US20150001993A1 - Energy harvester using mass and mobile device including the energy harvester - Google Patents

Energy harvester using mass and mobile device including the energy harvester Download PDF

Info

Publication number
US20150001993A1
US20150001993A1 US14/080,318 US201314080318A US2015001993A1 US 20150001993 A1 US20150001993 A1 US 20150001993A1 US 201314080318 A US201314080318 A US 201314080318A US 2015001993 A1 US2015001993 A1 US 2015001993A1
Authority
US
United States
Prior art keywords
energy
substrate
electrode
mobile device
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/080,318
Other versions
US9444031B2 (en
Inventor
Young-Jun Park
Jin S. Heo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEO, JIN S., PARK, YOUNG-JUN
Priority to KR1020140061166A priority Critical patent/KR102302731B1/en
Priority to US14/540,622 priority patent/US9837933B2/en
Publication of US20150001993A1 publication Critical patent/US20150001993A1/en
Application granted granted Critical
Publication of US9444031B2 publication Critical patent/US9444031B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H01L41/113
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • Apparatuses consistent with exemplary embodiments relate to energy harvesters using a mass, and mobile devices including the energy harvesters.
  • energy harvesters using a mass and mobile devices including the energy harvesters.
  • an energy harvester includes: first and second substrates spaced apart from each other, at least one of the first and second substrates being configure to be connected to a mass; first and second electrodes provided on the first and second substrates, respectively; and an energy generator provided between the first and second electrodes, wherein the energy generator generates electric energy upon a relative movement between the first and second substrates caused by a movement of the mass.
  • the first and second substrates may have a band-type structure, a flat-plate structure, or a core-shell structure.
  • the energy generator may include at least one of a piezoelectric generator and a triboelectric generator.
  • the energy generator may include a plurality of piezoelectric nanowires provided between the first and second electrodes.
  • the energy generator may further include a dielectric film provided between the second electrode and the piezoelectric nanowires.
  • the energy generator may include a piezoelectric thin-film layer provided between the first and second electrodes.
  • the energy generator may include: a first triboelectric layer provided on the first electrode and including a first dielectric or a metal; and a second triboelectric layer provided on the second electrode and including a second dielectric that is different from the first dielectric.
  • a plurality of first protrusions may be formed on a surface of the first triboelectric layer, and a plurality of second protrusions may be formed on a surface of the second triboelectric layer.
  • the first triboelectric layer may include a plurality of first wires provided on the first electrode
  • the second triboelectric layer may include a plurality of second wires provided on the second electrode.
  • At least one spacer may be provided between the first and second substrates to maintain a distance between the first and second substrates.
  • a mobile device includes: a mobile device body; and an energy harvester connected to the mobile device body, wherein the energy harvester generates electric energy based on a movement of the mobile device body, wherein the energy harvester includes: first and second substrates spaced apart from each other, at least one of the first and second substrates being connected to the mobile device body; first and second electrodes provided on the first and second substrates; and an energy generator provided between the first and second electrodes, wherein the energy generator generates electric energy upon a relative movement between the first and second substrates caused by the movement of the mobile device body.
  • a mobile device includes: a mobile device body; and a plurality of energy harvesters connected to each other, at least one of the energy harvesters being connected to the mobile device body and generating electric energy based on a movement of the mobile device body, wherein the at least one energy harvester includes: first and second substrates spaced apart from each other, at least one of the first and second substrates being connected to the mobile device body; first and second electrodes provided on the first and second substrates, respectively; and an energy generator provided between the first and second electrodes, wherein the energy generator generates electric energy upon a relative movement between the first and second substrates caused by the movement of the mobile device body.
  • FIG. 1 is a cross-sectional view of a mobile device including an energy harvester according to an exemplary embodiment
  • FIG. 2 is an enlarged view of a portion A of FIG. 1 ;
  • FIG. 3 is a cross-sectional view of an energy harvester according to another exemplary embodiment
  • FIG. 4 is a cross-sectional view of an energy harvester according to another exemplary embodiment
  • FIG. 5 is a cross-sectional view of an energy harvester according to another exemplary embodiment
  • FIG. 6 is a cross-sectional view of an energy harvester according to another exemplary embodiment
  • FIG. 7 is a cross-sectional view of an energy harvester according to another exemplary embodiment.
  • FIG. 8 is a perspective view of a mobile device including an energy harvester according to another exemplary embodiment
  • FIG. 9 is a cross-sectional view of the mobile device illustrated in FIG. 8 ;
  • FIG. 10 is a view illustrating a state in which the mobile device illustrated in FIG. 8 is worn on a wrist;
  • FIG. 11 is a cross-sectional view of a mobile device including an energy harvester according to another exemplary embodiment
  • FIG. 12 is a perspective view of a mobile device including an energy harvester according to another exemplary embodiment
  • FIG. 13 is a cross-sectional view of the energy harvester illustrated in FIG. 12 , which is taken along a line B-B′ of FIG. 12 ;
  • FIG. 14 is a cross-sectional view of an energy harvester according to another exemplary embodiment
  • FIG. 15 is a cross-sectional view of an energy harvester according to another exemplary embodiment
  • FIG. 16 is a cross-sectional view of an energy harvester according to another exemplary embodiment
  • FIG. 17 is a cross-sectional view of an energy harvester according to another exemplary embodiment.
  • FIG. 18 is a cross-sectional view of an energy harvester according to another exemplary embodiment.
  • FIG. 19 is a perspective view of a mobile device including a plurality of energy harvesters according to another exemplary embodiment.
  • FIG. 1 is a cross-sectional view of a mobile device including an energy harvester according to an exemplary embodiment.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1 .
  • the mobile device includes a mass M and an energy harvester 100 configured to generate electric energy by the movement of the mass M.
  • the mobile device may be, for example, a device attached to a human body, but is not limited thereto.
  • the mass M is a mobile device body.
  • the mass M is connected to the energy harvester 100 to apply a mechanical force to the energy harvester 100 by the movement thereof.
  • the energy harvester 100 generates electric energy by using the mechanical force applied by the movement of the mass M.
  • the energy harvester 100 may have a flat-plate structure.
  • the energy harvester 100 includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120 ; and an energy generator provided between the first and second electrodes 112 and 122 .
  • At least one of the first and second substrates 110 and 120 may be connected to the mass M.
  • FIG. 1 illustrates a case where the mass M is connected to the second substrate 120 . In other examples, the mass M may be connected to the first substrate 110 .
  • the first and second substrates 110 and 120 may each have a flat-plate structure.
  • each of the first and second substrates 110 and 120 may include a wafer or a hard material such as glass, or may include a flexible material such as plastic, textile, fiber, or metal foil.
  • this exemplary embodiment is not limited thereto, and the first and second substrates 110 and 120 may include various other materials.
  • the first electrode 112 is provided on the top surface of the first substrate 110
  • the second electrode 122 is provided on the bottom surface of the second substrate 120 .
  • the first and second electrodes 112 and 122 may include graphene, carbon nanotube (CNT), indium tin oxide (ITO), metal, or conductive polymer.
  • the metal may include, for example, silver (Ag), aluminum (Al), copper (Cu), or gold (Au), and may also include other materials.
  • the energy generator is provided between the first and second electrodes 112 and 122 .
  • the energy generator may be a triboelectric generator that generates electric energy by two layers, which are formed of different materials, rubbing against each other, due to the mechanical force generated by the movement of the mass M or changing a distance between the two layers.
  • the triboelectric generator includes: a first triboelectric layer 113 provided on the first electrode 112 ; and a second triboelectric layer 123 provided on the second electrode 122 .
  • the first triboelectric layer 113 may include a first dielectric or a metal, and the second triboelectric layer 123 may include a second dielectric that is different from the first dielectric.
  • the first triboelectric layer 113 may include a material that tends to be positively charged, such as, for example, polyformaldehyde, ethylcellulose, polyamide, wool, silk, Al, paper, cotton, steel, wood, nickel (Ni), Cu, Ag, or polyvinyl alcohol (PVA).
  • the second triboelectric layer 123 may include a material that tends to be negatively charged, such as silicon rubber, teflon, polydimethylsiloxane (PDMS), kapton, polypropylene, polyethylene, or polyvinyl chloride (PVC).
  • PDMS polydimethylsiloxane
  • PVC polyvinyl chloride
  • the first triboelectric layer 113 may include a material that tends to be negatively charged
  • the second triboelectric layer 123 may include a material that tends to be positively charged.
  • the first and second triboelectric layers 113 and 123 may include different materials that have a large difference in their degree of charging.
  • the first triboelectric layer 113 and the second triboelectric layer 123 are spaced apart from each other by a predetermined distance after being charged by direct contact caused by an external pressure. Due to the mechanical force caused by the movement of the mass M, the first and second triboelectric layers 113 and 123 may rub against each other or the distance therebetween may be changed. In this case, a charge density difference may occur between the first and second triboelectric layers 113 and 123 , thereby generating electric energy.
  • the first triboelectric layer 113 may include a plurality of first wires provided on the top surface of the first electrode 112
  • the second triboelectric layer 123 may include a plurality of second wires provided on the bottom surface of the second electrode 122 .
  • the second wires are spaced apart from the first wires, and the first and second wires may be disposed alternately with each other.
  • the first and second wires may have, for example, a nano-wire shape, but are not limited thereto.
  • the energy harvester 100 may react to a minute external force, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently.
  • the energy harvester 100 may further include at least one spacer 170 provided between the first and second substrates 110 and 120 .
  • the spacer 170 functions to maintain a constant distance between the first substrate 110 and the second substrate 120 .
  • the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet.
  • this exemplary embodiment is not limited thereto.
  • the energy harvester 100 may react to a minute movement of the mass M in various directions, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently.
  • the generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in a battery.
  • An exemplary case where the energy harvester 100 has a single-layer structure including one triboelectric generator has been described above.
  • the energy harvester 100 may also have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 3 is a cross-sectional view of an energy harvester 100 a according to another exemplary embodiment.
  • FIG. 3 is an enlarged view of a cross-section of an energy harvester 100 a as a modification of the energy harvester 100 illustrated in FIGS. 1 and 2 , and the same is true of the following drawings. Only differences from the above-described embodiment will be mainly described hereinafter.
  • the energy harvester 100 a includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120 ; and an energy generator provided between the first and second electrodes 112 and 122 . At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 112 and 122 .
  • the energy generator may be a triboelectric generator.
  • the triboelectric generator includes: a first triboelectric layer 113 ′ provided on the first electrode 112 ; and a second triboelectric layer 123 ′ provided on the second electrode 122 .
  • the first triboelectric layer 113 ′ may include a first dielectric or a metal
  • the second triboelectric layer 123 ′ may include a second dielectric that is different from the first dielectric.
  • the first triboelectric layer 113 ′ and the second triboelectric layer 123 ′ are spaced apart from each other by a predetermined distance after being charged by direct contact caused by an external pressure.
  • the energy harvester 100 a may further include at least one spacer 170 (see FIG. 1 ) provided between the first and second substrates 110 and 120 .
  • the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet.
  • the energy harvester 100 a may have a single-layer structure including one triboelectric generator, or may have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 4 is a cross-sectional view of an energy harvester 100 b according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • the energy harvester 100 b includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120 ; and an energy generator provided between the first and second electrodes 112 and 122 . At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 112 and 122 .
  • the energy generator may be a triboelectric generator.
  • the triboelectric generator includes: a first triboelectric layer 113 ′′ provided on the first electrode 112 ; and a second triboelectric layer 123 ′′ provided on the second electrode 122 .
  • the first triboelectric layer 113 ′′ may include a first dielectric or a metal
  • the second triboelectric layer 123 ′′ may include a second dielectric that is different from the first dielectric. Due to the mechanical force caused by the movement of the mass M, the first and second triboelectric layers 113 ′′ and 123 ′′ may rub against each other or the distance therebetween may be changed. In this case, a charge density difference may occur between the first and second triboelectric layers 113 ′′ and 123 ′′, thereby generating electric energy.
  • the surfaces of the first and second triboelectric layers 113 ′′ and 123 ′′ may be rough.
  • a plurality of first protrusions may be formed on the surface of the first triboelectric layer 113 ′′, and a plurality of second protrusions may be formed on the surface of the second triboelectric layer 123 ′′.
  • the first and second protrusions are spaced apart from each other, and the first and second protrusions may be disposed alternately with each other.
