US20140338856A1 - Heat storage device having a high volume capacity - Google Patents

Heat storage device having a high volume capacity Download PDF

Info

Publication number
US20140338856A1
US20140338856A1 US14/276,157 US201414276157A US2014338856A1 US 20140338856 A1 US20140338856 A1 US 20140338856A1 US 201414276157 A US201414276157 A US 201414276157A US 2014338856 A1 US2014338856 A1 US 2014338856A1
Authority
US
United States
Prior art keywords
heat storage
heat
storage device
heat transfer
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/276,157
Inventor
Luc Prieels
Jacques Jean Gilbert De Cauwer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US14/276,157 priority Critical patent/US20140338856A1/en
Publication of US20140338856A1 publication Critical patent/US20140338856A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0008Particular heat storage apparatus the heat storage material being enclosed in plate-like or laminated elements, e.g. in plates having internal compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage device.
  • Heat storage technology is well known for storing heat from a fluid into a storage medium.
  • a heat storage device takes heat from a heat transfer fluid and stores it into a heat storage medium.
  • An illustrative example is a system to store heat from hot air into a volume of water.
  • heat transfer fluid such as hot air
  • the heat storage elements are typically formed from two plates of metal with a heat storage medium between the plates.
  • the performance of a heat storage device is dependent on two important aspects, the heat exchange between a heat transfer fluid and the plates, and the heat transfer inside the heat storage medium.
  • the state of the art for this type of system typically uses metallic plates for transferring heat from a heat transfer fluid, and a heat storage medium with a high thermal conductivity for efficient transfer of heat inside of itself.
  • Prieels discloses a counter flow heat exchanger body having a accordion shape and comprising substantially planar transverse heat-exchange walls. Prieels discloses the body exchange walls are made of paper, coated with a protective layer of plastic.
  • One embodiment of the invention is a heat storage device having a high volume capacity (defined as the ratio between the volume of the heat storage medium divided by the overall volume of the device) combined with a high heat transfer surface and a low envelope material volume (‘dead volume’).
  • the heat storage device is composed of individual elements encapsulating the heat storage medium stacked in a way that creates fluid transfer channels.
  • the (air) heat transfer fluid channels are surrounded by a large heat transfer surface and embossed in a way to improve the heat transfer.
  • FIG. 1 shows an embossed sheet, and a pair of embossed sheets forming a storage element.
  • FIG. 2 shows various features of a storage element.
  • FIG. 3 shows two storage elements stacked to form channels.
  • FIG. 4 shows a top view of a storage element.
  • FIG. 5 shows a storage module
  • FIG. 6 shows storage modules stacked in parallel.
  • FIG. 7 shows storage modules stacked in series.
  • FIG. 8 shows storage modules stacked in parallel and in series.
  • the term “storage element” means a thin material encapsulating a heat storage medium.
  • storage module means an assembly of two or more storage elements, with air channels in between.
  • storage device means an assembly of two or more storage modules, connected in serial or parallel.
  • heat storage medium means any material with storage capacity for sensible or latent heat.
  • heat transfer fluid means any gas, such as, as air, inert gas, or helium; or liquid, such as water, glycol-water, or oil.
  • the term “compactness” means the ratio between the surface area of a storage element, and the volume contained by that surface area.
  • volume capacity means the ratio between the volume of the heat storage medium divided by the overall volume of the storage device.
  • PCM phase change material
  • mean airflow velocity means the overall volumetric airflow rate divided by the frontal entering area of all the air channels.
  • the present invention provides a heat storage device that is inexpensive and corrosion-proof, while ensuring an excellent heat transfer between the heat transfer fluid and the heat storage medium.
  • the invention relates to a heat storage device for the transfer of the heat energy of a fluid into a heat storage medium.
  • the heat storage device is formed by assembling storage elements into storage modules, and storage modules into the storage device.
  • the storage elements consist of sheets of thermally conductive materials that are formed with a particular shape, and assembled in such a manner, that a large ratio of volume to surface area is created.
  • the storage elements are stacked in a way to create air channels in between each for the heat transfer fluid.
  • designs for heat storage elements are based on optimizing the thermal conductivity of the material enveloping the storage material.
  • the design of the storage element of the present invention is based on the optimization of the heat transfer in and out of the storage material. It depends from one side from the area size and the topography of the exchange surface and from the other side from the storage element thickness.
  • the optimum thickness of the thermally conductive material from which the storage element is constructed is calculated by taking into consideration the storage performance of the heat storage medium, and the required time for cycling the charge and discharge of the heat storage device, based on the depth of penetration of heat into the heat storage medium.
  • This approach is based by solving the heat transfer equation for a harmonic source as described in ISO 13786 “Thermal performance of building components —Dynamic thermal characteristics—Calculation methods”, available from the International Organization for Standardization.
  • the storage elements are formed by embossing parallelepiped shapes into polymeric sheet materials using thermoforming methods well known in the art of polymer processing. Two nesting shapes connected by a hinge portion are embossed in each thermoforming operation. The two embossed portions fold along the hinge and nest together in a clamshell fashion to form the series of small interconnected volumes that is subsequently filled with a heat storage media, to create the storage element.
  • the embossing pattern of the storage elements is optimized to minimize the pressure drop across the storage device by the cross corrugation pattern design of the heat transfer channels.
  • the cross corrugation pattern embossed in the plate induce the heat storage fluid to be embedded in a multitude of small volumes with a characteristic distance equal to Sigma, with each small volume surrounded by the heat transfer fluid.
  • Two or more storage elements are stacked to form a storage module.
  • the two or more storage elements in the storage module are stacked in a way that creates channels between the elements for passage of heat transfer fluid.
  • the channels are designed in a way to have alternating sections with an aspect ratio changing alternatively from height to width, to width to height, wherein the height is greater in dimension than the width.
  • the volume capacity of the storage element is calculated by multiplying the overall thickness times the surface area, to which the volume occupied by the heat transfer fluid is subtracted. It has been found that minimizing the diameter of the channels will improve the heat transfer coefficient and increase the volume capacity.
