US20140358047A1 - End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure and arterial pressure - Google Patents

End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure and arterial pressure Download PDF

Info

Publication number
US20140358047A1
US20140358047A1 US14/292,578 US201414292578A US2014358047A1 US 20140358047 A1 US20140358047 A1 US 20140358047A1 US 201414292578 A US201414292578 A US 201414292578A US 2014358047 A1 US2014358047 A1 US 2014358047A1
Authority
US
United States
Prior art keywords
individual
cpr
etco
value
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/292,578
Inventor
Keith Lurie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZOLL Medical Corp
Original Assignee
ResQSystems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201361829176P priority Critical
Application filed by ResQSystems Inc filed Critical ResQSystems Inc
Priority to US14/292,578 priority patent/US20140358047A1/en
Assigned to ResQSystems, Inc. reassignment ResQSystems, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LURIE, KEITH
Publication of US20140358047A1 publication Critical patent/US20140358047A1/en
Assigned to ZOLL MEDICAL CORPORATION reassignment ZOLL MEDICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADVANCED CIRCULATORY SYSTEMS INC
Assigned to ZOLL MEDICAL CORPORATION reassignment ZOLL MEDICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ResQSystems, Inc.
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Measuring bioelectric signals of the body or parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation
    • A61H31/004Heart stimulation
    • A61H31/005Heart stimulation with feedback for the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0048Mouth-to-mouth respiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3987Heart defibrillators characterised by the timing or triggering of the shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/20Blood composition characteristics
    • A61H2230/205Blood composition characteristics partial CO2-value
    • A61H2230/206Blood composition characteristics partial CO2-value used as a control parameter for the apparatus