  • the first and second protrusions may have, for example, a nano-pyramid shape, but are not limited thereto.
  • the energy harvester 100 b may react to a minute movement of the mass M in various directions, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently.
  • the energy harvester 100 b may further include at least one spacer 170 (see FIG. 1 ) provided between the first and second substrates 110 and 120 .
  • the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet.
  • the energy harvester 100 b may have a single-layer structure including one triboelectric generator, or may have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 5 is a cross-sectional view of an energy harvester 100 c according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • the energy harvester 100 c includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120 ; and an energy generator provided between the first and second electrodes 112 and 122 . At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 112 and 122 .
  • the energy generator may be a piezoelectric generator that generates electric energy by being deformed by the movement of the mass M.
  • the piezoelectric generator includes a plurality of piezoelectric nanowires 130 .
  • the piezoelectric nanowires 130 may be arranged vertically or may be inclined at an acute angle with respect to the first electrode 112 .
  • an insulating layer having a high dielectric constant may be further provided on the top surface of the first electrode 112 , in order to uniformly grow the piezoelectric nanowires 130 .
  • the piezoelectric nanowires 130 may include, for example, ZnO, SnO, PZT, ZnSnO 3 , polyvinylidene fluoride (PVDF), or P(VDF-TrFE), but are not limited thereto.
  • the energy harvester 100 c may further include at least one spacer 170 (see FIG. 1 ) provided between the first and second substrates 110 and 120 .
  • the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet.
  • this exemplary embodiment is not limited thereto.
  • the energy harvester 100 c when the mobile device body that is the mass M is moved horizontally or vertically, a mechanical force caused by the movement of the mass M is applied to the energy harvester 100 c .
  • the mechanical force deforms the piezoelectric nanowires 130 , and a piezoelectric potential results at both ends of the deformed piezoelectric nanowires 130 , thereby generating electric energy.
  • the generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in the battery.
  • An exemplary case where the energy harvester 100 c has a single-layer structure including one piezoelectric generator has been described above. However, the energy harvester 100 c may also have a multi-layer structure including a stack of a plurality of piezoelectric generators.
  • FIG. 6 is a cross-sectional view of an energy harvester 100 d according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • the energy harvester 100 d includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120 ; and an energy generator provided between the first and second electrodes 112 and 122 . At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 112 and 122 .
  • the energy generator may be piezoelectric generator.
  • the piezoelectric generator includes a piezoelectric thin-film layer 140 .
  • the piezoelectric thin-film layer 140 is deformed by a mechanical force applied by the movement of the mass M, thereby causing a piezoelectric potential to be generated between the top and bottom of the piezoelectric thin-film layer 140 .
  • the piezoelectric thin-film layer 140 may include an inorganic material or an organic material.
  • the piezoelectric thin-film layer 140 may include, for example, ZnO, ZnSnO 3 , SnO, BaTiO 3 , NaNbO 3 , PZT, PVDF, or P(VDF-TrFE), but is not limited thereto.
  • the energy harvester 100 d may further include at least one spacer 170 (see FIG. 1 ) provided between the first and second substrates 110 and 120 .
  • the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet.
  • the energy harvester 100 d may have a single-layer structure including one piezoelectric generator, or may have a multi-layer structure including a stack of a plurality of piezoelectric generators.
  • FIG. 7 is a cross-sectional view of an energy harvester 100 e according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • the energy harvester 100 e includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120 ; and an energy generator provided between the first and second electrodes 112 and 122 . At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 112 and 122 .
  • the energy generator may be a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator.
  • the hybrid electric generator includes: a plurality of piezoelectric nanowires 150 provided on the first electrode 112 ; and a dielectric film 160 provided on the second electrode 122 .
  • the piezoelectric nanowires 150 may be arranged vertically or may be inclined at an angle on the first electrode 112 . Although not illustrated in FIG. 7 , an insulating layer having a high dielectric constant may be further provided on the top surface of the first electrode 112 , in order to uniformly grow the piezoelectric nanowires 150 .
  • the piezoelectric nanowires 150 may include a material generating a piezoelectric potential at both ends thereof due to deformation, for example, ZnO, SnO, PZT, ZnSnO 3 , PVDF, or P(VDF-TrFE), but are not limited thereto.
  • the dielectric film 160 is provided between the piezoelectric nanowires 150 and the second electrode 122 .
  • the dielectric film 160 insulates between the first electrode 112 and the second electrode 122 , and generates electric energy by a charge density difference caused by a change in the distance between the dielectric film 160 and the first electrode 112 .
  • the dielectric film 160 may include an inorganic material or a polymer-based organic material.
  • the dielectric film 160 may include silicon rubber, teflon, PDMS, PVD, kapton, polypropylene, polyethylene, PVC, polyformaldehyde, ethylcellulose, polyamide, wool, silk, or PVA.
  • the energy harvester 100 e may further include at least one spacer 170 (see FIG. 1 ) provided between the first and second substrates 110 and 120 .
  • the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet.
  • this exemplary embodiment is not limited thereto.
  • the energy harvester 100 e when a mechanical force caused by the movement of the mass M is applied to the energy harvester 100 e , electric energy may be generated by piezoelectricity caused by the deformation of the piezoelectric nanowires 150 , and electric energy may be generated by triboelectricity caused by a change in the distance between the dielectric film 160 and the first electrode 112 .
  • the energy harvester 100 e may have a single-layer structure including one hybrid electric generator, or may have a multi-layer structure including a stack of a plurality of hybrid electric generators. It is also possible to implement an energy harvester that has a multi-layer structure including a stack of at least two of the piezoelectric generator, the triboelectric generator, and the hybrid electric generator.
  • FIG. 8 is a perspective view of a mobile device including an energy harvester according to another exemplary embodiment.
  • FIG. 9 is a cross-sectional view of the mobile device illustrated in FIG. 8 .
  • the mobile device includes a mass M and an energy harvester 200 configured to generate electric energy by the movement of the mass M.
  • the mobile device may be, for example, a device attached to a human body.
  • the mobile device may include a smart watch, and may also include an MP3 player, a Bluetooth device, a mobile phone, a radio, a biosensor, a position sensor, a body temperature sensor, or a blood pressure sensor, which are attached to a human body.
  • this exemplary embodiment is not limited thereto.
  • the mass M is a mobile device body.
  • the mass M is connected to the energy harvester 200 to apply a mechanical force to the energy harvester 200 by the movement thereof.
  • the energy harvester 200 generates electric energy by using the mechanical force generated by the movement of the mass M.
  • the energy harvester 200 may have a band-type structure.
  • the energy harvester 200 includes: first and second substrates 210 and 220 spaced apart from each other; first and second electrodes (not illustrated) provided on the first and second substrates 210 and 220 ; and an energy generator (not illustrated) provided between the first and second electrodes.
  • At least one of the first and second substrates 210 and 220 may be connected to the mass M.
  • FIG. 9 illustrates a case where the mass M is connected to the second substrate 220 . In other examples, the mass M may be connected to the first substrate 210 .
  • the first and second substrates 210 and 220 may have a band-type structure.
  • the first and second substrates 210 and 220 may include a flexible material such as plastic, textile, or metal foil.
  • the first and second substrates 210 and 220 may include various other materials.
  • the first and second electrodes are provided on the first and second substrates 210 and 220 .
  • the first and second electrodes may include a flexible conductive material, such as graphene, CNT, ITO, metal, or conductive polymer.
  • the energy generator is provided between the first and second electrodes.
  • the energy generator may be a piezoelectric generator, a triboelectric generator, or a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator. Since the energy generator has been described in detail in the above-described embodiments, a description thereof will be omitted here.
  • the mobile device body that is the mass M when the mobile device body that is the mass M is moved horizontally or vertically by, for example, the movement of a human body, a mechanical force caused by the movement of the mass M is applied to the energy harvester 200 .
  • the energy harvester 200 may generate electric energy by using the applied mechanical force.
  • FIG. 10 is a view illustrating a state in which the mobile device illustrated in FIG. 8 is worn on a wrist.
  • a representative example of the mobile device illustrated in FIG. 10 may be a smart watch.
  • the mass M may be a watch body
  • the band-type energy harvester 100 may be a watchband that is worn on the wrist.
  • the energy harvester 100 may generate electric energy by using the mechanical force of the mass M.
  • the generated electric energy may be supplied to the watch body, or may be stored in a battery.
  • the mobile device may include an MP3 player, a Bluetooth device, a mobile phone, a radio, a biosensor, a position sensor, a body temperature sensor, or a blood pressure sensor, which are attached to a human body.
  • FIG. 11 is a cross-sectional view of a mobile device including an energy harvester 500 according to another exemplary embodiment.
  • the mobile device includes a mass M and an energy harvester 500 configured to generate electric energy by the movement of the mass M.
  • the energy harvester 500 generates electric energy by using a mechanical force generated by the movement of the mass M.
  • the energy harvester 500 may have a band-type structure.
  • the energy harvester 500 includes: first and second substrates 510 and 520 spaced apart from each other; first and second electrodes (not illustrated) provided on the first and second substrates 510 and 520 ; an energy generator (not illustrated) provided between the first and second electrodes; and at least one spacer 570 provided on the first and second substrates 510 and 520 .
  • At least one of the first and second substrates 510 and 520 may be connected to the mass M. Since the first and second substrates 510 and 520 and the first and second electrodes have been described above, a description thereof will be omitted here.
  • the energy generator may be a piezoelectric generator, a triboelectric generator, or a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator. Since the energy generator has been described in detail in the above-described embodiments, a description thereof will be omitted here.
  • the spacer 570 is provided between the first and second substrates 510 and 520 to maintain a constant distance between the first and second substrates 510 and 520 .
  • the spacer 570 may include, for example, an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet, but is not limited thereto.
  • an elastic material such as a spring or rubber
  • a magnetic material such as a magnet
  • FIG. 12 is a perspective view of a mobile device including an energy harvester 300 according to another exemplary embodiment.
  • FIG. 13 is a cross-sectional view of the energy harvester 300 illustrated in FIG. 12 , which is taken along a line B-B′ of FIG. 12 .
  • the mobile device includes a mass M and an energy harvester 300 configured to generate electric energy by the movement of the mass M.
  • the mobile device may be, for example, a device attached to a human body, but is not limited thereto.
  • the mass M is a mobile device body.
  • the mass M is connected to the energy harvester 300 to apply a mechanical force to the energy harvester 300 by the movement thereof.
  • the energy harvester 300 generates electric energy by using the mechanical force generated by the movement of the mass M.
  • the energy harvester 300 may have a core-shell structure.
  • the energy harvester 300 includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320 ; and an energy generator provided between the first and second electrodes 312 and 322 .
  • At least one of the first and second substrates 310 and 320 may be connected to the mass M.
  • the first and second substrates 310 and 320 may have a core-shell structure.
  • the first substrate 310 may be a wire-shaped core.
  • the first substrate 310 may be a tube-shaped core.
  • the second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310 .
  • the first and second substrates 310 and 320 may include a flexible material.
  • the first and second substrates 310 and 320 may include, for example, plastic, textile, fiber, or metal, but they are not limited thereto.
  • the first electrode 312 is provided on the outer surface of the first substrate 310
  • the second electrode 322 is provided on the inner surface of the second substrate 320 .
  • the first and second electrodes 312 and 322 may include a flexible conductive material.
  • the first and second electrodes 312 and 322 may include graphene, CNT, ITO, metal, or conductive polymer.
  • the metal may include, for example, Ag, Al, Cu, or Au, and may also include other materials.
  • the energy generator is provided between the first and second electrodes 312 and 322 .
  • the energy generator may be a triboelectric generator.
  • the triboelectric generator includes: a first triboelectric layer 313 provided on the first electrode 312 ; and a second triboelectric layer 323 provided on the second electrode 322 .
  • the first triboelectric layer 313 may include a first dielectric or a metal
  • the second triboelectric layer 323 may include a second dielectric that is different from the first dielectric.
  • the first triboelectric layer 313 may include a material that tends to be positively charged, such as, for example, polyformaldehyde, ethylcellulose, polyamide, wool, silk, Al, paper, cotton, steel, wood, Ni, Cu, Ag, or PVA.
  • the second triboelectric layer 323 may include a material that tends to be negatively charged, such as silicon rubber, teflon, PDMS, kapton, polypropylene, polyethylene, or PVC.
  • this exemplary embodiment is not limited thereto.
  • the first triboelectric layer 313 may include a material that tends to be negatively charged
  • the second triboelectric layer 323 may include a material that tends to be positively charged.