  • the energy storage capacity of a single element is calculated by the integration of the sensible and latent heat of the heat storage medium on a defined temperature range time the overall heat storage medium mass contained in the element. It can be optimized by either increasing the sensible or latent heat of the heat storage medium or the overall mass of the element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The invention is a heat storage device having a high volume capacity (defined as the ratio between the volume of the heat storage medium divided by the overall volume of the device) combined with a high heat transfer surface and a low envelope material volume (‘dead volume’). The heat storage device is composed of individual storage elements which encapsulate a heat storage medium. The storage elements are stacked in a way that creates channels for the passage of a heat transfer fluid. The (air) heat transfer fluid channels are surrounded by a large heat transfer surface and embossed in a way to improve the heat transfer.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of Invention
  • The present invention relates to a heat storage device.
  • 2. Description of the Related Art
  • Heat storage technology is well known for storing heat from a fluid into a storage medium. A heat storage device takes heat from a heat transfer fluid and stores it into a heat storage medium. An illustrative example is a system to store heat from hot air into a volume of water. In a typical design, heat transfer fluid, such as hot air, is forced through layers of metallic heat storage elements folded in a zig-zap pattern, similar in shape to a accordion bellows. The heat storage elements are typically formed from two plates of metal with a heat storage medium between the plates. The performance of a heat storage device is dependent on two important aspects, the heat exchange between a heat transfer fluid and the plates, and the heat transfer inside the heat storage medium. The state of the art for this type of system typically uses metallic plates for transferring heat from a heat transfer fluid, and a heat storage medium with a high thermal conductivity for efficient transfer of heat inside of itself.
  • In WO2011153595, Prieels discloses a counter flow heat exchanger body having a accordion shape and comprising substantially planar transverse heat-exchange walls. Prieels discloses the body exchange walls are made of paper, coated with a protective layer of plastic.
  • It is found that both metallic and coated paper materials have a limited ability to transfer the heat of a transfer fluid to a heat storage medium. It is also found that typical heat storage devices develop a pressure drop from the input of the system to the output, which reduces the efficiency of heat transfer. It is also found that heat transfer is improved with a higher ratio of surface area of the plates to the volume of heat storage medium, and a better convection coefficient of the heat storage medium. It is also found that typical heat storage devices experience corrosion of the plates and housings due to the typically harsh conditions to which they are subject.
  • There is a need for a heat storage device with higher storage density, less pressure drop, and a higher power of charging and discharging the storage system (higher speed of exchange). There are additional needs for a heat storage device that is corrosion-proof, yet has economical material and production costs.
  • SUMMARY OF THE INVENTION
  • One embodiment of the invention is a heat storage device having a high volume capacity (defined as the ratio between the volume of the heat storage medium divided by the overall volume of the device) combined with a high heat transfer surface and a low envelope material volume (‘dead volume’). The heat storage device is composed of individual elements encapsulating the heat storage medium stacked in a way that creates fluid transfer channels. The (air) heat transfer fluid channels are surrounded by a large heat transfer surface and embossed in a way to improve the heat transfer.
  • BRIEF DESCRIPTION OF FIGURES
  • FIG. 1 shows an embossed sheet, and a pair of embossed sheets forming a storage element.
  • FIG. 2 shows various features of a storage element.
  • FIG. 3 shows two storage elements stacked to form channels.
  • FIG. 4 shows a top view of a storage element.
  • FIG. 5 shows a storage module.
  • FIG. 6 shows storage modules stacked in parallel.
  • FIG. 7 shows storage modules stacked in series.
  • FIG. 8 shows storage modules stacked in parallel and in series.
  • DEFINITIONS
  • As employed herein, the term “storage element” means a thin material encapsulating a heat storage medium.
  • As employed herein, the term “storage module” means an assembly of two or more storage elements, with air channels in between.
  • As employed herein, the term “storage device” means an assembly of two or more storage modules, connected in serial or parallel.
  • As employed herein, the term “heat storage medium” means any material with storage capacity for sensible or latent heat.
  • As employed herein, the term “heat transfer fluid” means any gas, such as, as air, inert gas, or helium; or liquid, such as water, glycol-water, or oil.
  • As employed herein, the term “compactness” means the ratio between the surface area of a storage element, and the volume contained by that surface area.
  • As employed herein, the term “volume capacity” means the ratio between the volume of the heat storage medium divided by the overall volume of the storage device.
  • As employed herein, the term “PCM” means a phase change material.
  • As employed herein, the term “mean airflow velocity” means the overall volumetric airflow rate divided by the frontal entering area of all the air channels.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention provides a heat storage device that is inexpensive and corrosion-proof, while ensuring an excellent heat transfer between the heat transfer fluid and the heat storage medium. The invention relates to a heat storage device for the transfer of the heat energy of a fluid into a heat storage medium. The heat storage device is formed by assembling storage elements into storage modules, and storage modules into the storage device.
  • The storage elements consist of sheets of thermally conductive materials that are formed with a particular shape, and assembled in such a manner, that a large ratio of volume to surface area is created. The storage elements are stacked in a way to create air channels in between each for the heat transfer fluid. Heretofore, designs for heat storage elements are based on optimizing the thermal conductivity of the material enveloping the storage material. The design of the storage element of the present invention is based on the optimization of the heat transfer in and out of the storage material. It depends from one side from the area size and the topography of the exchange surface and from the other side from the storage element thickness.
  • The optimum thickness of the thermally conductive material from which the storage element is constructed is calculated by taking into consideration the storage performance of the heat storage medium, and the required time for cycling the charge and discharge of the heat storage device, based on the depth of penetration of heat into the heat storage medium.