Abstract

End-tidal carbon dioxide (ETCO2) measurements may be used alone as a guide to determine when to defibrillate an individual. Alternatively, ETCO2 measurements may be used in combination with amplitude spectral area measurements as a guide to determine when to defibrillate an individual.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to co-pending U.S. Prov. Pat. App. Ser. No. 61/829,176 filed 30 May 2013, entitled END TIDAL CARBON DIOXIDE AND AMPLITUDE SPECTRAL AREA AS NON-INVASIVE MARKERS OF CORONARY PERFUSION PRESSURE AND ARTERIAL PRESSURE, the entire disclosure of which is hereby incorporated by reference, for all purposes, as if fully set forth herein.
  • SUMMARY
  • Amplitude Spectrum Area (AMSA) values during ventricular fibrillation (VF) correlate with myocardial energy stores and predict defibrillation success. AMSA calculations however require particular hardware and/or software, and are clinically not used to determine an optimal time to deliver a defibrillation shock. By contrast, end tidal CO2 (ETCO2) values provide a non-invasive assessment of circulation during cardiopulmonary resuscitation (CPR). Accordingly, it is contemplated that ETCO2 measurements alone or in combination with AMSA values may be utilized as a non-invasive means to determine an optimal time to deliver defibrillation during cardiac arrest and CPR. This is supported by acquired data that demonstrates a positive correlation between AMSA and ETCO2, as discussed throughout. In particular, it has been demonstrated that AMSA and ETCO2 correlate with each other and can be used to correlate with myocardial perfusion. This correlation may be used as a way to provide additional support for more widespread use of ETCO2 to help guide defibrillation therapy.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows blood flow during multiple different CPR methods (porcine VF model).
  • FIG. 2 shows details of a model used to demonstrate AMSA and ETCO2 correlation.
  • FIG. 3 shows parameter results using three different CPR techniques.
  • FIG. 4 shows a representative spectrum from a porcine model during each of three methods of CPR.
  • FIG. 5 demonstrates a correlation between AMSA and ETCO2.
  • FIG. 6 shows results of Bland-Altman analysis indicating the 95% limits of agreement between AMSA and ETCO2 ranged from −21.4 to −33.5.
  • FIG. 7 shows an example treatment system in accordance with the present disclosure.
  • FIG. 8 shows an example computing system or device.
  • DETAILED DESCRIPTION
  • Using multiple CPR methods to generate several different levels of coronary perfusion and cerebral perfusion, a correlation between ETCO2 and AMSA values is identified. The data establishes a firm correlation between ETCO2 and AMSA, and demonstrates that ETCO2 may be useful as an independent indicator as to when to deliver a defibrillation shock. In particular, in one example embodiment, ETCO2 measurements may be used alone as a guide to determine when to defibrillate an individual. In another example embodiment, ETCO2 measurements may be used in combination with AMSA values as a guide to determine when to defibrillate an individual. Although not so limited, an appreciation of the various aspects of the disclosure may be acquired from the following description in connection with the drawings.
  • The International Consensus on Cardiopulmonary Resuscitation 2010 recommends delivering a defibrillation shock every two minutes during treatment of cardiac arrest. The magnitude of the electrical energy of the delivered shock, however, has been demonstrated to be related to the severity of post-resuscitation global myocardial dysfunction. Additionally, interruptions in precordial compressions have been determined to reduce coronary perfusion pressures (CoPP) which may compromise the success of the shocks, especially after prolonged cardiac arrest. To limit the number of unnecessary shocks and interruptions in precordial compressions, VF waveform analysis has been established to predict the success of defibrillation at any given time. Several different analysis methods have been developed and the most efficient of these methodologies is to examine the AMSA values. The technique to determine AMSA values however is generally not instantaneous due to the need to sequentially sample and filter a large amount of electrocardiographic data and then perform multiple calculations. As such, AMSA is not recommended for routine use in the guideline for defibrillation management in adult cardiac arrest in the clinical setting in or out-of-hospital.
  • Establishing an accurate and rapid method to predict the success of defibrillation may have a substantial impact on the survival outcome of a patient. Several studies have demonstrated ETCO2 values parallel changes in cardiac output, CoPP and myocardial perfusion while AMSA calculations are associated with CoPP. Since both AMSA and ETCO2 are indicated to correlate with CoPP during cardiac arrest, one aspect of the disclosure is that ETCO2 would reflect AMSA values during VF and CPR based upon the differences in flow as a consequence of the different methods of CPR. This association may provide a simple noninvasive means for medical practitioners to determine the optimal time for defibrillation. The present disclosure demonstrates a correlation between the parameters of ETCO2 and AMSA. Specifically, three CPR methods, each generating a different level of perfusion, are utilized to establish the association between ETCO2 and AMSA.
  • For example, FIG. 1 shows blood flow during CPR in the left ventricle and brain (porcine VF model) using a standard CPR procedure (STD CPR), a standard CPR procedure using an impedance threshold device (STD CPR+ITD), and an active compression-decompression CPR procedure using an impedance threshold device (ACD CPR+ITD). As shown in FIG. 1, magnitude of blood flow increases in order of: STD CPR (leftmost bar); STD CPR+ITD (middle bar); and ACD CPR+ITD (rightmost bar).
  • FIG. 2 shows detail of a swine model utilized to establish the association between ETCO2 and AMSA. Twelve female farm pigs (32±1 kg) pigs (domestic crossbreed) were fasted overnight. They were sedated with 10 ml (100 mg/ml) of intramuscular ketamine HCl (Ketaset, Fort Dodge Animal Health, Fort Dodge, Iowa). An intravenous bolus of propofol (PropoFlo, Abbott Laboratories, North Chicago, Ill.) (2-3 mg/kg) was given via a lateral ear vein and then infused at a rate of 160-200 μg/kg/min for the remainder of the preparatory phase. The animals were intubated with a 7.5 mm cuffed French endotracheal tube inflated to prevent air leaks. Positive pressure, volume control ventilation with a tidal volume of 10 ml/kg and room air was delivered with a NarkoMed 4A (North American Drager) ventilator. The respiratory rate was adjusted (average 12±2 bpm) to keep oxygen saturation above 96% and ETCO2 between 38-42 mmHg. While in a ventral recumbent position, an intracranial bolt was inserted into the animal's parietal lobe to measure intracranial pressure using a 3.5 French micromanometer pressure transducer (Miko-Tip Transducer, Millar Instruments, Inc., Houston, Tex.). The animals were then placed supine. The left femoral artery and left external jugular vein were cannulated using a modified Seldinger percutaneous technique. Central aortic blood pressures were measured continuously via a micromanometer-tipped Millar catheter placed in the chest cavity at the level of origin of the thoracic descending aorta. Central venous blood pressures were measured via a micromanometer-tipped Millar catheter placed in the superior vena cava, approximately 2 cm above the right atrium. Right atrial pressures were maintained between 5-7 mmHg during the preparatory phase. Carotid artery blood flows were measured using a bidirectional Doppler flow probe attached to the internal carotid artery (Transonic Systems, Ithaca, N.Y.). Surface ECG was also monitored continuously. A thermometer was placed in the rectum and body temperature maintained with a heating blanket between 37.0° C. and 38.0° C. during pre-study and post-ROSC phases. All data were or was digitized using a computer data analysis program (BIOPAC MP 150, BIOPAC Systems Inc., Calif.). ETCO2, tidal volume, and arterial oxygen saturation were recorded with a CO2SMO Plus (Novametrix Medical Systems, Wallingford, Conn.).
  • Following preparation, the animals were positioned for CPR and pre-arrest hemodynamic variables were measured. Ventricular fibrillation was induced in the anesthetized animal with application of a 50 Hz, 7.5 V AC electrical current through an electrophysiology catheter to the endocardial surface of the right ventricle. Propofol anesthesia was decreased to a rate of 100 μg/kg/min and remained at this level during CPR. After 6 minutes of untreated cardiac arrest, mechanical CPR via a pneumatic piston attached to a compression pad was initiated. Chest compressions were performed with a rate of 100/min and a depth of 25% of the anteroposterior diameter as previously described. All animals were ventilated during CPR with supplemental oxygen (2 LPM) with a bag-valve resuscitator at a compression to ventilation ratio of 10:1 and a tidal volume of 10 ml/kg. As shown in FIG. 2, CPR was performed for a total of 9 minutes; 3 minutes of STD CPR, 3 minutes of STD CPR+impedance threshold device (ITD) (ResQPOD, Advanced Circulatory Systems Inc., Roseville, Minn., USA), and 3 minutes of active compression decompression (ACD) CPR+ITD. The transition from one method of CPR to the next was made in an uninterrupted manner. ACD CPR was performed using a suction cup attached to the pneumatic piston as previously described. After the 9 minutes of CPR, epinephrine (40 μg/Kg) was administered intravenously and 1 minute later the pigs were defibrillated with up to 3 additional sequential 200 Joule transthoracic biphasic shocks. Following successful resuscitation and one hour of observation, the animal was given a bolus of propofol (100 mg) and euthanized with a bolus intravenous injection of 10M KCl (30 mg/Kg).
  • As part of data analysis, the electrocardiographic (ECG) signal was sampled at 300 Hz and stored in 1.6 second increments such that each 4 second wavelet was processed at intervals of 1.6 seconds. The ECG signal was filtered between 3 and 30 Hz to minimize low frequency artifacts produced by precordial compression and to exclude the electrical interference of ambient noise at frequencies greater than 48 Hz. Analog ECG signals were digitized and converted from a time domain to a frequency domain by fast Fourier transformation via a computer data analysis program (BIOPAC). Utilizing MATLAB 5.1 software (Mathworks Inc., Natick, Mass.), the sum of individual amplitudes and frequencies resulted in the amplitude spectrum area (i.e., AMSA). Power spectrums for the VF waveform were generated the same way.
  • The mean AMSA for each pig for each intervention was used for the analysis. The mean values for all hemodynamic parameters extracted from multiple 4 second intervals obtained contemporaneously with the AMSA data were measured and used for future analysis. All values with a non-normal distribution are expressed as Median (25:75 percentiles). A Friedman statistical test was conducted to analyze ETCO2, AMSA, the calculated coronary and cerebral perfusion pressure, aortic systolic, diastolic and mean pressure, right atrial pressure and intracranial pressure during the three CPR methods. Coronary perfusion pressures were determined by the difference between the diastolic aortic pressure and diastolic right atrial pressure during each CPR intervention. Cerebral perfusion pressures were determined by taking the difference between the aortic pressure and the intracranial pressure. Spearman correlation and Friedman tests were used to analyze the correlation between the different hemodynamic parameters. A Bland and Altman assessment was used to compare ETCO2 and AMSA values with a range of agreement defined as mean bias±1.96 SD. P values of <0.05 were considered statistically significant. Statistical analyses were performed with SPSS® Statistics 17.0 (IBM Corporation, Somers, N.Y., USA).
  • In review of results, it was found that there were significant differences in the ETCO2, AMSA, coronary perfusion pressure, cerebral perfusion pressure, systolic aortic pressure, mean aortic pressure, mean right atrial pressure and mean intracranial pressure based upon the method of CPR used. The key perfusion parameters were lowest with STD CPR, increased with STD CPR+ITD, and were highest with ACD CPR+ITD, as shown in Table 1:
  • TABLE 1
    ETCO2 AMSA Ao sys Ao dia Ao mean RA mean ICP mean CePP CoPP CBF
    STD 5.7 31.1 30.7 9.5 20.2 12.6 18.3 2.8 8.4 25
    CPR (4.5; 7.9)* (26.9; 39.4)* (28.3; 35.2)* (8.4; 12.1) (18.2; 22.4)* (11.4; 15.7)* (14.8; 22)* (1.4; 8.1)* (6.1; 10)* (14; 36)
    STD 15.2 39.7 37.7 10.5 22.9 15.5 19.6 5.7 10.6 24
    CPR + (13.9; 18.4) (29.9; 45.8) (33; 64.7) (8.9; 19.4) (22; 39.9) (13.4; 27.5) (16.2; 23.7) (3.2; 14.8) (7.9; 13.3) (14; 29)
    ITD
    ACD 20.5 45.5 41.9 11.5 25.9 16.6 18.4 7.6 13.3 27
    CPR + (16.5; 21.5) (31.5; 50.8) (37; 59.9) (7.6; 18) (23.7; 34.1) (14.1; 22.3) (15.2; 22.9) (4.9; 17) (7.9; 19.7) (19; 45)
    ITD
    Median (25; 75 percentile); hemodynamic parameter using the three different cardiopulmonary resuscitation techniques.
    Ao sys: systolic aortic pressure;
    Ao dia: diastolic aortic pressure;
    Ao mean: mean aortic pressure;
    RA mean: mean right atrial pressure;
    ICP mean: mean intracranial pressure;
    CePP: cerebral perfusion pressure;
    CoPP: Coronary perfusion pressure;
    ETCO2: end tidal CO2 (mmHg);
    AMSA: amplitude spectral area (mV-Hz);
    CBF: Mean carotid blood flow (ml/min);
    *p = 0.001 STD CPR < STD CPR + ITD < ACD CPR + ITD (Friedman statistical test).
    The data of Table 1 is shown graphically in FIG. 3, STD CPR (leftmost bar); STD CPR + ITD (middle bar); and ACD CPR + ITD (rightmost bar).
  • The power spectrum for the VF waveform also changed significantly based upon the method of CPR. FIG. 4 shows a representative spectrum from one pig during each of the 3 methods of CPR, STD CPR (frontmost curve or trend); STD CPR+ITD (middle curve or trend); and ACD CPR+ITD (rearmost curve or trend). There was a pronounced increase in the high frequency signal in this representative study and when the respective values for all animals were averaged.
  • Further analysis demonstrated a correlation between AMSA and ETCO2 (r=0.374, p=0.025) and a correlation between AMSA and key hemodynamic parameters (coronary perfusion pressure, cerebral perfusion pressure, aortic systolic, diastolic and mean pressure) (p<0.05), as shown in Table 2:
  • TABLE 2
    Ao Ao Ao
    AMSA sys dia mean CePP CoPP CBF
    ETCO2 0.374*   0.709*   0.315    0.723*   0.526*   0.340*   0.295 
    0.025  <0.001    0.061  <0.001    0.001    0.043    0.08 
    AMSA   0.541*   0.487*   0.612*   0.217    0.185    0.639*
      0.001    0.003  <0.001    0.203    0.281  <0.001 
    Ao   0.611*   0.953*   0.825*   0.514*   0.567*
    sys <0.001 <0.001  <0.001    0.001  <0.001 
    Ao   0.709*   0.499*   0.514*   0.411*
    dia <0.001    0.002    0.001    0.006 
    Ao    0.77*   0.575*   0.597*
    mean <0.001  <0.001  <0.001 
    CePP   0.503*   0.373*
      0.002  <0.001 
    Correlation between the different hemodynamic parameter, rs and p, *correlation is significant.
    Ao sys: systolic aortic pressure;
    Ao dia: diastolic aortic pressure;
    Ao mean: mean aortic pressure;
    RA mean: mean right atrial pressure;
    ICP mean: mean intracranial pressure;
    CePP: cerebral perfusion pressure;
    CoPP: Coronary perfusion pressure;
    ETCO2: end tidal CO2 (mmHg);
    AMSA: amplitude spectral area (mV-Hz),
    CBF: Mean carotid blood flow (ml/min). Those are r.
    FIG. 5 demonstrates the correlation between AMSA and ETCO2: STD CPR (diamond); STD CPR + ITD (square); and ACD CPR + ITD (triangle).
  • The Bland-Altman analysis indicated the 95% limits of agreement between AMSA and ETCO ranged from −21.4 to −33.5. This is shown graphically in FIG. 6: STD CPR (diamond); STD CPR+ITD (square); and ACD CPR+ITD (triangle). These study results indicate a strong association between AMSA and ETCO2.
  • Research has conventionally focused on finding a non-invasive method to predict the success of defibrillation with the hope of having a substantial impact on the survival outcome of patients. AMSA has been reported to provide an 86% positive and an 85% negative predictive value, respectively for a threshold value at 21 mV×Hz. However AMSA values can be difficult to calculate in real-time and are not recommended for routine use in the guideline for defibrillation management in adult cardiac arrest in the clinical setting in or out-of-hospital. By contrast, continuous ETCO2 waveforms are readily obtainable and can be rapidly analyzed. Using three different methods of CPR to consistently vary different organ perfusion levels, a correlation between ETCO2 and AMSA is demonstrated. Because of this newly discovered correlation, techniques for using ETCO2 values, alone or in combination with AMSA values, to direct a caregivers are proposed as to when to apply a defibrillating shock. More specifically, if the measured ETCO2 values are within an acceptable range or near an acceptable value, an indication may be supplied to the caregiver as to when to apply a defibrillating shock.
  • FIG. 7 shows an example treatment system 700 in accordance with the present disclosure. The system 700 may include a facial mask 702 and a valve system 704. The valve system 704 may be coupled to a controller 706. In turn, the controller 706 may be used to control an impedance level of the valve system 704. The level of impedance may be varied based on measurements of physiological parameters, or using a programmed schedule of changes. The system 700 may include a wide variety of sensors and/or measuring devices to measure any of a number physiological parameters. Such sensors or measuring devices may be integrated within or coupled to the valve system 704, the facial mask 702, etc., or may be separate depending on implementation. An example of sensors and/or measuring devices may include a pressure transducer for taking pressure measurements (such as intrathoracic pressures, intracranial pressures, intraocular pressures), a flow rate measuring device for measuring the flow rate of air into or out of the lungs, or a CO2 sensor for measuring expired CO2. Examples of other sensors or measuring devices include a heart rate sensor 708, a blood pressure sensor 710, and a temperature sensor 712. These sensors may also be coupled to the controller 706 so that measurements may be recorded. Further, it will be appreciated that other types of sensors and/or devices may be coupled to the controller 706 and may be used to implement defibrillation and measure various physiological parameters, such as bispectral index, oxygen saturation and/or blood levels of O2, blood lactate, blood pH, tissue lactate, tissue pH, blood pressure, pressures within the heart, intrathoracic pressures, positive end expiratory pressure, respiratory rate, intracranial pressures, intraocular pressures, respiratory flow, oxygen delivery, temperature, end-tidal CO2, tissue CO2, cardiac output, and many others.
  • For example, ECG electrode(s) or sensor(s) 720 may also be coupled to the controller 706 so that measurements related to the electrical activity of an individual's heart may be monitored and recorded. Advantageously, this may allow for the acquisition and/or derivation of AMSA values of a particular individual during a CPR procedure, as discussed throughout the present disclosure. Additionally, a display screen 722 and one or more speakers 724 may be coupled to the controller 706 to provide a prompt to a rescuer, such as a prompt to “cue” a rescuer to defibrillate an individual while CPR is performed on the individual. Such a feature is discussed in further detail in connection with at least FIG. 8. Even further, one or more electrodes 726 may be coupled to the controller 706 to enable application of a defibrillation shock(s) either automatically (e.g., without direct user-input) or manually (e.g., in response to activation of a particular “button”). Still many other devices, sensors, etc., may be coupled to the controller 706 as needed or desired, to implement the various features or aspects of the present disclosure.
  • In some cases, the controller 706 may be used to control the valve system 704, to control any sensors or measuring devices, to record measurements, and to perform any comparisons. Alternatively, a set of computers and/or controllers may be used in combination to perform such tasks. This equipment may have appropriate processors, display screens, input and output devices, entry devices, memory or databases, software, and the like needed to operate the system 700. A variety of devices may also be coupled to controller to cause the person to artificially inspire. For example, such devices may comprise a ventilator 714, an iron lung cuirass device 716 or a phrenic nerve stimulator 718. The ventilator 714 may be configured to create a negative intrathoracic pressure within the person, or may be a high frequency ventilator capable of generating oscillations at about 200 to about 2000 per minute. Other embodiments are possible.