  • the first and second triboelectric layers 313 and 323 may include different materials that have a large difference in their degree of charging.
  • the first triboelectric layer 313 and the second triboelectric layer 323 are spaced apart from each other by a predetermined distance after being charged by direct contact by an external pressure. Due to the mechanical force caused by the movement of the mass M, the first and second triboelectric layers 313 and 323 may rub against each other or the distance therebetween may be changed. In this case, a charge density difference may occur between the first and second triboelectric layers 313 and 323 , thereby generating electric energy.
  • the first triboelectric layer 313 may include a plurality of first wires provided on the outer surface of the first electrode 312
  • the second triboelectric layer 323 may include a plurality of second wires provided on the inner surface of the second electrode 322 .
  • the second wires are spaced apart from the first wires, and the first and second wires may be disposed alternately with each other.
  • the first and second wires may have, for example, a nano-wire shape, but are not limited thereto.
  • the energy harvester 300 may react to a minute external force, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently.
  • at least one spacer may be further provided between the first and second substrates 310 and 320 .
  • the spacer functions to maintain a constant distance between the first substrate 310 and the second substrate 320 .
  • the spacer may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet.
  • the mobile device body that is the mass M when the mobile device body that is the mass M is moved horizontally or vertically, a mechanical force caused by the movement of the mass M is applied to the energy harvester 300 . Due to the mechanical force, the first and second triboelectric layers 313 and 323 may rub against each other or the distance therebetween may be changed. Accordingly, a charge density difference may occur between the first and second triboelectric layers 313 and 323 , thereby generating electric energy.
  • the energy harvester 300 may react to a minute movement of the mass M in various directions, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently.
  • the generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in a battery.
  • An exemplary case where the energy harvester 300 has a single-layer structure including one triboelectric generator has been described above. However, the energy harvester 300 may also have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 14 is a cross-sectional view of an energy harvester 300 a according to another exemplary embodiment.
  • FIG. 14 is an enlarged view of a cross-section of an energy harvester 300 a as a modification of the energy harvester 300 illustrated in FIGS. 12 and 13 , and the same is true of the following drawings. Only differences from the above embodiment will be mainly described hereinafter.
  • the energy harvester 300 a includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320 ; and an energy generator provided between the first and second electrodes 312 and 322 .
  • the first and second substrates 310 and 320 may have a core-shell structure.
  • the first substrate 310 may be a wire-shaped core or a tube-shaped core
  • the second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310 .
  • the first electrode 312 is provided on the outer surface of the first substrate 310
  • the second electrode 322 is provided on the inner surface of the second substrate 320 . Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 312 and 322 .
  • the energy generator may be a triboelectric generator.
  • the triboelectric generator includes: a first triboelectric layer 312 ′ provided on the first electrode 312 ; and a second triboelectric layer 323 ′ provided on the second electrode 322 .
  • the first triboelectric layer 313 ′ may include a first dielectric or a metal
  • the second triboelectric layer 323 ′ may include a second dielectric that is different from the first dielectric.
  • the first triboelectric layer 313 ′ and the second triboelectric layer 323 ′ are spaced apart from each other by a predetermined distance after being charged by direct contact by an external pressure.
  • the energy harvester 300 a may have a single-layer structure including one triboelectric generator, or may have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 15 is a cross-sectional view of an energy harvester 300 b according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • the energy harvester 300 b includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320 ; and an energy generator provided between the first and second electrodes 312 and 322 .
  • the first and second substrates 310 and 320 may have a core-shell structure.
  • the first substrate 310 may be a wire-shaped core or a tube-shaped core
  • the second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310 .
  • the first electrode 312 is provided on the outer surface of the first substrate 310
  • the second electrode 322 is provided on the inner surface of the second substrate 320 . Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 312 and 322 .
  • the energy generator may be a triboelectric generator.
  • the triboelectric generator includes: a first triboelectric layer 313 ′′ provided on the first electrode 312 ; and a second triboelectric layer 323 ′′ provided on the second electrode 322 .
  • the first triboelectric layer 313 ′′ may include a first dielectric or a metal
  • the second triboelectric layer 323 ′′ may include a second dielectric that is different from the first dielectric.
  • the surfaces of the first and second triboelectric layers 313 ′′ and 323 ′′ may be rough.
  • a plurality of first protrusions may be formed on the surface of the first triboelectric layer 313 ′′, and a plurality of second protrusions may be formed on the surface of the second triboelectric layer 323 ′′.
  • the first and second protrusions are spaced apart from each other, and the first and second protrusions may be disposed alternately with each other.
  • the first and second protrusions may have, for example, a nano-pyramid shape, but are not limited thereto.
  • the energy harvester 300 b may react to a minute movement of the mass M in various directions, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently.
  • at least one spacer may be further provided between the first and second substrates 310 and 320 .
  • the energy harvester 300 b may have a single-layer structure including one triboelectric generator, or may have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 16 is a cross-sectional view of an energy harvester 300 c according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • the energy harvester 300 c includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320 ; and an energy generator provided between the first and second electrodes 312 and 322 .
  • the first and second substrates 310 and 320 may have a core-shell structure.
  • the first substrate 310 may be a wire-shaped core or a tube-shaped core
  • the second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310 .
  • the first electrode 312 is provided on the outer surface of the first substrate 310
  • the second electrode 322 is provided on the inner surface of the second substrate 320 . Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 312 and 322 .
  • the energy generator may be piezoelectric generator.
  • the piezoelectric generator includes a plurality of piezoelectric nanowires 330 provided between the first and second electrodes 312 and 322 .
  • the piezoelectric nanowires 330 may be arranged vertically or may be inclined at an angle on the outer surface of the first electrode 312 .
  • an insulating layer having a high dielectric constant may be further provided on the top surface of the first electrode 312 , in order to uniformly grow the piezoelectric nanowires 330 .
  • the piezoelectric nanowires 330 may include, for example, ZnO, SnO, PZT, ZnSnO 3 , PVDF, or P(VDF-TrFE), but are not limited thereto. Although not illustrated in FIG. 16 , at least one spacer may be further provided between the first and second substrates 310 and 320 .
  • the energy harvester 300 c when the mobile device body that is the mass M is moved, a mechanical force caused by the movement of the mass M is applied to the energy harvester 300 c .
  • the mechanical force deforms the piezoelectric nanowires 330 , and a piezoelectric potential results at both ends of the deformed piezoelectric nanowires 330 , thereby generating electric energy.
  • the generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in the battery.
  • the energy harvester 300 c may have a single-layer structure including one piezoelectric generator, or may have a multi-layer structure including a stack of a plurality of piezoelectric generators.
  • FIG. 17 is a cross-sectional view of an energy harvester 300 d according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • the energy harvester 300 d includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320 ; and an energy generator provided between the first and second electrodes 312 and 322 .
  • the first and second substrates 310 and 320 may have a core-shell structure.
  • the first substrate 310 may be a wire-shaped core or a tube-shaped core.
  • the second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310 .
  • the first electrode 312 is provided on the outer surface of the first substrate 310
  • the second electrode 322 is provided on the inner surface of the second substrate 320 . Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 312 and 322 .
  • the energy generator may be piezoelectric generator.
  • the piezoelectric generator includes a piezoelectric thin-film layer 340 .
  • the piezoelectric thin-film layer 340 is deformed by a mechanical force generated by the movement of the mass M, thereby causing a piezoelectric potential to be generated between the top and bottom of the piezoelectric thin-film layer 340 .
  • the piezoelectric thin-film layer 340 may include an inorganic material or an organic material.
  • the piezoelectric thin-film layer 340 may include, for example, ZnO, ZnSnO 3 , SnO, BaTiO 3 , NaNbO 3 , PZT, PVDF, or P(VDF-TrFE), but is not limited thereto.
  • at least one spacer may be further provided between the first and second substrates 310 and 320 .
  • the energy harvester 300 d may have a single-layer structure including one piezoelectric generator, or may have a multi-layer structure including a stack of a plurality of piezoelectric generators.
  • FIG. 18 is a cross-sectional view of an energy harvester 300 e according to another exemplary embodiment. Only differences from the above embodiment will be mainly described hereinafter.
  • the energy harvester 300 e includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320 ; and an energy generator provided between the first and second electrodes 312 and 322 .
  • the first and second substrates 310 and 320 may have a core-shell structure.
  • the first substrate 310 may be a wire-shaped core or a tube-shaped core.
  • the second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310 .
  • the first electrode 312 is provided on the outer surface of the first substrate 310
  • the second electrode 322 is provided on the inner surface of the second substrate 320 . Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • the energy generator is provided between the first and second electrodes 312 and 322 .
  • the energy generator may be a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator.
  • the hybrid electric generator includes: a plurality of piezoelectric nanowires 350 provided on the first electrode 312 ; and a dielectric film 360 provided on the second electrode 322 .
  • the piezoelectric nanowires 350 may be arranged vertically or may be inclined at an angle on the first electrode 312 . Although not illustrated in FIG. 18 , an insulating layer having a high dielectric constant may be further provided on the top surface of the first electrode 312 , in order to uniformly grow the piezoelectric nanowires 350 .
  • the piezoelectric nanowires 350 may include a material generating a piezoelectric potential at both ends thereof due to deformation, for example, ZnO, SnO, PZT, ZnSnO 3 , PVDF, or P(VDF-TrFE), but are not limited thereto.
  • the dielectric film 360 is provided between the piezoelectric nanowires 350 and the second electrode 322 .
  • the dielectric film 360 insulates between the first electrode 312 and the second electrode 322 , and generates electric energy by a charge density difference caused by a change in the distance between the dielectric film 360 and the first electrode 312 .
  • the dielectric film 360 may include an inorganic material or a polymer-based organic material.
  • the dielectric film 360 may include silicon rubber, teflon, PDMS, PVD, kapton, polypropylene, polyethylene, PVC, polyformaldehyde, ethylcellulose, polyamide, wool, silk, or PVA.
  • at least one spacer may be further provided between the first and second substrates 310 and 320 .
  • the energy harvester 300 e when a mechanical force caused by the movement of the mass M is applied to the energy harvester 300 e , electric energy may be generated by piezoelectricity caused by the deformation of the piezoelectric nanowires 350 , and electric energy may be generated by triboelectricity caused by a change in the distance between the dielectric film 360 and the first electrode 312 .
  • the energy harvester 300 e may have a single-layer structure including one hybrid electric generator, or may have a multi-layer structure including a stack of a plurality of hybrid electric generators. It is also possible to implement an energy harvester that has a multi-layer structure including a stack of at least two of the piezoelectric generator, the triboelectric generator, and the hybrid electric generator.
  • FIG. 19 is a perspective view of a mobile device including a plurality of energy harvesters 400 according to another exemplary embodiment.
  • the mobile device includes a mass M and a plurality of energy harvesters 400 connected to each other to generate electric energy by the movement of the mass M.
  • the mass M is a mobile device body.
  • the mass M is connected to at least one of the energy harvesters 400 to apply a mechanical force to the energy harvesters 400 by the movement thereof.
  • Each of the energy harvesters 400 generates electric energy by using a mechanical force generated by the movement of the mass M.
  • the energy harvesters 400 may be connected to each other to have a band-type structure.
  • Each of the energy harvesters 300 b may include at least one of a piezoelectric generator, a triboelectric generator, and a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator. Since the energy harvester has been described in detail in the above-described embodiments, a description thereof will be omitted here.
  • each of the energy harvesters 400 may generate electric energy by using the mechanical force.
  • the energy harvesters 400 are electrically connected in series to each other, more electric energy may be generated.
  • the generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in the battery.
  • the energy harvester may generate electric energy by using the mechanical force applied by the movement of the mass.
  • the generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in the battery.
  • the mobile device may be applied to various fields, such as, for example, a smart watch, an MP3 player, a Bluetooth device, a mobile phone, a radio, a biosensor, a position sensor, a body temperature sensor, and a blood pressure sensor, which are attached to a human body. While the exemplary embodiments have been described above, those of ordinary skill in the art will understand that various modifications may be made in the embodiments.