  • Sigma=SQRT((lambda*T)/(pi*Rho*Cp)).
  • Wherein lambda=thermal conductivity, T=cycle period , Rho=density, and Cp=average heat capacity over the given temperature interval (include sensible+latent heat).
  • This approach is based by solving the heat transfer equation for a harmonic source as described in ISO 13786 “Thermal performance of building components —Dynamic thermal characteristics—Calculation methods”, available from the International Organization for Standardization.
  • The storage elements are formed by embossing parallelepiped shapes into polymeric sheet materials using thermoforming methods well known in the art of polymer processing. Two nesting shapes connected by a hinge portion are embossed in each thermoforming operation. The two embossed portions fold along the hinge and nest together in a clamshell fashion to form the series of small interconnected volumes that is subsequently filled with a heat storage media, to create the storage element. The embossing pattern of the storage elements is optimized to minimize the pressure drop across the storage device by the cross corrugation pattern design of the heat transfer channels. The cross corrugation pattern embossed in the plate induce the heat storage fluid to be embedded in a multitude of small volumes with a characteristic distance equal to Sigma, with each small volume surrounded by the heat transfer fluid.
  • Two or more storage elements are stacked to form a storage module. The two or more storage elements in the storage module are stacked in a way that creates channels between the elements for passage of heat transfer fluid. The channels are designed in a way to have alternating sections with an aspect ratio changing alternatively from height to width, to width to height, wherein the height is greater in dimension than the width.
  • The volume capacity of the storage element is calculated by multiplying the overall thickness times the surface area, to which the volume occupied by the heat transfer fluid is subtracted. It has been found that minimizing the diameter of the channels will improve the heat transfer coefficient and increase the volume capacity.
  • The energy storage capacity of a single element is calculated by the integration of the sensible and latent heat of the heat storage medium on a defined temperature range time the overall heat storage medium mass contained in the element. It can be optimized by either increasing the sensible or latent heat of the heat storage medium or the overall mass of the element.