  • FIG. 8 shows an example computer system or device 800 in accordance with the present disclosure. An example of a computer system or device includes a medical device, a desktop computer, a laptop computer, a tablet computer, and/or any other type of machine configured for performing calculations. The example computer device 800 may be configured to perform and/or include instructions that, when executed, cause the computer system 800 to perform a method for providing a guide to determine when to defibrillate an individual using ETCO2 measurements alone. The example computer device 800 may be configured to perform and/or include instructions that, when executed, cause the computer system 800 to perform a method for providing a guide to determine when to defibrillate an individual using ETCO2 measurements and AMSA values. The particular trigger of when to provide the shock may be based on part on the correlation between the ETCO2 measurements and predetermined AMSA values, or may be determined empirically based on test data using ETCO2 measurements. It is thus contemplated that the example computer device 800 may be coupled to one or more sensors configured and arranged to acquire and/or operate on such measurements or data, itself have integrated therein one or more sensors configured and arranged to acquire and/or operate on such measurements or data, or any combination thereof.
  • Furthermore, it is contemplated that the example computer system 800 may include or comprise at least one of an audio speaker and a display monitor so as to provide at least one of an audio indication (e.g., a particular tone or series of tones such as a single or periodic or intermittent “beep,” a particular word such as a “go” or “defibrillate,” and etc.) and a visual indication (e.g., a particular colored screen or series of screens such as a “green” screen or periodically or intermittently “flashing” screens of one or more particular colors, a particular graphic such as a “go” or “defibrillate,” and etc.) so that a medical professional or other individual may be “cued” to defibrillate an individual during CPR as performed on the individual as discussed throughout the present disclosure. Such features may be embodied by the output device(s) 808 shown in FIG. 8 discussed further below.
  • The computer device 800 is shown comprising hardware elements that may be electrically coupled via a bus 802 (or may otherwise be in communication, as appropriate). The hardware elements may include a processing unit with one or more processors 804, including without limitation one or more general-purpose processors and/or one or more special-purpose processors (such as digital signal processing chips, graphics acceleration processors, and/or the like); one or more input devices 806, which may include without limitation a remote control, a mouse, a keyboard, and/or the like; and one or more output devices 808, which may include without limitation, a video monitor or screen, an audio speaker, a printer, and/or the like.
  • The computer system 800 may further include (and/or be in communication with) one or more non-transitory storage devices 810, which may comprise, without limitation, local and/or network accessible storage, and/or may include, without limitation, a disk drive, a drive array, an optical storage device, a solid-state storage device, such as a random access memory, and/or a read-only memory, which may be programmable, flash-updateable, and/or the like. Such storage devices may be configured to implement any appropriate data stores, including without limitation, various file systems, database structures, and/or the like.
  • The computer device 800 might also include a communications subsystem 812, which may include without limitation a modem, a network card (wireless or wired), an infrared communication device, a wireless communication device, and/or a chipset, such as a Bluetooth™ device, an 802.11 device, a WiFi device, a WiMax device, hardwired and/or wireless communication facilities, and/or the like. The communications subsystem 812 may permit data to be exchanged with a private and/or non-private network, other computer systems, and/or any other devices described herein. In many embodiments, the computer system 800 may further comprise a working memory 814, which may include a random access memory and/or a read-only memory device, as described above.
  • The computer device 800 also may comprise software elements, shown as being currently located within the working memory 814, including an operating system 816, device drivers, executable libraries, and/or other code, such as one or more application programs 818, which may comprise computer programs provided by various embodiments, and/or may be designed to implement methods, and/or configure systems, provided by other embodiments, as described herein. By way of example, one or more procedures described with respect to the method(s) discussed above, and/or system components might be implemented as code and/or instructions executable by a computer (and/or a processor within a computer); in an aspect, then, such code and/or instructions may be used to configure and/or adapt a general purpose computer (or other device) to perform one or more operations in accordance with the described methods.
  • A set of these instructions and/or code might be stored on a non-transitory computer-readable storage medium, such as the storage device(s) 810 described above. In some cases, the storage medium might be incorporated within a computer system, such as computer system 800. In other embodiments, the storage medium might be separate from a computer system (e.g., a removable medium, such as flash memory), and/or provided in an installation package, such that the storage medium may be used to program, configure, and/or adapt a general purpose computer with the instructions/code stored thereon. These instructions might take the form of executable code, which is executable by the computer device 800 and/or might take the form of source and/or installable code, which, upon compilation and/or installation on the computer system 800 (e.g., using any of a variety of generally available compilers, installation programs, compression/decompression utilities, etc.), then takes the form of executable code.
  • It will be apparent to those skilled in the art that substantial variations may be made in accordance with specific requirements. For example, customized hardware might also be used, and/or particular elements might be implemented in hardware, software (including portable software, such as applets, etc.), or both. Further, connection to other computing devices such as network input/output devices may be employed.
  • As mentioned above, in one aspect, some embodiments may employ a computer system (such as the computer device 800) to perform methods in accordance with various embodiments of the invention. According to a set of embodiments, some or all of the procedures of such methods are performed by the computer system 800 in response to processor 804 executing one or more sequences of one or more instructions (which might be incorporated into the operating system 816 and/or other code, such as an application program 818) contained in the working memory 814. Such instructions may be read into the working memory 814 from another computer-readable medium, such as one or more of the storage device(s) 810. Merely by way of example, execution of the sequences of instructions contained in the working memory 814 may cause the processor(s) 804 to perform one or more procedures of the methods described herein.
  • The terms “machine-readable medium” and “computer-readable medium,” as used herein, may refer to any medium that participates in providing data that causes a machine to operate in a specific fashion. In an embodiment implemented using the computer device 800, various computer-readable media might be involved in providing instructions/code to processor(s) 804 for execution and/or might be used to store and/or carry such instructions/code. In many implementations, a computer-readable medium is a physical and/or tangible storage medium. Such a medium may take the form of a non-volatile media or volatile media. Non-volatile media may include, for example, optical and/or magnetic disks, such as the storage device(s) 810. Volatile media may include, without limitation, dynamic memory, such as the working memory 814.
  • Example forms of physical and/or tangible computer-readable media may include a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, a RAM, a PROM, EPROM, a FLASH-EPROM, any other memory chip or cartridge, or any other medium from which a computer may read instructions and/or code.
  • Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to the processor(s) 804 for execution. By way of example, the instructions may initially be carried on a magnetic disk and/or optical disc of a remote computer. A remote computer might load the instructions into its dynamic memory and send the instructions as signals over a transmission medium to be received and/or executed by the computer system 800.
  • The communications subsystem 812 (and/or components thereof) generally will receive signals, and the bus 802 then might carry the signals (and/or the data, instructions, etc. carried by the signals) to the working memory 814, from which the processor(s) 804 retrieves and executes the instructions. The instructions received by the working memory 814 may optionally be stored on a non-transitory storage device 810 either before or after execution by the processor(s) 804.
  • As may be understood from the foregoing discussion in connection with the drawings, it is contemplated that ETCO2 measurements may be used alone as a guide to determine when to defibrillate an individual. Alternatively, ETCO2 measurements may be used in combination with amplitude spectral area measurements as a guide to determine when to defibrillate an individual.
  • In particular, in some aspects, a computer-implemented method may include or comprise obtaining, by a computing or measuring system, an ETCO2 measurement of an individual during a CPR procedure performed on the individual. The method may further include or comprise comparing, by the computing system, a particular ETCO2 value derived from the ETCO2 measurement to a predetermined threshold value. The method may further include or comprise providing, by the computing system based on the comparing, a perceivable indication that designates a time to deliver a defibrillation shock to the individual. Further, the computing system may, in some embodiments, use a change from one time point to the next or another, in ETCO2 measurements, to determine the time to delivery of a defibrillation shock. The ETCO2 measurements could include peak and/or trough ETCO2 values, mean values, or ETCO2 waveform characteristics which are affected by the amount of blood circulating or in circulation during CPR in the individual.
  • Additionally, or alternatively, the method may include or comprise providing the indication when the particular ETCO2 value is less than or equal to the predetermined threshold value. For example, when ETCO2 levels are persistently less than 10 mmHg, then the chances for a successful defibrillation may be considered to be extremely low and such information may be used by the computing system to determine that a defibrillatory shock should not be delivered at that time. Additionally, or alternatively, the method may include or comprise providing the indication when the particular ETCO2 value is greater than or equal to the predetermined threshold value.
  • Additionally, or alternatively, the method may include or comprise providing, by the computing system based on the comparison, at least one of an audio indication and a visual indication that designates the time to deliver the defibrillation shock to the individual. The visual indication could be provided in the form of an absolute number or a graph of changes in ETCO2 or a derivative of ETCO2 over time, with an indication for the threshold value needed before a shock should be delivered.
  • Additionally, or alternatively, the method may include or comprise obtaining an electrocardiogram (ECG) measurement of the individual during the CPR procedure; deriving from the ECG measurement an amplitude spectral area value; and providing the indication that designates the time to deliver the defibrillation shock to the individual based upon the amplitude spectrum area value and the comparison of the ETCO2 value to the predetermined threshold value. For example, both AMSA and ETCO2 values would have to be at a threshold value before a shock is delivered, thereby providing the greatest likelihood for a successful defibrillation and survival. In this manner, the computing system may take into account both measurements before advising or triggering a defibrillatory shock. Other potential combinations of these two distinctly different physiological signals to provide a greater degree of predictive certainty of defibrillation success or failure include the value obtained by multiplying, or performing another mathematical operation, the ETCO2 and AMSA values together to achieve a number that would provide an indicator that defibrillation would be successful.
  • In some aspects, a method may include or comprise performing a cardiopulmonary resuscitation (CPR) procedure on an individual; and delivering a defibrillation shock to the individual at a particular time based upon an indication provided by a computing system when a particular end-tidal carbon dioxide (ETCO2) value derived from an ETCO2 measurement of the individual during the CPR procedure is determined by the computing system as less than or greater than a predetermined threshold value. In some embodiments, once the rescuer observes the indication, then they would deliver the defibrillatory shock within the next 30-60 seconds. In cases where the shock is not successful, a follow-up ETCO2 value could be used to determine if an additional 1-2 minutes of CPR is needed or whether the rescuer should charge the defibrillator and immediately deliver another shock. Thus, the post shock ETCO2 value could be used to help determine the timing of follow up shocks if the first one is not successful. The computing system may adjust for the failed shock such that the next shock would not be advised unless the ETCO2 values were higher, for example, 10% higher than those measured prior to the first shock.
  • Additionally, or alternatively, the method may include or comprise performing an intrathoracic pressure regulation procedure or a reperfusion injury protection procedure at or during the CPR procedure. Additionally, or alternatively, the method may include or comprise periodically extracting respiratory gases from the airway of the individual to create an intrathoracic vacuum that lowers pressure in the thorax to at least one of: enhance the flow of blood to the heart of the individual; lower intracranial pressures of the individual; and enhance cerebral profusion pressures of the individual. Additionally, or alternatively, the method may include or comprise preventing air from at least temporarily entering the lungs of the individual during at least a portion of a relaxation or decompression phase of the CPR procedure to create an intrathoracic vacuum that lowers pressure in the thorax to at least one of: enhance flow of blood to the heart of the particular individual; lower intracranial pressures of the particular individual; and enhance cerebral profusion pressures of the individual. The methods and devices used to perform CPR could include manual closed chest CPR, CPR with an active compression decompression device, and such CPR methods could be used together with an impedance threshold device to transiently impede inspiratory flow during the recoil phase of CPR or an intrathoracic pressure regulatory to actively extract gases form the lungs.
  • Additionally, or alternatively, the method may include or comprise performing a standard CPR procedure on the individual. Additionally, or alternatively, the method may include or comprise performing a stutter CPR procedure on the individual to achieve some degree of reperfusion injury protection. Additionally, or alternatively, the method may include or comprise performing an active compression-decompression CPR procedure on the individual. Additionally, or alternatively, the method may include or comprise positioning a mechanical CPR device relative to the chest of the individual; and activating the mechanical CPR device to perform a mechanized CPR procedure on the individual. Such CPR devices could include, but would not be limited to, a LUCAS device (Physio-control, Redmond, Wash.). The Zoll Autopulse (Chelmsford, Mass.), the Michigan Instrument Thumper (Grand Rapids, Mich.).
  • Additionally, or alternatively, the method may include or comprise delivering the defibrillation shock to the individual upon perception of the indication provided by the computing system at the particular time based upon an amplitude spectrum area value of the individual as derived from a measurement during the CPR procedure and when the particular ETCO2 value is determined as less than or equal, or greater than or equal to the predetermined threshold value. Additionally, or alternatively, the method may include or comprise delivering the defibrillation shock to the individual upon perception of at least one of an audio indication and a visual indication provided by the computing system.
  • In some aspects, a system, device, or apparatus may include or comprise a first device that monitors concentration of carbon dioxide in respiratory gases of an individual at least during a cardiopulmonary resuscitation (CPR) procedure performed on the individual; a second device that compares a particular end-tidal carbon dioxide value derived from the concentration of carbon dioxide in respiratory gases of the individual to a predetermined threshold value; and a third device that provides based on the comparison a perceivable indication that designates a time to deliver a defibrillation shock to the individual. The second device may be used with the third device to determine the optimal time to deliver the shock and, if the first shock fails, may use the same or different logic to determine the time to deliver additional shocks.
  • Additionally, or alternatively, the system, device, or apparatus may include or comprise an electroencephalogram (EEG) sensor that measures an EEG signal of the individual at least during the CPR procedure performed on the individual, wherein the second device derives an amplitude spectrum area value from the EEG signal, and the third device provides the perceivable indication based upon the amplitude spectrum area value and the comparison of the particular end-tidal carbon dioxide value to the predetermined threshold value. Additionally, or alternatively, the system, device, or apparatus may include or comprise a circulation enhancement device that enhances circulation of the individual at least during the CPR procedure performed on the individual.
  • The methods, systems, and devices discussed above are examples. Various configurations may omit, substitute, or add various method steps or procedures, or system components as appropriate. For instance, in alternative configurations, the methods may be performed in an order different from that described, and/or various stages may be added, omitted, and/or combined. Also, features described with respect to certain configurations may be combined in various other configurations. Different aspects and elements of the configurations may be combined in a similar manner. Also, technology evolves and, thus, many of the elements are examples and do not limit the scope of the disclosure or claims.
  • Specific details are given in the description to provide a thorough understanding of example configurations (including implementations). However, configurations may be practiced without these specific details. For example, well-known circuits, processes, algorithms, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring the configurations. This description provides example configurations only, and does not limit the scope, applicability, or configurations of the claims. Rather, the preceding description of the configurations will provide those skilled in the art with an enabling description for implementing described techniques. Various changes may be made in the function and arrangement of elements without departing from the spirit or scope of the disclosure.
  • Also, configurations may be described as a process which is depicted as a flow diagram or block diagram. Although each may describe the operations as a sequential process, many of the operations may be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional steps not included in the figure. Furthermore, examples of the methods may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware, or microcode, the program code or code segments to perform the necessary tasks may be stored in a non-transitory computer-readable medium such as a storage medium. Processors may perform the described tasks.
  • Furthermore, the example embodiments described herein may be implemented as logical operations in a computing device in a networked computing system environment. The logical operations may be implemented as: (i) a sequence of computer implemented instructions, steps, or program modules running on a computing device; and (ii) interconnected logic or hardware modules running within a computing device.
  • Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (20)