Abstract

Provided are an energy harvester using a mass, and a mobile device including the energy harvester. The mobile device includes an energy harvester connected to a mobile device body to generate electric energy. The energy harvester includes an energy generator configured to generate electric energy by using a mechanical force applied by a movement of the mobile device body.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority from Korean Patent Application No. 10-2013-0075942, filed on Jun. 28, 2013, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
  • BACKGROUND
  • 1. Field
  • Apparatuses consistent with exemplary embodiments relate to energy harvesters using a mass, and mobile devices including the energy harvesters.
  • 2. Description of the Related Art
  • Recently, the use of smart phones has become widespread, and various attempts are being made to provide mutual control between a smart phone and a peripheral device. In particular, extensive research is being conducted into a smart watch that is a combination of a smart phone and a watch, and some prototypes thereof are being commercialized. Used as wristwatches, smart watches are being used to control or monitor functions, such as a call function, a message function, or an application of a smart phone. However, since such smart watches consume much more power than typical wristwatches, the smart watches need to be charged often or should be equipped with a high-capacity battery in order to be always supplied with power.
  • SUMMARY
  • Provided are energy harvesters using a mass, and mobile devices including the energy harvesters.
  • Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.
  • According to an aspect of an exemplary embodiment, an energy harvester includes: first and second substrates spaced apart from each other, at least one of the first and second substrates being configure to be connected to a mass; first and second electrodes provided on the first and second substrates, respectively; and an energy generator provided between the first and second electrodes, wherein the energy generator generates electric energy upon a relative movement between the first and second substrates caused by a movement of the mass.
  • The first and second substrates may have a band-type structure, a flat-plate structure, or a core-shell structure.
  • The energy generator may include at least one of a piezoelectric generator and a triboelectric generator.
  • The energy generator may include a plurality of piezoelectric nanowires provided between the first and second electrodes. The energy generator may further include a dielectric film provided between the second electrode and the piezoelectric nanowires.
  • The energy generator may include a piezoelectric thin-film layer provided between the first and second electrodes. The energy generator may include: a first triboelectric layer provided on the first electrode and including a first dielectric or a metal; and a second triboelectric layer provided on the second electrode and including a second dielectric that is different from the first dielectric. A plurality of first protrusions may be formed on a surface of the first triboelectric layer, and a plurality of second protrusions may be formed on a surface of the second triboelectric layer. The first triboelectric layer may include a plurality of first wires provided on the first electrode, and the second triboelectric layer may include a plurality of second wires provided on the second electrode.
  • At least one spacer may be provided between the first and second substrates to maintain a distance between the first and second substrates.
  • According to another aspect, a mobile device includes: a mobile device body; and an energy harvester connected to the mobile device body, wherein the energy harvester generates electric energy based on a movement of the mobile device body, wherein the energy harvester includes: first and second substrates spaced apart from each other, at least one of the first and second substrates being connected to the mobile device body; first and second electrodes provided on the first and second substrates; and an energy generator provided between the first and second electrodes, wherein the energy generator generates electric energy upon a relative movement between the first and second substrates caused by the movement of the mobile device body.
  • According to another aspect, a mobile device includes: a mobile device body; and a plurality of energy harvesters connected to each other, at least one of the energy harvesters being connected to the mobile device body and generating electric energy based on a movement of the mobile device body, wherein the at least one energy harvester includes: first and second substrates spaced apart from each other, at least one of the first and second substrates being connected to the mobile device body; first and second electrodes provided on the first and second substrates, respectively; and an energy generator provided between the first and second electrodes, wherein the energy generator generates electric energy upon a relative movement between the first and second substrates caused by the movement of the mobile device body.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and/or other exemplary aspects and advantages will become apparent and more readily appreciated from the following description of exemplary embodiments, taken in conjunction with the accompanying drawings in which:
  • FIG. 1 is a cross-sectional view of a mobile device including an energy harvester according to an exemplary embodiment;
  • FIG. 2 is an enlarged view of a portion A of FIG. 1;
  • FIG. 3 is a cross-sectional view of an energy harvester according to another exemplary embodiment;
  • FIG. 4 is a cross-sectional view of an energy harvester according to another exemplary embodiment;
  • FIG. 5 is a cross-sectional view of an energy harvester according to another exemplary embodiment;
  • FIG. 6 is a cross-sectional view of an energy harvester according to another exemplary embodiment;
  • FIG. 7 is a cross-sectional view of an energy harvester according to another exemplary embodiment;
  • FIG. 8 is a perspective view of a mobile device including an energy harvester according to another exemplary embodiment;
  • FIG. 9 is a cross-sectional view of the mobile device illustrated in FIG. 8;
  • FIG. 10 is a view illustrating a state in which the mobile device illustrated in FIG. 8 is worn on a wrist;
  • FIG. 11 is a cross-sectional view of a mobile device including an energy harvester according to another exemplary embodiment;
  • FIG. 12 is a perspective view of a mobile device including an energy harvester according to another exemplary embodiment;
  • FIG. 13 is a cross-sectional view of the energy harvester illustrated in FIG. 12, which is taken along a line B-B′ of FIG. 12;
  • FIG. 14 is a cross-sectional view of an energy harvester according to another exemplary embodiment;
  • FIG. 15 is a cross-sectional view of an energy harvester according to another exemplary embodiment;
  • FIG. 16 is a cross-sectional view of an energy harvester according to another exemplary embodiment;
  • FIG. 17 is a cross-sectional view of an energy harvester according to another exemplary embodiment;
  • FIG. 18 is a cross-sectional view of an energy harvester according to another exemplary embodiment; and
  • FIG. 19 is a perspective view of a mobile device including a plurality of energy harvesters according to another exemplary embodiment.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the exemplary embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the present description. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.
  • Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings. The exemplary embodiments described below should be considered in a descriptive sense only and not for purposes of limitation. In the drawings, like reference numerals denote like elements, and the sizes or thicknesses of elements are exaggerated for clarity. It will also be understood that when a layer is referred to as being “on” another layer or substrate, it may be directly on the other layer or substrate, or intervening layers may also be present. In the following embodiments, a material forming each layer is merely exemplary, and other materials may also be used.
  • FIG. 1 is a cross-sectional view of a mobile device including an energy harvester according to an exemplary embodiment. FIG. 2 is an enlarged view of a portion A of FIG. 1.
  • Referring to FIGS. 1 and 2, the mobile device includes a mass M and an energy harvester 100 configured to generate electric energy by the movement of the mass M. The mobile device may be, for example, a device attached to a human body, but is not limited thereto. The mass M is a mobile device body. The mass M is connected to the energy harvester 100 to apply a mechanical force to the energy harvester 100 by the movement thereof. The energy harvester 100 generates electric energy by using the mechanical force applied by the movement of the mass M.
  • The energy harvester 100 may have a flat-plate structure. In detail, the energy harvester 100 includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120; and an energy generator provided between the first and second electrodes 112 and 122. At least one of the first and second substrates 110 and 120 may be connected to the mass M. FIG. 1 illustrates a case where the mass M is connected to the second substrate 120. In other examples, the mass M may be connected to the first substrate 110.
  • The first and second substrates 110 and 120 may each have a flat-plate structure. For example, each of the first and second substrates 110 and 120 may include a wafer or a hard material such as glass, or may include a flexible material such as plastic, textile, fiber, or metal foil. However, this exemplary embodiment is not limited thereto, and the first and second substrates 110 and 120 may include various other materials. The first electrode 112 is provided on the top surface of the first substrate 110, and the second electrode 122 is provided on the bottom surface of the second substrate 120. For example, the first and second electrodes 112 and 122 may include graphene, carbon nanotube (CNT), indium tin oxide (ITO), metal, or conductive polymer. However, this exemplary embodiment is not limited thereto. The metal may include, for example, silver (Ag), aluminum (Al), copper (Cu), or gold (Au), and may also include other materials.
  • The energy generator is provided between the first and second electrodes 112 and 122. The energy generator may be a triboelectric generator that generates electric energy by two layers, which are formed of different materials, rubbing against each other, due to the mechanical force generated by the movement of the mass M or changing a distance between the two layers. The triboelectric generator includes: a first triboelectric layer 113 provided on the first electrode 112; and a second triboelectric layer 123 provided on the second electrode 122.
  • The first triboelectric layer 113 may include a first dielectric or a metal, and the second triboelectric layer 123 may include a second dielectric that is different from the first dielectric. The first triboelectric layer 113 may include a material that tends to be positively charged, such as, for example, polyformaldehyde, ethylcellulose, polyamide, wool, silk, Al, paper, cotton, steel, wood, nickel (Ni), Cu, Ag, or polyvinyl alcohol (PVA). The second triboelectric layer 123 may include a material that tends to be negatively charged, such as silicon rubber, teflon, polydimethylsiloxane (PDMS), kapton, polypropylene, polyethylene, or polyvinyl chloride (PVC). However, this exemplary embodiment of is not limited thereto. For example, the first triboelectric layer 113 may include a material that tends to be negatively charged, and the second triboelectric layer 123 may include a material that tends to be positively charged. The first and second triboelectric layers 113 and 123 may include different materials that have a large difference in their degree of charging. The first triboelectric layer 113 and the second triboelectric layer 123 are spaced apart from each other by a predetermined distance after being charged by direct contact caused by an external pressure. Due to the mechanical force caused by the movement of the mass M, the first and second triboelectric layers 113 and 123 may rub against each other or the distance therebetween may be changed. In this case, a charge density difference may occur between the first and second triboelectric layers 113 and 123, thereby generating electric energy.
  • The first triboelectric layer 113 may include a plurality of first wires provided on the top surface of the first electrode 112, and the second triboelectric layer 123 may include a plurality of second wires provided on the bottom surface of the second electrode 122. The second wires are spaced apart from the first wires, and the first and second wires may be disposed alternately with each other. The first and second wires may have, for example, a nano-wire shape, but are not limited thereto. When the first and second triboelectric layers 113 and 123 include the first and second wires disposed alternately with each other, the energy harvester 100 may react to a minute external force, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently.
  • The energy harvester 100 may further include at least one spacer 170 provided between the first and second substrates 110 and 120. The spacer 170 functions to maintain a constant distance between the first substrate 110 and the second substrate 120. For example, the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet. However, this exemplary embodiment is not limited thereto. When at least one spacer 170 is disposed between the first and second substrates 110 and 120, the mechanical force caused by the movement of the mass M is more effectively transmitted to the energy harvester 100 to generate electric energy.
  • In the above-described mobile device, when the mobile device body that is the mass M is moved horizontally or vertically, a mechanical force caused by the movement of the mass M is applied to the energy harvester 100. Due to the mechanical force, the first and second triboelectric layers 113 and 123 may rub against each other or the distance therebetween may be changed. Accordingly, a charge density difference may occur between the first and second triboelectric layers 113 and 123, thereby generating electric energy. As in this embodiment, when the first and second triboelectric layers 113 and 123 include the first and second wires disposed alternately with each other, the energy harvester 100 may react to a minute movement of the mass M in various directions, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently. The generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in a battery. An exemplary case where the energy harvester 100 has a single-layer structure including one triboelectric generator has been described above. However, the energy harvester 100 may also have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 3 is a cross-sectional view of an energy harvester 100 a according to another exemplary embodiment. FIG. 3 is an enlarged view of a cross-section of an energy harvester 100 a as a modification of the energy harvester 100 illustrated in FIGS. 1 and 2, and the same is true of the following drawings. Only differences from the above-described embodiment will be mainly described hereinafter.
  • Referring to FIG. 3, the energy harvester 100 a includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120; and an energy generator provided between the first and second electrodes 112 and 122. At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 112 and 122. The energy generator may be a triboelectric generator. The triboelectric generator includes: a first triboelectric layer 113′ provided on the first electrode 112; and a second triboelectric layer 123′ provided on the second electrode 122. The first triboelectric layer 113′ may include a first dielectric or a metal, and the second triboelectric layer 123′ may include a second dielectric that is different from the first dielectric. The first triboelectric layer 113′ and the second triboelectric layer 123′ are spaced apart from each other by a predetermined distance after being charged by direct contact caused by an external pressure. Due to the mechanical force caused by the movement of the mass M, the first and second triboelectric layers 113′ and 123′ may rub against each other or the distance therebetween may be changed. In this case, a charge density difference may occur between the first and second triboelectric layers 113′ and 123′, thereby generating electric energy. The energy harvester 100 a may further include at least one spacer 170 (see FIG. 1) provided between the first and second substrates 110 and 120. For example, the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet. However, this exemplary the embodiment is not limited thereto. The energy harvester 100 a may have a single-layer structure including one triboelectric generator, or may have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 4 is a cross-sectional view of an energy harvester 100 b according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • Referring to FIG. 4, the energy harvester 100 b includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120; and an energy generator provided between the first and second electrodes 112 and 122. At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 112 and 122. The energy generator may be a triboelectric generator. The triboelectric generator includes: a first triboelectric layer 113″ provided on the first electrode 112; and a second triboelectric layer 123″ provided on the second electrode 122. The first triboelectric layer 113″ may include a first dielectric or a metal, and the second triboelectric layer 123″ may include a second dielectric that is different from the first dielectric. Due to the mechanical force caused by the movement of the mass M, the first and second triboelectric layers 113″ and 123″ may rub against each other or the distance therebetween may be changed. In this case, a charge density difference may occur between the first and second triboelectric layers 113″ and 123″, thereby generating electric energy.