Claims (11)

What is claimed is:
1. A heat storage element consisting of an embossed polymeric sheet encapsulating a heat storage medium.
2. A heat storage element as described in claim 1, where the thickness of the embossed polymeric sheet is in the range from 0.1 to 1 mm.
3. A heat storage device comprised of two or more of the heat storage elements of claim 1 stacked in a way that creates fluid transfer channels.
4. A heat storage device as described in claim 3 and having a volume capacity ranges between 60% and 90%.
5. A heat storage device as described in claim 3 and having a heat transfer compactness of 212 m2/m3.
6. A heat storage device as described in claim 3 wherein the embossed polymeric sheet is made of a polymeric material selected from PVC, ABS, PP, HDPE, or PS.
7. A heat storage device as described in claim 3, wherein the heat storage medium can be any material having a high sensible and latent heat, and having a melting temperature between −40 deg C and 150 deg C.
8. A heat storage device as described in claim 3 wherein the heat storage density is greater than 5 Wh/liter, on a 15° C. temperature difference.
9. A heat storage device as described in claim 3 wherein the thickness of a storage element is between 5 and 25 mm.
10. A heat storage device as described in claim 3 wherein the pressure drop through a module is less than 50 Pa, with a mean airflow velocity higher than 1 m/s.
11. A heat storage device as described in claim 3 where the overall heat coefficient of exchange is higher than 12 W/m2/K with an mean airflow velocity less than 2 m/s.
US14/276,157 2013-05-16 2014-05-13 Heat storage device having a high volume capacity Abandoned US20140338856A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/276,157 US20140338856A1 (en) 2013-05-16 2014-05-13 Heat storage device having a high volume capacity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361823982P 2013-05-16 2013-05-16
US201361910560P 2013-12-02 2013-12-02
US14/276,157 US20140338856A1 (en) 2013-05-16 2014-05-13 Heat storage device having a high volume capacity

Publications (1)

Publication Number Publication Date
US20140338856A1 true US20140338856A1 (en) 2014-11-20

Family

ID=51894836

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/276,157 Abandoned US20140338856A1 (en) 2013-05-16 2014-05-13 Heat storage device having a high volume capacity