What is claimed is:
1. A computer-implemented method, comprising:
obtaining, by a computing system, an end-tidal carbon dioxide (ETCO2) measurement of an individual during a cardiopulmonary resuscitation (CPR) procedure performed on the individual;
comparing, by the computing system, a particular ETCO2 value derived from the ETCO2 measurement to a predetermined threshold value; and
providing, by the computing system based on the comparing, a perceivable indication that designates a time to deliver a defibrillation shock to the individual.
2. The method of claim 1, further comprising:
providing the indication when the particular ETCO2 value is less than or equal to the predetermined threshold value.
3. The method of claim 1, further comprising
providing the indication when the particular ETCO2 value is greater than or equal to the predetermined threshold value.
4. The method of claim 1, further comprising:
providing, by the computing system based on the comparison, at least one of an audio indication and a visual indication that designates the time to deliver the defibrillation shock to the individual.
5. The method of claim 1, further comprising:
obtaining an electrocardiogram (ECG) measurement of the individual during the CPR procedure;
deriving from the ECG measurement an amplitude spectral area value; and
providing the indication that designates the time to deliver the defibrillation shock to the individual based upon the amplitude spectrum area value and the comparison of the ETCO2 value to the predetermined threshold value.
6. A method, comprising:
performing a cardiopulmonary resuscitation (CPR) procedure on an individual; and
delivering a defibrillation shock to the individual at a particular time based upon an indication provided by a computing system when a particular end-tidal carbon dioxide (ETCO2) value derived from an ETCO2 measurement of the individual during the CPR procedure is determined by the computing system as less than or greater than a predetermined threshold value.
7. The method of claim 6, further comprising:
performing an intrathoracic pressure regulation procedure or a reperfusion injury protection procedure at or during the CPR procedure.
8. The method of claim 6, further comprising:
periodically extracting respiratory gases from the airway of the individual to create an intrathoracic vacuum that lowers pressure in the thorax to at least one of: enhance the flow of blood to the heart of the individual; lower intracranial pressures of the individual; and enhance cerebral profusion pressures of the individual.
9. The method of claim 6, further comprising:
preventing air from at least temporarily entering the lungs of the individual during at least a portion of a relaxation or decompression phase of the CPR procedure to create an intrathoracic vacuum that lowers pressure in the thorax to at least one of: enhance flow of blood to the heart of the particular individual; lower intracranial pressures of the particular individual; and enhance cerebral profusion pressures of the individual.
10. The method of claim 6, further comprising performing a standard CPR procedure on the individual.
11. The method of claim 6, further comprising performing a stutter CPR procedure on the individual.
12. The method of claim 6, further comprising performing an active compression-decompression CPR procedure on the individual.
13. The method of claim 6, further comprising:
positioning a mechanical CPR device relative to the chest of the individual; and
activating the mechanical CPR device to perform a mechanized CPR procedure on the individual.
14. The method of claim 6, further comprising:
delivering the defibrillation shock to the individual upon perception of the indication provided by the computing system at the particular time based upon an amplitude spectrum area value of the individual as derived from a measurement during the CPR procedure and when the particular ETCO2 value is determined as less than or equal to the predetermined threshold value.
15. The method of claim 6, further comprising:
delivering the defibrillation shock to the individual upon perception of the indication provided by the computing system at the particular time based upon an amplitude spectrum area value of the individual as derived from a measurement during the CPR procedure and when the particular ETCO2 value is determined as greater than or equal to the predetermined threshold value.
16. The method of claim 6, further comprising:
delivering the defibrillation shock to the individual upon perception of at least one of an audio indication and a visual indication provided by the computing system.
17. An apparatus, comprising:
a first device that monitors concentration of carbon dioxide in respiratory gases of an individual at least during a cardiopulmonary resuscitation (CPR) procedure performed on the individual;
a second device that compares a particular end-tidal carbon dioxide value derived from the concentration of carbon dioxide in respiratory gases of the individual to a predetermined threshold value; and
a third device that provides based on the comparison a perceivable indication that designates a time to deliver a defibrillation shock to the individual.
18. The apparatus of claim 17, further comprising:
an electroencephalogram (EEG) sensor that measures an EEG signal of the individual at least during the CPR procedure performed on the individual, wherein the second device derives an amplitude spectrum area value from the EEG signal, and the third device provides the perceivable indication based upon the amplitude spectrum area value and the comparison of the particular end-tidal carbon dioxide value to the predetermined threshold value.
19. The apparatus of claim 17, further comprising:
a circulation enhancement device that enhances circulation of the individual at least during the CPR procedure performed on the individual
20. The apparatus of claim 17, wherein the third device is selected from one of a visual output device and an audio output device.
US14/292,578 2013-05-30 2014-05-30 End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure and arterial pressure Abandoned US20140358047A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201361829176P true 2013-05-30 2013-05-30
US14/292,578 US20140358047A1 (en) 2013-05-30 2014-05-30 End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure and arterial pressure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/292,578 US20140358047A1 (en) 2013-05-30 2014-05-30 End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure and arterial pressure
US15/420,653 US9949686B2 (en) 2013-05-30 2017-01-31 End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure
US15/927,607 US20180206785A1 (en) 2013-05-30 2018-03-21 End-Tidal Carbon Dioxide and Amplitude Spectral Area as Non-Invasive Markers of Coronary Perfusion Pressure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/420,653 Continuation US9949686B2 (en) 2013-05-30 2017-01-31 End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure

Publications (1)

Publication Number Publication Date
US20140358047A1 true US20140358047A1 (en) 2014-12-04

Family

ID=51985911

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/292,578 Abandoned US20140358047A1 (en) 2013-05-30 2014-05-30 End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure and arterial pressure
US15/420,653 Active US9949686B2 (en) 2013-05-30 2017-01-31 End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure
US15/927,607 Pending US20180206785A1 (en) 2013-05-30 2018-03-21 End-Tidal Carbon Dioxide and Amplitude Spectral Area as Non-Invasive Markers of Coronary Perfusion Pressure

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/420,653 Active US9949686B2 (en) 2013-05-30 2017-01-31 End-tidal carbon dioxide and amplitude spectral area as non-invasive markers of coronary perfusion pressure
US15/927,607 Pending US20180206785A1 (en) 2013-05-30 2018-03-21 End-Tidal Carbon Dioxide and Amplitude Spectral Area as Non-Invasive Markers of Coronary Perfusion Pressure

Country Status (1)

Country Link
US (3) US20140358047A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3308763A4 (en) * 2015-06-12 2019-02-27 Mediana Co., Ltd. Automatic cardiopulmonary resuscitation device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496257A (en) * 1994-04-22 1996-03-05 Kelly Medical Products, Inc. Apparatus for assisting in the application of cardiopulmonary resuscitation
US5743864A (en) * 1995-06-29 1998-04-28 Michigan Instruments, Inc. Method and apparatus for performing cardio-pulmonary resuscitation with active reshaping of chest
US20020170562A1 (en) * 1993-11-09 2002-11-21 Cprx Llc Shock treatment systems and methods
US20030062040A1 (en) * 2001-09-28 2003-04-03 Lurie Keith G. Face mask ventilation/perfusion systems and method
US20040267325A1 (en) * 2003-06-27 2004-12-30 Frederick Geheb Method and apparatus for enhancement of chest compressions during CPR
US20100319691A1 (en) * 2009-06-19 2010-12-23 Advanced Circulatory Systems, Inc. Vacuum and positive pressure ventilation systems and methods for intrathoracic pressure regulation
US20120016279A1 (en) * 2010-07-13 2012-01-19 Banville Isabelle L Cpr chest compression machine stopping to detect patient recovery
US20120302908A1 (en) * 2008-10-16 2012-11-29 Hemnes Anna R Oral end tidal carbon dioxide probe for diagnosing pulmonary arterial hypertension
US20120330200A1 (en) * 2010-02-12 2012-12-27 Advanced Circulatory Systems, Inc. Enhanced guided active compression decompression cardiopulmonary resuscitation systems and methods
US20140048061A1 (en) * 2012-08-10 2014-02-20 Demetris Yannopoulos System and method for administering anesthetics while performing cpr