  • The surfaces of the first and second triboelectric layers 113″ and 123″ may be rough. In detail, a plurality of first protrusions may be formed on the surface of the first triboelectric layer 113″, and a plurality of second protrusions may be formed on the surface of the second triboelectric layer 123″. The first and second protrusions are spaced apart from each other, and the first and second protrusions may be disposed alternately with each other. The first and second protrusions may have, for example, a nano-pyramid shape, but are not limited thereto. When the first and second protrusions are alternately formed on the surfaces of the first and second triboelectric layers 113″ and 123″, the energy harvester 100 b may react to a minute movement of the mass M in various directions, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently. The energy harvester 100 b may further include at least one spacer 170 (see FIG. 1) provided between the first and second substrates 110 and 120. For example, the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet. However, this exemplary embodiment is not limited thereto. The energy harvester 100 b may have a single-layer structure including one triboelectric generator, or may have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 5 is a cross-sectional view of an energy harvester 100 c according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • Referring to FIG. 5, the energy harvester 100 c includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120; and an energy generator provided between the first and second electrodes 112 and 122. At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 112 and 122. The energy generator may be a piezoelectric generator that generates electric energy by being deformed by the movement of the mass M. The piezoelectric generator includes a plurality of piezoelectric nanowires 130. The piezoelectric nanowires 130 may be arranged vertically or may be inclined at an acute angle with respect to the first electrode 112. Although not illustrated in FIG. 5, an insulating layer having a high dielectric constant may be further provided on the top surface of the first electrode 112, in order to uniformly grow the piezoelectric nanowires 130. The piezoelectric nanowires 130 may include, for example, ZnO, SnO, PZT, ZnSnO3, polyvinylidene fluoride (PVDF), or P(VDF-TrFE), but are not limited thereto. The energy harvester 100 c may further include at least one spacer 170 (see FIG. 1) provided between the first and second substrates 110 and 120. For example, the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet. However, this exemplary embodiment is not limited thereto.
  • In the above mobile device, when the mobile device body that is the mass M is moved horizontally or vertically, a mechanical force caused by the movement of the mass M is applied to the energy harvester 100 c. The mechanical force deforms the piezoelectric nanowires 130, and a piezoelectric potential results at both ends of the deformed piezoelectric nanowires 130, thereby generating electric energy. The generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in the battery. An exemplary case where the energy harvester 100 c has a single-layer structure including one piezoelectric generator has been described above. However, the energy harvester 100 c may also have a multi-layer structure including a stack of a plurality of piezoelectric generators.
  • FIG. 6 is a cross-sectional view of an energy harvester 100 d according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • Referring to FIG. 6, the energy harvester 100 d includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120; and an energy generator provided between the first and second electrodes 112 and 122. At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 112 and 122. The energy generator may be piezoelectric generator. The piezoelectric generator includes a piezoelectric thin-film layer 140. The piezoelectric thin-film layer 140 is deformed by a mechanical force applied by the movement of the mass M, thereby causing a piezoelectric potential to be generated between the top and bottom of the piezoelectric thin-film layer 140. The piezoelectric thin-film layer 140 may include an inorganic material or an organic material. The piezoelectric thin-film layer 140 may include, for example, ZnO, ZnSnO3, SnO, BaTiO3, NaNbO3, PZT, PVDF, or P(VDF-TrFE), but is not limited thereto. The energy harvester 100 d may further include at least one spacer 170 (see FIG. 1) provided between the first and second substrates 110 and 120. For example, the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet. However, this exemplary embodiment is not limited thereto. The energy harvester 100 d may have a single-layer structure including one piezoelectric generator, or may have a multi-layer structure including a stack of a plurality of piezoelectric generators.
  • FIG. 7 is a cross-sectional view of an energy harvester 100 e according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • Referring to FIG. 7, the energy harvester 100 e includes: first and second substrates 110 and 120 spaced apart from each other; first and second electrodes 112 and 122 provided on the first and second substrates 110 and 120; and an energy generator provided between the first and second electrodes 112 and 122. At least one of the first and second substrates 110 and 120 may be connected to the mass M. Since the first and second substrates 110 and 120 and the first and second electrodes 112 and 122 have been described above, a description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 112 and 122. The energy generator may be a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator. The hybrid electric generator includes: a plurality of piezoelectric nanowires 150 provided on the first electrode 112; and a dielectric film 160 provided on the second electrode 122.
  • The piezoelectric nanowires 150 may be arranged vertically or may be inclined at an angle on the first electrode 112. Although not illustrated in FIG. 7, an insulating layer having a high dielectric constant may be further provided on the top surface of the first electrode 112, in order to uniformly grow the piezoelectric nanowires 150. The piezoelectric nanowires 150 may include a material generating a piezoelectric potential at both ends thereof due to deformation, for example, ZnO, SnO, PZT, ZnSnO3, PVDF, or P(VDF-TrFE), but are not limited thereto. The dielectric film 160 is provided between the piezoelectric nanowires 150 and the second electrode 122. The dielectric film 160 insulates between the first electrode 112 and the second electrode 122, and generates electric energy by a charge density difference caused by a change in the distance between the dielectric film 160 and the first electrode 112. The dielectric film 160 may include an inorganic material or a polymer-based organic material. For example, the dielectric film 160 may include silicon rubber, teflon, PDMS, PVD, kapton, polypropylene, polyethylene, PVC, polyformaldehyde, ethylcellulose, polyamide, wool, silk, or PVA. The energy harvester 100 e may further include at least one spacer 170 (see FIG. 1) provided between the first and second substrates 110 and 120. For example, the spacer 170 may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet. However, this exemplary embodiment is not limited thereto.
  • In the above structure, when a mechanical force caused by the movement of the mass M is applied to the energy harvester 100 e, electric energy may be generated by piezoelectricity caused by the deformation of the piezoelectric nanowires 150, and electric energy may be generated by triboelectricity caused by a change in the distance between the dielectric film 160 and the first electrode 112. The energy harvester 100 e may have a single-layer structure including one hybrid electric generator, or may have a multi-layer structure including a stack of a plurality of hybrid electric generators. It is also possible to implement an energy harvester that has a multi-layer structure including a stack of at least two of the piezoelectric generator, the triboelectric generator, and the hybrid electric generator.
  • FIG. 8 is a perspective view of a mobile device including an energy harvester according to another exemplary embodiment. FIG. 9 is a cross-sectional view of the mobile device illustrated in FIG. 8.
  • Referring to FIGS. 8 and 9, the mobile device includes a mass M and an energy harvester 200 configured to generate electric energy by the movement of the mass M. The mobile device may be, for example, a device attached to a human body. For example, the mobile device may include a smart watch, and may also include an MP3 player, a Bluetooth device, a mobile phone, a radio, a biosensor, a position sensor, a body temperature sensor, or a blood pressure sensor, which are attached to a human body. However, this exemplary embodiment is not limited thereto. The mass M is a mobile device body. The mass M is connected to the energy harvester 200 to apply a mechanical force to the energy harvester 200 by the movement thereof. The energy harvester 200 generates electric energy by using the mechanical force generated by the movement of the mass M.
  • The energy harvester 200 may have a band-type structure. In detail, the energy harvester 200 includes: first and second substrates 210 and 220 spaced apart from each other; first and second electrodes (not illustrated) provided on the first and second substrates 210 and 220; and an energy generator (not illustrated) provided between the first and second electrodes. At least one of the first and second substrates 210 and 220 may be connected to the mass M. FIG. 9 illustrates a case where the mass M is connected to the second substrate 220. In other examples, the mass M may be connected to the first substrate 210.
  • The first and second substrates 210 and 220 may have a band-type structure. For example, the first and second substrates 210 and 220 may include a flexible material such as plastic, textile, or metal foil. However, this exemplary embodiment is not limited thereto, and the first and second substrates 210 and 220 may include various other materials. The first and second electrodes are provided on the first and second substrates 210 and 220. For example, the first and second electrodes may include a flexible conductive material, such as graphene, CNT, ITO, metal, or conductive polymer. However, this exemplary embodiment is not limited thereto. The energy generator is provided between the first and second electrodes. The energy generator may be a piezoelectric generator, a triboelectric generator, or a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator. Since the energy generator has been described in detail in the above-described embodiments, a description thereof will be omitted here.
  • In the above mobile device, when the mobile device body that is the mass M is moved horizontally or vertically by, for example, the movement of a human body, a mechanical force caused by the movement of the mass M is applied to the energy harvester 200. The energy harvester 200 may generate electric energy by using the applied mechanical force.
  • FIG. 10 is a view illustrating a state in which the mobile device illustrated in FIG. 8 is worn on a wrist. A representative example of the mobile device illustrated in FIG. 10 may be a smart watch. In this case, the mass M may be a watch body, and the band-type energy harvester 100 may be a watchband that is worn on the wrist. In the state illustrated in FIG. 10, when the wrist is moved, the mass M is moved and a mechanical force caused by the movement of the mass M is applied to the energy harvester 100. The energy harvester 100 may generate electric energy by using the mechanical force of the mass M. The generated electric energy may be supplied to the watch body, or may be stored in a battery. In addition to the smart watch, the mobile device may include an MP3 player, a Bluetooth device, a mobile phone, a radio, a biosensor, a position sensor, a body temperature sensor, or a blood pressure sensor, which are attached to a human body.
  • FIG. 11 is a cross-sectional view of a mobile device including an energy harvester 500 according to another exemplary embodiment.
  • Referring to FIG. 11, the mobile device includes a mass M and an energy harvester 500 configured to generate electric energy by the movement of the mass M. The energy harvester 500 generates electric energy by using a mechanical force generated by the movement of the mass M.
  • The energy harvester 500 may have a band-type structure. In detail, the energy harvester 500 includes: first and second substrates 510 and 520 spaced apart from each other; first and second electrodes (not illustrated) provided on the first and second substrates 510 and 520; an energy generator (not illustrated) provided between the first and second electrodes; and at least one spacer 570 provided on the first and second substrates 510 and 520. At least one of the first and second substrates 510 and 520 may be connected to the mass M. Since the first and second substrates 510 and 520 and the first and second electrodes have been described above, a description thereof will be omitted here. The energy generator may be a piezoelectric generator, a triboelectric generator, or a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator. Since the energy generator has been described in detail in the above-described embodiments, a description thereof will be omitted here.
  • The spacer 570 is provided between the first and second substrates 510 and 520 to maintain a constant distance between the first and second substrates 510 and 520. The spacer 570 may include, for example, an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet, but is not limited thereto. When the spacer 570 is disposed between the first and second substrates 510 and 520, the mechanical force caused by the movement of the mass M may be more effectively transmitted to the energy harvester 500 to generate electric energy.
  • FIG. 12 is a perspective view of a mobile device including an energy harvester 300 according to another exemplary embodiment. FIG. 13 is a cross-sectional view of the energy harvester 300 illustrated in FIG. 12, which is taken along a line B-B′ of FIG. 12.
  • Referring to FIGS. 12 and 13, the mobile device includes a mass M and an energy harvester 300 configured to generate electric energy by the movement of the mass M. The mobile device may be, for example, a device attached to a human body, but is not limited thereto. The mass M is a mobile device body. The mass M is connected to the energy harvester 300 to apply a mechanical force to the energy harvester 300 by the movement thereof. The energy harvester 300 generates electric energy by using the mechanical force generated by the movement of the mass M.
  • The energy harvester 300 may have a core-shell structure. In detail, the energy harvester 300 includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320; and an energy generator provided between the first and second electrodes 312 and 322. At least one of the first and second substrates 310 and 320 may be connected to the mass M.
  • The first and second substrates 310 and 320 may have a core-shell structure. The first substrate 310 may be a wire-shaped core. Although not illustrated in FIGS. 12 and 13, the first substrate 310 may be a tube-shaped core. The second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310. The first and second substrates 310 and 320 may include a flexible material. The first and second substrates 310 and 320 may include, for example, plastic, textile, fiber, or metal, but they are not limited thereto.
  • The first electrode 312 is provided on the outer surface of the first substrate 310, and the second electrode 322 is provided on the inner surface of the second substrate 320. The first and second electrodes 312 and 322 may include a flexible conductive material. For example, the first and second electrodes 312 and 322 may include graphene, CNT, ITO, metal, or conductive polymer. However, this exemplary embodiment is not limited thereto. The metal may include, for example, Ag, Al, Cu, or Au, and may also include other materials.
  • The energy generator is provided between the first and second electrodes 312 and 322. The energy generator may be a triboelectric generator. The triboelectric generator includes: a first triboelectric layer 313 provided on the first electrode 312; and a second triboelectric layer 323 provided on the second electrode 322. The first triboelectric layer 313 may include a first dielectric or a metal, and the second triboelectric layer 323 may include a second dielectric that is different from the first dielectric. The first triboelectric layer 313 may include a material that tends to be positively charged, such as, for example, polyformaldehyde, ethylcellulose, polyamide, wool, silk, Al, paper, cotton, steel, wood, Ni, Cu, Ag, or PVA. The second triboelectric layer 323 may include a material that tends to be negatively charged, such as silicon rubber, teflon, PDMS, kapton, polypropylene, polyethylene, or PVC. However, this exemplary embodiment is not limited thereto. For example, the first triboelectric layer 313 may include a material that tends to be negatively charged, and the second triboelectric layer 323 may include a material that tends to be positively charged. The first and second triboelectric layers 313 and 323 may include different materials that have a large difference in their degree of charging. The first triboelectric layer 313 and the second triboelectric layer 323 are spaced apart from each other by a predetermined distance after being charged by direct contact by an external pressure. Due to the mechanical force caused by the movement of the mass M, the first and second triboelectric layers 313 and 323 may rub against each other or the distance therebetween may be changed. In this case, a charge density difference may occur between the first and second triboelectric layers 313 and 323, thereby generating electric energy.