Country Status (1)

Country Link
US (1) US20140338856A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL441900A1 (en) * 2022-08-01 2024-02-05 Instytut Maszyn Przepływowych Im. Roberta Szewalskiego Polskiej Akademii Nauk Macro-capsule for low-temperature heat storage with phase-change material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114776A (en) * 1989-07-28 1992-05-19 Cesaroni Anthony Joseph Corrugated thermoplastic sheet having fluid flow passages
US20090211726A1 (en) * 2008-02-22 2009-08-27 Dow Global Technologies Inc. Thermal energy storage materials
US20090250189A1 (en) * 2008-02-22 2009-10-08 Dow Global Technologies Inc. Heat storage devices
US20110179807A1 (en) * 2008-02-11 2011-07-28 Artica Technologies Limited Pcm modules/packs/pcm arrangements
US20120048768A1 (en) * 2009-02-11 2012-03-01 Mathew Holloway Phase change material composition
US20120279679A1 (en) * 2010-01-29 2012-11-08 Soukhojak Andrey N Thermal energy storage
US20130168881A1 (en) * 2012-01-03 2013-07-04 Evapco, Inc. Heat exchanger plate and a fill pack of heat exchanger plates

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114776A (en) * 1989-07-28 1992-05-19 Cesaroni Anthony Joseph Corrugated thermoplastic sheet having fluid flow passages
US20110179807A1 (en) * 2008-02-11 2011-07-28 Artica Technologies Limited Pcm modules/packs/pcm arrangements
US20090211726A1 (en) * 2008-02-22 2009-08-27 Dow Global Technologies Inc. Thermal energy storage materials
US20090250189A1 (en) * 2008-02-22 2009-10-08 Dow Global Technologies Inc. Heat storage devices
US20120048768A1 (en) * 2009-02-11 2012-03-01 Mathew Holloway Phase change material composition
US20120279679A1 (en) * 2010-01-29 2012-11-08 Soukhojak Andrey N Thermal energy storage
US20130168881A1 (en) * 2012-01-03 2013-07-04 Evapco, Inc. Heat exchanger plate and a fill pack of heat exchanger plates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL441900A1 (en) * 2022-08-01 2024-02-05 Instytut Maszyn Przepływowych Im. Roberta Szewalskiego Polskiej Akademii Nauk Macro-capsule for low-temperature heat storage with phase-change material

Similar Documents

Publication Publication Date Title
CN102438850B (en) For the hot linked equipment of energy storage
TWI489674B (en) Heat spreader and battery module
RU2413152C2 (en) Heat exchanger from hollow flat sections
CN102456938B (en) Battery thermal system with interlocking structure components
JP2013511116A5 (en)
KR20110024954A (en) Secondary battery module having conduit for cooling
CN103227354A (en) A cooling and heating structure
US9366486B2 (en) Heat exchanger
CN203481341U (en) Battery pack cooling structure
CN103813695A (en) Siphon heat dissipating device
JP5864731B2 (en) Fin heat exchanger
US10222132B2 (en) Heat transfer apparatus
CN111347933B (en) Cooling module for an electrical energy storage system of an electric vehicle
US20140338856A1 (en) Heat storage device having a high volume capacity
CN208333192U (en) A kind of compact heat exchanger of periodicity variable section runner
CN104143669A (en) Power battery with ultra-thin lightweight heat dissipation devices
RU2010144066A (en) ENERGY BATTERY
CN201449191U (en) Superposed concave-convex plate type heat exchanger
JP5732205B2 (en) Heat storage / dissipation device
CN206388743U (en) Heat dissipation box cover for battery box of electric automobile
CN210074101U (en) Three-dimensional heat pipe radiator applied to heat dissipation of power battery
MX2014007701A (en) Cooling radiator having liquid cooling.
JP5409056B2 (en) Plate heat exchanger
CN112880445A (en) Micro-channel parallel flow loop heat pipe
RU139843U1 (en) RECUPERATOR

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION