 Alex Gibson Engine control unit to valve control unit interface
US20070122250A1 (en) 2005-11-29 2007-05-31 Mullner Nandor Jr Double-headed screw
US7480037B2 (en) 2005-12-02 2009-01-20 The Boeing Company System for projecting flaws and inspection locations and associated method
US7389870B2 (en) 2005-12-05 2008-06-24 Robert Slappay Instrument caddy with anti-magnetic shield
US7191541B1 (en) 2005-12-06 2007-03-20 Hexagon Metrology Ab Temperature compensation system for a coordinate measuring machine
US20070282564A1 (en) 2005-12-06 2007-12-06 Microvision, Inc. Spatially aware mobile projection
US20110111849A1 (en) 2005-12-06 2011-05-12 Microvision, Inc. Spatially Aware Mobile Projection
US20090046140A1 (en) 2005-12-06 2009-02-19 Microvision, Inc. Mobile Virtual Reality Projector
US7447931B1 (en) 2005-12-09 2008-11-04 Rockwell Automation Technologies, Inc. Step time change compensation in an industrial automation network
US7762825B2 (en) 2005-12-20 2010-07-27 Intuitive Surgical Operations, Inc. Electro-mechanical interfaces to mount robotic surgical arms
DE102005060967B4 (en) 2005-12-20 2007-10-25 Technische Universität München Method and device for setting up a trajectory of a robot device
US7249421B2 (en) 2005-12-22 2007-07-31 Hexagon Metrology Ab Hysteresis compensation in a coordinate measurement machine
US20070147435A1 (en) 2005-12-23 2007-06-28 Bruce Hamilton Removing delay fluctuation in network time synchronization
US7602873B2 (en) 2005-12-23 2009-10-13 Agilent Technologies, Inc. Correcting time synchronization inaccuracy caused by asymmetric delay on a communication link
US20070147265A1 (en) 2005-12-23 2007-06-28 Eidson John C Correcting time synchronization inaccuracy caused by internal asymmetric delays in a device
US20100148013A1 (en) 2005-12-23 2010-06-17 General Electric Company System and method for optical locomotive decoupling detection
JP2007178943A (en) 2005-12-28 2007-07-12 Brother Ind Ltd Image display device
US20070153297A1 (en) 2006-01-04 2007-07-05 Lau Kam C Photogrammetric Targets
DE102006003362A1 (en) 2006-01-19 2007-07-26 Carl Zeiss Industrielle Messtechnik Gmbh Coordinate measuring machine and method for operating a coordinate measuring machine
US7995834B1 (en) 2006-01-20 2011-08-09 Nextengine, Inc. Multiple laser scanner
US20070171394A1 (en) 2006-01-25 2007-07-26 Daniel Steiner Flagstick with integrated reflectors for use with a laser range finder
US20070177016A1 (en) 2006-01-27 2007-08-02 Guangzhou Sat Infrared Technology Co., Ltd Upright infrared camera with foldable monitor
US7348822B2 (en) 2006-01-30 2008-03-25 Agilent Technologies, Inc. Precisely adjusting a local clock
US7564250B2 (en) 2006-01-31 2009-07-21 Onset Computer Corporation Pulsed methods and systems for measuring the resistance of polarizing materials
WO2007088570A2 (en) 2006-02-02 2007-08-09 Metris Ipr Nv Probe for gauging machines
US7610175B2 (en) 2006-02-06 2009-10-27 Agilent Technologies, Inc. Timestamping signal monitor device
US20070185682A1 (en) 2006-02-06 2007-08-09 Eidson John C Time-aware trigger distribution
US7994465B1 (en) 2006-02-06 2011-08-09 Microsoft Corporation Methods and devices for improved charge management for three-dimensional and color sensing
DE102006009422B4 (en) 2006-02-23 2011-08-18 Dreier Lasermesstechnik GmbH, 72160 Device for checking the accuracy of a circular path to be executed by a work spindle
USD551943S1 (en) 2006-02-28 2007-10-02 The Gates Corporation Dual-mass damper
FI119483B (en) 2006-03-07 2008-11-28 Saides Oy Method, system and computer software for locating a measuring device and measuring large objects
US20070217169A1 (en) 2006-03-15 2007-09-20 Yeap Boon L Clamshell housing for instrument modules
US20070217170A1 (en) 2006-03-15 2007-09-20 Yeap Boon L Multiple configuration stackable instrument modules
US7242590B1 (en) 2006-03-15 2007-07-10 Agilent Technologies, Inc. Electronic instrument system with multiple-configuration instrument modules
CN100363707C (en) 2006-03-17 2008-01-23 哈尔滨工业大学 Precisive determining system of mechanical arm location and gesture in space
US20070223477A1 (en) 2006-03-27 2007-09-27 Eidson John C Packet recognizer with hardware/software tradeoff
US7430070B2 (en) 2006-03-29 2008-09-30 The Boeing Company Method and system for correcting angular drift of laser radar systems
DE202006005643U1 (en) 2006-03-31 2006-07-06 Faro Technologies Inc., Lake Mary Device for three-dimensional detection of a spatial area
RU2412460C2 (en) 2006-04-10 2011-02-20 Электролюкс Хоум Продактс Корпорейшн Н.В. Household electric appliance incorporating fingerprint identification sensor
US20070248122A1 (en) 2006-04-19 2007-10-25 Bruce Hamilton Methods and systems relating to distributed time markers