Family Cites Families (334)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA668771A (en) 1963-08-20 P. Burke Edward Respirator for laryngectomies
US1848232A (en) 1927-09-29 1932-03-08 Robert B Swope Resuscitation and artificial respiration apparatus
US2325049A (en) 1942-02-27 1943-07-27 Henry H Frye Breathing apparatus
US2774346A (en) 1953-07-13 1956-12-18 Dorothy L Bischof Respirator
US3077884A (en) 1957-06-13 1963-02-19 Batrow Lab Inc Electro-physiotherapy apparatus
US2854982A (en) 1958-01-22 1958-10-07 Vito V Pagano Nasopharyngeal tube
US2904898A (en) 1958-10-07 1959-09-22 Herman A Marsden Training apparatus for practicing artificial respiration
US3049811A (en) 1958-11-10 1962-08-21 Holger Hesse Artificial human body form for demonstrating reviving of unconscious persons
US3068590A (en) 1960-03-17 1962-12-18 Ralph M Padellford Resuscitation training device
US3009266A (en) 1960-07-28 1961-11-21 Brook Morris Harry Model demonstrator for teaching artificial respiration
US3191596A (en) 1960-09-19 1965-06-29 Forrest M Bird Respirator
BE623708A (en) 1961-10-24
US3209469A (en) 1962-03-07 1965-10-05 Harold M James External cardiac massage training device
US3307541A (en) 1963-05-01 1967-03-07 Carl E Hewson Heart and lung resuscitator
US3274705A (en) 1963-08-20 1966-09-27 British Oxygen Co Ltd Apparatus for practising and teaching expired air artificial respiration
US3199225A (en) 1963-10-08 1965-08-10 Robertson Edwin Resuscitation teaching apparatus
US3276147A (en) 1964-01-17 1966-10-04 Univ Iowa State Res Found Inc Heart-lung resuscitation training device
US3357426A (en) 1965-01-14 1967-12-12 Univ California Adherent face mask having a quick disconnect fitting and disposable components
US3420232A (en) 1965-07-20 1969-01-07 Foregger Co Inc Anesthetic vaporizer
US3351052A (en) 1965-10-18 1967-11-07 Carl E Hewson Heart and lung resuscitator
US3467092A (en) 1966-12-14 1969-09-16 Bird F M Anesthesia apparatus and resuscitator
GB1208775A (en) 1967-03-14 1970-10-14 H G East & Company Ltd Improvements in or relating to respiratory apparatus
US3459216A (en) 1967-06-01 1969-08-05 Sierra Eng Co Pressure compensated exhalation valve
US3552390A (en) 1968-04-15 1971-01-05 John T Muller Cardiopulmonary resuscitating apparatus
US3523529A (en) 1968-06-25 1970-08-11 Us Air Force Oxygen consumption computer
US3562925A (en) 1969-03-03 1971-02-16 Medical Supply Co Training manikin for teaching and practicing external cardiac compression
US3562924A (en) 1969-03-03 1971-02-16 Medical Supply Co Training manikin for teaching and practicing mouth-to-mouth re-suscitation
US3568333A (en) 1969-06-27 1971-03-09 Medical Supply Co Heart for teaching and practicing external cardiac compression
US3669108A (en) 1969-10-20 1972-06-13 Veriflo Corp Ventilator
US3662751A (en) 1970-05-20 1972-05-16 Michigan Instr Inc Automatic respirator-inhalation therapy device
GB1344862A (en) 1971-01-29 1974-01-23 Medizin Labortechnik Veb K Control for use in respiration apparatus
US3739776A (en) 1971-09-27 1973-06-19 Bird F M Fail-safe breathing circuit and valve assembly for use therewith
US3815606A (en) 1972-09-21 1974-06-11 C Mazal Endotracheal catheter
US3794043A (en) 1972-11-08 1974-02-26 Lanz Medical Prod Co Endotracheal tube with inflatable cuff and check valve
US3949388A (en) 1972-11-13 1976-04-06 Monitron Industries, Inc. Physiological sensor and transmitter
US3834383A (en) 1972-12-11 1974-09-10 Puritan Bennett Corp Respiration apparatus with flow responsive control valve
SE380724B (en) 1972-12-12 1975-11-17 Lkb Medical Ab Arrangement in a lung ventilator for angling of the patient's exhaled gas volume
US3734100A (en) 1973-05-07 1973-05-22 Medical Products Corp Catheter tubes
US3874093A (en) 1973-09-14 1975-04-01 Dietmar Rudolf Garbe Respiratory apparatus
SE389020B (en) 1973-11-13 1976-10-25 Aga Ab Device for ventilating a patient by a lung ventilator
US3872609A (en) 1973-11-26 1975-03-25 Alderson Research Lab Inc Resuscitation training dummy
US3933171A (en) 1974-04-09 1976-01-20 Airco, Inc. Anesthesia breathing circuit with positive end expiratory pressure valve
US4037595A (en) 1974-04-11 1977-07-26 Elam James O Breathing equipment such as resuscitators
US4077404A (en) 1975-09-17 1978-03-07 H. B. W. Medical Instruments Manufacturing Company, Inc. Breathing equipment such as resuscitators
US3973564A (en) 1974-08-08 1976-08-10 Dupaco Incorporated Anaesthetist's respiration apparatus
ZA7405849B (en) 1974-09-13 1975-11-26 Pienaar H An aid in the management of clinical emergencies in medical and dental practices and other circumstances
US4166458A (en) 1975-01-17 1979-09-04 Harrigan Roy Major External cardiac resuscitation aid
US4095590A (en) 1975-08-29 1978-06-20 Roy Major Harrigan External cardiac resuscitation aid
US4077400A (en) 1975-01-17 1978-03-07 Roy Major Harrigan External cardiac resuscitation aid
US4041943A (en) 1975-08-25 1977-08-16 Miller Bruce B Control apparatus for variable regulation of lung inflation hold time
US4054134A (en) 1975-09-15 1977-10-18 Kritzer Richard W Respirators
CA1079606A (en) 1977-09-26 1980-06-17 Normalair-Garrett (Holdings) Limited Breathable gas delivery regulators
US4188946A (en) 1977-10-07 1980-02-19 Rayburn Robert L Controllable partial rebreathing anesthesia circuit and respiratory assist device
US4316458A (en) 1978-05-09 1982-02-23 National Research Development Corporation Patient ventilators
DE2964616D1 (en) 1978-08-24 1983-03-03 Graham Cameron Grant Ventilator for use in medical applications
US4193406A (en) 1978-09-18 1980-03-18 Jinotti Walter J Dual purpose catheter
US4226233A (en) 1978-10-10 1980-10-07 Longevity Products, Inc. Respirators
US4198963A (en) 1978-10-19 1980-04-22 Michigan Instruments, Inc. Cardiopulmonary resuscitator, defibrillator and monitor
US4237872A (en) 1979-04-30 1980-12-09 Harrigan Roy Major External cardiac resuscitation aid
US4297999A (en) 1979-07-19 1981-11-03 Kitrell John V Portable resuscitation apparatus
US4259951A (en) 1979-07-30 1981-04-07 Chesebrough-Pond's Inc. Dual valve for respiratory device
US4326507A (en) 1979-11-20 1982-04-27 Michigan Instruments, Inc. CPR Protocol and cardiopulmonary resuscitator for effecting the same
DE3048293A1 (en) 1979-12-29 1981-10-15 Mabuchi Motor Co "Beauty treatment apparatus"
US4446864A (en) 1980-07-10 1984-05-08 Watson Robert L Emergency ventilation tube
US4360345A (en) 1980-07-14 1982-11-23 American Heart Association, Inc. Health education system
US4298023A (en) 1980-09-09 1981-11-03 Mcginnis Gerald E Spring loaded exhalation valve
US4331426A (en) 1980-10-21 1982-05-25 Simulaids, Inc. Cardiopulmonary resuscitation manikin with antiseptic cleaning system
US4349015A (en) 1980-11-14 1982-09-14 Physio-Control Corporation Manually-actuable CPR apparatus
DE3048211A1 (en) 1980-12-20 1982-07-08 Volker Dr Med Schulz Sodium nitroprusside-sodium thiosulfate-syringe pump kit
US4520811A (en) 1981-02-08 1985-06-04 Grove Medical Supply, Inc. Pulmonary resuscitator
US4424806A (en) 1981-03-12 1984-01-10 Physio-Control Corporation Automated ventilation, CPR, and circulatory assistance apparatus
US4397306A (en) 1981-03-23 1983-08-09 The John Hopkins University Integrated system for cardiopulmonary resuscitation and circulation support
DE3119814C2 (en) 1981-05-19 1984-07-26 Draegerwerk Ag, 2400 Luebeck, De
US4481938A (en) 1981-10-16 1984-11-13 Lindley John E Resuscitator, respirator and/or incubator
US4449526A (en) 1981-11-27 1984-05-22 Elam James O Mask breathing system
US4533137A (en) 1982-01-19 1985-08-06 Healthscan Inc. Pulmonary training method
US4448192A (en) 1982-03-05 1984-05-15 Hewlett Packard Company Medical ventilator device parametrically controlled for patient ventilation
GB2117250A (en) 1982-03-22 1983-10-12 Shamah M Resuscitation training apparatus
JPS59101159A (en) 1982-11-30 1984-06-11 Senko Med Instr Mfg Artificial respirator having double-barreled jet pipe
PL141963B1 (en) 1983-03-04 1987-09-30 Apparatus for independently ventilating each of two lungs with slective use of positive expiratory pressures
DE3416350A1 (en) 1983-05-04 1984-11-08 Inspiron Corp medical ventilator
US4774941A (en) 1983-05-04 1988-10-04 Intertech Resources Inc. Resuscitator bag
EP0139363A1 (en) 1983-08-02 1985-05-02 O-Two Systems International Inc. Breathing apparatus
US4601465A (en) 1984-03-22 1986-07-22 Roy Jean Yves Device for stimulating the human respiratory system
US4588383A (en) 1984-04-30 1986-05-13 The New Directions Group, Inc. Interactive synthetic speech CPR trainer/prompter and method of use
DE3422066C2 (en) 1984-06-14 1989-06-22 Draegerwerk Ag, 2400 Luebeck, De
US4602653A (en) 1984-11-01 1986-07-29 Bear Medical Systems, Inc. Electronically-controlled gas blending system
US4738249A (en) 1985-03-01 1988-04-19 The Procter & Gamble Company Method and apparatus for augmenting blood circulation
US5231086A (en) 1985-09-24 1993-07-27 Item Development Aktiebolag Continuous administration adenosine to increase myocardial blood flow
US4750493A (en) 1986-02-28 1988-06-14 Brader Eric W Method of preventing brain damage during cardiac arrest, CPR or severe shock
US5150291A (en) 1986-03-31 1992-09-22 Puritan-Bennett Corporation Respiratory ventilation apparatus
US4827935A (en) 1986-04-24 1989-05-09 Purdue Research Foundation Demand electroventilator
AT61525T (en) 1986-04-29 1991-03-15 Georges Boussignac Cannula for assistance of the ventilator.
DE3774275D1 (en) 1986-06-18 1991-12-05 Garfield Allan Samuel Cardiopulmonary resuscitation device.
DE3638192C2 (en) 1986-11-08 1990-09-27 Asmund S. Laerdal A/S, Stavanger, No
US4863385A (en) 1987-01-05 1989-09-05 Pierce Richard S Cardiopulmonary resuscitation (CPR) sequencer
US4828501A (en) 1987-03-20 1989-05-09 Michael Ingenito Compact interactive training manikin system
US4932879A (en) 1987-03-20 1990-06-12 Michael Ingenito Compact interactive training manikin system
US5056505A (en) 1987-05-01 1991-10-15 Regents Of The University Of Minnesota Chest compression apparatus
US4971051A (en) 1987-07-13 1990-11-20 Toffolon Norman R Pneumatic cushion and seal
US5239988A (en) 1987-08-19 1993-08-31 John L. Swanson Cardio-pulmonary resuscitation aid
US5083559A (en) 1987-09-03 1992-01-28 Richard Brault Artificial respiration breathing device
US5014698A (en) 1987-10-06 1991-05-14 Leonard Bloom Method of and system for monitoring and treating a malfunctioning heart
US4807638A (en) 1987-10-21 1989-02-28 Bomed Medical Manufacturing, Ltd. Noninvasive continuous mean arterial blood prssure monitor
CA1245925A (en) 1988-03-21 1988-12-06 Carla Hanson Aid for cardio-pulmonary resuscitation
US4898166A (en) 1988-04-14 1990-02-06 Physician Engineered Products, Inc. Resuscitation bag control apparatus
US4898167A (en) 1988-05-13 1990-02-06 Pakam Data Systems Inc. AIDS protection ventilation system
DK160130C (en) 1988-11-04 1991-07-15 Ambu Int As Resuscitator for single use
US4881527A (en) 1988-11-14 1989-11-21 Lerman Samuel I Cardiac assist cuirass
US4971042A (en) 1988-11-14 1990-11-20 Lerman Samuel I Cardiac assist curiass
US4928674A (en) 1988-11-21 1990-05-29 The Johns Hopkins University Cardiopulmonary resuscitation and assisted circulation system
DE3840058C2 (en) 1988-11-28 1991-03-14 Auergesellschaft Gmbh, 1000 Berlin, De
US5259373A (en) 1989-05-19 1993-11-09 Puritan-Bennett Corporation Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds
US5265595A (en) 1989-06-19 1993-11-30 Hans Rudolph, Inc. Mask for breath analysis
BE1004384A3 (en) 1989-08-03 1992-11-10 Labaere Emmanuel Device for applying on and techniques exhalation.
US4984987A (en) 1989-11-09 1991-01-15 Actar Airforce, Inc. CPR manikin
US5398714A (en) 1990-03-06 1995-03-21 Price; William E. Resuscitation and inhalation device
US5235970A (en) 1990-03-26 1993-08-17 Augustine Medical, Inc. Tracheal intubation with a stylet guide
NZ233225A (en) 1990-04-05 1994-07-26 Norma Doris Mcculloch Manually operable resuscitator - telescopic pneumatic pump and face mask
US5050593A (en) 1990-06-01 1991-09-24 Massachusetts Institute Of Technology Respirator triggering mechanism
US5042500A (en) 1990-06-18 1991-08-27 Medical Graphics Corporation Drying sample line
US5029580A (en) 1990-07-18 1991-07-09 Ballard Medical Products Medical aspirating apparatus with multi-lumen catheter tube and methods
FR2669523B1 (en) 1990-11-23 1997-06-06 Fred Zacouto A prevention of heart failure.
US5193544A (en) 1991-01-31 1993-03-16 Board Of Trustees Of The Leland Stanford Junior University System for conveying gases from and to a subject's trachea and for measuring physiological parameters in vivo
US5109840A (en) 1991-02-14 1992-05-05 Specialty Packaging Licensing Company Resuscitator having directional control valve with internal "PEEP" adjustment valve
US5119825A (en) 1991-02-25 1992-06-09 Medical Graphics Corporation Multi-functional patient valve
AU651189B2 (en) 1991-04-17 1994-07-14 Regents Of The University Of California, The Improved devices and methods for external chest compression
US5645522A (en) 1991-04-17 1997-07-08 The Regents Of The University Of California Devices and methods for controlled external chest compression
US5377671A (en) 1991-04-26 1995-01-03 Cardiopulmonary Corporation Cardiac synchronous ventilation
US5437272A (en) 1991-05-01 1995-08-01 Alliance Pharmaceutical Corp. Perfluorocarbon associated gas exchange
US6155647A (en) 1992-06-17 2000-12-05 Albecker, Iii; Walter J. Upholstered seat systems for leisure chairs
US5263476A (en) 1991-07-08 1993-11-23 Henson-Thiery Corporation Enclosure system for burn victims
WO1993002439A1 (en) 1991-07-19 1993-02-04 Ticca Pty. Ltd. Medical demonstration apparatus
US5282463A (en) 1991-09-13 1994-02-01 Hammer-Plane, Inc. Anti-disconnect apparatus and method, for breathing systems
US5295481A (en) 1991-11-01 1994-03-22 Geeham Calvin T Cardiopulmonary resuscitation assist device
US5188098A (en) 1991-11-04 1993-02-23 The Trustees Of The University Of Pennsylvania Method and apparatus for ECG gated ventilation
US5183038A (en) 1991-11-04 1993-02-02 The Trustees Of The University Of Pennsylvania Gated programmable ventilator
US5184620A (en) 1991-12-26 1993-02-09 Marquette Electronics, Inc. Method of using a multiple electrode pad assembly
DE4201768C2 (en) 1992-01-23 1996-12-19 Laerdal Asmund S As Model for practicing cardiopulmonary resuscitation (CPR) of a human being
US5334706A (en) 1992-01-30 1994-08-02 Baxter International Administration of low dose hemoglobin to increase perfusion
FR2687492A1 (en) 1992-02-18 1993-08-20 Fmc Prod Sarl Apparatus for simulating states, in particular respiratory pathologies.
US5195896A (en) 1992-02-28 1993-03-23 Simulaids, Inc. Manikin construction
GB9204754D0 (en) 1992-03-05 1992-04-15 Brain Archibald Ian Jeremy Mould for manufacture of a laryngeal mask
US5355879A (en) 1992-09-28 1994-10-18 Brain Archibald Ian Jeremy Laryngeal-mask construction
DK32992A (en) 1992-03-12 1993-09-13 Ambu Int As Traeningsmodel to Practice of external cardiac massage
CA2065184C (en) 1992-04-06 1996-12-03 Richard Brault Valve means for training manikin
US5335654A (en) 1992-05-07 1994-08-09 New York University Method and apparatus for continuous adjustment of positive airway pressure for treating obstructive sleep apnea
US5584701A (en) 1992-05-13 1996-12-17 University Of Florida Research Foundation, Incorporated Self regulating lung for simulated medical procedures
US5301667A (en) 1992-08-03 1994-04-12 Vital Signs, Inc. Pressure limiting valve for ventilation breathing bag apparatus
US5701889A (en) 1992-08-12 1997-12-30 Conax Florida Corporation Oxygen breathing controller having a G-sensor
US5353788A (en) 1992-09-21 1994-10-11 Miles Laughton E Cardio-respiratory control and monitoring system for determining CPAP pressure for apnea treatment
US5388575A (en) 1992-09-25 1995-02-14 Taube; John C. Adaptive controller for automatic ventilators
US5359998A (en) 1992-10-23 1994-11-01 Lloyd Lee J Manual resuscitator
US5477860A (en) 1992-11-05 1995-12-26 Synectics Medical, Inc. Catheter for measuring respiration and respiratory effort
JP2779992B2 (en) 1992-11-06 1998-07-23 暢 佐藤 Emergency resuscitation for the esophagus in the airway
US5588422A (en) 1992-11-17 1996-12-31 Regents Of The University Of Minnesota Methods and pharmaceutical compositions for enhanced cardiopulmonary resuscitation
US5385547A (en) 1992-11-19 1995-01-31 Baxter International Inc. Adaptor for drug delivery
US5492116A (en) 1992-12-17 1996-02-20 Respironics Inc. Respiratory mask with floating seal responsive to pressurized gas
US5316907A (en) 1993-01-22 1994-05-31 Regents Of The University Of Minnesota Enzymatic fluorometric assay for adenylate cyclase
US5618665A (en) 1993-01-22 1997-04-08 Regents Of The University Of Minnesota Enzymatic fluorometric assay for adenylate cyclase
US6758217B1 (en) 1993-02-05 2004-07-06 University Of Manitoba Control of airway pressure during mechanical ventilation
US5490820A (en) 1993-03-12 1996-02-13 Datascope Investment Corp. Active compression/decompression cardiac assist/support device and method
DE4308493A1 (en) 1993-03-17 1994-09-22 Laerdal Asmund S As Model for practising cardiopulmonary resuscitation (CPR) of a human being, especially of babies
US5312259A (en) 1993-04-19 1994-05-17 Stephen Flynn CPR mannequin
FI931998A (en) 1993-05-03 1994-11-04 Markku Moilanen Recovery device
CN2175543Y (en) 1993-05-12 1994-08-31 洪志斌 Brake device for baby learning walk cart
US5423685A (en) 1993-05-28 1995-06-13 Adamson; Ian A. CPR training manikin
US5395399A (en) 1993-06-14 1995-03-07 Sport Wrapz, Inc. Thermal wrap for a body member
US5657751A (en) 1993-07-23 1997-08-19 Karr, Jr.; Michael A. Cardiopulmonary resuscitation unit
US5984909A (en) 1993-08-13 1999-11-16 Daig Corporation Coronary sinus catheter
US5423772A (en) 1993-08-13 1995-06-13 Daig Corporation Coronary sinus catheter
US6001085A (en) 1993-08-13 1999-12-14 Daig Corporation Coronary sinus catheter
US6277107B1 (en) 1993-08-13 2001-08-21 Daig Corporation Guiding introducer for introducing medical devices into the coronary sinus and process for using same
US5643231A (en) 1993-08-13 1997-07-01 Daig Corporation Coronary sinus catheter
FR2709251B1 (en) 1993-08-26 1995-11-10 Georges Boussignac respiratory assistance tube.
US5517986A (en) 1993-09-28 1996-05-21 Respironics, Inc. Two-point/four-point adjustable headgear for gas delivery mask
US6425393B1 (en) 1993-11-09 2002-07-30 Cprx Llc Automatic variable positive expiratory pressure valve and methods
CN1089012C (en) 1995-03-10 2002-08-14 Cprx公司 CPR device having strucure for increasing duration and magnitude of negative intra-thoracic pressure
EP1617798A4 (en) 2003-04-28 2011-04-20 Advanced Circulatory Systems Inc Ventilator and methods for treating head trauma and low blood circulation
US5551420A (en) 1993-11-09 1996-09-03 Cprx, Inc. CPR device and method with structure for increasing the duration and magnitude of negative intrathoracic pressures
US6062219A (en) 1993-11-09 2000-05-16 Cprx Llc Apparatus and methods for assisting cardiopulmonary resuscitation
US7195013B2 (en) 1993-11-09 2007-03-27 Advanced Circulatory Systems, Inc. Systems and methods for modulating autonomic function
US5692498A (en) 1993-11-09 1997-12-02 Cprx, Inc. CPR device having valve for increasing the duration and magnitude of negative intrathoracic pressures
US5492115A (en) 1993-12-08 1996-02-20 Abramov; Vladimir V. Resuscitation breathing apparatus
US5425742A (en) 1994-03-28 1995-06-20 Patrick S. Quigley Use of hollow hypobaric chambers on body parts for increasing blood flow, reducing pressure and decreasing pain
US5474533A (en) 1994-04-11 1995-12-12 The Ohio State University Intrathoracic mechanical, electrical and temperature adjunct to cardiopulmonary cerebral resuscitation, shock, head injury, hypothermia and hyperthermia