  • The first triboelectric layer 313 may include a plurality of first wires provided on the outer surface of the first electrode 312, and the second triboelectric layer 323 may include a plurality of second wires provided on the inner surface of the second electrode 322. The second wires are spaced apart from the first wires, and the first and second wires may be disposed alternately with each other. The first and second wires may have, for example, a nano-wire shape, but are not limited thereto. When the first and second triboelectric layers 313 and 323 include the first and second wires disposed alternately with each other, the energy harvester 300 may react to a minute external force, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently. Although not illustrated in FIGS. 12 and 13, at least one spacer may be further provided between the first and second substrates 310 and 320. The spacer functions to maintain a constant distance between the first substrate 310 and the second substrate 320. For example, the spacer may include an elastic material, such as a spring or rubber, or a magnetic material, such as a magnet. When at least one spacer is disposed between the first and second substrates 310 and 320, the mechanical force caused by the movement of the mass M may be more effectively transmitted to the energy harvester 300 to generate electric energy.
  • In the above mobile device, when the mobile device body that is the mass M is moved horizontally or vertically, a mechanical force caused by the movement of the mass M is applied to the energy harvester 300. Due to the mechanical force, the first and second triboelectric layers 313 and 323 may rub against each other or the distance therebetween may be changed. Accordingly, a charge density difference may occur between the first and second triboelectric layers 313 and 323, thereby generating electric energy. When the first and second triboelectric layers 313 and 323 include the first and second wires disposed alternately with each other, the energy harvester 300 may react to a minute movement of the mass M in various directions, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently. The generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in a battery. An exemplary case where the energy harvester 300 has a single-layer structure including one triboelectric generator has been described above. However, the energy harvester 300 may also have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 14 is a cross-sectional view of an energy harvester 300 a according to another exemplary embodiment. FIG. 14 is an enlarged view of a cross-section of an energy harvester 300 a as a modification of the energy harvester 300 illustrated in FIGS. 12 and 13, and the same is true of the following drawings. Only differences from the above embodiment will be mainly described hereinafter.
  • Referring to FIG. 14, the energy harvester 300 a includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320; and an energy generator provided between the first and second electrodes 312 and 322. The first and second substrates 310 and 320 may have a core-shell structure. The first substrate 310 may be a wire-shaped core or a tube-shaped core, and the second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310. The first electrode 312 is provided on the outer surface of the first substrate 310, and the second electrode 322 is provided on the inner surface of the second substrate 320. Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 312 and 322. The energy generator may be a triboelectric generator. The triboelectric generator includes: a first triboelectric layer 312′ provided on the first electrode 312; and a second triboelectric layer 323′ provided on the second electrode 322. The first triboelectric layer 313′ may include a first dielectric or a metal, and the second triboelectric layer 323′ may include a second dielectric that is different from the first dielectric. The first triboelectric layer 313′ and the second triboelectric layer 323′ are spaced apart from each other by a predetermined distance after being charged by direct contact by an external pressure.
  • Due to the mechanical force caused by the movement of the mass M, the first and second triboelectric layers 313′ and 323′ may rub against each other or the distance therebetween may be changed. In this case, a charge density difference may occur between the first and second triboelectric layers 313′ and 323′, thereby generating electric energy. Although not illustrated in FIG. 14, at least one spacer may be further provided between the first and second substrates 310 and 320. The energy harvester 300 a may have a single-layer structure including one triboelectric generator, or may have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 15 is a cross-sectional view of an energy harvester 300 b according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • Referring to FIG. 15, the energy harvester 300 b includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320; and an energy generator provided between the first and second electrodes 312 and 322. The first and second substrates 310 and 320 may have a core-shell structure. The first substrate 310 may be a wire-shaped core or a tube-shaped core, and the second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310. The first electrode 312 is provided on the outer surface of the first substrate 310, and the second electrode 322 is provided on the inner surface of the second substrate 320. Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 312 and 322. The energy generator may be a triboelectric generator. The triboelectric generator includes: a first triboelectric layer 313″ provided on the first electrode 312; and a second triboelectric layer 323″ provided on the second electrode 322. The first triboelectric layer 313″ may include a first dielectric or a metal, and the second triboelectric layer 323″ may include a second dielectric that is different from the first dielectric. By the mechanical force caused by the movement of the mass M, the first and second triboelectric layers 313″ and 323″ may rub against each other or the distance therebetween may be changed. In this case, a charge density difference may occur between the first and second triboelectric layers 313″ and 323″, thereby generating electric energy.
  • The surfaces of the first and second triboelectric layers 313″ and 323″ may be rough. In detail, a plurality of first protrusions may be formed on the surface of the first triboelectric layer 313″, and a plurality of second protrusions may be formed on the surface of the second triboelectric layer 323″. The first and second protrusions are spaced apart from each other, and the first and second protrusions may be disposed alternately with each other. The first and second protrusions may have, for example, a nano-pyramid shape, but are not limited thereto. When the first and second protrusions are alternately formed on the surfaces of the first and second triboelectric layers 313″ and 323″, the energy harvester 300 b may react to a minute movement of the mass M in various directions, and the area of a dielectric interface, at which friction is generated, may be increased, thus making it possible to generate electric energy more efficiently. Although not illustrated in FIG. 15, at least one spacer may be further provided between the first and second substrates 310 and 320. The energy harvester 300 b may have a single-layer structure including one triboelectric generator, or may have a multi-layer structure including a stack of a plurality of triboelectric generators.
  • FIG. 16 is a cross-sectional view of an energy harvester 300 c according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • Referring to FIG. 16, the energy harvester 300 c includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320; and an energy generator provided between the first and second electrodes 312 and 322. The first and second substrates 310 and 320 may have a core-shell structure. The first substrate 310 may be a wire-shaped core or a tube-shaped core, and the second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310. The first electrode 312 is provided on the outer surface of the first substrate 310, and the second electrode 322 is provided on the inner surface of the second substrate 320. Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 312 and 322. The energy generator may be piezoelectric generator. The piezoelectric generator includes a plurality of piezoelectric nanowires 330 provided between the first and second electrodes 312 and 322. The piezoelectric nanowires 330 may be arranged vertically or may be inclined at an angle on the outer surface of the first electrode 312. Although not illustrated in FIG. 16, an insulating layer having a high dielectric constant may be further provided on the top surface of the first electrode 312, in order to uniformly grow the piezoelectric nanowires 330. The piezoelectric nanowires 330 may include, for example, ZnO, SnO, PZT, ZnSnO3, PVDF, or P(VDF-TrFE), but are not limited thereto. Although not illustrated in FIG. 16, at least one spacer may be further provided between the first and second substrates 310 and 320.
  • In the above-described structure, when the mobile device body that is the mass M is moved, a mechanical force caused by the movement of the mass M is applied to the energy harvester 300 c. The mechanical force deforms the piezoelectric nanowires 330, and a piezoelectric potential results at both ends of the deformed piezoelectric nanowires 330, thereby generating electric energy. The generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in the battery. The energy harvester 300 c may have a single-layer structure including one piezoelectric generator, or may have a multi-layer structure including a stack of a plurality of piezoelectric generators.
  • FIG. 17 is a cross-sectional view of an energy harvester 300 d according to another exemplary embodiment. Only differences from the above-described embodiment will be mainly described hereinafter.
  • Referring to FIG. 17, the energy harvester 300 d includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320; and an energy generator provided between the first and second electrodes 312 and 322. The first and second substrates 310 and 320 may have a core-shell structure. The first substrate 310 may be a wire-shaped core or a tube-shaped core. The second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310. The first electrode 312 is provided on the outer surface of the first substrate 310, and the second electrode 322 is provided on the inner surface of the second substrate 320. Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 312 and 322. The energy generator may be piezoelectric generator. The piezoelectric generator includes a piezoelectric thin-film layer 340. The piezoelectric thin-film layer 340 is deformed by a mechanical force generated by the movement of the mass M, thereby causing a piezoelectric potential to be generated between the top and bottom of the piezoelectric thin-film layer 340. The piezoelectric thin-film layer 340 may include an inorganic material or an organic material. The piezoelectric thin-film layer 340 may include, for example, ZnO, ZnSnO3, SnO, BaTiO3, NaNbO3, PZT, PVDF, or P(VDF-TrFE), but is not limited thereto. Although not illustrated in FIG. 17, at least one spacer may be further provided between the first and second substrates 310 and 320. The energy harvester 300 d may have a single-layer structure including one piezoelectric generator, or may have a multi-layer structure including a stack of a plurality of piezoelectric generators.
  • FIG. 18 is a cross-sectional view of an energy harvester 300 e according to another exemplary embodiment. Only differences from the above embodiment will be mainly described hereinafter.
  • Referring to FIG. 18, the energy harvester 300 e includes: first and second substrates 310 and 320 spaced apart from each other; first and second electrodes 312 and 322 provided on the first and second substrates 310 and 320; and an energy generator provided between the first and second electrodes 312 and 322. The first and second substrates 310 and 320 may have a core-shell structure. The first substrate 310 may be a wire-shaped core or a tube-shaped core. The second substrate 320 may be a tube-shaped shell that surrounds the first substrate 310. The first electrode 312 is provided on the outer surface of the first substrate 310, and the second electrode 322 is provided on the inner surface of the second substrate 320. Since the first and second substrates 310 and 320 and the first and second electrodes 312 and 322 have been described above, a detailed description thereof will be omitted here.
  • The energy generator is provided between the first and second electrodes 312 and 322. The energy generator may be a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator. The hybrid electric generator includes: a plurality of piezoelectric nanowires 350 provided on the first electrode 312; and a dielectric film 360 provided on the second electrode 322.
  • The piezoelectric nanowires 350 may be arranged vertically or may be inclined at an angle on the first electrode 312. Although not illustrated in FIG. 18, an insulating layer having a high dielectric constant may be further provided on the top surface of the first electrode 312, in order to uniformly grow the piezoelectric nanowires 350. The piezoelectric nanowires 350 may include a material generating a piezoelectric potential at both ends thereof due to deformation, for example, ZnO, SnO, PZT, ZnSnO3, PVDF, or P(VDF-TrFE), but are not limited thereto. The dielectric film 360 is provided between the piezoelectric nanowires 350 and the second electrode 322. The dielectric film 360 insulates between the first electrode 312 and the second electrode 322, and generates electric energy by a charge density difference caused by a change in the distance between the dielectric film 360 and the first electrode 312. The dielectric film 360 may include an inorganic material or a polymer-based organic material. For example, the dielectric film 360 may include silicon rubber, teflon, PDMS, PVD, kapton, polypropylene, polyethylene, PVC, polyformaldehyde, ethylcellulose, polyamide, wool, silk, or PVA. Although not illustrated in FIG. 18, at least one spacer may be further provided between the first and second substrates 310 and 320.
  • In the above-described structure, when a mechanical force caused by the movement of the mass M is applied to the energy harvester 300 e, electric energy may be generated by piezoelectricity caused by the deformation of the piezoelectric nanowires 350, and electric energy may be generated by triboelectricity caused by a change in the distance between the dielectric film 360 and the first electrode 312. The energy harvester 300 e may have a single-layer structure including one hybrid electric generator, or may have a multi-layer structure including a stack of a plurality of hybrid electric generators. It is also possible to implement an energy harvester that has a multi-layer structure including a stack of at least two of the piezoelectric generator, the triboelectric generator, and the hybrid electric generator.
  • FIG. 19 is a perspective view of a mobile device including a plurality of energy harvesters 400 according to another exemplary embodiment.
  • Referring to FIG. 19, the mobile device includes a mass M and a plurality of energy harvesters 400 connected to each other to generate electric energy by the movement of the mass M. The mass M is a mobile device body. The mass M is connected to at least one of the energy harvesters 400 to apply a mechanical force to the energy harvesters 400 by the movement thereof. Each of the energy harvesters 400 generates electric energy by using a mechanical force generated by the movement of the mass M. The energy harvesters 400 may be connected to each other to have a band-type structure.
  • Each of the energy harvesters 300 b may include at least one of a piezoelectric generator, a triboelectric generator, and a hybrid electric generator that includes a combination of a piezoelectric generator and a triboelectric generator. Since the energy harvester has been described in detail in the above-described embodiments, a description thereof will be omitted here.
  • In the above structure, when the mass M is moved by the movement of a human body, a mechanical force is applied to the energy harvesters 400 connected to the mass M, and the surrounding energy harvesters 400, and each of the energy harvesters 400 may generate electric energy by using the mechanical force. When the energy harvesters 400 are electrically connected in series to each other, more electric energy may be generated. The generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in the battery.
  • As described above, according to the one or more of the above exemplary embodiments, when the mobile device body that is the mass is moved by the movement of a human body, the energy harvester may generate electric energy by using the mechanical force applied by the movement of the mass. The generated electric energy may be supplied to the mobile device body that is the mass M, or may be stored in the battery. The mobile device may be applied to various fields, such as, for example, a smart watch, an MP3 player, a Bluetooth device, a mobile phone, a radio, a biosensor, a position sensor, a body temperature sensor, and a blood pressure sensor, which are attached to a human body. While the exemplary embodiments have been described above, those of ordinary skill in the art will understand that various modifications may be made in the embodiments.
  • It should be understood that the exemplary embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments.