DE602007010753D1 (en) 2006-04-21 2011-01-05 Faro Tech Inc CAMERA-DRIVEN DEVICE FOR TARGET MEASUREMENT AND TARGET TRACKING WITH SIX FREEDOM RATES AND ROTATABLE MIRROR
ATE441087T1 (en) 2006-04-27 2009-09-15 3D Scanners Ltd OPTICAL SCANNING PROBE
US7568293B2 (en) 2006-05-01 2009-08-04 Paul Ferrari Sealed battery for coordinate measurement machine
US7449876B2 (en) 2006-05-03 2008-11-11 Agilent Technologies, Inc. Swept-frequency measurements with improved speed using synthetic instruments
US20070258378A1 (en) 2006-05-05 2007-11-08 Bruce Hamilton Methods and systems relating to distributed time markers
DE102006024534A1 (en) 2006-05-05 2007-11-08 Zoller & Fröhlich GmbH Laser scanner has rotary head in which mirror is mounted, in section of housing which has triangular cross-section at right angles to its axis
US7454265B2 (en) 2006-05-10 2008-11-18 The Boeing Company Laser and Photogrammetry merged process
US7805854B2 (en) 2006-05-15 2010-10-05 Hexagon Metrology, Inc. Systems and methods for positioning and measuring objects using a CMM
DE202006020299U1 (en) 2006-05-16 2008-04-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. 3D measurement arrangement
DE102006023902A1 (en) 2006-05-22 2007-11-29 Weinhold, Karl, Dipl.-Ing. (FH) Device for connecting two flanged pipe or hose ends
WO2007144906A1 (en) 2006-06-12 2007-12-21 Hexagon Metrology S.P.A Coordinate measuring machine
US20080006083A1 (en) 2006-06-26 2008-01-10 Feinstein Adam J Apparatus and method of transporting and loading probe devices of a metrology instrument
US8060344B2 (en) 2006-06-28 2011-11-15 Sam Stathis Method and system for automatically performing a study of a multidimensional space
DE102006031580A1 (en) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Method and device for the three-dimensional detection of a spatial area
JP4992898B2 (en) 2006-07-03 2012-08-08 株式会社ニコン Laser scanning microscope and observation method
US7609020B2 (en) 2006-07-11 2009-10-27 Delaware Capital Formation, Inc. Geometric end effector system
DE102006035292B4 (en) 2006-07-26 2010-08-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and system for transferring position-related information from a virtual to an actual reality and for displaying this information in the actual reality and use of such a system
EP1890168A1 (en) 2006-08-18 2008-02-20 Leica Geosystems AG Laserscanner
US7589595B2 (en) 2006-08-18 2009-09-15 Agilent Technologies, Inc. Distributing frequency references
WO2008024297A2 (en) 2006-08-21 2008-02-28 Orbix Corporation Flange wrench
USD559657S1 (en) 2006-08-28 2008-01-15 Csav, Inc. Mounting device for article
FR2905235B1 (en) 2006-08-29 2009-03-13 Salomon Sa PROTECTIVE HELMET AND METHOD OF MANUFACTURING THE SAME
JP2010502953A (en) 2006-08-31 2010-01-28 ファロ テクノロジーズ インコーポレーテッド Intelligent probe
JP5073256B2 (en) 2006-09-22 2012-11-14 株式会社トプコン POSITION MEASUREMENT DEVICE, POSITION MEASUREMENT METHOD, AND POSITION MEASUREMENT PROGRAM
JP5466807B2 (en) 2006-09-26 2014-04-09 株式会社トプコン Laser scanner
US7908531B2 (en) 2006-09-29 2011-03-15 Teradyne, Inc. Networked test system
US8325767B2 (en) 2006-09-29 2012-12-04 Agilent Technologies, Inc. Enhancement of IEEE 1588 synchronization using out-of-band communication path
US7256899B1 (en) 2006-10-04 2007-08-14 Ivan Faul Wireless methods and systems for three-dimensional non-contact shape sensing
JP2008096123A (en) 2006-10-05 2008-04-24 Keyence Corp Optical displacement gauge, optical displacement measuring method, optical displacement measuring program, computer-readable memory medium and recording equipment
US7990397B2 (en) 2006-10-13 2011-08-02 Leica Geosystems Ag Image-mapped point cloud with ability to accurately represent point coordinates
JP4349405B2 (en) 2006-10-19 2009-10-21 パナソニック株式会社 Alkaline battery
GB0620944D0 (en) 2006-10-20 2006-11-29 Insensys Ltd Curvature measurement moving relative to pipe
US9747698B2 (en) 2006-10-21 2017-08-29 Sam Stathis System for accurately and precisely locating and marking a position in space using wireless communications and robotics
US20090194444A1 (en) 2006-10-24 2009-08-06 Darren Jones Electronics Device Case
JP4897430B2 (en) 2006-10-27 2012-03-14 三井造船株式会社 Image information acquisition device
WO2008052348A1 (en) 2006-11-02 2008-05-08 Northern Digital Inc. Integrated mapping system
US7743524B2 (en) 2006-11-20 2010-06-29 Hexagon Metrology Ab Coordinate measurement machine with improved joint
CN101542227A (en) 2006-11-30 2009-09-23 法罗技术股份有限公司 Portable coordinate measurement machine
ITRM20060651A1 (en) 2006-12-06 2008-06-07 Enea Ente Nuove Tec METHOD AND DEVICE THREE-DIMENSIONAL OPTICAL RADAR USING THREE RGB RANGES MODULATED BY LASER DIODES, IN PARTICULAR FOR METROLOGICAL AND FINE ARTS APPLICATIONS.