EP0756502B1 (en) 1994-04-19 1999-03-03 Heribert Bauer Respirator, in particular for the treatment of respiratory insufficiency, and a method of operating said respirator
US5782883A (en) 1994-05-31 1998-07-21 Galvani Ltd. Suboptimal output device to manage cardiac tachyarrhythmias
US5735876A (en) 1994-05-31 1998-04-07 Galvani Ltd. Electrical cardiac output forcing method and apparatus for an atrial defibrillator
GB9410935D0 (en) 1994-06-01 1994-07-20 Dranez Anstalt Ventilator apparatus
US5794615A (en) 1994-06-03 1998-08-18 Respironics, Inc. Method and apparatus for providing proportional positive airway pressure to treat congestive heart failure
US5458562A (en) 1994-06-13 1995-10-17 The United States Of America As Represented By The Secretary Of The Navy Circulation enhancing apparatus
US6729334B1 (en) 1994-06-17 2004-05-04 Trudell Medical Limited Nebulizing catheter system and methods of use and manufacture
JPH0824337A (en) 1994-07-11 1996-01-30 Masaaki Inoue High frequency respirator
US5582182A (en) 1994-10-03 1996-12-10 Sierra Biotechnology Company, Lc Abnormal dyspnea perception detection system and method
US5630789A (en) 1994-10-07 1997-05-20 Datascope Investment Corp. Active compression/decompression device for cardiopulmonary resuscitation
AT407716T (en) 1994-10-14 2008-09-15 Bird Products Corp A portable mechanical and driven with a rotary compressor ventilator
DK120994A (en) 1994-10-19 1996-04-20 Ambu Int As A manikin unit
US5685298A (en) 1995-01-20 1997-11-11 Idris; Ahamed H. Artificial ventilation mask with PPCO2 reducer and/or epinephrine source in mask
US5632298A (en) 1995-03-17 1997-05-27 Artinian; Hagop Resuscitation and inhalation device
US5619665A (en) 1995-04-13 1997-04-08 Intrnational Business Machines Corporation Method and apparatus for the transparent emulation of an existing instruction-set architecture by an arbitrary underlying instruction-set architecture
US5678535A (en) 1995-04-21 1997-10-21 Dimarco; Anthony Fortunato Method and apparatus for electrical stimulation of the respiratory muscles to achieve artificial ventilation in a patient
US5544648A (en) 1995-05-12 1996-08-13 Cook Incorporated Device for intratracheal ventilation and intratracheal pulmonary ventilation including reverse venturi
DE19518270C1 (en) 1995-05-18 1996-08-22 Fraunhofer Ges Forschung Non-slip polished floor covering
US5697364A (en) 1995-06-07 1997-12-16 Salter Labs Intermittent gas-insufflation apparatus
US6010470A (en) 1995-07-10 2000-01-04 The United States Of America As Represented By The Secretary Of The Air Force Automated retrograde inflation cardiopulmonary resuscitation trousers
US5617844A (en) 1995-09-21 1997-04-08 King; Russell W. Aerosol medication delivery system
US5628305A (en) 1995-09-27 1997-05-13 Richard J. Melker Universal ventilation device
GB9520234D0 (en) 1995-10-04 1995-12-06 Smiths Industries Plc Tracheal tubes and systems
US5557049A (en) 1995-11-09 1996-09-17 Mercury Enterprises, Inc. Disposable manometer for use with a CPR bag
SE9504120D0 (en) 1995-11-16 1995-11-16 Siemens Elema Ab Ventilator for respiratory treatment
US6533739B1 (en) 1995-11-21 2003-03-18 The Penn State Research Foundation Chest brace and method of using same
US6158432A (en) 1995-12-08 2000-12-12 Cardiopulmonary Corporation Ventilator control system and method
US5738637A (en) 1995-12-15 1998-04-14 Deca-Medics, Inc. Chest compression apparatus for cardiac arrest
US5927273A (en) 1996-03-08 1999-07-27 Life Resuscitation Technologies, Inc. Combined liquid ventilation and cardiopulmonary resuscitation method
US5827893A (en) 1996-03-29 1998-10-27 Lurie; Keith G. Mechanical and pharmacological therapies to treat cardiac arrest
US5853292A (en) 1996-05-08 1998-12-29 Gaumard Scientific Company, Inc. Computerized education system for teaching patient care
US5975081A (en) 1996-06-21 1999-11-02 Northrop Grumman Corporation Self-contained transportable life support system
US5701883A (en) 1996-09-03 1997-12-30 Respironics, Inc. Oxygen mixing in a blower-based ventilator
US5720282A (en) 1996-09-06 1998-02-24 Wright; Clifford Universal respiratory apparatus and method of using same
US6165105A (en) 1996-09-27 2000-12-26 Boutellier; Urs Apparatus and method for training of the respiratory muscles
SE9603841D0 (en) 1996-10-18 1996-10-18 Pacesetter Ab A tissue stimulating apparatus
US5806512A (en) 1996-10-24 1998-09-15 Life Support Technologies, Inc. Cardiac/pulmonary resuscitation method and apparatus
US5730122A (en) 1996-11-12 1998-03-24 Cprx, Inc. Heart failure mask and methods for increasing negative intrathoracic pressures
US6306098B1 (en) 1996-12-19 2001-10-23 Novametrix Medical Systems Inc. Apparatus and method for non-invasively measuring cardiac output
US5896857A (en) 1996-12-20 1999-04-27 Resmed Limited Valve for use in a gas delivery system
US5817997A (en) 1997-01-24 1998-10-06 Silicon Graphics, Inc. Power switch plunger mechanism
US5885084A (en) 1997-03-12 1999-03-23 Cpr Prompt, L.L.C. Cardiopulmonary resuscitation manikin
US6780017B2 (en) 1998-09-21 2004-08-24 Cardiac Science, Inc. Cardiopulmonary resuscitation manikin with replaceable lung bag and installation tool
US6086582A (en) 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US5823185A (en) 1997-04-04 1998-10-20 Chang; Tien-Tsai Manual pressing and automatic air breathing cardiopulmonary resuscitation first-aid device
US5919210A (en) 1997-04-10 1999-07-06 Pharmatarget, Inc. Device and method for detection and treatment of syncope
US6131571A (en) 1997-04-30 2000-10-17 University Of Florida Ventilation apparatus and anesthesia delivery system
FR2765111B1 (en) 1997-06-30 1999-09-24 Georges Boussignac suction endotracheal tube to a patient under artificial ventilation
DE19734022C2 (en) 1997-08-06 2000-06-21 Pari Gmbh Inhalation therapy device with a valve for limiting the inspiratory flow
US5881725A (en) 1997-08-19 1999-03-16 Victor Equipment Company Pneumatic oxygen conserver
US5823787A (en) 1997-09-17 1998-10-20 Medical Plastics Laboratory, Inc. Training mannequin for management of normal and abnormal airways
US6486206B1 (en) 1997-09-29 2002-11-26 Cprx Inc. Mechanical and pharmacologic therapies to treat cardiac arrest
US5916165A (en) 1997-11-06 1999-06-29 Invasatec, Inc. Pneumatic controller and method
US6356785B1 (en) 1997-11-06 2002-03-12 Cecily Anne Snyder External defibrillator with CPR prompts and ACLS prompts and methods of use
US6555057B1 (en) 1998-02-25 2003-04-29 Coaxia, Inc. Intravascular methods and apparatus for isolation and selective cooling of the cerebral vasculature during surgical procedures
US6042532A (en) 1998-03-09 2000-03-28 L. Vad Technology, Inc. Pressure control system for cardiac assist device
AUPP240198A0 (en) 1998-03-17 1998-04-09 Resmed Limited An apparatus for supplying breathable gas
DK44999A (en) 1998-03-31 1999-10-01 Ambu Int As A device for performing artificial respiration on a patient
JP3945902B2 (en) 1998-03-31 2007-07-18 スズキ株式会社 Ventilator
AU750050B2 (en) 1998-06-03 2002-07-11 Scott Laboratories, Inc. Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
US6463327B1 (en) 1998-06-11 2002-10-08 Cprx Llc Stimulatory device and methods to electrically stimulate the phrenic nerve
US6312399B1 (en) 1998-06-11 2001-11-06 Cprx, Llc Stimulatory device and methods to enhance venous blood return during cardiopulmonary resuscitation
US6234985B1 (en) 1998-06-11 2001-05-22 Cprx Llc Device and method for performing cardiopulmonary resuscitation
US6631716B1 (en) 1998-07-17 2003-10-14 The Board Of Trustees Of The Leland Stanford Junior University Dynamic respiratory control
US5977091A (en) 1998-09-21 1999-11-02 The Research Foundation Of State University Of New York Method of preventing acute lung injury
US6155257A (en) 1998-10-07 2000-12-05 Cprx Llc Cardiopulmonary resuscitation ventilator and methods
US6174295B1 (en) 1998-10-16 2001-01-16 Elroy T. Cantrell Chest mounted cardio pulmonary resuscitation device and system
US6390996B1 (en) 1998-11-09 2002-05-21 The Johns Hopkins University CPR chest compression monitor
US6334441B1 (en) 1998-11-23 2002-01-01 Mallinckrodt Medical, Inc. Phonation valve for breathing tube
US6360741B2 (en) 1998-11-25 2002-03-26 Respironics, Inc. Pressure support system with a low leak alarm and method of using same
US6102042A (en) 1998-12-22 2000-08-15 Respironics, Inc. Insufflation system, attachment and method
WO2001000264A1 (en) 1999-06-30 2001-01-04 University Of Florida Research Foundation, Inc. Ventilator monitor system and method of using same
IL130818A (en) 1999-07-06 2005-07-25 Intercure Ltd Interventive-diagnostic device
US6374827B1 (en) 1999-10-05 2002-04-23 O-Two Systems International Inc. Tracheo-esophageal tube and ventilator for pneumatic cardiopulmonary resuscitation
US6234916B1 (en) 1999-10-18 2001-05-22 Bruce E. Carusillo Multi-task golf tool
US20020007832A1 (en) 1999-10-21 2002-01-24 James Doherty Automated cardiopulmonary resuscitation instruction device
US6369114B1 (en) 1999-11-30 2002-04-09 Institute Of Critical Care Medicine Administration of an α2-adrenergic receptor agonist to enhance cardiopulmonary resuscitation
SE9904645D0 (en) 1999-12-17 1999-12-17 Siemens Elema Ab High Frequency Oscillator Ventilator
SE0000206D0 (en) 2000-01-25 2000-01-25 Siemens Elema Ab The high frequency oscillator ventilator
WO2001056652A1 (en) 2000-02-04 2001-08-09 Zmd Corporation Integrated resuscitation
US6459933B1 (en) 2000-03-09 2002-10-01 Cprx Llc Remote control arrhythmia analyzer and defibrillator
US7011622B2 (en) 2000-03-15 2006-03-14 Ams Research Corporation Parylene coated components for artificial sphincters
AU4923301A (en) 2000-03-22 2001-10-03 Cprx Llc Cpr mask with compression timing metronome and methods
US6296490B1 (en) 2000-08-04 2001-10-02 O-Two Systems International Inc. Ventilation training analyzer manikin
US6792947B1 (en) 2000-08-25 2004-09-21 O-Two Systems International Inc. Flow control valve for manual resuscitator devices
US6622274B1 (en) 2000-09-05 2003-09-16 Advanced Micro Devices, Inc. Method of micro-architectural implementation on bist fronted state machine utilizing ‘death logic’ state transition for area minimization
US20020104544A1 (en) 2000-11-30 2002-08-08 Kuraray Co., Ltd. Endotracheal tube
DE10213905C2 (en) 2001-03-30 2003-04-17 Microcuff Gmbh A method for controlling a ventilator and system therefor
US6544172B2 (en) 2001-05-08 2003-04-08 The Goodyear Tire & Rubber Company Methods for evaluating individuals capacity and establishment of requirements for a job
IL145461A (en) 2001-09-16 2006-09-05 Alyn Woldenberg Family Hospita Inexsufflator
US6776156B2 (en) 2001-09-28 2004-08-17 Advanced Circulatory Systems, Inc. Systems and methods to facilitate the delivery of drugs
US6726634B2 (en) 2002-01-25 2004-04-27 Koninklijke Philips Electronics N.V. System and method for determining a condition of a patient
AT354394T (en) 2002-03-08 2007-03-15 Kaerys S A Air-support apparatus for rapid pressure increase and -absenkung during a breath of a patient
US6988499B2 (en) 2002-03-22 2006-01-24 Newair Manufacturing, Llc Mechanical resuscitator
US8287474B1 (en) 2002-08-22 2012-10-16 Koenig J Frank Method and apparatus for noninvasively increasing whole body blood flow and noninvasive physical exercise of limbs from the outside and from within the limb to treat diseases throughout the body
US7682312B2 (en) 2002-09-20 2010-03-23 Advanced Circulatory Systems, Inc. System for sensing, diagnosing and treating physiological conditions and methods
US6863656B2 (en) 2002-09-20 2005-03-08 Advanced Circulatory Systems, Inc. Stress test devices and methods
US20040058305A1 (en) 2002-09-25 2004-03-25 Cprx Llc Apparatus for performing and training CPR and methods for using the same
WO2004032727A2 (en) 2002-10-11 2004-04-22 The Regents Of The University Of California Bymixer apparatus and method for fast-response, adjustable measurement of mixed gas fractions in ventilation circuits
US7758623B2 (en) 2003-03-17 2010-07-20 The Board Of Trustees Of The Leland Stanford Junior University Transesophageal heat exchange catheter for cooling of the heart
US7044128B2 (en) 2003-04-08 2006-05-16 Advanced Circulatory Systems, Inc. CPR demonstration device and methods
US7836881B2 (en) 2003-04-28 2010-11-23 Advanced Circulatory Systems, Inc. Ventilator and methods for treating head trauma and low blood circulation
US7195012B2 (en) 2003-04-28 2007-03-27 Advanced Circulatory Systems, Inc. Systems and methods for reducing intracranial pressure
US7766011B2 (en) 2003-04-28 2010-08-03 Advanced Circulatory Systems, Inc. Positive pressure systems and methods for increasing blood pressure and circulation
US7082945B2 (en) 2003-04-28 2006-08-01 Advanced Circulatory Systems, Inc. Ventilator and methods for treating head trauma
US7226427B2 (en) 2003-05-12 2007-06-05 Jolife Ab Systems and procedures for treating cardiac arrest
SE0301767D0 (en) 2003-06-18 2003-06-18 Siemens Elema Ab User interface for a medical ventilator
US7188622B2 (en) 2003-06-19 2007-03-13 3M Innovative Properties Company Filtering face mask that has a resilient seal surface in its exhalation valve
US6860265B1 (en) 2003-09-08 2005-03-01 J.H. Emerson Company Insufflation-exsufflation system for removal of broncho-pulmonary secretions with automatic triggering of inhalation phase
US20080047555A1 (en) 2003-09-11 2008-02-28 Advanced Circulatory Systems, Inc. Bag-valve resuscitation for treating of hypotension, head trauma, and cardiac arrest
US6938618B2 (en) 2003-09-11 2005-09-06 Advanced Circulatory Systems, Inc. Bag-valve resuscitation for treatment of hypotention, head trauma, and cardiac arrest
US8011367B2 (en) 2003-09-11 2011-09-06 Advanced Circulatory Systems, Inc. CPR devices and methods utilizing a continuous supply of respiratory gases
US7244225B2 (en) 2003-10-07 2007-07-17 Cardiomedics, Inc. Devices and methods for non-invasively improving blood circulation
US7032596B2 (en) 2004-04-06 2006-04-25 Thompson Darrell K Cardiopulmonary resuscitation device and method
US7899526B2 (en) 2004-05-10 2011-03-01 Regents Of The University Of Minnesota Portable device for monitoring electrocardiographic signals and indices of blood flow
SE529989C2 (en) 2004-09-03 2008-01-29 Ric Investments Llc Gas regulator
US7487773B2 (en) 2004-09-24 2009-02-10 Nellcor Puritan Bennett Llc Gas flow control method in a blower based ventilation system
US7645247B2 (en) 2004-10-25 2010-01-12 Norman A. Paradis Non-invasive device for synchronizing chest compression and ventilation parameters to residual myocardial activity during cardiopulmonary resuscitation
US8795208B2 (en) 2004-11-03 2014-08-05 Physio-Control, Inc. Mechanical CPR device with variable resuscitation protocol
US7771472B2 (en) 2004-11-19 2010-08-10 Pulmonx Corporation Bronchial flow control devices and methods of use
US7630762B2 (en) 2004-12-15 2009-12-08 Medtronic Emergency Response Systems, Inc. Medical device with resuscitation prompts depending on elapsed time
WO2006069170A2 (en) 2004-12-22 2006-06-29 Emory University Therapeutic adjuncts to enhance the organ protective effects of postconditioning
US7836882B1 (en) 2005-01-07 2010-11-23 Vetland Medical Sales And Services Llc Electronic anesthesia delivery apparatus
JP5122305B2 (en) 2005-02-15 2013-01-16 レルダル メディカル アクティーゼルスカブ Stand-alone system for support in the context of the life-saving
JP5269584B2 (en) 2005-03-25 2013-08-21 ゾール メディカル コーポレイションZOLL Medical Corporation Integrated resuscitation
US7650181B2 (en) 2005-09-14 2010-01-19 Zoll Medical Corporation Synchronization of repetitive therapeutic interventions
US20070199566A1 (en) 2006-02-02 2007-08-30 Be Eri Eliezer Respiratory apparatus
US8108204B2 (en) 2006-06-16 2012-01-31 Evgeniy Gabrilovich Text categorization using external knowledge
US7594508B2 (en) 2006-07-13 2009-09-29 Ric Investments, Llc. Ventilation system employing synchronized delivery of positive and negative pressure ventilation
US20080255482A1 (en) 2007-04-16 2008-10-16 Advanced Circulatory Systems, Inc. Intrathoracic pressure limiter and cpr device for reducing intracranial pressure and methods of use
US8151790B2 (en) 2007-04-19 2012-04-10 Advanced Circulatory Systems, Inc. Volume exchanger valve system and method to increase circulation during CPR
BRPI0812285A2 (en) 2007-05-30 2014-11-25 Gilbert Jacobus Kuypers Improvements for electrically operable ressucitadores.
US8210176B2 (en) 2007-06-18 2012-07-03 Advanced Circulatory Systems, Inc. Method and system to decrease intracranial pressure, enhance circulation, and encourage spontaneous respiration
US20090062701A1 (en) 2007-06-29 2009-03-05 Advanced Circulatory Systems, Inc. Lower extremity compression devices, systems and methods to enhance circulation
CA2693774A1 (en) 2007-07-09 2009-01-15 Velomedix, Inc. Hypothermia devices and methods
US7854759B2 (en) 2007-12-21 2010-12-21 Cook Incorporated Prosthetic flow modifying device
WO2009105337A2 (en) 2008-02-20 2009-08-27 Dexcom, Inc. Continuous medicament sensor system for in vivo use
US20090277447A1 (en) 2008-05-12 2009-11-12 Advanced Circulatory Systems, Inc. System, method, and device to increase circulation during cpr without requiring positive pressure ventilation
WO2010044034A1 (en) 2008-10-16 2010-04-22 Koninklijke Philips Electronics, N.V. Accessory connection and data synchronication in a ventilator
US8960195B2 (en) 2009-04-29 2015-02-24 Edward Lehman Intubation-facilitating oxygen mask
US8755902B2 (en) 2009-12-30 2014-06-17 ResQCor Systems and methods for placing electronic devices into “cautery-safe” mode
WO2011100694A1 (en) 2010-02-12 2011-08-18 Advanced Circulatory Systems, Inc. Guided active compression decompression cardiopulmonary resuscitation systems and methods
US20110297147A1 (en) 2010-06-02 2011-12-08 ResQCor Systems and methods for cardiac arrest protocol compliance
US20120203147A1 (en) 2010-07-02 2012-08-09 ResQSystems, Inc. Vasodilator-enhanced cardiopulmonary resuscitation
US20120330199A1 (en) 2010-07-02 2012-12-27 ResQSystems, Inc. Methods and systems for reperfusion injury protection after cardiac arrest
WO2013064888A1 (en) 2011-11-03 2013-05-10 Trudell Medical International Breathing apparatus and method for the use thereof
JP2015500733A (en) 2011-12-19 2015-01-08 レスキューシステムズ インコーポレイテッドResqsystems,Inc. Intrathoracic pressure adjustment system and method for the treatment
US20130231593A1 (en) 2012-03-02 2013-09-05 Demetris Yannopoulos Non-invasive system to regulate intracranial pressure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020170562A1 (en) * 1993-11-09 2002-11-21 Cprx Llc Shock treatment systems and methods
US5496257A (en) * 1994-04-22 1996-03-05 Kelly Medical Products, Inc. Apparatus for assisting in the application of cardiopulmonary resuscitation
US5743864A (en) * 1995-06-29 1998-04-28 Michigan Instruments, Inc. Method and apparatus for performing cardio-pulmonary resuscitation with active reshaping of chest
US20030062040A1 (en) * 2001-09-28 2003-04-03 Lurie Keith G. Face mask ventilation/perfusion systems and method
US20040267325A1 (en) * 2003-06-27 2004-12-30 Frederick Geheb Method and apparatus for enhancement of chest compressions during CPR
US20120302908A1 (en) * 2008-10-16 2012-11-29 Hemnes Anna R Oral end tidal carbon dioxide probe for diagnosing pulmonary arterial hypertension
US20100319691A1 (en) * 2009-06-19 2010-12-23 Advanced Circulatory Systems, Inc. Vacuum and positive pressure ventilation systems and methods for intrathoracic pressure regulation
US20120330200A1 (en) * 2010-02-12 2012-12-27 Advanced Circulatory Systems, Inc. Enhanced guided active compression decompression cardiopulmonary resuscitation systems and methods
US20120016279A1 (en) * 2010-07-13 2012-01-19 Banville Isabelle L Cpr chest compression machine stopping to detect patient recovery
US20140048061A1 (en) * 2012-08-10 2014-02-20 Demetris Yannopoulos System and method for administering anesthetics while performing cpr