Claims (20)

What is claimed is:
1. An energy harvester comprising:
a first substrate and a second substrate spaced apart from the first substrate, wherein one of the first substrate and the second substrate is configured to be connected to a mass;
a first electrode provided on the first substrate and a second electrode disposed on the second substrate; and
an energy generator provided between the first electrode and the second electrode;
wherein the energy generator generates electric energy upon a relative movement between the first substrate and the second substrate caused by a movement of the mass.
2. The energy harvester of claim 1, wherein the first substrate and the second substrate each are in the shape of a band-type structure, a flat-plate structure, or a core-shell structure.
3. The energy harvester of claim 1, wherein the energy generator comprises at least one of a piezoelectric generator and a triboelectric generator.
4. The energy harvester of claim 3, wherein the energy generator comprises a plurality of piezoelectric nanowires provided between the first substrate and the second substrate.
5. The energy harvester of claim 4, wherein the energy generator further comprises a dielectric film provided between the second electrode and the plurality of piezoelectric nanowires.
6. The energy harvester of claim 3, wherein the energy generator comprises a piezoelectric thin-film layer provided between the first electrode and the second electrode.
7. The energy harvester of claim 3, wherein the energy generator comprises:
a first triboelectric layer provided on the first electrode and comprising one of a first dielectric and a metal; and
a second triboelectric layer provided on the second electrode and comprising a second dielectric that is different from the first dielectric.
8. The energy harvester of claim 7, wherein the energy generator further comprises a plurality of first protrusions disposed on a surface of the first triboelectric layer, and a plurality of second protrusions disposed on a surface of the second triboelectric layer.
9. The energy harvester of claim 7, wherein the first triboelectric layer comprises a plurality of first wires provided on the first electrode, and the second triboelectric layer comprises a plurality of second wires provided on the second electrode.
10. The energy harvester of claim 1, further comprising at least one spacer provided between the first substrate and the second substrate, wherein the at least one spacer maintains a distance between the first substrate and the second.
11. A mobile device comprising:
a mobile device body; and
an energy harvester connected to the mobile device body, wherein the energy harvester generates electric energy based on a movement of the mobile device body,
wherein the energy harvester comprises:
a first substrate and a second substrate spaced apart from the first substrate, wherein one of the first substrate and the second substrate is connected to the mobile device body;
a first electrode provided on the first substrate and a second electrode provided on the second substrate; and
an energy generator provided between the first electrode and the second electrode, wherein the energy generator generates electric energy upon a relative movement between the first substrate and the second substrate caused by a movement of the mobile device body.
12. The mobile device of claim 11, wherein the first substrate and the second substrate each are in the shape of a band-type structure, a flat-plate structure, or a core-shell structure.
13. The mobile device of claim 11, wherein the energy generator comprises at least one of a piezoelectric generator and a triboelectric generator.
14. The mobile device of claim 13, wherein the energy generator comprises a plurality of piezoelectric nanowires provided between the first substrate and the second substrate.
15. The mobile device of claim 14, wherein the energy generator further comprises a dielectric film provided between the second electrode and the plurality of piezoelectric nanowires.
16. The mobile device of claim 13, wherein the energy generator comprises a piezoelectric thin-film layer provided between the first electrode and the second electrode.
17. The mobile device of claim 13, wherein the energy generator comprises:
a first triboelectric layer provided on the first electrode and comprising one of a first dielectric and a metal; and
a second triboelectric layer provided on the second electrode and comprising a second dielectric that is different from the first dielectric.
18. The mobile device of claim 11, wherein the energy generator further comprises a plurality of first protrusions disposed on a surface of the first triboelectric layer, and a plurality of second protrusions disposed on a surface of the second triboelectric layer.
19. A mobile device comprising:
a mobile device body; and
a plurality of energy harvesters connected to each other, wherein at least one of the energy harvesters is connected to the mobile device body and generates electric energy based on a movement of the mobile device body,
wherein the at least one energy harvester comprises:
a first substrate and a second substrate spaced apart from the first substrate, wherein one of the first substrate and the second substrate is connected to the mobile device body;
a first electrode provided on the first substrate and a second electrode provided on the second substrate; and
an energy generator provided between the first electrode and the second electrode, wherein the energy generator generates electric energy upon a relative movement between the first substrate and the second substrate caused by a movement of the mobile device body.
20. The mobile device of claim 19, wherein the energy generator comprises at least one of a piezoelectric generator and a triboelectric generator.
US14/080,318 2013-06-28 2013-11-14 Energy harvester using mass and mobile device including the energy harvester Active 2035-01-15 US9444031B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140061166A KR102302731B1 (en) 2013-06-28 2014-05-21 Energy harvester using mass and mobile device having the energy harvester
US14/540,622 US9837933B2 (en) 2013-06-28 2014-11-13 Energy harvester using mass and mobile device including the energy harvester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0075942 2013-06-28
KR20130075942 2013-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/540,622 Continuation-In-Part US9837933B2 (en) 2013-06-28 2014-11-13 Energy harvester using mass and mobile device including the energy harvester

Publications (2)

Publication Number Publication Date
US20150001993A1 true US20150001993A1 (en) 2015-01-01
US9444031B2 US9444031B2 (en) 2016-09-13

Family

ID=52114918

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/080,318 Active 2035-01-15 US9444031B2 (en) 2013-06-28 2013-11-14 Energy harvester using mass and mobile device including the energy harvester

Country Status (2)

Country Link
US (1) US9444031B2 (en)
KR (1) KR102302731B1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140313141A1 (en) * 2013-04-23 2014-10-23 Samsung Electronics Co., Ltd. Smart apparatus having touch input module and energy generating device, and operating method of the smart apparatus
US20150194910A1 (en) * 2014-01-09 2015-07-09 Research & Business Foundation Sungkyunkwan University Hybrid power generating device
US20160087552A1 (en) * 2014-09-23 2016-03-24 Research & Business Foundation Sungkyunkwan University Self-repairing energy generating element using shape memory polymer
CN105680723A (en) * 2016-04-18 2016-06-15 苏州大学 Composite wind energy collector
US20160233792A1 (en) * 2015-02-11 2016-08-11 Samsung Electronics Co., Ltd. Energy Harvester
US20170149358A1 (en) * 2014-07-15 2017-05-25 Korea Electronics Technology Institute Electrode stacked energy conversion device using liquid
US20180013358A1 (en) * 2016-07-07 2018-01-11 Wisconsin Alumni Research Foundation Cellulose Composite-Structured Triboelectric Generator And Method
US20180035793A1 (en) * 2014-02-12 2018-02-08 Lenovo (Singapore) Pte. Ltd. Activity powered band device
US20180252947A1 (en) * 2015-02-20 2018-09-06 Monash University Carbon-Based Surface Plasmon Source And Applications Thereof
WO2018127839A3 (en) * 2017-01-06 2018-09-20 Sabic Global Technologies B.V. Triboelectric sensor with haptic feedback
JP2018538777A (en) * 2015-12-24 2018-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Triboelectric energy generator
US20190006961A1 (en) * 2017-06-30 2019-01-03 Toyota Motor Engineering & Manufacturing North America, Inc. Triboelectric generator and network for mechanical energy harvesting
CN109606127A (en) * 2018-12-20 2019-04-12 刘山平 A kind of new-energy automobile
CN111641352A (en) * 2020-06-23 2020-09-08 长江师范学院 Self-powered nano sensor based on piezoelectric-friction coupling effect
US10931209B2 (en) 2016-06-29 2021-02-23 Samsung Electronics Co., Ltd. Energy harvester using triboelectricity and apparatus including the same
US11114955B2 (en) * 2017-11-17 2021-09-07 Clemson University Self powered wireless sensor
US20210336559A1 (en) * 2018-07-30 2021-10-28 University-Industry Cooperation Group Of Kyung Hee University Triboelectric nanogenerator using ionic elastomer
WO2021244002A1 (en) * 2020-06-02 2021-12-09 苏州大学 Triboelectric nanogenerator-based biochemical droplet reaction device and method
US20220052628A1 (en) * 2018-11-27 2022-02-17 University Of Surrey Triboelectric Generator
US11527967B2 (en) * 2018-11-05 2022-12-13 Zhejiang University Rhomboid structured triboelectric nanogenerator based on built-in U-shaped support

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584896B1 (en) * 2014-06-11 2016-01-15 경희대학교 산학협력단 Transparent Triboelectric Nano Generating Element and Generating Unit Using The Same
US11554576B2 (en) 2017-01-26 2023-01-17 Face International Corporation Energy harvesting methods for providing autonomous electrical power to mobile devices
US20160306078A1 (en) 2015-04-14 2016-10-20 Face International Corporation Systems and methods for producing laminates, layers and coatings including elements for scattering and passing selective wavelengths of electromagnetic energy
KR102471508B1 (en) * 2015-08-18 2022-11-28 삼성전자 주식회사 Mobile apparatus and power generating apparatus
US10985677B2 (en) 2017-04-10 2021-04-20 Face International Corporation Systems and devices powered by autonomous electrical power sources
US9793317B1 (en) 2016-04-09 2017-10-17 Face International Corporation Devices and systems incorporating energy harvesting components/devices as autonomous energy sources and as energy supplementation, and methods for producing devices and systems incorporating energy harvesting components/devices
US10056538B1 (en) 2016-04-09 2018-08-21 Face International Corporation Methods for fabrication, manufacture and production of energy harvesting components and devices
US9893261B1 (en) 2017-04-10 2018-02-13 Face International Corporation Structurally embedded and inhospitable environment systems and devices having autonomous electrical power sources
US10079561B1 (en) 2016-04-09 2018-09-18 Face International Corporation Energy harvesting components and devices
US9786718B1 (en) 2016-04-09 2017-10-10 Face International Corporation Integrated circuit components incorporating energy harvesting components/devices, and methods for fabrication, manufacture and production of integrated circuit components incorporating energy harvesting components/devices
CN105680717B (en) * 2016-04-18 2017-06-20 苏州大学 A kind of vane type composite wind pwoer energy harvester
KR20190058187A (en) 2017-11-21 2019-05-29 제주대학교 산학협력단 Pouch type triboelectric nanogenerator and manufacturing method of the same
US11095234B2 (en) * 2018-11-26 2021-08-17 Purdue Research Foundation Triboelectric nanogenerators
US11696509B2 (en) 2018-11-26 2023-07-04 Nano And Advanced Materials Institute Limited Flexible electric generator for generating electric power
WO2021081748A1 (en) * 2019-10-29 2021-05-06 浙江大学 Self-driving sensor capable of being used for testing in real time lateral resistance and end resistance of marine pipe pile, and testing device
CN111245081B (en) * 2020-01-21 2023-06-20 电子科技大学 Self-powered automobile exhaust sensor and method
US20220255463A1 (en) * 2021-02-10 2022-08-11 Lawrence Livermore National Security, Llc Artificial air gap triboelectric device for applications in sensors, power generation and energy harvesting

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090295257A1 (en) * 2008-05-27 2009-12-03 Georgia Tech Research Corporation Hybrid Solar Nanogenerator Cells
US20090309458A1 (en) * 2008-06-13 2009-12-17 Hon Hai Precision Industry Co., Ltd. Nanogenerator
US20120007470A1 (en) * 2009-03-18 2012-01-12 Fujitsu Limited Piezoelectric generating apparatus
WO2012091405A2 (en) * 2010-12-31 2012-07-05 인하대학교 산학협력단 Flag-type hybrid solar cell in which a solar cell using a nanowire and a nanogenerator using the piezoelectric effect are coupled together, and method for manufacturing same
US20120223617A1 (en) * 2011-03-03 2012-09-06 Samsung Electronics Co., Ltd. Electrical energy generator
US20130106244A1 (en) * 2011-10-28 2013-05-02 Xi'an Jiaotong University Flexible Micro Bumps Operably Coupled to an Array of Nano-Piezoelectric Sensors
US20140028569A1 (en) * 2012-07-24 2014-01-30 David Brent GUARD Dielectric Layer for Touch Sensor Stack
US8786246B2 (en) * 2007-04-04 2014-07-22 Tuen Solutions Limited Liability Company Power resource management
US20140342192A1 (en) * 2011-09-13 2014-11-20 Georgia Tech Research Corporation Self-Charging Powerpack

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH587975A4 (en) 1975-05-07 1977-05-31
US6911764B2 (en) 2000-02-09 2005-06-28 Sri International Energy efficient electroactive polymers and electroactive polymer devices
US6586095B2 (en) 2001-01-12 2003-07-01 Georgia Tech Research Corp. Semiconducting oxide nanostructures
US8003982B2 (en) 2005-12-20 2011-08-23 Georgia Tech Research Corporation Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts
US8330154B2 (en) 2005-12-20 2012-12-11 Georgia Tech Research Corporation Piezoelectric and semiconducting coupled nanogenerators
US7777396B2 (en) * 2006-06-06 2010-08-17 Omnitek Partners Llc Impact powered devices
TW200913653A (en) 2007-09-12 2009-03-16 da-peng Zheng Watch-type body-temperature-charged interruption-free mobile phone device
US7982370B2 (en) 2007-09-12 2011-07-19 Georgia Tech Research Corporation Flexible nanogenerators
KR101007197B1 (en) 2008-12-31 2011-01-12 계명대학교 산학협력단 Apparatus for generating ultrasonics wave using piezoelectric sensor as band type
TW201031530A (en) 2009-02-27 2010-09-01 Walton Advanced Eng Inc Pen with USB storage device
KR101562060B1 (en) * 2009-04-06 2015-10-21 삼성전자주식회사 Apparatus for generating electrical energy and method for manufacturing the same
KR101539670B1 (en) 2009-10-13 2015-07-27 삼성전자주식회사 Apparatus for generating electrical energy
JP2011192533A (en) 2010-03-15 2011-09-29 Hitachi Cable Ltd Bend resistant cable
KR20110135293A (en) 2010-06-10 2011-12-16 삼성전자주식회사 Manufacturing method of p-type zn oxide nanowires and electronic device comprising p-type zn oxide nanowires
KR101146439B1 (en) 2010-06-18 2012-05-18 연세대학교 산학협력단 Energy harvesting device using the Human body-Environment relationship
KR101727252B1 (en) 2010-12-17 2017-05-02 한국전자통신연구원 Piezoelectric Energy Harvesting Apparatus
KR101920730B1 (en) 2011-08-08 2018-11-22 삼성전자주식회사 ZnSnO3/ZnO nanowire having core-shell structure, method of forming ZnSnO3/ZnO nanowire and nano generator including ZnSnO3/ZnO nanowire, and method of forming ZnSnO3 nanowire and nano generator including ZnSnO3 nanowire
KR101946013B1 (en) 2011-12-23 2019-02-11 삼성전자주식회사 Apparatus for generation and storage of electric energy
KR101998339B1 (en) 2012-11-16 2019-07-09 삼성전자주식회사 Method for controlling growth crystallographic plane of metal oxide semiconductor and metal oxide semiconductor structure having controlled growth crystallographic plane

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8786246B2 (en) * 2007-04-04 2014-07-22 Tuen Solutions Limited Liability Company Power resource management
US20090295257A1 (en) * 2008-05-27 2009-12-03 Georgia Tech Research Corporation Hybrid Solar Nanogenerator Cells
US20090309458A1 (en) * 2008-06-13 2009-12-17 Hon Hai Precision Industry Co., Ltd. Nanogenerator
US20120007470A1 (en) * 2009-03-18 2012-01-12 Fujitsu Limited Piezoelectric generating apparatus
WO2012091405A2 (en) * 2010-12-31 2012-07-05 인하대학교 산학협력단 Flag-type hybrid solar cell in which a solar cell using a nanowire and a nanogenerator using the piezoelectric effect are coupled together, and method for manufacturing same
US20120223617A1 (en) * 2011-03-03 2012-09-06 Samsung Electronics Co., Ltd. Electrical energy generator
US20140342192A1 (en) * 2011-09-13 2014-11-20 Georgia Tech Research Corporation Self-Charging Powerpack
US20130106244A1 (en) * 2011-10-28 2013-05-02 Xi'an Jiaotong University Flexible Micro Bumps Operably Coupled to an Array of Nano-Piezoelectric Sensors
US20140028569A1 (en) * 2012-07-24 2014-01-30 David Brent GUARD Dielectric Layer for Touch Sensor Stack

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140313141A1 (en) * 2013-04-23 2014-10-23 Samsung Electronics Co., Ltd. Smart apparatus having touch input module and energy generating device, and operating method of the smart apparatus
US20150194910A1 (en) * 2014-01-09 2015-07-09 Research & Business Foundation Sungkyunkwan University Hybrid power generating device
US10236794B2 (en) * 2014-01-09 2019-03-19 Research & Business Foundation Sungkyunkwan University Hybrid power generating device
US20180035793A1 (en) * 2014-02-12 2018-02-08 Lenovo (Singapore) Pte. Ltd. Activity powered band device
US10492594B2 (en) * 2014-02-12 2019-12-03 Lenovo (Singapore) Pte. Ltd. Activity powered band device
US10291153B2 (en) * 2014-07-15 2019-05-14 Korea Electronics Technology Institute Electrode stacked energy conversion device using liquid
US20170149358A1 (en) * 2014-07-15 2017-05-25 Korea Electronics Technology Institute Electrode stacked energy conversion device using liquid
US10432111B2 (en) * 2014-09-23 2019-10-01 Research & Business Foundation Sungkyunkwan University Self-repairing energy generating element using shape memory polymer
US20160087552A1 (en) * 2014-09-23 2016-03-24 Research & Business Foundation Sungkyunkwan University Self-repairing energy generating element using shape memory polymer
US20160233792A1 (en) * 2015-02-11 2016-08-11 Samsung Electronics Co., Ltd. Energy Harvester
WO2016129817A1 (en) * 2015-02-11 2016-08-18 Samsung Electronics Co., Ltd. Energy harvester
US10103648B2 (en) * 2015-02-11 2018-10-16 Samsung Electronics Co., Ltd. Energy harvester
US10459257B2 (en) * 2015-02-20 2019-10-29 Monash University Carbon-based surface plasmon source and applications thereof
US20180252947A1 (en) * 2015-02-20 2018-09-06 Monash University Carbon-Based Surface Plasmon Source And Applications Thereof
JP2018538777A (en) * 2015-12-24 2018-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Triboelectric energy generator
US11569760B2 (en) 2015-12-24 2023-01-31 Koninklijke Philips N.V. Power generation or conversion system
JP7030697B2 (en) 2015-12-24 2022-03-07 コーニンクレッカ フィリップス エヌ ヴェ Triboelectric energy generator
CN105680723A (en) * 2016-04-18 2016-06-15 苏州大学 Composite wind energy collector
US10931209B2 (en) 2016-06-29 2021-02-23 Samsung Electronics Co., Ltd. Energy harvester using triboelectricity and apparatus including the same
US20180013358A1 (en) * 2016-07-07 2018-01-11 Wisconsin Alumni Research Foundation Cellulose Composite-Structured Triboelectric Generator And Method
US10622918B2 (en) * 2016-07-07 2020-04-14 Wisconsin Alumni Research Foundation Cellulose composite-structured triboelectric generator and method
WO2018127839A3 (en) * 2017-01-06 2018-09-20 Sabic Global Technologies B.V. Triboelectric sensor with haptic feedback
US20190354222A1 (en) * 2017-01-06 2019-11-21 Sabic Global Technologies B.V. Triboelectric sensor with haptic feedback
CN110383215A (en) * 2017-01-06 2019-10-25 沙特基础工业全球技术公司 Friction electric transducer with touch feedback
US20190006961A1 (en) * 2017-06-30 2019-01-03 Toyota Motor Engineering & Manufacturing North America, Inc. Triboelectric generator and network for mechanical energy harvesting
US10804818B2 (en) * 2017-06-30 2020-10-13 Toyota Motor Engineering & Manufacturing North America, Inc. Triboelectric generator and network for mechanical energy harvesting
US11114955B2 (en) * 2017-11-17 2021-09-07 Clemson University Self powered wireless sensor
US20210336559A1 (en) * 2018-07-30 2021-10-28 University-Industry Cooperation Group Of Kyung Hee University Triboelectric nanogenerator using ionic elastomer
US11527967B2 (en) * 2018-11-05 2022-12-13 Zhejiang University Rhomboid structured triboelectric nanogenerator based on built-in U-shaped support
US20220052628A1 (en) * 2018-11-27 2022-02-17 University Of Surrey Triboelectric Generator
US11881793B2 (en) * 2018-11-27 2024-01-23 University Of Surrey Triboelectric generator
CN109606127A (en) * 2018-12-20 2019-04-12 刘山平 A kind of new-energy automobile
WO2021244002A1 (en) * 2020-06-02 2021-12-09 苏州大学 Triboelectric nanogenerator-based biochemical droplet reaction device and method
US11666905B2 (en) 2020-06-02 2023-06-06 Soochow University Triboelectric nanogenerator-based biochemical droplet reaction device and method
CN111641352A (en) * 2020-06-23 2020-09-08 长江师范学院 Self-powered nano sensor based on piezoelectric-friction coupling effect

Also Published As

Publication number Publication date
US9444031B2 (en) 2016-09-13
KR20150002452A (en) 2015-01-07
KR102302731B1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US9444031B2 (en) Energy harvester using mass and mobile device including the energy harvester
US9837933B2 (en) Energy harvester using mass and mobile device including the energy harvester
US10103648B2 (en) Energy harvester
US10770637B2 (en) Energy harvester
Wang et al. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors
US11101747B2 (en) Textile-based energy generator
Gong et al. Toward soft skin‐like wearable and implantable energy devices
Kang et al. Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting E‐skin
Wu et al. Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability
Lin et al. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging
Lu et al. Flexible and stretchable electronics paving the way for soft robotics
Wu et al. Based triboelectric nanogenerators made of stretchable interlocking kirigami patterns
Li et al. Materials and designs for power supply systems in skin-interfaced electronics
Luo et al. Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology
Zeng et al. Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications
US8536760B1 (en) Ball-electric power generator
EP2290718B1 (en) Apparatus for generating electrical energy and method for manufacturing the same
US9112432B2 (en) Piezoelectric generator and method of manufacturing the same
Sharma et al. Flexible and stretchable oxide electronics
US20140313141A1 (en) Smart apparatus having touch input module and energy generating device, and operating method of the smart apparatus
WO2015024369A1 (en) Skin-based electrical signal output device and electrical signal output method
US11696509B2 (en) Flexible electric generator for generating electric power
Waqar et al. Piezoelectric energy harvesting from intelligent textiles
CN105091913A (en) Sensor and sensing method based on electrostatic induction
WO2017121079A1 (en) Power generator, manufacturing method, and electronic device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, YOUNG-JUN;HEO, JIN S.;REEL/FRAME:031604/0839

Effective date: 20131031

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8