ITTO20060891A1 (en) 2006-12-15 2008-06-16 Hexagon Metrology Spa MEASURING MACHINE A COORDINATED WITH A WEIGHTING DEVICE FOR A MOBILE ORGAN IN VERTICAL DIRECTION
SE530700C2 (en) 2006-12-21 2008-08-19 Hexagon Metrology Ab Method and apparatus for compensating geometric errors in processing machines
WO2008080142A1 (en) 2006-12-22 2008-07-03 Romer, Inc. Improved joint axis for coordinate measurement machine
US7721396B2 (en) 2007-01-09 2010-05-25 Stable Solutions Llc Coupling apparatus with accessory attachment
DE502007002254D1 (en) 2007-01-31 2010-01-21 Brainlab Ag Medical laser target marker and its use
US8784425B2 (en) 2007-02-28 2014-07-22 Smith & Nephew, Inc. Systems and methods for identifying landmarks on orthopedic implants
GB2447258A (en) 2007-03-05 2008-09-10 Geospatial Res Ltd Camera mount for colour enhanced laser imagery
US7675257B2 (en) 2007-03-09 2010-03-09 Regal Beloit Corporation Methods and systems for recording operating information of an electronically commutated motor
US20080228331A1 (en) 2007-03-14 2008-09-18 Boeing Company A Corporation Of Delaware System and method for measuring parameters at aircraft loci
US20080232269A1 (en) 2007-03-23 2008-09-25 Tatman Lance A Data collection system and method for ip networks
DE602007009188D1 (en) 2007-03-26 2010-10-28 Hexagon Metrology Ab Method of using a multi-axis positioning and measuring system
CN100519099C (en) 2007-03-29 2009-07-29 廊坊智通机器人系统有限公司 Active-passive joint-arm type measuring robot
US7801258B2 (en) 2007-04-02 2010-09-21 National Instruments Corporation Aligning timebases to share synchronized periodic signals
EP1978328B1 (en) 2007-04-03 2015-02-18 Hexagon Metrology AB Oscillating scanning probe with constant contact force
US20080245452A1 (en) 2007-04-03 2008-10-09 David Law Weatherproofing Apparatus and Method for Cameras and Video Recorders
EP2132523B1 (en) 2007-04-03 2019-11-13 Hexagon Technology Center GmbH Method and device for exact measurement of objects
US9858712B2 (en) 2007-04-09 2018-01-02 Sam Stathis System and method capable of navigating and/or mapping any multi-dimensional space
DE602007005778D1 (en) 2007-04-18 2010-05-20 Hexagon Metrology Ab Probe with constant grid speed
US7707000B2 (en) 2007-04-19 2010-04-27 Agilent Technologies, Inc. Test instrument and system responsive to execution time data
GB0708319D0 (en) 2007-04-30 2007-06-06 Renishaw Plc A storage apparatus for a tool
EP1988357B1 (en) 2007-05-04 2018-10-17 Hexagon Technology Center GmbH Coordinate measuring method and device
US20080298254A1 (en) 2007-06-01 2008-12-04 Eidson John C Time-Slotted Protocol With Arming
JP5247068B2 (en) 2007-06-05 2013-07-24 三菱電機株式会社 Radar equipment
WO2008154408A1 (en) 2007-06-06 2008-12-18 Tobey Wayland E Modular hybrid snake arm
US9442158B2 (en) 2007-06-13 2016-09-13 Keysight Technologies, Inc. Method and a system for determining between devices a reference time for execution of a task thereon
JP5376777B2 (en) 2007-06-13 2013-12-25 三菱電機株式会社 Radar equipment
DE502007001251D1 (en) 2007-06-14 2009-09-17 Trumpf Laser Marking Systems A Gas-cooled laser device for highly compact laser beam sources
EP2160565A1 (en) 2007-06-28 2010-03-10 Hexagon Metrology S.p.A. Method for determining dynamic errors in a measuring machine
US7546689B2 (en) 2007-07-09 2009-06-16 Hexagon Metrology Ab Joint for coordinate measurement device
JP5037248B2 (en) 2007-07-17 2012-09-26 株式会社日立製作所 Information collection system and information collection robot
EP2171394B2 (en) 2007-07-24 2020-07-15 Hexagon Metrology S.p.A. Method for compensating measurement errors caused by deformations of a measuring machine bed under the load of a workpiece and measuring machine operating according to said method
JP2009053184A (en) 2007-07-30 2009-03-12 Hexagon Metrology Kk Rotary unit for noncontact sensor and rotary device for noncontact sensor
DE102007037162A1 (en) 2007-08-07 2009-02-19 Gottfried Wilhelm Leibniz Universität Hannover Artificial and natural objects detection method for vehicle, involves converting measuring information in common standard time, synchronizing information on trigger points, and orienting information on clock signal
EP2023077B1 (en) 2007-08-10 2015-06-10 Leica Geosystems AG Method and measuring system for contactless coordinate measurement of the surface of an object
US8036452B2 (en) 2007-08-10 2011-10-11 Leica Geosystems Ag Method and measurement system for contactless coordinate measurement on an object surface