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3308763A4 (en) * 2015-06-12 2019-02-27 Mediana Co., Ltd. Automatic cardiopulmonary resuscitation device

Also Published As

Publication number Publication date
US20170231557A1 (en) 2017-08-17
US9949686B2 (en) 2018-04-24
US20180206785A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
Sarma et al. An exponential formula for heart rate dependence of QT interval during exercise and cardiac pacing in humans: reevaluation of Bazett's formula
Kleinman et al. Part 10: Pediatric basic and advanced life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations
Lindner et al. Vasopressin improves vital organ blood flow during closed-chest cardiopulmonary resuscitation in pigs
Seals et al. Respiratory modulation of muscle sympathetic nerve activity in intact and lung denervated humans.
US7226427B2 (en) Systems and procedures for treating cardiac arrest
Grossman et al. Respiratory sinus arrhythmia, cardiac vagal control, and daily activity
JP4189448B2 (en) Therapeutic system using bioregulatory functions alternate
Neumar et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care
Lurie et al. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation
Wolfe et al. Interdisciplinary ICU cardiac arrest debriefing improves survival outcomes
EP2295111A2 (en) ECG rhythm advisory method and apparatus
Sanders et al. Expired PCO2 as a prognostic indicator of successful resuscitation from cardiac arrest
Sheel et al. Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans
US5571142A (en) Non-invasive monitoring and treatment of subjects in cardiac arrest using ECG parameters predictive of outcome
Giardino et al. Respiratory sinus arrhythmia is associated with efficiency of pulmonary gas exchange in healthy humans
Convertino et al. Arterial pulse pressure and its association with reduced stroke volume during progressive central hypovolemia
Marn-Pernat et al. Optimizing timing of ventricular defibrillation
Klouche et al. Evolution of the stone heart after prolonged cardiac arrest
US8226543B2 (en) ECG rhythm advisory method
Yannopoulos et al. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest
CN101309722B (en) Synchronization of repetitive therapeutic interventions
Sanders et al. Coronary perfusion pressure during cardiopulmonary resuscitation
US6556865B2 (en) Method for improving cardiac function following delivery of a defibrillation shock
US8060199B2 (en) CPR time indicator for a defibrillator data management system
St Croix et al. Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans

Legal Events

Date Code Title Description
AS Assignment

Owner name: RESQSYSTEMS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LURIE, KEITH;REEL/FRAME:034282/0092

Effective date: 20140716

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ZOLL MEDICAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED CIRCULATORY SYSTEMS INC;REEL/FRAME:042347/0980

Effective date: 20170412

AS Assignment

Owner name: ZOLL MEDICAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESQSYSTEMS, INC.;REEL/FRAME:045393/0102

Effective date: 20180228