EP2183544B1 (en) 2007-08-17 2015-07-15 Renishaw PLC Non-contact measurement apparatus and method
GB2452033A (en) 2007-08-18 2009-02-25 Internat Metrology Systems Ltd Portable multi-dimensional coordinate measuring machine
CA2597891A1 (en) 2007-08-20 2009-02-20 Marc Miousset Multi-beam optical probe and system for dimensional measurement
JP5598831B2 (en) 2007-09-05 2014-10-01 北陽電機株式会社 Scanning distance measuring device
US7798453B2 (en) 2007-09-07 2010-09-21 Quickset International, Inc. Boresight apparatus and method of use
CN101861510B (en) 2007-09-14 2014-05-14 海克斯康测量技术有限公司 Method of aligning arm reference systems of multiple- arm measuring machine
EP2037214A1 (en) 2007-09-14 2009-03-18 Leica Geosystems AG Method and measuring device for measuring surfaces
USD607350S1 (en) 2007-09-24 2010-01-05 Faro Technologies, Inc Portable coordinate measurement machine
US20090089004A1 (en) 2007-09-27 2009-04-02 Dietrich Werner Vook Time Learning Test System
US20090089623A1 (en) 2007-09-28 2009-04-02 Agilent Technologies, Inc Event timing analyzer for a system of instruments and method of analyzing event timing in a system of intruments
US7908360B2 (en) 2007-09-28 2011-03-15 Rockwell Automation Technologies, Inc. Correlation of non-times series events in industrial systems
US7774949B2 (en) 2007-09-28 2010-08-17 Hexagon Metrology Ab Coordinate measurement machine
US20090089078A1 (en) 2007-09-28 2009-04-02 Great-Circle Technologies, Inc. Bundling of automated work flow
US7712224B2 (en) 2007-10-03 2010-05-11 Hexagon Metrology Ab Validating the error map of CMM using calibrated probe
EP2212827B1 (en) 2007-10-16 2019-09-11 Accu-Sort System, Inc. Dimensioning and barcode reading system
EP2053353A1 (en) 2007-10-26 2009-04-29 Leica Geosystems AG Distance measuring method and corresponding device
US8041979B2 (en) 2007-10-29 2011-10-18 Agilent Technologies, Inc. Method and a system for synchronising respective state transitions in a group of devices
US8854924B2 (en) 2007-10-29 2014-10-07 Agilent Technologies, Inc. Method, a device and a system for executing an action at a predetermined time
US20090113183A1 (en) 2007-10-31 2009-04-30 Agilent Technologies, Inc. Method of controlling a device and a device controlled thereby
EP2056063A1 (en) 2007-11-05 2009-05-06 Leica Geosystems AG Measuring head system for a coordinate measuring machine and method for optical measuring of displacement of a sensor element of the measuring head system
US8000251B2 (en) 2007-11-14 2011-08-16 Cisco Technology, Inc. Instrumenting packet flows
US20090125196A1 (en) 2007-11-14 2009-05-14 Honeywell International, Inc. Apparatus and method for monitoring the stability of a construction machine
US8051710B2 (en) 2007-11-28 2011-11-08 General Electric Company Method and apparatus for balancing a rotor
EP2068114A1 (en) 2007-12-04 2009-06-10 Metris IPR N.V. Object measuring machine with optimised calibration system
EP2068067A1 (en) 2007-12-04 2009-06-10 Metris IPR N.V. Supporting tripod for articulated arm measuring machines
JP5348449B2 (en) 2007-12-25 2013-11-20 カシオ計算機株式会社 Distance measuring device and projector
US7921575B2 (en) 2007-12-27 2011-04-12 General Electric Company Method and system for integrating ultrasound inspection (UT) with a coordinate measuring machine (CMM)
EP2075096A1 (en) 2007-12-27 2009-07-01 Leica Geosystems AG Method and system for extremely precise positioning of at least one object in the end position of a space
US8065861B2 (en) 2008-01-07 2011-11-29 Newell Window Furnishings, Inc. Blind packaging
CA2649916A1 (en) 2008-01-09 2009-07-09 Tiltan Systems Engineering Ltd. Apparatus and method for automatic airborne lidar data processing and mapping using data obtained thereby
DE102008014274B4 (en) 2008-02-01 2020-07-09 Faro Technologies, Inc. Method and device for determining a distance to an object
DE102008014275B4 (en) 2008-02-01 2017-04-13 Faro Technologies, Inc. Device for determining a distance to an object
US8152071B2 (en) 2008-02-08 2012-04-10 Motion Computing, Inc. Multi-purpose portable computer with integrated devices
EP2247923B1 (en) 2008-02-29 2019-06-12 Trimble AB Automated calibration of a surveying instrument
US20090322859A1 (en) 2008-03-20 2009-12-31 Shelton Damion M Method and System for 3D Imaging Using a Spacetime Coded Laser Projection System
JP2009229255A (en) 2008-03-24 2009-10-08 Hokuyo Automatic Co Scanning range finder
DE102008015536B4 (en) 2008-03-25 2017-04-06 Mtu Friedrichshafen Gmbh Method for address assignment to injectors
US8122610B2 (en) 2008-03-28 2012-02-28 Hexagon Metrology, Inc. Systems and methods for improved coordination acquisition member comprising calibration information
US7779548B2 (en) 2008-03-28 2010-08-24 Hexagon Metrology, Inc. Coordinate measuring machine with rotatable grip
JP5173536B2 (en) 2008-04-02 2013-04-03 シャープ株式会社 Imaging apparatus and optical axis control method
EP2108917B1 (en) 2008-04-07 2012-10-03 Leica Geosystems AG Articulated arm coordinate measuring machine
USD599226S1 (en) 2008-04-11 2009-09-01 Hexagon Metrology, Inc. Portable coordinate measurement machine
JP5409771B2 (en) 2008-04-18 2014-02-05 スリーディー スキャナーズ リミテッド Method and computer program for improving object dimension acquisition
US8520930B2 (en) 2008-04-18 2013-08-27 3D Scanners Ltd. Method and computer program for improving the dimensional acquisition of an object
CN102016498B (en) 2008-04-22 2012-11-14 莱卡地球系统公开股份有限公司 Measuring method for an articulated-arm coordinate measuring machine
EP2112461B1 (en) 2008-04-24 2012-10-24 Hexagon Metrology AB Self-powered measuring probe
US9041915B2 (en) 2008-05-09 2015-05-26 Ball Aerospace & Technologies Corp. Systems and methods of scene and action capture using imaging system incorporating 3D LIDAR
US20090299689A1 (en) 2008-06-02 2009-12-03 David Robert Stubben Portable Leveling Table
EP2282873B1 (en) 2008-06-09 2013-04-10 ABB Technology Ltd A method and a system for facilitating calibration of an off-line programmed robot cell
US7752003B2 (en) 2008-06-27 2010-07-06 Hexagon Metrology, Inc. Hysteresis compensation in a coordinate measurement machine
JP5153483B2 (en) 2008-06-30 2013-02-27 三菱電機株式会社 Laser light source device
US7765707B2 (en) 2008-07-10 2010-08-03 Nikon Metrology Nv Connection device for articulated arm measuring machines
FR2935043B1 (en) 2008-08-14 2011-03-04 Hexagon Metrology Sas THREE-DIMENSIONAL MEASURING APPARATUS WITH ARTICULATED ARMS COMPRISING A PLURALITY OF JOINT AXES
US8206765B2 (en) 2008-08-15 2012-06-26 Frito-Lay Trading Company Europe Gmbh Preparation of individually coated edible core products
DE102008039838B4 (en) 2008-08-27 2011-09-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for scanning the three-dimensional surface of an object by means of a light beam scanner
CN102007378B (en) 2008-08-28 2013-10-16 法罗技术股份有限公司 Indexed optical encoder, method for indexing an optical encoder, and method for dynamically adjusting gain and offset in an optical encoder
CN201266071Y (en) 2008-09-01 2009-07-01 爱佩仪中测(成都)精密仪器有限公司 Automatic tracking balancing device of column coordinate measuring machine
EP2344303B1 (en) 2008-10-09 2012-12-05 Leica Geosystems AG Device for marking or processing a surface
US7908757B2 (en) 2008-10-16 2011-03-22 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
US8031332B2 (en) 2008-11-20 2011-10-04 Trimble Navigation Limited Layout method
US7809518B2 (en) 2008-12-17 2010-10-05 Agilent Technologies, Inc. Method of calibrating an instrument, a self-calibrating instrument and a system including the instrument
DE102008062763B3 (en) 2008-12-18 2010-07-15 Hexagon Metrology Gmbh Coordinate measuring device has drive for vertically mobile component of coordinate measuring device, where drive moving counterweight mass is formed as drive rigid in comparison with traction mechanism
JP5688876B2 (en) 2008-12-25 2015-03-25 株式会社トプコン Calibration method for laser scanner measurement system
JP5478902B2 (en) 2009-01-20 2014-04-23 スタンレー電気株式会社 Optical distance sensor
EP2219010A1 (en) 2009-02-11 2010-08-18 Leica Geosystems AG Coordinate measuring machine (CMM) and method of compensating errors in a CMM
US8861833B2 (en) 2009-02-18 2014-10-14 International Press Of Boston, Inc. Simultaneous three-dimensional geometry and color texture acquisition using single color camera
KR101321036B1 (en) 2009-03-18 2013-10-22 노키아 지멘스 네트웍스 오와이 A method of scheduling data
WO2010108089A2 (en) 2009-03-19 2010-09-23 Perceptron, Inc. Display device for measurement tool
DE102009015920B4 (en) 2009-03-25 2014-11-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102009015921A1 (en) 2009-03-25 2010-09-30 Faro Technologies, Inc., Lake Mary Method for optically scanning and measuring an environment
DE102009015922B4 (en) 2009-03-25 2016-12-15 Faro Technologies, Inc. Method for optically scanning and measuring a scene
DE102009001894B4 (en) 2009-03-26 2018-06-28 pmdtechnologies ag Robot system with 3D camera
US8082673B2 (en) 2009-11-06 2011-12-27 Hexagon Metrology Ab Systems and methods for control and calibration of a CMM
US8339616B2 (en) 2009-03-31 2012-12-25 Micrometric Vision Technologies Method and apparatus for high-speed unconstrained three-dimensional digitalization
GB0908200D0 (en) 2009-05-13 2009-06-24 Red Cloud Media Ltd Method of simulation of a real physical environment
EP2259013B1 (en) 2009-05-25 2013-11-20 Siemens Aktiengesellschaft Topographical measurement of an object
DE102009025201B3 (en) 2009-06-12 2011-01-27 Konrad Maierhofer projection device
US8772719B2 (en) 2009-06-23 2014-07-08 Leica Geosystems Ag Coordinate measuring device
CN102472662B (en) 2009-06-30 2014-06-18 六边形度量衡股份公司 Coordinate measurement machine with vibration detection
US20110000095A1 (en) 2009-07-02 2011-01-06 Robert Bruce Carlson High Precision Hand-held Engineering Survey/Position Data Collector
EP2270425A1 (en) 2009-07-03 2011-01-05 Leica Geosystems AG Coordinate measuring machine (CMM) and method of compensating errors in a CMM
US8797552B2 (en) 2009-07-03 2014-08-05 Leica Geosystems Ag Apparatus for generating three-dimensional image of object
DE102009032262A1 (en) 2009-07-08 2011-01-13 Steinbichler Optotechnik Gmbh Method for determining the 3D coordinates of an object
DE102009035336B3 (en) 2009-07-22 2010-11-18 Faro Technologies, Inc., Lake Mary Device for optical scanning and measuring of environment, has optical measuring device for collection of ways as ensemble between different centers returning from laser scanner
US8118438B2 (en) 2009-07-24 2012-02-21 Optimet, Optical Metrology Ltd. Method and apparatus for real-time projection onto an object of data obtained from 3-D measurement
DE102009038964A1 (en) 2009-08-20 2011-02-24 Faro Technologies, Inc., Lake Mary Method for optically scanning and measuring an environment
AT508635B1 (en) * 2009-08-28 2011-05-15 Riegl Laser Measurement Sys LASER SCANNING DEVICE FOR MOUNTING ON A VEHICLE WITH PENDANT COUPLING
AT508634B1 (en) 2009-08-28 2011-05-15 Riegl Laser Measurement Sys LASER CHANNEL FOR ASSEMBLING ON THE ROOF RACK OF A VEHICLE
JP2011066211A (en) 2009-09-17 2011-03-31 Mitsubishi Heavy Ind Ltd Object hanging device
US8181760B2 (en) 2009-10-28 2012-05-22 Nam Tim Trieu Equipment container with integrated stand
US8610761B2 (en) 2009-11-09 2013-12-17 Prohectionworks, Inc. Systems and methods for optically projecting three-dimensional text, images and/or symbols onto three-dimensional objects
US8606540B2 (en) 2009-11-10 2013-12-10 Projectionworks, Inc. Hole measurement apparatuses
US8352212B2 (en) 2009-11-18 2013-01-08 Hexagon Metrology, Inc. Manipulable aid for dimensional metrology
DE102009055989B4 (en) 2009-11-20 2017-02-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
DE102009055988B3 (en) 2009-11-20 2011-03-17 Faro Technologies, Inc., Lake Mary Device, particularly laser scanner, for optical scanning and measuring surrounding area, has light transmitter that transmits transmission light ray by rotor mirror
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
DE102009057101A1 (en) 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Device for optically scanning and measuring an environment
JP5460341B2 (en) 2010-01-06 2014-04-02 キヤノン株式会社 Three-dimensional measuring apparatus and control method thereof
US8630314B2 (en) 2010-01-11 2014-01-14 Faro Technologies, Inc. Method and apparatus for synchronizing measurements taken by multiple metrology devices
US20130222816A1 (en) 2010-01-20 2013-08-29 Faro Technologies, Inc. Coordinate measuring machine having an illuminated probe end and method of operation
US8677643B2 (en) 2010-01-20 2014-03-25 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8832954B2 (en) 2010-01-20 2014-09-16 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
DE112011100292B4 (en) 2010-01-20 2016-11-24 Faro Technologies Inc. Display for a coordinate measuring machine
CN102782442A (en) 2010-01-20 2012-11-14 法罗技术股份有限公司 Coordinate measuring machine having an illuminated probe end and method of operation
US8875409B2 (en) 2010-01-20 2014-11-04 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8683709B2 (en) 2010-01-20 2014-04-01 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with multi-bus arm technology
US8265341B2 (en) 2010-01-25 2012-09-11 Microsoft Corporation Voice-body identity correlation
GB2489179B (en) 2010-02-05 2017-08-02 Trimble Navigation Ltd Systems and methods for processing mapping and modeling data
USD643319S1 (en) 2010-03-29 2011-08-16 Hexagon Metrology Ab Portable coordinate measurement machine
JP5469505B2 (en) * 2010-03-30 2014-04-16 株式会社フジタ Measuring device
DK2568870T3 (en) 2010-03-30 2018-08-13 3Shape As SCREENING SPACES WITH LIMITED AVAILABILITY
DE102010020925B4 (en) * 2010-05-10 2014-02-27 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9014848B2 (en) 2010-05-20 2015-04-21 Irobot Corporation Mobile robot system
US8391565B2 (en) 2010-05-24 2013-03-05 Board Of Trustees Of The University Of Arkansas System and method of determining nitrogen levels from a digital image
EP2400261A1 (en) 2010-06-21 2011-12-28 Leica Geosystems AG Optical measurement method and system for determining 3D coordination in a measuring object surface
DE102010032723B3 (en) 2010-07-26 2011-11-24 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032725B4 (en) 2010-07-26 2012-04-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032726B3 (en) 2010-07-26 2011-11-24 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032724A1 (en) 2010-07-26 2012-01-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010033561B3 (en) * 2010-07-29 2011-12-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
FR2963436B1 (en) 2010-07-29 2012-09-07 Sagem Defense Securite METHOD FOR DETERMINING A VOLUME OF PROTECTION IN THE CASE OF TWO SIMULTANEOUS SATELLITE FAILURES
US9599715B2 (en) 2010-08-03 2017-03-21 Faro Technologies, Inc. Scanner display
WO2012037157A2 (en) 2010-09-13 2012-03-22 Alt Software (Us) Llc System and method for displaying data having spatial coordinates
EP2433716A1 (en) 2010-09-22 2012-03-28 Hexagon Technology Center GmbH Surface spraying device with a nozzle control mechanism and a corresponding method
CN103069253B (en) 2010-10-25 2015-09-09 法罗技术股份有限公司 The automatic preheating of laser tracker and stability inspection
USD662427S1 (en) 2010-11-16 2012-06-26 Faro Technologies, Inc. Measurement device
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US8928760B2 (en) 2010-12-07 2015-01-06 Verizon Patent And Licensing Inc. Receiving content and approving content for transmission
DE102010061382B4 (en) 2010-12-21 2019-02-14 Sick Ag Opto-electronic sensor and method for detection and distance determination of objects
US8718837B2 (en) 2011-01-28 2014-05-06 Intouch Technologies Interfacing with a mobile telepresence robot
US8659748B2 (en) 2011-02-15 2014-02-25 Optical Air Data Systems, Llc Scanning non-scanning LIDAR
JP5581525B2 (en) 2011-05-19 2014-09-03 株式会社ニューマシン Pipe fitting
US8925290B2 (en) 2011-09-08 2015-01-06 Taiwan Semiconductor Manufacturing Company, Ltd. Mask storage device for mask haze prevention and methods thereof
GB201116961D0 (en) 2011-09-30 2011-11-16 Bae Systems Plc Fast calibration for lidars
DE202011051975U1 (en) 2011-11-15 2013-02-20 Sick Ag Opto-electronic safety sensor with radio-based wireless interface
JP2013117417A (en) 2011-12-02 2013-06-13 Ntn Corp Measurement auxiliary tool, laser tracker, and diameter measurement method using the same
WO2013101620A1 (en) 2011-12-28 2013-07-04 Faro Technologies, Inc. Line scanner using a low coherence light source
US20130176453A1 (en) 2012-01-06 2013-07-11 Nokia Corporation Methods, apparatuses and computer program products for facilitating image registration based in part on using sensor data
GB2515922A (en) 2012-01-27 2015-01-07 Faro Tech Inc Inspection method with barcode identification
CN104350356A (en) 2012-06-11 2015-02-11 法罗技术股份有限公司 Coordinate measurement machines with removable accessories
EP2677270B1 (en) 2012-06-22 2015-01-28 Hexagon Technology Center GmbH Articulated Arm CMM
DE102012107544B3 (en) 2012-08-17 2013-05-23 Faro Technologies, Inc. Optical scanning device i.e. laser scanner, for evaluating environment, has planetary gears driven by motor over vertical motor shaft and rotating measuring head relative to foot, where motor shaft is arranged coaxial to vertical axle
DE112013004369T5 (en) 2012-09-06 2015-06-11 Faro Technologies, Inc. Laser scanner with additional detection device
JP2015535337A (en) 2012-09-14 2015-12-10 ファロ テクノロジーズ インコーポレーテッド Laser scanner with dynamic adjustment of angular scan speed
DE102012109481A1 (en) 2012-10-05 2014-04-10 Faro Technologies, Inc. Device for optically scanning and measuring an environment
GB201303076D0 (en) 2013-02-21 2013-04-10 Isis Innovation Generation of 3D models of an environment
US20140300906A1 (en) 2013-03-13 2014-10-09 Faro Technologies, Inc. Laser scanner with cellular transceiver communication
JP5827264B2 (en) 2013-04-15 2015-12-02 株式会社クボタ Combine
DE102013110580A1 (en) 2013-09-24 2015-03-26 Faro Technologies, Inc. Method for optically scanning and measuring a scene
DE102013110581B4 (en) 2013-09-24 2018-10-11 Faro Technologies, Inc. Method for optically scanning and measuring an environment and device therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413907A (en) * 1980-11-07 1983-11-08 Robert F. Deike Remote control surveying
US4544236A (en) * 1981-11-02 1985-10-01 Olympus Optical Co., Ltd. Turret
US5745050A (en) * 1994-10-21 1998-04-28 Mitsubishi Denki Kabushiki Kaisha Obstacle detection apparatus for vehicles
US6922252B2 (en) * 2002-09-19 2005-07-26 Process Matrix, Llc Automated positioning method for contouring measurements using a mobile range measurement system
US7403269B2 (en) * 2004-02-04 2008-07-22 Nidec Corporation Scanning rangefinder
US7477359B2 (en) * 2005-02-11 2009-01-13 Deltasphere, Inc. Method and apparatus for making and displaying measurements based upon multiple 3D rangefinder data sets
US8346480B2 (en) * 2006-03-16 2013-01-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
US20080075326A1 (en) * 2006-09-25 2008-03-27 Kabushiki Kaisha Topcon Surveying method, surveying system and surveying data processing program
US9001312B2 (en) * 2010-03-23 2015-04-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Light scanning apparatus and separation distance measurement apparatus
US8619265B2 (en) * 2011-03-14 2013-12-31 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US11035955B2 (en) 2012-10-05 2021-06-15 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
USD823306S1 (en) * 2016-12-01 2018-07-17 Riegl Laser Measurement Systems Gmbh Laser scanner
CN108171733A (en) * 2016-12-07 2018-06-15 赫克斯冈技术中心 Scanner vis
US10535148B2 (en) * 2016-12-07 2020-01-14 Hexagon Technology Center Gmbh Scanner VIS
CN109520531A (en) * 2018-11-14 2019-03-26 深圳市铭利达精密机械有限公司 A kind of super more threaded hole Laser scanning inspection devices
US11662468B1 (en) 2022-01-21 2023-05-30 AGI Suretrack LLC LiDAR scanning system and methods
US11668433B1 (en) * 2022-01-21 2023-06-06 AGI Suretrack LLC Locking system for aligning a device
WO2023140885A1 (en) * 2022-01-21 2023-07-27 AGI Suretrack LLC Lidar scanning system and methods

Also Published As

Publication number Publication date
DE102012100609A1 (en) 2013-07-25
US9417056B2 (en) 2016-08-16
GB2512515A (en) 2014-10-01
GB2512515B (en) 2019-04-10
GB201410276D0 (en) 2014-07-23
CN103857984A (en) 2014-06-11
WO2013110402A1 (en) 2013-08-01
CN103857984B (en) 2016-08-24
JP2015510114A (en) 2015-04-02
JP6027141B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US9417056B2 (en) Device for optically scanning and measuring an environment
US8830485B2 (en) Device for optically scanning and measuring an environment
EP3399222B1 (en) Quick release adapter for devices
US8699007B2 (en) Device for optically scanning and measuring an environment
US8730477B2 (en) Device for optically scanning and measuring an environment
US8705012B2 (en) Device for optically scanning and measuring an environment
US20130201487A1 (en) Device for optically scanning and measuring an environment
CN105807284B (en) Optical scanner range unit
CN104132639B (en) A kind of micro-optical scanning range unit and method
EP3290986A2 (en) Multi-channel lidar scanner optical system using mirror rotation manner
KR20140091342A (en) Panoramic scan ladar and panoramic laser scanning method
CN109507679A (en) A kind of laser scanner and laser radar system
CA2780162A1 (en) Compact multispectral scanning system
US20180100615A1 (en) Tripod head
US10605898B2 (en) 3D measurement device with accessory interface
KR20160002137A (en) Polygon mirror assembly and detection apparatus using polygon mirror assembly
US10422864B2 (en) 3D measurement device with rotor in a nested configuration
US10852534B2 (en) Mirror assemblies for imaging devices
KR20210037951A (en) Lidar three-dimension scanning apparatus
CN209433004U (en) A kind of laser scanner and laser radar system
KR20200019990A (en) Lidar unit with mounting element for attaching transmitter module and receiver module
KR102212895B1 (en) A light emitting module and a scanning LiDAR having the same
WO2017130944A1 (en) Optical scanner
JP7014058B2 (en) Light emitting / receiving unit and optical scanning device
WO2022191174A1 (en) Sensor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: FARO TECHNOLOGIES, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEUNDORF, CHRISTOPH;BECKER, REINHARD;REEL/FRAME:033420/0968

Effective date: 20140730

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8